
Developer Guide

Amazon Location Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Location Service Developer Guide

Amazon Location Service: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Location Service Developer Guide

Table of Contents

Welcome ... 1
What is Amazon Location Service? ... 1
Key features ... 2
Related services .. 3

Quick start ... 5
Creating a web app .. 5

Create resources .. 6
Setup authentication .. 7
Creating HTML ... 8
Adding the map .. 12
Adding search .. 16
Final application .. 20
What's next ... 25

Creating an Android app .. 25
Creating Amazon Location resources for your app .. 26
Setup authentication .. 27
Create the app ... 30
Add the map .. 31
Add search .. 34
Add tracking ... 44
What's next ... 53

Creating an iOS app .. 53
Create resources .. 54
Setup authentication .. 55
Creating the app ... 58
Initial code .. 59
Add a map .. 61
Add search .. 66
Add tracking ... 67
What's next ... 79

Amazon Location concepts ... 80
Overview .. 81
Maps .. 82

Map styles .. 83

iii

Amazon Location Service Developer Guide

Political views .. 83
Custom Layers ... 84
Map rendering ... 84
Maps terminology ... 85

Places search ... 87
Geocoding concepts ... 88
Search results ... 89
Multiple results and relevance ... 89
Address results .. 90
Storing geocode results ... 92
Places terminology ... 92

Routes ... 93
Route calculator resources .. 94
Calculating a route ... 94
Planning routes ... 96
Route terminology .. 96

Geofences and Trackers .. 98
Geofences ... 98
Trackers ... 100
Geofence terminology ... 104
Tracker terminology ... 105

Common use cases .. 106
User engagement and geomarketing applications .. 107
Asset tracking applications ... 109
Delivery applications .. 110

Data providers .. 112
Data provider coverage and features ... 112
Map styles .. 114
More details ... 114
Esri ... 114
GrabMaps .. 123
HERE Technologies ... 128
Open Data .. 135
Features by data provider ... 144
Terms of use and data attribution .. 149

Regions and endpoints ... 149

iv

Amazon Location Service Developer Guide

Regions .. 149
Endpoints .. 151
API operation Endpoints ... 152

Service quotas .. 153
Managing your Amazon Location service quotas .. 167

Developing with Amazon Location .. 169
Scenarios and use cases ... 169
SDKs and tools ... 170

SDKs by language ... 171
MapLibre ... 175
Amazon Location SDK ... 180

Amazon Location APIs .. 204
Using Amazon Location with an AWS SDK ... 204
Error message updates .. 204

Code examples ... 237
Amazon Location Demo site .. 239
Tutorial: Quick start ... 239
Tutorial: Database enrichment .. 240
Example: Explore app .. 241
Example: Style a map .. 242
Example: Draw markers ... 242
Example: Draw clustered points .. 243
Example: Draw a polygon ... 243
Example: Change the map language ... 244
Blog: Estimated delivery time notifications .. 244
Example: Stream Position Updates ... 245
Example: Geofencing and Tracking mobile application .. 246

How to use Amazon Location ... 247
Account prerequisites .. 248

Sign up for an AWS account .. 248
Create a user with administrative access .. 249
Grant access to Amazon Location Service .. 250

Using maps .. 251
Prerequisites .. 253
Displaying maps .. 256
Drawing on a map .. 310

v

Amazon Location Service Developer Guide

Settings extents for a map .. 311
Managing map resources .. 312

Places search ... 316
Prerequisites .. 317
Geocoding .. 320
Reverse geocoding ... 327
Autocomplete .. 331
Using place IDs ... 338
Categories and filtering .. 339
Tutorial: Database enrichment .. 344
Managing place index resources ... 359

Calculating routes .. 362
Prerequisites .. 363
Calculate route .. 366
Route planning .. 371
Positions not located on a road .. 377
Departure time .. 379
Travel mode ... 380
Managing route resources .. 381

Geofencing and tracking .. 385
Step 1: Add geofences .. 386
Step 2: Start tracking .. 393
Step 3: Link a tracker to a geofence collection ... 407
Step 4: Evaluate device positions against geofences .. 408
Verify device positions .. 411
Reacting to events with EventBridge ... 413
Tracking using AWS IoT and MQTT .. 418
Managing geofence resources ... 426
Managing tracker resources ... 434
Sample Geofencing and Tracking mobile application .. 438

Tagging your resources ... 457
Restrictions ... 457
Grant permission to tag .. 458
Add a tag to a resource .. 459
Track cost by tag .. 459
Control access to resources using tags .. 460

vi

Amazon Location Service Developer Guide

Learn more ... 461
Grant access to Amazon Location .. 461

Using API keys ... 462
Using Amazon Cognito .. 468

Monitoring Amazon Location Service .. 478
Monitoring with CloudWatch ... 479
Using CloudTrail with Amazon Location ... 484

Using AWS CloudFormation to create resources ... 488
Amazon Location and AWS CloudFormation templates .. 488
Learn more about AWS CloudFormation ... 489

Security .. 490
Data protection .. 491

Data privacy ... 492
Data retention ... 492
Data at rest encryption ... 492
Data in transit encryption .. 505

Identity and Access Management .. 505
Audience ... 506
Authenticating with identities ... 506
Managing access using policies ... 510
How Amazon Location Service works with IAM ... 512
How Amazon Location Service works with unauthenticated users .. 520
Identity-based policy examples ... 521
Troubleshooting .. 533

Incident response ... 535
Logging and Monitoring ... 535

Compliance validation .. 536
Resilience ... 537
Infrastructure security ... 537
Configuration and vulnerability analysis .. 538
Confused deputy prevention ... 538
Security best practices .. 538

Detective best practices .. 539
Preventive best practices .. 539

Best practices .. 540
Security ... 541

vii

Amazon Location Service Developer Guide

Resource management .. 541
Billing and cost management .. 542
Quotas and usage .. 542

Document history .. 543
AWS Glossary ... 552

viii

Amazon Location Service Developer Guide

Welcome to Amazon Location Service

Welcome to the Amazon Location Service Developer Guide.

The following topics can help you get started in the documentation, based on what you are trying
to do.

Get an overview of Amazon Location

• Learn about the concepts in Amazon Location.

• Dive deeper into the functionality in the How to use Amazon Location Service chapter.

• See demo apps in the Amazon Location demo site.

• If you already have an AWS account, you can use the Amazon Location Service console to
explore the functionality first-hand.

Use Amazon Location as a developer

• Build your first app with the Quick start.

• Learn how the various Amazon Location Service features work in the How to use Amazon
Location Service chapter.

• See the SDKs and tools available to you in the Developing with Amazon Location chapter.

• See code examples and tutorials that you can use in your own apps. You can also visit the
Amazon Location demo site samples page to find samples, filterable by feature, language, or
platform.

• Get information about Amazon Location APIs in the API Reference guide.

What is Amazon Location Service?

Amazon Location Service lets you add location data and functionality to applications, which
includes capabilities such as maps, points of interest, geocoding, routing, geofences, and
tracking. Amazon Location provides location-based services (LBS) using high-quality data from
global, trusted providers Esri, Grab, and HERE. With affordable data, tracking and geofencing
capabilities, and built-in metrics for health monitoring, you can build sophisticated location-
enabled applications.

With Amazon Location, you retain control of your organization’s data. Amazon Location
anonymizes all queries sent to data providers by removing customer metadata and account

What is Amazon Location Service? 1

https://location.aws.com/
https://console.aws.amazon.com/location/explore/home
https://location.aws.com/samples

Amazon Location Service Developer Guide

information. Additionally, sensitive tracking and geofencing location information, such as facility,
asset, and personnel locations, does not leave your AWS account at all. This helps you protect
sensitive information from third parties, protect user privacy, and reduce your application’s security
risks. With Amazon Location, Amazon and third parties do not have rights to sell your data or use it
for advertising.

Amazon Location is fully integrated with services such as AWS CloudTrail, Amazon CloudWatch,
Amazon EventBridge, and AWS Identity and Access Management (IAM). Amazon Location simplifies
your development workflow with data integration, and fast tracks apps to production with built-in
monitoring, security, and compliance features.

For highlights, product details, and pricing, see the service page for Amazon Location Service.

Key features in Amazon Location

Amazon Location provides the following features:

Maps

Amazon Location Service Maps lets you visualize location information and is the foundations
of many location-based service capabilities. Amazon Location Service provides map tiles of
different styles sourced from global location data providers Esri, Grab, and HERE, as well Open
data maps.

Places

Amazon Location Service Places lets you integrate search functionality into your application,
convert addresses into geographic coordinates in latitude and longitude (geocoding), and
convert a coordinate into a street address (reverse geocoding). Amazon Location Service sources
high-quality geospatial data from Esri, Grab, and HERE to support Places functions.

Routing

Amazon Location Service Routes lets you find routes and estimate travel time based on up-to-
date roadway and live traffic information. Build features that allow your application to request
the travel time, distance, and directions between any two locations. Calculate the time and
distance for a matrix of routes to use in route planning.

Key features 2

https://aws.amazon.com/location/

Amazon Location Service Developer Guide

Geofencing

Amazon Location Service Geofences lets you give your application the ability to detect and
act when a device enters or exits a defined geographical boundary known as a geofence.
Automatically send an entry or exit event to Amazon EventBridge when a geofence breach is
detected. This lets you initiate downstream actions such as sending a notification to a target.

Trackers

Amazon Location Service Trackers lets you retrieve the current and historical location of
devices that are running your tracking-enabled application. You can also link trackers with
Amazon Location Service geofences to evaluate location updates from your devices against
your geofences automatically. Trackers can help you reduce costs by filtering position updates
that haven't moved before storing or evaluating them against geofences.

When you use trackers, sensitive location information on your tracked devices does not leave
your AWS account. This helps protect sensitive information from third parties, protect user
privacy, and reduce security risks.

Services you can use with Amazon Location

Use the following services along with Amazon Location Service.

Integrated monitoring and management

Amazon Location Service is integrated with Amazon CloudWatch, AWS CloudTrail, and Amazon
EventBridge for efficient monitoring and data management:

• Amazon CloudWatch – View metrics on service usage and health, including requests, latency,
faults, and logs. For more information, see the section called “Monitoring with CloudWatch”.

• AWS CloudTrail – Log and monitor your API calls, which include actions taken by a user,
role or an AWS service. For more information, see the section called “Using CloudTrail with
Amazon Location”.

• Amazon EventBridge – Enable an event-driven application architecture so you can use
AWS Lambda functions to activate other parts of your application and work flows. For more
information, see the section called “Reacting to events with EventBridge”.

Related services 3

Amazon Location Service Developer Guide

Developer tools

Amazon Location Service offers a variety of tools for developers to build location-enabled
applications. These include the standard AWS SDKs, mobile and web SDKs, and sample code to
combine them with open source libraries such as MapLibre. Use the Amazon Location Service
console to learn about resources, and to get started with a visual and interactive learning tool.

Related services 4

https://console.aws.amazon.com/location/explore/home
https://console.aws.amazon.com/location/explore/home

Amazon Location Service Developer Guide

Quick start with Amazon Location Service

The most efficient way to get started with Amazon Location Service is to use the Amazon Location
console. You can create and manage your resources and try the Amazon Location functionality
using the Explore page.

Note

To use the Amazon Location Service console, or following the rest of this tutorial, requires
that you first complete the Prerequisites for using Amazon Location Service, including
creating an AWS account, and allowing access to Amazon Location.

To begin learning about the Amazon Location APIs, use the following tutorial to create a simple
application that displays an interactive map and uses search functionality. There are three versions
of the tutorial: one shows you how to create a simple webpage using JavaScript, the second
shows the same for an Android application using Kotlin, and the third shows the same for an iOS
application using Swift.

Topics

• Creating a web app

• Creating an Android app

• Creating an iOS app

Creating a web app

In this section, you will create a static webpage with a map and the ability to search at a location.
First you will create your Amazon Location resources and create an API key for your application.

Topics

• Creating Amazon Location resources for your app

• Setting up authentication for your application

• Creating the HTML for your application

• Adding an interactive map to your application

• Adding search to your application

Creating a web app 5

https://console.aws.amazon.com/location/home
https://console.aws.amazon.com/location/home
https://console.aws.amazon.com/location/explore/home

Amazon Location Service Developer Guide

• Seeing the final application

• What's next

Creating Amazon Location resources for your app

If you do not already have them, you must create the Amazon Location resources that your
application will use. Here, you create a map resource to display maps in your application, and a
place index to search for locations on the map.

To add location resources to your application

1. Choose the map style that you want to use.

a. In the Amazon Location console, on the Maps page, choose Create map to preview map
styles.

b. Add a Name and Description for the new map resource. Make a note of the name that
you use for the map resource. You will need it when creating your script file later in the
tutorial.

c. Choose a map.

Note

Choosing a map style also chooses which map data provider that you will use. If
your application is tracking or routing assets that you use in your business, such
as delivery vehicles or employees, you may only use HERE as your geolocation
provider. For more information, see section 82 of the AWS service terms.

d. Agree to the Amazon Location Terms and Conditions, then choose Create map. You can
interact with the map that you've chosen: zoom in, zoom out, or pan in any direction.

e. Make a note of the Amazon Resource Name (ARN) that is shown for your new map
resource. You'll use it to create the correct authentication later in this tutorial.

2. Choose the place index that you want to use.

a. In the Amazon Location console on the Place indexes page, choose Create place index.

b. Add a Name and Description for the new place index resource. Make a note of the name
that you use for the place index resource. You will need it when creating your script file
later in the tutorial.

Create resources 6

https://console.aws.amazon.com/location/maps/home
https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/places/home

Amazon Location Service Developer Guide

c. Choose a data provider.

Note

In most cases, choose the data provider that matches the map provider that you
already chose. This helps to ensure that the searches will match the maps.
If your application is tracking or routing assets that you use in your business, such
as delivery vehicles or employees, you may only use HERE as your geolocation
provider. For more information, see section 82 of the AWS service terms.

d. Choose the Data storage option. For this tutorial, the results are not stored, so you can
choose No, single use only.

e. Agree to the Amazon Location Terms and Conditions, then choose Create place index.

f. Make a note of the ARN that is shown for your new place index resource. You'll use it to
create the correct authentication in the next section of this tutorial.

Setting up authentication for your application

The application that you create in this tutorial has anonymous usage, meaning that your users are
not required to sign into AWS to use the application. However, by default, the Amazon Location
Service APIs require authentication to use. You can use either Amazon Cognito or API keys to
provide authentication and authorization for anonymous users. In this tutorial, you will create API
keys for use in the sample application.

Note

For more information about using API keys or Amazon Cognito with Amazon Location
Service, see Granting access to Amazon Location Service.

To set up authentication for your application

1. Go to the Amazon Location console, and choose API keys from the left menu.

2. Choose Create API key.

Setup authentication 7

https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location

Amazon Location Service Developer Guide

Important

The API key that you create must be in the same AWS account and AWS Region as the
Amazon Location Service resources that you created in the previous section.

3. One the Create API key page, fill in the following information.

• Name – A name for your API key, such as MyWebAppKey.

• Resources – Choose the Amazon Location Map and Place index resources that you created
in the previous section. You can add more than one resource by choosing Add resource. This
will allow the API key to be used with those resources.

• Actions – Specify the actions you want to authorize with this API key. You must select at
least geo:GetMap* and geo:SearchPlaceIndexfForPosition so that the tutorial will work as
expected.

• You can optionally add a Description, Expiration time, or Tags to your API key. You can also
add a referer (such as *.example.com), to limit the key to only being used from a particular
domain. This will mean that the tutorial will only work from that domain.

Note

It is recommended that you protect your API key usage by setting either an
expiration time or a referer, if not both.

4. Choose Create API key to create the API key.

5. Choose Show API key, and copy the key value for use later in the tutorial. It will be in the form
v1.public.a1b2c3d4....

Important

You will need this key when writing the code for your application later in this tutorial.

Creating the HTML for your application

In this tutorial, you will create a static HTML page that embeds a map, and allows the user to find
what's at a location on the map. The app will consist of three files: an HTML file and CSS file for

Creating HTML 8

Amazon Location Service Developer Guide

the webpage, and a JavaScript (.js) file for the code that creates the map and responds to the user's
interactions and map events.

First, let's create the HTML and CSS framework that will be used for the application. This will be
a simple page with a <div> element to hold the map container and a <pre> element to show the
JSON responses to your queries.

To create the HTML for your quick start application

1. Create a new file called quickstart.html.

2. Edit the file in the text editor or environment of your choice. Add the following HTML to the
file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Quick start tutorial</title>

 <!-- Styles -->
 <link href="main.css" rel="stylesheet" />
 </head>

 <body>
 <header>
 <h1>Quick start tutorial</h1>
 </header>
 <main>
 <div id="map"></div>
 <aside>
 <h2>JSON Response</h2>
 <pre id="response"></pre>
 </aside>
 </main>
 <footer>This is a simple Amazon Location Service app. Pan and zoom. Click to
 see details about entities close to a point.</footer>

 </body>
</html>

This HTML has a pointer to the CSS file that you will create in the next step, some placeholder
elements for the application, and some explanatory text.

Creating HTML 9

Amazon Location Service Developer Guide

There are two placeholder elements that you will use later in this tutorial. The first is
the <div id="map> element, which will hold the map control. The second is the <pre
id="response"> element, which will show the results of searching on the map.

3. Save your file.

Now add the CSS for the webpage. This will set the style of the text and placeholder elements for
the application.

To create the CSS for your quick start application

1. Create a new file called main.css, in the same folder as the quickstart.html file created in the
previous procedure.

2. Edit the file in whatever editor that you want to use. Add the following text to the file.

* {
 box-sizing: border-box;
 font-family: Arial, Helvetica, sans-serif;
}

body {
 margin: 0;
}

header {
 background: #000000;
 padding: 0.5rem;
}

h1 {
 margin: 0;
 text-align: center;
 font-size: 1.5rem;
 color: #ffffff;
}

main {
 display: flex;
 min-height: calc(100vh - 94px);
}

Creating HTML 10

Amazon Location Service Developer Guide

#map {
 flex: 1;
}

aside {
 overflow-y: auto;
 flex: 0 0 30%;
 max-height: calc(100vh - 94px);
 box-shadow: 0 1px 1px 0 #001c244d, 1px 1px 1px 0 #001c2426, -1px 1px 1px 0
 #001c2426;
 background: #f9f9f9;
 padding: 1rem;
}

h2 {
 margin: 0;
}

pre {
 white-space: pre-wrap;
 font-family: monospace;
 color: #16191f;
}

footer {
 background: #000000;
 padding: 1rem;
 color: #ffffff;
}

This sets the map to fill the space not used by anything else, sets the area for our responses
to take up 30% of the width of the app, and sets color and styles for the title and explanatory
text.

3. Save the file.

4. You can now view the quickstart.html file in a browser to see the layout of the application.

Creating HTML 11

Amazon Location Service Developer Guide

Next, you will add the map control to the application.

Adding an interactive map to your application

Now that you have a framework and a div placeholder, you can add the map control to your
application. This tutorial uses MapLibre GL JS as a map control, getting data from Amazon Location
Service. You will also use the JavaScript Authentication helper to facilitate signing of calls to the
Amazon Location APIs with your API key.

To add an interactive map to your application

1. Open the quickstart.html file that you created in the previous section.

2. Add references to the needed libraries, and the script file that you will create. The changes you
need to make are shown in green.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Quick start tutorial</title>

 <!-- Styles -->
 <link href="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.css"
 rel="stylesheet" />
 <link href="main.css" rel="stylesheet" />
 </head>

 <body>
 ...

Adding the map 12

https://maplibre.org/maplibre-gl-js-docs/api/

Amazon Location Service Developer Guide

 <footer>This is a simple Amazon Location Service app. Pan and zoom. Click to
 see details about entities close to a point.</footer>

 <!-- JavaScript dependencies -->
 <script src="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.js"></script>
 <script src="https://unpkg.com/@aws/amazon-location-client@1.x/dist/
amazonLocationClient.js"></script>
 <script src="https://unpkg.com/@aws/amazon-location-utilities-auth-helper@1.x/
dist/amazonLocationAuthHelper.js"></script>

 <!-- JavaScript for the app -->
 <script src="main.js"></script>
 </body>
</html>

This adds the following dependencies to your app:

• MapLibre GL JS. This library and stylesheet include a map control that displays map tiles
and includes interactivity, such as pan and zoom. The control also allows extensions, such as
drawing your own features on the map.

• Amazon Location client. This provides interfaces for the Amazon Location functionality
needed to get map data, and to search for places on the map. The Amazon Location client is
based on the AWS SDK for JavaScript v3.

• Amazon Location Authentication Helper. This provides helpful functions for authenticating
Amazon Location Service with API keys or Amazon Cognito.

This step also adds a reference to main.js, which you will create next.

3. Save the quickstart.html file.

4. Create a new file called main.js in the same folder as your HTML and CSS files, and open it
for editing.

5. Add the following script to your file. The text in red should be replaced with the API key value,
map resource name, and place resource name that you created earlier, as well as the region
identifier for your region (such as us-east-1).

// Amazon Location Service resource names:
const mapName = "explore.map";
const placesName = "explore.place";
const region = "your_region";

Adding the map 13

Amazon Location Service Developer Guide

const apiKey = "v1.public.a1b2c3d4...

// Initialize a map
async function initializeMap() {
 const mlglMap = new maplibregl.Map({
 container: "map", // HTML element ID of map element
 center: [-77.03674, 38.891602], // Initial map centerpoint
 zoom: 16, // Initial map zoom
 style: 'https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor?key=${apiKey}', // Defines the appearance of the map and authenticates
 using an API key
 });

 // Add navigation control to the top left of the map
 mlglMap.addControl(new maplibregl.NavigationControl(), "top-left");

 return mlglMap;
}

async function main() {
 // Initialize map and Amazon Location SDK client:
 const map = await initializeMap();
}

main();

This code sets up Amazon Location resources, then configures and initializes a MapLibre GL JS
map control and places it in your <div> element with the id map.

The initializeMap() function is important to understand. It creates a new MapLibre map
control (called mlglMap locally, but called map in the rest of the code) that is used to render
the map in your application.

 // Initialize the map
 const mlglMap = new maplibregl.Map({
 container: "map", // HTML element ID of map element
 center: [-77.03674, 38.891602], // Initial map centerpoint
 zoom: 16, // Initial map zoom
 style: 'https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor?key=${apiKey}`, // Defines the appearance of the map and authenticates
 using an API key
 });

Adding the map 14

Amazon Location Service Developer Guide

When you create a new MapLibre map control, the parameters that you pass indicate the initial
state of the map control. Here, we set the following parameters.

• HTML container, which uses the map div element in our HTML.

• The initial center of the map to a point in Washington, DC.

• The zoom level to 16 (zoomed into a neighborhood or block level).

• The style to use for the map, which gives MapLibre a URL to use to get the map tiles
and other information to render the map. Notice that this URL includes your API key for
authentication.

6. Save your JavaScript file, and open it with a browser. You now have a map on your page, where
you can use pan and zoom actions.

Note

You can use this app to see how the MapLibre map control behaves. You can try using
Ctrl or Shift while using a dragging operation, to see other ways to interact with the
map. All of this functionality is customizable.

Your app is nearly complete. In the next section, you will handle choosing a location on the map,
and show the address of the location chosen. You will also show the resulting JSON on the page, to
see the full results.

Adding the map 15

Amazon Location Service Developer Guide

Adding search to your application

The last step for your application is to add searching on the map. In this case, you will add a reverse
geocoding search, where you find the items at a location.

Note

Amazon Location Service also provides the ability to search by name or address to find the
locations of places on the map.

To add search functionality to your application

1. Open the main.js file that you created in the previous section.

2. Modify the main function, as shown. The changes you need to make are shown in green.

async function main() {
 // Create an authentication helper instance using an API key
 const authHelper = await amazonLocationAuthHelper.withAPIKey(apiKey);

 // Initialize map and Amazon Location SDK client:
 const map = await initializeMap();

 const client = new amazonLocationClient.LocationClient({
 region,
 ...authHelper.getLocationClientConfig(), // Provides configuration required to
 make requests to Amazon Location
 });

 // On mouse click, display marker and get results:
 map.on("click", async function (e) {
 // Set up parameters for search call
 let params = {
 IndexName: placesName,
 Position: [e.lngLat.lng, e.lngLat.lat],
 Language: "en",
 MaxResults: "5",
 };

 // Set up command to search for results around clicked point

Adding search 16

Amazon Location Service Developer Guide

 const searchCommand = new
 amazonLocationClient.SearchPlaceIndexForPositionCommand(params);

 try {
 // Make request to search for results around clicked point
 const data = await client.send(searchCommand);

 // Write JSON response data to HTML
 document.querySelector("#response").textContent = JSON.stringify(data,
 undefined, 2);

 // Display place label in an alert box
 alert(data.Results[0].Place.Label);
 } catch (error) {
 // Write JSON response error to HTML
 document.querySelector("#response").textContent = JSON.stringify(error,
 undefined, 2);

 // Display error in an alert box
 alert("There was an error searching.");
 }
 });
}

This code starts by setting up the Amazon Location authentication helper to use your API key.

const authHelper = await amazonLocationAuthHelper.withAPIKey(apiKey);

Then it uses that authentication helper, and the region you are using to create a new Amazon
Location client.

const client = new amazonLocationClient.LocationClient({
 region,
 ...authHelper.getLocationClientConfig(),
 });

Next, the code responds to the user choosing a spot on the map control. It does this by
catching a MapLibre provided event for click.

map.on("click", async function(e) {
 ...

Adding search 17

Amazon Location Service Developer Guide

 });

The MapLibre click event provides parameters that include the latitude and longitude
that the user chose (e.lngLat). Within the click event, the code creates the
searchPlaceIndexForPositionCommand to find the entities at the given latitude and
longitude.

 // Set up parameters for search call
 let params = {
 IndexName: placesName,
 Position: [e.lngLat.lng, e.lngLat.lat],
 Language: "en",
 MaxResults: "5"
 };

 // Set up command to search for results around clicked point
 const searchCommand = new
 amazonLocationClient.SearchPlaceIndexForPositionCommand(params);

 try {
 // Make request to search for results around clicked point
 const data = await client.send(searchCommand);
 ...
 });

Here, the IndexName is the name of the Place Index resource that you created earlier, the
Position is the latitude and longitude to search for, Language is the preferred language for
results, and MaxResults tells Amazon Location to return only a maximum of five results.

The remaining code checks for an error, and then displays the results of the search in the
<pre> element called response, and shows the top result in an alert box.

3. (Optional) If you save and open the quickstart.html file in a browser now, choosing a
location on the map will show you the name or address of the place that you chose.

4. The final step in the application is to use the MapLibre functionality to add a marker on the
spot that the user selected. Modify the main function as follows. The changes you need to
make are shown in green.

async function main() {
 // Create an authentication helper instance using an API key
 const authHelper = await amazonLocationAuthHelper.withAPIKey(apiKey);

Adding search 18

Amazon Location Service Developer Guide

 // Initialize map and Amazon Location SDK client
 const map = await initializeMap();
 const client = new amazonLocationClient.LocationClient({
 region,
 ...authHelper.getLocationClientConfig(), // Provides configuration required to
 make requests to Amazon Location
 });

 // Variable to hold marker that will be rendered on click
 let marker;

 // On mouse click, display marker and get results:
 map.on("click", async function (e) {
 // Remove any existing marker
 if (marker) {
 marker.remove();
 }

 // Render a marker on clicked point
 marker = new maplibregl.Marker().setLngLat([e.lngLat.lng,
 e.lngLat.lat]).addTo(map);

 // Set up parameters for search call
 let params = {
 IndexName: placesName,
 Position: [e.lngLat.lng, e.lngLat.lat],
 Language: "en",
 MaxResults: "5",
 };

 // Set up command to search for results around clicked point
 const searchCommand = new
 amazonLocationClient.SearchPlaceIndexForPositionCommand(params);

...

This code declares a marker variable, that is populated each time the user selects a location,
showing where they selected. The marker is automatically rendered by the map control, once
it's added to the map with .addTo(map);. The code also checks for a previous marker, and
removes it, so that there is only 1 marker on the screen at a time.

Adding search 19

Amazon Location Service Developer Guide

5. Save the main.js file, and open the quickstart.html file in a browser. You can pan and
zoom on the map, as before, but now if you choose a location, you will see details about the
location that you chose.

Your quick start application is complete. This tutorial has shown you how to create a static HTML
application that:

• Creates a map that users can interact with.

• Handles a map event (click).

• Calls an Amazon Location Service API, specifically to search the map at a location, using
searchPlaceIndexForPosition.

• Uses the MapLibre map control to add a marker.

Seeing the final application

The final source code for this application is included in this section. You can also find the final
project on GitHub.

You can also find a version of the application that uses Amazon Cognito instead of API keys on
GitHub.

Overview

Select each tab to view the final source code of the files in this quick start tutorial.

Final application 20

https://github.com/aws-geospatial/amazon-location-samples-js/tree/main/quick-start-using-api-keys
https://github.com/aws-geospatial/amazon-location-samples-js/tree/main/quick-start-using-cognito
https://github.com/aws-geospatial/amazon-location-samples-js/tree/main/quick-start-using-cognito

Amazon Location Service Developer Guide

The files are:

• quickstart.html — the framework for your application, including the HTML element holders
for the map and search results.

• main.css — the stylesheet for the application.

• main.js — the script for your application that authenticates the user, creates the map, and
searches on a click event.

quickstart.html

The HTML framework for the quick start application.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Quick start tutorial</title>

 <!-- Styles -->
 <link href="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.css"
 rel="stylesheet" />
 <link href="main.css" rel="stylesheet" />
 </head>

 <body>
 ...
 <footer>This is a simple Amazon Location Service app. Pan and zoom. Click to see
 details about entities close to a point.</footer>

 <!-- JavaScript dependencies -->
 <script src="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.js"></script>
 <script src="https://unpkg.com/@aws/amazon-location-client@1.x/dist/
amazonLocationClient.js"></script>
 <script src="https://unpkg.com/@aws/amazon-location-utilities-auth-helper@1.x/
dist/amazonLocationAuthHelper.js"></script>

 <!-- JavaScript for the app -->
 <script src="main.js"></script>
 </body>
</html>

Final application 21

Amazon Location Service Developer Guide

main.css

The stylesheet for the quick start application.

* {
 box-sizing: border-box;
 font-family: Arial, Helvetica, sans-serif;
}

body {
 margin: 0;
}

header {
 background: #000000;
 padding: 0.5rem;
}

h1 {
 margin: 0;
 text-align: center;
 font-size: 1.5rem;
 color: #ffffff;
}

main {
 display: flex;
 min-height: calc(100vh - 94px);
}

#map {
 flex: 1;
}

aside {
 overflow-y: auto;
 flex: 0 0 30%;
 max-height: calc(100vh - 94px);
 box-shadow: 0 1px 1px 0 #001c244d, 1px 1px 1px 0 #001c2426, -1px 1px 1px 0
 #001c2426;
 background: #f9f9f9;
 padding: 1rem;
}

Final application 22

Amazon Location Service Developer Guide

h2 {
 margin: 0;
}

pre {
 white-space: pre-wrap;
 font-family: monospace;
 color: #16191f;
}

footer {
 background: #000000;
 padding: 1rem;
 color: #ffffff;
}

main.js

The code for the quick start application. The text in red should be replaced with the
appropriate Amazon Location object names.

// Amazon Location Service resource names:
const mapName = "explore.map";
const placesName = "explore.place";
const region = "your_region";
const apiKey = "v1.public.a1b2c3d4...

// Initialize a map
async function initializeMap() {
 // Initialize the map
 const mlglMap = new maplibregl.Map({
 container: "map", // HTML element ID of map element
 center: [-77.03674, 38.891602], // Initial map centerpoint
 zoom: 16, // Initial map zoom
 style: `https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor?key=${apiKey}`, // Defines the appearance of the map and authenticates
 using an API key
 });

 // Add navigation control to the top left of the map
 mlglMap.addControl(new maplibregl.NavigationControl(), "top-left");

 return mlglMap;

Final application 23

Amazon Location Service Developer Guide

}

async function main() {
 // Create an authentication helper instance using an API key
 const authHelper = await amazonLocationAuthHelper.withAPIKey(apiKey);

 // Initialize map and Amazon Location SDK client
 const map = await initializeMap();
 const client = new amazonLocationClient.LocationClient({
 region,
 ...authHelper.getLocationClientConfig(), // Provides configuration required to
 make requests to Amazon Location
 });

 // Variable to hold marker that will be rendered on click
 let marker;

 // On mouse click, display marker and get results:
 map.on("click", async function (e) {
 // Remove any existing marker
 if (marker) {
 marker.remove();
 }

 // Render a marker on clicked point
 marker = new maplibregl.Marker().setLngLat([e.lngLat.lng,
 e.lngLat.lat]).addTo(map);

 // Set up parameters for search call
 let params = {
 IndexName: placesName,
 Position: [e.lngLat.lng, e.lngLat.lat],
 Language: "en",
 MaxResults: "5",
 };

 // Set up command to search for results around clicked point
 const searchCommand = new
 amazonLocationClient.SearchPlaceIndexForPositionCommand(params);

 try {
 // Make request to search for results around clicked point
 const data = await client.send(searchCommand);

Final application 24

Amazon Location Service Developer Guide

 // Write JSON response data to HTML
 document.querySelector("#response").textContent = JSON.stringify(data,
 undefined, 2);

 // Display place label in an alert box
 alert(data.Results[0].Place.Label);
 } catch (error) {
 // Write JSON response error to HTML
 document.querySelector("#response").textContent = JSON.stringify(error,
 undefined, 2);

 // Display error in an alert box
 alert("There was an error searching.");
 }
 });
}

main();

What's next

You have completed the quick start tutorial, and should have an idea of how Amazon Location
Service is used to build applications. To get more out of Amazon Location, you can check out the
following resources:

• Dive deeper into the concepts of Amazon Location Service

• Get more information about how to use Amazon Location features and functionality

• See how to expand on this sample and build more complex applications by looking at code
examples using Amazon Location

Creating an Android app

In this section, you will create an Android application with a map, the ability to search at a location
and tracking in the foreground. First, you will create your Amazon Location resources, an Amazon
Cognito identity and an API key for your application.

Topics

• Creating Amazon Location resources for your app

What's next 25

Amazon Location Service Developer Guide

• Setting up authentication for your application

• Creating the base Android application

• Adding an interactive map to your application

• Adding reverse geocoding search to your application

• Adding tracking to your application

• What's next

Creating Amazon Location resources for your app

If you do not already have them, you must create the Amazon Location resources that your
application will use. Here, you create a map resource to display maps in your application, a place
index to search for locations on the map, and a tracker to track an object across the map.

To add location resources to your application

1. Choose the map style that you want to use.

a. In the Amazon Location console, on the Maps page, choose Create map to preview map
styles.

b. Add a Name and Description for the new map resource. Make a note of the name that
you use for the map resource. You will need it when creating your script file later in the
tutorial.

c. We recommend you choose the HERE map stlye for your map.

Note

Choosing a map style also chooses which map data provider that you will use. If
your application is tracking or routing assets that you use in your business, such
as delivery vehicles or employees, you may only use HERE as your geolocation
provider. For more information, see section 82 of the AWS service terms.

d. Agree to the Amazon Location Terms and Conditions, then choose Create map. You can
interact with the map that you've chosen: zoom in, zoom out, or pan in any direction.

e. Make a note of the Amazon Resource Name (ARN) that is shown for your new map
resource. You'll use it to create the correct authentication later in this tutorial.

2. Choose the place index that you want to use.

Creating Amazon Location resources for your app 26

https://console.aws.amazon.com/location/maps/home
https://aws.amazon.com/service-terms

Amazon Location Service Developer Guide

a. In the Amazon Location console on the Place indexes page, choose Create place index.

b. Add a Name and Description for the new place index resource. Make a note of the name
that you use for the place index resource. You will need it when creating your script file
later in the tutorial.

c. Choose a data provider.

Note

In most cases, choose the data provider that matches the map provider that you
already chose. This helps to ensure that the searches will match the maps.
If your application is tracking or routing assets that you use in your business, such
as delivery vehicles or employees, you may only use HERE as your geolocation
provider. For more information, see section 82 of the AWS service terms.

d. Choose the Data storage option. For this tutorial, the results are not stored, so you can
choose No, single use only.

e. Agree to the Amazon Location Terms and Conditions, then choose Create place index.

f. Make a note of the ARN that is shown for your new place index resource. You'll use it to
create the correct authentication in the next section of this tutorial.

3. To create a tracker using the Amazon Location console.

a. Open the Amazon Location Service console.

b. In the left navigation pane, choose Trackers.

c. Choose Create tracker.

d. Fill in the all the required fields.

e. Under Position filtering, we recommened you use the default setting: TimeBased.

f. Choose Create tracker to finish.

Setting up authentication for your application

The application that you create in this tutorial has anonymous usage, meaning that your users
are not required to sign into AWS to use the application. However, the Amazon Location Service
APIs require authentication to use. You can use either API keys or Amazon Cognito to provide

Setup authentication 27

https://console.aws.amazon.com/location/places/home
https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/

Amazon Location Service Developer Guide

authentication and authorization for anonymous users. This tutorial will use Amazon Cognito and
API keys to authenticate your application.

Note

For more information about using Amazon Cognito or API keys with Amazon Location
Service, see Granting access to Amazon Location Service.

The following tutorials show you how to set up authentication for the map, the place index, and
tracker you created in as well setting up permissions for Amazon Location.

Set up authentication

1. Navigate to the Amazon Location console and select API keys from the left-hand menu.

2. Click on 'Create API key'. Remember that the API key must be in the same AWS account and
region as the previously created Amazon Location Service resources.

3. Fill in the required details on the 'Create API key' page:

• Name: Provide a name for your API key, like MyAppKey.

• Resources: Choose the Amazon Location Service Map and Place index resources created
earlier. You can add multiple resources by selecting 'Add Resource'. This allows the API key to
be used with specified resources.

• Actions: Specify authorized actions for this API key. At a minimum, select geo:GetMap and
geo:SearchPlaceIndexForPosition to ensure the tutorial functions as intended.

• Optional you can add a Description, Expiration time, Tags, or a referer for example
https://www.example.com to limit the key's usage to a specific domain, enabling the
tutorial to function only within that domain.

4. Click Create API Key to generate the API key.

5. Select Show API Key and copy the key value for example v1.public.a1b2c3d4 for later use
in the tutorial.

Create an IAM policy for tracking

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/ with your user that has
administrator permissions.

Setup authentication 28

https://console.aws.amazon.com/location/home/

Amazon Location Service Developer Guide

2. In the navigation pane, choose Policies.

3. In the content pane, choose Create policy.

4. Choose the JSON option, then copy and paste this JSON policy into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "geo:GetMapTile",
 "geo:GetMapStyleDescriptor",
 "geo:GetMapSprites",
 "geo:GetMapGlyphs",
 "geo:SearchPlaceIndexForPosition",
 "geo:GetDevicePositionHistory",
 "geo:BatchUpdateDevicePosition"
],
 "Resource": [
 "arn:aws:geo:{Region}:{Account}:map/{MapName}",
 "arn:aws:geo:{Region}:{Account}:place-index/{IndexName}",
 "arn:aws:geo:{Region}:{Account}:tracker/{TrackerName}"
]
 }
]
 }

This is a policy example for Tracking. To use the example for your own policy, replace the
Region, Account, and TrackerName placeholders.

Note

While unauthenticated identity pools are intended for exposure on unsecured internet
sites, note that they will be exchanged for standard, time-limited AWS credentials.
It's important to scope the IAM roles associated with unauthenticated identity pools
appropriately. For more information about using and appropriately scoping policies
in Amazon Cognito with Amazon Location Service, see Granting access to Amazon
Location Service.

Setup authentication 29

https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html
https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html

Amazon Location Service Developer Guide

5. On the Review and Create page, provide a name for the policy name field. Review the
permissions granted by your policy, and then choose Create Policy to save your work.

The new policy appears in the list of managed policies and is ready to attach.

Set up authentication for your tracking

1. Set up authentication for your map application in the Amazon Cognito console.

2. Open the Identity pools page.

Note

The pool that you create must be in the same AWS account and AWS Region as the
Amazon Location Service resources that you created in the previous section.

3. Choose Create Identity pool.

4. Starting with the Configure identity pool trust step. For user access authentication, select
Guest access, and press next.

5. On the Configure permissions page select the Use an existing IAM role and enter the name
of the IAM role you created in the previous step. When ready press next to move on to the next
step.

6. On the Configure properties page, provide a name for your identity pool. Then press Next.

7. On the Review and create page, review all the information present then press Create identity
pool.

8. Open the Identity pools page, and select the identity pool you just created. Then copy or write
down the IdentityPoolId that you will use later in your browser script.

Creating the base Android application

In this tutorial, you will create an Android application that embeds a map and allows the user to
find what's at a location on the map.

First, create an empty Kotlin application using Android Studio's new project wizard.

To create an empty application (AndroidStudio)

1. Start AndroidStudio. Open the menu, and choose File, New, New Project.

Create the app 30

https://console.aws.amazon.com/cognito/home/

Amazon Location Service Developer Guide

2. From the Phone and Tablet tab, select Empty Activity, and then choose Next.

3. Choose a Name, Package name, and Save location for your application.

4. In the dropdown list for Language, select Kotlin.

5. Choose Finish to create your blank application.

Adding an interactive map to your application

Now that you have created a basic application, you can add map control to your application. This
tutorial uses API keys for managing the map view. The map control itself is part of the MapLibre
Native library, with the API key and MapLibre, and the map data comes from Amazon Location.

To add a map to your application you will have to perform the following actions:

• Add the MapLibre dependency to your project.

• Set up the map view code with compose.

• Write code to show the map.

Use the following procedure to add the map to your app:

1. Add the MapLibre dependency to your project

a. In AndroidStudio, select the View menu, and choose Tool Windows, Project. This will
open the Project window, which gives you access to all the files in your project.

b. In the Project window, open gradle then open the libs.versions.toml file in the
tree view. This will open the libs.versions.toml file for editing. Now add the below
version and libraries data in the libs.versions.toml file.

[versions]
 ...
 auth = "0.2.4"
 tracking = "0.2.4"

 [libraries]
 ...
 auth = { group = "software.amazon.location", name = "auth", version.ref =
 "auth" }
 tracking = { module = "software.amazon.location:tracking", version.ref =
 "tracking" }

Add the map 31

https://github.com/maplibre/maplibre-native
https://github.com/maplibre/maplibre-native

Amazon Location Service Developer Guide

 [plugins]
 ...

c. After you finish editing the libs.versions.toml file, AndroidStudio must re-sync the
project. At the top of the libs.versions.toml editing window, AndroidStudio prompts
you to sync. Select 'Sync Now' to sync your project before continuing.

d. In the Project window, open Gradle Scripts in the tree view and select the build.gradle
file for your application module. This will open the build.gradle file for editing.

e. At the bottom of the file, in the dependencies section, add the following dependency.

dependencies {
 ...
 implementation(libs.org.maplibre.gl)
 }

f. After you finish adding the Gradle dependencies, Android Studio must re-sync the project.
At the top of the build.gradle editing window, Android Studio, select Sync Now to sync
your project before continuing.

2. Now you will set up the map view code with compose. Use the following steps:

a. From the Project window, open App, Java, your package name in the tree view, and go
to the ui folder, inside the ui folder create a view directory.

b. Inside view directory create a MapLoadScreen.kt file.

c. Add the following code to your MapLoadScreen.kt file.

import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.fillMaxHeight
import androidx.compose.foundation.layout.fillMaxWidth
import androidx.compose.runtime.Composable
import androidx.compose.ui.Modifier
import androidx.compose.ui.viewinterop.AndroidView
import org.maplibre.android.maps.OnMapReadyCallback

 @Composable
 fun MapLoadScreen(
 mapReadyCallback: OnMapReadyCallback,
) {
 Box(
 modifier = Modifier

Add the map 32

Amazon Location Service Developer Guide

 .fillMaxWidth()
 .fillMaxHeight(),
) {
 MapView(mapReadyCallback)
 }
 }

 @Composable
 fun MapView(mapReadyCallback: OnMapReadyCallback) {
 AndroidView(
 factory = { context ->
 val mapView = org.maplibre.android.maps.MapView(context)
 mapView.onCreate(null)
 mapView.getMapAsync(mapReadyCallback)
 mapView
 },
)
 }

3. Write code to show the map.

a. Add the following code to your MainActivity.kt file.

// ...other imports
import org.maplibre.android.MapLibre
import org.maplibre.android.camera.CameraPosition
import org.maplibre.android.geometry.LatLng
import org.maplibre.android.maps.MapLibreMap
import org.maplibre.android.maps.OnMapReadyCallback
import org.maplibre.android.maps.Style

 class MainActivity : ComponentActivity(), OnMapReadyCallback {
 private val region = "YOUR_AWS_REGION"
 private val mapName = "YOUR_AWS_MAP_NAME"
 private val apiKey = "YOUR_AWS_API_KEY"
 override fun onCreate(savedInstanceState: Bundle?) {
 MapLibre.getInstance(this)
 super.onCreate(savedInstanceState)
 setContent {
 TestMapAppTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {

Add the map 33

Amazon Location Service Developer Guide

 MapLoadScreen(this)
 }
 }
 }
 }

 override fun onMapReady(map: MapLibreMap) {
 map.setStyle(
 Style.Builder()
 .fromUri(
 "https://maps.geo.$region.amazonaws.com/maps/v0/maps/
$mapName/style-descriptor?key=$apiKey"
),
) {
 map.uiSettings.isAttributionEnabled = true
 map.uiSettings.isLogoEnabled = false
 map.uiSettings.attributionGravity = Gravity.BOTTOM or Gravity.END
 val initialPosition = LatLng(47.6160281982247,
 -122.32642111977668)
 map.cameraPosition = CameraPosition.Builder()
 .target(initialPosition)
 .zoom(14.0)
 .build()
 }
 }
 }

b. Save the MainActivity.kt file. You can now build the application. To run it, you may
have to set up a device to emulate it in AndroidStudio, or use the app on your device. Use
this app to see how the map control behaves. You can pan by dragging it on the map and
pinching it to zoom.

In the next section, you will add a marker on the map and show the address of the
location where the marker is as you move the map.

Adding reverse geocoding search to your application

You will now add reverse geocoding search to your application, where you find the items at a
location. To simplify using an Android app, we will search the center of the screen. To find a new
location, move the map to where you want to search. We will place a marker at the centre of the
map to show where we are searching.

Add search 34

Amazon Location Service Developer Guide

Adding a reverse geocoding search will consist of two parts.

• Add a marker at the centre of the screen to show the user where we are searching.

• Add a text box for results, then search for what is at the marker's location and show it in the text
box.

To add a marker to your application

1. Save this image to your project in the app/res/drawable folder as red_marker.png (you
can also access the image from GitHub. Alternatively, you can create your image. You can also
use a .png file with transparency for the parts you don't want shown.

2. Add the following code to your MapLoadScreen.kt file.

// ...other imports
import androidx.compose.foundation.Image
import androidx.compose.foundation.layout.size
import androidx.compose.ui.Alignment
import androidx.compose.ui.res.painterResource
import androidx.compose.ui.unit.dp
import com.amazon.testmapapp.R

@Composable
fun MapLoadScreen(
 mapReadyCallback: OnMapReadyCallback,
) {
 Box(
 modifier = Modifier
 .fillMaxWidth()
 .fillMaxHeight(),
) {
 MapView(mapReadyCallback)
 Box(
 modifier = Modifier
 .align(Alignment.Center),
) {
 Image(
 painter = painterResource(id = R.drawable.red_marker),
 contentDescription = "marker",
 modifier = Modifier
 .size(40.dp)

Add search 35

https://github.com/makeen-project/amazon-location-mobile-quickstart-android/tree/main/app/src/main/res/drawable

Amazon Location Service Developer Guide

 .align(Alignment.Center),
)
 }
 }
}

@Composable
fun MapView(mapReadyCallback: OnMapReadyCallback) {
 AndroidView(
 factory = { context ->
 val mapView = org.maplibre.android.maps.MapView(context)
 mapView.onCreate(null)
 mapView.getMapAsync(mapReadyCallback)
 mapView
 },
)
}

3. Build and run your app to preview the functionality.

Your app now has a marker on the screen. In this case, it is a static image that doesn't move. It is
used to show the centre of the map view, which is where we will search. In the following procedure,
we will add the search at that location.

To add reverse geocoding search at a location to your app

1. In the Project window, open gradle to libs.versions.toml file in the tree view. This will
open the libs.versions.toml file for editing. Now add the below version and libraries data
in the libs.versions.toml file.

[versions]
 ...
 okhttp = "4.12.0"

 [libraries]
 ...
 com-squareup-okhttp3 = { group = "com.squareup.okhttp3", name = "okhttp",
 version.ref = "okhttp" }

 [plugins]
 ...

Add search 36

Amazon Location Service Developer Guide

2. After you finish editing the libs.versions.toml file, AndroidStudio must re-sync the
project. At the top of the libs.versions.toml editing window, AndroidStudio prompts you
to sync. Select 'Sync Now' to sync your project before continuing.

3. In the Project window, open Gradle Scripts in the tree view and select the build.gradle file
for your application module. This will open the build.gradle file for editing.

4. At the bottom of the file, in the dependencies section, add the following dependency.

dependencies {
 ...
 implementation(libs.com.squareup.okhttp3)
 }

5. After you finish editing the Gradle dependencies, AndroidStudio must re-sync the project. At
the top of the build.gradle editing window, AndroidStudio prompts you to sync. Select
SyncNow to sync your project before continuing.

6. Now in the tree view add the data, to the request directory, and create the
ReverseGeocodeRequest.kt data class. Add the following code to the class.

import com.google.gson.annotations.SerializedName

data class ReverseGeocodeRequest(
 @SerializedName("Language")
 val language: String,
 @SerializedName("MaxResults")
 val maxResults: Int,
 @SerializedName("Position")
 val position: ListDouble
)

7. Now in the tree view add the data to response directory, and create the
ReverseGeocodeResponse.kt data class. Add the following code inside it.

import com.google.gson.annotations.SerializedName

data class ReverseGeocodeResponse(
 @SerializedName("Results")
 val results: ListResult
)

data class Result(

Add search 37

Amazon Location Service Developer Guide

 @SerializedName("Place")
 val place: Place
)

data class Place(
 @SerializedName("Label")
 val label: String
)

8. Now, From the Project window, open App, Java, your package name in the tree view, and go
to the ui folder, inside ui folder create viewModel directory.

9. Inside viewModel directory create MainViewModel.kt file.

10. Add the following code to your MainViewModel.kt file.

import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.setValue
import androidx.lifecycle.ViewModel
import com.amazon.testmapapp.data.request.ReverseGeocodeRequest
import com.amazon.testmapapp.data.response.ReverseGeocodeResponse
import com.google.gson.Gson
import java.io.IOException
import okhttp3.Call
import okhttp3.Callback
import okhttp3.MediaType.Companion.toMediaTypeOrNull
import okhttp3.OkHttpClient
import okhttp3.Request
import okhttp3.RequestBody.Companion.toRequestBody
import okhttp3.Response
import org.maplibre.android.geometry.LatLng
import org.maplibre.android.maps.MapLibreMap

class MainViewModel : ViewModel() {
 var label by mutableStateOf("")
 var isLabelAdded: Boolean by mutableStateOf(false)
 var client = OkHttpClient()
 var mapLibreMap: MapLibreMap? = null

 fun reverseGeocode(latLng: LatLng, apiKey: String) {
 val region = "YOUR_AWS_REGION"
 val indexName = "YOUR_AWS_PLACE_INDEX"
 val url =

Add search 38

Amazon Location Service Developer Guide

 "https://places.geo.${region}.amazonaws.com/places/v0/indexes/
${indexName}/search/position?key=${apiKey}"

 val requestBody = ReverseGeocodeRequest(
 language = "en",
 maxResults = 1,
 position = listOf(latLng.longitude, latLng.latitude)
)
 val json = Gson().toJson(requestBody)

 val mediaType = "application/json".toMediaTypeOrNull()
 val request = Request.Builder()
 .url(url)
 .post(json.toRequestBody(mediaType))
 .build()

 client.newCall(request).enqueue(object : Callback {
 override fun onFailure(call: Call, e: IOException) {
 e.printStackTrace()
 }

 override fun onResponse(call: Call, response: Response) {
 if (response.isSuccessful) {
 val jsonResponse = response.body?.string()

 val reverseGeocodeResponse =
 Gson().fromJson(jsonResponse,
 ReverseGeocodeResponse::class.java)

 val responseLabel =
 reverseGeocodeResponse.results.firstOrNull()?.place?.label

 if (responseLabel != null) {
 label = responseLabel
 isLabelAdded = true
 }
 }
 }
 })
 }
}

Add search 39

Amazon Location Service Developer Guide

11. If it's not open already, open the MapLoadScreen.kt file, as in the previous procedure. Add
the following code. This will create a compose Text view where you will see reverse geocoding
search results at the location.

// ...other imports
import androidx.compose.foundation.background
import androidx.compose.foundation.layout.Arrangement
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.Spacer
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.foundation.layout.height
import androidx.compose.foundation.layout.padding
import androidx.compose.material3.Text
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.platform.testTag
import androidx.compose.ui.semantics.contentDescription
import androidx.compose.ui.semantics.semantics
import androidx.compose.ui.unit.sp
import com.amazon.testmapapp.ui.viewModel.MainViewModel

@Composable
fun MapLoadScreen(
 mapReadyCallback: OnMapReadyCallback,
 mainViewModel: MainViewModel,
) {
 Box(
 modifier = Modifier
 .fillMaxWidth()
 .fillMaxHeight(),
) {
 MapView(mapReadyCallback)
 Box(
 modifier = Modifier
 .align(Alignment.Center),
) {
 Image(
 painter = painterResource(id = R.drawable.red_marker),
 contentDescription = "marker",
 modifier = Modifier
 .size(40.dp)
 .align(Alignment.Center),
)

Add search 40

Amazon Location Service Developer Guide

 }
 if (mainViewModel.isLabelAdded) {
 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Bottom
) {
 Box(
 modifier = Modifier
 .fillMaxWidth()
 .background(Color.White),
) {
 Text(
 text = mainViewModel.label,
 modifier = Modifier
 .padding(16.dp)
 .align(Alignment.Center)
 .testTag("label")
 .semantics {
 contentDescription = "label"
 },
 fontSize = 14.sp,
)
 }
 Spacer(modifier = Modifier.height(80.dp))
 }
 }
 }
}

@Composable
fun MapView(mapReadyCallback: OnMapReadyCallback) {
 AndroidView(
 factory = { context ->
 val mapView = org.maplibre.android.maps.MapView(context)
 mapView.onCreate(null)
 mapView.getMapAsync(mapReadyCallback)
 mapView
 },
)
}

12. In the app, under java, in the package name folder in AndroidStudio, open the
MainActivity.kt file. Modify the code as shown.

Add search 41

Amazon Location Service Developer Guide

// ...other imports
import androidx.activity.viewModels
import com.amazon.testmapapp.ui.viewModel.MainViewModel

 class MainActivity : ComponentActivity(), OnMapReadyCallback,
 MapLibreMap.OnCameraMoveStartedListener, MapLibreMap.OnCameraIdleListener {

 private val mainViewModel: MainViewModel by viewModels()
 private val region = "YOUR_AWS_REGION"
 private val mapName = "YOUR_AWS_MAP_NAME"
 private val apiKey = "YOUR_AWS_API_KEY"
 override fun onCreate(savedInstanceState: Bundle?) {
 MapLibre.getInstance(this)
 super.onCreate(savedInstanceState)
 setContent {
 TestMapAppTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 MapLoadScreen(this, mainViewModel)
 }
 }
 }
 }

 override fun onMapReady(map: MapLibreMap) {
 map.setStyle(
 Style.Builder()
 .fromUri(
 "https://maps.geo.$region.amazonaws.com/maps/v0/maps/$mapName/
style-descriptor?key=$apiKey"
),
) {
 map.uiSettings.isAttributionEnabled = true
 map.uiSettings.isLogoEnabled = false
 map.uiSettings.attributionGravity = Gravity.BOTTOM or Gravity.END
 val initialPosition = LatLng(47.6160281982247, -122.32642111977668)
 map.cameraPosition = CameraPosition.Builder()
 .target(initialPosition)
 .zoom(14.0)
 .build()

Add search 42

Amazon Location Service Developer Guide

 map.addOnCameraMoveStartedListener(this)
 map.addOnCameraIdleListener(this)
 map.cameraPosition.target?.let { latLng ->
 mainViewModel.reverseGeocode(
 LatLng(
 latLng.latitude,
 latLng.longitude
), apiKey
)
 }
 }
 }
 override fun onCameraMoveStarted(p0: Int) {
 mainViewModel.label = ""
 mainViewModel.isLabelAdded = false
 }

 override fun onCameraIdle() {
 if (!mainViewModel.isLabelAdded) {
 mainViewModel.mapLibreMap?.cameraPosition?.target?.let { latLng ->
 mainViewModel.reverseGeocode(
 LatLng(
 latLng.latitude,
 latLng.longitude
), apiKey
)
 }
 }
 }
 }

This code works with the map view. A virtual camera position defines the map view in
MapLibre. Moving the map can be thought of as moving that virtual camera.

• ViewModel has a label variable: This variable sets data in compose text view.

• onMapReady:This function is updated to register two new events.

• The onCameraMove event happens whenever the user is moving the map. In general, when
moving the map, we want to hide the search until the user is done moving the map.

• The onCameraIdle event occurs when the user pauses moving the map. This event calls our
reverse geocode function to search at the centre of the map.

Add search 43

Amazon Location Service Developer Guide

• reverseGeocode(latLng: LatLng, apiKey: String): This function, called in the
event onCameraIdle, searches at the centre of the map for a location and updates the label
to show the results. It uses the camera target, which defines the centre of the map (where
the camera is looking).

13. Save your files, and build and run your app to see if it works.

Your quick-start application with search functionality is complete.

Adding tracking to your application

To add tracking to your sample application, follow these steps:

1. Add tracking and auth SDK dependencies to your project.

2. Include permission and service entries in your AndroidManifest.xml file.

3. Set up the start/stop tracking button code with compose.

4. Add code for creating a LocationTracker object and start and stop tracking.

5. Create a test route with Android Emulator.

1. Add tracking and auth SDK dependencies to your project.

a. In the Project window, open gradle then open the libs.versions.toml file in the
tree view. This will open the libs.versions.toml file for editing. Now add the below
version and libraries data in the libs.versions.toml file.

[versions]
 ...
 auth = "0.0.1"
 tracking = "0.0.1"

 [libraries]
 ...
 auth = { group = "software.amazon.location", name = "auth", version.ref =
 "auth" }
 tracking = { module = "software.amazon.location:tracking", version.ref =
 "tracking" }

 [plugins]
 ...

Add tracking 44

Amazon Location Service Developer Guide

b. After you finish editing the libs.versions.toml file, AndroidStudio must re-sync the
project. At the top of the libs.versions.toml editing window, AndroidStudio prompts
you to sync. Select 'Sync Now' to sync your project before continuing.

c. In the Project window, open Gradle Scripts in the tree view and select the build.gradle
file for your application module. This will open the build.gradle file for editing.

d. At the bottom of the file, in the dependencies section, add the following dependency.

dependencies {
 ...
 implementation(libs.auth)
 implementation(libs.tracking)
 }

e. After you finish editing the Gradle dependencies, AndroidStudio must re-sync the project.
At the top of the build.gradle editing window, AndroidStudio prompts you to sync. Select
SyncNow to sync your project before continuing.

2. Include permission and service entries in your AndroidManifest.xml file.

• To include the correct permission and service entries in your AndroidManifest.xml
file, update the file with the following code:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <application
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.AndroidQuickStartApp"
 tools:targetApi="31">
 <activity
 android:name=".MainActivity"

Add tracking 45

Amazon Location Service Developer Guide

 android:exported="true"
 android:label="@string/app_name"
 android:theme="@style/Theme.AndroidQuickStartApp">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

3. Set up the start/stop tracking button code with compose.

a. Add two images of Play and Pause in res under drawable named as ic_pause and ic_play.
You can also access the image from GitHub.

b. If it's not open already, open the MapLoadScreen.kt file, as in the previous procedure.
Add the following code. This will create a compose Button view where we can click on it to
start and stop tracking.

// ...other imports
import androidx.compose.material3.Button
import androidx.compose.material3.ButtonDefaults

@Composable
fun MapLoadScreen(
 mapReadyCallback: OnMapReadyCallback,
 mainViewModel: MainViewModel,
 onStartStopTrackingClick: () -> Unit
) {
 Box(
 modifier = Modifier
 .fillMaxWidth()
 .fillMaxHeight(),
) {
 MapView(mapReadyCallback)
 Box(
 modifier = Modifier
 .align(Alignment.Center),
) {
 Image(
 painter = painterResource(id = R.drawable.red_marker),

Add tracking 46

https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/quick-start/res/drawable

Amazon Location Service Developer Guide

 contentDescription = "marker",
 modifier = Modifier
 .size(40.dp)
 .align(Alignment.Center),
)
 }
 if (mainViewModel.isLabelAdded) {
 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Bottom
) {
 Box(
 modifier = Modifier
 .fillMaxWidth()
 .background(Color.White),
) {
 Text(
 text = mainViewModel.label,
 modifier = Modifier
 .padding(16.dp)
 .align(Alignment.Center)
 .testTag("label")
 .semantics {
 contentDescription = "label"
 },
 fontSize = 14.sp,
)
 }
 Spacer(modifier = Modifier.height(80.dp))
 }
 }
 Column(
 modifier = Modifier
 .fillMaxSize()
 .padding(bottom = 16.dp),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Bottom,
) {
 Button(
 onClick = onStartStopTrackingClick,
 modifier = Modifier
 .padding(horizontal = 16.dp)
) {
 Text(

Add tracking 47

Amazon Location Service Developer Guide

 text = if
 (mainViewModel.isLocationTrackingForegroundActive) "Stop tracking" else "Start
 tracking",
 color = Color.Black
)
 Spacer(modifier = Modifier.size(ButtonDefaults.IconSpacing))
 Image(
 painter = painterResource(id = if
 (mainViewModel.isLocationTrackingForegroundActive) R.drawable.ic_pause else
 R.drawable.ic_play),
 contentDescription = if
 (mainViewModel.isLocationTrackingForegroundActive) "stop_tracking" else
 "start_tracking"
)
 }
 }
 }
}

@Composable
fun MapView(mapReadyCallback: OnMapReadyCallback) {
 AndroidView(
 factory = { context ->
 val mapView = org.maplibre.android.maps.MapView(context)
 mapView.onCreate(null)
 mapView.getMapAsync(mapReadyCallback)
 mapView
 },
)
}

4. Add code for creating a LocationTracker object and start and stop tracking.

a. Add the following code inside the MainViewModel.kt file.

...
var isLocationTrackingForegroundActive: Boolean by mutableStateOf(false)
var locationTracker: LocationTracker? = null

b. Add the following code to your MainActivity.kt file.

// ...other imports
import software.amazon.location.auth.AuthHelper

Add tracking 48

Amazon Location Service Developer Guide

import software.amazon.location.auth.LocationCredentialsProvider
import software.amazon.location.tracking.LocationTracker
import software.amazon.location.tracking.aws.LocationTrackingCallback
import software.amazon.location.tracking.config.LocationTrackerConfig
import software.amazon.location.tracking.database.LocationEntry
import software.amazon.location.tracking.filters.DistanceLocationFilter
import software.amazon.location.tracking.filters.TimeLocationFilter
import software.amazon.location.tracking.util.TrackingSdkLogLevel

class MainActivity : ComponentActivity(), OnMapReadyCallback,
 MapLibreMap.OnCameraMoveStartedListener, MapLibreMap.OnCameraIdleListener {

 private val mainViewModel: MainViewModel by viewModels()
 private val poolId = "YOUR_AWS_IDENTITY_POOL_ID"
 private val trackerName = "YOUR_AWS_TRACKER_NAME"
 private val region = "YOUR_AWS_REGION"
 private val mapName = "YOUR_AWS_MAP_NAME"
 private val apiKey = "YOUR_AWS_API_KEY"
 private val coroutineScope = MainScope()
 private lateinit var locationCredentialsProvider:
 LocationCredentialsProvider
 private lateinit var authHelper: AuthHelper

 override fun onCreate(savedInstanceState: Bundle?) {
 MapLibre.getInstance(this)
 super.onCreate(savedInstanceState)
 setContent {
 TestMapAppTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 MapLoadScreen(this, mainViewModel, onStartStopTrackingClick
 = {
 if (mainViewModel.isLocationTrackingForegroundActive) {
 mainViewModel.isLocationTrackingForegroundActive =
 false
 mainViewModel.locationTracker?.stop()
 } else {
 if (checkLocationPermission(this))
 return@MapLoadScreen
 mainViewModel.isLocationTrackingForegroundActive =
 true

Add tracking 49

Amazon Location Service Developer Guide

 mainViewModel.locationTracker?.start(locationTrackingCallback = object :
 LocationTrackingCallback {
 override fun
 onLocationAvailabilityChanged(locationAvailable: Boolean) {
 }

 override fun onLocationReceived(location:
 LocationEntry) {
 }

 override fun onUploadSkipped(entries:
 LocationEntry) {
 }

 override fun onUploadStarted(entries:
 ListLocationEntry) {
 }

 override fun onUploaded(entries:
 ListLocationEntry) {
 }

 })
 }
 })
 }
 }
 }
 authenticateUser()
 }

 private fun authenticateUser() {
 coroutineScope.launch {
 authHelper = AuthHelper(applicationContext)
 locationCredentialsProvider =
 authHelper.authenticateWithCognitoIdentityPool(
 poolId,
)
 locationCredentialsProvider.let {
 val config = LocationTrackerConfig(
 trackerName = trackerName,
 logLevel = TrackingSdkLogLevel.DEBUG,
 latency = 1000,

Add tracking 50

Amazon Location Service Developer Guide

 frequency = 5000,
 waitForAccurateLocation = false,
 minUpdateIntervalMillis = 5000,
)
 mainViewModel.locationTracker = LocationTracker(
 applicationContext,
 it,
 config,
)

 mainViewModel.locationTracker?.enableFilter(TimeLocationFilter())

 mainViewModel.locationTracker?.enableFilter(DistanceLocationFilter())
 }
 }
 }

 private fun checkLocationPermission(context: Context) =
 ActivityCompat.checkSelfPermission(
 context,
 Manifest.permission.ACCESS_FINE_LOCATION,
) != PackageManager.PERMISSION_GRANTED &&
 ActivityCompat.checkSelfPermission(
 context,
 Manifest.permission.ACCESS_COARSE_LOCATION,
) != PackageManager.PERMISSION_GRANTED

 override fun onMapReady(map: MapLibreMap) {
 map.setStyle(
 Style.Builder()
 .fromUri(
 "https://maps.geo.$region.amazonaws.com/maps/v0/maps/
$mapName/style-descriptor?key=$apiKey"
),
) {
 mainViewModel.mapLibreMap = map
 map.uiSettings.isAttributionEnabled = true
 map.uiSettings.isLogoEnabled = false
 map.uiSettings.attributionGravity = Gravity.BOTTOM or Gravity.END
 val initialPosition = LatLng(47.6160281982247, -122.32642111977668)
 map.cameraPosition = CameraPosition.Builder()
 .target(initialPosition)
 .zoom(14.0)
 .build()

Add tracking 51

Amazon Location Service Developer Guide

 map.addOnCameraMoveStartedListener(this)
 map.addOnCameraIdleListener(this)
 map.cameraPosition.target?.let { latLng ->
 mainViewModel.reverseGeocode(
 LatLng(
 latLng.latitude,
 latLng.longitude
), apiKey
)
 }
 }
 }

 override fun onCameraMoveStarted(p0: Int) {
 mainViewModel.label = ""
 mainViewModel.isLabelAdded = false
 }

 override fun onCameraIdle() {
 if (!mainViewModel.isLabelAdded) {
 mainViewModel.mapLibreMap?.cameraPosition?.target?.let { latLng ->
 mainViewModel.reverseGeocode(
 LatLng(
 latLng.latitude,
 latLng.longitude
), apiKey
)
 }
 }
 }
}

The above code shows how to create a LocationTracker object with AuthHelper and
how to start and stop tracking with LocationTracker.

• authenticateUser(): This method creates AuthHelper and LocationTracker objects.

• onStartStopTrackingClick: This callback is triggered when the user clicks on the
start/stop tracking button, which will start/stop tracking with Tracking SDK.

5. Create a test route with Android Emulator.

a. Open Emulator by launching the AVD using Android Studio.

Add tracking 52

Amazon Location Service Developer Guide

b. Open Extended Controls by clicking on the More (three dots) icon in the emulator
toolbar.

c. Open Location by selecting Location from the sidebar.

d. Create route with GPX data or by clicking on the map and choosing source and
destination data.

e. Start Simulation by clicking on PLAY ROUTE to begin simulating the GPS route.

f. Test Application by running your application and observing how it handles the simulated
route.

This is the full demo of the Android Quick Start application.

What's next

The source code for this application is available on GitHub.

To get more out of Amazon Location, you can check out the following resources:

• Dive deeper into the concepts of Amazon Location Service

• Get more information about how to use Amazon Location features and functionality

• See how to expand on this sample and build more complex applications by looking at code
examples using Amazon Location

Creating an iOS app

In this section, you will create an iOS application with the ability to search at a location and
tracking in the foreground. First, you will create your Amazon Location resources, and an Amazon
Cognito identity for your application.

Topics

• Creating Amazon Location resources for your app

• Setting up authentication for your application

• Creating the base iOS application

• Setting up the initial code

• Adding an interactive map to your application

• Adding search to your application

What's next 53

https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/quick-start

Amazon Location Service Developer Guide

• Adding tracking to your application

• What's next

Creating Amazon Location resources for your app

If you do not already have them, you must create the Amazon Location resources that your
application will use. You will create a map resource to display maps in your application, a place
index to search for locations on the map, and a tracker to track an object across the map.

To add location resources to your application

1. Choose the map style that you want to use.

a. In the Amazon Location console, on the Maps page, choose Create map to preview map
styles.

b. Add a Name and Description for the new map resource. Make a note of the name that
you use for the map resource. You will need it when creating your script file later in the
tutorial.

c. Choose a map.

Note

Choosing a map style also chooses which map data provider that you will use. If
your application is tracking or routing assets that you use in your business, such
as delivery vehicles or employees, you may only use HERE as your geolocation
provider. For more information, see section 82 of the AWS service terms.

d. Agree to the Amazon Location Terms and Conditions, then choose Create map. You can
interact with the map that you've chosen: zoom in, zoom out, or pan in any direction.

e. Make a note of the Amazon Resource Name (ARN) that is shown for your new map
resource. You'll use it to create the correct authentication later in this tutorial.

2. Choose the place index that you want to use.

a. In the Amazon Location console on the Place indexes page, choose Create place index.

b. Add a Name and Description for the new place index resource. Make a note of the name
that you use for the place index resource. You will need it when creating your script file
later in the tutorial.

Create resources 54

https://console.aws.amazon.com/location/maps/home
https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/places/home

Amazon Location Service Developer Guide

c. Choose a data provider.

Note

In most cases, choose the data provider that matches the map provider that you
already chose. This helps to ensure that the searches will match the maps.
If your application is tracking or routing assets that you use in your business, such
as delivery vehicles or employees, you may only use HERE as your geolocation
provider. For more information, see section 82 of the AWS service terms.

d. Choose the Data storage option. For this tutorial, the results are not stored, so you can
choose No, single use only.

e. Agree to the Amazon Location Terms and Conditions, then choose Create place index.

f. Make a note of the ARN that is shown for your new place index resource. You'll use it to
create the correct authentication in the next section of this tutorial.

3. To create a tracker using the Amazon Location console.

a. Open the Amazon Location Service console.

b. In the left navigation pane, choose Trackers.

c. Choose Create tracker.

d. Fill in the all the required fields.

e. Under Position filtering, we recommened you use the default setting: TimeBased.

f. Choose Create tracker to finish.

Setting up authentication for your application

The application that you create in this tutorial has anonymous usage, meaning that your users
are not required to sign into AWS to use the application. However, the Amazon Location Service
APIs require authentication to use. You will use Amazon Cognito to provide authentication and
authorization for anonymous users. This tutorial will use Amazon Cognito to authenticate your
application.

Setup authentication 55

https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/

Amazon Location Service Developer Guide

Note

For more information about using Amazon Cognito with Amazon Location Service, see
Granting access to Amazon Location Service.

The following tutorials show you how to set up authentication for the map, the place index, and
tracker you created in as well setting up permissions for Amazon Location.

Create an IAM policy for tracking

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/ with your user that has
administrator permissions.

2. In the navigation pane, choose Policies.

3. In the content pane, choose Create policy.

4. Choose the JSON option, then copy and paste this JSON policy into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "geo:GetMapTile",
 "geo:GetMapStyleDescriptor",
 "geo:GetMapSprites",
 "geo:GetMapGlyphs",
 "geo:SearchPlaceIndexForPosition",
 "geo:GetDevicePositionHistory",
 "geo:BatchUpdateDevicePosition"
],
 "Resource": [
 "arn:aws:geo:{Region}:{Account}:map/{MapName}",
 "arn:aws:geo:{Region}:{Account}:place-index/{IndexName}",
 "arn:aws:geo:{Region}:{Account}:tracker/{TrackerName}"
]
 }
]
 }

Setup authentication 56

Amazon Location Service Developer Guide

This is a policy example for Tracking. To use the example for your own policy, replace the
Region, Account, IndexName, MapName and TrackerName placeholders.

Note

While unauthenticated identity pools are intended for exposure on unsecured internet
sites, note that they will be exchanged for standard, time-limited AWS credentials.
It's important to scope the IAM roles associated with unauthenticated identity pools
appropriately. For more information about using and appropriately scoping policies
in Amazon Cognito with Amazon Location Service, see Granting access to Amazon
Location Service.

5. On the Review and Create page, provide a name for the policy name field. Review the
permissions granted by your policy, and then choose Create Policy to save your work.

The new policy appears in the list of managed policies and is ready to attach.

Set up authentication for your tracking

1. Set up authentication for your map application in the Amazon Cognito console.

2. Open the Identity pools page.

Note

The pool that you create must be in the same AWS account and AWS Region as the
Amazon Location Service resources that you created in the previous section.

3. Choose Create Identity pool.

4. Starting with the Configure identity pool trust step. For user access authentication, select
Guest access, and press next.

5. On the Configure permissions page select the Use an existing IAM role and enter the name
of the IAM role you created in the previous step. When ready press next to move on to the next
step.

6. On the Configure properties page, provide a name for your identity pool. Then press Next.

7. On the Review and create page, review all the information present then press Create identity
pool.

Setup authentication 57

https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html
https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html
https://console.aws.amazon.com/cognito/home/

Amazon Location Service Developer Guide

8. Open the Identity pools page, and select the identity pool you just created. Then copy or write
down the IdentityPoolId that you will use later in your browser script.

Creating the base iOS application

In this tutorial, you will create an iOS application that embeds a map, and allows the user to find
what's at a location on the map.

First, let's create a Swift application using Xcode's project wizard.

To create an empty application (Xcode)

1. Open Xcode, and from the menu, choose File, New, New Project.

2. From the iOS tab, select App, and then choose Next.

3. Provide a Product Name, an Organization Identifier, and in the Interface field input
SwiftUI. Choose Next to finalize the selection.

4. Select a location where you will save your project and press create button to create the empty
application.

Once you have creating the base application, you will need to install the required packages for the
sample app.

Installing required dependencies

1. In Xcode, right-click on the project and choose Add Packages.... This will open the Packages
window, where you can add packages to your project.

2. In the Packages window, add the following packages:

• For the Maplibre native package, use this URL: https://github.com/maplibre/maplibre-
gl-native-distribution. From the URL, add these packages: maplibre-gl-native-
distribution, and Mapbox.

• For the Amazon Location authentication iOS SDK, use this URL: https://github.com/aws-
geospatial/amazon-location-mobile-auth-sdk-ios. From the URL, add these packages:
amazon-location-mobile-auth-sdk-ios, and AmazonLocationiOSAuthSDK.

• For the Amazon Location tracking iOS SDK, use this URL: https://github.com/
aws-geospatial/amazon-location-mobile-tracking-sdk-ios. From the URL,

Creating the app 58

https://github.com/maplibre/maplibre-gl-native-distribution
https://github.com/maplibre/maplibre-gl-native-distribution
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios

Amazon Location Service Developer Guide

add these packages: amazon-location-mobile-tracking-sdk-ios, and
AmazonLocationiOSTrackingSDK.

Setting up the initial code

Enable Location permissions in your app

1. Open your Xcode project.

2. Locate the project's Info.plist file.

3. Add the necessary keys for location permissions based on your app's requirements. Here are
the keys:

• NSLocationWhenInUseUsageDescription: Description of why your app needs location
access when it's in use.

• NSLocationAlwaysAndWhenInUseUsageDescription: Description of why your app
needs continuous location access.

Now you will need to configure resource values in your app. Add a new file named
Config.xcconfig and fill out the values that you had created previously in the Amazon console.

REGION =
INDEX_NAME =
MAP_NAME =
IDENTITY_POOL_ID =
TRACKER_NAME =

1. From the left side navigator section, select the project.

2. Under the targets section, select your app and click on the info tab.

3. Add info properties with values like the below:

4. Add the Config.swift file with the contents below, which will read config values from the
Bundle info file.

import Foundation

enum Config {

Initial code 59

Amazon Location Service Developer Guide

 static let region = Bundle.main.object(forInfoDictionaryKey: "Region") as!
 String
 static let mapName = Bundle.main.object(forInfoDictionaryKey: "MapName") as!
 String
 static let indexName = Bundle.main.object(forInfoDictionaryKey: "IndexName")
 as! String
 static let identityPoolId = Bundle.main.object(forInfoDictionaryKey:
 "IdentityPoolId") as! String
 static let trackerName = Bundle.main.object(forInfoDictionaryKey:
 "TrackerName") as! String
}

5. Create a new folder with the name ViewModel and add a TrackingViewModel.swift file
inside it.

import SwiftUI
import AmazonLocationiOSAuthSDK
import MapLibre

final class TrackingViewModel : ObservableObject {
 @Published var trackingButtonText = NSLocalizedString("StartTrackingLabel",
 comment: "")
 @Published var trackingButtonColor = Color.blue
 @Published var trackingButtonIcon = "play.circle"
 @Published var region : String
 @Published var mapName : String
 @Published var indexName : String
 @Published var identityPoolId : String
 @Published var trackerName : String
 @Published var showAlert = false
 @Published var alertTitle = ""
 @Published var alertMessage = ""
 @Published var centerLabel = ""

 var clientIntialised: Bool
 var client: LocationTracker!
 var authHelper: AuthHelper
 var credentialsProvider: LocationCredentialsProvider?
 var mlnMapView: MLNMapView?
 var mapViewDelegate: MapViewDelegate?
 var lastGetTrackingTime: Date?
 var trackingActive: Bool

Initial code 60

Amazon Location Service Developer Guide

 init(region: String, mapName: String, indexName: String, identityPoolId:
 String, trackerName: String) {
 self.region = region
 self.mapName = mapName
 self.indexName = indexName
 self.identityPoolId = identityPoolId
 self.trackerName = trackerName
 self.authHelper = AuthHelper()
 self.trackingActive = false
 self.clientIntialised = false
 }

 func authWithCognito(identityPoolId: String?) {
 guard let identityPoolId =
 identityPoolId?.trimmingCharacters(in: .whitespacesAndNewlines)
 else {
 alertTitle = NSLocalizedString("Error", comment: "")
 alertMessage = NSLocalizedString("NotAllFieldsAreConfigured", comment:
 "")
 showAlert = true
 return
 }
 credentialsProvider =
 authHelper.authenticateWithCognitoUserPool(identityPoolId: identityPoolId)
 initializeClient()
 }

 func initializeClient() {
 client = LocationTracker(provider: credentialsProvider!, trackerName:
 trackerName)
 clientIntialised = true
 }
}

Adding an interactive map to your application

You will now add the map control to your application. This tutorial uses MapLibre and the AWS API
for managing the map view in the application. The map control itself is part of the MapLibre GL
Native iOS library.

1. Add MapView.swift file under the Views folder with the following code:

Add a map 61

https://docs.maptiler.com/maplibre-gl-native-ios/
https://docs.maptiler.com/maplibre-gl-native-ios/

Amazon Location Service Developer Guide

import SwiftUI
import MapLibre

struct MapView: UIViewRepresentable {
 var onMapViewAvailable: ((MLNMapView) -> Void)?
 var mlnMapView: MLNMapView?
 var trackingViewModel: TrackingViewModel

 func makeCoordinator() -> MapView.Coordinator {
 return Coordinator(self, trackingViewModel: trackingViewModel)
 }

 func makeUIView(context: Context) -> MLNMapView {
 let styleURL = URL(string: "https://maps.geo.
\(trackingViewModel.region).amazonaws.com/maps/v0/maps/
\(trackingViewModel.mapName)/style-descriptor")
 let mapView = MLNMapView(frame: .zero, styleURL: styleURL)
 mapView.autoresizingMask = [.flexibleWidth, .flexibleHeight]
 mapView.setZoomLevel(15, animated: true)
 mapView.showsUserLocation = true
 mapView.userTrackingMode = .follow
 context.coordinator.mlnMapView = mapView
 mapView.delegate = context.coordinator

 mapView.logoView.isHidden = true
 context.coordinator.addCenterMarker()

 onMapViewAvailable?(mapView)
 trackingViewModel.mlnMapView = mapView
 return mapView
 }

 func updateUIView(_ uiView: MLNMapView, context: Context) {
 }

 class Coordinator: NSObject, MLNMapViewDelegate, MapViewDelegate {
 var control: MapView
 var mlnMapView: MLNMapView?
 var trackingViewModel: TrackingViewModel
 var centerMarker: MLNPointAnnotation?

 public init(_ control: MapView, trackingViewModel: TrackingViewModel) {
 self.control = control

Add a map 62

Amazon Location Service Developer Guide

 self.trackingViewModel = trackingViewModel
 super.init()
 self.trackingViewModel.mapViewDelegate = self
 }

 func mapViewDidFinishRenderingMap(_ mapView: MLNMapView, fullyRendered:
 Bool) {
 if(fullyRendered) {
 mapView.accessibilityIdentifier = "MapView"
 mapView.isAccessibilityElement = false
 }
 }

 func addCenterMarker() {
 guard let mlnMapView = mlnMapView else {
 return
 }

 let centerCoordinate = mlnMapView.centerCoordinate
 let marker = MLNPointAnnotation()
 marker.coordinate = centerCoordinate
 marker.accessibilityLabel = "CenterMarker"
 mlnMapView.addAnnotation(marker)
 centerMarker = marker

 trackingViewModel.reverseGeocodeCenter(centerCoordinate:
 centerCoordinate, marker: marker)
 }

 func mapView(_ mapView: MLNMapView, regionDidChangeAnimated animated: Bool)
 {
 if let marker = centerMarker {
 DispatchQueue.main.asyncAfter(deadline: .now() + 1.0)
 {
 mapView.deselectAnnotation(marker, animated: false)
 marker.coordinate = mapView.centerCoordinate
 let centerCoordinate = mapView.centerCoordinate
 self.trackingViewModel.reverseGeocodeCenter(centerCoordinate:
 centerCoordinate, marker: marker)
 }
 }
 }
 }

Add a map 63

Amazon Location Service Developer Guide

}

2. Add AWSSignatureV4Delegate file under the ViewModel folder. This file is used to sign
with all the MapView http requests to render the map:

import MapLibre
import AmazonLocationiOSAuthSDK

class AWSSignatureV4Delegate : NSObject, MLNOfflineStorageDelegate {
 private let awsSigner: AWSSigner

 init(credentialsProvider: LocationCredentialsProvider) {
 self.awsSigner = DENY LIST ERROR , serviceName: "geo")
 super.init()
 }

 func offlineStorage(_ storage: MLNOfflineStorage, urlForResourceOf kind:
 MLNResourceKind, with url: URL) -> URL {
 if url.host?.contains("amazonaws.com") != true {
 return url
 }
 let signedURL = awsSigner.signURL(url: url, expires: .hours(1))

 return signedURL
 }
}

3. Add UserLocationView.swift file under Views folder. This adds a button which centers the
map to the user's location

import SwiftUI

struct UserLocationView: View {
 @ObservedObject var trackingViewModel: TrackingViewModel
 var body: some View {
 Button(action: {
 trackingViewModel.locateMe()
 }) {
 Image(systemName: "scope")
 .resizable()
 .frame(width: 24, height: 24)
 .padding(5)
 .background(Color.white)

Add a map 64

Amazon Location Service Developer Guide

 .foregroundColor(.blue)
 .clipShape(RoundedRectangle(cornerRadius: 8))
 .shadow(color: Color.black.opacity(0.3), radius: 3, x: 0, y: 2)
 }
 .accessibility(identifier: "LocateMeButton")
 .padding(.trailing, 10)
 .padding(.bottom, 10)
 .frame(maxWidth: .infinity, alignment: .trailing)
 }
}

4. Add the TrackingView.swift file with the following code:

import SwiftUI

struct TrackingView: View {
 @ObservedObject var trackingViewModel: TrackingViewModel
 var body: some View {
 ZStack(alignment: .bottom) {
 MapView(trackingViewModel: trackingViewModel)
 VStack {
 UserLocationView(trackingViewModel: trackingViewModel)
 }
 }
 .onAppear() {
 if !trackingViewModel.identityPoolId.isEmpty {
 trackingViewModel.authWithCognito(identityPoolId:
 trackingViewModel.identityPoolId)
 }
 }
 }
}

You can now build the application. To run it, you may have to set up a device to emulate it in Xcode
or use the app on your device. Use this app to see how the map control behaves. You can pan by
dragging on the map and pinch to zoom. On your own, you can change how the map control works
to customize it to the needs of your application.

Add a map 65

Amazon Location Service Developer Guide

Adding search to your application

You now will add reverse geocoding search to the application, where you find the items at a
location. To simplify the use of an iOS app, we will search the center of the screen. To find a new
location, move the map to where you want to search. We will place a marker at the center of the
map to show where we are searching.

1. Add the following code in `TrackingViewModel.swift` file which is related to the reverse
geocoding search

func reverseGeocodeCenter(centerCoordinate: CLLocationCoordinate2D, marker:
 MLNPointAnnotation) {
 let position = [NSNumber(value: centerCoordinate.longitude), NSNumber(value:
 centerCoordinate.latitude)]
 searchPositionAPI(position: position, marker: marker)
}

func searchPositionAPI(position: [Double], marker: MLNPointAnnotation) {
 if let amazonClient = authHelper.getLocationClient() {
 Task {
 let searchRequest = SearchPlaceIndexForPositionInput(indexName:
 indexName, language: "en" , maxResults: 10, position: position)
 let searchResponse = try? await amazonClient.searchPosition(indexName:
 indexName, input: searchRequest)
 DispatchQueue.main.async {
 self.centerLabel = searchResponse?.results?.first?.place?.label ??
 ""
 self.mlnMapView?.selectAnnotation(marker, animated: true,
 completionHandler: {})
 }
 }
 }
}

2. Update TrackingView.swift file with the following code which will show the mapview's
centered location's address

import SwiftUI

struct TrackingView: View {
 @ObservedObject var trackingViewModel: TrackingViewModel
 var body: some View {

Add search 66

Amazon Location Service Developer Guide

 ZStack(alignment: .bottom) {
 if trackingViewModel.mapSigningIntialised {
 MapView(trackingViewModel: trackingViewModel)
 VStack {
 UserLocationView(trackingViewModel: trackingViewModel)
 CenterAddressView(trackingViewModel: trackingViewModel)
 }
 }
 else {
 Text("Loading...")
 }
 }
 .onAppear() {
 if !trackingViewModel.identityPoolId.isEmpty {
 Task {
 do {
 try await trackingViewModel.authWithCognito(identityPoolId:
 trackingViewModel.identityPoolId)
 }
 catch {
 print(error)
 }
 }
 }
 }
 }
}

Adding tracking to your application

The last step for your application is to add tracking functionality to your app. In this case, you will
add start tracking, stop tracking, fetch and display tracker points on your app.

1. Add the TrackingBottomView.swift file in your project. Which has a button that starts and
stops tracking user locations and shows tracking points on the map.

import SwiftUI

struct TrackingBottomView: View {
 @ObservedObject var trackingViewModel: TrackingViewModel
 var body: some View {
 Button(action: {

Add tracking 67

Amazon Location Service Developer Guide

 Task {
 if(trackingViewModel.trackingButtonText ==
 NSLocalizedString("StartTrackingLabel", comment: "")) {
 trackingViewModel.startTracking()
 } else {
 trackingViewModel.stopTracking()
 }
 }
 }) {
 HStack {
 Spacer()
 Text("Tracking")
 .foregroundColor(trackingViewModel.trackingButtonColor)
 .background(.white)
 .cornerRadius(15.0)

 Image(systemName: trackingViewModel.trackingButtonIcon)
 .resizable()
 .frame(width: 24, height: 24)
 .padding(5)
 .background(.white)
 .foregroundColor(trackingViewModel.trackingButtonColor)

 }
 }
 .accessibility(identifier: "TrackingButton")
 .background(.white)
 .clipShape(RoundedRectangle(cornerRadius: 8))
 .padding(.trailing, 10)
 .padding(.bottom, 40)
 .frame(width: 130, alignment: .trailing)
 .shadow(color: Color.black.opacity(0.3), radius: 3, x: 0, y: 2)
 }
}

2. Update TrackingView.swift file with the following code

import SwiftUI

struct TrackingView: View {
 @ObservedObject var trackingViewModel: TrackingViewModel
 var body: some View {
 ZStack(alignment: .bottom) {
 if trackingViewModel.mapSigningIntialised {

Add tracking 68

Amazon Location Service Developer Guide

 MapView(trackingViewModel: trackingViewModel)
 VStack {
 UserLocationView(trackingViewModel: trackingViewModel)
 CenterAddressView(trackingViewModel: trackingViewModel)
 TrackingBottomView(trackingViewModel: trackingViewModel)
 }
 }
 else {
 Text("Loading...")
 }
 }
 .onAppear() {
 if !trackingViewModel.identityPoolId.isEmpty {
 Task {
 do {
 try await trackingViewModel.authWithCognito(identityPoolId:
 trackingViewModel.identityPoolId)
 }
 catch {
 print(error)
 }
 }
 }
 }
 }
}

3. Add the following code in TrackingViewModel.swift file. These functions are responsible
for start and stop tracking. It will also show an error alert if user location permission is denied.

4. To implement foreground tracking copy paste the following code example:

func showLocationDeniedRationale() {
 alertTitle = NSLocalizedString("locationManagerAlertTitle", comment: "")
 alertMessage = NSLocalizedString("locationManagerAlertText", comment: "")
 showAlert = true
 }

 // Required in info.plist: Privacy - Location When In Use Usage Description
 func startTracking() {
 do {
 print("Tracking Started...")
 if(client == nil) {
 initializeClient()

Add tracking 69

Amazon Location Service Developer Guide

 }
 try client.startTracking()
 DispatchQueue.main.async { [self] in
 self.trackingButtonText = NSLocalizedString("StopTrackingLabel",
 comment: "")
 self.trackingButtonColor = .red
 self.trackingButtonIcon = "pause.circle"
 trackingActive = true
 }
 } catch TrackingLocationError.permissionDenied {
 showLocationDeniedRationale()
 } catch {
 print("error in tracking")
 }
 }

 func stopTracking() {
 print("Tracking Stopped...")
 client.stopTracking()
 trackingButtonText = NSLocalizedString("StartTrackingLabel", comment: "")
 trackingButtonColor = .blue
 trackingButtonIcon = "play.circle"
 trackingActive = false
 }

Note

The startTracking will ask for the user's location permission. The application must
use When In Use or Only Once permissions. Otherwise, the application will throw a
permission denied error.

To get and display tracking locations, follow this procedure:

1. To get the locations from the user's device, you need to provide the start and end date and
time. A single call returns a maximum of 100 tracking locations, but if there are more than
100 tracking locations, it will return a `nextToken` value. You will need to call subsequent
`getTrackerDeviceLocation` calls with `nextToken` to load more tracking points for the given
start and end time.

 func getTrackingPoints(nextToken: String? = nil) async throws {

Add tracking 70

Amazon Location Service Developer Guide

 guard trackingActive else {
 return
 }
 // Initialize startTime to 24 hours ago from the current date and time.
 let startTime: Date = Date().addingTimeInterval(-86400)
 var endTime: Date = Date()
 if lastGetTrackingTime != nil {
 endTime = lastGetTrackingTime!
 }
 let result = try await client?.getTrackerDeviceLocation(nextToken:
 nextToken, startTime: startTime, endTime: endTime)
 if let trackingData = result {

 lastGetTrackingTime = Date()
 let devicePositions = trackingData.devicePositions

 let positions = devicePositions!.sorted { (pos1:
 LocationClientTypes.DevicePosition, pos2: LocationClientTypes.DevicePosition) ->
 Bool in
 guard let date1 = pos1.sampleTime,
 let date2 = pos2.sampleTime else {
 return false
 }
 return date1 < date2
 }

 let trackingPoints = positions.compactMap { position ->
 CLLocationCoordinate2D? in
 guard let latitude = position.position!.last, let longitude =
 position.position!.first else {
 return nil
 }
 return CLLocationCoordinate2D(latitude: latitude, longitude:
 longitude)
 }
 DispatchQueue.main.async {
 self.mapViewDelegate!.drawTrackingPoints(trackingPoints:
 trackingPoints)
 }
 if let nextToken = trackingData.nextToken {
 try await getTrackingPoints(nextToken: nextToken)
 }
 }

Add tracking 71

Amazon Location Service Developer Guide

 }

2. Now replace the code in the MapView.swift file with the following code:

import SwiftUI
import MapLibre

struct MapView: UIViewRepresentable {
 var onMapViewAvailable: ((MLNMapView) -> Void)?
 var mlnMapView: MLNMapView?
 var trackingViewModel: TrackingViewModel

 func makeCoordinator() -> MapView.Coordinator {
 return Coordinator(self, trackingViewModel: trackingViewModel)
 }

 func makeUIView(context: Context) -> MLNMapView {
 let styleURL = URL(string: "https://maps.geo.
\(trackingViewModel.region).amazonaws.com/maps/v0/maps/
\(trackingViewModel.mapName)/style-descriptor")
 let mapView = MLNMapView(frame: .zero, styleURL: styleURL)
 mapView.autoresizingMask = [.flexibleWidth, .flexibleHeight]
 mapView.setZoomLevel(15, animated: true)
 mapView.showsUserLocation = true
 mapView.userTrackingMode = .follow
 context.coordinator.mlnMapView = mapView
 mapView.delegate = context.coordinator

 mapView.logoView.isHidden = true
 context.coordinator.addCenterMarker()

 onMapViewAvailable?(mapView)
 trackingViewModel.mlnMapView = mapView
 return mapView
 }

 func updateUIView(_ uiView: MLNMapView, context: Context) {
 }

 class Coordinator: NSObject, MLNMapViewDelegate, MapViewDelegate {
 var control: MapView
 var mlnMapView: MLNMapView?
 var trackingViewModel: TrackingViewModel
 var centerMarker: MLNPointAnnotation?

Add tracking 72

Amazon Location Service Developer Guide

 public init(_ control: MapView, trackingViewModel: TrackingViewModel) {
 self.control = control
 self.trackingViewModel = trackingViewModel
 super.init()
 self.trackingViewModel.mapViewDelegate = self
 }

 func mapViewDidFinishRenderingMap(_ mapView: MLNMapView, fullyRendered:
 Bool) {
 if(fullyRendered) {
 mapView.accessibilityIdentifier = "MapView"
 mapView.isAccessibilityElement = false
 }
 }

 func addCenterMarker() {
 guard let mlnMapView = mlnMapView else {
 return
 }

 let centerCoordinate = mlnMapView.centerCoordinate
 let marker = MLNPointAnnotation()
 marker.coordinate = centerCoordinate
 marker.accessibilityLabel = "CenterMarker"
 mlnMapView.addAnnotation(marker)
 centerMarker = marker

 trackingViewModel.reverseGeocodeCenter(centerCoordinate:
 centerCoordinate, marker: marker)
 }

 func mapView(_ mapView: MLNMapView, regionDidChangeAnimated animated: Bool)
 {
 if let marker = centerMarker {
 DispatchQueue.main.asyncAfter(deadline: .now() + 1.0) {
 mapView.deselectAnnotation(marker, animated: false)
 marker.coordinate = mapView.centerCoordinate
 let centerCoordinate = mapView.centerCoordinate
 self.trackingViewModel.reverseGeocodeCenter(centerCoordinate:
 centerCoordinate, marker: marker)
 }
 }
 }

Add tracking 73

Amazon Location Service Developer Guide

 func mapView(_ mapView: MLNMapView, viewFor annotation: MLNAnnotation) ->
 MLNAnnotationView? {
 guard let pointAnnotation = annotation as? MLNPointAnnotation else {
 return nil
 }

 let reuseIdentifier: String
 var color: UIColor = .black
 if pointAnnotation.accessibilityLabel == "Tracking" {
 reuseIdentifier = "TrackingAnnotation"
 color = UIColor(red: 0.00784313725, green: 0.50588235294, blue:
 0.58039215686, alpha: 1)
 } else if pointAnnotation.accessibilityLabel == "LocationChange" {
 reuseIdentifier = "LocationChange"
 color = .gray
 } else {
 reuseIdentifier = "DefaultAnnotationView"
 }

 var annotationView =
 mapView.dequeueReusableAnnotationView(withIdentifier: reuseIdentifier)

 if annotationView == nil {
 if reuseIdentifier != "DefaultAnnotationView" {
 annotationView = MLNAnnotationView(annotation: annotation,
 reuseIdentifier: reuseIdentifier)
 //If point annotation is an uploaded Tracking point the radius
 is 20 and color is blue, otherwise radius is 10 and color is gray
 let radius = pointAnnotation.accessibilityLabel == "Tracking" ?
 20:10
 annotationView?.frame = CGRect(x: 0, y: 0, width: radius,
 height: radius)
 annotationView?.backgroundColor = color
 annotationView?.layer.cornerRadius = 10

 if pointAnnotation.accessibilityLabel == "Tracking" {
 annotationView?.layer.borderColor = UIColor.white.cgColor
 annotationView?.layer.borderWidth = 2.0
 annotationView?.layer.shadowColor = UIColor.black.cgColor
 annotationView?.layer.shadowOffset = CGSize(width: 0,
 height: 2)
 annotationView?.layer.shadowRadius = 3
 annotationView?.layer.shadowOpacity = 0.2

Add tracking 74

Amazon Location Service Developer Guide

 annotationView?.clipsToBounds = false
 }
 }
 else {
 return nil
 }
 }

 return annotationView
 }

 func mapView(_ mapView: MLNMapView, didUpdate userLocation:
 MLNUserLocation?) {
 if (userLocation?.location) != nil {
 if trackingViewModel.trackingActive {
 let point = MLNPointAnnotation()
 point.coordinate = (userLocation?.location!.coordinate)!
 point.accessibilityLabel = "LocationChange"
 mapView.addAnnotation(point)
 Task {
 do {
 try await trackingViewModel.getTrackingPoints()
 }
 catch {
 print(error)
 }
 }
 }
 }
 }

 func checkIfTrackingAnnotationExists(on mapView: MLNMapView, at
 coordinates: CLLocationCoordinate2D) -> Bool {
 let existingAnnotation = mapView.annotations?.first(where: { annotation
 in
 guard let annotation = annotation as? MLNPointAnnotation else
 { return false }
 return annotation.coordinate.latitude == coordinates.latitude &&
 annotation.coordinate.longitude == coordinates.longitude &&
 annotation.accessibilityLabel == "Tracking" })
 return existingAnnotation != nil
 }

 public func drawTrackingPoints(trackingPoints: [CLLocationCoordinate2D]?) {

Add tracking 75

Amazon Location Service Developer Guide

 guard let mapView = mlnMapView, let newTrackingPoints =
 trackingPoints, !newTrackingPoints.isEmpty else {
 return
 }

 let uniqueCoordinates = newTrackingPoints.filter { coordinate in
 !checkIfTrackingAnnotationExists(on: mapView, at: coordinate)
 }

 let points = uniqueCoordinates.map { coordinate -> MLNPointAnnotation
 in
 let point = MLNPointAnnotation()
 point.coordinate = coordinate
 point.accessibilityLabel = "Tracking"
 return point
 }
 mapView.addAnnotations(points)
 }
 }
}

protocol MapViewDelegate: AnyObject {
 func drawTrackingPoints(trackingPoints: [CLLocationCoordinate2D]?)
}

To localize string values , use the following procedure.

1. Create and add a new file called Localizable.xcstrings.

2. Right-click on the Localizable.xcstrings file and open it as Source Code.

3. Replace its content with the following:

{
 "sourceLanguage" : "en",
 "strings" : {
 "Cancel" : {
 "extractionState" : "manual",
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "Cancel"

Add tracking 76

Amazon Location Service Developer Guide

 }
 }
 }
 },
 "Error" : {
 "extractionState" : "manual",
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "Error"
 }
 }
 }
 },
 "Loading..." : {

 },
 "locationManagerAlertText" : {
 "extractionState" : "manual",
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "Allow \\\"Quick Start App\\\" to use your location"
 }
 }
 }
 },
 "locationManagerAlertTitle" : {
 "extractionState" : "manual",
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "We need your location to detect your location in map"
 }
 }
 }
 },
 "NotAllFieldsAreConfigured" : {
 "extractionState" : "manual",
 "localizations" : {
 "en" : {

Add tracking 77

Amazon Location Service Developer Guide

 "stringUnit" : {
 "state" : "translated",
 "value" : "Not all the fields are configured"
 }
 }
 }
 },
 "OK" : {
 "extractionState" : "manual",
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "OK"
 }
 }
 }
 },
 "StartTrackingLabel" : {
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "Start Tracking"
 }
 }
 }
 },
 "StopTrackingLabel" : {
 "localizations" : {
 "en" : {
 "stringUnit" : {
 "state" : "translated",
 "value" : "Stop Tracking"
 }
 }
 }
 },
 "Tracking" : {

 }
 },
 "version" : "1.0"

Add tracking 78

Amazon Location Service Developer Guide

}

4. Save your files, and build and run your app to preview the functionality.

5. Allow the location permission and tap on the tracking button. The app will start uploading
user locations and upload them to the Amazon Location tracker. It will also show user location
changes, tracking points, and current address on the map.

Your quick-start application is complete. This tutorial has shown you how to create an iOS
application that:

• Creates a map that users can interact with.

• Handles several map events associated with the user changing the map view.

• Calls an Amazon Location Service API, specifically to search the map at a location, using Amazon
Location's searchByPosition API.

What's next

The source code for this application is available on GitHub.

To get more out of Amazon Location, you can check out the following resources:

• Dive deeper into the concepts of Amazon Location Service

• Get more information about how to use Amazon Location features and functionality

• See how to expand on this sample and build more complex applications by looking at code
examples using Amazon Location

What's next 79

https://github.com/aws-geospatial/amazon-location-samples-ios/tree/main/quick-start

Amazon Location Service Developer Guide

Amazon Location Service concepts

With Amazon Location Service, you can securely add location data to your application. Explore
some of the capabilities by using the visual and interactive tool, available on the Amazon Location
console. Using the explore tool, you can manipulate a default map, search for points of interest,
draw geofences around areas of interest, and simulate sending device locations to a tracker.

When you are ready to build, create your resources and choose from a variety of map styles and
data providers. Then you can install the SDK that matches your development environment, and
use the Amazon Location APIs using the instructions in this guide. Additionally, you can integrate
monitoring by using Amazon CloudWatch and AWS CloudTrail.

The topics in this section provide you an overview of the Amazon Location core concepts and
prepare you to start working with location in your own applications.

Topics

• Amazon Location overview

• Maps

• Places search

• Routes

• Geofences and Trackers

• Common use cases for using Amazon Location Service

• What is a data provider?

• Amazon Location Regions and endpoints

• Amazon Location Service quotas

80

https://console.aws.amazon.com/location/explore/home

Amazon Location Service Developer Guide

Amazon Location overview

Amazon Location Service provides access to location-based functionality and data providers
through AWS resources. Amazon Location offers five types of AWS resources, depending on the
type of functionality you need. Use the different resources together to create a full location-based
application. You can create one or more of these resources by using the Amazon Location console,
the Amazon Location APIs, or the SDKs.

Each resource defines the underlying data provider to be used (where applicable), and gives access
to functionality related to its type.

For example:

• Amazon Location Service Maps lets you choose a map from a map provider to use on your
mobile or web application.

• Amazon Location Service Places lets you choose a data provider for searching for points of
interest, completing partial text, geocoding, and reverse geocoding.

• Amazon Location Service Routes lets you choose a data provider and find routes and estimate
travel time based on up-to-date roadway and live traffic information.

• Amazon Location Service Geofences let you define areas of interest as a virtual boundary. You
can then evaluate locations against them and get notifications of entry and exit events.

• Amazon Location Service Trackers receive location updates from your devices. You can link
trackers to geofence collections so that all position updates are automatically evaluated against
your geofences.

Overview 81

Amazon Location Service Developer Guide

You can use IAM policies to manage and authorize access to your Amazon Location resources.
You can also organize your resources into resource groups to manage and automate tasks as your
resource numbers grow. For more information about managing AWS resources, see What are AWS
Resource Groups? In the AWS Resource Groups User Guide.

Location is defined by using latitude and longitude coordinates that follow the World Geodetic
System (WGS 84), commonly used as the standard coordinate reference system for Global
Positioning System (GPS) services.

The following sections describe how the components of Amazon Location work.

Maps

The Amazon Location Service Map resource gives you access to the underlying basemap data for
a map. You use the Map resource with a map rendering library to add an interactive map to your
application. You can add other functionality to your map, such as markers (or pins), routes, and
polygon areas, as needed for your application.

Note

For information about how to use map resources in practice, see Using Amazon Location
Maps in your application.

The following is an overview of how to create and use map resources:

1. You create a map resource in your AWS account by selecting a map style from a data provider.

2. You can then select and install the SDK that matches your development environment and
applications. For more information about available options, see the topic about Accessing
Amazon Location.

3. To display a map in your application, combine a map resource with a rendering library, such as
Amplify, MapLibre, or Tangram. For more information. see Using maps in this guide.

Maps 82

https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84

Amazon Location Service Developer Guide

4. You can then integrate monitoring by using services, such as Amazon CloudWatch and AWS
CloudTrail with Amazon Location. For more information see, Monitoring Amazon Location
Service with Amazon CloudWatch and Logging and monitoring with AWS CloudTrail.

Map styles

When you create a map resource, you must choose a map style for that resource. Map styles define
the look of the rendered map. For example, the following image shows the same data provider
with two different styles from different map resources in Amazon Location. One style is a typical
road style, based on the vector data in the map. The other includes raster data showing satellite
imagery. The style may change as you zoom in or out on the map, but typically styles have a
consistent theme. It's possible to override parts or all of the style information before passing it to
the map rendering library.

Political views

Certain maps styles in Amazon Location Service support additional political views.

Note

The political view must be used in compliance with applicable laws, including those laws
about mapping of the country or region where the maps, images, and other data and third-
party content which you access through Amazon Location Service is made available.

The following map styles support an India (IND) political view.

• Esri map styles:

• Esri Navigation

• Esri Light

Map styles 83

Amazon Location Service Developer Guide

• Esri Street Map

• Esri Dark Gray Canvas

• Esri Light Gray Canvas

• Open Data map styles:

• Open Data Standard Light

• Open Data Standard Dark

• Open Data Visualization Light

• Open Data Visualization Dark

In the Amazon Location Service console, you can filter the styles shown to just show the styles that
support the India political view.

Custom Layers

A custom layer is an additional layer you can enable for a map style. Currently only the
VectorEsriNavigation map style supports the POI custom layer.

When you enable the POI custom layer it adds a richer set of places, such as shops, services,
restaurants, attractions, and other points of interest to your map. By default, the custom layer is
unset. For more information see, MapConfiguration in the Location API reference.

Map rendering

To render a map in your application, you will typically use a map rendering library. There are
several common options for libraries to use:

• MapLibre – MapLibre is an open source library specifically for rendering interactive maps, and
is the preferred method of rendering maps from Amazon Location Service. MapLibre includes
the ability to render raster and vector data from a data source (such as an Amazon Location map
resource). You can extend MapLibre to draw your own data on the map.

• Amplify – Amplify is an open source framework for building applications for the web, iOS,
Android, and more. If your application uses Amplify, then you can extend it to include Amazon
Location functionality. Amplify includes libraries specifically for creating Amazon Location based
applications, including rendering maps. Amplify uses MapLibre to render the map, but provides
additional functionality that is specific to Amazon Location Service to make it more efficient to
use, and also adding search and other functionality.

Custom Layers 84

https://docs.aws.amazon.com/location/latest/APIReference/API_MapConfiguration.html

Amazon Location Service Developer Guide

• Tangram – Tangram is an alternative open source library that renders interactive maps, similar to
MapLibre.

The map rendering library pulls data from Amazon Location Service at runtime, rendering the map
data based on the map resource you select. The map resource defines the data provider and map
style that will be used.

The following image shows how the map resource is used in Amazon Location Service along with a
map rendering library to create the final map.

1. You create a map resource in Amazon Location Service, using the AWS Management Console or
AWS CLI. This defines the data provider and the map style that you want to use.

2. Your application includes a map rendering library. You give the map rendering library the name
of the map resource to use. The map rendering library pulls data and style information for that
map resource from Amazon Location and renders the map on screen.

Maps terminology

Map resource

Allows you to access map data from a selected provider. Use the map resource to fetch map
tiles that contain map data and a style descriptor to specify how features render on a map.

Basemap

Provides geographic context to your map, which is stored as vector tile layers. Tile layers include
geographical context such as street names, buildings, and land use for visual reference.

Maps terminology 85

Amazon Location Service Developer Guide

Vector

Vector data is shape data made up of points, lines, and polygons. It is often used to store
and display roads, locations, and areas on a map. A vector shape can also be used as icons for
markers on a map.

Raster

Raster data is image data, made up of a grid, usually of colors. It is often used to store and
display a representation of continuous data on maps, such as terrain, satellite imagery, or heat
maps. Raster images can also be used as images or icons.

Map Style

Vector data does not inherently include information about how to draw the layers of data to
create the final map. A map style defines color and other style information for the data to
define how it will look when rendered. Map resources include style information for the map.

Amazon Location Service provides styles following the Mapbox GL style specification.

Vector tile

A tile format that stores map data using vector shapes. This data results in a map that can
adjust to the display resolution, and selectively render features in a number of ways, while
maintaining a small file size for optimal performance.

Supported vector file format: Mapbox Vector Tiles (MVT).

Glyph file

A binary file containing encoded Unicode characters. Used by a map renderer to display labels.

Sprite file

A Portable Network Graphic (PNG) image file that contains small raster images, with location
descriptions in a JSON file. Used by a map renderer to render icons or textures on a map.

Maps terminology 86

https://docs.mapbox.com/mapbox-gl-js/style-spec/

Amazon Location Service Developer Guide

Places search

A key function of Amazon Location Service is the ability to search the geolocation information.
Amazon Location provides this functionality via the Place index resource.

Note

For information about how to use place index resources to search in practice, see Searching
place and geolocation data using Amazon Location.

You can use the place index APIs to search for:

• Points of interest, such as restaurants and landmarks. Search by name, and optional location to
search around, and receive a list of options ordered by relevance.

• A street address, receiving a latitude and longitude for that address. This is known as geocoding.

• A latitude and longitude position, receiving the associated street address or other information
about the location. This is known as reverse geocoding.

• A partial or misspelled free-form text query, typically as a user types. This is known as
autocomplete, autosuggest, or fuzzy matching.

The place index includes which data provider to use for the search.

Note

Map data and other geolocation information, including exact locations, can vary across
data providers. As a best practice, use the same data provider for your place index, map,
and other Amazon Location resources. For example, if the places returned by your place
index do not match the location of the same places provided by your map resource, you can
place a marker in what appears to be the wrong location on the map.

The following shows you how to create and use place index resources:

Places search 87

Amazon Location Service Developer Guide

1. First, you create a place index resource in your AWS account by selecting a data provider.

2. You can then select and install the SDK that matches your development environment and
applications. For more information about available options, see the topic about Accessing
Amazon Location.

3. Start using the Amazon Location Places APIs . For more information, see the topic about using
Places search.

4. You can then integrate monitoring using services such as Amazon CloudWatch and AWS
CloudTrail. For more information see, the section called “Monitoring with CloudWatch” and the
section called “Using CloudTrail with Amazon Location”.

Geocoding concepts

An Amazon Location place index provides an action called SearchPlaceIndexForText that
allows you to specify text to search. For example, you can search for:

• Places – a search for Paris could return the location of the city in France.

• Businesses – a search for coffee shop could return a list of coffee shops, including their names
and locations. You can also specify a location to search around or a bounding box to search
within, to make the results more relevant. In this case, providing a location in downtown Seattle,
Washington, would return coffee shops in that area.

• Addresses – a search for 1600 Pennsylvania Ave, Washington D.C. could return the
location of the White House in the United States (which is at that address).

Searching for text in this way is generally referred to as geocoding, which involves finding a
geographic location for the address or place.

Amazon Location Service also provides a reverse geocoding action called
SearchPlaceIndexForPosition. This takes a geographic location and returns the address,
business, or other information about what is at that location.

Geocoding concepts 88

https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html
https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForPosition.html

Amazon Location Service Developer Guide

Search results

When you make a successful search request in Amazon Location Service, one or more results are
returned. Each result includes a label, which is the name or description of the result. For example,
a search for coffee shop, might return a result with the label Hometown Cafe, telling you that
a coffee shop called "Hometown Cafe" was found. The search result will also typically include a
structured address (with properties such as the address number, unit, street, and postal code).
Depending on the data provider, it will include other meta data, as well, such as the country and
time zone.

For a search on a business name or category (such as coffee shop), you might want to show
all returned results on a map. For an address search, you might want to just use the first result
automatically. See the next topic for information about relevance.

Multiple results and relevance

When searching by text, Amazon Location Service will often find more than a single result. For
example, a search for Paris may return the city in France, but also the city in Texas. The results are
sorted by the relevance, as determined by the data provider.

Note

Results are returned in relevance order from all providers. If you choose Esri or Grab as
your data provider, the results include a relevance value that you can use to understand the
relative relevance between the results of a single request.

Specifying additional information, such as a country name, or a location to search around, can
change the order of results, reduce the number of results, or even change the set of results
returned. For example, a search for Paris with a location in Texas to search around is more likely
to return Paris, Texas as the first result than Paris, France.

In an interactive application, you can use relevance to help decide whether to accept the top
result, or to ask a user to disambiguate between multiple returned results. If the first result has a
high relevance, you might just accept it as the correct answer. If there are multiple high relevance
results, or no high relevance results, you might want to list the results and let the user select the
best result.

Search results 89

Amazon Location Service Developer Guide

Address results

You can search for addresses with Amazon Location Service using the same
SearchPlaceIndexForText action. The more information that you provide, the more likely
the address returned will match the one given. For example, 123 Main St is less likely to find a
correct result than 123 Main St, Anytown, California, 90210.

Addresses have multiple attributes, such as the street number, street, city, region, and postal code,
etc. Those attributes are used to find an address in the place index that matches as many aspects
as possible. The more attributes found, the more relevant the match is considered, and the more
likely it will be returned.

Note

The relevance for address results is based on how closely the result matches the input. This
could be the number of the attributes that matched, but also how closely the results match
the input. For example, an input of 123 Main St would have a higher relevance when
Main St is found in the data, than if Maine St is the only result. Maine St will still be
returned, but likely with a lower relevance value.

The search results include a label for the full address (123 Main St, Anytown, California,
90210), but also the individual structured attributes of the returned address. This is helpful,
because you can use that, for example, to populate address fields in a database, or to examine the
results and find the city, region, or postal code of the found location.

Interpolation

Addresses in the place index data includes exact address matches. For example, suppose that there
is a street, 9th street and one block has 2 houses, 220 and 240, as in the following image.

Address results 90

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html

Amazon Location Service Developer Guide

The data provider creates the geolocation data with those two known addresses. You can search
for those two addresses, and they are found. After the data provider creates the map data, let's
suppose that a new house is added, between the first two addresses. This new house is given the
address 230. If you search for 230 S 9th St, the data provider will still find a result. Instead of
using a known address, it will interpolate between the already known addresses, and estimate the
position of the new address from those. In this case, it might assume that 230 is halfway between
220 and 240 (and on the same side of the street), and return an approximate location based on
that.

Note

Data providers periodically update their geolocation data with new addresses. In this case,
230 S 9th St would get added to the data provider data, but there will typically be a
period when a new address has been created but is not yet added to the data.

In this case, the data provider can't tell whether the new address exists in the world, as it is not yet
in the data, but provides the best answer it can from the information it has. This result is called
interpolated, and can be returned by the data provider in the results. If interpolated returns
false, it is a known address. If it returns true, it's an approximated address. If it's not returned,

Address results 91

Amazon Location Service Developer Guide

then the data provider did not provide the information about whether the result came from
interpolation.

Important

The data provider may also return interpolated results for addresses that don't exist at
all. For example in this case, if you entered 232 S 9th St, the provider would find this
nonexistent address, and return a location close to 230, but on the 240 side. Interpolated
addresses are useful for getting you to the right location, but it is good to keep in mind
that they are not known addresses.

Storing geocode results

When you create a place index resource, you must specify a Data storage option (called
IntendedUse in the API). That can set to be either single use or stored results. This is asking about
your intended use of the results. If you are going to store the results (even for caching purposes),
you must choose the storage option, not the single use option.

Note

When you chose the stored option (labeled as Yes, results will be stored in the console,
or choosing storage in the CreatePlaceIndex API), Amazon Location Service does not
store the results for you. This is an indication that you are planning to store the results.

When looking at how you are going to use the results of your queries to Amazon Location Service,
you should always be aware of the AWS Service Terms that apply.

Places terminology

Place index resource

Allows you to choose a data source to support search queries. For example, you can search
for points of interest, addresses, or coordinates. When a search query is sent to a place index
resource, it's fulfilled using the resource's configured data source.

Storing geocode results 92

https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

Geocoding

Geocoding is the process of taking a text input, searching for it in the place index, and returning
results with position.

Reverse geocoding

Reverse geocoding is the process of taking a position and returning information about that
position from within the place index, such as the address, city, or business at that location.

Relevance

Relevance is how closely a result matches the input. It is not a measure of correctness.

Interpolation

Interpolation is the process of finding unknown addresses by using known address locations as
guide points.

ISO 3166 country codes

Amazon Location Service Places uses the International Organization for Standardization (ISO)
3166 country codes to refer to countries or regions.

To find the code for a specific country or region, use the ISO Online Browsing Platform.

Routes

This section provides an overview of the concepts around routing using Amazon Location Service.

Note

For information about how to use route resources in practice, see Calculating routes using
Amazon Location Service.

Routes 93

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/obp/ui/#search

Amazon Location Service Developer Guide

Route calculator resources

Route calculator resources allow you to find routes and estimate travel time based on up-to-date
road network and live traffic information from your chosen data provider.

You can use the Routes APIs to build features that allow your application to request the travel time,
distance, and geometry of the route between any two locations. You can also use the Routes API to
request travel time and distance between a set of departures and destinations in a single request
to calculate a matrix.

The following shows you how to create and use a route calculator resource:

1. First, you create a route calculator resource in your AWS account by selecting a data provider.

2. You can then select and install the SDK that matches your development environment and
applications.

3. Start using the Amazon Location Routes APIs . For more information about how to use the
routing APIs, see the topic on Calculating routes using Amazon Location Service.

4. You can then integrate monitoring using services such as Amazon CloudWatch and AWS
CloudTrail. For more information see, Monitoring Amazon Location Service with Amazon
CloudWatch and Logging and monitoring with AWS CloudTrail.

Calculating a route

An Amazon Location route calculator resource provides an action called CalculateRoute
that you can use to create a route between two geographic locations (the departure and the
destination). The calculated route includes the geometry for drawing the route on a map, plus the
overall time and distance of the route.

Using waypoints

When you are creating your route request, you can add additional waypoints to the route. These
are points between the departure and the destination that act as stops along the route. The route

Route calculator resources 94

Amazon Location Service Developer Guide

will be calculated through each of the waypoints specified. The route from one point in the request
to the next is called a Leg. Each leg includes a distance, time, and the geometry for that part of the
route.

Note

The waypoints are routed in the order given in the request. They are not re-ordered for the
shortest path. See the Planning routessection for information on finding the shortest path.

You can include up to 25 waypoints in a single request to calculate a route.

Traffic and departure time

The Amazon Location Service takes traffic into account when calculating a route. The trafffic that it
considers is based on the time that you specify. You can specify to depart now, or you can provide a
specific time that you want to leave, which will affect the route result by adjusting for traffic at the
specified time.

Note

You can calculate the arrival time using the departure time and route response time, to
estimate the arrival of a driver, for example.

If you want Amazon Location to not take traffic into account, then do not specify a departure time
and do not specify depart now. This will calculate a route that assumes the best traffic conditions
for the route.

Travel mode options

You can set the travel mode when calculating a route using Amazon Location Service. The default
travel mode is car, but you can alternately select either truck or walking.

If you specify either car or truck mode, you can specific additional options, as well.

For car mode, you can specify that you wish to avoid toll roads or ferries. This will attempt to
avoid ferries and toll roads, but will still route along them, if they are the only way to get to the
destination.

Calculating a route 95

Amazon Location Service Developer Guide

For truck mode, you can also avoid ferries and toll roads, but additionally, you can specify the size
and weight of the truck, to avoid routes that will not accommodate the truck.

Planning routes

You can use Amazon Location Service to create inputs to your route planning and optimization
software. You can create route results, including travel time and travel distance, for routes between
a set of departure positions and a set of destination positions. This is called creating a route matrix.

Note

There are many varying scenarios that route planning and optimization software can solve.
For example, planning software can use the set of times and distances between points to
calculate the shortest path that stops at each point, providing an efficient route for a single
driver. Alternatively, planning software can be used to split stops between multiple trucks,
providing efficiencies across a fleet, or to make sure that each customer is visited within
the time frame that they require. Amazon Location provides the routing functions in an
efficient way to allow the planning software to complete it's task.

For example, given departure positions A and B, and destination positions X and Y, Amazon
Location Service will return travel time and travel distance for routes from A to X, A to Y, B to X,
and B to Y.

As with calculating a single route, you can calculate the routes with different modes of
transportation, avoidances, and traffic conditions. For example, you can specify that the vehicle is
a truck that is 35 feet long, and the route calculated will use those restrictions to determine the
travel time and travel distance. You can't include waypoints in a route matrix calculation.

The number of results returned (and routes calculated) is the number of departure positions
multiplied by the number of destination positions. You are charged for each route calculated, not
each request to the service, so a route matrix with 10 departures and 10 destinations will be billed
as 100 routes.

Route terminology

Route calculator resource

An AWS resource that enables you to estimate travel time, distance, and plot routes on a map
with traffic and road network data sourced from your chosen data provider.

Planning routes 96

Amazon Location Service Developer Guide

Using route calculator resources, you calculate routes for different modes of transportation,
detours, and traffic conditions.

Route

A route contains details used when traveling along a path from the departure position,
waypoint positions, and destination position.

Examples of details in a route include:

• The distance from one position to another position.

• The time it takes to travel from one position to the next position.

• The LineString geometry representing the path of the route.

For more information about routes, see the response syntax for the CalculateRoute operation in
the Amazon Location Service Routes API reference.

Route matrix

A list of routes, from a set of departure positions to a set of destination positions. Useful as
inputs into route planning or optimization software.

For more information about calculating a route matrix, see the syntax for the
CalculateRouteMatrix operation in the Amazon Location Service Routes API reference.

LineString geometry

An Amazon Location route consists of one or more legs (a route from one waypoint to another
within the overall route). The geometry of each leg is a polyline represented as a LineString.
A LineString is an ordered array of positions that can be used to plot a route on a map.

The following is an example of a LineString with three points:

[
 [-122.7565,49.0021],
 [-122.3394,47.6159],
 [-122.1082,45.8371]
]

Waypoint

Waypoints are intermediate positions that act as stops along a route between the departure
position and destination position. The stopover order on the route follows the order that you
provide the waypoint positions in the request.

Route terminology 97

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRouteMatrix.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRouteMatrix.html

Amazon Location Service Developer Guide

Leg

A single leg is the journey from one position to another position. If the positions aren't located
on a road, they're moved to the nearest road. The number of legs in a route is one less than the
total number of positions.

A route with no waypoints consists of a single leg, from the departure position to the
destination. A route with 1 waypoint consists of 2 legs, from the departure position to the
waypoint, and then from the waypoint to the destination.

Step

A step is a subsection of a leg. Each step provides summary information for that step in the leg.

Geofences and Trackers

This section provides and overview of the concepts of working with Amazon Location Service
geofences and trackers. Geofences are polygon boundaries that you can use to be notified when
devices or positions move in and out of the areas. Tracker resources are used to store and update
positions for devices as they move.

Note

For information about how to use geofences and trackers in practice, see Geofencing an
area of interest using Amazon Location.

Geofences

Geofence collection resources allow you to store and manage geofences—virtual boundaries on a
map. You can evaluate locations against a geofence collection resource and get notifications when
the location update crosses the boundary of any of the geofences in the geofence collection.

The following shows you how to create and use geofence collection resources:

Geofences and Trackers 98

Amazon Location Service Developer Guide

1. Create a geofence collection resource in your AWS account.

2. Add geofences to that collection. You can do so by either using the geofence upload tool
on the Amazon Location console, or by using the Amazon Location Geofences API. For more
information about available options, see Accessing Amazon Location.

Geofences can either be defined by a polygon or by a circle. Use a polygon to find when a device
enters a specific area. Use a circle to find when a device comes within a certain distance (radius)
of a point.

3. You can start evaluating locations against all your geofences. When a location update crosses
the boundaries of one or more geofences, your geofence collection resource emits one of the
following geofence event types on Amazon EventBridge:

• ENTER – One event is generated for each geofence where the location update crosses its
boundary by entering it.

• EXIT – One event is generated for each geofence where the location update crosses its
boundary by exiting it.

For more information, see the section called “Reacting to events with EventBridge”. You can also
integrate monitoring using services such as Amazon CloudWatch and AWS CloudTrail. For more
information see, the section called “Monitoring with CloudWatch” and the section called “Using
CloudTrail with Amazon Location”.

For example, if you are tracking a fleet of trucks, and you want to get notified when a truck comes
within a certain area of any of your warehouses. You can create a geofence for the area around
each warehouse. Then, when the trucks send you updated locations, you can use Amazon Location
Service to evaluate those positions and see if a truck has entered (or exited) one of the geofence
areas.

Note

Your are billed by the number of geofence collections you evaluate against. Your bill is not
affected by the number of geofences in each collection. Since each geofence collection
may contain up to 50,000 geofences, you may want to combine your geofences into
fewer collections, where possible, to reduce your cost of geofence evaluations. The events
generated will include the ID of the individual geofence in the collection, as well as the ID
of the collection.

Geofences 99

https://docs.aws.amazon.com/location/latest/developerguide/how-to-access.html

Amazon Location Service Developer Guide

Geofence events

Locations for positions you are monitoring are referenced by an ID called a DeviceId (and the
positions are referred to as device positions). You can send a list of device positions to evaluate
directly to the geofence collection resource, or you can use a tracker. See the next section for more
information on trackers.

You receive events (via Amazon EventBridge) only when a device enters or exits a geofence, not
for every position change. This means that you will typically receive events and have to respond to
them much less frequently than every device position update.

Note

For the first location evaluation for a specific DeviceID, it is assumed that the device was
previously not in any geofences. So the first update will generate an ENTER event, if inside
a geofence in the collection, and no event if not.

In order to calculate whether a device has entered or exited a geofence, Amazon Location Service
must keep previous position state for the device. This position state is stored for 30 days. After
30 days without an update for a device, a new location update will be treated as the first position
update.

Trackers

A tracker stores position updates for a collection of devices. The tracker can be used to query the
devices' current location or location history. It stores the updates, but reduces storage space and
visual noise by filtering the locations before storing them.

Each position update stored in your tracker resources can include a measure of position accuracy
and up to 3 fields of metadata about the position or device that you want to store. The metadata
is stored as key-value pairs, and can store information such as speed, direction, tire pressure, or
engine temperature.

Note

Tracker storage is encrypted with AWS owned keys automatically. You can add another
layer of encryption using KMS keys that you manage, to ensure that only you can access
your data. For more information, see Data encryption at rest for Amazon Location Service.

Trackers 100

Amazon Location Service Developer Guide

Tracker position filtering and storage are useful on their own, but trackers are especially useful
when paired with geofences. You can link trackers to one or more of your geofence collection
resources, and position updates are evaluated automatically against the geofences in those
collections. Proper use of filtering can greatly reduce the costs of your geofence evaluations, as
well.

The following diagram shows you how to create and use tracker resources:

1. First, you create a tracker resource in your AWS account.

2. Next, decide how you send location updates to your tracker resources. Use AWS SDKs to
integrate tracking capabilities into your mobile applications. Alternately, you can use MQTT by
following step-by-step directions in tracking using MQTT.

3. You can now use your tracker resource to record location history and visualize it on a map.

4. You can also link your tracker resource to one or more geofence collections so that every
position update sent to your tracker resource is automatically evaluated against all the geofence
in all the linked geofence collections. You can link resource on the tracker resource details page
of the Amazon Location console or by using the Amazon Location Trackers API.

5. You can then integrate monitoring using services such as Amazon CloudWatch and AWS
CloudTrail. For more information see, the section called “Monitoring with CloudWatch” and the
section called “Using CloudTrail with Amazon Location”.

Using trackers with geofences

Trackers provide additional functionality when paired with geofences. You associate a tracker with
a geofence collection, either through the Amazon Location console or the API, to automatically
evaluate tracker locations. Each time the tracker receives an updated location, that location will
be evaluated against each geofence in the collection, and the appropriate ENTER and EXIT events
are generated in Amazon EventBridge. You can also apply filtering to the tracker, and, depending
on the filtering, you can reduce the costs for geofence evaluations by only evaluating meaningful
location updates.

Trackers 101

Amazon Location Service Developer Guide

If you associate the tracker with a geofence collection after it has already received some position
updates, the first position update after association is treated as an initial update for the geofence
evaluations. If it is within a geofence, you will receive an ENTER event. If it is not within any
geofences you will not receive an EXIT event, regardless of the previous state.

Position filtering

Trackers can automatically filter the positions that are sent to them. There are several reasons why
you might want to filter out some of your device location updates. If you have a system that only
sends reports every minute or so, you might want to filter devices by time, storing and evaluating
positions only every 30 seconds. Even if you are monitoring more frequently, you might want
to filter position updates to clean up the noisiness of GPS hardware. GPS position locations are
inherently noisy. Their accuracy is not 100% perfect, so even a device that is stationary appears to
be moving around slightly. At low speeds, this jitter causes visual clutter and can cause false entry
and exit events if the device is near the edge of a geofence.

The position filtering works as position updates are received by a tracker, reducing visual noise
in your device paths (jitter), reducing the number of false geofence entry and exit events, and
helping manage costs by reducing the number of position updates stored and geofence evaluations
triggered.

Trackers offer three position filtering options to help manage costs and reduce jitter in your
location updates.

• Accuracy-based – Use with any device that provides an accuracy measurement. Most GPS
and mobile devices provide this information. The accuracy of each position measurement is
affected by many environmental factors, including GPS satellite reception, landscape, and
the proximity of wifi and bluetooth devices. Most devices, including most mobile devices, can
provide an estimate of the accuracy of the measurement along with the measurement. With
AccuracyBased filtering, Amazon Location ignores location updates if the device moved less
than the measured accuracy. For example, if two consecutive updates from a device have an
accuracy range of 5 m and 10 m, Amazon Location ignores the second update if the device has
moved less than 15 m. Amazon Location neither evaluates ignored updates against geofences,
nor stores them.

When accuracy is not provided, it is treated as zero, and the measurement is considered perfectly
accurate, and no filtering will be applied to the updates.

Trackers 102

Amazon Location Service Developer Guide

Note

You can use accuracy-based filtering to remove all filtering. If you select accuracy-
based filtering, but override all accuracy data to zero, or omit the accuracy entirely, then
Amazon Location will not filter out any updates.

In most scenarios, accuracy-based filtering is a good choice for filtering position updates,
providing a balance of tracking location while filtering out unneeded updates, thereby reducing
costs.

• Distance-based – Use when your devices do not provide an accuracy measurement, but you still
want to take advantage of filtering to reduce jitter and manage costs. DistanceBased filtering
ignores location updates in which devices have moved less than 30 m (98.4 ft). When you use
DistanceBased position filtering, Amazon Location neither evaluates these ignored updates
against geofences nor stores the updates.

The accuracy of most mobile devices, including the average accuracy of iOS and Android devices,
is within 15 m. In most applications, DistanceBased filtering can reduce the effect of location
inaccuracies when displaying device trajectory on a map, and the bouncing effect of multiple
consecutive entry and exit events when devices are near the border of a geofence. It can also
help reduce the cost of your application, by making fewer calls to evaluate against linked
geofences or retrieve device positions.

Distance-based filtering is useful if you want to filter, but your device doesn't provide accuracy
measurements, or you want to filter out a larger number of updates than with accuracy-based.

• Time-based – (default) Use when your devices send position updates very frequently (more than
once every 30 seconds), and you want to achieve near real-time geofence evaluations without
storing every update. In TimeBased filtering, every location update is evaluated against linked
geofence collections, but not every location update is stored. If your update frequency is more
often than 30 seconds, only one update per 30 seconds is stored for each unique device ID.

Time-based filtering is particularly useful when you want to store fewer positions, but want
every position update to be evaluated against the associated geofence collections.

Trackers 103

Amazon Location Service Developer Guide

Note

Be mindful of the costs of your tracking application when deciding your filtering method
and the frequency of position updates. You are billed for every location update and once
for evaluating the position update against each linked geofence collection. For example,
when using time-based filtering, if your tracker is linked to two geofence collections, every
position update will count as one location update request and two geofence collection
evaluations. If you are reporting position updates every 5 seconds for your devices and
using time-based filtering, you will be billed for 720 location updates and 1,440 geofence
evaluations per hour for each device.

Geofence terminology

Geofence Collection

Contains zero or more geofences. It is capable of geofence monitoring by emitting Entry and
Exit events, when requested, to evaluate a device position against its geofences.

Geofence

A polygon or circle geometry that defines a virtual boundary on a map.

Polygon geometry

An Amazon Location geofence is a virtual boundary for a geographical area and is represented
as a polygon geometry or as a circle.

A circle is a point with a distance around it. Use a circle when you want to be notified if a device
is within a certain distance of a location.

A polygon is an array composed of 1 or more linear rings. Use a polygon when you want to
define a specific boundary for device notifications. A linear ring is an array of four or more
vertices, where the first and last vertex are the same to form a closed boundary. Each vertex is a
2-dimensional point of the form [longitude, latitude], where the units of longitude and
latitude are degrees. The vertices must be listed in counter-clockwise order around the polygon.

Geofence terminology 104

Amazon Location Service Developer Guide

Note

Amazon Location Service doesn't support polygons with more than one ring. This
includes holes, islands or multipolygons. Amazon Location also doesn't support
polygons that are wound clockwise, or that cross the antimeridian.

The following is an example of a single linear external ring:

[
 [
 [-5.716667, -15.933333],
 [-14.416667, -7.933333],
 [-12.316667, -37.066667],
 [-5.716667, -15.933333]
]
]

Tracker terminology

Tracker resource

An AWS resource that receives location updates from devices. The tracker resource provides
support for location queries, such as current and historic device location. Linking a tracker
resource to a geofence collection evaluates location updates against all geofences in the linked
geofence collection automatically.

Position data tracked

A tracker resource stores information about your devices over time. The information includes a
series of position updates, where each update includes location, time, and optional metadata.
The metadata can include a position's accuracy, and up to three key-value pairs to help you
track key information about each position, such as speed, direction, tire pressure, remaining
fuel, or engine temperature of the vehicle you are tracking. Trackers maintain device location
history for 30 days.

Tracker terminology 105

Amazon Location Service Developer Guide

Position filtering

Position filtering can help you control costs and improve the quality of your tracking application
by filtering out position updates that don't provide valuable information before the updates are
stored or evaluated against geofences.

You can choose AccuracyBased, DistanceBased, or TimeBased filtering. By default,
position filtering is set to TimeBased.

You can configure position filtering when you create or update tracker resources.

RFC 3339 timestamp format

Amazon Location Service Trackers uses the RFC 3339 format, which follows the International
Organization for Standardization (ISO) 8601 format for dates and time.

The format is “YYYY-MM-DDThh:mm:ss.sssZ+00:00”:

• YYYY-MM-DD — Represents the date format.

• T — Indicates that the time values will follow.

• hh:mm:ss.sss — Represents the time in 24-hour format.

• Z — Indicates that the time zone used is UTC, which can be followed with deviations from the
UTC time zone.

• +00:00 — Optionally indicate deviations from the UTC time zone. For example, +01:00
indicates UTC + 1 hour.

Example

For July 2, 2020, at 12:15:20 in the afternoon, with an adjustment of an additional 1 hour to
the UTC time zone.

2020-07-02T12:15:20.000Z+01:00

Common use cases for using Amazon Location Service

Amazon Location Service lets you build a range of applications, from asset tracking to location-
based marketing. The following are common use cases:

Common use cases 106

https://tools.ietf.org/html/rfc3339
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html

Amazon Location Service Developer Guide

User engagement and geomarketing

Use location data to build solutions that improve user engagement with marketing to target
customers. For example, Amazon Location can trigger an event that prompts a notification
when a customer who ordered a coffee on their mobile app is nearby. Additionally, you can
build geotargeting features so that retailers can send discount codes or digital flyers to
customers who are near target stores.

Asset tracking

Build asset tracking features to help businesses understand the current and historical locations
of their products, personnel, and infrastructure. With asset tracking features, you can build a
number of solutions that optimize remote staffing, secure shipment en-route, and maximize
dispatch efficacy.

Delivery

Integrate location features into delivery applications to store, track, and coordinate the
departure location, delivery vehicles, and their destination. For example, a food delivery
application with Amazon Location features built-in has location tracking and geofencing
capabilities that can automatically notify a restaurant when a delivery driver is nearby. This
reduces the wait time and helps maintain the quality of the food delivered.

This topic provides you an overview of the architecture and steps for applications you can build
with Amazon Location.

Topics

• User engagement and geomarketing applications

• Asset tracking applications

• Delivery applications

User engagement and geomarketing applications

The following is an illustration of a user engagement and geomarketing application architecture
using Amazon Location:

With this architecture, you can:

User engagement and geomarketing applications 107

Amazon Location Service Developer Guide

• Initiate events based on the proximity of a target so that you can send offers to nearby
customers or engage those who recently left your establishment (called geotargeting).

• Visualize customer device locations on a map to monitor trends over time.

• Store customer device locations that you can analyze over time.

• Analyze location history to identify trends and opportunities for optimization.

The following is an overview of the steps required to build a user engagement and geomarketing
application:

1. Create your geofences in Geofence Collections and link Trackers to them. For more information,
see the section called “Geofencing and tracking”.

2. Configure Amazon EventBridge to send a notification to customers who enter or exit a
geofenced area of interest. For more information, see the section called “Reacting to events with
EventBridge”.

3. Display customer locations and geofences on a map. For more information, see Using maps.

4. Save location data to long-term storage for further analysis.

User engagement and geomarketing applications 108

https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

5. Once you have built your application, you can use Amazon CloudWatch and AWS CloudTrail
to manage your application. For more information, see the section called “Monitoring with
CloudWatch” and the section called “Using CloudTrail with Amazon Location”.

Asset tracking applications

The following is an illustration of an asset tracking application architecture using Amazon Location:

With this architecture, you can:

• Display asset locations on a map to illustrate the big picture. For example, showing a heat map
using historical locations or events to help an operations or planning team.

• Initiate events based on asset proximity to provide notice to a receiving department to prepare
for a shipment arrival and reduce processing time.

• Store asset locations to initiate actions in your backend applications or to analyze data over time.

• Analyze location history to identify trends and opportunities for optimization.

The following provides an overview of the steps required to build an asset tracking application:

Asset tracking applications 109

Amazon Location Service Developer Guide

1. Create your geofences in Geofence Collections and link Trackers to them. For more information,
see the section called “Geofencing and tracking”.

2. Configure Amazon EventBridge to send a notification or initiate a process. For more information,
see the section called “Reacting to events with EventBridge”.

3. Display your tracked assets and your active geofences on a map. For more information, see Using
maps.

4. Save location data in long-term storage for further analysis.

5. Once you have built your application, you can use Amazon CloudWatch and AWS CloudTrail
to manage your application. For more information, see the section called “Monitoring with
CloudWatch” and the section called “Using CloudTrail with Amazon Location”.

Delivery applications

The following is an illustration of a delivery application architecture using Amazon Location.

With this architecture, you can:

• Initiate events based on proximity of delivery agents so that pickups are ready in time and
customers can be notified when their delivery is arriving.

• Display driver locations, as well as pick-up and drop-off locations in near-real time on a map to
show dispatch teams the big picture.

• Store the locations of delivery agents so that you can act on them in your backend application or
analyze them over time.

• Analyze location history to identify trends and opportunities for optimization.

Delivery applications 110

https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html
https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

The following is an overview of the steps required to build a delivery application:

1. Create your geofence collections and link tracked devices to the collection. For more information
see, the section called “Geofencing and tracking”.

2. Create an AWS Lambda function to automatically add and remove geofences as your orders are
booked.

3. Configure Amazon EventBridge to send notifications or initiate a processes. For more
information, see the section called “Reacting to events with EventBridge”.

4. Display tracked assets and active geofences on a map. For more information, see Using maps.

5. Save location data to long-term storage for further analysis.

6. Once you have built your application, you can use Amazon CloudWatch and AWS CloudTrail
to manage your application. For more information, see the section called “Monitoring with
CloudWatch” and the section called “Using CloudTrail with Amazon Location”.

Delivery applications 111

https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

What is a data provider?

Use Amazon Location Service to access geolocation resources from multiple data providers through
your AWS account without requiring third-party contracts or integrations. This can help you focus
on building your application, without having to manage third-party accounts, credentials, licenses,
and billing.

The following Amazon Location services use data providers.

• Maps – Choose styles from different map providers when you create a map resource. You can use
map resources to build an interactive map to visualize data.

• Places – Choose a data provider when you create a place index resource to support queries for
geocoding, reverse geocoding, and searches.

• Routes – Choose a data provider to support queries for route calculations in different
geographies and applications when you create a route calculator resource. With your chosen data
provider, Amazon Location Service enables you to calculate routes based on up-to-date road
network data, live traffic data, planned closures, and historic traffic patterns.

Each provider gathers and curates their data using different means. They may also have varying
expertise in different regions of the world. This section provides details about our data providers.
You may select any data provider based on your preference.

Make sure you read the terms of conditions when using Amazon Location Service data providers.
For more information, see the AWS Service Terms. Also see the the section called “Data privacy”
section for more information about how Amazon Location protects your privacy.

Data provider coverage and features

The following table shows coverage and features at a high level for each data provider.

Data provider Geographical
coverage

Feature coverage AWS Region

Esri Global Maps, Places, Routes All Regions where
Amazon Location is
available.

Data providers 112

https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html
https://docs.aws.amazon.com/location/latest/developerguide/places-prerequisites.html#create-place-index-resource
https://docs.aws.amazon.com/location/latest/developerguide/routes-prerequisites.html#create-route-calculator-resource
https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

Data provider Geographical
coverage

Feature coverage AWS Region

Grab Southeast Asia Maps, Places, Routes Asia Pacific (Singapor
e), ap-southe
ast-1 , only.

HERE Global Maps, Places, Routes All Regions where
Amazon Location is
available.

Open Data Global Maps All Regions where
Amazon Location is
available.

For more information about each data provider's specific features, see Features by data provider.

Each data provider gathers and produces data in different ways. You can learn more about their
coverage areas in the following topics:

• Coverage: Esri

• Coverage: Grab

• Coverage: HERE

• Coverage: Open Data

If you encounter a problem with the data and want to report an error to the data provider, see the
following topics:

• Error reporting to Esri

• Error reporting for GrabMaps data

• Error reporting to HERE

• Error reporting and contributing to Open Data

Data provider coverage and features 113

Amazon Location Service Developer Guide

Map styles

Each data provider provides a set of map styles to render the map data that they provide. For
example a style might include satellite imagery, or might be optimized to show the roads for
navigation. You can find the list and examples of the styles for each provider in the following
topics.

• Esri map styles

• Grab map styles

• HERE map styles

• Open Data map styles

More information about each data provider

The following links provide more information about each data provider.

• Esri

• GrabMaps

• HERE Technologies

• Open Data

Esri

Amazon Location Service uses Esri's location services to help AWS customers to use maps, geocode,
and calculate routes effectively. Esri’s location services are built with high-quality, authoritative,
and ready-to-use location data, curated by expert teams of cartographers, geographers, and
demographers.

For additional capability information, see Esri on Amazon Location Service data providers.

Topics

• Esri map styles

• Coverage: Esri

• Terms of use and data attribution: Esri

• Error reporting to Esri

Map styles 114

https://aws.amazon.com/location/data-providers/esri/

Amazon Location Service Developer Guide

Esri map styles

Amazon Location Service supports the following Esri map styles when creating a map resource.

Note

Esri map styles that are not listed in this section are not supported.

The Esri vector styles support alternate Political views.

Esri Navigation

Esri Navigation

Map style name: VectorEsriNavigation

This map provides a detailed basemap for the world symbolized with a custom navigation map
style that's designed for use during the day in mobile devices.

This comprehensive street map includes highways, major roads, minor roads, railways, water
features, cities, parks, landmarks, building footprints, and administrative boundaries. The

Esri 115

https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

vector tile layer in this map is built using the same data sources used for the World Street Map
and other Esri basemaps. Enable the POI layer by setting it in CustomLayers to leverage the
additional places data.

For more information, see Esri World Navigation on the Esri website.

Note

TheVectorEsriNavigation map pictured above has the POI layer enabled.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Arial Italic

• Arial Regular

• Arial Bold

• Arial Unicode MS Bold

• Arial Unicode MS Regular

Esri Imagery

Esri Imagery

Esri 116

https://docs.aws.amazon.com/location/latest/APIReference/API_MapConfiguration.html
https://www.arcgis.com/home/item.html?id=63c47b7177f946b49902c24129b87252
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

Map style name: RasterEsriImagery

This map provides one meter or better satellite and aerial imagery in many parts of the world
and lower resolution satellite imagery worldwide.

The map includes 15m imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m
SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery
in the continental United States and parts of Western Europe from Maxar. This map features
additional Maxar submeter imagery in many parts of the world. In other parts of the world, the
GIS User Community has contributed imagery at different resolutions. In select communities,
very high-resolution imagery (down to 0.03m) is available down to ~1:280 scale.

For more information, see Esri World Imagery on the Esri website.

Esri Light

Esri Light

Esri 117

https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9

Amazon Location Service Developer Guide

Map style name: VectorEsriTopographic

This provides a detailed basemap for the world symbolized with a classic Esri map style. This
includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks,
building footprints, and administrative boundaries.

This basemap is compiled from a variety of authoritative sources from several data providers,
including the US Geological Survey (USGS), US Environmental Protection Agency (EPA), US
National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO),
Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is
sourced from OpenStreetMap contributors. Additionally, data is provided by the GIS community.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Noto Sans Italic

• Noto Sans Regular

• Noto Sans Bold

Esri 118

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Noto Serif Regular

• Roboto Condensed Light Italic

Esri Light Gray Canvas

Esri Light Gray Canvas

Map style name: VectorEsriLightGrayCanvas

This map provides a detailed basemap for the world symbolized with a light gray, neutral
background style with minimal colors, labels, and features that's designed to draw attention to
your thematic content.

This vector tile layer is built using the same data sources used for the Light Gray Canvas and
other Esri basemaps. The map includes highways, major roads, minor roads, railways, water
features, cities, parks, landmarks, building footprints, and administrative boundaries.

For more information, see Esri Light Gray Canvas on the Esri website.

Fonts

Esri 119

https://www.arcgis.com/home/item.html?id=c7e86d018d2945799cdc8e3dfbe30b43

Amazon Location Service Developer Guide

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Ubuntu Italic

• Ubuntu Regular

• Ubuntu Light

• Ubuntu Bold

Esri Street Map

Esri Street Map

Map style name: VectorEsriStreets

This map provides a detailed basemap for the world symbolized with a custom navigation map
style that's designed for use during the day in mobile devices.

This comprehensive street map includes highways, major roads, minor roads, railways, water
features, cities, parks, landmarks, building footprints, and administrative boundaries. It also
includes a richer set of places, such as shops, services, restaurants, attractions, and other points

Esri 120

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

of interest. The vector tile layer in this map is built using the same data sources used for the
World Street Map and other Esri basemaps.

For more information, see Esri World Street on the Esri website.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Arial Italic

• Arial Regular

• Arial Bold

• Arial Unicode MS Bold

• Arial Unicode MS Regular

Esri Dark Gray Canvas

Esri Dark Gray Canvas

Esri 121

https://www.arcgis.com/home/item.html?id=de26a3cf4cc9451298ea173c4b324736
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

Map style name: VectorEsriDarkGrayCanvas

This map provides a detailed vector basemap for the world symbolized with a dark gray, neutral
background style with minimal colors, labels, and features that's designed to draw attention to
your thematic content.

This map includes highways, major roads, minor roads, railways, water features, cities, parks,
landmarks, building footprints, and administrative boundaries. The vector tile layers in this map
are built using the same data sources used for the Dark Gray Canvas raster map and other Esri
basemaps.

For more information, see Esri Dark Gray Canvas on the Esri website.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Ubuntu Medium Italic

• Ubuntu Medium

• Ubuntu Italic

• Ubuntu Regular

• Ubuntu Bold

Coverage: Esri

You can use Esri as a data provider to support queries for geocoding, reverse geocoding, and
searches when you create a place index resource, or to support queries to calculate a route when
you create a route calculator resource.

Esri provides different levels of data quality in different regions of the world. For additional
information about coverage in your region of interest, see:

• Esri details on geocoding coverage

• Esri details on street networks and traffic coverage

Esri 122

https://www.arcgis.com/home/item.html?id=94521475e86b48f1ad2a21b2ea272d7a
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax
https://docs.aws.amazon.com/location/latest/developerguide/places-prerequisites.html#create-place-index-resource
https://docs.aws.amazon.com/location/latest/developerguide/routes-prerequisites.html#create-route-calculator-resource
https://developers.arcgis.com/rest/geocode/api-reference/geocode-coverage.htm
https://doc.arcgis.com/en/arcgis-online/reference/network-coverage.htm

Amazon Location Service Developer Guide

Terms of use and data attribution: Esri

Before you use Esri's data, be sure you can comply with all applicable legal requirements, including
license terms applicable to Esri and AWS.

For more information about the AWS requirements, see AWS Service Terms.

For information about Esri's attribution guidelines, see Esri's Data Attributions and Terms of Use.

Error reporting to Esri

If you encounter a problem with the data and want to report errors and discrepancies to Esri,
follow Esri's technical support article for How to: Provide feedback on basemaps and geocoding.

GrabMaps

Grab is the largest delivery organization in Southeast Asia, with millions of driver partners and
customers. Their subsidiary, GrabMaps, creates up-to-date mapping data in those countries/regions
for their own use, and others. Amazon Location Service uses GrabMaps' location services to help
AWS customers use maps, geocode, and calculate routes effectively. GrabMaps' location services
are built to provide high-quality, authoritative, and ready-to-use location data, specifically for
southeast Asian countries.

For information about additional capability, see GrabMaps on Amazon Location Service data
providers.

Important

Grab provides maps only for southeast Asia, and is available only in the Asia Pacific
(Singapore) Region (ap-southeast-1). For more information, see Countries/regions and area
covered.

Topics

• Grab map styles

• Coverage: Grab

• Countries/regions and area covered

• Terms of use and data attribution: Grab

GrabMaps 123

https://aws.amazon.com/service-terms/
https://www.esri.com/en-us/legal/terms/data-attributions
https://support.esri.com/en/technical-article/000011831
https://www.grab.com/sg/business/maps/
https://aws.amazon.com/location/data-providers/grabmaps/

Amazon Location Service Developer Guide

• Error reporting for GrabMaps data

Grab map styles

Amazon Location Service supports the following Grab map styles when creating a map resource:

Note

Grab map styles that are not listed in this section are currently not supported.

Grab Standard Light Map

Grab Standard Light Map

Map style name: VectorGrabStandardLight

Grab's standard basemap with detailed land use coloring, area names, roads, landmarks, and
points of interest covering Southeast Asia.

Fonts

GrabMaps 124

https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Noto Sans Regular

• Noto Sans Medium

• Noto Sans Bold

Grab Standard Dark Map

Grab Standard Dark Map

Map style name: VectorGrabStandardDark

Grab's dark variation of their standard basemap, with detailed land use coloring, area names,
roads, landmarks, and points of interest covering Southeast Asia.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

GrabMaps 125

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Noto Sans Regular

• Noto Sans Medium

• Noto Sans Bold

Coverage: Grab

You can use Grab as a data provider to support queries for geocoding, reverse geocoding, and
searches when you create a place index resource, or to support queries to calculate a route when
you create a route calculator resource.

Countries/regions and area covered

Grab provides maps only for southeast Asia, and is only available in the Asia Pacific (Singapore)
Region (ap-southeast-1).

Grab provides detailed data for the following countries/regions:

• Malaysia

• Philippines

• Thailand

• Singapore

• Vietnam

• Indonesia

• Myanmar

• Cambodia

Note

Outside of these areas, the Amazon Location Service resources created with Grab as a data
provider will not provide any results. This includes search results or routes.

The maps from Grab are within the following boundaries:

• South – Latitude -21.943045533438166

GrabMaps 126

https://docs.aws.amazon.com/location/latest/developerguide/places-prerequisites.html#create-place-index-resource
https://docs.aws.amazon.com/location/latest/developerguide/routes-prerequisites.html#create-route-calculator-resource

Amazon Location Service Developer Guide

• West – Longitude 90.0

• North – Latitude 31.952162238024968

• East – Longitude 146.25

For zoom levels 1–4, Grab includes global coverage. For zoom levels 5 and below, map tiles are
provided only within this bounded box.

Note

Outside of this bounded box, the Amazon Location Service map resources created with
Grab as a data provider will not return map tiles. To avoid seeing 404 errors in your
application, you can limit the map with a bounding box, as described in Setting extents for
a map using MapLibre.

Grab routing travel modes

For routing, Grab provides car and motorcycle routing for all of the previously listed countries/
regions.

Grab does not support truck routing.

For bicycle and walking routes, Grab supports the following cities:.

• Singapore

• Jakarta

• Manila

• Klang Valley

• Bangkok

• Ho Chi Minh City

• Hanoi

Terms of use and data attribution: Grab

When using Grab's data, you must comply with all applicable legal requirements, including license
terms applicable to Grab and AWS.

GrabMaps 127

Amazon Location Service Developer Guide

For more information about the AWS requirements, see AWS Service Terms.

For information about GrabMaps' attribution guidelines, see Section 9.23 of Grab's Data
Attributions and Terms of Use.

Error reporting for GrabMaps data

If you encounter a problem with the data from GrabMaps, and want to report errors or
discrepancies, contact AWS technical support.

HERE Technologies

Amazon Location Service uses HERE Technologies’ location services to help AWS customers use
maps, geocode, and calculate routes effectively. HERE's location data offers a location-centric
platform that's open, secure, and private. By selecting HERE location data, you are selecting
accurate, fresh, and robust data that's deployed natively on the AWS Cloud.

For additional capability information, see HERE on Amazon Location Service data providers.

Topics

• HERE map styles

• Coverage: HERE

• Terms of use and data attribution: HERE

• Error reporting to HERE

HERE map styles

Amazon Location Service supports the following HERE map styles when creating a map resource:

Note

HERE map styles that are not listed in this section are currently not supported.

HERE Explore

HERE Explore

HERE Technologies 128

https://aws.amazon.com/service-terms/
https://www.grab.com/sg/terms-policies/transport-delivery-logistics/
https://www.grab.com/sg/terms-policies/transport-delivery-logistics/
https://support.console.aws.amazon.com/support/home#/case/create?issueType=customer-service
https://aws.amazon.com/location/data-providers/here-technologies/
https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

Map style name: VectorHereExplore

HERE Explore

A detailed, neutral base map of the world. The street map includes highways, major roads,
minor roads, railways, water features, cities, parks, landmarks, building footprints, and
administrative boundaries. Includes a fully designed map of Japan.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Fira GO Italic

• Fira GO Regular

• Fira GO Bold

• Noto Sans CJK JP Light

• Noto Sans CJK JP Regular

• Noto Sans CJK JP Bold

HERE Technologies 129

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

HERE Imagery

HERE Imagery

Map style name: RasterHereExploreSatellite

HERE Imagery

HERE Imagery provides high resolution satellite imagery with global coverage.

HERE Hybrid

HERE Hybrid

HERE Technologies 130

Amazon Location Service Developer Guide

Map style name: HybridHereExploreSatellite

HERE Hybrid

HERE Hybrid style displays the road network, street names, and city labels over satellite
imagery. This style overlays two map tiles: the satellite image (raster tile) in the background and
the road network and labels (vector tile) on top. This style will automatically retrieve both the
raster and vector tiles required to render the map.

Note

Hybrid styles use both vector and raster tiles when rendering the map that you see. This
means that more tiles are retrieved than when using either vector or raster tiles alone.
Your charges will include all tiles retrieved.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

HERE Technologies 131

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Fira GO Italic

• Fira GO Regular

• Fira GO Bold

• Noto Sans CJK JP Light

• Noto Sans CJK JP Regular

• Noto Sans CJK JP Bold

HERE Contrast (Berlin)

HERE Contrast (Berlin)

Map style name: VectorHereContrast

HERE Contrast (Berlin)

A detailed base map of the world that blends 3D and 2D rendering. The high contrast street
map includes highways, major roads, minor roads, railways, water features, cities, parks,
landmarks, building footprints, and administrative boundaries.

HERE Technologies 132

Amazon Location Service Developer Guide

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Fira GO Regular

• Fira GO Bold

Note

This style was renamed from VectorHereBerlin (HERE Berlin maps).
VectorHereBerlin is deprecated, but will continue to work in applications that use it.

HERE Explore Truck

HERE Explore Truck

Map style name: VectorHereExploreTruck

HERE Technologies 133

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

HERE Explore Truck

A detailed, neutral base map of the world. The street map builds on top of the HERE Explore
style, and highlights track restrictions and attributes (including width, height, and HAZMAT)
with symbols and icons, to support use cases within transport and logistics.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Fira GO Italic

• Fira GO Regular

• Fira GO Bold

• Noto Sans CJK JP Light

• Noto Sans CJK JP Regular

• Noto Sans CJK JP Bold

For additional information about map data quality in different regions of the world, see HERE map
coverage.

Coverage: HERE

You can use HERE as a data provider to support queries for geocoding, reverse geocoding, and
searches when you create a place index resource, or to support queries to calculate a route when
you create a route calculator resource.

HERE provides different levels of data quality in different regions of the world. For additional
information about coverage in your region of interest, see the following:

• HERE geocoding coverage

• HERE car routing coverage

• HERE truck routing coverage

HERE Technologies 134

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax
https://developer.here.com/documentation/map-tile/dev_guide/topics/coverage-information.html
https://developer.here.com/documentation/map-tile/dev_guide/topics/coverage-information.html
https://docs.aws.amazon.com/location/latest/developerguide/places-prerequisites.html#create-place-index-resource
https://docs.aws.amazon.com/location/latest/developerguide/routes-prerequisites.html#create-route-calculator-resource
https://developer.here.com/documentation/geocoder/dev_guide/topics/coverage-geocoder.html
https://www.here.com/docs/bundle/routing-api-developer-guide-v8/page/topics/coverage/car-routing.html
https://www.here.com/docs/bundle/routing-api-developer-guide-v8/page/topics/coverage/truck-routing.html

Amazon Location Service Developer Guide

Terms of use and data attribution: HERE

Before you use HERE data, be sure you can comply with all applicable legal requirements, including
license terms applicable to HERE and AWS. Because of licensing limitations, you may not use HERE
to store geocoding results for locations in Japan.

For information about the AWS requirements, see AWS Service Terms.

For additional information about HERE's attribution guidelines, see Section 2 of HERE
Technologies' Supplier Terms Applicable to Location and Other Content.

Error reporting to HERE

To report map errors and discrepancies to HERE, go to https://www.here.com/contact and choose
Report a map error.

Open Data

Amazon Location Service provides access to open source map data via the Open Data provider.
Open Data provides global basemaps built from the Daylight map distribution of OpenStreetMap
(OSM), Natural Earth, and other open data sources. The maps provided are designed to support
different applications and use cases, including logistics and delivery, and data visualization in web
and mobile environments. With over a million map makers, the OSM community updates hundreds
of thousands of features per day. Amazon Location Service regularly incorporates these edits.

For additional capability information, see Open Data on Amazon Location Service data providers.

Topics

• Open Data map styles

• Coverage: Open Data

• Terms of use and data attribution: Open Data

• Error reporting and contributing to Open Data

Open Data map styles

Amazon Location Service supports the following map styles when creating a map resource:

Open Data map styles support alternate Political views.

Open Data 135

https://aws.amazon.com/service-terms/
https://legal.here.com/en-gb/terms/general-content-supplier-terms-and-notices
https://www.here.com/contact
https://daylightmap.org
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.naturalearthdata.com/
https://aws.amazon.com/location/data-providers/open-data/
https://docs.aws.amazon.com/location/latest/developerguide/using-maps.html

Amazon Location Service Developer Guide

Open Data Standard Light

Open Data Standard Light

Map style name: VectorOpenDataStandardLight

This provides a detailed basemap for the world in a light map style, suitable for website and
mobile application use. This includes highways, major roads, minor roads, railways, water
features, cities, parks, landmarks, building footprints, and administrative boundaries.

This basemap is based on the OSM Daylight map distribution compiled from OpenStreetMap
(OSM) contributors. The OSM community includes over 1.8 million contributors who update
more than 500,000 features daily. Amazon Location Service incorporates these edits on a
regular basis.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Amazon Ember Bold,Noto Sans Bold

Open Data 136

https://daylightmap.org
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Amazon Ember Condensed RC Bold,Noto Sans Bold

• Amazon Ember Condensed RC Regular,Noto Sans Regular

• Amazon Ember Medium,Noto Sans Medium

• Amazon Ember Regular Italic,Noto Sans Italic

• Amazon Ember Regular,Noto Sans Regular

• Amazon Ember Regular,Noto Sans Regular,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Bold,Noto Sans Bold,Noto Sans Arabic Condensed Bold

• Amazon Ember Bold,Noto Sans Bold,Noto Sans Arabic Bold

• Amazon Ember Regular Italic,Noto Sans Italic,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Regular,Noto Sans Regular,Noto Sans Arabic Condensed
Regular

• Amazon Ember Medium,Noto Sans Medium,Noto Sans Arabic Medium

Note

The fonts used by VectorOpenDataStandardLight are combined fonts that use
Amazon Ember for most glyphs but Noto Sans for glyphs unsupported by Amazon
Ember.

Open Data Standard Dark

Open Data Standard Dark

Open Data 137

Amazon Location Service Developer Guide

Map style name: VectorOpenDataStandardDark

This is a dark-themed map style that provides a detailed basemap for the world, suitable for
website and mobile application use. This includes highways, major roads, minor roads, railways,
water features, cities, parks, landmarks, building footprints, and administrative boundaries.

This basemap is based on the OSM Daylight map distribution compiled from OpenStreetMap
(OSM) contributors. The OSM community includes over 1.8 million contributors who update
more than 500,000 features daily. Amazon Location Service incorporates these edits on a
regular basis.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Amazon Ember Bold,Noto Sans Bold

• Amazon Ember Condensed RC Bold,Noto Sans Bold

• Amazon Ember Condensed RC Regular,Noto Sans Regular

Open Data 138

https://daylightmap.org
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Amazon Ember Medium,Noto Sans Medium

• Amazon Ember Regular Italic,Noto Sans Italic

• Amazon Ember Regular,Noto Sans Regular

• Amazon Ember Regular,Noto Sans Regular,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Bold,Noto Sans Bold,Noto Sans Arabic Condensed Bold

• Amazon Ember Bold,Noto Sans Bold,Noto Sans Arabic Bold

• Amazon Ember Regular Italic,Noto Sans Italic,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Regular,Noto Sans Regular,Noto Sans Arabic Condensed
Regular

• Amazon Ember Medium,Noto Sans Medium,Noto Sans Arabic Medium

Note

The fonts used by VectorOpenDataStandardDark are combined fonts that use
Amazon Ember for most glyphs but Noto Sans for glyphs unsupported by Amazon
Ember.

Open Data Visualization Light

Open Data Visualization Light

Open Data 139

Amazon Location Service Developer Guide

Map style name: VectorOpenDataVisualizationLight

This is a light-themed style with muted colors and fewer features that aids in understanding
overlaid data.

This basemap is based on the OSM Daylight map distribution compiled from OpenStreetMap
(OSM) contributors. The OSM community includes over 1.8 million contributors who update
more than 500,000 features daily. Amazon Location Service incorporates these edits on a
regular basis.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Amazon Ember Bold,Noto Sans Bold

• Amazon Ember Condensed RC Bold,Noto Sans Bold

• Amazon Ember Condensed RC Regular,Noto Sans Regular

• Amazon Ember Medium,Noto Sans Medium

Open Data 140

https://daylightmap.org
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Amazon Ember Regular Italic,Noto Sans Italic

• Amazon Ember Regular,Noto Sans Regular

• Amazon Ember Regular,Noto Sans Regular,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Bold,Noto Sans Bold,Noto Sans Arabic Condensed Bold

• Amazon Ember Bold,Noto Sans Bold,Noto Sans Arabic Bold

• Amazon Ember Regular Italic,Noto Sans Italic,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Regular,Noto Sans Regular,Noto Sans Arabic Condensed
Regular

• Amazon Ember Medium,Noto Sans Medium,Noto Sans Arabic Medium

Note

The fonts used by VectorOpenDataVisualizationLight are combined fonts
that use Amazon Ember for most glyphs but Noto Sans for glyphs unsupported by
Amazon Ember.

Open Data Visualization Dark

Open Data Visualization Dark

Open Data 141

Amazon Location Service Developer Guide

Map style name: VectorOpenDataVisualizationDark

This is a dark-themed style with muted colors and fewer features that aids in understanding
overlaid data.

This basemap is based on the OSM Daylight map distribution compiled from OpenStreetMap
(OSM) contributors. The OSM community includes over 1.8 million contributors who update
more than 500,000 features daily. Amazon Location Service incorporates these edits on a
regular basis.

Fonts

Amazon Location serves fonts using GetMapGlyphs. The following are available font stacks for
this map:

• Amazon Ember Bold,Noto Sans Bold

• Amazon Ember Condensed RC Bold,Noto Sans Bold

• Amazon Ember Condensed RC Regular,Noto Sans Regular

• Amazon Ember Medium,Noto Sans Medium

Open Data 142

https://daylightmap.org
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_GetMapGlyphs.html#API_GetMapGlyphs_RequestSyntax

Amazon Location Service Developer Guide

• Amazon Ember Regular Italic,Noto Sans Italic

• Amazon Ember Regular,Noto Sans Regular

• Amazon Ember Regular,Noto Sans Regular,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Bold,Noto Sans Bold,Noto Sans Arabic Condensed Bold

• Amazon Ember Bold,Noto Sans Bold,Noto Sans Arabic Bold

• Amazon Ember Regular Italic,Noto Sans Italic,Noto Sans Arabic Regular

• Amazon Ember Condensed RC Regular,Noto Sans Regular,Noto Sans Arabic Condensed
Regular

• Amazon Ember Medium,Noto Sans Medium,Noto Sans Arabic Medium

Note

The fonts used by VectorOpenDataVisualizationDark are combined fonts that use
Amazon Ember for most glyphs but Noto Sans for glyphs unsupported by Amazon
Ember.

Coverage: Open Data

Open Data includes maps with global coverage for rendering with an Amazon Location Service
map resource.

Note

Open Data is for use with Amazon Location Service map resources only. You can't use Open
Data as a data provider to support queries for geocoding, reverse geocoding, and searches,
or to support queries to calculate a route.

Terms of use and data attribution: Open Data

Before you use Open Data, be sure you can comply with all applicable legal requirements, including
license terms applicable to Open Data and AWS.

For more information about the AWS requirements, see AWS Service Terms.

Open Data 143

https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

For information about Open Data attribution guidelines, see OpenStreetMap's Copyright and
License and OpenStreetMap's Licence/Attribution Guidelines.

Error reporting and contributing to Open Data

OpenStreetMap (OSM) and Natural Earth are community-driven open data projects. If you
encounter a problem with the data, you can report the errors or directly contribute fixes or
suggestions.

• To report an error or offer a suggestion in OSM, you can create a note on the map. This is a
comment on the map that assists contributors in making fixes to the map. You create notes
through the OpenStreetMap website. For more information about notes, see Notes in the
OpenStreetMap wiki.

• For more information about contributing directly to OpenStreetMap, including adding locations
and fixing errors, see Contribute map data in the OpenStreetMap wiki.

• To submit a correction request for data in Natural Earth, you can submit an issue through the
Natural Earth website.

Note

Correcting errors in OpenStreetMap can happen quickly, however, it can take time for
corrections to appear in the Daylight map distribution of the OSM data that is used by the
Open Data provider. The Daylight Map Distribution website provides more information
about the process. Additionally, Amazon Location Service updates the map data used in
Amazon Location Service approximately monthly.

Features by data provider

This section describes the features available in Amazon Location Service, categorized by data
provider.

The following table provides a high-level overview of the features.

Features by data provider 144

https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://wiki.osmfoundation.org/wiki/Licence/Attribution_Guidelines
https://openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Notes
https://wiki.openstreetmap.org/wiki/Contribute_map_data
https://www.naturalearthdata.com/issues/
https://daylightmap.org

Amazon Location Service Developer Guide

Data provider Geographical
coverage

Feature coverage AWS Region

Esri Global Maps, Places, Routes All Regions where
Amazon Location is
available.

Grab Southeast Asia Maps, Places, Routes Asia Pacific (Singapor
e), ap-southe
ast-1 , only.

HERE Global Maps, Places, Routes All Regions where
Amazon Location is
available.

Open Data Global Maps All Regions where
Amazon Location is
available.

The following tabs show details within each feature area.

Map Features

The following table shows the map features by data provider. For more information about map
concepts, see Maps.

Data provider Supported map
types

Vector zoom levels Raster zoom levels

Esri Vector

Raster (imagery)

For more informati
on, see Esri map
styles.

0-15 0-23

Grab Vector 0-14 none

Features by data provider 145

Amazon Location Service Developer Guide

Data provider Supported map
types

Vector zoom levels Raster zoom levels

(Southeast Asia only)

For more informati
on, see Grab map
styles.

HERE Vector

Raster (imagery)

Hybrid

For more informati
on, see HERE map
styles.

1-17 0-19

Open Data Vector

For more informati
on, see Open Data
map styles.

0-15 none

Note

Zoom levels represent the maximum and minimum settings, as defined in each
provider's APIs. Different areas of the map may have different maximums; for example,
ocean tiles may have fewer detailed zoom levels than areas in major cities.
MapLibre (and other map rendering engines) allow you to set minimum and maximum
zoom levels, and will also honor the data provider zoom levels in an area, so you do not
have to write code to handle these discrepancies.

Places and Search

The following table shows the place and search features by data provider. For more information
about place concepts, see Places search.

Features by data provider 146

Amazon Location Service Developer Guide

Data provider Geocoding Reverse
Geocoding

Autocomplete GetPlace

Esri All features,
except:

 PlaceId

All features,
except:

 TimeZone

 PlaceId

All features All features

Grab All features,
except:

 unit type

 Categories not
supported

All features All features All features,
except:

 unit type

 SubMunici
pality

HERE All features,
except:

 unit number

 unit type

 relevance

 Additional
limitations on
filtering

All features All features All features,
except:

 unit number

 unit type

 SubMunici
pality

Open Data Not supported Not supported Not supported Only supports:

 SubMunici
pality

Features by data provider 147

Amazon Location Service Developer Guide

Route features

The following table shows the route features by data provider. For more information about
route concepts, see Routes. For more detailed descriptions of route matrix limitations, see
Restrictions on departure and destination positions.

Data provider Travel modes Calculate route Route matrix

Esri Car, Truck, Walking Departure and
destination must be
within 400 km of
each other. The total
travel time can't
be more than 400
minutes.

ArrivalTime is not
supported.

Up to 10 departure
and destination
positions.

Not supported in
Korea.

All departure and
destination pairs
must be within 400
km of each other.

Grab Car, Motorcycle.

Walking and Bicycle
in selected cities.

No distance limits. Up to 350 departure
and destination
positions.

HERE Car, Truck, Walking No distance limit.
Routes that go more
than 10 km outside
a circle around
the departure and
destination positions
will not be calculate
d.

Up to 350 departure
and destination
positions.

All departure and
destination positions
must fall with a 180
km circle.

Longer routes are
supported, with
additional restricti
ons.

Features by data provider 148

Amazon Location Service Developer Guide

Data provider Travel modes Calculate route Route matrix

Open Data Not supported Not supported Not supported

Terms of use and data attribution for data providers

Before you use a data provider, be sure you can comply with all applicable legal requirements,
including license terms applicable to the use of the provider.

For more information about the AWS requirements, see AWS Service Terms.

When using a data provider with your Amazon Location resources for your application or
documentation, be sure to provide attributions for each data provider you use.

For more information on compliance and attribution for each data provider, see the following
topics.

• Esri – Terms of use and data attribution: Esri

• Grab – Terms of use and data attribution: Grab

• HERE – Terms of use and data attribution: HERE

• Open data – Terms of use and data attribution: Open Data

Amazon Location Regions and endpoints

Amazon Location is available in the following AWS Regions:

Regions

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 geo.us-east-2.amazonaws.com HTTPS

US
East (N.
Virginia)

us-east-1 geo.us-east-1.amazonaws.com HTTPS

Terms of use and data attribution 149

https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

Region
Name

Region Endpoint Protocol

US West
(Oregon)

us-
west-2

geo.us-west-2.amazonaws.com HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

geo.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

geo.ap-southeast-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

geo.ap-southeast-2.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

geo.ap-northeast-1.amazonaws.com HTTPS

Canada
(Central)

ca-centra
l-1

geo.ca-central-1.amazonaws.com HTTPS

Europe
(Frankfur
t)

eu-
central-1

geo.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-
west-1

geo.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-
west-2

geo.eu-west-2.amazonaws.com HTTPS

Europe
(Stockhol
m)

eu-
north-1

geo.eu-north-1.amazonaws.com HTTPS

Regions 150

Amazon Location Service Developer Guide

Region
Name

Region Endpoint Protocol

South
America
(São
Paulo)

sa-east-1 geo.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-
West)

us-gov-
west-1

geo.us-gov-west-1.amazonaws.com

geo-fips.us-gov-west-1.amazonaws.com

HTTPS

HTTPS

Note

For more information about how to use the endpoints in this table, see the following
section.

Endpoints

The general syntax for an Amazon Location regional endpoint is as follows:

protocol://service-code.geo.region-code.amazonaws.com

Within this syntax, Amazon Location uses the following service codes:

Service Service code

Amazon Location Maps maps

Amazon Location Places places

Amazon Location Geofences geofencing

Amazon Location Trackers tracking

Amazon Location Routes routes

Endpoints 151

Amazon Location Service Developer Guide

For example, the regional endpoint for Amazon Location Maps for US East (N. Virginia) would be:
https://maps.geo.us-east-1.amazonaws.com.

API operation Endpoints

The syntax for an Amazon Location Service control plane endpoint is as follows:

protocol://cp.service-code.geo.region-code.amazonaws.com

The control plane actions for Amazon Location Service are:

Service Endpoint API operation

Amazon Location Maps https://cp.maps.ge
o.region.amazonaws.com

CreateMap

DeleteMap

DescribeMap

ListMaps

UpdateMap

Amazon Location Places https://cp.places.
geo.region.amazonaws.com

CreatePlaceIndex

DeletePlaceIndex

DescribePlaceIndex

ListPlaceIndexes

UpdatePlaceIndex

Amazon Location Geofences https://cp.geofenc
ing.geo.region.amazonaw
s.com

CreateGeofenceCollection

DeleteGeofenceCollection

DescribeGeofenceCollection

ListGeofenceCollections

UpdateGeofenceCollection

API operation Endpoints 152

https://docs.aws.amazon.com/location/latest/APIReference/API_CreateMap.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeleteMap.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeMap.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ListMaps.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdateMap.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CreatePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeletePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ListPlaceIndexes.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdatePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CreateGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeleteGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ListGeofenceCollections.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdateGeofenceCollection.html

Amazon Location Service Developer Guide

Service Endpoint API operation

Amazon Location Trackers https://cp.trackin
g.geo.region.amazonaw
s.com

CreateTracker

DeleteTracker

DescribeTracker

UpdateTracker

ListTrackers

AssociateTrackerConsumer

DisassociateTrackerConsumer

ListTrackerConsumers

Amazon Location Routes https://cp.routes.
geo.region.amazonaws.com

CreateRouteCalculator

DeleteRouteCalculator

DescribeRouteCalculator

ListRouteCalculators

UpdateRouteCalculator

Amazon Location Metadata https://cp.metadat
a.geo.region.amazonaw
s.com

CreateKey

DeleteKey

DescribeKey

ListKeys

UpdateKey

Amazon Location Service quotas

This topic provides a summary of rate limits and quotas for Amazon Location Service.

Service quotas 153

https://docs.aws.amazon.com/location/latest/APIReference/API_CreateTracker.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeleteTracker.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeTracker.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdateTracker.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdateGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CreateGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeleteGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeGeofenceCollection.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CreatePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeletePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ListPlaceIndexes.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdatePlaceIndex.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DeleteKey.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdateKey.html

Amazon Location Service Developer Guide

Note

If you require a higher quota, you can use the Service Quotas console to request quota
increases for adjustable quotas. When requesting a quota increase, select the Region you
require the quota increase in since most quotas are specific to the AWS Region.

Service Quotas are maximum number of resources you can have per AWS account and AWS Region.
Amazon Location Service denies additional requests that exceed the service quota.

Rate limits (quotas that start with Rate of...) are the maximum number of requests per second,
with a burst rate of 80 percent of the limit within any part of the second, defined for each API
operation. Amazon Location Service throttles requests that exceed the operation's rate limit.

Name Default Adjustabl
e

Description

API Key resources per account Each supported
Region: 500

No The maximum number of
API key resources (active
or expired) that you can
have per account.

Geofence Collection resources per
account

Each supported
Region: 1,500

Yes The maximum number
of Geofence Collection
resources that you can
create per account.

Geofences per Geofence Collection Each supported
Region: 50,000

No The maximum number
of Geofences that you
can create per Geofence
Collection.

Map resources per account Each supported
Region: 40

Yes The maximum number of
Map resources that you
can create per account.

Place Index resources per account Each supported
Region: 40

Yes The maximum number
of Place Index resources

Service quotas 154

https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/geo/quotas
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/geo/quotas
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-93FB3073
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-A94FDED2
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-AF0CC293

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

that you can create per
account.

Rate of AssociateTrackerConsumer API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of AssociateTrackerCo
nsumer requests that you
can make per second.
Additional requests are
throttled.

Rate of BatchDeleteDevicePositionHi
story API requests

Each supported
Region: 50 per
second

Yes The maximum number
of BatchDeleteDeviceP
ositionHistory requests
that you can make per
second. Additional
requests are throttled.

Rate of BatchDeleteGeofence API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of BatchDeleteGeofenc
e requests that you
can make per second.
Additional requests are
throttled.

Rate of BatchEvaluateGeofences API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of BatchEvaluateGeofe
nces requests that you
can make per second.
Additional requests are
throttled.

Service quotas 155

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-664067C5
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-CA16DE37
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-93F5D44A
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-9A0A3162

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of BatchGetDevicePosition API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of BatchGetDevicePosi
tion requests that you
can make per second.
Additional requests are
throttled.

Rate of BatchPutGeofence API requests Each supported
Region: 50 per
second

Yes The maximum number
of BatchPutGeofence
requests that you
can make per second.
Additional requests are
throttled.

Rate of BatchUpdateDevicePosition API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of BatchUpdateDeviceP
osition requests that you
can make per second.
Additional requests are
throttled.

Rate of CalculateRoute API requests Each supported
Region: 10 per
second

Yes The maximum number of
CalculateRoute requests
that you can make per
second. Additional
requests are throttled.

Rate of CalculateRouteMatrix API
requests

Each supported
Region: 5 per
second

Yes The maximum number
of CalculateRouteMatr
ix requests that you
can make per second.
Additional requests are
throttled.

Service quotas 156

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-1D4EB556
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-4D8FB6E2
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-16C77FC0
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-44B9F1A6
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-0E174A76

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of CreateGeofenceCollection API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of CreateGeofenceColl
ection requests that you
can make per second.
Additional requests are
throttled.

Rate of CreateKey API requests Each supported
Region: 10 per
second

Yes The maximum number
of CreateKey requests
that you can make per
second. Additional
requests are throttled.

Rate of CreateMap API requests Each supported
Region: 10 per
second

Yes The maximum number
of CreateMap requests
that you can make per
second. Additional
requests are throttled.

Rate of CreatePlaceIndex API requests Each supported
Region: 10 per
second

Yes The maximum number
of CreatePlaceIndex
requests that you
can make per second.
Additional requests are
throttled.

Rate of CreateRouteCalculator API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of CreateRouteCalcula
tor requests that you
can make per second.
Additional requests are
throttled.

Service quotas 157

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-DFE2C362
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-0C20A2F2
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-8A769EC2
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-0A4EAAD0
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-AF53BB1C

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of CreateTracker API requests Each supported
Region: 10 per
second

Yes The maximum number of
CreateTracker requests
that you can make per
second. Additional
requests are throttled.

Rate of DeleteGeofenceCollection API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of DeleteGeofenceColl
ection requests that you
can make per second.
Additional requests are
throttled.

Rate of DeleteKey API requests Each supported
Region: 10 per
second

Yes The maximum number
of DeleteKey requests
that you can make per
second. Additional
requests are throttled.

Rate of DeleteMap API requests Each supported
Region: 10 per
second

Yes The maximum number
of DeleteMap requests
that you can make per
second. Additional
requests are throttled.

Rate of DeletePlaceIndex API requests Each supported
Region: 10 per
second

Yes The maximum number
of DeletePlaceIndex
requests that you
can make per second.
Additional requests are
throttled.

Service quotas 158

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-0316544D
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-779B9CA5
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-FF8C0CDC
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-66B4C7B5
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-D012773A

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of DeleteRouteCalculator API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of DeleteRouteCalcula
tor requests that you
can make per second.
Additional requests are
throttled.

Rate of DeleteTracker API requests Each supported
Region: 10 per
second

Yes The maximum number of
DeleteTracker requests
that you can make per
second. Additional
requests are throttled.

Rate of DescribeGeofenceCollection
API requests

Each supported
Region: 10 per
second

Yes The maximum number
of DescribeGeofenceCo
llection requests that you
can make per second.
Additional requests are
throttled.

Rate of DescribeKey API requests Each supported
Region: 10 per
second

Yes The maximum number
of DescribeKey requests
that you can make per
second. Additional
requests are throttled.

Rate of DescribeMap API requests Each supported
Region: 10 per
second

Yes The maximum number
of DescribeMap requests
that you can make per
second. Additional
requests are throttled.

Service quotas 159

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-EF11EFBE
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-24CBFF24
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-68C0FF09
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-4B4C2391
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-3B6F7C26

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of DescribePlaceIndex API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of DescribePlaceIndex
requests that you
can make per second.
Additional requests are
throttled.

Rate of DescribeRouteCalculator API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of DescribeRouteCalcu
lator requests that you
can make per second.
Additional requests are
throttled.

Rate of DescribeTracker API requests Each supported
Region: 10 per
second

Yes The maximum number of
DescribeTracker requests
that you can make per
second. Additional
requests are throttled.

Rate of DisassociateTrackerConsumer
API requests

Each supported
Region: 10 per
second

Yes The maximum number
of DisassociateTracke
rConsumer requests
that you can make per
second. Additional
requests are throttled.

Rate of ForecastGeofenceEvents API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of ForecastGeofenceEv
ents requests that you
can make per second.
Additional requests are
throttled.

Service quotas 160

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-772C0B77
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-EA3098B7
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-4BA89359
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-32299313
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-46173623

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of GetDevicePosition API requests Each supported
Region: 50 per
second

Yes The maximum number
of GetDevicePosition
requests that you
can make per second.
Additional requests are
throttled.

Rate of GetDevicePositionHistory API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of GetDevicePositionH
istory requests that you
can make per second.
Additional requests are
throttled.

Rate of GetGeofence API requests Each supported
Region: 50 per
second

Yes The maximum number
of GetGeofence requests
that you can make per
second. Additional
requests are throttled.

Rate of GetMapGlyphs API requests Each supported
Region: 50 per
second

Yes The maximum number of
GetMapGlyphs requests
that you can make per
second. Additional
requests are throttled.

Rate of GetMapSprites API requests Each supported
Region: 50 per
second

Yes The maximum number of
GetMapSprites requests
that you can make per
second. Additional
requests are throttled.

Service quotas 161

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-55FCDA52
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-9A60EA62
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-E2B35742
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-25528367
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-C2D15753

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of GetMapStyleDescriptor API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of GetMapStyleDescrip
tor requests that you
can make per second.
Additional requests are
throttled.

Rate of GetMapTile API requests Each supported
Region: 500 per
second

Yes The maximum number
of GetMapTile requests
that you can make per
second. Additional
requests are throttled.

Rate of GetPlace API requests Each supported
Region: 50 per
second

Yes The maximum number
of GetPlace requests
that you can make per
second. Additional
requests are throttled.

Rate of ListDevicePositions API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of ListDevicePosition
s requests that you
can make per second.
Additional requests are
throttled.

Rate of ListGeofenceCollections API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of ListGeofenceCollec
tions requests that you
can make per second.
Additional requests are
throttled.

Service quotas 162

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-05EFD12D
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-7FB5719A
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-CF1B7B95
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-B26E5E95
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-42524A80

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of ListGeofences API requests Each supported
Region: 50 per
second

Yes The maximum number of
ListGeofences requests
that you can make per
second. Additional
requests are throttled.

Rate of ListKeys API requests Each supported
Region: 10 per
second

Yes The maximum number
of ListKeys requests
that you can make per
second. Additional
requests are throttled.

Rate of ListMaps API requests Each supported
Region: 10 per
second

Yes The maximum number
of ListMaps requests
that you can make per
second. Additional
requests are throttled.

Rate of ListPlaceIndexes API requests Each supported
Region: 10 per
second

Yes The maximum number of
ListPlaceIndexes requests
that you can make per
second. Additional
requests are throttled.

Rate of ListRouteCalculators API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of ListRouteCalculato
rs requests that you
can make per second.
Additional requests are
throttled.

Service quotas 163

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-2A3A5399
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-BE8C4A7E
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-004FBC04
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-E3E8B4BC
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-D3A51B68

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of ListTagsForResource API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of ListTagsForResourc
e requests that you
can make per second.
Additional requests are
throttled.

Rate of ListTrackerConsumers API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of ListTrackerConsume
rs requests that you
can make per second.
Additional requests are
throttled.

Rate of ListTrackers API requests Each supported
Region: 10 per
second

Yes The maximum number
of ListTrackers requests
that you can make per
second. Additional
requests are throttled.

Rate of PutGeofence API requests Each supported
Region: 50 per
second

Yes The maximum number
of PutGeofence requests
that you can make per
second. Additional
requests are throttled.

Rate of SearchPlaceIndexForPosition
API requests

Each supported
Region: 50 per
second

Yes The maximum number
of SearchPlaceIndexFo
rPosition requests
that you can make per
second. Additional
requests are throttled.

Service quotas 164

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-E976E608
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-3B5E6DAC
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-F0E58BD7
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-8C4D918C
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-201B3D58

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of SearchPlaceIndexForSuggesti
ons API requests

Each supported
Region: 50 per
second

Yes The maximum number
of SearchPlaceIndexFo
rSuggestions requests
that you can make per
second. Additional
requests are throttled.

Rate of SearchPlaceIndexForText API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of SearchPlaceIndexFo
rText requests that you
can make per second.
Additional requests are
throttled.

Rate of TagResource API requests Each supported
Region: 10 per
second

Yes The maximum number
of TagResource requests
that you can make per
second. Additional
requests are throttled.

Rate of UntagResource API requests Each supported
Region: 10 per
second

Yes The maximum number of
UntagResource requests
that you can make per
second. Additional
requests are throttled.

Rate of UpdateGeofenceCollection API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of UpdateGeofenceColl
ection requests that you
can make per second.
Additional requests are
throttled.

Service quotas 165

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-EC3CCC13
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-20F1367A
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-2CA6C84D
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-C236DAD6
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-4D54A4EF

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of UpdateKey API requests Each supported
Region: 10 per
second

Yes The maximum number
of UpdateKey requests
that you can make per
second. Additional
requests are throttled.

Rate of UpdateMap API requests Each supported
Region: 10 per
second

Yes The maximum number
of UpdateMap requests
that you can make per
second. Additional
requests are throttled.

Rate of UpdatePlaceIndex API requests Each supported
Region: 10 per
second

Yes The maximum number
of UpdatePlaceIndex
requests that you
can make per second.
Additional requests are
throttled.

Rate of UpdateRouteCalculator API
requests

Each supported
Region: 10 per
second

Yes The maximum number
of UpdateRouteCalcula
tor requests that you
can make per second.
Additional requests are
throttled.

Rate of UpdateTracker API requests Each supported
Region: 10 per
second

Yes The maximum number of
UpdateTracker requests
that you can make per
second. Additional
requests are throttled.

Service quotas 166

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-E31E6201
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-123EEE95
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-AE2D8C2E
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-85DB3370
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-5C766737

Amazon Location Service Developer Guide

Name Default Adjustabl
e

Description

Rate of VerifyDevicePosition API
requests

Each supported
Region: 50 per
second

Yes The maximum number
of VerifyDevicePositi
on requests that you
can make per second.
Additional requests are
throttled.

Route Calculator resources per account Each supported
Region: 40

Yes The maximum number
of Route Calculator
resources that you can
create per account.

Tracker consumers per tracker Each supported
Region: 5

No The maximum number of
Geofence Collection that
Tracker resource can be
associated with.

Tracker resources per account Each supported
Region: 500

Yes The maximum number
of Tracker resources
that you can create per
account.

Note

You can monitor your usage against your quotas with Cloudwatch. For more information,
see Using CloudWatch to monitor usage against quotas.

Managing your Amazon Location service quotas

Amazon Location Service is integrated with Service Quotas, an AWS service that enables you to
view and manage your quotas from a central location. For more information, see What Is Service
Quotas? in the Service Quotas User Guide.

Managing your Amazon Location service quotas 167

https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-5FC982A3
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-D4E15F64
https://console.aws.amazon.com/servicequotas/home/services/geo/quotas/L-8CDBA5E9
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html

Amazon Location Service Developer Guide

Service Quotas makes it easy to look up the value of your Amazon Location service quotas.

AWS Management Console

To view Amazon Location service quotas using the console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

2. In the navigation pane, choose AWS services.

3. From the AWS services list, search for and select Amazon Location.

In the Service quotas list, you can see the service quota name, applied value (if it is
available), AWS default quota, and whether the quota value is adjustable.

4. To view additional information about a service quota, such as the description, choose the
quota name.

5. (Optional) To request a quota increase, select the quota that you want to increase, select
Request quota increase, enter or select the required information, and select Request.

To work more with service quotas using the console see the Service Quotas User Guide. To
request a quota increase, see Requesting a quota increase in the Service Quotas User Guide.

AWS CLI

To view Amazon Location service quotas using the AWS CLI

Run the following command to view the default Amazon Location quotas.

aws service-quotas list-aws-default-service-quotas \
 --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \
 --service-code geo \
 --output table

To work more with service quotas using the AWS CLI, see the Service Quotas AWS CLI Command
Reference. To request a quota increase, see the request-service-quota-increase
command in the AWS CLI Command Reference.

Managing your Amazon Location service quotas 168

https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas

Amazon Location Service Developer Guide

Getting started as a developer using Amazon Location
Service

You can use Amazon Location Service to provide geographic-related functionality for apps across
many different form factors and systems, including backend web services, web applications, and
mobile applications. There are many tools provided to help you build your applications, including
SDKs, libraries, and sample code.

This section provides information and links to help you get started with Amazon Location. In
particular, the following topics provide information that can be most helpful to you:

• Scenarios and use cases – A list of development scenarios and how Amazon Location Service can
help you complete them.

• Amazon Location SDKs and tools – The software development kits (SDKs) and libraries that will
help you when programming with Amazon Location.

• Amazon Location Service API Reference – A reference to the core Amazon Location APIs that ship
with the AWS SDK.

• Code examples – This section provides samples that will help you get started or to add
functionality to your existing application.

• Quick start tutorial – This tutorial shows you how to create your first application. There are
versions of the tutorial for creating a web application or an Android-based mobile application.

• Amazon Location Service concepts – This section of this guide describes the basic concepts
of Amazon Location, including sections on Maps, Places search, Routes, and Geofences and
Trackers.

• Amplify – Amplify is a complete solution that encapsulates much of the functionality needed for
creating web and mobile applications using the AWS Cloud. If you are already using Amplify, or
choose to use Amplify, it has a geo library using Amazon Location Service built-in that you can
use. To get started with Amplify Geo, see the documentation here.

Scenarios and use cases

Amazon Location Service is a service that runs in the AWS Cloud. You may call it from your own
Amazon EC2 instances in the cloud, but many mapping applications will run on devices, or a

Scenarios and use cases 169

https://docs.aws.amazon.com/location/latest/APIReference/welcome.html
https://aws.amazon.com/amplify/
https://docs.amplify.aws/lib/geo/getting-started/q/platform/js/

Amazon Location Service Developer Guide

combination of devices and the cloud. The following lists just a few typical scenarios and how you
might approach developing them.

• A backend application that helps you to optimize routes for drivers in your fleet.

You can write an application that runs on Amazon EC2 in the AWS Cloud that uses the Amazon
Location Service to calculate route matrices as an input to a route optimizer for your fleet. Use
the AWS SDK to make calls to Amazon Location.

• A web application that allows your customers to find the locations of your business.

You can create a website that runs on Amazon EC2 instances, including a location-based
application. Use the AWS SDK for JavaScript to develop a web application to look up locations
using places search, and display results on a map using MapLibre. Use the Amazon Location SDK
to make programming with location easier.

• Add location features to an existing iOS or Android application.

You can use the AWS SDK for Swift (iOS) or Kotlin (Android) to make calls to Amazon Location
to add places search and maps functionality to your application. Use MapLibre to render maps.
There are additional AWS SDKs available for other languages.

• Track assets (devices or vehicles), and get updates when they are enter or exit areas that you
define.

An application to track devices consists of several parts.

• Each device that you are tracking must have a tracker resource created to track it. It must send
position updates to Amazon Location Service, for example, by using MQTT.

• Create geofences to define areas that you want to get enter and exit events for your assets.

• You can use Amazon EC2 or AWS Lambda to respond to your events as assets enter or exit the
geofence areas.

• You can expand upon this to create web or device applications to track and display your asset
locations on maps.

The following section gives details on tools and libraries available to use with each aspect of the
Amazon Location Service.

SDKs and tools for using Amazon Location Service

There are several tools that will help you to use Amazon Location Service.

SDKs and tools 170

https://docs.aws.amazon.com/ec2/
https://docs.aws.amazon.com/sdk-for-kotlin
https://docs.aws.amazon.com/ec2/
https://docs.aws.amazon.com/lambda/

Amazon Location Service Developer Guide

• AWS SDKs – The AWS software development kits (SDKs) are available in many popular
programming languages, providing an API, code examples, and documentation that makes it
easier to build applications in your preferred language. The AWS SDKs include the core Amazon
Location APIs and functionality, including access to Maps, Places search, Routes, Geofence,
and Trackers. To learn more about the SDKs available to use with Amazon Location Service for
different applications and languages, see SDKs by language.

• MapLibre – Amazon Location Service recommends rendering maps using the MapLibre rendering
engine. MapLibre is an engine for displaying maps in web or mobile applications. MapLibre also
has a plugin model, and supports user interface for searching and routes in some languages and
platforms. To learn more about using MapLibre and the functionality it provides, see MapLibre.

• Amazon Location SDK – The Amazon Location SDK is a set of open source libraries that make it
easier to develop applications with Amazon Location Service. The libraries provide functionality
to support authentication for mobile and web applications, location tracking for mobile
applications, conversion between Amazon Location data types and GeoJSON, as well as a hosted
package of the Amazon Location client for the AWS SDK v3. To learn more about the Amazon
Location SDK, see Amazon Location SDK.

SDKs by language

The following tables provide information about AWS SDKs and MapLibre versions for languages
and frameworks, by application type: web, mobile, or backend application.

SDK Versions

We recommend that you use the most recent build of the AWS SDK, and any other SDKs,
that you use in your projects, and to keep the SDKs up to date. The AWS SDK provides you
with the latest features and functionality, and also security updates. To find the latest build
of the AWS SDK for JavaScript, for example, see the browser installation topic in the AWS
SDK for JavaScript documentation.

Web frontend

The following AWS SDKs and MapLibre versions are available for web frontend application
development.

SDKs by language 171

https://github.com/maplibre/maplibre-gl-js
https://geojson.org/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/index.html#In_the_Browser

Amazon Location Service Developer Guide

Language / Framework AWS SDK Rendering Framework

Fully supported

JavaScript https://aws.amazon.com/sd
k-for-javascript/

https://maplibre.org/proj
ects/maplibre-gl-js/

ReactJS https://aws.amazon.com/sd
k-for-javascript/

https://github.com/maplib
re/maplibre-react-native

TypeScript https://aws.amazon.com/sd
k-for-javascript/

https://maplibre.org/proj
ects/maplibre-gl-js/

Partially supported

Flutter https://docs.amplify.aws/
start/q/integration/flutter/

Flutter is not yet fully
supported by AWS, but
limited support is offered via
Amplify.

https://github.com/maplib
re/flutter-maplibre-gl

The MapLibre Flutter library
is considered experimental.

Node.js https://aws.amazon.com/sd
k-for-javascript/

There is no MapLibre
support for Node.js.

PHP https://aws.amazon.com/sd
k-for-php/

There is no MapLibre
support for PHP.

Mobile frontend

The following AWS SDKs and MapLibre versions are available for mobile frontend application
development.

Language / Framework AWS SDK Rendering Framework

Fully supported

SDKs by language 172

https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://maplibre.org/projects/maplibre-gl-js/
https://maplibre.org/projects/maplibre-gl-js/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://github.com/maplibre/maplibre-react-native
https://github.com/maplibre/maplibre-react-native
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://maplibre.org/projects/maplibre-gl-js/
https://maplibre.org/projects/maplibre-gl-js/
https://docs.amplify.aws/start/q/integration/flutter/
https://docs.amplify.aws/start/q/integration/flutter/
https://github.com/maplibre/flutter-maplibre-gl
https://github.com/maplibre/flutter-maplibre-gl
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-php/

Amazon Location Service Developer Guide

Language / Framework AWS SDK Rendering Framework

Java https://aws.amazon.com/sd
k-for-java/

https://maplibre.org/proj
ects/maplibre-native/

Kotlin https://aws.amazon.com/sd
k-for-kotlin/

Amazon Location Service
Mobile Authentication
SDK for Android: https://
github.com/aws-geospatial/
amazon-location-mobile-aut
h-sdk-android

Amazon Location Service
Mobile Tracking SDK for
Android: https://github.co
m/aws-geospatial/amazon-l
ocation-mobile-tracking-sdk
-android

https://maplibre.org/proj
ects/maplibre-native/

Requires custom bindings, as
MapLibre is Java-based.

ObjectiveC https://github.com/aws-am
plify/aws-sdk-ios

https://maplibre.org/proj
ects/maplibre-native/

ReactNative https://aws.amazon.com/sd
k-for-javascript/

https://github.com/maplib
re/maplibre-react-native

SDKs by language 173

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://maplibre.org/projects/maplibre-native/
https://maplibre.org/projects/maplibre-native/
https://aws.amazon.com/sdk-for-kotlin/
https://aws.amazon.com/sdk-for-kotlin/
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-android
https://maplibre.org/projects/maplibre-native/
https://maplibre.org/projects/maplibre-native/
https://github.com/aws-amplify/aws-sdk-ios
https://github.com/aws-amplify/aws-sdk-ios
https://maplibre.org/projects/maplibre-native/
https://maplibre.org/projects/maplibre-native/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://github.com/maplibre/maplibre-react-native
https://github.com/maplibre/maplibre-react-native

Amazon Location Service Developer Guide

Language / Framework AWS SDK Rendering Framework

Swift https://aws.amazon.com/sd
k-for-swift/

Amazon Location Service
Mobile Authentication SDK
for iOS: https://github.com/
aws-geospatial/amazon-l
ocation-mobile-auth-sdk-ios

Amazon Location Service
Mobile Tracking SDK for iOS:
https://github.com/aws-ge
ospatial/amazon-location-m
obile-tracking-sdk-ios

https://maplibre.org/proj
ects/maplibre-native/

Partially supported

Flutter https://docs.amplify.aws/
start/q/integration/flutter/

Flutter is not yet fully
supported by AWS, but
limited support is offered via
Amplify.

https://github.com/maplib
re/flutter-maplibre-gl

The MapLibre Flutter library
is considered experimental.

Backend application

The following AWS SDKs are available for backend application development. MapLibre is not
listed here, because map rendering is not typically needed for backend applications.

Language AWS SDK

.NET https://aws.amazon.com/sdk-for-net/

C++ https://aws.amazon.com/sdk-for-cpp/

SDKs by language 174

https://aws.amazon.com/sdk-for-swift/
https://aws.amazon.com/sdk-for-swift/
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios
https://maplibre.org/projects/maplibre-native/
https://maplibre.org/projects/maplibre-native/
https://docs.amplify.aws/start/q/integration/flutter/
https://docs.amplify.aws/start/q/integration/flutter/
https://github.com/maplibre/flutter-maplibre-gl
https://github.com/maplibre/flutter-maplibre-gl
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-cpp/

Amazon Location Service Developer Guide

Language AWS SDK

Go https://aws.amazon.com/sdk-for-go/

Java https://aws.amazon.com/sdk-for-java/

JavaScript https://aws.amazon.com/sdk-for-javascript/

Node.js https://aws.amazon.com/sdk-for-javascript/

TypeScript https://aws.amazon.com/sdk-for-javascript/

Kotlin https://aws.amazon.com/sdk-for-kotlin/

PHP https://aws.amazon.com/sdk-for-php/

Python https://aws.amazon.com/sdk-for-python/

Ruby https://aws.amazon.com/sdk-for-ruby/

Rust https://aws.amazon.com/sdk-for-rust/

The AWS SDK for Rust is in developer
 preview.

Using MapLibre tools and libraries with Amazon Location

One of the important tools for creating interactive applications with Amazon Location is MapLibre.
MapLibre is primarily a rendering engine for displaying maps in a web or mobile application.
However, it also includes support for plug-ins, and provides functionality for working with other
aspects of Amazon Location. The following describes tools that you can use, based on the area of
location that you want to work with.

Note

To use any aspect of Amazon Location, install the AWS SDK for the language that you want
to use.

• Maps

MapLibre 175

https://aws.amazon.com/sdk-for-go/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-kotlin/
https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-ruby/
https://aws.amazon.com/sdk-for-rust/
https://maplibre.org/

Amazon Location Service Developer Guide

To display maps in your application, you need a map rendering engine that will use the data
provided by Amazon Location, and draw to the screen. Map rendering engines also provide
functionality to pan and zoom the map, or to add markers or pushpins and other annotations to
the map.

Amazon Location Service recommends rendering maps using the MapLibre rendering engine.
MapLibre GL JS is an engine for displaying maps in JavaScript, while MapLibre Native provides
maps for either iOS or Android.

MapLibre also has a plug-in ecosystem to extend the core functionality. For more information,
visit https://maplibre.org/maplibre-gl-js-docs/plugins/.

• Places search

To make creating a search user interface simpler, you can use the MapLibre geocoder for web
(Android applications can use the Android Places plug-in).

Use the Amazon Location for Maplibre geocoder library to simplify the process of using Amazon
Location with amazon-location-for-maplibre-gl-geocoder in JavaScript Applications.

• Routes

To display routes on the map, use MapLibre directions.

• Geofences and Trackers

MapLibre doesn't have any specific rendering or tools for geofences and tracking, but you can
use the rendering functionality and plug-ins to show the geofences and tracked devices on the
map.

The devices being tracked can use MQTT or manually send updates to Amazon Location Service.
Geofence events can be responded to using AWS Lambda.

Many open source libraries are available to provide additional functionality for Amazon Location
Service, for example Turf which provide spatial analysis functionality.

Many libraries use the open standard GeoJSON formatted data. Amazon Location Service provides
a library to support using GeoJSON in JavaScript applications. For more information, see the next
section, Amazon Location SDK and libraries.

MapLibre 176

https://github.com/maplibre/maplibre-gl-js
https://maplibre.org/maplibre-gl-js-docs/plugins/
https://github.com/maplibre/maplibre-gl-geocoder
https://github.com/maplibre/maplibre-plugins-android/tree/master/plugin-places
https://github.com/aws-geospatial/amazon-location-for-maplibre-gl-geocoder?tab=readme-ov-file
https://github.com/maplibre/maplibre-gl-directions
https://maplibre.org/maplibre-gl-js-docs/plugins/
https://docs.aws.amazon.com/lambda/
https://github.com/Turfjs/turf
https://geojson.org/

Amazon Location Service Developer Guide

Amazon Location MapLibre Geocoder Plugin

The Amazon Location MapLibre geocoder plugin is designed to make it easier for you to
incorporate Amazon Location functionality into your JavaScript applications, when working with
map rendering and geocoding using the maplibre-gl-geocoder library.

Installation

You can install Amazon Location MapLibre geocoder plugin from NPM for usage with modules,
with this command:

npm install @aws/amazon-location-for-maplibre-gl-geocoder

You can import into an HTML file for usage directly in the browser, with a script:

<script src="https://www.unpkg.com/@aws/amazon-location-for-maplibre-gl-
geocoder@1">/script<

Usage with Module

This code sets up a Maplibre GL JavaScript map with Amazon Location geocoding capabilities. It
uses authentication via Amazon Cognito Identity Pool to access Amazon Location resources. The
map is rendered with a specified style and center coordinates, and allows to search for places on
the map.

// Import MapLibre GL JS
import maplibregl from "maplibre-gl";
// Import from the AWS JavaScript SDK V3
import { LocationClient } from "@aws-sdk/client-location";
// Import the utility functions
import { withIdentityPoolId } from "@aws/amazon-location-utilities-auth-helper";
// Import the AmazonLocationWithMaplibreGeocoder
import { buildAmazonLocationMaplibreGeocoder, AmazonLocationMaplibreGeocoder } from
 "@aws/amazon-location-for-maplibre-gl-geocoder"

const identityPoolId = "Identity Pool ID";
const mapName = "Map Name";
const region = "Region"; // region containing the Amazon Location resource
const placeIndex = "PlaceIndexName" // Name of your places resource in your AWS
 Account.

// Create an authentication helper instance using credentials from Amazon Cognito

MapLibre 177

https://github.com/maplibre/maplibre-gl-geocoder

Amazon Location Service Developer Guide

const authHelper = await withIdentityPoolId("Identity Pool ID");

const client = new LocationClient({
 region: "Region", // Region containing Amazon Location resources
 ...authHelper.getLocationClientConfig(), // Configures the client to use
 credentials obtained via Amazon Cognito
});

// Render the map
const map = new maplibregl.Map({
 container: "map",
 center: [-123.115898, 49.295868],
 zoom: 10,
 style: `https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor`,
 ...authHelper.getMapAuthenticationOptions(),
});

// Gets an instance of the AmazonLocationMaplibreGeocoder Object.
const amazonLocationMaplibreGeocoder = buildAmazonLocationMaplibreGeocoder(client,
 placeIndex, {enableAll: true});

// Now we can add the Geocoder to the map.
map.addControl(amazonLocationMaplibreGeocoder.getPlacesGeocoder());

Usage with a browser

This example uses the Amazon Location Client to make a request that authenticates using
Amazon Cognito.

Note

Some of these example use the Amazon Location Client. The Amazon Location Client
is based on the AWS SDK for JavaScript V3 and allows for making calls to Amazon
Location through a script referenced in an HTML file.

Include the following in an HTML file:

< Import the Amazon Location With Maplibre Geocoder>
<script src="https://www.unpkg.com/@aws/amazon-location-with-maplibre-geocoder@1"></
script>

MapLibre 178

https://github.com/aws/aws-sdk-js-v3

Amazon Location Service Developer Guide

<Import the Amazon Location Client>
<script src="https://www.unpkg.com/@aws/amazon-location-client@1"></script>
<!Import the utility library>
<script src="https://www.unpkg.com/@aws/amazon-location-utilities-auth-helper@1"></
script>

Include the following in a JavaScript file:

const identityPoolId = "Identity Pool ID";
const mapName = "Map Name";
const region = "Region"; // region containing Amazon Location resource

// Create an authentication helper instance using credentials from Amazon Cognito
const authHelper = await
 amazonLocationAuthHelper.withIdentityPoolId(identityPoolId);

// Render the map
const map = new maplibregl.Map({
 container: "map",
 center: [-123.115898, 49.295868],
 zoom: 10,
 style: `https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor`,
 ...authHelper.getMapAuthenticationOptions(),
});

// Initialize the AmazonLocationMaplibreGeocoder object
const amazonLocationMaplibreGeocoderObject =
 amazonLocationMaplibreGeocoder.buildAmazonLocationMaplibreGeocoder(client,
 placesName, {enableAll: true});

// Use the AmazonLocationWithMaplibreGeocoder object to add a geocoder to the map.
map.addControl(amazonLocationMaplibreGeocoderObject.getPlacesGeocoder());

Listed below are the functions, and commands used in the Amazon Location MapLibre geocoder
plugin:

• buildAmazonLocationMaplibreGeocoder

This class creates an instance of the AmazonLocationMaplibreGeocder which is the entry
point to the other all other calls:

MapLibre 179

Amazon Location Service Developer Guide

const amazonLocationMaplibreGeocoder = buildAmazonLocationMaplibreGeocoder(client,
 placesIndex, {enableAll: true});

• getPlacesGeocoder

Returns a ready to use IControl object that can be added directly to a map.

const geocoder = getPlacesGeocoder();

// Initialize map
let map = await initializeMap();

// Add the geocoder to the map.
map.addControl(geocoder);

Amazon Location SDK and libraries

The Amazon Location SDK is a set of open source libraries that provide useful functionality for
developing Amazon Location applications. The following functionality is included:

• Amazon Location client – The Amazon Location objects in the AWS SDK v3 are bundled and
packaged for ease of use in web development.

• Authentication – The authentication utility simplifies the authentication (using Amazon Cognito
or API keys) when building a web page, JavaScript, iOS, or Android application for Amazon
Location Service.

• Tracking – The mobile tracking SDKs are available for iOS and Android. This SDK makes it easier
for mobile applications to interact with Amazon Location Trackers.

• Amazon Location GeoJSON functions – The GeoJSON conversion utilities make it easy to
convert between the industry-standard GeoJSON formatted data, and the Amazon Location API
formats.

Topics

• How to start using the Amazon Location SDK

• Amazon Location client

• JavaScript Authentication helper

• GeoJSON conversion helpers

Amazon Location SDK 180

https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html#loc-sdk-auth
https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html#loc-sdk-auth-mobile-ios
https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html#loc-sdk-auth-mobile-Android
https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html#loc-mobile-tracking-ios
https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html#loc-mobile-tracking-android
https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html#loc-sdk-geojson
https://geojson.org/

Amazon Location Service Developer Guide

• Android Mobile Authentication SDK

• iOS Mobile Authentication SDK

• Android Mobile Tracking SDK

• iOS Mobile Tracking SDK

How to start using the Amazon Location SDK

The Amazon Location SDK is a set of functions that can make using the Amazon Location Service in
an application simpler. You can install and import these functions into your JavaScript application.
The following sections describe the Amazon Location client, and the authentication and GeoJSON
helper libraries.

Amazon Location client

With AWS SDK v3, the SDK is separated out by service. You can install just the parts that you
need. For example, to install the Amazon Location client and the credentials provider for Amazon
Cognito, use the following commands.

npm install @aws-sdk/client-location
npm install @aws-sdk/credential-providers

In order to facilitate using Amazon Location Service in JavaScript web frontend applications, AWS
provides a hosted bundle of the Amazon Location library and the credentials provider. To use the
bundled client, add it to your HTML in a script tag, as follows:

<script src="https://unpkg.com/@aws/amazon-location-client@1.x/dist/
amazonLocationClient.js"></script>

Note

The package is kept up to date and backward compatible for ease of use. Using this script
tag or NPM install will always get the latest version.

JavaScript Authentication helper

The Amazon Location JavaScript authentication helper makes it simpler to authenticate when
making Amazon Location API calls from your JavaScript application. This authentication helper

Amazon Location SDK 181

Amazon Location Service Developer Guide

specifically help you when using Amazon Cognito or API keys as your authentication method. This
is an open source library that is available on GitHub, here: https://github.com/aws-geospatial/
amazon-location-utilities-auth-helper-js.

Note

The Amazon Cognito support in the authentication helper does not support the federated
identities feature of Amazon Cognito.

Installation

You can use the libraries with a local install, if you use a build system like webpack, or by including
pre-built JavaScript bundles with <script> tags in your html.

• Use the following command to install the library, using NPM:

npm install @aws/amazon-location-utilities-auth-helper

• Use the following command in your HTML file to load the script:

<script src="https://unpkg.com/@aws/amazon-location-utilities-auth-helper@1.x/dist/
amazonLocationAuthHelper.js"></script>

Import

To use a specific function in your JavaScript application, you must import that function. The
following code is used to import the function withIdentityPoolId into your application.

import { withIdentityPoolId } from '@aws/amazon-location-utilities-auth-helper';

Authentication functions

The Amazon Location authentication helpers include the following functions that return an
AuthHelper object:

• async withIdentityPoolId(identityPoolId: string): AuthHelper – This function
returns an AuthHelper object, initialized to work with Amazon Cognito

Amazon Location SDK 182

https://github.com/aws-geospatial/amazon-location-utilities-auth-helper-js
https://github.com/aws-geospatial/amazon-location-utilities-auth-helper-js

Amazon Location Service Developer Guide

• async withAPIKey(API_KEY: string): AuthHelper – This function returns an
AuthHelper object, initialized to work with API Keys.

The AuthHelper object provides the following functions:

• AuthHelper.getMapAuthenticationOptions() – This function of the AuthHelper object
returns a JavaScript object with the transformRequest that can be used with the map options
in MapLibre JS. Only provided when initialized with an identity pool.

• AuthHelper.getLocationClientConfig() – This function of the AuthHelper object returns
a JavaScript object with the credentials that can be used to initialize a LocationClient.

• AuthHelper.getCredentials() – This function of the AuthHelper object returns the internal
credentials from Amazon Cognito. Only provided when initialized with an identity pool.

Example: Initializing MapLibre map object with Amazon Cognito, using an AuthHelper

import { withIdentityPoolId } from '@aws/amazon-location-utilities-auth-helper';

const authHelper = await withIdentityPoolId("identity-pool-id"); // use Cognito pool id
 for credentials

const map = new maplibregl.Map({
 container: "map", // HTML element ID of map element
 center: [-123.1187, 49.2819], // initial map center point
 zoom: 16, // initial map zoom
 style: https://maps.geo.region.amazonaws.com/maps/v0/maps/mapName/style-
descriptor', // Defines the appearance of the map
 ...authHelper.getMapAuthenticationOptions(), // Provides credential options
 required for requests to Amazon Location
});

Example: Initializing MapLibre map object with an API key (AuthHelper is not needed in this
case)

const map = new maplibregl.Map({
 container: "map", // HTML element ID of map element
 center: [-123.1187, 49.2819], // initial map center point
 zoom: 16, // initial map zoom
 style: https://maps.geo.region.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor?key=api-key-id',

Amazon Location SDK 183

Amazon Location Service Developer Guide

});

Example: Initialize the Location client from the AWS SDK for JS, using Amazon Cognito and
AuthHelper

This example uses AWS SDK for JavaScript v3.

import { withIdentityPoolId } from '@aws/amazon-location-utilities-auth-helper';

const authHelper = await withIdentityPoolId("identity-pool-id"); // use Cognito pool id
 for credentials

//initialize the Location client:
const client = new LocationClient({
 region: "region",
 ...authHelper.getLocationClientConfig() // sets up the Location client to use the
 Cognito pool defined above
});

//call a search function with the location client:
const result = await client.send(new SearchPlaceIndexForPositionCommand({
 IndexName: "place-index", // Place index resource to use
 Position: [-123.1187, 49.2819], // position to search near
 MaxResults: 10 // number of results to return
});

Example: Initialize the Location client from the AWS SDK for JS, using an API key and
AuthHelper

This example uses AWS SDK for JavaScript v3.

import { withAPIKey } from '@aws/amazon-location-utilities-auth-helper';

const authHelper = await withAPIKey("api-key-id"); // use API Key id for credentials

//initialize the Location client:
const client = new LocationClient({
 region: "region",
 ...authHelper.getLocationClientConfig() // sets up the Location client to use the
 API Key defined above
});

Amazon Location SDK 184

Amazon Location Service Developer Guide

//call a search function with the location client:
const result = await client.send(new SearchPlaceIndexForPositionCommand({
 IndexName: "place-index", // Place index resource to use
 Position: [-123.1187, 49.2819], // position to search near
 MaxResults: 10 // number of results to return
});

GeoJSON conversion helpers

The Amazon Location GeoJSON conversion helpers provide tools to convert Amazon Location
Service data types to and from the industry-standard GeoJSON format. GeoJSON is used, for
example, with MapLibre to render geographic data on the map. This is an open source library
that is available on GitHub, here: https://github.com/aws-geospatial/amazon-location-utilities-
datatypes-js.

Installation

You can use the libraries with a local install, like webpack, or by including pre-built JavaScript
bundles with <script> tags in your html.

• Use the following command to install the library, using NPM.

npm install @aws/amazon-location-utilities-datatypes

• Use the following command in your HTML file to load the script:

<script src="https://unpkg.com/@aws/amazon-location-utilities-datatypes@1.x/dist/
amazonLocationDataConverter.js"></script>

Import

To use a specific function in your JavaScript application, you must import that function.
The following code is used to import the function placeToFeatureCollection into your
application.

import { placeToFeatureCollection } from '@aws/amazon-location-utilities-datatypes';

GeoJSON conversion functions

The Amazon Location GeoJSON conversion helpers include the following functions:

Amazon Location SDK 185

https://geojson.org/
https://github.com/aws-geospatial/amazon-location-utilities-datatypes-js
https://github.com/aws-geospatial/amazon-location-utilities-datatypes-js

Amazon Location Service Developer Guide

• placeToFeatureCollection(place: GetPlaceResponse |
searchPlaceIndexForPositionResponse | searchPlaceIndexForTextResponse,
keepNull: boolean): Feature – This function converts responses from the place search
functions to a GeoJSON FeatureCollection with 1 or more Point features.

• devicePositionToFeatureCollection(devicePositions:
GetDevicePositionResponse | BatchGetDevicePositionResponse |
GetDevicePositionHistoryResponse | ListDevicePositionsResponse, keepNull:
boolean) – This function converts responses from the tracker device position functions to a
GeoJSON FeatureCollection with 1 or more Point features.

• routeToFeatureCollection(legs: CalculateRouteResponse): FeatureCollection
– This function converts responses from the calculate route function to a GeoJSON
FeatureCollection with a single MultiStringLine feature. Each leg of the route is represented by a
LineString entry in the MultiStringLine.

• geofenceToFeatureCollection(geofences: GetGeofenceResponse |
PutGeofenceRequest | BatchPutGeofenceRequest | ListGeofencesResponse):
FeatureCollection – This function converts geofence functions request or response to
a GeoJSON FeatureCollection with Polygon features. It can convert geofences both in the
response and the request, allowing you to show geofences on a map before uploading them with
PutGeofence or BatchPutGeofence.

This function will convert a circle geofence to a feature with an approximated polygon, but will
also have "center" and "radius" properties to recreate the circle geofence, if necessary (see the
next function).

• featureCollectionToGeofences(featureCollection: FeatureCollection):
BatchPutGeofenceRequestEntry[] – This function converts a GeoJSON FeatureCollection
with Polygon features to an array of BatchPutGeofenceRequestEntry objects, so the result can be
used to create a request to BatchPutGeofence.

If a Feature in the FeatureCollection has "center" and "radius" properties, it will be converted into
a circle geofence request entry, ignoring the geometry of the polygon.

Example: Convert search results to a point layer in MapLibre

This example uses AWS SDK for JavaScript v3.

import { placeToFeatureCollection } from '@aws/amazon-location-utility-datatypes';

Amazon Location SDK 186

Amazon Location Service Developer Guide

...

let map; // map here is an initialized MapLibre instance

const client = new LocationClient(config);
const input = { your_input };
const command = new searchPlaceIndexForTextCommand(input);
const response = await client.send(command);

// calling utility function to convert the response to GeoJSON
const featureCollection = placeToFeatureCollection(response);
map.addSource("search-result", featureCollection);
map.addLayer({
 id: "search-result",
 type: "circle",
 source: "search-result",
 paint: {
 "circle-radius": 6,
 "circle-color": "#B42222",
 },
});

Android Mobile Authentication SDK

These utilities help you authenticate when making Amazon Location Service API calls from your
Android applications. This specifically helps when using Amazon Cognito or API keys as the
authentication method.

The Android mobile authentication SDK is available on github: Amazon Location Service Mobile
Authentication SDK for Android. Additionally, both the mobile authentication SDK and the AWS
SDK are available on the AWS Maven repository.

Installation

To use the mobile authentication SDK, add the following import statements to your
build.gradle file in Android Studio.

implementation("software.amazon.location:auth:0.0.1")
implementation("com.amazonaws:aws-android-sdk-location:2.72.0")

Authentication Functions

The authentication helper SDK has the following functions:

Amazon Location SDK 187

https://docs.aws.amazon.com/location/latest/developerguide/authenticating-using-cognito.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android/tree/main
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android/tree/main
https://central.sonatype.com/artifact/software.amazon.location/tracking

Amazon Location Service Developer Guide

• authHelper.authenticateWithApiKey("My-Amazon-Location-API-Key"):
LocationCredentialsProvider: This function returns a LocationCredentialsProvider
initialized to work with an API Key.

• authHelper.authenticateWithCognitoIdentityPool("My-Cognito-
Identity-Pool-Id"): LocationCredentialsProvider: This function returns a
LocationCredentialsProvider initialized to work with an Amazon Cognito identity pool.

Usage

To use the SDK in your code, import the following classes:

import com.amazonaws.services.geo.AmazonLocationClient
import software.amazon.location.auth.AuthHelper
import software.amazon.location.auth.LocationCredentialsProvider

You have two options when creating the authentication helper and location client provider
instances. You can create an instance using Amazon Location API keys or Amazon Cognito.

• To create an authentication helper instance using an Amazon Location API Key, declare the
helper class as follows:

var authHelper = AuthHelper(applicationContext)
var locationCredentialsProvider : LocationCredentialsProvider =
 authHelper.authenticateWithApiKey("My-Amazon-Location-API-Key")

• To create an authentication helper instance using Amazon Cognito, declare the helper class as
follows:

var authHelper = AuthHelper(applicationContext)
var locationCredentialsProvider : LocationCredentialsProvider =
 authHelper.authenticateWithCognitoIdentityPool("My-Cognito-Identity-Pool-Id")

You can create an Amazon Location client instance using the location credentials provider and
make calls to the Amazon Location service. The following example searches for places near a
specified latitude and longitude.

var locationClient =
 authHelper.getLocationClient(locationCredentialsProvider.getCredentialsProvider())

Amazon Location SDK 188

https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html

Amazon Location Service Developer Guide

var searchPlaceIndexForPositionRequest =
 SearchPlaceIndexForPositionRequest().withIndexName("My-Place-Index-
Name").withPosition(arrayListOf(30.405423, -97.718833))
var nearbyPlaces =
 locationClient.searchPlaceIndexForPosition(searchPlaceIndexForPositionRequest)

iOS Mobile Authentication SDK

These utilities help you authenticate when making Amazon Location Service API calls from
your iOS applications. This specifically helps when using Amazon Cognito or API keys as the
authentication method.

The iOS mobile authentication SDK is available on github: Amazon Location Service Mobile
Authentication SDK for iOS.

Installation

Install the SDK in an Xcode project:

1. Go to File, then select Add Package Dependencies in your XCode project.

2. Type the package URL: https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-
ios/ into the search bar and press the enter key.

3. Select the amazon-location-mobile-auth-sdk-ios package and press Add Package.

4. Select the AmazonLocationiOSAuthSDK package product and press Add Package.

Authentication Functions

The authentication helper SDK has the following functions:

• authHelper.authenticateWithApiKey("My-Amazon-Location-API-Key"):
LocationCredentialsProvider: This function returns a LocationCredentialsProvider
initialized to work with an API Key.

• authHelper.authenticateWithCognitoIdentityPool("My-Cognito-
Identity-Pool-Id"): LocationCredentialsProvider: This function returns a
LocationCredentialsProvider initialized to work with an Amazon Cognito identity pool.

Usage

To use the mobile authentication SDK, add the following statements to your activity:

Amazon Location SDK 189

https://docs.aws.amazon.com/location/latest/developerguide/authenticating-using-cognito.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios/tree/main
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios/tree/main
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios/
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios/

Amazon Location Service Developer Guide

import AmazonLocationiOSAuthSDK
import AWSLocationXCF

You have two options when creating the authentication helper and location client provider
instances. You can create an instance using Amazon Location API keys or Amazon Cognito.

• To create an authentication helper instance using an Amazon Location API Key, declare the
helper class as follows:

let authHelper = AuthHelper()
let locationCredentialsProvider = authHelper.authenticateWithAPIKey(apiKey: "My-
Amazon-Location-API-Key", region: "account-region")

• To create an authentication helper instance using Amazon Cognito, declare the helper class as
follows:

let authHelper = AuthHelper()
let locationCredentialsProvider =
 authHelper.authenticateWithCognitoUserPool(identityPoolId: "My-Amazon-Location-API-
Key", region: "account-region")

You can create an Amazon Location client instance using the location credentials provider and
make calls to the Amazon Location service. The following example searches for places near a
specified latitude and longitude.

let locationClient = AWSLocation.default()
let searchPlaceIndexForPositionRequest =
 AWSLocationSearchPlaceIndexForPositionRequest()!
searchPlaceIndexForPositionRequest.indexName = "My-Place-Index-Name"
searchPlaceIndexForPositionRequest.position = [30.405423, -97.718833]
let nearbyPlaces = locationClient.searchPlaceIndex(forPosition:
 searchPlaceIndexForPositionRequest)

Android Mobile Tracking SDK

The Amazon Location mobile tracking SDK provides utilities which help easily authenticate, capture
device positions, and send position updates to Amazon Location Trackers. The SDK supports
local filtering of location updates with configurable update intervals. This reduces data costs and
optimizes intermittent connectivity for your Android applications.

Amazon Location SDK 190

https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html

Amazon Location Service Developer Guide

The Android tracking SDK is available on GitHub: Amazon Location Mobile Tracking SDK for
Android. Additionally, both the mobile authentication SDK and the AWS SDK are available on the
AWS Maven repository. The Android tracking SDK is designed to work with the general AWS SDK.

This section covers the following topics for the Amazon Location mobile tracking Android SDK:

Topics

• Installation

• Usage

• Filters

• Android Mobile SDK tracking functions

• Examples

Installation

To install the SDK, add the following lines to the dependencies section of your build.gradle file in
Android Studio:

implementation("software.amazon.location:tracking:0.0.1")
implementation("software.amazon.location:auth:0.0.1")
implementation("com.amazonaws:aws-android-sdk-location:2.72.0")

Usage

This procedure shows you how to use the SDK to authenticate and create the LocationTracker
object:

Note

This procedure assumes you have imported the library mentioned in the Installation
section.

1. Import the following classes in your code:

import software.amazon.location.tracking.LocationTracker
import software.amazon.location.tracking.config.LocationTrackerConfig
import software.amazon.location.tracking.util.TrackingSdkLogLevel
import com.amazonaws.services.geo.AmazonLocationClient

Amazon Location SDK 191

https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-android
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-android
https://central.sonatype.com/artifact/software.amazon.location/tracking

Amazon Location Service Developer Guide

import software.amazon.location.auth.AuthHelper
import software.amazon.location.auth.LocationCredentialsProvider

2. Next create an AuthHelper, since the LocationCredentialsProvider parameter is
required for creating a LocationTracker object:

// Create an authentication helper using credentials from Cognito
val authHelper = AuthHelper(applicationContext)
val locationCredentialsProvider : LocationCredentialsProvider =
 authHelper.authenticateWithCognitoIdentityPool("My-Cognito-Identity-Pool-Id")

3. Now, use the LocationCredentialsProvider and LocationTrackerConfig to create a
LocationTracker object:

val config = LocationTrackerConfig(
 trackerName = "MY-TRACKER-NAME",
 logLevel = TrackingSdkLogLevel.DEBUG,
 accuracy = Priority.PRIORITY_HIGH_ACCURACY,
 latency = 1000,
 frequency = 5000,
 waitForAccurateLocation = false,
 minUpdateIntervalMillis = 5000,
)
locationTracker = LocationTracker(
 applicationContext,
 locationCredentialsProvider,
 config,
)

Filters

The Amazon Location mobile tracking Android SDK has three inbuilt location filters.

• TimeLocationFilter: Filters the current location to be uploaded based on a defined time
interval.

• DistanceLocationFilter: Filters location updates based on a specified distance threshold.

• AccuracyLocationFilter: Filters location updates by comparing the distance moved since
the last update with the current location's accuracy.

This example adds filters in the LocationTracker at the creation time:

Amazon Location SDK 192

Amazon Location Service Developer Guide

val config = LocationTrackerConfig(
 trackerName = "MY-TRACKER-NAME",
 logLevel = TrackingSdkLogLevel.DEBUG,
 accuracy = Priority.PRIORITY_HIGH_ACCURACY,
 latency = 1000,
 frequency = 5000,
 waitForAccurateLocation = false,
 minUpdateIntervalMillis = 5000,
 locationFilters = mutableListOf(TimeLocationFilter(), DistanceLocationFilter(),
 AccuracyLocationFilter())
)
locationTracker = LocationTracker(
 applicationContext,
 locationCredentialsProvider,
 config,
)

This example enables and disables filter at runtime with LocationTracker:

// To enable the filter
locationTracker?.enableFilter(TimeLocationFilter())

// To disable the filter
locationTracker?.disableFilter(TimeLocationFilter())

Android Mobile SDK tracking functions

The Amazon Location mobile tracking SDK for Android includes the following functions:

• Class: LocationTracker

constructor(context: Context,locationCredentialsProvider:
LocationCredentialsProvider,trackerName: String), or
constructor(context: Context,locationCredentialsProvider:
LocationCredentialsProvider,clientConfig: LocationTrackerConfig)

This is an initializer function to create a LocationTracker object. It requires instances
of LocationCredentialsProvider , trackerName and optionally an instance of
LocationTrackingConfig. If the config is not provided it will be initialized with default
values.

• Class: LocationTracker

Amazon Location SDK 193

Amazon Location Service Developer Guide

start(locationTrackingCallback: LocationTrackingCallback)

Starts the process of accessing the user's location and sending it to an Amazon Location tracker.

• Class: LocationTracker

isTrackingInForeground()

Checks if location tracking is currently in progress.

• Class: LocationTracker

stop()

Stops the process of tracking the user's location.

• Class: LocationTracker

startTracking()

Starts the process of accessing the user's location and sending it to the AWS tracker.

• Class: LocationTracker

startBackground(mode: BackgroundTrackingMode, serviceCallback:
ServiceCallback)

Starts the process of accessing the user's location and sending it to the AWS tracker while the
application is in the background. BackgroundTrackingMode has the following options:

• ACTIVE_TRACKING: This option actively tracks a user's location updates.

• BATTERY_SAVER_TRACKING: This option tracks user's location updates every 15 minutes.

• Class: LocationTracker

stopBackgroundService()

Stops the process of accessing the user's location and sending it to the AWS tracker while the
application is in the background.

• Class: LocationTracker

getTrackerDeviceLocation()

Retrieves the device location from Amazon Location services.
Amazon Location SDK 194

Amazon Location Service Developer Guide

• Class: LocationTracker

getDeviceLocation(locationTrackingCallback: LocationTrackingCallback?)

Retrieves the current device location from the fused location provider client and uploads it to
Amazon Location tracker.

• Class: LocationTracker

uploadLocationUpdates(locationTrackingCallback:
LocationTrackingCallback?)

Uploads the device location to Amazon Location services after filtering based on the configured
location filters.

• Class: LocationTracker

enableFilter(filter: LocationFilter)

Enables a particular location filter.

• Class: LocationTracker

checkFilterIsExistsAndUpdateValue(filter: LocationFilter)

Disable particular location filter.

• Class: LocationTrackerConfig

LocationTrackerConfig(// Required var trackerName:
String, // Optional var locationFilters: MutableList =
mutableListOf(TimeLocationFilter(), DistanceLocationFilter(),), var
logLevel: TrackingSdkLogLevel = TrackingSdkLogLevel.DEBUG, var accuracy:
Int = Priority.PRIORITY_HIGH_ACCURACY, var latency: Long = 1000, var
frequency: Long = 1500, var waitForAccurateLocation: Boolean = false, var
minUpdateIntervalMillis: Long = 1000, var persistentNotificationConfig:
NotificationConfig = NotificationConfig())

This initializes the LocationTrackerConfig with user-defined parameter values. If a
parameter value is not provided, it will be set to a default value.

• Class: LocationFilter

Amazon Location SDK 195

Amazon Location Service Developer Guide

shouldUpload(currentLocation: LocationEntry, previousLocation:
LocationEntry?): Boolean

The LocationFilter is a protocol that users can implement for their custom filter
implementation. You need to implement the shouldUpload function to compare previous and
current location and return if the current location should be uploaded.

Examples

The following code sample shows the mobile tracking SDK functionality.

This example uses the LocationTracker to start and stop tracking in background:

// For starting the location tracking
locationTracker?.startBackground(
BackgroundTrackingMode.ACTIVE_TRACKING,
object : ServiceCallback {
 override fun serviceStopped() {
 if (selectedTrackingMode == BackgroundTrackingMode.ACTIVE_TRACKING) {
 isLocationTrackingBackgroundActive = false
 } else {
 isLocationTrackingBatteryOptimizeActive = false
 }
 }
},
)

// For stopping the location tracking
locationTracker?.stopBackgroundService()

iOS Mobile Tracking SDK

The Amazon Location mobile tracking SDK provides utilities which help easily authenticate, capture
device positions, and send position updates to Amazon Location Trackers. The SDK supports
local filtering of location updates with configurable update intervals. This reduces data costs and
optimizes intermittent connectivity for your iOS applications.

The iOS tracking SDK is available on GitHub: Amazon Location Mobile Tracking SDK for iOS.

This section covers the following topics for the Amazon Location mobile tracking iOS SDK:

Amazon Location SDK 196

https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios

Amazon Location Service Developer Guide

Topics

• Installation

• Usage

• Filters

• iOS Mobile SDK tracking functions

• Examples

Installation

Use the following procedure to install the mobile tracking SDK for iOS:

1. In your Xcode project, go to File and select Add Package Dependencies.

2. Type the following URL: https://github.com/aws-geospatial/amazon-location-mobile-
tracking-sdk-ios/ into the search bar and press the enter key.

3. Select the amazon-location-mobile-tracking-sdk-ios package and click on Add
Package.

4. Select the AmazonLocationiOSTrackingSDK package product and click on Add Package.

Usage

The following procedure shows you how to create an authentication helper using credentials from
Cognito.

1. After installing the library, you need to add one or both of the descriptions into your
info.plist file:

Privacy - Location When In Use Usage Description
Privacy - Location Always and When In Use Usage Description

2. Next, import the AuthHelper in your class:

import AmazonLocationiOSAuthSDKimport AmazonLocationiOSTrackingSDK

3. Then you will create an AuthHelper object and use it with the AWS SDK, by creating an
authentication helper using credentials from Amazon Cognito.

let authHelper = AuthHelper()

Amazon Location SDK 197

https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios/
https://github.com/aws-geospatial/amazon-location-mobile-tracking-sdk-ios/

Amazon Location Service Developer Guide

let locationCredentialsProvider =
 authHelper.authenticateWithCognitoUserPool(identityPoolId: "My-Cognito-Identity-
Pool-Id", region: "My-region") //example: us-east-1
let locationTracker = LocationTracker(provider: locationCredentialsProvider,
 trackerName: "My-tracker-name")

// Optionally you can set ClientConfig with your own values in either initialize or
 in a separate function
// let trackerConfig = LocationTrackerConfig(locationFilters:
 [TimeLocationFilter(), DistanceLocationFilter()],

trackingDistanceInterval: 30,
trackingTimeInterval: 30,
logLevel: .debug)

// locationTracker = LocationTracker(provider: credentialsProvider, trackerName:
 "My-tracker-name",config: trackerConfig)
// locationTracker.setConfig(config: trackerConfig)

Filters

The Amazon Location mobile tracking iOS SDK has three inbuilt location filters.

• TimeLocationFilter: Filters the current location to be uploaded based on a defined time
interval.

• DistanceLocationFilter: Filters location updates based on a specified distance threshold.

• AccuracyLocationFilter: Filters location updates by comparing the distance moved since
the last update with the current location's accuracy.

This example adds filters in the LocationTracker at the creation time:

val config = LocationTrackerConfig(
 trackerName = "MY-TRACKER-NAME",
 logLevel = TrackingSdkLogLevel.DEBUG,
 accuracy = Priority.PRIORITY_HIGH_ACCURACY,
 latency = 1000,
 frequency = 5000,
 waitForAccurateLocation = false,
 minUpdateIntervalMillis = 5000,

Amazon Location SDK 198

Amazon Location Service Developer Guide

 locationFilters = mutableListOf(TimeLocationFilter(), DistanceLocationFilter(),
 AccuracyLocationFilter())
)

locationTracker = LocationTracker(
 applicationContext,
 locationCredentialsProvider,
 config,
)

This example enables and disables filter at runtime with LocationTracker:

// To enable the filter
locationTracker?.enableFilter(TimeLocationFilter())

// To disable the filter
locationTracker?.disableFilter(TimeLocationFilter())

iOS Mobile SDK tracking functions

The Amazon Location mobile tracking SDK for iOS includes the following functions:

• Class: LocationTracker

init(provider: LocationCredentialsProvider, trackerName: String, config:
LocationTrackerConfig? = nil)

This is an initializer function to create a LocationTracker object. It requires instances
of LocationCredentialsProvider , trackerName and optionally an instance of
LocationTrackingConfig. If the config is not provided it will be initialized with default
values.

• Class: LocationTracker

setTrackerConfig(config: LocationTrackerConfig)

This sets Tracker's config to take effect at any point after initialization of location tracker

• Class: LocationTracker

getTrackerConfig()

This gets the location tracking config to use or modify in your app.

Amazon Location SDK 199

Amazon Location Service Developer Guide

Returns: LocationTrackerConfig

• Class: LocationTracker

getDeviceId()

Gets the location tracker's generated device Id.

Returns: String?

• Class: LocationTracker

startTracking()

Starts the process of accessing the user's location and sending it to the AWS tracker.

• Class: LocationTracker

resumeTracking()

Resumes the process of accessing the user's location and sending it to the AWS tracker.

• Class: LocationTracker

stopTracking()

Stops the process of tracking the user's location.

• Class: LocationTracker

startBackgroundTracking(mode: BackgroundTrackingMode)

Starts the process of accessing the user's location and sending it to the AWS tracker while the
application is in the background. BackgroundTrackingMode has the following options:

• Active: This option doesn't automatically pauses location updates.

• BatterySaving: This option automatically pauses location updates

• None: This option overall disables background location updates

• Class: LocationTracker

resumeBackgroundTracking(mode: BackgroundTrackingMode)

Resumes the process of accessing the user's location and sending it to the AWS tracker while the
application is in the background.

Amazon Location SDK 200

Amazon Location Service Developer Guide

• Class: LocationTracker

stopBackgroundTracking()

Stops the process of accessing the user's location and sending it to the AWS tracker while the
application is in the background.

• Class: LocationTracker

getTrackerDeviceLocation(nextToken: String?, startTime: Date? = nil,
endTime: Date? = nil, completion: @escaping (Result<GetLocationResponse,
Error>)

Retrieves the uploaded tracking locations for the user's device between start and end date and
time.

Returns: Void

• Class: LocationTrackerConfig

init()

This initializes the LocationTrackerConfig with default values.

• Class: LocationTrackerConfig

init(locationFilters: [LocationFilter]? = nil, trackingDistanceInterval:
Double? = nil, trackingTimeInterval: Double? = nil,
trackingAccuracyLevel: Double? = nil, uploadFrequency: Double? = nil,
desiredAccuracy: CLLocationAccuracy? = nil, activityType: CLActivityType?
= nil, logLevel: LogLevel? = nil)

This initializes the LocationTrackerConfig with user-defined parameter values. If a
parameter value is not provided it will be set to a default value.

• Class: LocationFilter

shouldUpload(currentLocation: LocationEntity, previousLocation:
LocationEntity?, trackerConfig: LocationTrackerConfig)

The LocationFilter is a protocol that users can implement for their custom filter
implementation. A user would need to implement shouldUpload function to compare previous
and current location and return if the current location should be uploaded.

Amazon Location SDK 201

Amazon Location Service Developer Guide

Examples

This sections details examples of using the Amazon Location Mobile Tracking SDK for iOS.

Note

Ensure that the necessary permissions are set in the info.plist file. These are the same
permissions listed in the Usage section.

The following example demonstrates functionality for tracking device location and retrieving
tracked locations:

Privacy - Location When In Use Usage Description
Privacy - Location Always and When In Use Usage Description

Start tracking the location:

do {
 try locationTracker.startTracking()
 }
catch TrackingLocationError.permissionDenied {
 // Handle permissionDenied by showing the alert message or opening the app
 settings
 }

Resume tracking the location:

do {
 try locationTracker.resumeTracking()
 }
catch TrackingLocationError.permissionDenied {
 // Handle permissionDenied by showing the alert message or opening the app settings
 }

Stop tracking the location:

locationTracker.stopTracking()

Start background tracking:

Amazon Location SDK 202

Amazon Location Service Developer Guide

do {

 locationTracker.startBackgroundTracking(mode: .Active) // .Active, .BatterySaving, .None
 }
catch TrackingLocationError.permissionDenied {
 // Handle permissionDenied by showing the alert message or opening the app settings
 }

Resume background tracking:

do {
 locationTracker.resumeBackgroundTracking(mode: .Active)
 }
catch TrackingLocationError.permissionDenied {
 // Handle permissionDenied by showing the alert message or opening the app settings
 }

To stop background tracking:

locationTracker.stopBackgroundTracking()

Retrieve device's tracked locations from the tracker:

func getTrackingPoints(nextToken: String? = nil) {
let startTime: Date = Date().addingTimeInterval(-86400) // Yesterday's day date and
 time
let endTime: Date = Date()
locationTracker.getTrackerDeviceLocation(nextToken: nextToken, startTime: startTime,
 endTime: endTime, completion: { [weak self] result in
 switch result {
 case .success(let response):

 let positions = response.devicePositions
 // You can draw positions on map or use it further as per your requirement

 // If nextToken is available, recursively call to get more data
 if let nextToken = response.nextToken {
 self?.getTrackingPoints(nextToken: nextToken)
 }
 case .failure(let error):
 print(error)
 }

Amazon Location SDK 203

Amazon Location Service Developer Guide

})
}

Amazon Location APIs

Amazon Location Service provides API operations to programmatically access the location
functionality. This includes APIs for Maps, Places, Routes, Trackers, Geofences, and tagging your
resources. For information about the available API actions, see the Amazon Location Service API
reference.

You can find samples in the Code examples chapter of this guide.

Using Amazon Location with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that makes it easier for developers
to build AWS applications in their preferred language.

For more information about the SDKs available for use with Amazon Location Service by language,
see SDKs by language in this guide.

SDK Versions

We recommend that you use the most recent build of the AWS SDK, and any other SDKs,
that you use in your projects, and to keep the SDKs up to date. The AWS SDK provides you
with the latest features and functionality, and also security updates. To find the latest build
of the AWS SDK for JavaScript, for example, see the browser installation topic in the AWS
SDK for JavaScript documentation.

Amazon Location API error message updates

Beginning August 1, 2023, the Amazon Location team is changing API error messages as described
in the following tables. Error codes will not be changed. If your applications depend on exact error
message strings, you must update your applications with the new strings. For help with questions
or problems, contact AWS Support.

Topics

• Places

Amazon Location APIs 204

https://docs.aws.amazon.com/location-maps/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/location-maps/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/index.html#In_the_Browser

Amazon Location Service Developer Guide

• Maps

• Trackers

• Routes

• Metadata

• Geofences

Places

Places

Error code Exception Old error message New error message

500 InternalServerExce
ption

Internal Server
Exception

Internal server error.
Try again later.

404 ResourceNotFoundEx
ception

resource <PlaceInd
exName> not found,
reason: <Reason>

Resource '<PlaceIn
dexName>' not found

placeIdx<PlaceInde
xName> not found,
reason: <Reason>

no place index with
name '%s' found

Place index not
found: <PlaceInd
exName>.

404 ResourceNotFoundEx
ception

place not found Place not found:
<PlaceId>.

400 ValidationException PlaceIndex <PlaceInd
exName> cannot be
used for SearchPla
ceIndexForSuggesti
ons because it

A place index with
'IntendedUse' set
to Storage does not
support 'SearchPl
aceIndexForSuggest
ion' operation.

Error message updates 205

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

has IntendedUse
<IntendedUse>

400 ValidationException only one of 'BiasPosi
tion' or 'FilterBBox'
may be set

Only one of 'BiasPosi
tion' or 'FilterBBox'
may be set.

400 ValidationException BiasPosition must
have exactly 2 entries

'BiasPosition' must
have exactly 2
entries.

400 ValidationException BiasPosition[0] must
be between -180 and
180

'BiasPosition[0]' must
be between -180 and
180.

400 ValidationException BiasPosition[1] must
be between -90 and
90

'BiasPosition[1]' must
be between -90 and
90.

400 ValidationException FilterBBox must have
exactly 4 entries

'FilterBBox' must
have exactly 4
entries.

400 ValidationException FilterBBox[0] must
be between -180 and
180

'FilterBBox[0]' must
be between -180 and
180.

400 ValidationException FilterBBox[1] must be
between -90 and 90

'FilterBBox[1]' must
be between -90 and
90.

400 ValidationException FilterBBox[2] must
be between -180 and
180

'FilterBBox[2]' must
be between -180 and
180.

Error message updates 206

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException FilterBBox[3] must be
between -90 and 90

'FilterBBox[3]' must
be between -90 and
90.

400 ValidationException FilterBBox must have
more southwesterly
point before more
northeasterly point

'FilterBBox' must
have more southwest
erly position before
more northeasterly
position.

400 ValidationException Position must have
exactly 2 entries

'Position' must have
exactly 2 entries.

400 ValidationException Position[0] must be
between -180 and
180

'Position[0]' must be
between -180 and
180.

400 ValidationException Position[1] must be
between -90 and 90

'Position[1]' must be
between -90 and 90.

400 ValidationException Language is not
a valid BCP 47
language tag

'Language' must
comply with the BCP
47 Language Tag
standard, but was set
to <GivenValue>. For
more information,
see https://wikipedia.
org/wiki/IETF_lang
uage_tag.

400 ValidationException 'placeID' is invalid 'PlaceId' must be a
valid ID.

400 ValidationException no customer account
ID parameter found

'RequesterAccountID'
is a required field.

Error message updates 207

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException unsupported price
plan '<PricingPlan>'

'PricingPlan' must
be set to RequestBa
sedUsage.

400 ValidationException 'DataSource' must be
one of: Here, Esri

'DataSource' must
be one of Esri, Grab,
Here.

400 ValidationException Grab is only
supported in the ap-
southeast-1 region

'DataSource' Grab
must only be used in
following regions: ap-
southeast-1.

400 ValidationException 'IntendedUse' and
'PricingPlan' must
both be provided
to update either
property

'IntendedUse' and
'PricingPlan' must
both be provided
to update either
attribute.

402 ServiceQuotaExceed
edException

Place resources per
account exceeded
quota limits. For
more info, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/

Place index resources
have exceeded the
quota per account
per region. For more
information, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/.

Error message updates 208

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

409 ConflictException Resource already
exists

Place index already
exists: <PlaceInd
exName>.

Maps

Maps

Error code Exception Old error message New error message

500 InternalServerExce
ption

Internal Server
Exception

unable to find style
template

Error fetching style

was not able to
serialize the map
style file

Internal server error.
Try again later.

404 ResourceNotFoundEx
ception

Map not found Map not found:
<MapName>.

404 ResourceNotFoundEx
ception

Sprites are not
supported for this
resource

Sprite not found:
<SpriteName>.

400 ValidationException Resource name
should be set

'MapName' is a
required field.

400 ValidationException Must provide a valid
number for start and
end of Range

Font Unicode range
start and end
numbers must both
be provided.

Error message updates 209

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Start of range is
an invalid number:
<StartValue>

Start of font Unicode
range must be a valid
number.

400 ValidationException End of range is an
invalid number:
<StartValue>

End of font Unicode
range must be a valid
number.

400 ValidationException End of range must be
exactly 255 higher
from start of range,
difference found:
<Difference>

The difference
between the start
and end of the font
Unicode range must
be exactly 255.
Difference found:
<Difference>.

400 ValidationException Start of range must
be a multiple of 256,
found <StartValue>

Start of font Unicode
range must be a
multiple of 256, but
was set to: <StartVal
ue>.

400 ValidationException Request font is
empty

'FontStack' is a
required field.

Error message updates 210

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Request font
is not valid for
the datasource
<DataSource>

<FontStack> is not
a supported font
stack for data source
<DataSource>. For
more informati
on about the list
of supported font
stacks, see https://d
ocs.aws.amazon.com
/location/latest/A
PIReference/API_Ge
tMapGlyphs.html.

400 ValidationException Request font is not
valid

<FontStack> is not
a supported font
stack for data source
<DataSource>. For
more informati
on about the list
of supported font
stacks, see https://d
ocs.aws.amazon.com
/location/latest/A
PIReference/API_Ge
tMapGlyphs.html.

400 ValidationException DataSource is invalid:
<DataSource>

'DataSource' must
be one of Esri, Grab,
Here.

400 ValidationException Request filename is
empty

'FileName' is a
required field.

Error message updates 211

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Request filename is
not valid

<SpriteFile> is not
a supported sprite
file name. For more
information about
the list of supported
sprite file names, see
https://docs.aws.a
mazon.com/location
/latest/APIReferen
ce/API_GetMapSprit
es.html.

400 ValidationException Filename is invalid:
<FileName>

<SpriteFile> is not
a supported sprite
file name. For more
information about
the list of supported
sprite file names, see
https://docs.aws.a
mazon.com/location
/latest/APIReferen
ce/API_GetMapSprit
es.html.

400 ValidationException Filename is an
invalid content type:
<FileName>

<SpriteFile> is not
a supported sprite
file name. For more
information about
the list of supported
sprite file names, see
https://docs.aws.a
mazon.com/location
/latest/APIReferen
ce/API_GetMapSprit
es.html.

Error message updates 212

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Filename is invalid:
<FileName>

'Filename' must not
be empty.

400 ValidationException y-coordinate part of
'Y' must be a valid
integer

y- coordinate part
of 'Y' must be an
integer.

400 ValidationException tile resolution part
of 'Y' must be a valid
integer followed by
'x'

Tile resolution part of
'Y' must be an integer
followed by 'X'.

400 ValidationException file type extension
part of 'Y' must not
be empty if a '.' is
present

File type extension
part of 'Y' must not
be empty if a '.' is
present.

400 ValidationException 'Z' must be a valid
integer

'Z' must be an
integer.

400 ValidationException 'X' must be a valid
integer

'X' must be an
integer.

400 ValidationException 'Z' must not be
less than minimum
zoom of style
'<Style>' (<Minimum
Value>)

'Z' must not be less
than minimum zoom
of style <Style>
(<MinimumValue>).

400 ValidationException 'Z' must not
be greater
than maximum
zoom of style
'<Style' (<Maximum
Value>)

'Z' must not be
greater than
maximum zoom
of style Style
(<MaximumValue>).

Error message updates 213

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'Z' value not
supported

'Z' must be between
0 and 63.

400 ValidationException tile resolution part of
'Y' must be omitted
because '<Style>' is a
vector style

Tile resolution part of
'Y' must be omitted
for style <Style>.

400 ValidationException tile resolution part of
'Y' must be at least 1

Tile resolution part of
'Y' must be at least 1.

400 ValidationException tile resolution part
of 'Y' must not be
greater than max
resolution of style
'<Style>' (<Maximum
Resolution>)

Tile resolution part
of 'Y' must not
be greater than
maximum resolution
of style <Style> (max
<MaxResolution>).

400 ValidationException file type extension
part of 'Y' must be
one of <Supporte
dFileFormats> (or
may be omitted) for
style '<Style>'

File type extension
part of 'Y' must be
one of <Supporte
dFileFormats> (or
may be omitted) for
style <Style>.

400 ValidationException file type extension
part of 'Y' must be
omitted for style
'<Style>'

File type extension
part of 'Y' must be
omitted for style
<Style>.

400 ValidationException y-coordinate part
of 'Y' must be
an integer in the
range 0..2^Zoom-1
(0..<MaxTileCoordi
nate>)

y-coordinate part
of 'Y' must be
an integer in the
range 0..2^Zoom-1
(0..<MaxTileCoordi
nate>).

Error message updates 214

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'DataSource' must be
one of: Here, Esri

'DataSource' must
be one of Esri, Grab,
Here.

400 ValidationException unsupported price
plan '<PricingPlan>'

'PricingPlan' must
be set to RequestBa
sedUsage.

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException Unsupported Map
Style: <Style>

<Style> is not a
supported map style.
For more informati
on about list of
supported map
styles, see https://d
ocs.aws.amazon.com
/location/latest/A
PIReference/API_Ma
pConfiguration.html.

402 ServiceQuotaExceed
edException

Map resources per
account exceeded
quota limits. For
more info, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/

Map resources have
exceeded the quota
per account per
region. For more
information, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/.

Error message updates 215

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

409 ConflictException Resource already
exists

Map already exists:
<MapName>.

Trackers

Trackers

Error code Exception Old error message New error message

500 InternalServerExce
ption

Internal Server
Exception

internal server error

unable to retrieve
point from the
storage

unable to verify
tracker

Error processing List
request

Internal server error.
Try again later.

404 ResourceNotFoundEx
ception

tracker not found:
<TrackerName>

Tracker with name
<TrackerName> was
not found

Tracker not found:
<TrackerName>.

404 ResourceNotFoundEx
ception

association not
found: TrackerNa
me <TrackerName>;
and ConsumerArn <
ConsumerArn >

Association between
tracker <TrackerN
ame> and consumer
<ConsumerArn> is
not found.

Error message updates 216

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'ConsumerArn' must
refer to a geofence
collection resource

'ConsumerArn' must
refer to a geofence
collection resource.

400 ValidationException 'ConsumerArn' must
refer to a resource
in the same region
as the tracker it is
associated to

'ConsumerArn' must
refer to a resource
in the same region
as the tracker it is
associated with.

400 ValidationException 'ConsumerArn' must
refer to a resource
in the same AWS
account as the tracker
is it associated to

'ConsumerArn' must
refer to a resource
in the same AWS
account as the tracker
it is associated with.

400 ValidationException 'DataSource' must be
one of: Here, Esri

'DataSource' must
be one of Esri, Grab,
Here.

400 ValidationException Nothing to update. At least one of the
following fields must
be set: 'Description',
'PositionFiltering'

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException request.TrackerName
not found on request

'TrackerName ' is a
required field.

400 ValidationException no deviceId
parameter found

'DeviceId' is a
required field.

Error message updates 217

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException unsupported price
plan '<PricingPlan>'

'PricingPlan' must
be set to RequestBa
sedUsage

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException provided start
time is incorrect,
should follow the
format YYYY-MM-D
DThh:mm:ss.sssZ“

'StartTimeInclusiv
e' must follow the
format YYYY-MM-D
DThh:mm:ss.sssZ.

400 ValidationException provided end
time is incorrect,
should follow the
format YYYY-MM-D
DThh:mm:ss.sssZ

'EndTimeExclusive'
must follow the
format YYYY-MM-D
DThh:mm:ss.sssZ.

400 ValidationException end time must be
after start time

'EndTimeExclusive'
must be after
'StartTimeInclusive'.

Error message updates 218

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException invalid key state KMS key must be a
symmetric Customer
Master Key (CMK).
Invalid state found.
For more informati
on about how key
state affects the use
of a KMS key, see
https://docs.aws.a
mazon.com/kms/late
st/developerguide/
key-state.html.

400 ValidationException key not found Invalid KMS key.
'<KmsKeyId>'
<KmsKeyIdValue> not
found.

400 ValidationException key is disabled Symmetric Customer
Master Key (CMK)
must be enabled.

400 ValidationException access denied Symmetric Customer
Master Key (CMK)
must allow Amazon
Location to create
grants to its KMS key.

Error message updates 219

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

402 ServiceQuotaExceed
edException

Tracker <TrackerN
ame> may not have
more than <Max>
consumer associati
ons

Tracker resource may
not have more than
<Max> consumer
associations. For
more informati
on, see https://a
ws.amazon.com/
premiumsupport/
knowledge-center
/manage-service-li
mits/.

402 ServiceQuotaExceed
edException

Trackers per account
exceeded quota
limits. For more
info, see https://a
ws.amazon.com/
premiumsupport/
knowledge-center
/manage-service-li
mits/

Tracking resources
have exceeded the
quota per account
per region. For more
information, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/.

409 ConflictException association already
exists: TrackerNa
me <TrackerName>;
and ConsumerArn
<ConsumerArn>

An association
already exists
between tracker
<TrackerName> and
consumer <Consumer
Arn>.

409 ConflictException Tracker already exists:
<TrackerName>

Tracker already exists:
<TrackerName>.

Error message updates 220

Amazon Location Service Developer Guide

Routes

Routes

Error code Exception Old error message New error message

500 InternalServerExce
ption

Internal Server
Exception

Internal server error.
Try again later.

404 ResourceNotFoundEx
ception

Resource not found Route calculator not
found: <RouteCal
culatorName>.

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException 'DataSource' must
be one of: Here, Esri,
Grab

'DataSource' must
be one of Esri, Grab,
Here.

400 ValidationException <PricingPlan> pricing
plan is not supported

'PricingPlan' must
be set to RequestBa
sedUsage

400 ValidationException unsupported price
plan '<PricingPlan>'

'PricingPlan' must
be set to RequestBa
sedUsage

400 ValidationException Grab is only
supported in the ap-
southeast-1 region

'DataSource'
<DataSourceName>
must only be used in
following regions: ap-
southeast-1.

400 ValidationException PricingPlan must be
'RequestBasedUsage'

'PricingPlan' must
be set to RequestBa
sedUsage.

Error message updates 221

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'DeparturePosition
s[0][0]' must be
between -180 and
180

'DeparturePosition
s[0][0]' must be
between -180 and
180.

400 ValidationException 'DeparturePosition
s[0][1]' must be
between -90 and 90

'DeparturePosition
s[0][1]' must be
between -90 and 90.

400 ValidationException 'DestinationPositi
ons[0][0]' must be
between -180 and
180

'DestinationPositi
ons[0][0]' must be
between -180 and
180.

400 ValidationException 'DestinationPositi
ons[0][1]' must be
between -90 and 90.

'DestinationPositi
ons[0][1]' must be
between -90 and 90

400 ValidationException 'DepartNow' may not
be true if 'Departur
eTime' is set

Only one of
'DepartNow' or
'DepartureTime' may
be set.

400 ValidationException '<TravelModeOption
>'' may not be set
when 'TravelMode'
has value <TravelMo
deOption>

'<TravelModeOption
>' must not be set
when 'TravelMode'
has value <TravelMo
deOption>.

400 ValidationException 'CarModeOptions'
may not be set when
'TravelMode' has
value Walking

'CarModeOptions'
must not be set when
'TravelMode' has
value Walking.

Error message updates 222

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'TruckModeOptions'
may not be set when
'TravelMode' has
value Walking

'TruckModeOptions'
must not be set when
'TravelMode' has
value Walking.

400 ValidationException 'TruckModeOptions'
may not be set when
'TravelMode' has
value Car

'TruckModeOptions'
must not be set when
'TravelMode' has
value Car.

400 ValidationException 'CarModeOptions'
may not be set when
'TravelMode' has
value Truck

'CarModeOptions'
must not be set when
'TravelMode' has
value Truck.

400 ValidationException At least one of
[Height, Length,
Width] must be set in
'TruckModeOptions.
Dimensions'

At least one of the
following attribute
must be set in
TruckModeOptions.D
imensions: Height,
Length, Width.

400 ValidationException At least one of
[Total] must be set in
'TruckModeOptions.
Weight'

At least one of the
following attribute
must be set in
TruckModeOptions.W
eight: Total.

400 ValidationException 'DeparturePositions'
count must be 10 or
less with DataSource
set to Esri

'DeparturePosition
s' must have length
at most 10 for
'DataSource' Esri.

Error message updates 223

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'DestinationPositions'
count must be 10 or
less with DataSource
set to Esri

'DestinationPositi
ons' must have
length at most 10 for
'DataSource' Esri.

400 ValidationException 'DeparturePosition
s[0]' is more than
40km away from
'DestinationPositi
ons[0]'

'DeparturePosition
s[0]' must not be
more than 40 km
away from 'Destinat
ionPositions[0]'.

400 ValidationException 'DeparturePosition
s[0]' is more than
400km away from
'DestinationPositi
ons[0]'

'DeparturePosition
s[0]' must not be
more than 400 km
away from 'Destinat
ionPositions[0]'.

400 ValidationException DeparturePositions
[0] is contained
within an unsupport
ed region. Korea is
not supported for
CalculateRouteMatrix
with the provider Esri.

DeparturePositions
[0] is located in
Korea, which is not
supported when
using Calculate
RouteMatrix with
data provider Esri.

400 ValidationException '<HereTruckDimensi
on>' must be
between <Min> and
<Max> <Unit>

'HereTruckDimensio
n' must be between
<Min> and <Max>
<Unit>.

400 ValidationException 'WaypointPositions[0]
[0]' must be between
-180 and 180

'WaypointPositions[0]
[0]' must be between
-180 and 180.

Error message updates 224

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException 'WaypointPositions[0]
[1]' must be between
-90 and 90

'WaypointPositions[0]
[1]' must be between
-90 and 90.

400 ValidationException 'WaypointPositions[1]
[0]' must be between
-180 and 180

'WaypointPositions[1]
[0]' must be between
-180 and 180.

400 ValidationException 'WaypointPositions[1]
[1]' must be between
-90 and 90

'WaypointPositions[1]
[1]' must be between
-90 and 90.

400 ValidationException No road segment
could be matched
for one or more
coordinates within a
radius (1km)

One or more
provided positions
are more than 1 km
from the nearest road
segment.

400 ValidationException Some positions
in the request are
unreachable

Some positions
in the request are
unreachable.

400 ValidationException Total distance
between all
waypoints must be
not be greater than
40km for DataSourc
e Esri when using
TravelMode Walking

Total distance
between all route
positions must not
be greater than 40
km for 'DataSource'
Esri and 'TravelMode'
Walking.

400 ValidationException Total distance
between all
waypoints must be
not be greater than
400km for DataSourc
e Esri

Total distance
between all route
positions must not be
greater than 400 km
for 'DataSource' Esri.

Error message updates 225

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Following positions
in the request
are unreachable:
<UnreachablePositi
ons>

The following
positions are
unreachable:
<UnreachablePositi
ons>.

400 ValidationException 'DepartureTime'
contains a badly-for
matted timestamp

'DepartureTime'
must follow the
format YYYY-MM-D
DThh:mm:ss.sssZ.

400 ValidationException 'TravelMode'
<TravelMode> is
not supported by
<DataProvider>

'TravelMode'
<TravelMode> not
supported by data
provider <DataProv
ider>.

400 ValidationException 'DeparturePositions'
must be set

'DeparturePositions'
must not be empty.

400 ValidationException 'DestinationPositions'
must be set

'DestinationPositions'
must not be empty.

400 ValidationException Some inputs in the
request are invalid

Some inputs in the
request are invalid.

400 ValidationException No route found
between position
<FirstPosition> and
position <SecondPo
sition>

No route found
between position
<FirstPosition> and
position <SecondPo
sition>.

Error message updates 226

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException No route found No route found.
For more informati
on, see https://d
eveloper.here.com/
documentation/rout
ing-api/dev_guide/
topics/notice.html.

400 ValidationException No route found No route found.

402 ServiceQuotaExceed
edException

Route calculators per
account exceeded
quota limits. For
more info, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/

Route calculato
r resources have
exceeded the quota
per account per
region. For more
information, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/.

409 ConflictException Resource already
exists

Route calculato
r already exists:
<RouteCalculatorNa
me>.

Metadata

Metadata

Error code Exception Old error message New error message

500 InternalServerExce
ption

Internal Server Error Internal server error.
Try again later.

Error message updates 227

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

Error processing List
request

404 ResourceNotFoundEx
ception

APIKey not found Api key not found:
<APIKeyName>.

404 ResourceNotFoundEx
ception

APIKeyID not found ApiKeyId not found:
<APIKeyID>.

400 ValidationException Either ExpireTime or
NoExpiry must be
provided

At least one of the
following fields must
be set: 'ExpireTime',
'NoExpiry'.

400 ValidationException NoExpiry cannot
be set to false if
no ExpireTime is
provided

'ExpireTime' must be
set when 'NoExpiry'
has value false.

400 ValidationException ExpireTime cannot be
set if NoExpiry is true

'ExpireTime' must
not be set when
'NoExpiry' has value
true.

400 ValidationException Expire time '<ExpireT
imeValue>' is not a
valid time format

'ExpireTime' must
follow the format
YYYY-MM-D
DThh:mm:ss.sssZ.

400 ValidationException Expire time '<ExpireT
imeValue>' cannot
be in the past when
creating a key

'ExpireTime' must not
be in the past.

400 ValidationException Invalid token 'NextToken' must be
a valid token.

Error message updates 228

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException The API Key %s has
been recently used
and the requested
update may impact
current usage.
Specify ForceUpda
te=true to update
the API Key configura
tion.

This update may
cause some users
to lose API access.
Because this API Key
has been used in the
last 7 days, you must
set 'ForceUpdate' to
true to confirm this
change.

400 ValidationException Expire time '<ExpireT
imeValue>' must
not be more than 1
minute in the past

'ExpireTime' must
not be more than 1
minute in the past.

400 ValidationException Description,
ExpireTime, NoExpiry
and Restrictions can't
all be empty

At least one of the
following fields must
be set: 'Descript
ion', 'ExpireTime',
'NoExpiry', 'Restrict
ions'.

400 ValidationException API Key expired 'ApiKeyId' must not
be expired.

409 ConflictException API key named
<APIKeyName>
already exists

Api key already exists:
<APIKeyName>.

Error message updates 229

Amazon Location Service Developer Guide

Geofences

Geofences

Error code Exception Old error message New error message

500 InternalServerExce
ption

internal server error

Internal server error

Unsupported
geofence geometry
encountered

geometry marshal
error

geometry load error

unable to get
geofence collection

unable to delete
geofences

unable to retrieve
geofence

Error processing List
request

Internal server error.
Try again later.

404 ResourceNotFoundEx
ception

collection not found:
<GeofenceCollectio
nName>

<GeofenceCollectio
nName> geofence
collection not found

Resource not found
error

Geofence Collection
not found: <Geofence
CollectionName>.

Error message updates 230

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

no geofence with
given name found

400 ValidationException unsupported price
plan '<PricingPlan>'

'PricingPlan' must
be set to RequestBa
sedUsage.

400 ValidationException KMS key must be
a symmetric CMK.
Invalid usage type:
<UsageType>

KMS key must be a
symmetric Customer
Master Key (CMK).
Invalid usage type
<UsageType>. For
how to create a
symmetric CMK, refer
to https://docs.aws.a
mazon.com/kms/late
st/developerguide/
create-keys.html#c
reate-symmetric-cm
k.

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException PricingPlanDataSou
rce cannot be
updated without
updating PricingPlan

'PricingPlan' must be
provided to update
'PricingPlanDataSo
urce'.

400 ValidationException nothing to update At least one of the
following fields must
be set: 'Description'

Error message updates 231

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException invalid key state KMS key must
be a symmetric
Customer Master
Key (CMK). Invalid
state <InvalidState>.
For more informati
on about how key
state affects the use
of a KMS key, see
https://docs.aws.a
mazon.com/kms/late
st/developerguide/
key-state.html.

400 ValidationException key not found Invalid KMS key.
'<KmsKeyId>'
<KmsKeyIdValue> not
found.

400 ValidationException key is disabled Symmetric Customer
Master Key (CMK)
must be enabled.

400 ValidationException access denied Symmetric Customer
Master Key (CMK)
must allow Amazon
Location to create
grants to its KMS key.

400 ValidationException duplicate geofence ID
in batch

'GeofenceId'
<DuplicatedGeofenc
eID> is duplicated in
batch.

400 ValidationException missing GeofenceId 'GeofenceId' must not
be empty.

Error message updates 232

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException Invalid token 'NextToken' must be
a valid token.

400 ValidationException Expired token 'NextToken' must not
be expired.

400 ValidationException Position[0] must be
between -180 and
180

'Position[0]' must be
between -180 and
180.

400 ValidationException Position[1] must be
between -90 and 90

'Position[1]' must be
between -90 and 90.

400 ValidationException radius must be less
than or equal to
1000km

'Geometry.Circle.R
adius' must be less
than or equal to
1000km.

400 ValidationException no geofence with
given name found

Geofence not found:
<CollectionName>.

400 ValidationException Geometry must
contain either a Circle
or Polygon, not both

Only one of 'Circle' or
'Polygon' may be set
within 'Geometry'.

400 ValidationException Geometry must
contain a Polygon or
a Circle

One of 'Polygon' or
'Circle' must be set
within 'Geometry'.

400 ValidationException radius must be
greater than 0m

'Geometry.Circle.R
adius' must be
greater than 0m.

400 ValidationException empty polygon 'Geometry.Polygon'
must not be empty.

Error message updates 233

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException empty polygon ring 'Geometry.Polygon'
must not be empty.

400 ValidationException circle can not cross
antimeridian

'Geometry.Circle'
must not cross
antimeridian. Cut it in
two such that neither
part's representation
crosses the antimerid
ian.

400 ValidationException polygon can not cross
antimeridian

'Geometry.Polygon'
must not cross
antimeridian. Cut it in
two such that neither
part's representation
crosses the antimerid
ian.

400 ValidationException polygon can not have
interior rings (holes),
remove holes

'Geometry.Polygon'
must not have
interior rings (holes).
For more information
about interior rings
see https://www.rfc-
editor.org/rfc/rfc79
46.html#appendix-A
.3.

400 ValidationException polygon ring is not
closed

'Geometry.Polygon'
contains an open
ring. Close the ring
by ensuring the first
and last positions are
equal.

Error message updates 234

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException polygon ring has
more than 1000
vertices

'Geometry.Polygon'
must not have more
than 1000 vertices.

400 ValidationException polygon ring
has fewer than 4
positions

Number of vertices in
'Geometry.Polygon'
must be greater or
equal to 4.

400 ValidationException invalid center 'Geometry.Circle.C
enter' must be a valid
position (longitude/
latitude pair).

400 ValidationException radius must be
greater than 0m

'Geometry.Circle.R
adius' must be
greater than 0 m.

400 ValidationException longitude range
should be between
-180 and 180 degrees

Longitude must be
between -180 and
180 degrees, but
was set to <Provided
Longitude>.

400 ValidationException latitude range should
be between -90 and
90 degrees

Latitude must be
between -90 and
90 degrees, but was
set to <Provided
Longitude>.

400 ValidationException polygon exterior ring
is expected to be
counter clockwise

'Geometry.Polygon'
must be oriented
counter-clockwise.

Error message updates 235

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException polygon interior ring
should be clockwise
oriented

'Geometry.Polygon'
must be oriented
clockwise.

400 ValidationException radius must be less
than or equal to
1000km

'Geometry.Circle.R
adius' must be less
than or equal to 1000
km.

400 ValidationException timestamp.Parse()
error

'SampleTime'
must follow the
format YYYY-MM-D
DThh:mm:ss.sssZ.

400 ValidationException invalid input 'SourceArn' must
refer to a tracker
resource.

400 ValidationException arn: invalid prefix 'SourceArn' must be
a valid ARN. For more
information, see
https://docs.aws.a
mazon.com/general/
latest/gr/AWS-arns
-and-namespaces.ht
ml.

400 ValidationException arn: not enough
sections

'SourceArn' must be
a valid ARN. For more
information, see
https://docs.aws.a
mazon.com/general/
latest/gr/AWS-arns
-and-namespaces.ht
ml.

Error message updates 236

Amazon Location Service Developer Guide

Error code Exception Old error message New error message

400 ValidationException invalid resource part 'SourceArn' must
refer to a tracker
resource.

402 ServiceQuotaExceed
edException

Geofence collections
per account exceeded
quota limits. For
more info, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/

Geofence collectio
n resources have
exceeded the quota
per account per
region. For more
information, see
https://aws.amazon
.com/premiumsuppor
t/knowledge-center
/manage-service-li
mits/.

409 ConflictException collection already
exists: <Geofence
CollectionName>

Geofence Collectio
n already exists:
<GeofenceCollectio
nName>.

409 ConflictException Resource conflict
error

Geofence already
exists: <Geofence
Name>.

Code examples and tutorials for working with Amazon Location
Service

This topic shows a list of code examples, tutorials, and blog posts to help you learn about Amazon
Location Service. Each code example includes a description of how it works.

You can find additional samples on the AWS Geospatial GitHub page, the AWS samples GitHub
page for Amazon Location, and on the AWS blog site.

Code examples 237

https://github.com/orgs/aws-geospatial/repositories
https://github.com/aws-samples/amazon-location-samples
https://github.com/aws-samples/amazon-location-samples
https://aws.amazon.com/blogs/mobile/category/mobile-services/amazon-location/

Amazon Location Service Developer Guide

Note

It is good to understand the difference between the AWS Geospatial GitHub page and the
AWS samples GitHub page.

• Geospatial GitHub – The AWS Geospatial GitHub page includes samples that are created
and maintained by the Amazon Location Service team.

• Samples GitHub – The AWS samples GitHub page for Amazon Location includes samples
that were created for Amazon Location, but may or may not be actively maintained.

The quick start tutorial is a good place to start before using other samples, as it shows how to
complete prerequisites that are useful for most of the samples.

Topics

• Amazon Location Demo site

• Tutorial: Quick start

• Tutorial: Database enrichment

• Example: Explore app

• Example: Style a map

• Example: Draw markers

• Example: Draw clustered points

• Example: Draw a polygon

• Example: Change the map language

• Blog: Estimated delivery time notifications

• Example: Stream Position Updates

• Example: Geofencing and Tracking mobile application

Code examples 238

https://github.com/orgs/aws-geospatial/repositories
https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

Amazon Location Demo site

You can see demos with source code of Amazon Location Service in action at the Amazon Location
Demo site. This site includes a hosted web demo, and also a demo app for Android.

You can also find a wide array of samples, filterable by features, language, and platform in the
site's Samples page.

Tutorial: Quick start

Amazon Location Demo site 239

https://location.aws.com/
https://location.aws.com/
https://location.aws.com/demo
https://play.google.com/store/apps/details?id=com.aws.amazonlocation
https://location.aws.com/samples

Amazon Location Service Developer Guide

There are quick start tutorials available for web, iOS, and Android devices. For each platform, the
tutorial shows you how to add an interactive map to an application, and how to make calls to the
Amazon Location Service APIs from your application. The tutorial is available for JavaScript in a
static webpage, Kotlin for an Android phone application, or Swift for an iOS application.

• JavaScript for a static webpage documentation link: Creating a web app

• Kotlin for an Android application documentation link: Quick start with Amazon Location Service

• Swift for an iOS app documentation link: Creating an iOS app

Tutorial: Database enrichment

This tutorial shows you how to use Amazon Location Service, called from AWS Lambda to
normalize addresses and add latitude and longitude to records in an Amazon Aurora database.
Uses Amazon Aurora and AWS Lambda.

Documentation link: Amazon Aurora PostgreSQL user-defined functions for Amazon Location
Service

Tutorial: Database enrichment 240

Amazon Location Service Developer Guide

Example: Explore app

One of the best ways to learn about the functionality of Amazon Location Service is to use the
Explore functionality within the Amazon Location console. This full web application example
mimics the maps, places, routes, geofences, and trackers functionality from the console to show
you how to recreate these features in your own app. Uses Amplify, React, and JavaScript.

Samples GitHub link: Explore sample application

Example: Explore app 241

https://console.aws.amazon.com/location/explore/home
https://github.com/aws-samples/amazon-location-samples/tree/main/amplify-ui-geo-explore

Amazon Location Service Developer Guide

Example: Style a map

This code example shows how to switch between a satellite map and a vector road map, using
MapLibre in JavaScript. Uses MapLibre, the Amazon Location authentication helper, and JavaScript.

Geospatial GitHub link: Interactive map with style switching

Example: Draw markers

Example: Style a map 242

https://github.com/aws-geospatial/amazon-location-samples-js/tree/main/map-style-change

Amazon Location Service Developer Guide

This code example shows Amazon Locker locations in Vancouver, BC, Canada. It shows how to draw
markers at point locations. Uses MapLibre, Node.js, React, the Amazon Location authentication
helper and JavaScript.

Geospatial GitHub link: Interactive map with markers at points

Example: Draw clustered points

Using USGS earthquake data, this code example shows how to draw points that cluster together
when they are close together on the map. Uses MapLibre, Node.js, React, Amplify, and JavaScript.

Samples GitHub link: Interactive map with clusters of points

Example: Draw a polygon

This code example shows how to draw a polygon on the map. Uses MapLibre, Node.js, React, the
Amazon Location authentication helper, and JavaScript.

Geospatial GitHub link: Interactive map with polygons

Example: Draw clustered points 243

https://github.com/aws-geospatial/amazon-location-samples-react/tree/main/map-with-markers
https://github.com/aws-samples/amazon-location-samples/tree/main/react-map-gl-clusters
https://github.com/aws-geospatial/amazon-location-samples-react/tree/main/map-with-geojson

Amazon Location Service Developer Guide

Example: Change the map language

This code example shows how you can change the display language of maps in Amazon Location.
Uses Amplify, React, and MapLibre.

Samples GitHub link: Change Map Language Sample

Blog: Estimated delivery time notifications

Example: Change the map language 244

https://github.com/aws-samples/amazon-location-samples/tree/main/react-map-gl-change-map-language?

Amazon Location Service Developer Guide

This blog post shows different ways to notify customers with estimated delivery times. It explains
using routes to show estimated driving time, and then using trackers and geofences to notify when
a driver gets close to the customer. Uses Amplify, React, Amazon EventBridge, and Amazon Simple
Notification Service (Amazon SNS).

Blog link: Estimated Time of Arrival and Proximity Notifications

Example: Stream Position Updates

Kinesis Stream To Tracker App: This sample demonstrates how to use Kinesis Data Stream to post
tracker updates with Amazon Location Service. The sample is a deployable lambda application
written in python that can be integrated with a Kinesis Data Stream to consume the Kinesis events
and batch update device positions.

Repository link: Amazon Location Amazon Kinesis Data Streams Stream To Tracker App

For more information on tracking and geofences, see the Geofences and Trackers documentation.
Developers can deploy the app by following the AWS's Serverless Application Repository
documentation, or dicretly from the Lambda console.

Device Position Streaming Sample App: This code example shows how to stream device position
data to a Kinesis Data Stream and how geofence notifications work. This app depends on the
Kinesis Stream to Tracker Sample App, listed above, to be running for the streamed tracker
positions to be updated in Amazon Location Service.

Repository link: Amazon Location Device Position Streaming Sample App

Example: Stream Position Updates 245

https://aws.amazon.com/blogs/mobile/implementing-estimated-time-of-arrival-and-proximity-notifications-for-delivery-using-amazon-location-service/
https://github.com/aws-geospatial/amazon-location-stream-device-data-to-tracker-lambda
https://docs.aws.amazon.com/location/latest/developerguide/geofence-tracker-concepts.html
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-how-to-consume.html
https://us-east-1.console.aws.amazon.com/lambda/home?region=us-east-1#/create/app?applicationId=arn:aws:serverlessrepo:us-east-1:003883091127:applications/kinesis-stream-device-data-to-amazon-location-tracker
https://github.com/aws-geospatial/amazon-location-samples-react/tree/main/tracking-data-streaming

Amazon Location Service Developer Guide

Example: Geofencing and Tracking mobile application

This sample application shows how a tracker and geofence interact using a combination of
Lambda, AWS IoT and Amazon Location features. There are tutorials avaible for iOS and Android.

Tutorial link: Sample Geofence and Tracker mobile application

Example: Geofencing and Tracking mobile application 246

https://docs.aws.amazon.com/location/latest/developerguide/geofence-tracking-tutorials.html

Amazon Location Service Developer Guide

How to use Amazon Location Service

You can use Amazon Location Service capabilities to complete geographic and location-
related tasks. You can then combine these tasks to address more complex uses cases such as
geomarketing, delivery, and asset tracking.

When you're ready to build location features into your application, use the following methods to
use the Amazon Location Service functionality, depending on your goals and inclinations:

• Exploration tools – If you want to experiment with Amazon Location resources, the following
tools are the fastest way to access and try out the APIs:

• The Amazon Location console provides a variety of quick-access tools. You can create and
manage your resources and try the APIs using the Explore page. The console is also useful
for creating resources (typically a one-time task) in preparation for using any of the other
methods described later.

• The AWS Command Line Interface (CLI) lets you create resources and access the Amazon
Location APIs using a terminal. The AWS CLI handles authentication when you configure it with
your credentials.

• You can see code examples and tutorials that show how to perform tasks using the Amazon
Location Service APIs. This includes an example that mimics much of the functionality of the
Explore page in the console.

• Platform SDKs – If you aren't visualizing data on a map, you can use any of the AWS standard
tools to build on AWS.

• The following SDKs are available: C++, Go, Java, JavaScript, .NET, Node.js, PHP, Python, and
Ruby.

• Frontend SDKs and libraries – If you want to use Amazon Location to build an application on a
mobile platform or visualize data on a map on any platform, you have the following options:

• The AWS Amplify libraries integrate Amazon Location within iOS, Android, and JavaScript
web applications.

• The MapLibre libraries let you render client-side maps into iOS, Android, and JavaScript web
applications using Amazon Location.

• Tangram ES libraries enable you to render 2D and 3D maps from vector data using OpenGL
ES within iOS and Android web applications. There is also Tangram for JavaScript web
applications.

247

https://console.aws.amazon.com/location/home
https://console.aws.amazon.com/location/explore/home
https://aws.amazon.com/cli/
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.amplify.aws/guides/location-service/setting-up-your-app/q/platform/ios
https://docs.amplify.aws/guides/location-service/setting-up-your-app/q/platform/android
https://docs.amplify.aws/guides/location-service/setting-up-your-app/q/platform/js
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-mapbox-ios.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-mapbox-android.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-mapbox-gl-js.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-tangram-es-ios.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-tangram-es-android.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-tangram-js.html

Amazon Location Service Developer Guide

• Sending direct HTTPS requests – If you are working with a programming language for which
there is no SDK available, or if you want more control over how you send a request to AWS, you
can access Amazon Location by sending direct HTTPS requests authenticated by the Signature
Version 4 signing process. For more information on the Signature Version 4 signing process, see
the AWS General Reference.

This chapter describes many of the tasks that are common to applications using location data. The
common use cases section describes how to combine these with other AWS services to achieve
more complex use cases.

Topics

• Prerequisites for using Amazon Location Service

• Using Amazon Location Maps in your application

• Searching place and geolocation data using Amazon Location

• Calculating routes using Amazon Location Service

• Geofencing an area of interest using Amazon Location

• Tagging your Amazon Location Service resources

• Granting access to Amazon Location Service

• Monitoring Amazon Location Service

• Creating Amazon Location Service resources with AWS CloudFormation

Prerequisites for using Amazon Location Service

This section describes what you need to do to use Amazon Location Service. You must have an AWS
account and have set up access to Amazon Location for users that want to use it.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Account prerequisites 248

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/location/latest/developerguide/common-usecases.html
https://portal.aws.amazon.com/billing/signup

Amazon Location Service Developer Guide

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

Create a user with administrative access 249

https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Amazon Location Service Developer Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant access to Amazon Location Service

Your non-admin users have no permissions by default. Before they can access Amazon Location,
you must grant permission by attaching an IAM policy with specific permissions. Make sure to
follow the principle of least privilege when granting access to resources.

Note

For information about giving unauthenticated users access to Amazon Location Service
functionality (for example, in a web-based application), see Granting access to Amazon
Location Service.

The following example policy gives a user permission to access all Amazon Location operations. For
more examples, see Identity-based policy examples for Amazon Location Service.

Grant access to Amazon Location Service 250

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon Location Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "geo:*"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

When creating applications that use Amazon Location Service, you may need some users to have
unauthenticated access. For these use cases, see Enabling unauthenticated access using Amazon
Cognito.

Using Amazon Location Maps in your application

Amazon Location maps are cost-effective and interactive. You can replace an existing map in your
application to save money, or add a new one to display location-based data visually, such as your
store location.

Using maps 251

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Location Service Developer Guide

Amazon Location Service lets you choose a data provider for map operations by creating and
configuring a map resource. The map resource configures the data provider and the style that is
used to render the map.

After you create your resource, you can send requests by using the AWS SDK directly, or by using a
library made specifically for rendering maps in your environment.

Note

For an overview of map concepts, see Maps.

Topics

• Prerequisites

• Display a map in your application

• Drawing data features on a map

• Setting extents for a map using MapLibre

Using maps 252

Amazon Location Service Developer Guide

• Managing your map resources

Prerequisites

Before you display a map in your application follow the prerequisite steps:

Topics

• Create a map resource

• Authenticating your requests

Create a map resource

To use a map in your application you must have a map resource, which specifies the map style and
data provider to use in your maps.

Note

If your application is tracking or routing assets you use in your business, such as delivery
vehicles or employees, you must not use Esri as your geolocation provider. See section 82
of the AWS service terms for more details.

You can create a map resource using the Amazon Location Service console, the AWS CLI, or the
Amazon Location APIs.

Console

To create a map resource using the Amazon Location Service console

1. In the Amazon Location console, on the Maps page, choose Create map to preview map
styles.

2. Add a name and description for the new map resource.

3. Choose a map style.

Prerequisites 253

https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/maps/home

Amazon Location Service Developer Guide

Note

If your application is tracking or routing assets you use in your business, such as
delivery vehicles or employees, you must not use Esri as your geolocation provider.
See section 82 of the AWS service terms for more details.

4. Choose from the Political views to use.

5. Agree to the Amazon Location Terms and Conditions, then choose Create map. You can
interact with the map that you've chosen: zoom in, zoom out, or pan in any direction.

6. To allow your users to switch styles (for example, to allow them to switch between satellite
imagery and vector style), you must create a map resource for each style.

You can delete resources with map styles that you don’t want to use on the Maps home
page in the console.

API

To create a map resource using the Amazon Location APIs

Use the CreateMap operation from the Amazon Location APIs.

The following example is an API request to create a map resource called ExampleMap using the
VectorEsriStreets map style.

POST /maps/v0/maps HTTP/1.1
Content-type: application/json

{
 "Configuration": {
 "Style": "VectorEsriStreets"
 },
 "MapName": "ExampleMap"
 }
}

Prerequisites 254

https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/maps/home
https://console.aws.amazon.com/location/maps/home
https://docs.aws.amazon.com/location/latest/APIReference/API_CreateMap.html

Amazon Location Service Developer Guide

Note

If your application is tracking or routing assets you use in your business, such as delivery
vehicles or employees, you must not use Esri as your geolocation provider. See section
82 of the AWS service terms for more details.

AWS CLI

To create a map resource using AWS CLI commands

Use the create-map command.

The following example creates a map resource called ExampleMap using VectorEsriStreets
as the map style.

aws location \
 create-map \
 --configuration Style="VectorEsriStreets" \
 --map-name "ExampleMap"

Note

If your application is tracking or routing assets you use in your business, such as delivery
vehicles or employees, you must not use Esri as your geolocation provider. See section
82 of the AWS service terms for more details.

Authenticating your requests

Once you create a map resource and you're ready to begin building location features into your
application, you need to choose how you would authenticate your requests.

Note

Most maps front end applications require unauthenticated access to the maps or other
features of Amazon Location Service. Depending on your application, you might want to
use AWS Signature v4 to authenticate requests, or you can use Amazon Cognito or Amazon

Prerequisites 255

https://aws.amazon.com/service-terms
https://docs.aws.amazon.com/cli/latest/reference/location/create-map.html
https://aws.amazon.com/service-terms

Amazon Location Service Developer Guide

Location API keys for unauthenticated use. To learn more about all of these options, see
Granting access to Amazon Location Service.

Display a map in your application

This section provides tutorials on how to use map rendering tools to display a map in your mobile
or web application when using Amazon Location APIs. As mentioned in the How to use Amazon
Location Service topic, you have a choice of libraries to use when rendering maps with Amazon
Location, including Amplify, MapLibre, and Tangram.

Do one of the following to display a map in your application:

• The most direct way to display a map in your web and mobile front end applications is to use
MapLibre. You can follow the MapLibre tutorials or even the Quick start tutorial to learn how to
use MapLibre.

• If you are an existing AWS Amplify developer, you may want to use the Amplify Geo SDK. To
learn more, follow the Amplify tutorial.

• If you are an existing user of Tangram, and want to continue to use it to render your map, while
moving to Amazon Location Service, follow the Tangram tutorial.

Topics

• Using the MapLibre library with Amazon Location Service

• Using the Amplify library with Amazon Location Service

• Using Tangram with Amazon Location Service

Using the MapLibre library with Amazon Location Service

The following tutorials walk you through using the MapLibre Library with Amazon Location.

Topics

• Using MapLibre GL JS with Amazon Location Service

• Using the MapLibre Native SDK for Android with Amazon Location Service

• Using the MapLibre Native SDK for iOS with Amazon Location Service

Displaying maps 256

https://docs.aws.amazon.com/location/latest/developerguide/tutorial-map-amplify.html

Amazon Location Service Developer Guide

Using MapLibre GL JS with Amazon Location Service

Use MapLibre GL JS to embed client-side maps into web applications.

MapLibre GL JS is an open-source JavaScript library that's compatible with the styles and tiles
provided by the Amazon Location Service Maps API. You can integrate MapLibre GL JS within a
basic HTML or JavaScript application to embed customizable and responsive client-side maps.

This tutorial describes how to integrate MapLibre GL JS with Amazon Location within a basic HTML
and JavaScript application. The same libraries and techniques presented in this tutorial also apply
to frameworks, such as React and Angular.

The sample application for this tutorial is available as part of the Amazon Location Service samples
repository on GitHub.

Building the application: Scaffolding

This tutorial creates a web application that uses JavaScript to build a map on an HTML page.

Begin by creating an HTML page (index.html) that includes the map's container:

• Enter a div element with an id of map to apply the map's dimensions to the map view. The
dimensions are inherited from the viewport.

<html>
 <head>
 <style>
 body {
 margin: 0;
 }

 #map {
 height: 100vh; /* 100% of viewport height */
 }
 </style>
 </head>
 <body>
 <!-- map container -->
 <div id="map" />
 </body>
</html>

Displaying maps 257

https://github.com/maplibre/maplibre-gl-js
https://reactjs.org/
https://angular.io/
https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

Building the application: Adding dependencies

Add the following dependencies to your application:

• MapLibre GL JS (v3.x), and its associated CSS.

• The Amazon Location JavaScript Authentication helper.

<!-- CSS dependencies -->
<link
 href="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.css"
 rel="stylesheet"
/>
<!-- JavaScript dependencies -->
<script src="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.js"></script>
<script src="https://unpkg.com/@aws/amazon-location-authentication-helper.js"></script>
<script>
 // application-specific code
</script>

This creates an empty page with the map's container.

Building the application: Configuration

To configure your application using JavaScript:

1. Enter the names and identifiers of your resources.

// Cognito Identity Pool ID
const identityPoolId = "us-east-1:54f2ba88-9390-498d-aaa5-0d97fb7ca3bd";
// Amazon Location Service Map name
const mapName = "ExampleMap";

2. Instantiate a credential provider using the unauthenticated identity pool you created in Using
maps - Step 2, Set up authentication. We will put this in a function called initializeMap,
that will also contain other map initialization code, added in the next step

// extract the Region from the Identity Pool ID; this will be used for both Amazon
 Cognito and Amazon Location
AWS.config.region = identityPoolId.split(":")[0];

async function initializeMap() {

Displaying maps 258

Amazon Location Service Developer Guide

 // Create an authentication helper instance using credentials from Cognito
 const authHelper = await
 amazonLocationAuthHelper.withIdentityPoolId(identityPoolId);

 // ... more here, later
}

Building the application: Map initialization

For the map to display after the page is loaded, you must initialize the map. You can adjust the
initial map location, add additional controls, and overlay data.

async function initializeMap() {
 // Create an authentication helper instance using credentials from Cognito
 const authHelper = await amazonLocationAuthHelper.withIdentityPoolId(identityPoolId);

 // Initialize the map
 const map = new maplibregl.Map({
 container: "map",
 center: [-123.1187, 49.2819], // initial map centerpoint
 zoom: 10, // initial map zoom
 style: 'https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/style-
descriptor',
 ...authHelper.getMapAuthenticationOptions(), // authentication, using cognito
 });

 map.addControl(new maplibregl.NavigationControl(), "top-left");
}

initializeMap();

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and sources.grabmaptiles.attribution keys.
MapLibre GL JS will automatically provide attribution. When using Amazon Location
resources with data providers, make sure to read the service terms and conditions.

Displaying maps 259

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

Running the application

You can run this sample application by using it in a local web server, or opening it in a browser.

To use a local web server, you can use npx, because it's installed as part of Node.js. You can use
npx serve from within the same directory as index.html. This serves the application on
localhost:5000.

Note

If the policy you created for your unauthenticated Amazon Cognito role includes a
referer condition, you might be blocked from testing with localhost: URLs. In this
case. you can test with a web server that provides a URL that is in your policy.

After completing the tutorial, the final application looks like the following example.

<!-- index.html -->
<html>
 <head>
 <link href="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.css"
 rel="stylesheet" />
 <style>
 body {
 margin: 0;
 }
 #map {
 height: 100vh;
 }
 </style>
 </head>

 <body>
 <!-- map container -->
 <div id="map" />
 <!-- JavaScript dependencies -->
 <script src="https://unpkg.com/maplibre-gl@3.x/dist/maplibre-gl.js"></script>
 <script src="https://unpkg.com/@aws/amazon-location-authentication-helper.js"></
script>
 <script>
 // configuration

Displaying maps 260

Amazon Location Service Developer Guide

 const identityPoolId = "us-east-1:54f2ba88-9390-498d-aaa5-0d97fb7ca3bd"; //
 Cognito Identity Pool ID
 const mapName = "ExampleMap"; // Amazon Location Service Map Name

 // extract the region from the Identity Pool ID
 const region = identityPoolId.split(":")[0];

 async function initializeMap() {
 // Create an authentication helper instance using credentials from Cognito
 const authHelper = await
 amazonLocationAuthHelper.withIdentityPoolId(identityPoolId);

 // Initialize the map
 const map = new maplibregl.Map({
 container: "map",
 center: [-123.115898, 49.295868],
 zoom: 10,
 style: `https://maps.geo.${region}.amazonaws.com/maps/v0/maps/${mapName}/
style-descriptor`,
 ...authHelper.getMapAuthenticationOptions(),
 });
 map.addControl(new maplibregl.NavigationControl(), "top-left");
 }

 initializeMap();
 </script>
 </body>
</html>

Running this application displays a full-screen map using your chosen map style. This sample is
available in the Amazon Location Service samples repository on GitHub.

Using the MapLibre Native SDK for Android with Amazon Location Service

Use MapLibre Native SDK to embed interactive maps into your Android applications.

The MapLibre Native SDK for Android is a library based on Mapbox Native, and is compatible with
the styles and tiles provided by the Amazon Location Service Maps API. You can integrate MapLibre
Native SDK for Android to embed interactive map views with scalable, customizable vector maps in
your Android applications.

Displaying maps 261

https://github.com/aws-samples/amazon-location-samples
https://github.com/maplibre/maplibre-gl-native
https://github.com/mapbox/mapbox-gl-native

Amazon Location Service Developer Guide

This tutorial describes how to integrate the MapLibre Native SDK for Android with Amazon
Location. The sample application for this tutorial is available as part of the Amazon Location
Service samples repository on GitHub.

Building the application: Initialization

To initialize your application:

1. Create a new Android Studio project from the Empty Activity template.

2. Ensure that Kotlin is selected for the project language.

3. Select a Minimum SDK of API 14: Android 4.0 (Ice Cream Sandwich) or newer.

4. Open Project Structure, then go to File > Project Structure... to choose the Dependencies
section.

5. With <All Modules> selected,then choose the + button to add a new Library Dependency.

6. Add AWS Android SDK version 2.20.0 or later. For example: com.amazonaws:aws-android-
sdk-core:2.20.0

7. Add the MapLibre Native SDK for Android version 9.4.0 or later. For example:
org.maplibre.gl:android-sdk:9.4.0

8. At the project level of your build.gradle file, add the following maven repository to access the
MapLibre packages for Android:

allprojects {
 repositories {
 // Retain your existing repositories
 google()
 jcenter()

 // Declare the repositories for MapLibre
 mavenCentral()
 }
}

Building the application: Configuration

To configure your application with your resources and AWS Region:

<?xml version="1.0" encoding="utf-8"?>
<resources>

Displaying maps 262

https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

 <string name="identityPoolId">us-east-1:54f2ba88-9390-498d-aaa5-0d97fb7ca3bd</
string>
 <string name="mapName">ExampleMap</string>
 <string name="awsRegion">us-east-1</string>
</resources>

Building the application: Activity layout

Edit app/src/main/res/layout/activity_main.xml:

• Add a MapView, which renders the map. This will also set the map's initial center point.

• Add a TextView, which displays attribution.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <com.mapbox.mapboxsdk.maps.MapView
 android:id="@+id/mapView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:mapbox_cameraTargetLat="49.2819"
 app:mapbox_cameraTargetLng="-123.1187"
 app:mapbox_cameraZoom="12"
 app:mapbox_uiAttribution="false"
 app:mapbox_uiLogo="false" />

 <TextView
 android:id="@+id/attributionView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#80808080"
 android:padding="5sp"
 android:textColor="@android:color/black"
 android:textSize="10sp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"

Displaying maps 263

Amazon Location Service Developer Guide

 tools:ignore="SmallSp" />
</androidx.constraintlayout.widget.ConstraintLayout>

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and source.grabmaptiles.attribution keys. When
using Amazon Location resources with data providers, make sure to read the service terms
and conditions.

Building the application: Request transformation

Create a class named SigV4Interceptor to intercept AWS requests and sign them using
Signature Version 4. This will be registered with the HTTP client used to fetch map resources when
the Main Activity is created.

package aws.location.demo.okhttp

import com.amazonaws.DefaultRequest
import com.amazonaws.auth.AWS4Signer
import com.amazonaws.auth.AWSCredentialsProvider
import com.amazonaws.http.HttpMethodName
import com.amazonaws.util.IOUtils
import okhttp3.HttpUrl
import okhttp3.Interceptor
import okhttp3.Request
import okhttp3.Response
import okio.Buffer
import java.io.ByteArrayInputStream
import java.net.URI

class SigV4Interceptor(
 private val credentialsProvider: AWSCredentialsProvider,
 private val serviceName: String
) : Interceptor {
 override fun intercept(chain: Interceptor.Chain): Response {
 val originalRequest = chain.request()

Displaying maps 264

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Location Service Developer Guide

 if (originalRequest.url().host().contains("amazonaws.com")) {
 val signer = if (originalRequest.url().encodedPath().contains("@")) {
 // the presence of "@" indicates that it doesn't need to be double URL-
encoded
 AWS4Signer(false)
 } else {
 AWS4Signer()
 }

 val awsRequest = toAWSRequest(originalRequest, serviceName)
 signer.setServiceName(serviceName)
 signer.sign(awsRequest, credentialsProvider.credentials)

 return chain.proceed(toSignedOkHttpRequest(awsRequest, originalRequest))
 }

 return chain.proceed(originalRequest)
 }

 companion object {
 fun toAWSRequest(request: Request, serviceName: String): DefaultRequest<Any> {
 // clone the request (AWS-style) so that it can be populated with
 credentials
 val dr = DefaultRequest<Any>(serviceName)

 // copy request info
 dr.httpMethod = HttpMethodName.valueOf(request.method())
 with(request.url()) {
 dr.resourcePath = uri().path
 dr.endpoint = URI.create("${scheme()}://${host()}")

 // copy parameters
 for (p in queryParameterNames()) {
 if (p != "") {
 dr.addParameter(p, queryParameter(p))
 }
 }
 }

 // copy headers
 for (h in request.headers().names()) {
 dr.addHeader(h, request.header(h))
 }

Displaying maps 265

Amazon Location Service Developer Guide

 // copy the request body
 val bodyBytes = request.body()?.let { body ->
 val buffer = Buffer()
 body.writeTo(buffer)
 IOUtils.toByteArray(buffer.inputStream())
 }

 dr.content = ByteArrayInputStream(bodyBytes ?: ByteArray(0))

 return dr
 }

 fun toSignedOkHttpRequest(
 awsRequest: DefaultRequest<Any>,
 originalRequest: Request
): Request {
 // copy signed request back into an OkHttp Request
 val builder = Request.Builder()

 // copy headers from the signed request
 for ((k, v) in awsRequest.headers) {
 builder.addHeader(k, v)
 }

 // start building an HttpUrl
 val urlBuilder = HttpUrl.Builder()
 .host(awsRequest.endpoint.host)
 .scheme(awsRequest.endpoint.scheme)
 .encodedPath(awsRequest.resourcePath)

 // copy parameters from the signed request
 for ((k, v) in awsRequest.parameters) {
 urlBuilder.addQueryParameter(k, v)
 }

 return builder.url(urlBuilder.build())
 .method(originalRequest.method(), originalRequest.body())
 .build()
 }
 }
}

Displaying maps 266

Amazon Location Service Developer Guide

Building the application: Main activity

The Main Activity is responsible for initializing the views that will be displayed to users. This
involves:

• Instantiating an Amazon Cognito CredentialsProvider.

• Registering the Signature Version 4 interceptor.

• Configuring the map by pointing it at a map style descriptor, and displaying appropriate
attribution.

MainActivity is also responsible for forwarding life cycle events to the map view, allowing it to
preserve the active viewport between invocations.

package aws.location.demo.maplibre

import android.os.Bundle
import android.widget.TextView
import androidx.appcompat.app.AppCompatActivity
import aws.location.demo.okhttp.SigV4Interceptor
import com.amazonaws.auth.CognitoCachingCredentialsProvider
import com.amazonaws.regions.Regions
import com.mapbox.mapboxsdk.Mapbox
import com.mapbox.mapboxsdk.maps.MapView
import com.mapbox.mapboxsdk.maps.Style
import com.mapbox.mapboxsdk.module.http.HttpRequestUtil
import okhttp3.OkHttpClient

private const val SERVICE_NAME = "geo"

class MainActivity : AppCompatActivity() {
 private var mapView: MapView? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 // configuration
 val identityPoolId = getString(R.string.identityPoolId)
 val region = getString(R.string.awsRegion)
 val mapName = getString(R.string.mapName)

 // Credential initialization

Displaying maps 267

Amazon Location Service Developer Guide

 val credentialProvider = CognitoCachingCredentialsProvider(
 applicationContext,
 identityPoolId,
 Regions.fromName(identityPoolId.split(":").first())
)

 // initialize MapLibre
 Mapbox.getInstance(this, null)
 HttpRequestUtil.setOkHttpClient(
 OkHttpClient.Builder()
 .addInterceptor(SigV4Interceptor(credentialProvider, SERVICE_NAME))
 .build()
)

 // initialize the view
 setContentView(R.layout.activity_main)

 // initialize the map view
 mapView = findViewById(R.id.mapView)
 mapView?.onCreate(savedInstanceState)
 mapView?.getMapAsync { map ->
 map.setStyle(
 Style.Builder()
 .fromUri("https://maps.geo.${region}.amazonaws.com/maps/v0/maps/
${mapName}/style-descriptor")
) { style ->
 findViewById<TextView>(R.id.attributionView).text =
 style.sources.first()?.attribution
 }
 }
 }

 override fun onStart() {
 super.onStart()
 mapView?.onStart()
 }

 override fun onResume() {
 super.onResume()
 mapView?.onResume()
 }

 override fun onPause() {
 super.onPause()

Displaying maps 268

Amazon Location Service Developer Guide

 mapView?.onPause()
 }

 override fun onStop() {
 super.onStop()
 mapView?.onStop()
 }

 override fun onSaveInstanceState(outState: Bundle) {
 super.onSaveInstanceState(outState)
 mapView?.onSaveInstanceState(outState)
 }

 override fun onLowMemory() {
 super.onLowMemory()
 mapView?.onLowMemory()
 }

 override fun onDestroy() {
 super.onDestroy()
 mapView?.onDestroy()
 }
}

Running this application displays a full-screen map in the style of your choosing. This sample is
available as part of the Amazon Location Service samples repository on GitHub.

Using the MapLibre Native SDK for iOS with Amazon Location Service

Use MapLibre Native SDK for iOS to embed client-side maps into iOS applications.

The MapLibre Native SDK for iOS is a library based on Mapbox GL Native, and is compatible with
the styles and tiles provided by the Amazon Location Service Maps API. You can integrate MapLibre
Native SDK for iOS to embed interactive map views with scalable, customizable vector maps into
your iOS applications.

This tutorial describes how to integrate the MapLibre Native SDK for iOS with Amazon Location.
The sample application for this tutorial is available as part of the Amazon Location Service samples
repository on GitHub.

Building the application: Initialization

To initialize your application:

Displaying maps 269

https://github.com/aws-samples/amazon-location-samples
https://github.com/maplibre/maplibre-gl-native
https://github.com/mapbox/mapbox-gl-native
https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

1. Create a new Xcode project from the App template.

2. Select SwiftUI for its interface.

3. Select SwiftUI application for its Life Cycle.

4. Select Swift for its language.

Adding MapLibre dependencies using Swift Packages

To add a package dependency to your Xcode project:

1. Navigate to File > Swift Packages > Add Package Dependency.

2. Enter the repository URL: https://github.com/maplibre/maplibre-gl-native-
distribution

Note

For more information about Swift Packages see Adding Package Dependencies to Your
App at Apple.com

3. In your terminal, install CocoaPods:

sudo gem install cocoapods

4. Navigate to your application's project directory and initialize the Podfile with the CocoaPods
package manager:

pod init

5. Open the Podfile to add AWSCore as a dependency:

platform :ios, '12.0'

target 'Amazon Location Service Demo' do
 use_frameworks!

 pod 'AWSCore'
end

6. Download and install dependencies:

Displaying maps 270

https://developer.apple.com/documentation/xcode/adding_package_dependencies_to_your_app
https://developer.apple.com/documentation/xcode/adding_package_dependencies_to_your_app

Amazon Location Service Developer Guide

pod install --repo-update

7. Open the Xcode workspace that CocoaPods created:

xed .

Building the application: Configuration

Add the following keys and values to Info.plist to configure the application:

Key Value

AWSRegion us-east-1

IdentityPoolId us-east-1:54f2ba88-9390-498d-aaa5-0d
97fb7ca3bd

MapName ExampleMap

Building the application: ContentView layout

To render the map, edit ContentView.swift:

• Add a MapView which renders the map.

• Add a TextField which displays attribution.

This also sets the map's initial center point.

import SwiftUI

struct ContentView: View {
 @State private var attribution = ""

 var body: some View {
 MapView(attribution: $attribution)
 .centerCoordinate(.init(latitude: 49.2819, longitude: -123.1187))
 .zoomLevel(12)
 .edgesIgnoringSafeArea(.all)

Displaying maps 271

Amazon Location Service Developer Guide

 .overlay(
 TextField("", text: $attribution)
 .disabled(true)
 .font(.system(size: 12, weight: .light, design: .default))
 .foregroundColor(.black)
 .background(Color.init(Color.RGBColorSpace.sRGB, white: 0.5,
 opacity: 0.5))
 .cornerRadius(1),
 alignment: .bottomTrailing)
 }
}

struct ContentView_Previews: PreviewProvider {
 static var previews: some View {
 ContentView()
 }
}

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and source.grabmaptiles.attribution keys. When
using Amazon Location resources with data providers, make sure to read the service terms
and conditions.

Building the application: Request transformation

Create a new Swift file named AWSSignatureV4Delegate.swift containing the following class
definition to intercept AWS requests and sign them using Signature Version 4. An instance of this
class will be assigned as the offline storage delegate, which is also responsible for rewriting URLs,
in the map view.

import AWSCore
import Mapbox

class AWSSignatureV4Delegate : NSObject, MGLOfflineStorageDelegate {
 private let region: AWSRegionType
 private let identityPoolId: String

Displaying maps 272

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Location Service Developer Guide

 private let credentialsProvider: AWSCredentialsProvider

 init(region: AWSRegionType, identityPoolId: String) {
 self.region = region
 self.identityPoolId = identityPoolId
 self.credentialsProvider = AWSCognitoCredentialsProvider(regionType: region,
 identityPoolId: identityPoolId)
 super.init()
 }

 class func doubleEncode(path: String) -> String? {
 return path.addingPercentEncoding(withAllowedCharacters: .urlPathAllowed)?
 .addingPercentEncoding(withAllowedCharacters: .urlPathAllowed)
 }

 func offlineStorage(_ storage: MGLOfflineStorage, urlForResourceOf kind:
 MGLResourceKind, with url: URL) -> URL {
 if url.host?.contains("amazonaws.com") != true {
 // not an AWS URL
 return url
 }

 // URL-encode spaces, etc.
 let keyPath = String(url.path.dropFirst())
 guard let percentEncodedKeyPath =
 keyPath.addingPercentEncoding(withAllowedCharacters: .urlPathAllowed) else {
 print("Invalid characters in path '\(keyPath)'; unsafe to sign")
 return url
 }

 let endpoint = AWSEndpoint(region: region, serviceName: "geo", url: url)
 let requestHeaders: [String: String] = ["host": endpoint!.hostName]

 // sign the URL
 let task = AWSSignatureV4Signer
 .generateQueryStringForSignatureV4(
 withCredentialProvider: credentialsProvider,
 httpMethod: .GET,
 expireDuration: 60,
 endpoint: endpoint!,
 // workaround for https://github.com/aws-amplify/aws-sdk-ios/
issues/3215
 keyPath: AWSSignatureV4Delegate.doubleEncode(path:
 percentEncodedKeyPath),

Displaying maps 273

Amazon Location Service Developer Guide

 requestHeaders: requestHeaders,
 requestParameters: .none,
 signBody: true)
 task.waitUntilFinished()

 if let error = task.error as NSError? {
 print("Error occurred: \(error)")
 }

 if let result = task.result {
 var urlComponents = URLComponents(url: (result as URL),
 resolvingAgainstBaseURL: false)!
 // re-use the original path; workaround for https://github.com/aws-amplify/
aws-sdk-ios/issues/3215
 urlComponents.path = url.path

 // have Mapbox GL fetch the signed URL
 return (urlComponents.url)!
 }

 // fall back to an unsigned URL
 return url
 }
}

Building the application: Map view

The Map View is responsible for initializing an instance of AWSSignatureV4Delegate and
configuring the underlying MGLMapView, which fetches resources and renders the map. It
also handles propagating attribution strings from the style descriptor's source back to the
ContentView.

Create a new Swift file named MapView.swift containing the following struct definition:

import SwiftUI
import AWSCore
import Mapbox

struct MapView: UIViewRepresentable {
 @Binding var attribution: String

 private var mapView: MGLMapView
 private var signingDelegate: MGLOfflineStorageDelegate

Displaying maps 274

Amazon Location Service Developer Guide

 init(attribution: Binding<String>) {
 let regionName = Bundle.main.object(forInfoDictionaryKey: "AWSRegion") as!
 String
 let identityPoolId = Bundle.main.object(forInfoDictionaryKey: "IdentityPoolId")
 as! String
 let mapName = Bundle.main.object(forInfoDictionaryKey: "MapName") as! String

 let region = (regionName as NSString).aws_regionTypeValue()

 // MGLOfflineStorage doesn't take ownership, so this needs to be a member here
 signingDelegate = AWSSignatureV4Delegate(region: region, identityPoolId:
 identityPoolId)

 // register a delegate that will handle SigV4 signing
 MGLOfflineStorage.shared.delegate = signingDelegate

 mapView = MGLMapView(
 frame: .zero,
 styleURL: URL(string: "https://maps.geo.\(regionName).amazonaws.com/maps/
v0/maps/\(mapName)/style-descriptor"))

 _attribution = attribution
 }

 func makeCoordinator() -> Coordinator {
 Coordinator($attribution)
 }

 class Coordinator: NSObject, MGLMapViewDelegate {
 var attribution: Binding<String>

 init(_ attribution: Binding<String>) {
 self.attribution = attribution
 }

 func mapView(_ mapView: MGLMapView, didFinishLoading style: MGLStyle) {
 let source = style.sources.first as? MGLVectorTileSource
 let attribution = source?.attributionInfos.first
 self.attribution.wrappedValue = attribution?.title.string ?? ""
 }
 }

 // MARK: - UIViewRepresentable protocol

Displaying maps 275

Amazon Location Service Developer Guide

 func makeUIView(context: UIViewRepresentableContext<MapView>) -> MGLMapView {
 mapView.delegate = context.coordinator

 mapView.logoView.isHidden = true
 mapView.attributionButton.isHidden = true
 return mapView
 }

 func updateUIView(_ uiView: MGLMapView, context:
 UIViewRepresentableContext<MapView>) {
 }

 // MARK: - MGLMapView proxy

 func centerCoordinate(_ centerCoordinate: CLLocationCoordinate2D) -> MapView {
 mapView.centerCoordinate = centerCoordinate
 return self
 }

 func zoomLevel(_ zoomLevel: Double) -> MapView {
 mapView.zoomLevel = zoomLevel
 return self
 }
}

Running this application displays a full-screen map in the style of your choosing. This sample is
available as part of the Amazon Location Service samples repository on GitHub.

Using the Amplify library with Amazon Location Service

The following tutorial walks you through using AWS Amplify with Amazon Location. Amplify uses
MapLibre GL JS to render maps in your JavaScript-based application.

Amplify is a set of open-source client libraries that provide interfaces to different categories of
services, including Amplify Geo, which is powered by Amazon Location Service. Learn more about
the AWS Amplify Geo JavaScript library.

Note

This tutorial assumes that you have already followed the steps in Using maps - To add a
map to your application.

Displaying maps 276

https://github.com/aws-samples/amazon-location-samples
https://docs.amplify.aws/lib/geo/getting-started/q/platform/js/
https://docs.amplify.aws/lib/geo/getting-started/q/platform/js/

Amazon Location Service Developer Guide

Building the application: Scaffolding

This tutorial creates a web application that uses JavaScript to build a map on an HTML page.

Begin by creating an HTML page (index.html) that includes the map's container:

• Enter a div element with an id of map to apply the map's dimensions to the map view. The
dimensions are inherited from the viewport.

<html>
 <head>
 <style>
 body { margin: 0; }
 #map { height: 100vh; } /* 100% of viewport height */
 </style>
 </head>

 <body>
 <!-- map container -->
 <div id="map" />
 </body>
</html>

Building the application: Adding dependencies

Add the following dependencies to your application:

• AWS Amplify map and geo libraries.

• AWS Amplify core library.

• AWS Amplify auth library.

• AWS Amplify stylesheet.

<!-- CSS dependencies -->
 <link href="https://cdn.amplify.aws/packages/maplibre-
gl/1.15.2/maplibre-gl.css" rel="stylesheet" integrity="sha384-
DrPVD9GufrxGb7kWwRv0CywpXTmfvbKOZ5i5pN7urmIThew0zXKTME+gutUgtpeD"
 crossorigin="anonymous" referrerpolicy="no-referrer"></link>

<!-- JavaScript dependencies -->

Displaying maps 277

Amazon Location Service Developer Guide

 <script src="https://cdn.amplify.aws/packages/maplibre-gl/1.15.2/maplibre-gl.js"
 integrity="sha384-rwYfkmAOpciZS2bDuwZ/Xa/Gog6jXem8D/whm3wnsZSVFemDDlprcUXHnDDUcrNU"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/core/4.3.0/aws-amplify-core.min.js"
 integrity="sha384-7Oh+5w0l7XGyYvSqbKi2Q7SA5K640V5nyW2/LEbevDQEV1HMJqJLA1A00z2hu8fJ"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/auth/4.3.8/aws-amplify-auth.min.js"
 integrity="sha384-jfkXCEfYyVmDXYKlgWNwv54xRaZgk14m7sjeb2jLVBtUXCD2p+WU8YZ2mPZ9Xbdw"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/geo/1.1.0/aws-amplify-geo.min.js"
 integrity="sha384-TFMTyWuCbiptXTzvOgzJbV8TPUupG1rA1AVrznAhCSpXTIdGw82bGd8RTk5rr3nP"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/maplibre-gl-js-
amplify/1.1.0/maplibre-gl-js-amplify.umd.min.js" integrity="sha384-7/
RxWonKW1nM9zCKiwU9x6bkQTjldosg0D1vZYm0Zj+K/vUSnA3sOMhlRRWAtHPi" crossorigin="anonymous"
 referrerpolicy="no-referrer"></script>
<script>
 // application-specific code
</script>

This creates an empty page with the map's container.

Building the application: Configuration

To configure your application using JavaScript:

1. Enter the identifiers of the unauthenticated identity pool that you created in Using maps -
Step 2, Set up authentication.

// Cognito Identity Pool ID
const identityPoolId = "region:identityPoolID"; // for example: us-
east-1:123example-1234-5678
// extract the Region from the Identity Pool ID
const region = identityPoolId.split(":")[0];

2. Configure AWS Amplify to use the resources you've created, including the identity pool and the
Map resource (shown here with the default name of explore.map).

// Configure Amplify
const { Amplify } = aws_amplify_core;
const { createMap } = AmplifyMapLibre;

Amplify.configure({

Displaying maps 278

Amazon Location Service Developer Guide

 Auth: {
 identityPoolId,
 region,
 },
 geo: {
 AmazonLocationService: {
 maps: {
 items: {
 "explore.map": {
 style: "Default style"
 },
 },
 default: "explore.map",
 },
 region,
 },
 }
});

Building the application: Map initialization

For the map to display after the page is loaded, you must initialize the map. You can adjust the
initial map location, add additional controls, and overlay data.

async function initializeMap() {
 const map = await createMap(
 {
 container: "map",
 center: [-123.1187, 49.2819],
 zoom: 10,
 hash: true,
 }
);

 map.addControl(new maplibregl.NavigationControl(), "top-left");
}

initializeMap();

Displaying maps 279

Amazon Location Service Developer Guide

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and sources.grabmaptiles.attribution keys.
Amplify will automatically provide attribution. When using Amazon Location resources with
data providers, make sure to read the service terms and conditions.

Running the application

You can run this sample application by using it in a local web server, or opening it in a browser.

To use a local web server, you can use npx, installed as part of Node.js, or any other web server of
your choice. To use npx, type npx serve from within the same directory as index.html. This
serves the application on localhost:5000.

Note

If the policy that you created for your unauthenticated Amazon Cognito role includes a
referer condition, you might be blocked from testing with localhost: URLs. In this
case. you can test with a web server that provides a URL that is in your policy.

After completing the tutorial, the final application looks like the following example.

<html>
 <head>
 <!-- CSS dependencies -->
 <link href="https://cdn.amplify.aws/packages/maplibre-
gl/1.15.2/maplibre-gl.css" rel="stylesheet" integrity="sha384-
DrPVD9GufrxGb7kWwRv0CywpXTmfvbKOZ5i5pN7urmIThew0zXKTME+gutUgtpeD"
 crossorigin="anonymous" referrerpolicy="no-referrer"></link>

 <!-- JavaScript dependencies -->
 <script src="https://cdn.amplify.aws/packages/maplibre-gl/1.15.2/maplibre-gl.js"
 integrity="sha384-rwYfkmAOpciZS2bDuwZ/Xa/Gog6jXem8D/whm3wnsZSVFemDDlprcUXHnDDUcrNU"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>

Displaying maps 280

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

 <script src="https://cdn.amplify.aws/packages/core/4.3.0/aws-amplify-core.min.js"
 integrity="sha384-7Oh+5w0l7XGyYvSqbKi2Q7SA5K640V5nyW2/LEbevDQEV1HMJqJLA1A00z2hu8fJ"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/auth/4.3.8/aws-amplify-auth.min.js"
 integrity="sha384-jfkXCEfYyVmDXYKlgWNwv54xRaZgk14m7sjeb2jLVBtUXCD2p+WU8YZ2mPZ9Xbdw"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/geo/1.1.0/aws-amplify-geo.min.js"
 integrity="sha384-TFMTyWuCbiptXTzvOgzJbV8TPUupG1rA1AVrznAhCSpXTIdGw82bGd8RTk5rr3nP"
 crossorigin="anonymous" referrerpolicy="no-referrer"></script>
 <script src="https://cdn.amplify.aws/packages/maplibre-gl-js-
amplify/1.1.0/maplibre-gl-js-amplify.umd.min.js" integrity="sha384-7/
RxWonKW1nM9zCKiwU9x6bkQTjldosg0D1vZYm0Zj+K/vUSnA3sOMhlRRWAtHPi" crossorigin="anonymous"
 referrerpolicy="no-referrer"></script>

 <style>
 body { margin: 0; }
 #map { height: 100vh; }
 </style>
 </head>

 <body>
 <div id="map" />
 <script type="module">
 // Cognito Identity Pool ID
 const identityPoolId = "region:identityPoolId"; // for example: us-
east-1:123example-1234-5678
 // extract the Region from the Identity Pool ID
 const region = identityPoolId.split(":")[0];

 // Configure Amplify
 const { Amplify } = aws_amplify_core;
 const { createMap } = AmplifyMapLibre;

 Amplify.configure({
 Auth: {
 identityPoolId,
 region,
 },
 geo: {
 AmazonLocationService: {
 maps: {
 items: {
 "explore.map": {
 style: "Default style"

Displaying maps 281

Amazon Location Service Developer Guide

 },
 },
 default: "explore.map",
 },
 region,
 },
 }
 });

 async function initializeMap() {
 const map = await createMap(
 {
 container: "map",
 center: [-123.1187, 49.2819],
 zoom: 10,
 hash: true,
 }
);

 map.addControl(new maplibregl.NavigationControl(), "top-left");
 }

 initializeMap();
 </script>
 </body>
</html>

Running this application displays a full-screen map using your chosen map style. This sample is
also described on the Embed map tab of any Map resource page in the Amazon Location Service
console.

After you complete this tutorial, go to the Display a map topic in the AWS Amplify documentation
to learn more, including how to display markers on the map.

Using Tangram with Amazon Location Service

This section provides the following tutorials on how to integrate Tangram with Amazon Location.

Important

The Tangram styles in the following tutorials are only compatible with Amazon Location
map resources configured with the VectorHereContrast style.

Displaying maps 282

https://console.aws.amazon.com/location/maps/home
https://console.aws.amazon.com/location/maps/home
https://docs.amplify.aws/lib/geo/maps/q/platform/js#display-a-map

Amazon Location Service Developer Guide

The following is an example of an AWS CLI command to create a new map resource called
TangramExampleMap using the VectorHereContrast style:

aws --region us-east-1 \
 location \
 create-map \
 --map-name "TangramExampleMap" \
 --configuration "Style=VectorHereContrast"

Note

Billing is determined by your usage. You may incur fees for the use of other AWS services.
For more information, see Amazon Location Service pricing.

Topics

• Using Tangram with Amazon Location Service

• Using Tangram ES for Android with Amazon Location Service

• Using Tangram ES for iOS with Amazon Location Service

Using Tangram with Amazon Location Service

Tangram is a flexible mapping engine, designed for real-time rendering of 2D and 3D maps
from vector tiles. It can be used with Mapzen-designed styles and the HERE tiles provided by the
Amazon Location Service Maps API. This guide describes how to integrate Tangram with Amazon
Location within a basic HTML/JavaScript application, although the same libraries and techniques
also apply when using frameworks like React and Angular.

Tangram is built atop Leaflet, an open-source JavaScript library for mobile-friendly interactive
maps. This means that many Leaflet-compatible plugins and controls also work with Tangram.

Tangram styles built to work with the Tilezen schema are largely compatible with Amazon Location
when using maps from HERE. These include:

• Bubble Wrap – A full-featured wayfinding style with helpful icons for points of interest

• Cinnabar – A classic look and go-to for general mapping applications

• Refill – A minimalist map style designed for data visualization overlays, inspired by the seminal
Toner style by Stamen Design

Displaying maps 283

https://aws.amazon.com/location/pricing/
https://tangrams.readthedocs.io/
https://leafletjs.com/
https://tilezen.readthedocs.io/en/latest/layers/
https://github.com/tangrams/bubble-wrap
https://github.com/tangrams/cinnabar-style
https://github.com/tangrams/refill-style

Amazon Location Service Developer Guide

• Tron – An exploration of scale transformations in the visual language of TRON

• Walkabout – An outdoor-focused style that's perfect for hiking or getting out and about

This guide describes how to integrate Tangram with Amazon Location within a basic HTML/
JavaScript application using the Tangram Style called Bubble Wrap. This sample is available as part
of the Amazon Location Service samples repository on GitHub.

While other Tangram styles are best accompanied by raster tiles, which encode terrain information,
this feature is not yet supported by Amazon Location.

Important

The Tangram styles in the following tutorial are only compatible with Amazon Location
map resources configured with the VectorHereContrast style.

Building the application: Scaffolding

The application is an HTML page with JavaScript to build the map on your web application. Create
an HTML page (index.html) and create the map's container:

• Enter a div element with an id of map to apply the map's dimensions to the map view.

• The dimensions are inherited from the viewport.

<html>
 <head>
 <style>
 body {
 margin: 0;
 }

 #map {
 height: 100vh; /* 100% of viewport height */
 }
 </style>
 </head>
 <body>
 <!-- map container -->
 <div id="map" />

Displaying maps 284

https://github.com/tangrams/tron-style
https://github.com/tangrams/walkabout-style
https://github.com/tangrams/bubble-wrap
https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

 </body>
</html>

Building the application: Adding dependencies

Add the following dependencies:

• Leaflet and its associated CSS.

• Tangram.

• AWS SDK for JavaScript.

<!-- CSS dependencies -->
<link
 rel="stylesheet"
 href="https://unpkg.com/leaflet@1.7.1/dist/leaflet.css"
 integrity="sha512-xodZBNTC5n17Xt2atTPuE1HxjVMSvLVW9ocqUKLsCC5CXdbqCmblAshOMAS6/keqq/
sMZMZ19scR4PsZChSR7A=="
 crossorigin=""
/>
<!-- JavaScript dependencies -->
<script src="https://unpkg.com/leaflet@1.7.1/dist/leaflet.js"></script>
<script src="https://unpkg.com/tangram"></script>
<script src="https://sdk.amazonaws.com/js/aws-sdk-2.784.0.min.js"></script>
<script>
 // application-specific code
</script>

This creates an empty page with the necessary prerequisites. The next step guides you through
writing the JavaScript code for your application.

Building the application: Configuration

To configure your application with your resources and credentials:

1. Enter the names and identifiers of your resources.

// Cognito Identity Pool ID
const identityPoolId = "us-east-1:54f2ba88-9390-498d-aaa5-0d97fb7ca3bd";
// Amazon Location Service map name; must be HERE-backed
const mapName = "TangramExampleMap";

Displaying maps 285

Amazon Location Service Developer Guide

2. Instantiate a credential provider using the unauthenticated identity pool you created in Using
maps - Step 2, Set up authentication. Since this uses credentials outside the normal AWS SDK
work flow, sessions expire after one hour.

// extract the region from the Identity Pool ID; this will be used for both Amazon
 Cognito and Amazon Location
AWS.config.region = identityPoolId.split(":", 1)[0];

// instantiate a Cognito-backed credential provider
const credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: identityPoolId,
});

3. While Tangram allows you to override the URL(s) used to fetch tiles, it doesn't include the
ability to intercept requests so that they can be signed.

To work around this, override sources.mapzen.url to point to Amazon Location using
a synthetic host name amazon.location, which will be handled by a service worker. The
following is an example of scene configuration using Bubble Wrap:

const scene = {
 import: [
 // Bubble Wrap style
 "https://www.nextzen.org/carto/bubble-wrap-style/10/bubble-wrap-style.zip",
 "https://www.nextzen.org/carto/bubble-wrap-style/10/themes/label-7.zip",
 "https://www.nextzen.org/carto/bubble-wrap-style/10/themes/bubble-wrap-road-
shields-usa.zip",
 "https://www.nextzen.org/carto/bubble-wrap-style/10/themes/bubble-wrap-road-
shields-international.zip",
],
 // override values beneath the `sources` key in the style above
 sources: {
 mapzen: {
 // point at Amazon Location using a synthetic URL, which will be handled by
 the service
 // worker
 url: `https://amazon.location/${mapName}/{z}/{x}/{y}`,
 },
 // effectively disable raster tiles containing encoded normals
 normals: {
 max_zoom: 0,
 },

Displaying maps 286

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://github.com/tangrams/bubble-wrap

Amazon Location Service Developer Guide

 "normals-elevation": {
 max_zoom: 0,
 },
 },
};

Building the application: Request transformation

To register and initialize the service worker, create a registerServiceWorker function to be
called before the map is initialized. This registers the JavaScript code provided in a separate file
called sw.js as the service worker controlling index.html.

Credentials are loaded from Amazon Cognito and are passed into the service worker alongside the
Region to provide information to sign tile requests with Signature Version 4.

/**
 * Register a service worker that will rewrite and sign requests using Signature
 Version 4.
 */
async function registerServiceWorker() {
 if ("serviceWorker" in navigator) {
 try {
 const reg = await navigator.serviceWorker.register("./sw.js");

 // refresh credentials from Amazon Cognito
 await credentials.refreshPromise();

 await reg.active.ready;

 if (navigator.serviceWorker.controller == null) {
 // trigger a navigate event to active the controller for this page
 window.location.reload();
 }

 // pass credentials to the service worker
 reg.active.postMessage({
 credentials: {
 accessKeyId: credentials.accessKeyId,
 secretAccessKey: credentials.secretAccessKey,
 sessionToken: credentials.sessionToken,
 },
 region: AWS.config.region,

Displaying maps 287

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Location Service Developer Guide

 });
 } catch (error) {
 console.error("Service worker registration failed:", error);
 }
 } else {
 console.warn("Service worker support is required for this example");
 }
}

The Service Worker implementation in sw.js listens for message events to pick up credential
and Region configuration changes. It also acts as a proxy server by listening for fetch events.
fetch events targeting the amazon.location synthetic host name will be rewritten to target the
appropriate Amazon Location API and signed using Amplify Core's Signer.

// sw.js
self.importScripts(
 "https://unpkg.com/@aws-amplify/core@3.7.0/dist/aws-amplify-core.min.js"
);

const { Signer } = aws_amplify_core;

let credentials;
let region;

self.addEventListener("install", (event) => {
 // install immediately
 event.waitUntil(self.skipWaiting());
});

self.addEventListener("activate", (event) => {
 // control clients ASAP
 event.waitUntil(self.clients.claim());
});

self.addEventListener("message", (event) => {
 const {
 data: { credentials: newCredentials, region: newRegion },
 } = event;

 if (newCredentials != null) {
 credentials = newCredentials;
 }

Displaying maps 288

Amazon Location Service Developer Guide

 if (newRegion != null) {
 region = newRegion;
 }
});

async function signedFetch(request) {
 const url = new URL(request.url);
 const path = url.pathname.slice(1).split("/");

 // update URL to point to Amazon Location
 url.pathname = `/maps/v0/maps/${path[0]}/tiles/${path.slice(1).join("/")}`;
 url.host = `maps.geo.${region}.amazonaws.com`;
 // strip params (Tangram generates an empty api_key param)
 url.search = "";

 const signed = Signer.signUrl(url.toString(), {
 access_key: credentials.accessKeyId,
 secret_key: credentials.secretAccessKey,
 session_token: credentials.sessionToken,
 });

 return fetch(signed);
}

self.addEventListener("fetch", (event) => {
 const { request } = event;

 // match the synthetic hostname we're telling Tangram to use
 if (request.url.includes("amazon.location")) {
 return event.respondWith(signedFetch(request));
 }

 // fetch normally
 return event.respondWith(fetch(request));
});

To automatically renew credentials and send them to the service worker before they expire, use the
following function within index.html:

async function refreshCredentials() {
 await credentials.refreshPromise();

 if ("serviceWorker" in navigator) {

Displaying maps 289

Amazon Location Service Developer Guide

 const controller = navigator.serviceWorker.controller;

 controller.postMessage({
 credentials: {
 accessKeyId: credentials.accessKeyId,
 secretAccessKey: credentials.secretAccessKey,
 sessionToken: credentials.sessionToken,
 },
 });
 } else {
 console.warn("Service worker support is required for this example.");
 }

 // schedule the next credential refresh when they're about to expire
 setTimeout(refreshCredentials, credentials.expireTime - new Date());
}

Building the application: Map initialization

For the map to display after the page is loaded, you must initialize the map. You have the option to
adjust the initial map location, add additional controls, and overlay data.

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and source.grabmaptiles.attribution keys.
Because Tangram doesn't request these resources, and is only compatible with maps from
HERE, use "© 2020 HERE". When using Amazon Location resources with data providers,
make sure to read the service terms and conditions.

/**
 * Initialize a map.
 */
async function initializeMap() {
 // register the service worker to handle requests to https://amazon.location
 await registerServiceWorker();

 // Initialize the map

Displaying maps 290

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

 const map = L.map("map").setView([49.2819, -123.1187], 10);
 Tangram.leafletLayer({
 scene,
 }).addTo(map);
 map.attributionControl.setPrefix("");
 map.attributionControl.addAttribution("© 2020 HERE");
}

initializeMap();

Running the application

To run this sample, you can:

• Use a host that supports HTTPS,

• Use a local web server to comply with service worker security restrictions.

To use a local web server, you can use npx, because it's installed as a part of Node.js. You can use
npx serve from within the same directory as index.html and sw.js. This serves the application
on localhost:5000.

The following is the index.html file:

<!-- index.html -->
<html>
 <head>
 <link
 rel="stylesheet"
 href="https://unpkg.com/leaflet@1.7.1/dist/leaflet.css"
 integrity="sha512-xodZBNTC5n17Xt2atTPuE1HxjVMSvLVW9ocqUKLsCC5CXdbqCmblAshOMAS6/
keqq/sMZMZ19scR4PsZChSR7A=="
 crossorigin=""
 />
 <style>
 body {
 margin: 0;
 }

 #map {
 height: 100vh;
 }
 </style>

Displaying maps 291

http://localhost:5000/

Amazon Location Service Developer Guide

 </head>

 <body>
 <div id="map" />
 <script src="https://unpkg.com/leaflet@1.7.1/dist/leaflet.js"></script>
 <script src="https://unpkg.com/tangram"></script>
 <script src="https://sdk.amazonaws.com/js/aws-sdk-2.784.0.min.js"></script>
 <script>
 // configuration
 // Cognito Identity Pool ID
 const identityPoolId = "<Identity Pool ID>";
 // Amazon Location Service Map name; must be HERE-backed
 const mapName = "<Map name>";

 AWS.config.region = identityPoolId.split(":")[0];

 // instantiate a credential provider
 credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: identityPoolId,
 });

 const scene = {
 import: [
 // Bubble Wrap style
 "https://www.nextzen.org/carto/bubble-wrap-style/10/bubble-wrap-style.zip",
 "https://www.nextzen.org/carto/bubble-wrap-style/10/themes/label-7.zip",
 "https://www.nextzen.org/carto/bubble-wrap-style/10/themes/bubble-wrap-road-
shields-usa.zip",
 "https://www.nextzen.org/carto/bubble-wrap-style/10/themes/bubble-wrap-road-
shields-international.zip",
],
 // override values beneath the `sources` key in the style above
 sources: {
 mapzen: {
 // point at Amazon Location using a synthetic URL, which will be handled by
 the service
 // worker
 url: `https://amazon.location/${mapName}/{z}/{x}/{y}`,
 },
 // effectively disable raster tiles containing encoded normals
 normals: {
 max_zoom: 0,
 },
 "normals-elevation": {

Displaying maps 292

Amazon Location Service Developer Guide

 max_zoom: 0,
 },
 },
 };

 /**
 * Register a service worker that will rewrite and sign requests using Signature
 Version 4.
 */
 async function registerServiceWorker() {
 if ("serviceWorker" in navigator) {
 try {
 const reg = await navigator.serviceWorker.register("./sw.js");

 // refresh credentials from Amazon Cognito
 await credentials.refreshPromise();

 await reg.active.ready;

 if (navigator.serviceWorker.controller == null) {
 // trigger a navigate event to active the controller for this page
 window.location.reload();
 }

 // pass credentials to the service worker
 reg.active.postMessage({
 credentials: {
 accessKeyId: credentials.accessKeyId,
 secretAccessKey: credentials.secretAccessKey,
 sessionToken: credentials.sessionToken,
 },
 region: AWS.config.region,
 });
 } catch (error) {
 console.error("Service worker registration failed:", error);
 }
 } else {
 console.warn("Service Worker support is required for this example");
 }
 }

 /**
 * Initialize a map.
 */

Displaying maps 293

Amazon Location Service Developer Guide

 async function initializeMap() {
 // register the service worker to handle requests to https://amazon.location
 await registerServiceWorker();

 // Initialize the map
 const map = L.map("map").setView([49.2819, -123.1187], 10);
 Tangram.leafletLayer({
 scene,
 }).addTo(map);
 map.attributionControl.setPrefix("");
 map.attributionControl.addAttribution("© 2020 HERE");
 }

 initializeMap();
 </script>
 </body>
</html>

The following is the sw.js file:

// sw.js
self.importScripts(
 "https://unpkg.com/@aws-amplify/core@3.7.0/dist/aws-amplify-core.min.js"
);

const { Signer } = aws_amplify_core;

let credentials;
let region;

self.addEventListener("install", (event) => {
 // install immediately
 event.waitUntil(self.skipWaiting());
});

self.addEventListener("activate", (event) => {
 // control clients ASAP
 event.waitUntil(self.clients.claim());
});

self.addEventListener("message", (event) => {
 const {
 data: { credentials: newCredentials, region: newRegion },

Displaying maps 294

Amazon Location Service Developer Guide

 } = event;

 if (newCredentials != null) {
 credentials = newCredentials;
 }

 if (newRegion != null) {
 region = newRegion;
 }
});

async function signedFetch(request) {
 const url = new URL(request.url);
 const path = url.pathname.slice(1).split("/");

 // update URL to point to Amazon Location
 url.pathname = `/maps/v0/maps/${path[0]}/tiles/${path.slice(1).join("/")}`;
 url.host = `maps.geo.${region}.amazonaws.com`;
 // strip params (Tangram generates an empty api_key param)
 url.search = "";

 const signed = Signer.signUrl(url.toString(), {
 access_key: credentials.accessKeyId,
 secret_key: credentials.secretAccessKey,
 session_token: credentials.sessionToken,
 });

 return fetch(signed);
}

self.addEventListener("fetch", (event) => {
 const { request } = event;

 // match the synthetic hostname we're telling Tangram to use
 if (request.url.includes("amazon.location")) {
 return event.respondWith(signedFetch(request));
 }

 // fetch normally
 return event.respondWith(fetch(request));
});

This sample is available as part of the Amazon Location Service samples repository on GitHub.

Displaying maps 295

https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

Using Tangram ES for Android with Amazon Location Service

Tangram ES is a C++ library for rendering 2D and 3D maps from vector data using OpenGL ES. It's
the native counterpart to Tangram.

Tangram styles built to work with the Tilezen schema are largely compatible with Amazon Location
when using maps from HERE. These include:

• Bubble Wrap – A full-featured wayfinding style with helpful icons for points of interest.

• Cinnabar – A classic look and go-to for general mapping applications.

• Refill – A minimalist map style designed for data visualization overlays, inspired by the seminal
Toner style by Stamen Design.

• Tron – An exploration of scale transformations in the visual language of TRON.

• Walkabout – An outdoor-focused style that's perfect for hiking or getting out and about.

This guide describes how to integrate Tangram ES for Android with Amazon Location using the
Tangram style called Cinnabar. This sample is available as part of the Amazon Location Service
samples repository on GitHub.

While other Tangram styles are best accompanied by raster tiles, which encode terrain information,
this feature isn't yet supported by Amazon Location.

Important

The Tangram styles in the following tutorial are only compatible with Amazon Location
map resources configured with the VectorHereContrast style.

Building the application: Initialization

To initialize your application:

1. Create a new Android Studio project from the Empty Activity template.

2. Ensure that Kotlin is selected for the project language.

3. Select a Minimum SDK of API 16: Android 4.1 (Jelly Bean) or newer.

4. Open Project Structure to select File, Project Structure..., and choose the Dependencies
section.

5. With <All Modules> selected, choose the + button to add a new Library Dependency.

Displaying maps 296

https://github.com/tangrams/tangram-es
https://github.com/tangrams/tangram
https://tilezen.readthedocs.io/en/latest/layers/
https://github.com/tangrams/bubble-wrap
https://github.com/tangrams/cinnabar-style
https://github.com/tangrams/refill-style
https://github.com/tangrams/tron-style
https://github.com/tangrams/walkabout-style
https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

6. Add AWS Android SDK version 2.19.1 or later. For example: com.amazonaws:aws-android-
sdk-core:2.19.1

7. Add Tangram version 0.13.0 or later. For example:
com.mapzen.tangram:tangram:0.13.0.

Note

Searching for Tangram: com.mapzen.tangram:tangram:0.13.0 will generate a
message that it's "not found", but choosing OK will allow it to be added.

Building the application: Configuration

To configure your application with your resources and AWS Region:

1. Create app/src/main/res/values/configuration.xml.

2. Enter the names and identifiers of your resources, and also the AWS Region they were created
in:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="identityPoolId">us-east-1:54f2ba88-9390-498d-aaa5-0d97fb7ca3bd</
string>
 <string name="mapName">TangramExampleMap</string>
 <string name="awsRegion">us-east-1</string>
 <string name="sceneUrl">https://www.nextzen.org/carto/cinnabar-style/9/cinnabar-
style.zip</string>
 <string name="attribution">© 2020 HERE</string>
</resources>

Building the application: Activity layout

Edit app/src/main/res/layout/activity_main.xml:

• Add a MapView, which renders the map. This will also set the map's initial center point.

• Add a TextView, which displays attribution.

This will also set the map's initial center point.

Displaying maps 297

Amazon Location Service Developer Guide

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and source.grabmaptiles.attribution keys.
Because Tangram doesn't request these resources, and is only compatible with maps from
HERE, use "© 2020 HERE". When using Amazon Location resources with data providers,
make sure to read the service terms and conditions.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <com.mapzen.tangram.MapView
 android:id="@+id/map"
 android:layout_height="match_parent"
 android:layout_width="match_parent" />

 <TextView
 android:id="@+id/attributionView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#80808080"
 android:padding="5sp"
 android:textColor="@android:color/black"
 android:textSize="10sp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 tools:ignore="SmallSp" />
</androidx.constraintlayout.widget.ConstraintLayout>

Displaying maps 298

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

Building the application: Request transformation

Create a class named SigV4Interceptor to intercept AWS requests and sign them using
Signature Version 4. This will be registered with the HTTP client used to fetch map resources when
the Main Activity is created.

package aws.location.demo.okhttp

import com.amazonaws.DefaultRequest
import com.amazonaws.auth.AWS4Signer
import com.amazonaws.auth.AWSCredentialsProvider
import com.amazonaws.http.HttpMethodName
import com.amazonaws.util.IOUtils
import okhttp3.HttpUrl
import okhttp3.Interceptor
import okhttp3.Request
import okhttp3.Response
import okio.Buffer
import java.io.ByteArrayInputStream
import java.net.URI

class SigV4Interceptor(
 private val credentialsProvider: AWSCredentialsProvider,
 private val serviceName: String
) : Interceptor {
 override fun intercept(chain: Interceptor.Chain): Response {
 val originalRequest = chain.request()

 if (originalRequest.url().host().contains("amazonaws.com")) {
 val signer = if (originalRequest.url().encodedPath().contains("@")) {
 // the presence of "@" indicates that it doesn't need to be double URL-
encoded
 AWS4Signer(false)
 } else {
 AWS4Signer()
 }

 val awsRequest = toAWSRequest(originalRequest, serviceName)
 signer.setServiceName(serviceName)
 signer.sign(awsRequest, credentialsProvider.credentials)

 return chain.proceed(toSignedOkHttpRequest(awsRequest, originalRequest))
 }

Displaying maps 299

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Location Service Developer Guide

 return chain.proceed(originalRequest)
 }

 companion object {
 fun toAWSRequest(request: Request, serviceName: String): DefaultRequest<Any> {
 // clone the request (AWS-style) so that it can be populated with
 credentials
 val dr = DefaultRequest<Any>(serviceName)

 // copy request info
 dr.httpMethod = HttpMethodName.valueOf(request.method())
 with(request.url()) {
 dr.resourcePath = uri().path
 dr.endpoint = URI.create("${scheme()}://${host()}")

 // copy parameters
 for (p in queryParameterNames()) {
 if (p != "") {
 dr.addParameter(p, queryParameter(p))
 }
 }
 }

 // copy headers
 for (h in request.headers().names()) {
 dr.addHeader(h, request.header(h))
 }

 // copy the request body
 val bodyBytes = request.body()?.let { body ->
 val buffer = Buffer()
 body.writeTo(buffer)
 IOUtils.toByteArray(buffer.inputStream())
 }

 dr.content = ByteArrayInputStream(bodyBytes ?: ByteArray(0))

 return dr
 }

 fun toSignedOkHttpRequest(
 awsRequest: DefaultRequest<Any>,
 originalRequest: Request

Displaying maps 300

Amazon Location Service Developer Guide

): Request {
 // copy signed request back into an OkHttp Request
 val builder = Request.Builder()

 // copy headers from the signed request
 for ((k, v) in awsRequest.headers) {
 builder.addHeader(k, v)
 }

 // start building an HttpUrl
 val urlBuilder = HttpUrl.Builder()
 .host(awsRequest.endpoint.host)
 .scheme(awsRequest.endpoint.scheme)
 .encodedPath(awsRequest.resourcePath)

 // copy parameters from the signed request
 for ((k, v) in awsRequest.parameters) {
 urlBuilder.addQueryParameter(k, v)
 }

 return builder.url(urlBuilder.build())
 .method(originalRequest.method(), originalRequest.body())
 .build()
 }
 }
}

Building the application: Main activity

The Main Activity is responsible for initializing the views that will be displayed to users. This
involves:

• Instantiating an Amazon Cognito CredentialsProvider.

• Registering the Signature Version 4 interceptor.

• Configuring the map by pointing it at a map style, overriding tile URLs, and displaying
appropriate attribution.

MainActivity is also responsible for forwarding life cycle events to the map view.

package aws.location.demo.tangram

Displaying maps 301

Amazon Location Service Developer Guide

import android.os.Bundle
import android.widget.TextView
import androidx.appcompat.app.AppCompatActivity
import aws.location.demo.okhttp.SigV4Interceptor
import com.amazonaws.auth.CognitoCachingCredentialsProvider
import com.amazonaws.regions.Regions
import com.mapzen.tangram.*
import com.mapzen.tangram.networking.DefaultHttpHandler
import com.mapzen.tangram.networking.HttpHandler

private const val SERVICE_NAME = "geo"

class MainActivity : AppCompatActivity(), MapView.MapReadyCallback {
 private var mapView: MapView? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 mapView = findViewById(R.id.map)

 mapView?.getMapAsync(this, getHttpHandler())
 findViewById<TextView>(R.id.attributionView).text =
 getString(R.string.attribution)
 }

 override fun onMapReady(mapController: MapController?) {
 val sceneUpdates = arrayListOf(
 SceneUpdate(
 "sources.mapzen.url",
 "https://maps.geo.${getString(R.string.awsRegion)}.amazonaws.com/maps/
v0/maps/${
 getString(
 R.string.mapName
)
 }/tiles/{z}/{x}/{y}"
)
)

 mapController?.let { map ->
 map.updateCameraPosition(
 CameraUpdateFactory.newLngLatZoom(
 LngLat(-123.1187, 49.2819),

Displaying maps 302

Amazon Location Service Developer Guide

 12F
)
)
 map.loadSceneFileAsync(
 getString(R.string.sceneUrl),
 sceneUpdates
)
 }
 }

 private fun getHttpHandler(): HttpHandler {
 val builder = DefaultHttpHandler.getClientBuilder()

 val credentialsProvider = CognitoCachingCredentialsProvider(
 applicationContext,
 getString(R.string.identityPoolId),
 Regions.US_EAST_1
)

 return DefaultHttpHandler(
 builder.addInterceptor(
 SigV4Interceptor(
 credentialsProvider,
 SERVICE_NAME
)
)
)
 }

 override fun onResume() {
 super.onResume()
 mapView?.onResume()
 }

 override fun onPause() {
 super.onPause()
 mapView?.onPause()
 }

 override fun onLowMemory() {
 super.onLowMemory()
 mapView?.onLowMemory()
 }

Displaying maps 303

Amazon Location Service Developer Guide

 override fun onDestroy() {
 super.onDestroy()
 mapView?.onDestroy()
 }
}

Running this application displays a full-screen map in the style of your choosing. This sample is
available as part of the Amazon Location Service samples repository on GitHub.

Using Tangram ES for iOS with Amazon Location Service

Tangram ES is a C++ library for rendering 2D and 3D maps from vector data using OpenGL ES. It's
the native counterpart to Tangram.

Tangram styles built to work with the Tilezen schema are largely compatible with Amazon Location
when using maps from HERE. These include:

• Bubble Wrap – A full-featured wayfinding style with helpful icons for points of interest

• Cinnabar – A classic look and go-to for general mapping applications

• Refill – A minimalist map style designed for data visualization overlays, inspired by the seminal
Toner style by Stamen Design

• Tron – An exploration of scale transformations in the visual language of TRON

• Walkabout – An outdoor-focused style that's perfect for hiking or getting out and about

This guide describes how to integrate Tangram ES for iOS with Amazon Location using the
Tangram style called Cinnabar. This sample is available as part of the Amazon Location Service
samples repository on GitHub.

While other Tangram styles are best accompanied by raster tiles, which encode terrain information,
this feature isn't yet supported by Amazon Location.

Important

The Tangram styles in the following tutorial are only compatible with Amazon Location
map resources configured with the VectorHereContrast style.

Displaying maps 304

https://github.com/aws-samples/amazon-location-samples
https://github.com/tangrams/tangram-es
https://github.com/tangrams/tangram
https://tilezen.readthedocs.io/en/latest/layers/
https://github.com/tangrams/bubble-wrap
https://github.com/tangrams/cinnabar-style
https://github.com/tangrams/refill-style
https://github.com/tangrams/tron-style
https://github.com/tangrams/walkabout-style
https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

Building the application: Initialization

To initialize the application:

1. Create a new Xcode project from the App template.

2. Select SwiftUI for its interface.

3. Select SwiftUI application for its Life Cycle.

4. Select Swift for its language.

Building the application: Add dependencies

To add dependencies, you can use a dependency manager, such as CocoaPods:

1. In your terminal, install CocoaPods:

sudo gem install cocoapods

2. Navigate to your application's project directory and initialize the Podfile with the CocoaPods
package manager:

pod init

3. Open the Podfile to add AWSCore and Tangram-es as dependencies:

platform :ios, '12.0'

target 'Amazon Location Service Demo' do
 use_frameworks!

 pod 'AWSCore'
 pod 'Tangram-es'
end

4. Download and install dependencies:

pod install --repo-update

5. Open the Xcode workspace that CocoaPods created:

xed .

Displaying maps 305

https://cocoapods.org/

Amazon Location Service Developer Guide

Building the application: Configuration

Add the following keys and values to Info.plist to configure the application and disable telemetry:

Key Value

AWSRegion us-east-1

IdentityPoolId us-east-1:54f2ba88-9390-498d-aaa5-0d
97fb7ca3bd

MapName ExampleMap

SceneURL https://www.nextzen.org/carto/cinnabar-
style/9/cinnabar-style.zip

Building the application: ContentView layout

To render the map, edit ContentView.swift:

• Add a MapView which renders the map.

• Add a TextField which displays attribution.

This also sets the map's initial center point.

Note

You must provide word mark or text attribution for each data provider that you
use, either on your application or your documentation. Attribution strings are
included in the style descriptor response under the sources.esri.attribution,
sources.here.attribution, and source.grabmaptiles.attribution keys. When
using Amazon Location resources with data providers, make sure to read the service terms
and conditions.

import SwiftUI
import TangramMap

Displaying maps 306

https://docs.aws.amazon.com/location/latest/developerguide/what-is-data-provider.html
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/

Amazon Location Service Developer Guide

struct ContentView: View {
 var body: some View {
 MapView()
 .cameraPosition(TGCameraPosition(
 center: CLLocationCoordinate2DMake(49.2819, -123.1187),
 zoom: 10,
 bearing: 0,
 pitch: 0))
 .edgesIgnoringSafeArea(.all)
 .overlay(
 Text("© 2020 HERE")
 .disabled(true)
 .font(.system(size: 12, weight: .light, design: .default))
 .foregroundColor(.black)
 .background(Color.init(Color.RGBColorSpace.sRGB, white: 0.5,
 opacity: 0.5))
 .cornerRadius(1),
 alignment: .bottomTrailing)
 }
}

struct ContentView_Previews: PreviewProvider {
 static var previews: some View {
 ContentView()
 }
}

Building the application: Request transformation

Create a new Swift file named AWSSignatureV4URLHandler.swift containing the following
class definition to intercept AWS requests and sign them using Signature Version 4. This will be
registered as a URL handler within the Tangram MapView.

import AWSCore
import TangramMap

class AWSSignatureV4URLHandler: TGDefaultURLHandler {
 private let region: AWSRegionType
 private let identityPoolId: String
 private let credentialsProvider: AWSCredentialsProvider

 init(region: AWSRegionType, identityPoolId: String) {
 self.region = region

Displaying maps 307

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Location Service Developer Guide

 self.identityPoolId = identityPoolId
 self.credentialsProvider = AWSCognitoCredentialsProvider(regionType: region,
 identityPoolId: identityPoolId)
 super.init()
 }

 override func downloadRequestAsync(_ url: URL, completionHandler: @escaping
 TGDownloadCompletionHandler) -> UInt {
 if url.host?.contains("amazonaws.com") != true {
 // not an AWS URL
 return super.downloadRequestAsync(url, completionHandler:
 completionHandler)
 }

 // URL-encode spaces, etc.
 let keyPath = String(url.path.dropFirst())
 guard let keyPathSafe =
 keyPath.addingPercentEncoding(withAllowedCharacters: .urlPathAllowed) else {
 print("Invalid characters in path '\(keyPath)'; unsafe to sign")
 return super.downloadRequestAsync(url, completionHandler:
 completionHandler)
 }

 // sign the URL
 let endpoint = AWSEndpoint(region: region, serviceName: "geo", url: url)
 let requestHeaders: [String: String] = ["host": endpoint!.hostName]
 let task = AWSSignatureV4Signer
 .generateQueryStringForSignatureV4(
 withCredentialProvider: credentialsProvider,
 httpMethod: .GET,
 expireDuration: 60,
 endpoint: endpoint!,
 keyPath: keyPathSafe,
 requestHeaders: requestHeaders,
 requestParameters: .none,
 signBody: true)
 task.waitUntilFinished()

 if let error = task.error as NSError? {
 print("Error occurred: \(error)")
 }

 if let result = task.result {
 // have Tangram fetch the signed URL

Displaying maps 308

Amazon Location Service Developer Guide

 return super.downloadRequestAsync(result as URL, completionHandler:
 completionHandler)
 }

 // fall back to an unsigned URL
 return super.downloadRequestAsync(url, completionHandler: completionHandler)
 }
}

Building the application: Map view

The map view is responsible for initializing an instance of AWSSignatureV4Delegate and
configuring the underlying MGLMapView, which fetches resources and renders the map. It
also handles propagating attribution strings from the style descriptor's source back to the
ContentView.

Create a new Swift file named MapView.swift containing the following struct definition:

import AWSCore
import TangramMap
import SwiftUI

struct MapView: UIViewRepresentable {
 private let mapView: TGMapView

 init() {
 let regionName = Bundle.main.object(forInfoDictionaryKey: "AWSRegion") as!
 String
 let identityPoolId = Bundle.main.object(forInfoDictionaryKey: "IdentityPoolId")
 as! String
 let mapName = Bundle.main.object(forInfoDictionaryKey: "MapName") as! String
 let sceneURL = URL(string: Bundle.main.object(forInfoDictionaryKey: "SceneURL")
 as! String)!

 let region = (regionName as NSString).aws_regionTypeValue()

 // rewrite tile URLs to point at AWS resources
 let sceneUpdates = [
 TGSceneUpdate(path: "sources.mapzen.url",
 value: "https://maps.geo.\(regionName).amazonaws.com/maps/v0/
maps/\(mapName)/tiles/{z}/{x}/{y}")]

 // instantiate a TGURLHandler that will sign AWS requests

Displaying maps 309

Amazon Location Service Developer Guide

 let urlHandler = AWSSignatureV4URLHandler(region: region, identityPoolId:
 identityPoolId)

 // instantiate the map view and attach the URL handler
 mapView = TGMapView(frame: .zero, urlHandler: urlHandler)

 // load the map style and apply scene updates (properties modified at runtime)
 mapView.loadScene(from: sceneURL, with: sceneUpdates)
 }

 func cameraPosition(_ cameraPosition: TGCameraPosition) -> MapView {
 mapView.cameraPosition = cameraPosition

 return self
 }

 // MARK: - UIViewRepresentable protocol

 func makeUIView(context: Context) -> TGMapView {
 return mapView
 }

 func updateUIView(_ uiView: TGMapView, context: Context) {
 }
}

Running this application displays a full-screen map in the style of your choosing. This sample is
available as part of the Amazon Location Service samples repository on GitHub.

Drawing data features on a map

After you have an application that renders a map, using Amplify, MapLibre, or Tangram to render
the map, a natural next step is to draw features on top of the map. For example, you might want to
render your customer locations as markers on the map.

In general, you can use the Places search functions to find locations from your data, and then use
the functionality of Amplify, MapLibre, or Tangram to render the locations.

To see samples of rendering different types of objects on map, see the following MapLibre
samples:

• Example: Draw markers

Drawing on a map 310

https://github.com/aws-samples/amazon-location-samples

Amazon Location Service Developer Guide

• Example: Draw clustered points

• Example: Draw a polygon

For more samples and tutorials, see Code examples and tutorials for working with Amazon
Location Service.

Setting extents for a map using MapLibre

There are times that you do not want your users to be able to pan or zoom around the entire world.
If you are using MapLibre's map control, you can limit the extents, or bounds, of the map control
with the maxBounds option, and constrain the zoom with minZoom and maxZoom options.

The following code example shows how to initialize the map control to constrain panning to a
specific boundary (in this case, the extents of the Grab data source).

Note

These samples are in JavaScript, and work within the context of the Creating a web app
tutorial.

// Set bounds to Grab data provider region
var bounds = [
 [90.0, -21.943045533438166], // Southwest coordinates
 [146.25, 31.952162238024968] // Northeast coordinates
];

var mlglMap = new maplibregl.Map(
 {
 container: 'map',
 style: mapName,
 maxBounds: bounds // Sets bounds as max
 transformRequest,
 }
);

Similarly, you can set a minimum and maximum zoom level for the map. The values for both can
be between 0 and 24, although the defaults are 0 for minimum zoom and 22 for maximum (data

Settings extents for a map 311

Amazon Location Service Developer Guide

providers may not provide data at all zoom levels. Most map libraries handle this automatically).
The following example initializes the minZoom and maxZoom options on the MapLibre Map control.

// Set the minimum and maximum zoom levels
var mlglMap = new maplibregl.Map(
 {
 container: 'map',
 style: mapName,
 maxZoom: 12,
 minZoom: 5,
 transformRequest,
 }
);

Tip

The MapLibre Map control also allows setting these options at runtime, rather than during
initialization, with get... and set... functions. For example, use getMaxBounds and
setMaxBounds to change the map bounds at runtime.

Managing your map resources

You can manage your map resources using the Amazon Location console, the AWS CLI, or the
Amazon Location APIs.

List map resources

You can view a list of your map resources using the Amazon Location console, the AWS CLI, or the
Amazon Location APIs.

Console

To view a list of existing map resources using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Maps from the left navigation pane.

3. View a list of your map resources under My maps.

Managing map resources 312

https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

API

Use the ListMaps operation from the Amazon Location Maps APIs.

The following example is an API request to get a list of map resources in the AWS account.

POST /maps/v0/list-maps

The following is an example response for ListMaps:

{
 "Entries": [
 {
 "CreateTime": 2020-10-30T01:38:36Z,
 "DataSource": "Esri",
 "Description": "string",
 "MapName": "ExampleMap",
 "UpdateTime": 2020-10-30T01:38:36Z
 }
],
 "NextToken": "1234-5678-9012"
}

CLI

Use the list-map command.

The following example is an AWS CLI to get a list of map resources in the AWS account.

aws location list-maps

Get map resource details

You can get details about any map resource in your AWS account using the Amazon Location
console, the AWS CLI, or the Amazon Location APIs.

Console

To view the details of a map resource using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

Managing map resources 313

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_ListMaps.html
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_ListMaps.html
https://docs.aws.amazon.com/cli/latest/reference/location/list-maps.html
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

2. Choose Maps from the left navigation pane.

3. Under My maps, select the name link of the target map resource.

API

Use the DescribeMap operation from the Amazon Location Maps APIs.

The following example is an API request to get the map resource details for ExampleMap.

GET /maps/v0/maps/ExampleMap

The following is an example response for DescribeMap:

{
 "Configuration": {
 "Style": "VectorEsriNavigation"
 },
 "CreateTime": 2020-10-30T01:38:36Z,
 "DataSource": "Esri",
 "Description": "string",
 "MapArn": "arn:aws:geo:us-west-2:123456789012:maps/ExampleMap",
 "MapName": "ExampleMap",
 "Tags": {
 "Tag1" : "Value1"
 },
 "UpdateTime": 2020-10-30T01:40:36Z
}

CLI

Use the describe-map command.

The following example is an AWS CLI to get the map resource details for ExampleMap.

aws location describe-map \
 --map-name "ExampleMap"

Managing map resources 314

https://docs.aws.amazon.com/location-maps/latest/APIReference/API_DescribeMap.html
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_DescribeMap.html
https://docs.aws.amazon.com/cli/latest/reference/location/describe-map.html

Amazon Location Service Developer Guide

Delete a map resource

You can delete a map resource from your AWS account using the Amazon Location console, the
AWS CLI, or the Amazon Location APIs.

Warning

This operation deletes the resource permanently.

Console

To delete an existing map resource using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Maps from the left navigation pane.

3. Under My maps list, select the target map from the list.

4. Choose Delete map.

API

Use the DeleteMap operation from the Amazon Location Maps APIs.

The following example is an API request to delete the map resource ExampleMap.

DELETE /maps/v0/maps/ExampleMap

The following is an example success response for DeleteMap:

HTTP/1.1 200

CLI

Use the delete-map command.

The following example is an AWS CLI command to delete the map resource ExampleMap.

aws location delete-map \

Managing map resources 315

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_DeleteMap.html
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_DeleteMap.html
https://docs.aws.amazon.com/cli/latest/reference/location/delete-map.html

Amazon Location Service Developer Guide

 --map-name "ExampleMap"

Searching place and geolocation data using Amazon Location

Amazon Location includes the ability to search the geolocation, or place, data of your chosen
provider. There are several kinds of searching available.

• Geocoding – Geocoding is the process of searching for addresses, regions, business names, or
other points of interest, based on text input. It returns details and the location (in latitude and
longitude) of the results found.

• Reverse geocoding – Reverse geocoding allows you to find places near a given location.

• Autocomplete – Autocomplete is the process of making automatic suggestions as the user types
in a query. For example, if they type Par one suggestion might be Paris, France.

Amazon Location lets you choose a data provider for place search operations by creating and
configuring a place index resource.

Once you create your resource, you can send requests using the AWS SDK for your preferred
language, Amplify, or the REST API endpoints. You can use data from the response to mark
locations on a map, enrich position data, and to convert positions into human-readable text.

Note

For an overview of searching place concepts, see Places search.

Topics

• Prerequisites

• Geocoding

• Reverse geocoding

• Autocomplete

• Using place IDs

• Place categories and filtering results

• Amazon Aurora PostgreSQL user-defined functions for Amazon Location Service

Places search 316

Amazon Location Service Developer Guide

• Managing your place index resources

Prerequisites

Before you begin geocoding, reverse geocoding or searching for places, follow the prerequisite
steps:

Topics

• Creating a place index resource

• Authenticating your requests

Creating a place index resource

Begin by creating a place index resource in your AWS account.

When you create a place index resource, you can choose from the data providers available to
support queries for geocoding, reverse geocoding, and searches:

1. Esri – For more information about Esri's coverage in your region of interest, see Esri geocoding
coverage in the Esri documentation.

2. HERE Technologies – For more information about HERE's coverage in your region of interest, see
HERE geocoding coverage in the HERE documentation.

3. Grab – Grab provides data only for Southeast Asia. For more information about Grab's coverage,
see Countries/regions and area covered in this guide.

You can do this using the Amazon Location Service console, the AWS CLI, or the Amazon Location
APIs.

Console

To create a place index resource using the Amazon Location Service console

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Place indexes.

3. Choose Create place index.

4. Fill out the following boxes:

Prerequisites 317

https://developers.arcgis.com/rest/geocode/api-reference/geocode-coverage.htm
https://developers.arcgis.com/rest/geocode/api-reference/geocode-coverage.htm
https://developer.here.com/documentation/geocoder/dev_guide/topics/coverage-geocoder.html
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

• Name – Enter a name for the place index resource. For example, ExamplePlaceIndex.
Maximum 100 characters. Valid entries include alphanumeric characters, hyphens,
periods, and underscores.

• Description – Enter an optional description.

5. Under Data providers, choose an available data provider to use with your place index
resource.

Note

If your application is tracking or routing assets you use in your business, such as
delivery vehicles or employees, you must not use Esri as your geolocation provider.
See section 82 of the AWS service terms for more details.

6. Under Data storage options, specify if you intend to store search results from your place
index resource.

7. (Optional) Under Tags, enter a tag Key and Value. This adds a tag your new place index
resource. For more information, see Tagging your resources.

8. Choose Create place index.

API

To create a place index resource using the Amazon Location APIs

Use the CreatePlaceIndex operation from the Amazon Location Places APIs.

The following example is an API request to create a place index resource called
ExamplePlaceIndex using the data provider Esri.

POST /places/v0/indexes
Content-type: application/json

{
 "DataSource": "Esri",
 "DataSourceConfiguration": {
 "IntendedUse": "SingleUse"
 },
 "Description": "string",
 "IndexName": "ExamplePlaceIndex",

Prerequisites 318

https://aws.amazon.com/location/data-providers/
https://aws.amazon.com/service-terms
https://docs.aws.amazon.com/location-places/latest/APIReference/API_CreatePlaceIndex.html

Amazon Location Service Developer Guide

 "Tags": {
 "Tag1" : "Value1"
 }
}

AWS CLI

To create a place index resource using AWS CLI commands

Use the create-place-index command.

The following example creates a place index resource called ExamplePlaceIndex using Esri
as the data provider.

aws location \
 create-place-index \
 --data-source "Esri" \
 --description "Example place index" \
 --index-name "ExamplePlaceIndex" \
 --tags Tag1=Value1

Note

Billing depends on your usage. You may incur fees for the use of other AWS services. For
more information, see Amazon Location Service pricing.

Authenticating your requests

Once you create a place index resource and you're ready to begin building location features into
your application, choose how you would authenticate your requests:

• To explore ways you can access the services, see Accessing Amazon Location Service.

• If you have a website with anonymous users, you may want to use API Keys or Amazon Cognito.

Example

The following example shows using an API key for authorization, using AWS JavaScript SDK v3,
and the Amazon Location JavaScript Authentication helper.

Prerequisites 319

https://docs.aws.amazon.com/cli/latest/reference/location/create-place-index.html
https://aws.amazon.com/location/pricing/
https://aws.amazon.com/sdk-for-javascript/

Amazon Location Service Developer Guide

import { LocationClient, SearchPlaceIndexForTextCommand } from "@aws-sdk/client-
location";
import { withAPIKey } from "@aws/amazon-location-utilities-auth-helper";

const apiKey = "v1.public.your-api-key-value"; // API key

// Create an authentication helper instance using an API key
const authHelper = await withAPIKey(apiKey);

const client = new LocationClient({
 region: "<region>", // region containing Cognito pool
 ...authHelper.getLocationClientConfig(), // Provides configuration required to make
 requests to Amazon Location
});

const input = {
 IndexName: "ExamplePlaceIndex",
 Text: "Anyplace",
 BiasPosition: [-123.4567, 45.6789]
};

const command = new SearchPlaceIndexForTextCommand(input);

const response = await client.send(command);

Geocoding

Geocoding is a process that converts text, such as an address, a region, a business name, or point
of interest, into a set of geographic coordinates. You can use place index resources to submit
geocoding requests and incorporate data retrieved from geocoding to display data on a map for
your web or mobile application.

This section guides you through how to send a simple geocoding request, and how to send
geocoding requests with optional specifications.

Geocoding

You can submit a simple request to geocode using the SearchPlaceIndexForText operation
to convert an address to a set of coordinates. A simple request contains the following required
parameter:

Geocoding 320

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html

Amazon Location Service Developer Guide

• Text – An address, name, city, or region to convert to a set of coordinates. For example, the
string Any Town.

To specify a maximum number of results per pages, use the following optional parameter:

• MaxResults – Limits the maximum number of results returned in the query response.

You can use the AWS CLI or the Amazon Location APIs.

API

The following example is a SearchPlaceIndexForText request to search the place index
resource, ExamplePlaceIndex, for an address, name, city or region called Any Town.

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json

{
 "Text": "Any Town",
 "MaxResults": 10
}

AWS CLI

The following example is a search-place-index-for-text command to search the place
index resource, ExamplePlaceIndex, for an address, name, city or region called Any Town.

aws location \
 search-place-index-for-text \
 --index-name ExamplePlaceIndex \
 --text "Any Town" \
 --max-results 10

Geocode near a position

When geocoding, you can geocode near a given position with the following optional parameter:

• BiasPosition – The position you want to search nearby. This narrows your search by searching
for results closest to the given position. Defined as [longitude, latitude]

Geocoding 321

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://docs.aws.amazon.com/cli/latest/reference/location/search-place-index-for-text.html

Amazon Location Service Developer Guide

The following example is a SearchPlaceIndexForText request to search the place
index resource for an address, name, city or region called Any Town near the position
[-123.4567,45.6789].

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json

{
 "Text": "Any Town",
 "BiasPosition": [-123.4567,45.6789]
}

Geocode within a bounding box

You can geocode within a bounding box to narrow your results to coordinates within a given
boundary using the following optional parameter:

• FilterBBox – A bounding box that you specify to filter your results to coordinates within the
box's boundaries. Defined as [LongitudeSW, LatitudeSW, LongitudeNE, LatitudeNE]

Note

A request can't contain both the FilterBBox and BiasPosition parameters.
Specifying both parameters in the request returns a ValidationException error.

The following example is a SearchPlaceIndexForText request to search within a bounding box
for an address, name, city or region called Any Town. The bounding box follows that:

• The longitude of the southwest corner is -124.1450.

• The latitude of the southwest corner is 41.7045.

• The longitude of the northeast corner is -124.1387.

• The latitude of the northeast corner is 41.7096.

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json

{

Geocoding 322

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html

Amazon Location Service Developer Guide

 "Text": "Any Town",
 "FilterBBox": [
 -124.1450,41.7045,
 -124.1387,41.7096
]
}

Geocode within a country

You can geocode within one or more countries you specify by using the following optional
parameter:

• FilterCountries – The country or region you want to geocode within. You can define up to
100 countries in one request using a ISO 3166 three letter country code. For example, use AUS
for Australia.

The following example is a SearchPlaceIndexForText request to search for an address, name,
city or region called Any Town in Germany and France.

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json

{
 "Text": "Any Town",
 "FilterCountries": ["DEU","FRA"]
}

Filtering by category

You can filter the categories that are returned in your geocode request by using the following
optional parameter:

• FilterCategories – The categories of results you want returned in your query. You can
specify up to 5 categories in one request. You can find the list of Amazon Location Service
categories in the Categories section. For example, you can specify Hotel to specify only
returning hotels in your query.

The following example is a SearchPlaceIndexForText request to search for an coffee shop
called Hometown Coffee in the United States.

Geocoding 323

https://www.iso.org/iso-3166-country-codes.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html

Amazon Location Service Developer Guide

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json

{
 "Text": "Hometown Coffee",
 "FilterCategories": ["Coffee Shop"],
 "FilterCountries": ["USA"]
}

For more details about filtering on categories, see Place categories and filtering results

Geocode in a preferred language

You can set a language preference for results of your search by using the optional Language
parameter. For example, a search for 100 Main St, Anytown, USA may return 100 Main St,
Any Town, USA by default. But if you select fr as the Language, then the results may return 100
Rue Principale, Any Town, États-Unis instead.

• Language – A language code to use for rendering the results of your query. The value must be a
valid BCP 47 language code. For example, en for English.

Note

If Language is not specified, or the specified language is not supported for a result, the
partner's default language for that result will be used.

The following example is a SearchPlaceIndexforText request to search for a place called Any
Town with the preferred language specified as de.

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json
{
 "Text": "Any Town",
 "Language": "de"
}

Geocoding 324

https://tools.ietf.org/search/bcp47

Amazon Location Service Developer Guide

Example response

Example

The following is an example response when you call the SearchPlaceIndexForText operation
from the Amazon Location Places APIs. The results include relevant places and the request
summary. Two responses are shown, based on selecting Esri or HERE as the partner.

Example request

POST /places/v0/indexes/ExamplePlaceIndex/search/text
Content-type: application/json

{
 "Text": "Amazon",
 "MaxResults": 1,
 "FilterCountries": ["USA"],
 "BiasPosition": [-112.10, 46.32]
}

Example response (Esri)

{
 "Results": [
 {
 "Place": {
 "Country": "USA",
 "Geometry": {
 "Point": [
 -112.10667999999998,
 46.319090000000074
]
 },
 "Interpolated": false,
 "Label": "Amazon, MT, USA",
 "Municipality": "Amazon",
 "Region": "Montana",
 "SubRegion": "Jefferson County"
 },
 "Distance": 523.4619749879726,
 "Relevance": 1
 }
],

Geocoding 325

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_Place.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForTextSummary.html

Amazon Location Service Developer Guide

 "Summary": {
 "BiasPosition": [
 -112.1,
 46.32
],
 "DataSource": "Esri",
 "FilterCountries": [
 "USA"
],
 "MaxResults": 1,
 "ResultBBox": [
 -112.10667999999998,
 46.319090000000074,
 -112.10667999999998,
 46.319090000000074
],
 "Text": "Amazon"
 }
}

Example response (HERE)

{
 "Summary": {
 "Text": "Amazon",
 "BiasPosition": [
 -112.1,
 46.32
],
 "FilterCountries": [
 "USA"
],
 "MaxResults": 1,
 "ResultBBox": [
 -112.10668,
 46.31909,
 -112.10668,
 46.31909
],
 "DataSource": "Here"
 },
 "Results": [
 {

Geocoding 326

Amazon Location Service Developer Guide

 "Place": {
 "Label": "Amazon, Jefferson City, MT, United States",
 "Geometry": {
 "Point": [
 -112.10668,
 46.31909
]
 },
 "Neighborhood": "Amazon",
 "Municipality": "Jefferson City",
 "SubRegion": "Jefferson",
 "Region": "Montana",
 "Country": "USA",
 "Interpolated": false,
 "TimeZone": {
 "Name": "America/Denver",
 "Offset": -25200
 }
 },
 "PlaceId": "AQAAAIAADsn2T3KdrRWeaXLeVEyjNx_JfeTsMB0NVCEAnAZoJ-
o3nqdlJZAdgcT2oWi1w9pS4wXXOk3O1vsKlGsPyHjV4EJxsu289i3hVO_BUPgP7SFoWAi8BW2v7LvAjQ5NfUPy7a1v9ajT3feIqcUZszWSTqKbJHFYvQqW7wdqhpQq3Wy-
et39ZQDWSPLZUzgcjN-6VD2gyKkH0Po7gSm8YSJNSQ", "Distance":
 523.4619749905755
 }
]
}

Reverse geocoding

Reverse geocoding is a process that converts a set of coordinates into meaningful text, such as an
address, a region, a business name, or point of interest. You can use place index resources to submit
reverse geocoding requests and incorporate data retrieved from reverse geocoding to display data
on a map for your web or mobile application.

This section guides you through how to send a simple reverse geocoding request.

Reverse geocoding

You can submit a simple request to reverse geocode a set of coordinates and convert them to
a meaningful address, a point of interest or a general location without an address using the

Reverse geocoding 327

Amazon Location Service Developer Guide

SearchPlaceIndexForPosition operation. A simple request contains the following required
parameter:

• Position – A set of coordinates that you want to convert to an address, point of interest, or
general location. Defined using the format [longitude,latitude].

To specify a maximum number of results per pages, add the following optional parameter:

• MaxResults – Limits the maximum number of results returned in the query response.

If you want to specify a preferred language for the results of your query, use the following optional
parameter:

• Language – A language code to be used for rendering results. The value must be a valid BCP 47
language code. For example, en for English.

Note

If Language is not specified, or the specified language is not supported for a result, the
partner's default language for that result will be used.

You can use the AWS CLI or the Amazon Location APIs.

API

The following example is a SearchPlaceIndexForPosition request to search the place
index resource, ExamplePlaceIndex, for a meaningful address, point of interest or general
location near the position [122.3394,47.6159].

POST /places/v0/indexes/ExamplePlaceIndex/search/position
Content-type: application/json

{
 "Position": [-122.3394,47.6159],
 "MaxResults": 5,
 "Language": "de"
}

Reverse geocoding 328

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForPosition.html
https://tools.ietf.org/search/bcp47
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForPosition.html

Amazon Location Service Developer Guide

AWS CLI

The following example is a search-place-index-for-position command to search the
place index resource, ExamplePlaceIndex, for a meaningful address, point of interest or
general location near the position [122.3394,47.6159].

aws location \
 search-place-index-for-position \
 --index-name ExamplePlaceIndex \
 --position -122.3394 47.6159 \
 --max-results 5 \
 --language de

Example response

Example

The following is an example response when calling the SearchPlaceIndexForPosition
operation from the Amazon Location Places APIs. The results return relevant places and the
request summary. Two responses are shown, based on selecting Esri or Here as the partner.

Example request

POST /places/v0/indexes/ExamplePlaceIndex/search/position
Content-type: application/json

{
 "Position": [-122.3394,47.6159],
 "MaxResults": 1
}

Example response (Esri)

{
 "Results": [
 {
 "Place": {
 "AddressNumber": "2111",
 "Country": "USA",
 "Geometry": {
 "Point": [

Reverse geocoding 329

https://docs.aws.amazon.com/cli/latest/reference/location/search-place-index-for-position.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForPosition.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_Place.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForPositionSummary.html

Amazon Location Service Developer Guide

 -122.33937999999995,
 47.61591000000004
]
 },
 "Interpolated": false,
 "Label": "The Spheres, 2111 7th Ave, Seattle, WA, 98121, USA",
 "Municipality": "Seattle",
 "Neighborhood": "Belltown",
 "PostalCode": "98121",
 "Region": "Washington",
 "SubRegion": "King County"
 },
 "Distance": 1.8685861313438727
 }
],
 "Summary": {
 "DataSource": "Esri",
 "MaxResults": 1,
 "Position": [
 -122.3394,
 47.6159
]
 }
}

Example response (HERE)

{
 "Summary": {
 "Position": [
 -122.3394,
 47.6159
],
 "MaxResults": 1,
 "DataSource": "Here"
 },
 "Results": [
 {
 "Place": {
 "Label": "2111 7th Ave, Seattle, WA 98121-5114, United States",
 "Geometry": {
 "Point": [
 -122.33938,

Reverse geocoding 330

Amazon Location Service Developer Guide

 47.61591
]
 },
 "AddressNumber": "2111",
 "Street": "7th Ave",
 "Neighborhood": "Belltown",
 "Municipality": "Seattle",
 "SubRegion": "King",
 "Region": "Washington",
 "Country": "USA",
 "PostalCode": "98121-5114",
 "Interpolated": false,
 "TimeZone": {
 "Name": "America/Los_Angeles",
 "Offset": -28800
 }
 },
 "PlaceId": "AQAAAIAADsn2T3KdrRWeaXLeVEyjNx_JfeTsMB0NVCEAnAZoJ-
o3nqdlJZAdgcT2oWi1w9pS4wXXOk3O1vsKlGsPyHjV4EJxsu289i3hVO_BUPgP7SFoWAi8BW2v7LvAjQ5NfUPy7a1v9ajT3feIqcUZszWSTqKbJHFYvQqW7wdqhpQq3Wy-
et39ZQDWSPLZUzgcjN-6VD2gyKkH0Po7gSm8YSJNSQ",
 "Distance": 1.868586125090601
 }
]
}

Autocomplete

Autocomplete provides responsive feedback to end users as they are typing their search query.
It provides suggestions for addresses and points of interest based on partial or misspelled free-
form text. You can use place index resources to request autocomplete suggestions, and display the
resulting suggestions in your application.

Amazon Location does not support storage of autocomplete suggestions. An error is returned if the
place index used for an autocomplete call is configured for use with stored geocodes. To use stored
geocodes and query for suggestions, create and configure multiple place indexes.

This section describes how to send an autocomplete request. It starts with the most basic form
of the request, and then shows optional parameters that you can use to increase the relevance of
autocomplete search results.

Autocomplete 331

Amazon Location Service Developer Guide

Using autocomplete

You can submit a simple request for autocomplete suggestions by using the
SearchPlaceIndexForSuggestions operation. The simplest form of the request has a single
required parameter, the query Text:

• Text – The free-form partial text to use to generate place suggestions. For example, the string
eiffel tow.

To limit the number of results returned, add the optional MaxResults parameter:

• MaxResults – Limits the number of results returned in the query response.

You can use the Amazon Location APIs or the AWS CLI.

API

The following example is a SearchPlaceIndexForSuggestions request to search the place
index resource, ExamplePlaceIndex, for up to 5 suggestions based on the partial place name
kamp.

POST /places/v0/indexes/ExamplePlaceIndex/search/suggestions
Content-type: application/json

{
 "Text": "kamp",
 "MaxResults": 5
}

AWS CLI

The following example is a search-place-index-for-suggestions command to search
the place index resource, ExamplePlaceIndex, for up to 5 suggestions based on the partial
place name kamp.

aws location \
 search-place-index-for-suggestions \
 --index-name ExamplePlaceIndex \
 --text kamp \
 --max-results 5

Autocomplete 332

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html
https://docs.aws.amazon.com/cli/latest/reference/location/search-place-index-for-suggestions.html

Amazon Location Service Developer Guide

The call to SearchPlaceIndexForSuggestions results in a list of places with a name and an
ID for each. You can use those results to present suggestions of what the user might be searching
for, as they are typing, such as providing a dropdown list of choices underneath a text box. For
example, here are the results for suggestions, based on a user typing kamp.

{
 "Summary": {
 "Text": "kamp",
 "MaxResults": 5,
 "DataSource": "Esri"
 },
 "Results": [
 {
 "Text": "Kampuchea",
 "PlaceId": "AQAAAIAADsn2T3KdrRWeaXLeVEyjNx_JfeTsMB0NVCEAnAZoJ-
o3nqdlJZAdgcT2oWi1w9pS4wXXOk3O1vsKlGsPyHjV4EJxsu289i3hVO_BUPgP7SFoWAi8BW2v7LvAjQ5NfUPy7a1v9ajT3feIqcUZszWSTqKbJHFYvQqW7wdqhpQq3Wy-
et39ZQDWSPLZUzgcjN-6VD2gyKkH0Po7gSm8YSJNSQ"
 },
 {
 "Text": "Kampoul, Kabul, AFG",
 "PlaceId":
 "AQAAAIAAA1mxl_-9ffzXD07rBgo9fh6E01Pd1YKvuT5rz2qBDxqBkhTlgkeiOPR2s5sa3YBLxUqQI8bhymsYcu9R-
DkX3L9QSi3CB5LhNPu160iSFJo6H8S1CrxO3QsJALhrr9mdbg0R4R4YDywkhkeBlnbn7g5C5LI_wYx873WeQZuilwtsGm8jcMA0Ya5oK4netQC6piVx6zmnPdwBs-
UeXcb_bg"
 },
 {
 "Text": "Kampala, UGA",
 "PlaceId":
 "AQAAAIAAzZfZt3qMruKGObyhP6MM0pqy2L8SULlVWT7a3ertLBRS6Q5n7I4s9D7E0nRHADAj7mL7kvX1Q8HD-
mpuiATXNJ1Ix4_V_1B15zHe8jlYKMWvXbgbO8cMpgR2fqYqZMR1x-
dfBOO8OoqujKZldvPIDK1kNe3GwcaqvvMWWPMeaGd203brFynubAe-MmFF-Gjz-WBMfUy9og6MV7bkk6NGCA"
 },
 {
 "Text": "Kampar, Riau, IDN",
 "PlaceId": "AQAAAIAAvbXXx-
srOi111tHOkPdao0GF7WQ_KaZ444SEnevycp6Gtf_2JWgPfCE5bIQCYwya1uZQpX2a8YJoFm2K7Col4fLu7IK0yYOLhZx4kp6QzbG4xEAGzfWtWq6nfbb0lZfuHY6r0g1sRlN1aucvwim4AEcKRzckqaa93JI8064pj6Q59kN37pAa3JX4ayEzH1DzIL3m3oqxzd4O16yGfhAIgA"
 },
 {
 "Text": "Kampung Pasir Gudang Baru, Johor, MYS",
 "PlaceId":
 "AQAAAIAA4HLQHdjUDcaaXLE9wtNIT1cjQYLgkBnMoG2eNN0AaQ8PJoWabLRXmmPUaAj8MAD6vT0i6zqaun5Mixyj7vnYXrk2xp59cbgdqvQaPoWhSCVxBOX0WGs3cZ8TnIRn3c-6v8_UfmqC7es1gUyECfMGK04VBKiwpHwCzjNsqymkd9BC3A9K3QlMgd3dkrGjv_vV94iLlnFTbaecrckl2UDCkA"
 }
]

Autocomplete 333

Amazon Location Service Developer Guide

}

The next section explains how to use the PlaceID from these results.

Using the autocomplete results

The call to SearchPlaceIndexForSuggestions results in a list of places with a name and an
ID for each. You can use those results to present suggestions of what the user might be searching
for, as they are typing, such as providing a dropdown list of choices underneath a text box. When
the user chooses one of the results, you can then call the GetPlace operation with the ID of their
selection to return the details of that place, including location, address, or other details.

Note

A PlaceId is valid only if all of the following are the same in the original search request,
and the call to GetPlace.

• Customer AWS account

• AWS Region

• Data provider specified in the place index resource

Typically, you use GetPlace with the Amazon Location APIs. The following example is a GetPlace
request to find one of the suggestions from the previous section. This example is based on the
partial place name kamp.

POST /places/v0/indexes/ExamplePlaceIndex/
places/AQAAAIAADsn2T3KdrRWeaXLeVEyjNx_JfeTsMB0NVCEAnAZoJ-
o3nqdlJZAdgcT2oWi1w9pS4wXXOk3O1vsKlGsPyHjV4EJxsu289i3hVO_BUPgP7SFoWAi8BW2v7LvAjQ5NfUPy7a1v9ajT3feIqcUZszWSTqKbJHFYvQqW7wdqhpQq3Wy-
et39ZQDWSPLZUzgcjN-6VD2gyKkH0Po7gSm8YSJNSQ

Autocomplete near a position

When you search for autocomplete place suggestions by using
SearchPlaceIndexForSuggestions, you can get more locally-relevant suggestions by adding
the following optional parameter:

• BiasPosition – The position you want to search nearby. Defined as [longitude,
latitude].

Autocomplete 334

https://docs.aws.amazon.com/location-places/latest/APIReference/API_GetPlace.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_GetPlace.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html

Amazon Location Service Developer Guide

The following example uses a SearchPlaceIndexForSuggestions request to search the place
index resource ExamplePlaceIndex for place suggestions matching the partial query kamp near
the position [32.5827,0.3169].

POST /places/v0/indexes/ExamplePlaceIndex/search/suggestions
Content-type: application/json

{
 "Text": "kamp",
 "BiasPosition": [32.5827,0.3169]
}

The suggestions returned for the same Text can be different if a different BiasPosition is
chosen, such as [-96.7977, 32.7776].

Autocomplete within a bounding box

You can narrow your autocomplete search to receive only suggestions for places which are located
within a given boundary by adding the following optional parameter:

• FilterBBox – A bounding box that you specify to filter your results to coordinates within the
box's boundaries. Defined as [LongitudeSW, LatitudeSW, LongitudeNE, LatitudeNE]

Note

A request can't contain both the FilterBBox and BiasPosition parameters.
Specifying both parameters in the request returns a ValidationException error.

The following example uses a SearchPlaceIndexForSuggestions request to search the place
index resource ExamplePlaceIndex for place suggestions matching the partial query kamp, and
which are contained within the bounding box where:

• The longitude of the southwest corner of the bounding box is 32.5020.

• The latitude of the southwest corner of the bounding box is 0.2678.

• The longitude of the northeast corner of the bounding box is 32.6129.

• The latitude of the northeast corner of the bounding box is 0.3502.

Autocomplete 335

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html

Amazon Location Service Developer Guide

POST /places/v0/indexes/ExamplePlaceIndex/search/suggestions
Content-type: application/json

{
 "Text": "kamp",
 "FilterBBox": [
 32.5020, 0.2678,
 32.6129, 0.3502
]
}

The suggestions returned for the same Text are different if a different FilterBBox is chosen,
such as [-97.9651, 32.0640, -95.1196, 34.0436].

Autocomplete within a country

You can narrow your autocomplete search to receive only suggestions for places which are located
within a given country, or set of countries, by adding the following optional parameter:

• FilterCountries – The countries you want to search for place suggestions within. You can
specify up to 100 countries in one request using a ISO 3166 three-letter country code. For
example, use AUS for Australia.

The following example uses a SearchPlaceIndexForSuggestions request to search the place
index resource ExamplePlaceIndex for place suggestions matching the partial query kamp and
which are contained within Uganda, Kenya, or Tanzania:

POST /places/v0/indexes/ExamplePlaceIndex/search/suggestions
Content-type: application/json

{
 "Text": "kamp",
 "FilterCountries": ["UGA", "KEN", "TZA"]
}

The suggestions returned for the same Text are different if a different FilterCountries list is
chosen, such as ["USA"].

Autocomplete 336

https://www.iso.org/iso-3166-country-codes.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html

Amazon Location Service Developer Guide

Example response

The following is an example response of suggested autocompletions for the
SearchPlaceIndexForSuggestions operation, using the text kamp.

{
 "Summary": {
 "Text": "kamp",
 "MaxResults": 5,
 "DataSource": "Esri"
 },
 "Results": [
 {
 "Text": "Kampuchea",
 "PlaceId": "AQAAAIAADsn2T3KdrRWeaXLeVEyjNx_JfeTsMB0NVCEAnAZoJ-
o3nqdlJZAdgcT2oWi1w9pS4wXXOk3O1vsKlGsPyHjV4EJxsu289i3hVO_BUPgP7SFoWAi8BW2v7LvAjQ5NfUPy7a1v9ajT3feIqcUZszWSTqKbJHFYvQqW7wdqhpQq3Wy-
et39ZQDWSPLZUzgcjN-6VD2gyKkH0Po7gSm8YSJNSQ"
 },
 {
 "Text": "Kampoul, Kabul, AFG",
 "PlaceId":
 "AQAAAIAAA1mxl_-9ffzXD07rBgo9fh6E01Pd1YKvuT5rz2qBDxqBkhTlgkeiOPR2s5sa3YBLxUqQI8bhymsYcu9R-
DkX3L9QSi3CB5LhNPu160iSFJo6H8S1CrxO3QsJALhrr9mdbg0R4R4YDywkhkeBlnbn7g5C5LI_wYx873WeQZuilwtsGm8jcMA0Ya5oK4netQC6piVx6zmnPdwBs-
UeXcb_bg"
 },
 {
 "Text": "Kampala, UGA",
 "PlaceId":
 "AQAAAIAAzZfZt3qMruKGObyhP6MM0pqy2L8SULlVWT7a3ertLBRS6Q5n7I4s9D7E0nRHADAj7mL7kvX1Q8HD-
mpuiATXNJ1Ix4_V_1B15zHe8jlYKMWvXbgbO8cMpgR2fqYqZMR1x-
dfBOO8OoqujKZldvPIDK1kNe3GwcaqvvMWWPMeaGd203brFynubAe-MmFF-Gjz-WBMfUy9og6MV7bkk6NGCA"
 },
 {
 "Text": "Kampar, Riau, IDN",
 "PlaceId": "AQAAAIAAvbXXx-
srOi111tHOkPdao0GF7WQ_KaZ444SEnevycp6Gtf_2JWgPfCE5bIQCYwya1uZQpX2a8YJoFm2K7Col4fLu7IK0yYOLhZx4kp6QzbG4xEAGzfWtWq6nfbb0lZfuHY6r0g1sRlN1aucvwim4AEcKRzckqaa93JI8064pj6Q59kN37pAa3JX4ayEzH1DzIL3m3oqxzd4O16yGfhAIgA"
 },
 {
 "Text": "Kampung Pasir Gudang Baru, Johor, MYS",
 "PlaceId":
 "AQAAAIAA4HLQHdjUDcaaXLE9wtNIT1cjQYLgkBnMoG2eNN0AaQ8PJoWabLRXmmPUaAj8MAD6vT0i6zqaun5Mixyj7vnYXrk2xp59cbgdqvQaPoWhSCVxBOX0WGs3cZ8TnIRn3c-6v8_UfmqC7es1gUyECfMGK04VBKiwpHwCzjNsqymkd9BC3A9K3QlMgd3dkrGjv_vV94iLlnFTbaecrckl2UDCkA"
 }
]

Autocomplete 337

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html

Amazon Location Service Developer Guide

}

Using place IDs

Searching for places returns a list of results. Most results include a PlaceId for that result. You
can use a PlaceId in a GetPlace operation to return the information about that place (including
name, address, location, or other details).

Note

Using SearchPlaceIndexForSuggestions will return PlaceId results for any
place indexes created with any data source. Using SearchPlaceIndexForText or
SearchPlaceIndexForPosition will return a PlaceId only if the data source used is HERE.

Each PlaceId uniquely defines the place it refers to, but a single place can have more than one
PlaceId over time, and based on the context. The following rules describe the uniqueness and
longevity of a PlaceId.

• The PlaceId returned in calls that you make is specific to your AWS account, to the AWS Region,
and to the data provider in your PlaceIndex resource. GetPlace will find results only when
these three attributes match the original call that created the PlaceId.

• The PlaceId for a place will change when the data about that place changes. For example,
when the business that it refers to moves location or changes names.

• The PlaceId returned from a repeated search call may change when the backend service makes
an update. The older PlaceId will continue to be found, but new calls to search may return a
different ID.

The PlaceId is a string. There is no specific limit to the length of a PlaceId. The following is an
example of a valid PlaceId.

AQAAAIAADsn2T3KdrRWeaXLeVEyjNx_JfeTsMB0NVCEAnAZoJ-
o3nqdlJZAdgcT2oWi1w9pS4wXXOk3O1vsKlGsPyHjV4EJxsu289i3hVO_BUPgP7SFoWAi8BW2v7LvAjQ5NfUPy7a1v9ajT3feIqcUZszWSTqKbJHFYvQqW7wdqhpQq3Wy-
et39ZQDWSPLZUzgcjN-6VD2gyKkH0Po7gSm8YSJNSQ

Calling GetPlace with a PlaceId for a place whose data has changed (for example, a business
location that has gone out of business), will result in a 404, ResourceNotFound error. Calling

Using place IDs 338

https://docs.aws.amazon.com/location-places/latest/APIReference/API_GetPlace.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForSuggestions.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForPosition.html

Amazon Location Service Developer Guide

GetPlace with a PlaceId that is not valid, or one out of context, such as from another AWS
account, will return a 400, ValidationException error.

While you can use PlaceID in subsequent requests, PlaceID is not intended to be a permanent
identifier and the ID can change between consecutive API calls. Please see the following PlaceID
behaviour for each data provider:

• Esri: Place IDs will change every quarter at a minimum. The typical time period for these changes
would be March, June, September, and December. Place IDs might also change between the
typical quarterly change but that will be much less frequent.

• HERE: We recommend that you cache data for no longer than a week to keep your data data
fresh. You can assume that less than 1% ID shifts will release over release which is approximately
1 - 2 times per week.

• Grab: Place IDs can expire or become invalid in the following situations.

• Data operations: The POI may be removed from Grab POI database by Grab Map Ops based
on the ground-truth, such as being closed in the real world, being detected as a duplicate POI,
or having incorrect information. Grab will synchronize data to the Waypoint environment on
weekly basis.

• Interpolated POI: Interpolated POI is a temporary POI generated in real time when serving a
request, and it will be marked as derived in the place.result_type field in the response.
The information of interpolated POIs will be retained for at least 30 days, which means that
within 30 days, you are able to obtain POI details by Place ID from Place Details API. After 30
days, the interpolated POIs(both Place ID and details) may expire and inaccessible from the
Places Details API.

Place categories and filtering results

Places are categorized. If you search for a business, the business might be a Restaurant, for
example. Even the results of a search for an address can be categorized by whether it was matched
to an address, street, or intersection.

Broadly, Amazon Location Service categorizes places into Place types. Points of interest are further
categorized into Point of interest types.

Categories and filtering 339

Amazon Location Service Developer Guide

Note

Not all results will have categories.

You can use the categories to filter your geocoding searches.

Filtering results

When you are using SearchPlaceIndexForText, you can filter the results that are returned by
the categories that you want to use. For example:

• If you want to search for a place called "Hometown Coffee", and only return results that are
categorized as coffee shops, you can do that by calling SearchPlaceIndexForText and
include the Point of interest category, Coffee Shop in the FilterCategories parameter.

• When searching for "123 Main St, Anytown, WA, 98123, USA", you can filter result to just
addresses, so you don't get matches on, for example, the postal code. Filter to just addresses by
including Place type, AddressType in the FilterCategories parameter.

Note

Not all data providers support filtering, or support it in the same way. For more
information, see Filtering limitations by data provider.

The next section lists the categories that you can filter on.

Categories

The following lists show the categories that Amazon Location Service uses to categorize and filter.
These categories are used in all languages, independent of the language parameter is set to a
different language.

Note

Amazon Location Service maps data provider categories to this set of categories. If a data
provider puts a place into a category that is not part of the Amazon Location Service

Categories and filtering 340

Amazon Location Service Developer Guide

category list, the provider category will be included in the results as a supplemental
category.

Place types – These types are used to indicate the type of match that was used to find the result.

• AddressType – Returned when the result was matched to an address.

• StreetType – Returned when the result was matched to a street.

• IntersectionType – Returned when the result was matched to the intersection of two streets.

• PointOfInterestType – Returned when the result was match to a point of interest, such as a
business, or civic location.

• CountryType – Returned when the result was matched to a country or major region.

• RegionType – Returned when the result was matched to a region within a country, such as a
state or province.

• SubRegionType – Returned when the result was matched to a subregion within a country, such
as a county or metropolitan area.

• MunicipalityType – Returned when the result was matched to a city or town.

• NeighborhoodType – Returned when the result was matched to a neighborhood or area within
a city.

• PostalCodeType – Returned when the result was matched to a postal code.

Point of interest categories – These categories are used to indicate the type of business or location
for point of interest results.

• Airport

• Amusement Park

• Aquarium

• Art Gallery

• ATM

• Bakery

• Bank

• Bar

Categories and filtering 341

Amazon Location Service Developer Guide

• Beauty Salon

• Bus Station

• Car Dealer

• Car Rental

• Car Repair

• Car Wash

• Cemetery

• Cinema

• City Hall

• Clothing Store

• Coffee Shop

• Consumer Electronics Store

• Convenience Store

• Court House

• Dentist

• Embassy

• Fire Station

• Fitness Center

• Gas Station

• Government Office

• Grocery

• Higher Education

• Hospital

• Hotel

• Laundry

• Library

• Liquor Store

• Lodging

Categories and filtering 342

Amazon Location Service Developer Guide

• Market

• Medical Clinic

• Motel

• Museum

• Nightlife

• Nursing Home

• Park

• Parking

• Pet Store

• Pharmacy

• Plumbing

• Police Station

• Post Office

• Religious Place

• Restaurant

• School

• Shopping Mall

• Sports Center

• Storage

• Taxi Stand

• Tourist Attraction

• Train Station

• Veterinary Care

• Zoo

Filtering limitations by data provider

Not all providers have the same filtering functionality. The following table describes the
differences.

Categories and filtering 343

Amazon Location Service Developer Guide

Provider APIs with filter
support

Categories
supported for
filtering

Return values

Esri SearchPla
ceIndexFo
rText , SearchPla
ceIndexFo
rSuggestions

Filter by Place types
and Point of interest
categories.

Categories are
returned by
SearchPla
ceIndexFo
rText , SearchPla
ceIndexFo
rPosition , and
GetPlace

Here SearchPla
ceIndexFo
rText , SearchPla
ceIndexFo
rSuggestions

Filter by Place types
only.

Categories are
returned by
SearchPla
ceIndexForText
and SearchPla
ceIndexFo
rSuggesti
ons , SearchPla
ceIndexFo
rPosition , and
GetPlace

Grab not supported not supported not supported

Open Data n/a (searching places
not supported)

n/a n/a

Amazon Aurora PostgreSQL user-defined functions for Amazon
Location Service

You can use Amazon Location Service to work with coordinates and addresses stored in database
tables to clean and enrich your geospatial data.

Tutorial: Database enrichment 344

Amazon Location Service Developer Guide

For example:

• You can use geocoding to convert addresses to coordinates to normalize and fill gaps in data for
addresses stored in a database table.

• You can geocode addresses to obtain their positions and use the coordinates with database
spatial functions, such as a function that shows rows in a specified area.

• You can use enriched data to generate automated reporting, such as generating an automated
report that illustrates all devices in a given area, or an automated report for machine learning
that illustrates areas with higher failure rates when sending location updates.

This tutorial shows how to format and enrich addresses stored in an Amazon Aurora PostgreSQL
database table using Amazon Location Service.

• Amazon Aurora PostgreSQL – A fully managed relational database engine, compatible with
MySQL and PostgreSQL, that outputs up to five times the throughput of MySQL and up to three
times the throughput of PostgreSQL without changing most of your existing application. For
more information, see What is Amazon Aurora? in the Amazon Aurora User Guide.

Important

The resulting application in this tutorial uses a place index that stores geocoding results.
For information about applicable charges for storing geocoding results, see Amazon
Location Service pricing.

Sample code is available in the Amazon Location Service samples repository on GitHub, which
includes an AWS CloudFormation template.

Topics

• Overview

• Prerequisites

• Quick start

• Create a place index resource

• Create an AWS Lambda function for geocoding

• Grant Amazon Aurora PostgreSQL access to AWS Lambda

Tutorial: Database enrichment 345

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://aws.amazon.com/location/pricing/
https://aws.amazon.com/location/pricing/
https://github.com/aws-samples/amazon-location-samples/tree/main/aurora-udfs
https://github.com/aws-samples/amazon-location-samples/tree/main/aurora-udfs/cloudformation/template.yaml

Amazon Location Service Developer Guide

• Invoke the AWS Lambda function

• Enriching a database containing address data

• Next steps

Overview

The architecture involves the following integrations:

• This solution uses an Amazon Location place index resource to support geocoding queries using
the operation SearchPlaceIndexForText.

• AWS Lambda uses a Python Lambda that geocodes addresses when an IAM policy gives
permission to allow AWS Lambda to call the Amazon Location geocoding operation,
SearchPlaceIndexForText.

• Grant permission to Amazon Aurora PostgreSQL to invoke the geocoding Lambda function using
an SQL user-defined function.

Prerequisites

Before you begin, you need the following prerequisites:

Tutorial: Database enrichment 346

Amazon Location Service Developer Guide

• An Amazon Aurora PostgreSQL cluster. For more information about Creating an Amazon Aurora
DB cluster, see the Amazon Aurora User Guide.

Note

If your Amazon Aurora cluster isn't publicly available, you must also configure Amazon
Aurora to connect to AWS Lambda in a virtual private cloud (VPC) in your AWS account.
For more information, see Grant Amazon Aurora PostgreSQL access to AWS Lambda.

• An SQL developer tool to connect to the Amazon Aurora PostgreSQL cluster.

Quick start

As an alternative to going through the steps in this tutorial, you can launch a quick
stack to deploy an AWS Lambda function supporting the Amazon Location operation
SearchPlaceIndexForText. This automatically configures your AWS account to allow Amazon
Aurora to call AWS Lambda.

Once you configure your AWS account, you will need to:

• Add the Lambda feature to Amazon Aurora. See Add the IAM role to a Amazon Aurora DB cluster
in Grant Amazon Aurora PostgreSQL access to AWS Lambda.

• Load the user-defined function into your database. See Invoke the AWS Lambda function.

Create a place index resource

Start by creating a place index resource to support geocoding queries.

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Place indexes.

3. Fill out the following boxes:

• Name – Enter a name for the place index resource. For example, AuroraPlaceIndex.
Maximum 100 characters. Valid entries include alphanumeric characters, hyphens, periods,
and underscores.

Tutorial: Database enrichment 347

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateUrl=https%3A%2F%2Famazon-location-cloudformation-templates.s3.us-west-2.amazonaws.com%2Faurora-udfs%2Ftemplate.yaml&stackName=AuroraUDFs
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

• Description – Enter an optional description. For example, Place index for Amazon
Aurora.

4. Under Data providers, choose an available data provider to use with your place index resource.
If you have no preference, we recommend starting with Esri.

5. Under Data storage options, specify Yes, results will be stored. This indicates that you intend
to save the geocoding results in a database.

6. (Optional) Under Tags, enter a tag Key and Value. This adds a tag your new place index
resource. For more information, see Tagging your resources.

7. Choose Create place index.

Create an AWS Lambda function for geocoding

To create a connection between Amazon Aurora PostgreSQL and Amazon Location Service,
you need an AWS Lambda function to handle requests from the database engine. This function
translates the Lambda user-defined function event and calls the Amazon Location operation
SearchPlaceIndexForText.

You can create the function using the AWS Lambda console, the AWS Command Line Interface, or
the AWS Lambda APIs.

To create a Lambda user-defined function using the console

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. From the left navigation, choose Functions.

3. Choose Create Function, and make sure that Author from scratch is selected.

4. Fill out the following boxes:

• Function name – Enter a unique name for your function. Valid entries include alphanumeric
characters, hyphens, and underscores with no spaces. For example, AuroraGeocoder.

• Runtime – Choose Python 3.8.

5. Choose Create function.

6. Choose the Code tab to open the editor.

7. Overwrite the placeholder code in lambda_function.py with the following:

from os import environ

Tutorial: Database enrichment 348

https://aws.amazon.com/location/data-providers/
https://console.aws.amazon.com/lambda/home

Amazon Location Service Developer Guide

import boto3
from botocore.config import Config

load the place index name from the environment, falling back to a default
PLACE_INDEX_NAME = environ.get("PLACE_INDEX_NAME", "AuroraPlaceIndex")

location = boto3.client("location", config=Config(user_agent="Amazon Aurora
 PostgreSQL"))

"""
This Lambda function receives a payload from Amazon Aurora and translates it to
an Amazon Location `SearchPlaceIndex` call and returns the results as-is, to be
post-processed by a PL/pgSQL function.
"""
def lambda_handler(event, context):
 kwargs = {}

 if event.get("biasPosition") is not None:
 kwargs["BiasPosition"] = event["biasPosition"]

 if event.get("filterBBox") is not None:
 kwargs["FilterBBox"] = event["filterBBox"]

 if event.get("filterCountries") is not None:
 kwargs["FilterCountries"] = event["filterCountries"]

 if event.get("maxResults") is not None:
 kwargs["MaxResults"] = event["maxResults"]

 return location.search_place_index_for_text(
 IndexName=PLACE_INDEX_NAME,
 Text=event["text"],
 **kwargs)["Results"]

8. If you've named your place index something other than AuroraPlaceIndex, create an
environment variable named PLACE_INDEX_NAME to assign the resource name to:

• From the Configuration tab, choose Environment Variables.

• Choose Edit, then choose Add environment variable.

• For Key: Enter PLACE_INDEX_NAME.

• For Value: Enter the name of your place index resource.

9. Choose Deploy to save the updated function.

Tutorial: Database enrichment 349

Amazon Location Service Developer Guide

10. From the Test drop-down menu, choose Configure test Event.

11. Choose Create new test event.

12. Enter the following test event:

{
 "text": "Baker Beach",
 "biasPosition": [-122.483, 37.790],
 "filterCountries": ["USA"]
}

13. Choose Test to test the Lambda function.

14. Choose the Configuration tab.

15. Under General configuration: Choose Permissions.

16. Under Execution role: Choose the hyper linked Role name to grant Amazon Location Service
permissions to your Lambda function.

17. Under the Permissions tab: Select the Add permissions drop down, then choose Create inline
policy.

18. Choose the JSON tab.

19. Add the following IAM policy:

• The following policy gives permission to send SearchPlaceIndexForText to the place
index resource AuroraPlaceIndex.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "geo:SearchPlaceIndexForText",
 "Resource": "arn:aws:geo:<Region>:<AccountId>:place-index/AuroraPlaceIndex"
 }
]
}

20. Choose Review policy.

21. Enter a policy name. For example, AuroraPlaceIndexReadOnly.

22. Choose Create policy.

Tutorial: Database enrichment 350

Amazon Location Service Developer Guide

Grant Amazon Aurora PostgreSQL access to AWS Lambda

Before Amazon Aurora PostgreSQL can invoke an AWS Lambda function, you must grant access
permission.

If your Amazon Aurora PostgreSQL cluster isn't publicly accessible, you will need to first create a
VPC endpoint for AWS Lambda in order for Amazon Aurora to call your Lambda function.

Create a VPC Endpoint for AWS Lambda

Note

This step is only required if your Amazon Aurora PostgreSQL cluster isn't publicly
accessible.

1. Open the Amazon Virtual Private Cloud Console.

2. In the left navigation, choose Endpoints.

3. Choose Create endpoint.

4. In the Service Name filter, enter "lambda", then choose com.amazonaws.<region>.lambda.

5. Choose the VPC containing your Aurora cluster.

6. Choose a subnet for each availability zone.

7. In the Security group filter, enter "default" or the name of the security group your Aurora
cluster is a member of, then choose the security group.

8. Choose Create endpoint.

Create an IAM policy to grant permission to invoke your AWS Lambda function

1. Open the IAM console.

2. In the left navigation, expand Access Management to choose Policies.

3. Choose Create policy.

4. On the JSON tab, input the following policy:

• The following is an example of an IAM policy that grants Amazon Aurora PostgreSQL
permission to invoke the AuroraGeocoder AWS Lambda function.

Tutorial: Database enrichment 351

https://console.aws.amazon.com/vpc/home
https://console.aws.amazon.com/iam/home#/home

Amazon Location Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": [
 "arn:aws:lambda:<Region>:<AccountId>:function:AuroraGeocoder"
]
 }
]
}

5. Choose Next: Tags to add optional tags.

6. Choose Next: Review.

7. Review your policy and enter the following details for the policy:

• Name – Use alphanumeric and '+=,.@-_' characters. Maximum 128 characters. For example,
AuroraGeocoderInvoke.

• Description – Enter an optional description. Use alphanumeric and '+=,.@-_' characters.
Maximum 1000 characters.

8. Choose Create policy. Note the ARN for this policy, which you use to attach the policy to an
IAM role.

Create an IAM role to give permission to Amazon Relational Database Service (Amazon RDS)

By creating an IAM role, Amazon Aurora PostgreSQL can assume the role on your behalf to access
your Lambda function. For more information, see Creating a role to delegate permissions to an IAM
user in the IAM User Guide.

The following example is an AWS CLI command that creates a role named
AuroraGeocoderInvokeRole:

aws iam create-role --role-name rds-lambda-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Tutorial: Database enrichment 352

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Location Service Developer Guide

 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

Attach your IAM policy to the IAM role

When you have an IAM role, attach the IAM policy that you've created.

The following example is an AWS CLI command that attaches the policy AuroraGeocoderInvoke
to the role AuroraGeocoderInvokeRole.

aws iam attach-role-policy --policy-arn AuroraGeocoderInvoke --role-
name AuroraGeocoderInvokeRole

Add the IAM role to a Amazon Aurora DB cluster

The following example is an AWS CLI command to add an IAM role to a Amazon Aurora PostgreSQL
DB cluster named MyAuroraCluster.

aws rds add-role-to-db-cluster \
--db-cluster-identifier MyAuroraCluster \
--feature-name Lambda \
--role-arn AuroraGeocoderInvokeRole \
--region your-region

Invoke the AWS Lambda function

After you grant permission to Amazon Aurora PostgreSQL to invoke your geocoding Lambda
function, you can create an Amazon Aurora PostgreSQL user-defined function to invoke the
geocoding AWS Lambda function. For more information, see Invoking an AWS Lambda function
from an Amazon Aurora PostgreSQL DB cluster in the Amazon Aurora User Guide.

Install the required PostgreSQL extensions

To install the required PostgreSQL extensions aws_lambda and aws _commons extensions, see
Overview of using a Lambda function in the Amazon Aurora User Guide.

Tutorial: Database enrichment 353

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html#PostgreSQL-Lambda-overview

Amazon Location Service Developer Guide

CREATE EXTENSION IF NOT EXISTS aws_lambda CASCADE;

Install the required PostGIS extensions

PostGIS is an extension to PostgreSQL for storing and managing spatial information. For more
information, see Working with the PostGIS extension on the Amazon Relational Database Service
User Guide.

CREATE EXTENSION IF NOT EXISTS postgis;

Create an SQL user-defined function that invokes the Lambda function

In an SQL editor, create a new user-defined function f_SearchPlaceIndexForText to invoke
the function AuroraGeocoder:

CREATE OR REPLACE FUNCTION f_SearchPlaceIndexForText(
 text text,
 bias_position geometry(Point, 4326) DEFAULT NULL,
 filter_bbox box2d DEFAULT NULL,
 filter_countries text[] DEFAULT NULL,
 max_results int DEFAULT 1
)
 RETURNS TABLE (
 label text,
 address_number text,
 street text,
 municipality text,
 postal_code text,
 sub_region text,
 region text,
 country text,
 geom geometry(Point, 4326)
)
 LANGUAGE plpgsql
 IMMUTABLE
AS $function$
begin
 RETURN QUERY
 WITH results AS (
 SELECT json_array_elements(payload) rsp
 FROM aws_lambda.invoke(

Tutorial: Database enrichment 354

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.PostGIS.html

Amazon Location Service Developer Guide

 aws_commons.create_lambda_function_arn('AuroraGeocoder'),
 json_build_object(
 'text', text,
 'biasPosition',
 CASE WHEN bias_position IS NOT NULL THEN
 array_to_json(ARRAY[ST_X(bias_position), ST_Y(bias_position)])
 END,
 'filterBBox',
 CASE WHEN filter_bbox IS NOT NULL THEN
 array_to_json(ARRAY[ST_XMin(filter_bbox), ST_YMin(filter_bbox),
 ST_XMax(filter_bbox), ST_YMax(filter_bbox)])
 END,
 'filterCountries', filter_countries,
 'maxResults', max_results
)
)
)
 SELECT
 rsp->'Place'->>'Label' AS label,
 rsp->'Place'->>'AddressNumber' AS address_number,
 rsp->'Place'->>'Street' AS street,
 rsp->'Place'->>'Municipality' AS municipality,
 rsp->'Place'->>'PostalCode' AS postal_code,
 rsp->'Place'->>'SubRegion' AS sub_region,
 rsp->'Place'->>'Region' AS region,
 rsp->'Place'->>'Country' AS country,
 ST_GeomFromGeoJSON(
 json_build_object(
 'type', 'Point',
 'coordinates', rsp->'Place'->'Geometry'->'Point'
)
) geom
 FROM results;
end;
$function$;

Call the SQL function to geocode from Aurora

Running the SQL statement invokes the Lambda function AuroraGeocoder, which takes address
records from the database table in the Amazon Aurora PostgreSQL database and geocodes them
using a place index resource.

Tutorial: Database enrichment 355

Amazon Location Service Developer Guide

Note

Amazon Aurora PostgreSQL invokes the Lambda function for each call to the SQL user-
defined function.
If you are geocoding 50 rows, Amazon Aurora PostgreSQL invokes the Lambda function 50
times. One invocation for each row.

The following f_SearchPlaceIndexForText SQL function makes requests to Amazon Location's
SearchPlaceIndexForText API through the AuroraGeocoder Lambda function. The function
returns a geom column that's a PostGIS geometry, which ST_AsText(geom) converts to text.

SELECT *, ST_AsText(geom)
FROM f_SearchPlaceIndexForText('Vancouver, BC');

By default, the return will contain one row. To request additional rows, up to the MaxResults
limit, run the following SQL statement while providing a BiasPosition and limiting to results in
Canada.

SELECT *
FROM f_SearchPlaceIndexForText('Mount Pleasant', ST_MakePoint(-123.113, 49.260), null,
 '{"CAN"}', 5);

To filter results using a bounding box, then pass a Box2D as filter_bbox:

• FilterBBox – Filters the results by returning places within a bounding box. This is an optional
parameter.

SELECT *
FROM f_SearchPlaceIndexForText('Mount Pleasant', null, 'BOX(-139.06 48.30, -114.03
 60.00)'::box2d, '{"CAN"}', 5);

For more information on PostGIS types and functions, see the PostGIS Reference.

Tutorial: Database enrichment 356

https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html
https://postgis.net/docs/Box2D.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_SearchPlaceIndexForText.html#locationplaces-SearchPlaceIndexForText-request-FilterBBox
https://postgis.net/docs/reference.html

Amazon Location Service Developer Guide

Enriching a database containing address data

You can construct a formatted address and simultaneously normalize and geocode using the
Amazon Location operation SearchPlaceIndexForText given a database table with the
following data broken out into the following columns:

• id

• address

• city

• state

• zip

WITH source_data AS (
 SELECT
 id,
 address || ', ' || city || ', ' || state || ', ' || zip AS formatted_address
 FROM addresses
),
geocoded_data AS (
 SELECT
 *,
 (f_SearchPlaceIndexForText(formatted_address)).*
 FROM source_data
)
SELECT
 id,
 formatted_address,
 label normalized_address,
 ST_Y(geom) latitude,
 ST_X(geom) longitude
FROM geocoded_data
-- limit the number of rows that will be geocoded; remove this to geocode the entire
 table
LIMIT 1;

The following example illustrates one resulting datatable row:

 id | formatted_address | normalized_address |
 latitude | longitude

Tutorial: Database enrichment 357

Amazon Location Service Developer Guide

----+--------------------------------+--
+------------------+-------------------
 42 | 123 Anytown Ave N, Seattle, WA | 123 Anytown Ave N, Seattle, WA, 12345, USA |
 47.6223000127926 | -122.336745971039
(1 row)

Update the database table and populate columns

The following example updates the table and populates columns with results of
SearchPlaceIndexForText queries:

WITH source_data AS (
 -- select rows that have not been geocoded and created a formatted address for each
 SELECT
 id,
 address || ', ' || city || ', ' || state || ', ' || zip AS formatted_address
 FROM addresses
 WHERE label IS NULL
 -- limit the number of rows that will be geocoded; remove this to geocode the entire
 table
 LIMIT 1
),
geocoded_data AS (
 -- geocode each row and keep it linked to the source's ID
 SELECT
 id,
 (f_SearchPlaceIndexForText(formatted_address)).*
 FROM source_data
)
UPDATE addresses
-- populate columns
SET
 normalized_address = geocoded_data.label,
 latitude = ST_Y(geocoded_data.geom),
 longitude = ST_X(geocoded_data.geom)
FROM geocoded_data
-- ensure that rows match
WHERE addresses.id = geocoded_data.id;

Next steps

Sample code is available in the Amazon Location Service samples repository on GitHub, which
includes an AWS CloudFormation template.

Tutorial: Database enrichment 358

https://github.com/aws-samples/amazon-location-samples/tree/main/aurora-udfs
https://github.com/aws-samples/amazon-location-samples/tree/main/aurora-udfs/cloudformation/template.yaml

Amazon Location Service Developer Guide

Managing your place index resources

You can manage your place index resources using the Amazon Location console, the AWS CLI, or
the Amazon Location APIs.

List your place index resources

You can view your place index resources list using the Amazon Location console, the AWS CLI, or
the Amazon Location APIs:

Console

To view a list of place index resources using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Place indexes from the left navigation pane.

3. View a list of your place index resources under the My place indexes.

API

Use the ListPlaceIndexes operation from the Amazon Location Places APIs.

The following example is an API request to get a list of place index resources in the AWS
account.

POST /places/v0/list-indexes

The following is an example response for ListPlaceIndexes:

{
 "Entries": [
 {
 "CreateTime": 2020-10-30T01:38:36Z,
 "DataSource": "Esri",
 "Description": "string",
 "IndexName": "ExamplePlaceIndex",
 "UpdateTime": 2020-10-30T01:40:36Z
 }
],
 "NextToken": "1234-5678-9012"

Managing place index resources 359

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-places/latest/APIReference/API_ListPlaceIndexes.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_ListPlaceIndexes.html

Amazon Location Service Developer Guide

}

CLI

Use the list-place-indexes command.

The following example is an AWS CLI to get a list of place index resources in the AWS account.

aws location list-place-indexes

Get place index resource details

You can get details about any place index resource in your AWS account using the Amazon Location
console, the AWS CLI, or the Amazon Location APIs:

Console

To view the details of a place index resource using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Place indexes from the left navigation pane.

3. Under My place indexes, select the name link of the target place index resource.

API

Use the DescribePlaceIndex operation from the Amazon Location Place APIs.

The following example is an API request to get the place index resource details for
ExamplePlaceIndex.

GET /places/v0/indexes/ExamplePlaceIndex

The following is an example response for DescribePlaceIndex:

{
 "CreateTime": 2020-10-30T01:38:36Z,
 "DataSource": "Esri",
 "DataSourceConfiguration": {

Managing place index resources 360

https://docs.aws.amazon.com/cli/latest/reference/location/list-place-indexes.html
https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-places/latest/APIReference/API_DescribePlaceIndex.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_DescribePlaceIndex.html

Amazon Location Service Developer Guide

 "IntendedUse": "SingleUse"
 },
 "Description": "string",
 "IndexArn": "arn:aws:geo:us-west-2:123456789012:place-indexes/ExamplePlaceIndex",
 "IndexName": "ExamplePlaceIndex",
 "Tags": {
 "string" : "string"
 },
 "UpdateTime": 2020-10-30T01:40:36Z
}

CLI

Use the describe-place-index command.

The following example is an AWS CLI to get the place index resource details for
ExamplePlaceIndex.

aws location describe-place-index \
 --index-name "ExamplePlaceIndex"

Delete a place index resource

You can delete a place index resource from your AWS account using the Amazon Location console,
the AWS CLI, or the Amazon Location APIs:

Console

To delete a place index resource using the Amazon Location console

Warning

This operation deletes the resource permanently.

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Place indexes from the left navigation pane.

3. Under My place index, select the target place index resource.

Managing place index resources 361

https://docs.aws.amazon.com/cli/latest/reference/location/describe-place-index.html
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

4. Choose Delete place index.

API

Use the DeletePlaceIndex operation from the Amazon Location Places APIs.

The following example is an API request to delete the place index resource
ExamplePlaceIndex.

DELETE /places/v0/indexes/ExamplePlaceIndex

The following is an example success response for DeletePlaceIndex:

HTTP/1.1 200

CLI

Use the delete-place-index command.

The following example is an AWS CLI command to delete the place index resource
ExamplePlaceIndex.

aws location delete-place-index \
 --index-name "ExamplePlaceIndex"

Calculating routes using Amazon Location Service

Amazon Location lets you select a data provider for calculating a route by creating and configuring
a route calculator resource.

You can use the route calculator resource to calculate a route given specific parameters using
the AWS SDK, or the REST API endpoints. Use this route calculator resource to calculate routes
between an origin, a destination and up to 23 waypoints for different modes of transportation,
avoidances, and traffic conditions.

You can also use the route calculator resource to create inputs for your route planning algorithms
or products by calculating a route matrix. Calculate the travel time and travel distance between
a set of departure positions and a set of destination positions. Route planning software can use
that time and distance data to optimize a route or a set of routes; for example, if you are planning

Calculating routes 362

https://docs.aws.amazon.com/location-places/latest/APIReference/API_DeletePlaceIndex.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_DeletePlaceIndex.html
https://docs.aws.amazon.com/cli/latest/reference/location/delete-place-index.html

Amazon Location Service Developer Guide

multiple delivery routes, and want to find the best route and time for each stop. You can calculate
a matrix of routes for different modes of transportation, avoidances, and traffic conditions.

Note

For an overview of routing concepts, see Routes.

Topics

• Prerequisites

• Calculate a route

• Route planning with a route matrix

• Positions not located on a road

• Departure time

• Travel mode

• Managing your route calculator resources

Prerequisites

Before you begin calculating routes, follow the prerequisite steps:

Topics

• Create a route calculator resource

• Authenticating your requests

Create a route calculator resource

Before you can calculate a route, create a route calculator resource in your AWS account.

When you create a route calculator resource, you can choose from the data providers available:

1. Esri – For more information about Esri's coverage in your region of interest, see Esri details on
street networks and traffic coverage.

2. HERE Technologies – For more information about HERE's coverage in your region of interest, see
HERE car routing coverage and HERE truck routing coverage.

3. Grab – For more information about Grab's coverage, see Countries/regions and area covered.

Prerequisites 363

https://doc.arcgis.com/en/arcgis-online/reference/network-coverage.htm
https://doc.arcgis.com/en/arcgis-online/reference/network-coverage.htm
https://developer.here.com/documentation/routing-api/dev_guide/topics/coverage/car-routing.html
https://developer.here.com/documentation/routing-api/dev_guide/topics/coverage/truck-routing.html

Amazon Location Service Developer Guide

Note

If your application is tracking or routing assets you use in your business, such as delivery
vehicles or employees, you must not use Esri as your geolocation provider. See section 82
of the AWS service terms for more details.

You can do this using the Amazon Location Service console, the AWS CLI, or the Amazon Location
APIs.

Console

To create a route calculator resource using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Route calculators.

3. Choose Create route calculator.

4. Fill out the following boxes:

• Name – Enter a name for the route calculator resource. For example,
ExampleCalculator. Maximum 100 characters. Valid entries include alphanumeric
characters, hyphens, periods, and underscores.

• Description – Enter an optional description.

5. For Data providers, choose a data provider to use as a route calculator.

6. (Optional) Under Tags, enter a tag Key and Value. This adds a tag your new route
calculator resource. For more information, see Tagging your resources.

7. Choose Create route calculator.

API

To create a route calculator resource using the Amazon Location APIs

Use the CreateRouteCalculator operation from the Amazon Location Places APIs.

The following example is an API request to create a route calculator resource called
ExampleCalculator using the data provider Esri.

POST /routes/v0/calculators

Prerequisites 364

https://aws.amazon.com/service-terms
https://console.aws.amazon.com/location/home
https://aws.amazon.com/location/data-providers/
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CreateRouteCalculator.html

Amazon Location Service Developer Guide

Content-type: application/json

{
 "CalculatorName": "ExampleCalculator",
 "DataSource": "Esri",
 "Description": "string",
 "Tags": {
 "Tag1" : "Value1"
 }
}

AWS CLI

To create a route calculator resource using AWS CLI commands

Use the create-route-calculator command.

The following example creates a route calculator resource called ExampleCalculator using
Esri as the data provider.

aws location \
 create-route-calculator \
 --calculator-name "ExampleCalculator" \
 --data-source "Esri" \
 --tags Tag1=Value1

Note

Billing depends on your usage. You may incur fees for the use of other AWS services. For
more information, see Amazon Location Service pricing.

Authenticating your requests

Once you create a route calculator resource and you're ready to begin building location features
into your application, choose how you would authenticate your requests:

• To explore ways you can access the services, see Accessing Amazon Location Service.

• If you have a website with anonymous users, you may want to use API Keys or Amazon Cognito.

Prerequisites 365

https://aws.amazon.com/location/pricing/

Amazon Location Service Developer Guide

Example

The following example shows using an API key for authorization, using AWS JavaScript SDK v3,
and the Amazon Location JavaScript Authentication helper.

import { LocationClient, CalculateRouteCommand } from "@aws-sdk/client-location";
import { withAPIKey } from "@aws/amazon-location-utilities-auth-helper";

const apiKey = "v1.public.your-api-key-value"; // API key

// Create an authentication helper instance using an API key
const authHelper = await withAPIKey(apiKey);

const client = new LocationClient({
 region: "<region>", // region containing Cognito pool
 ...authHelper.getLocationClientConfig(), // Provides configuration required to make
 requests to Amazon Location
});

const input = {
 CalculatorName: "ExampleCalculator",
 DeparturePosition: [-123.4567, 45.6789],
 DestinationPosition: [-123.123, 45.234],
};

const command = new CalculateRouteCommand(input);

const response = await client.send(command);

Calculate a route

You can use Amazon Location Service to calculate routes between an origin and a destination, with
up to 23 waypoints along the route, for different modes of transportation, avoidances, and traffic
conditions.

Note

You must first create a route calculator resource and set up authentication for your
requests to Amazon Location. For more information, see Prerequisites.

Calculate route 366

https://aws.amazon.com/sdk-for-javascript/

Amazon Location Service Developer Guide

Start calculating routes

Submit a simple request by using the CalculateRoute operation. A simple request contains the
following required fields:

• DeparturePosition – The starting position for which to calculate the route from. Defined as
[longitude, latitude]

• DestinationPosition – The end position to which to calculate the route. Defined as
[longitude, latitude].

Note

If you specify a departure or destination position that's not located on a road, Amazon
Location moves the position to the nearest road.

You can optionally specify waypoints, a departure time, and a travel mode in your request.

You can use the AWS CLI or the Amazon Location APIs.

API

The following example is a CalculateRoute request using the route calculator resource
ExampleCalculator. The request specifies calculating a route from a departure position
[-122.7565, 49.0021] to a destination position [-122.3394, 47.6159].

POST /routes/v0/calculators/ExampleCalculator/calculate/route
Content-type: application/json
{
 "DeparturePosition": [-122.7565,49.0021],
 "DestinationPosition": [-122.3394, 47.6159]
}

AWS CLI

The following example is a calculate-route command using the route calculator resource
ExampleCalculator. The request specifies calculating a route from a departure position
[-122.7565, 49.0021] to a destination position [-122.3394, 47.6159].

aws location \

Calculate route 367

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html

Amazon Location Service Developer Guide

 calculate-route \
 --calculator-name ExampleCalculator \
 --departure-position -122.7565 49.0021 \
 --destination-position -122.3394 47.6159

By default, the response returns Distance in kilometers. You can change the unit of measurement
to miles using the following optional parameter:

• DistanceUnit – Specifies the unit system to use for the distance results.

Example

POST /routes/v0/calculators/ExampleCalculator/calculate/route
Content-type: application/json
{
 "DeparturePosition": [-122.7565,49.0021],
 "DestinationPosition": [-122.3394, 47.6159],
 "DistanceUnit": "Miles"
}

Setting waypoints

When calculating a route, you can specify up to 23 intermediate stopover points between the
departure position and the destination position using waypoint positions.

• WaypointPositions – Specifies an ordered list of intermediate positions to include along a
route between the departure position and destination position.

Note

If you specify a waypoint position that's not located on a road, Amazon Location moves
the position to the nearest road.

Example

The following CalculateRoute request calculates a route with 2 waypoints:

Calculate route 368

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html

Amazon Location Service Developer Guide

• The departure position is [-122.7565, 49.0021], and the destination position is [-122.3394,
47.6159].

• For the request parameter WaypointPositions:

• The first stop over position is [-122.1884, 48.0936].

• The second stop over position is [-122.3493, 47.6205].

• To include the leg linestring geometry between these two waypoints, set the following optional
parameter to true:

• IncludeLegGeometry – Includes the geometry of each path between a pair of positions in
the response.

POST /routes/v0/calculators/ExampleCalculator/calculate/route
Content-type: application/json
{
 "DeparturePosition": [-122.7565,49.0021],
 "DestinationPosition": [-122.3394, 47.6159],
 "WaypointPositions":[
 [-122.1884,48.0936],
 [-122.3493,47.6205]
],
 "IncludeLegGeometry": true
}

Example response

The following is an example request with the corresponding response when calling
the CalculateRoute operation from the Amazon Location Routes API with the
IncludeLegGeometry set to true, which includes the linestring geometry of each path between
a pair of positions in the response.

Example request

POST /routes/v0/calculators/ExampleCalculator/calculate/route
Content-type: application/json
{
 "DeparturePosition": [-122.7565,49.0021],
 "DestinationPosition": [-122.3394, 47.6159],
 "IncludeLegGeometry": true
}

Calculate route 369

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html

Amazon Location Service Developer Guide

Example response

{
 "Legs": [
 {
 "Distance": 178.5,
 "DurationSeconds": 6480,
 "EndPosition": [-122.3394,47.6159],
 "Geometry": {
 "LineString": [
 [-122.7565,49.0021],
 [-122.3394,47.6159]
]
 },
 "StartPosition": [-122.7565,49.0021],
 "Steps": [
 {
 "Distance": 178.5,
 "DurationSeconds": 6480,
 "EndPosition": [-122.3394,47.6159],
 "GeometryOffset": 0,
 "StartPosition": [-122.7565,49.0021]
 }
]
 }
],
 "Summary": {
 "DataSource": "Esri",
 "Distance": 178.5,
 "DistanceUnit": "Kilometers",
 "DurationSeconds": 6480,
 "RouteBBox": [
 -122.7565,49.0021,
 -122.3394,47.6159
]
 }
}

Calculate route 370

Amazon Location Service Developer Guide

Route planning with a route matrix

You can use Amazon Location Service to create inputs to your route planning and optimization
software. You can create route results, including travel time and travel distance, for routes between
a set of departure positions and a set of destination positions.

For example, given departure positions A and B, and destination positions X and Y, Amazon
Location Service will return travel time and travel distance for routes from A to X, A to Y, B to X,
and B to Y.

You can calculate the routes with different modes of transportation, avoidances, and traffic
conditions. For example, you can specify that the vehicle is a truck that is 35 feet long, and the
route calculated will use those restrictions to determine the travel time and travel distance.

The number of results returned (and routes calculated) is the number of departure positions
multiplied by the number of destination positions. You are charged for each route calculated, not
each request to the service, so a route matrix with 10 departures and 10 destinations will be billed
as 100 routes.

Calculating a route matrix

You can calculate a matrix of routes between a set of departure positions and a set of destination
positions. The route results will include travel time and travel distance.

Prerequisite

• You must first create a route calculator resource and set up authentication for your requests to
Amazon Location. For more information, see Prerequisites.

Submit a request by using the CalculateRouteMatrix operation. A minimal request contains
the following required fields:

• DeparturePositions – The set of starting positions for which to calculate the routes. Defined
as an array of [longitude, latitude]

• DestinationPositions – The set of end positions for which to calculate the routes. Defined
as an array of [longitude, latitude].

Route planning 371

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRouteMatrix.html

Amazon Location Service Developer Guide

Note

If you specify a departure or destination position that's not located on a road, Amazon
Location moves the position to the nearest road.

You can optionally specify a departure time, and a travel mode in your request.

You can use the AWS CLI or the Amazon Location APIs.

API

The following example is a CalculateRouteMatrix request using the route calculator
resource ExampleCalculator. The request specifies calculating the matrix of routes from
departure positions [-122.7565, 49.0021] and [-122.2014, 47.6101] to destination
positions [-122.3394, 47.6159] and [-122.4813, 48.7511].

POST /routes/v0/calculators/ExampleCalculator/calculate/route-matrix
Content-type: application/json
{
 "DeparturePositions": [
 [-122.7565,49.0021],
 [-122.2014,47.6101]
],
 "DestinationPositions": [
 [-122.3394, 47.6159],
 [-122.4813,48.7511]
]
}

AWS CLI

The following example is a calculate-route-matrix command using the route calculator
resource ExampleCalculator. The request specifies calculating the matrix of routes from
departure positions [-122.7565, 49.0021] and [-122.2014, 47.6101] to destination
positions [-122.3394, 47.6159] and [-122.4813, 48.7511].

aws location \
 calculate-route-matrix \
 --calculator-name ExampleCalculator \
 --departure-positions "[[-122.7565,49.0021],[-122.2014,47.6101]]" \

Route planning 372

Amazon Location Service Developer Guide

 --destination-positions "[[-122.3394,47.6159],[-122.4813,48.7511]]"

By default, the response returns Distance in kilometers. You can change the unit of measurement
to miles using the following optional parameter:

• DistanceUnit – Specifies the unit system to use for the distance results.

Example

POST /routes/v0/calculators/ExampleCalculator/calculate/route-matrix
Content-type: application/json
{
 "DeparturePositions": [
 [-122.7565,49.0021],
 [-122.2014,47.6101]
],
 "DestinationPositions": [
 [-122.3394, 47.6159],
 [-122.4813,48.7511]
],
 "DistanceUnit": "Miles"
}

Restrictions on departure and destination positions

When calculating a route matrix, there are restrictions on the departure and destination positions.
These restrictions vary depending on the provider used by the RouteCalculator resource.

Limitation Esri Grab HERE

Number of positions Up to 10 departure
positions and 10
destination positions.

Up to 350 departure
positions and 350
destination positions.

Up to 350 departure
positions and 350
destination positions.

For longer routes,
additional restricti
ons apply. See the
section.

Route planning 373

Amazon Location Service Developer Guide

Limitation Esri Grab HERE

Distance between
positions

Any pair of departure
and destination
positions must be
within 400 km of
each other (40km for
walking routes).

 All departure and
destination positions
must fall within a 180
km diameter circle.

For longer routes,
additional restricti
ons apply. See the
section.

Route length Routes will not be
completed if the total
travel time for the
route is over 400
minutes.

Routes that deviate
more than 10 km
outside a circle
around the departure
and destination
points will not be
calculated.

For longer routes,
additional restricti
ons apply. See the
section.

Regions Calculating a
route matrix is not
supported in Korea.

Available in
Southeast Asia. For
a list of supported
countries/regions and
more information,
see Countries/regions
and area covered.

No additional restricti
ons.

Longer route planning

Calculating a matrix of route results is useful for efficient route planning, but the calculation can
take some time. All of the Amazon Location Service data providers put limitations on the number

Route planning 374

Amazon Location Service Developer Guide

of routes or the distance of the routes that can be calculated. For example, HERE allows creating
routes between 350 departure and destination positions, but those positions must fall within a
180km circle. What if you want to plan with longer routes?

You can calculate a matrix of routes with unrestricted lengths for a smaller numbers of routes,
using, a RouteCalculator with HERE as the data provider. This does not change the way that you
call the CalculateRouteMatrix API, Amazon Location simply allows longer routes when you
meet the requirements.

The requirements for longer length route calculations are:

• The RouteCalculator must use the HERE data provider.

• The number of departure positions must not be greater than 15.

• The total number of routes to calculate must not be greater than 100.

• Long distance routing is not allowed for truck routing with toll avoidances when the routes are
greater than 1,000 km. This combination is slower to calculate, and can cause the call to time
out. You can calculate these routes individually with the CalculateRoute operation.

If your call does not meet these requirements (for example, you are requesting 150 route
calculations in a single call), then CalculateRouteMatrix will revert to only allowing the shorter
route rules. You can then calculate the routes, as long as the positions are within a 180km circle.

When calculating longer routes, keep these points in mind:

• Longer routes can take longer to calculate, even longer than the maximum time for Amazon
Location APIs. If you get frequent timeouts with specific routes, you can try a smaller number of
routes in each call to CalculateRouteMatrix.

• If you add more destination or departure positions to your CalculateRouteMatrix request,
the operation can switch into the more restricted mode, and you can get an error for a route that
can be calculated without issue when there are fewer routes to create. In this case, reduce the
number of destination or departure positions, and make multiple requests to get the full set of
route calculations that you need.

Example response

The following is an example request with the corresponding response when calling the
CalculateRouteMatrix operation from the Amazon Location Routes API.

Route planning 375

https://docs.aws.amazon.com/location/latest/APIReference/API_CalculateRouteMatrix.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CalculateRoute.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRouteMatrix.html

Amazon Location Service Developer Guide

Example request

POST /routes/v0/calculators/ExampleCalculator/calculate/route-matrix
Content-type: application/json
{
 "DeparturePositions": [
 [-122.7565,49.0021],
 [-122.2014,47.6101]
],
 "DestinationPositions": [
 [-122.3394, 47.6159],
 [-122.4813,48.7511]
]
}

Example response

{
 "RouteMatrix": [
 [
 {
 "Distance": 178.764,
 "DurationSeconds": 7565
 },
 {
 "Distance": 39.795,
 "DurationSeconds": 1955
 }
],
 [
 {
 "Distance": 15.31,
 "DurationSeconds": 1217
 },
 {
 "Distance": 142.506,
 "DurationSeconds": 6279
 }
]
],
 "Summary": {
 "DataSource": "Here",
 "RouteCount": 4,

Route planning 376

Amazon Location Service Developer Guide

 "ErrorCount": 0,
 "DistanceUnit": "Kilometers"
 }
}

Positions not located on a road

When using CalculateRoute or CalculateRouteMatrix, if you specify a departure,
destination, or waypoint position that's not located on a road Amazon Location moves the position
to a nearby road.

The following CalculateRoute request specifies a departure position and destination position
that's not located on a road:

POST /routes/v0/calculators/ExampleCalculator/calculate/route
Content-type: application/json
{
 "DeparturePosition": [-123.128014, 49.298472],
 "DestinationPosition": [-123.134701, 49. 294315]
}

The resulting response returns a position that's snapped to a nearby road:

{
 "Legs": [
 {
 "StartPosition": [-123.12815, 49.29717],
 "EndPosition": [-123.13375, 49.2926],
 "Distance": 4.223,
 "DurationSeconds": 697,
 "Steps": [
 {
 "StartPosition": [-123.12815, 49.29717],
 "EndPosition": [-123.12806, 49.29707],
 "Distance": 0.013,
 "DurationSeconds": 8
 },
 {
 "StartPosition": [-123.12806, 49.29707],
 "EndPosition": [-123.1288, 49.29659],
 "Distance": 0.082,

Positions not located on a road 377

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html

Amazon Location Service Developer Guide

 "DurationSeconds": 36
 },
 {
 "StartPosition": [-123.1288, 49.29659],
 "EndPosition": [-123.12021, 49.29853],
 "Distance": 0.742,
 "DurationSeconds": 128
 },
 {
 "StartPosition": [-123.12021, 49.29853],
 "EndPosition": [-123.1201, 49.29959],
 "Distance": 0.131,
 "DurationSeconds": 26
 },
 {
 "StartPosition": [-123.1201, 49.29959],
 "EndPosition": [-123.13562, 49.30681],
 "Distance": 1.47,
 "DurationSeconds": 238
 },
 {
 "StartPosition": [-123.13562, 49.30681],
 "EndPosition": [-123.13693, 49.30615],
 "Distance": 0.121,
 "DurationSeconds": 28
 },
 {
 "StartPosition": [-123.13693, 49.30615],
 "EndPosition": [-123.13598, 49.29755],
 "Distance": 0.97,
 "DurationSeconds": 156
 },
 {
 "StartPosition": [-123.13598, 49.29755],
 "EndPosition": [-123.13688, 49.29717],
 "Distance": 0.085,
 "DurationSeconds": 15
 },
 {
 "StartPosition": [-123.13688, 49.29717],
 "EndPosition": [-123.13375, 49.2926],
 "Distance": 0.609,
 "DurationSeconds": 62
 }

Positions not located on a road 378

Amazon Location Service Developer Guide

]
 }
],
 "Summary": {
 "RouteBBox": [-123.13693, 49.2926, -123.1201, 49.30681],
 "DataSource": "Here",
 "Distance": 4.223,
 "DurationSeconds": 697,
 "DistanceUnit": "Kilometers"
 }
}

Departure time

By default, when you call CalculateRoute or CalculateRouteMatrix, if you don't provide a
departure time in the request, the calculated routes reflects optimal traffic conditions.

You can set a specific a departure time to use live and predictive traffic conditions from your
chosen data provider, by using one of the following options:

• DepartNow – When set to true, it uses live traffic conditions to calculate the fastest travel path.

• DepartureTime – When provided, it uses predictive and known traffic conditions for the
requested time. Defined in the following format: YYYY-MM-DDThh:mm:ss.sssZ.

Example

The following CalculateRoute request sets the departure time to July 2, 2024, at 12:15:20 UTC.

POST /routes/v0/calculators/ExampleCalculator/calculate/route
Content-type: application/json
{
 "DeparturePosition": [-122.7565,49.0021],
 "DestinationPosition": [-122.3394, 47.6159],
 "WaypointPositions":[
 [-122.1884,48.0936],
 [-122.3493,47.6205]
]
 "IncludeLegGeometry": true,
 "DepartureTime": 2024-07-02T12:15:20.000Z,
}

Departure time 379

https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html

Amazon Location Service Developer Guide

Travel mode

You can set a travel mode when using CalculateRoute or CalculateRouteMatrix. The mode
of travel affects speed of travel and road compatibility. While the default mode of travel is by car,
you can specify which mode of travel you're using while traveling along a route with the following
optional parameter:

• TravelMode – Specifies the mode of transport when calculating a route, such as: Bicycle, Car,
Motorcycle, Truck, or Walking.

Limitations

• If you specify Walking for the travel mode and your data provider is Esri, the start and
destination must be within 40km.

• Bicycle or Motorcycle are available only when using Grab as the data provider.

• Grab provides only Bicycle and Walking routes in certain cities. For more information, see
Countries/regions and area covered.

• Truck is not available when using Grab as the data provider.

Additional preferences

If you specify a TravelMode of Car, you can specify additional route preferences with the
following optional parameter:

• CarModeOptions – Specifies route preferences when traveling in a car, such as AvoidFerries
or AvoidTolls.

If you specify a TravelMode of Truck, you can specify additional route preferences with the
following optional parameter:

• TruckModeOptions – Specifies route preferences when traveling in a truck, such as
AvoidFerries or AvoidTolls, in addition to specifying routes that can accommodate the
TruckDimensions and TruckWeight.

Travel mode 380

Amazon Location Service Developer Guide

Example

The following CalculateRoute request specifies Truck as the mode of travel. Additional route
restrictions include: avoiding routes that use ferries and avoiding roads that can't accommodate the
truck dimensions and weight.

{
 "DeparturePosition": [-122.7565,49.0021],
 "DestinationPosition": [-122.3394, 47.6159],
 "DepartNow": true,
 "TravelMode": "Truck",
 "TruckModeOptions": {
 "AvoidFerries": true,
 "AvoidTolls": false,
 "Dimensions": {
 "Height": 4.5,
 "Length": 15.5,
 "Unit": "Meters",
 "Width": 4.5
 },
 "Weight": {
 "Total": 7500,
 "Unit": "Pounds"
 }
 }
}

Managing your route calculator resources

You can manage your route calculator resources using the Amazon Location console, the AWS CLI,
or the Amazon Location APIs.

List your route calculator resources

You can view your route calculator list using the Amazon Location console, the AWS CLI, or the
Amazon Location APIs:

Console

To view a list of route calculators using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

Managing route resources 381

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_CalculateRoute.html
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

2. Choose Route calculators from the left navigation pane.

3. View the route calculator details under My route calculators.

API

Use the ListRouteCalculators operation from the Amazon Location Routes APIs.

The following example is an API request to get a list of route calculators in the AWS account.

POST /routes/v0/list-calculators

The following is an example response for ListRouteCalculators:

{
 "Entries": [
 {
 "CalculatorName": "ExampleCalculator",
 "CreateTime": 2020-09-30T22:59:34.142Z,
 "DataSource": "Esri",
 "Description": "string",
 "UpdateTime": 2020-09-30T23:59:34.142Z
 }
],
 "NextToken": "1234-5678-9012"
 }

CLI

Use the list-route-calculators command.

The following example is an AWS CLI to get a list of route calculators in the AWS account.

aws location list-route-calculators

Get route calculator details

You can get details about any route calculator resource in your AWS account using the Amazon
Location console, the AWS CLI, or the Amazon Location APIs:

Managing route resources 382

https://docs.aws.amazon.com/location-routes/latest/APIReference/API_ListRouteCalculators.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_ListRouteCalculators.html

Amazon Location Service Developer Guide

Console

To view the details of a route calculator using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Route calculators from the left navigation pane.

3. Under My route calculators, select the name link of the target route calculator.

API

Use the DescribeRouteCalculator operation from the Amazon Location Routes APIs.

The following example is an API request to get the route calculator details for
ExampleCalculator.

GET /routes/v0/calculators/ExampleCalculator

The following is an example response for DescribeRouteCalculator:

{
 "CalculatorArn": "arn:aws:geo:us-west-2:123456789012:route-
calculator/ExampleCalculator",
 "CalculatorName": "ExampleCalculator",
 "CreateTime": 2020-09-30T22:59:34.142Z,
 "DataSource": "Esri",
 "Description": "string",
 "Tags": {
 "Tag1" : "Value1"
 },
 "UpdateTime": 2020-09-30T23:59:34.142Z
 }

CLI

Use the describe-route-calculator command.

The following example is an AWS CLI to get the route calculator details for
ExampleCalculator.

aws location describe-route-calculator \

Managing route resources 383

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_DescribeRouteCalculator.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_DescribeRouteCalculator.html

Amazon Location Service Developer Guide

 --calculator-name "ExampleCalculator"

Delete a route calculator

You can delete a route calculator from your AWS account using the Amazon Location console, the
AWS CLI, or the Amazon Location APIs:

Console

To delete a route calculator using the Amazon Location console

Warning

This operation deletes the resource permanently.

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Route calculators from the left navigation pane.

3. Under My route calculators, select the target route calculator.

4. Choose Delete route calculator.

API

Use the DeleteRouteCalculator operation from the Amazon Location Routes APIs.

The following example is an API request to delete the geofence collection
ExampleCalculator.

DELETE /routes/v0/calculators/ExampleCalculator

The following is an example response for DeleteRouteCalculator:

HTTP/1.1 200

CLI

Use the delete-route-calculator command.

Managing route resources 384

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_DeleteRouteCalculator.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_DeleteRouteCalculator.html

Amazon Location Service Developer Guide

The following example is an AWS CLI command to delete the geofence collection
ExampleCalculator.

aws location delete-route-calculator \
 --calculator-name "ExampleCalculator"

Geofencing an area of interest using Amazon Location

A geofencing application evaluates a tracked device’s position relative to previously registered
areas of interest. This enables actions to be taken based on position updates. For example, you can
initiate an event that prompts a notification when a customer who ordered coffee on their mobile
app is near a store.

Note

For an overview of geofencing and tracker concepts, see Geofences and Trackers.

This section of the guide provides step-by-step instructions for creating a geofencing application
using Amazon Location Service.

Overview of steps

1. Add geofences around areas of interest and store them in a geofence collection resource.

2. Start tracking your target devices and store the device location history in a tracker resource.

3. Link your tracker resource to your geofence collection resource so that device location updates
are automatically evaluated against all your geofences.

4. You can evaluate device positions directly against your geofence collection resources if you
don’t want to use Amazon Location Trackers to keep your devices’ location history.

After you implement your geofencing solution, your geofence collection resource emits the
following events:

• ENTER — A tracked device enters a geofence within a geofence collection.

• EXIT — A tracked device exits a geofence within a geofence collection.

Geofencing and tracking 385

Amazon Location Service Developer Guide

You can use Amazon EventBridge to react to events by routing them elsewhere.

As an alternative to sending updates via the Amazon Location Service APIs from each device, you
can use MQTT to send device updates.

The following topics describe these steps and alternatives in detail.

Topics

• Add geofences

• Start tracking

• Link a tracker to a geofence collection

• Evaluate device positions against geofences

• Verify device positions

• Reacting to Amazon Location Service events with Amazon EventBridge

• Tracking using AWS IoT and MQTT with Amazon Location Service

• Managing your geofence collection resources

• Managing your tracker resources

• Sample Geofencing and Tracking mobile application

Add geofences

Geofences contain points and vertices that form a closed boundary, which defines an area of
interest. Geofence collections store and manage one or multiple geofences.

Amazon Location geofence collections stores geofences defined by using a standard geospatial
data format called GeoJSON (RFC 7946). You can use tools, such as geojson.io, at no charge to
draw your geofences graphically and save the output GeoJSON file.

Note

Amazon Location doesn't support polygons with holes, multipolygons, clockwise polygons,
and geofences that cross the antimeridian.

Step 1: Add geofences 386

https://geojson.org/
http://geojson.io/

Amazon Location Service Developer Guide

Create a geofence collection

Create a geofence collection to store and manage geofences by using the Amazon Location
console, the AWS CLI, or the Amazon Location APIs.

Console

To create a geofence collection using the Amazon Location console

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Geofence collections.

3. Choose Create geofence collection.

4. Fill out the following boxes:

• Name – Enter a unique name. For example, ExampleGeofenceCollection. Maximum
100 characters. Valid entries include alphanumeric characters, hyphens, periods, and
underscores.

• Description – Enter an optional description to differentiate your resources.

5. Under EventBridge rule with CloudWatch as a target, you can create an optional
EventBridge rule to get started reacting to geofence events. This enables Amazon Location
to publish events to Amazon CloudWatch Logs.

6. (Optional) Under Tags, enter a tag Key and Value. This adds a tag your new geofence
collection. For more information, see Tagging your Amazon Location Service resources.

7. (Optional) Under Customer managed key encryption, you can choose to Add a customer
managed key. This adds a symmetric customer managed key that you create, own, and
manage over the default AWS owned encryption. For more information, see Encrypting
data at rest.

8. Choose Create geofence collection.

API

To create a geofence collection using the Amazon Location APIs

Use the CreateGeofenceCollection operation from the Amazon Location Geofences APIs.

The following example uses an API request to create a geofence collection called
ExampleGeofenceCollection. The geofence collection is associated with a customer
managed AWS KMS key to encrypt customer data.

Step 1: Add geofences 387

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_CreateGeofenceCollection.html

Amazon Location Service Developer Guide

POST /geofencing/v0/collections
Content-type: application/json

{
 "CollectionName": "ExampleGeofenceCollection",
 "Description": "Geofence collection 1 for shopping center",
 "KmsKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Tags": {
 "Tag1" : "Value1"
 }
}

AWS CLI

To create a geofence collection using AWS CLI commands

Use the create-geofence-collection command.

The following example uses an AWS CLI to create a geofence collection called
ExampleGeofenceCollection. The geofence collection is associated with a customer
managed AWS KMS key to encrypt customer data.

aws location \
 create-geofence-collection \
 --collection-name "ExampleGeofenceCollection" \
 --description "Shopping center geofence collection" \
 --kms-key-id "1234abcd-12ab-34cd-56ef-1234567890ab" \
 --tags Tag1=Value1

Note

Billing depends on your usage. You may incur fees for the use of other AWS services. For
more information, see Amazon Location Service pricing.

Draw geofences

Now that you've created your geofence collection, you can define your geofences. Geofences are
defined either as a polygon or as a circle. To draw a polygon geofence you can use a GeoJSON
editing tool, such as geojson.io.

Step 1: Add geofences 388

https://docs.aws.amazon.com/cli/latest/reference/location/create-geofence-collection.html
https://aws.amazon.com/location/pricing/
http://geojson.io/

Amazon Location Service Developer Guide

To create a geofence as a circle, you must define the center point of the circle, and the radius. For
example, if you want to create a geofence to be notified whenever a device comes within 50 meters
of a specific location, you would use the latitude and longitude of that location and specify the
radius as 50 meters.

Using the Amazon Location Service APIs, you can also add metadata to your geofence, in the form
of key-value pairs. These can be useful for storing information about the geofence, such as its type,
or other information that is specific to your application. You can use this metadata when Reacting
to Amazon Location Service events with Amazon EventBridge.

Adding polygon geofences

This section describes creating polygon geofences

Draw geofences using a GeoJSON tool

Now that you've created your geofence collection, you can define your geofences by using a
GeoJSON editing tool, such as geojson.io.

To create a GeoJSON file

1. Open a GeoJSON editing tool. For example, geojson.io.

2. Choose the Draw a polygon icon and draw your area of interest.

3. Choose Save, then choose GeoJSON from the dropdown menu.

Put GeoJSON geofences in a geofence collection

You can use the resulting GeoJSON file to upload your geofences using the Amazon Location
Service console, the AWS CLI, or the Amazon Location APIs:

Console

To add a geofence to a geofence collection using the Amazon Location Service console

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Geofence collections.

3. From the Geofence collections list, select the name link for the target geofence collection.

4. Under Geofences, choose Create geofences.

5. In the Add geofences window, drag, and drop your GeoJSON into the window.

Step 1: Add geofences 389

http://geojson.io/
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

6. Choose Add geofences.

API

To add geofences using the Amazon Location APIs

Use the PutGeofence operation from the Amazon Location Geofences APIs.

The following example uses an API request to add a geofence given the ID GEOFENCE-
EXAMPLE1 to a geofence collection called ExampleGeofenceCollection. It also specifies a
single geofence metadata property with the key Type and value loadingArea.

PUT /geofencing/v0/collections/ExampleGeofenceCollection/geofence/GEOFENCE-EXAMPLE1
 Content-type: application/json

 {
 "GeofenceProperties": {
 "Type" : "loadingArea"
 },
 "Geometry": {
 "Polygon": [
 [
 [-5.716667, -15.933333],
 [-14.416667, -7.933333],
 [-12.316667, -37.066667],
 [-5.716667, -15.933333]
]
]
 }
 }

Alternatively, you can add more than one geofence using the BatchPutGeofence operation.

POST /geofencing/v0/collections/ExampleGeofenceCollection/put-geofences
 Content-type: application/json

 {
 "Entries": [
 {
 "GeofenceProperties": {
 "Type" : "loadingArea"
 },

Step 1: Add geofences 390

https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_PutGeofence.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_BatchPutGeofence.html

Amazon Location Service Developer Guide

 "GeofenceId": "GEOFENCE-EXAMPLE1",
 "Geometry": {
 "Polygon": [
 [
 [-5.716667, -15.933333],
 [-14.416667, -7.933333],
 [-12.316667, -37.066667],
 [-5.716667, -15.933333]
]
]
 }
 }
]
 }

AWS CLI

To add a geofence to a geofence collection using AWS CLI commands

Use the put-geofence command.

The following example uses an AWS CLI to add a geofence to a geofence collection called
ExampleGeofenceCollection.

$ aws location \
 put-geofence \
 --collection-name ExampleGeofenceCollection \
 --geofence-id ExampleGeofenceTriangle \
 --geofence-properties '{"Type": "loadingArea"}' \
 --geometry 'Polygon=[[[-5.716667, -15.933333],[-14.416667, -7.933333],
[-12.316667, -37.066667],[-5.716667, -15.933333]]]'
 {
 "CreateTime": "2020-11-11T00:16:14.487000+00:00",
 "GeofenceId": "ExampleGeofenceTriangle",
 "UpdateTime": "2020-11-11T00:19:59.894000+00:00"
 }

Adding circular geofences

This section describes creating circular geofences. You must know the latitude and longitude of the
point that you want to be the center of the circle, and the radius in meters of the circle. You can
create circular geofences with the Amazon Location APIs or the AWS CLI.

Step 1: Add geofences 391

https://docs.aws.amazon.com/cli/latest/reference/location/put-geofence.html

Amazon Location Service Developer Guide

API

To add circular geofences using the Amazon Location APIs

Use the PutGeofence operation from the Amazon Location Geofences APIs.

The following example uses an API request to add a geofence given the ID GEOFENCE-
EXAMPLE2 to a geofence collection called ExampleGeofenceCollection:

PUT /geofencing/v0/collections/ExampleGeofenceCollection/geofence/GEOFENCE-EXAMPLE2
 Content-type: application/json

 {
 "Geometry": {
 "Circle": {
 "Center": [-5.716667, -15.933333],
 "Radius": 50
 }
 }
 }

AWS CLI

To add a circular geofence to a geofence collection using AWS CLI commands

Use the put-geofence command.

The following example uses an AWS CLI to add a geofence to a geofence collection called
ExampleGeofenceCollection.

$ aws location \
 put-geofence \
 --collection-name ExampleGeofenceCollection \
 --geofence-id ExampleGeofenceCircle \
 --geometry 'Circle={Center=[-5.716667, -15.933333], Radius=50}'

Note

You can also put JSON for complex geometry into its own file as in the following
example.

$ aws location \

Step 1: Add geofences 392

https://docs.aws.amazon.com/location/latest/APIReference/API_PutGeofence.html
https://docs.aws.amazon.com/cli/latest/reference/location/put-geofence.html

Amazon Location Service Developer Guide

 put-geofence \
 --collection-name ExampleGeofenceCollection \
 --geofence-id ExampleGeofenceCircle \
 --geometry file:circle.json

In the example, the circle.json file includes JSON for the circle geometry.

{
 "Circle": {
 "Center": [-74.006975, 40.717127],
 "Radius": 287.7897969218057
 }
}

Start tracking

This section guides you through building a tracking application that captures device locations.

Create a tracker

Create a tracker resource to store and process position updates from your devices. You can use the
Amazon Location Service console, the AWS CLI, or the Amazon Location APIs.

Each position update stored in your tracker resources can include a measure of position accuracy,
and up to three fields of metadata about the position or device that you want to store. The
metadata is stored as key-value pairs, and can store information such as speed, direction, tire
pressure, or engine temperature.

Trackers filter position updates as they are received. This reduces visual noise in your device paths
(called jitter), and reduces the number of false geofence entry and exit events. This also helps
manage costs by reducing the number of geofence evaluations initiated.

Trackers offer three position filtering options to help manage costs and reduce jitter in your
location updates.

• Accuracy-based – Use with any device that provides an accuracy measurement. Most mobile
devices provide this information. The accuracy of each position measurement is affected by many
environmental factors, including GPS satellite reception, landscape, and the proximity of Wi-Fi
and Bluetooth devices. Most devices, including most mobile devices, can provide an estimate of

Step 2: Start tracking 393

Amazon Location Service Developer Guide

the accuracy of the measurement along with the measurement. With AccuracyBased filtering,
Amazon Location ignores location updates if the device moved less than the measured accuracy.
For example, if two consecutive updates from a device have an accuracy range of 5 m and 10 m,
Amazon Location ignores the second update if the device has moved less than 15 m. Amazon
Location neither evaluates ignored updates against geofences, nor stores them.

When accuracy is not provided, it is treated as zero, and the measurement is considered perfectly
accurate.

Note

You can also use accuracy-based filtering to remove all filtering. If you select accuracy-
based filtering, but override all accuracy data to zero, or omit the accuracy entirely, then
Amazon Location will not filter out any updates.

• Distance-based – Use when your devices do not provide an accuracy measurement, but you still
want to take advantage of filtering to reduce jitter and manage costs. DistanceBased filtering
ignores location updates in which devices have moved less than 30 m (98.4 ft). When you use
DistanceBased position filtering, Amazon Location neither evaluates these ignored updates
against geofences nor stores the updates.

The accuracy of most mobile devices, including the average accuracy of iOS and Android devices,
is within 15 m. In most applications, DistanceBased filtering can reduce the effect of location
inaccuracies when displaying device trajectory on a map, and the bouncing effect of multiple
consecutive entry and exit events when devices are near the border of a geofence. It can also
help reduce the cost of your application, by making fewer calls to evaluate against linked
geofences or retrieve device positions.

• Time-based – (default) Use when your devices send position updates very frequently (more than
once every 30 seconds), and you want to achieve near real-time geofence evaluations without
storing every update. In TimeBased filtering, every location update is evaluated against linked
geofence collections, but not every location update is stored. If your update frequency is more
often than 30 seconds, only one update per 30 seconds is stored for each unique device ID.

Note

Be mindful of the costs of your tracking application when deciding your filtering method
and the frequency of position updates. You are billed for every location update and once

Step 2: Start tracking 394

Amazon Location Service Developer Guide

for evaluating the position update against each linked geofence collection. For example,
when using time-based filtering, if your tracker is linked to two geofence collections, every
position update will count as one location update request and two geofence collection
evaluations. If you are reporting position updates every 5 seconds for your devices and
using time-based filtering, you will be billed for 720 location updates and 1,440 geofence
evaluations per hour for each device.
Your bill is not affected by the number of geofences in each collection. Since each geofence
collection may contain up to 50,000 geofences, you may want to combine your geofences
into fewer collections, where possible, to reduce your cost of geofence evaluations.

By default, you will get EventBridge events each time a tracked device enters or exits a linked
geofence. For more information, see Link a tracker to a geofence collection.

You can enable events for all filtered position updates for a tracker resource. For more information,
see Enable update events for a tracker.

Note

If you wish to encrypt your data using your own AWS KMS customer managed key, then the
Bounding Polygon Queries feature will be disabled by default. This is because by using this
Bounding Polygon Queries feature, a representation of your device positions will not be
encrypted using the your AWS KMS managed key. However, the exact device position is still
encrypted using your managed key.
You can choose to opt-in to the Bounding Polygon Queries feature by setting the
KmsKeyEnableGeospatialQueries parameter to true when creating or updating a
Tracker.

Console

To create a tracker using the Amazon Location console

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Trackers.

3. Choose Create tracker.

4. Fill the following fields:

Step 2: Start tracking 395

https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

• Name – Enter a unique name. For example, ExampleTracker. Maximum 100
characters. Valid entries include alphanumeric characters, hyphens, periods, and
underscores.

• Description – Enter an optional description.

5. Under Position filtering, choose the option that best fits how you intend to use your
tracker resource. If you do not set Position filtering, the default setting is TimeBased. For
more information, see Trackers in this guide, and PositionFiltering in the Amazon
Location Service Trackers API Reference.

6. (Optional) Under Tags, enter a tag Key and Value. This adds a tag your new geofence
collection. For more information, see Tagging your resources.

7. (Optional) Under Customer managed key encryption, you can choose to Add a customer
managed key. This adds a symmetric customer managed key that you create, own, and
manage over the default AWS owned encryption. For more information, see Encrypting
data at rest.

8. (Optional) Under KmsKeyEnableGeospatialQueries, you can choose to enable Geospatial
Queries. This allows you use the Bounding Polygon Queries feature, while encrypting your
data using a customer AWS KMS managed key.

Note

When you use the Bounding Polygon Queries feature a representation of your
device positions is not be encrypted using the your AWS KMS managed key.
However, the exact device position is still encrypted using your managed key.

9. (Optional) Under EventBridge configuration, you can choose to enable EventBridge events
for filtered position updates. This will send an event each time a position update for a
device in this tracker meets the position filtering evaluation.

10. Choose Create tracker.

API

To create a tracker by using the Amazon Location APIs

Use the CreateTracker operation from the Amazon Location Trackers APIs.

Step 2: Start tracking 396

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_CreateTracker.html#locationtrackers-CreateTracker-request-PositionFiltering
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_CreateTracker.html

Amazon Location Service Developer Guide

The following example uses an API request to create a tracker called ExampleTracker. The
tracker resource is associated with a customer managed AWS KMS key to encrypt customer
data, and does not enable position updates in EventBridge.

POST /tracking/v0/trackers
Content-type: application/json

{

 "TrackerName": "ExampleTracker",
 "Description": "string",
 "KmsKeyEnableGeospatialQueries": false,
 "EventBridgeEnabled": false,
 "KmsKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "PositionFiltering": "AccuracyBased",
 "Tags": {
 "string" : "string"
 }
}

Create a tracker with KmsKeyEnableGeospatialQueries enabled

The following example has the parameter KmsKeyEnableGeospatialQueries set to true.
This allows you use the Bounding Polygon Queries feature, while encrypting your data using a
customer AWS KMS managed key.

For information on using the Bounding Polygon Queries feature, see ???

Note

When you use the Bounding Polygon Queries feature a representation of your device
positions is not be encrypted using the your AWS KMS managed key. However, the exact
device position is still encrypted using your managed key.

POST /tracking/v0/trackers
Content-type: application/json

{

 "TrackerName": "ExampleTracker",

Step 2: Start tracking 397

Amazon Location Service Developer Guide

 "Description": "string",
 "KmsKeyEnableGeospatialQueries": true,
 "EventBridgeEnabled": false,
 "KmsKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "PositionFiltering": "AccuracyBased",
 "Tags": {
 "string" : "string"
 }
}

AWS CLI

To create a tracker using AWS CLI commands

Use the create-tracker command.

The following example uses the AWS CLI to create a tracker called ExampleTracker. The
tracker resource is associated with a customer managed AWS KMS key to encrypt customer
data, and does not enable position updates in EventBridge.

aws location \
 create-tracker \
 --tracker-name "ExampleTracker" \
 --position-filtering "AccuracyBased" \
 --event-bridge-enabled false \
 --kms-key-enable-geospatial-queries false \
 --kms-key-id "1234abcd-12ab-34cd-56ef-1234567890ab"

Create a tracker with KmsKeyEnableGeospatialQueries enabled

The following example has the parameter KmsKeyEnableGeospatialQueries set to true.
This allows you use the Bounding Polygon Queries feature, while encrypting your data using a
customer AWS KMS managed key.

For information on using the Bounding Polygon Queries feature, see ???

Note

When you use the Bounding Polygon Queries feature a representation of your device
positions is not be encrypted using the your AWS KMS managed key. However, the exact
device position is still encrypted using your managed key.

Step 2: Start tracking 398

https://docs.aws.amazon.com/cli/latest/reference/location/create-tracker.html

Amazon Location Service Developer Guide

aws location \
 create-tracker \
 --tracker-name "ExampleTracker" \
 --position-filtering "AccuracyBased" \
 --event-bridge-enabled false \
 --kms-key-enable-geospatial-queries true \
 --kms-key-id "1234abcd-12ab-34cd-56ef-1234567890ab"

Note

Billing depends on your usage. You may incur fees for the use of other AWS services. For
more information, see Amazon Location Service pricing.

You can edit the Description, Position filtering, and EventBridge configuration after the tracker is
created by choosing Edit tracker.

Authenticating your requests

Once you create a tracker resource and you're ready to begin evaluating device positions against
geofences, choose how you would authenticate your requests:

• To explore ways you can access the services, see Accessing Amazon Location Service.

• If you want to publish device positions with unauthenticated requests,you may want to use
Amazon Cognito.

Example

The following example shows using an Amazon Cognito identity pool for authorization, using
AWS JavaScript SDK v3, and the Amazon Location JavaScript Authentication helper.

import { LocationClient, BatchUpdateDevicePositionCommand } from "@aws-sdk/client-
location";
import { withIdentityPoolId } from "@aws/amazon-location-utilities-auth-helper";

// Unauthenticated identity pool you created
const identityPoolId = "us-east-1:1234abcd-5678-9012-abcd-sample-id";

// Create an authentication helper instance using credentials from Cognito
const authHelper = await withIdentityPoolId(identityPoolId);

Step 2: Start tracking 399

https://aws.amazon.com/location/pricing/
https://aws.amazon.com/sdk-for-javascript/

Amazon Location Service Developer Guide

const client = new LocationClient({
 region: "us-east-1", // The region containing both the identity pool and tracker
 resource
 ...authHelper.getLocationClientConfig(), // Provides configuration required to make
 requests to Amazon Location
});

const input = {
 TrackerName: "ExampleTracker",
 Updates: [
 {
 DeviceId: "ExampleDevice-1",
 Position: [-123.4567, 45.6789],
 SampleTime: new Date("2020-10-02T19:09:07.327Z"),
 },
 {
 DeviceId: "ExampleDevice-2",
 Position: [-123.123, 45.123],
 SampleTime: new Date("2020-10-02T19:10:32Z"),
 },
],
};

const command = new BatchUpdateDevicePositionCommand(input);

// Send device position updates
const response = await client.send(command);

Update your tracker with a device position

To track your devices, you can post device position updates to your tracker. You can later retrieve
these device positions or the device position history from your tracker resource.

Each position update must include the device ID, a timestamp , and a position. You may optionally
include other metadata, including accuracy and up to 3 key-value pairs for your own use.

If your tracker is linked to one or more geofence collections, updates will be evaluated against
those geofences (following the filtering rules that you specified for the tracker). If a device
breaches a geofenced area (by moving from inside the area to outside, or vice versa), you will
receive events in EventBridge. These ENTER or EXIT events include the position update details,
including the device ID, the timestamp, and any associated metadata.

Step 2: Start tracking 400

Amazon Location Service Developer Guide

Note

For more information about position filtering, see Create a tracker.
For more information about geofence events, see Reacting to Amazon Location Service
events with Amazon EventBridge.

Use either of these methods to send device updates:

• Send MQTT updates to an AWS IoT Core resource and link it to your tracker resource.

• Send location updates using the Amazon Location Trackers API, by using the AWS CLI, or the
Amazon Location APIs. You can use the AWS SDKs to call the APIs from your iOS or Android
application.

API

To send a position update using the Amazon Location APIs

Use the BatchUpdateDevicePosition operation from the Amazon Location Trackers APIs.

The following example uses an API request to post a device position update for
ExampleDevice to a tracker ExampleTracker.

POST /tracking/v0/trackers/ExampleTracker/positions
Content-type: application/json
{
 "Updates": [
 {
 "DeviceId": "1",
 "Position": [
 -123.12245146162303, 49.27521118043802
],
 "SampleTime": "2022-10-24T19:09:07.327Z",
 "PositionProperties": {
 "name" : "device1"
 },
 "Accuracy": {
 "Horizontal": 10
 }
 },

Step 2: Start tracking 401

https://docs.aws.amazon.com/location/latest/developerguide/tracking-using-mqtt.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_BatchUpdateDevicePosition.html

Amazon Location Service Developer Guide

 {
 "DeviceId": "2",
 "Position": [
 -123.1230104928471, 49.27752402723152
],
 "SampleTime": "2022-10-02T19:09:07.327Z"
 },
 {
 "DeviceId": "3",
 "Position": [
 -123.12325592118916, 49.27340530543111
],
 "SampleTime": "2022-10-02T19:09:07.327Z"
 },
 {
 "DeviceId": "4",
 "Position": [
 -123.11958813096311, 49.27774641063121
],
 "SampleTime": "2022-10-02T19:09:07.327Z"
 },
 {
 "DeviceId": "5",
 "Position": [
 -123.1277418058896, 49.2765989015285
],
 "SampleTime": "2022-10-02T19:09:07.327Z"
 },
 {
 "DeviceId": "6",
 "Position": [
 -123.11964267059481, 49.274188155916534
],
 "SampleTime": "2022-10-02T19:09:07.327Z"
 }
]
}

AWS CLI

To send a position update using AWS CLI commands

Use the batch-update-device-position command.

Step 2: Start tracking 402

https://docs.aws.amazon.com/cli/latest/reference/location/batch-update-device-position.html

Amazon Location Service Developer Guide

The following example uses an AWS CLI to post a device position update for
ExampleDevice-1 and ExampleDevice-2 to a tracker ExampleTracker.

aws location batch-update-device-position \
--tracker-name ExampleTracker \
--updates '[{"DeviceId":"ExampleDevice-1","Position":
[-123.123,47.123],"SampleTime":"2021-11-30T21:47:25.149Z"},
{"DeviceId":"ExampleDevice-2","Position":
[-123.123,47.123],"SampleTime":"2021-11-30T21:47:25.149Z","Accuracy":
{"Horizontal":10.30},"PositionProperties":{"field1":"value1","field2":"value2"}}]'

Get a device's location history from a tracker

Your Amazon Location tracker resource maintains the location history of all your tracked devices
for a period of 30 days. You can retrieve device location history, including all associated metadata,
from your tracker resource. The following examples use the AWS CLI, or the Amazon Location APIs.

API

To get the device location history from a tracker using the Amazon Location APIs

Use the GetDevicePositionHistory operation from the Amazon Location Trackers APIs.

The following example uses an API URI request to get the device location history of
ExampleDevice from a tracker called ExampleTracker starting from 19:05:07 (inclusive)
and ends at 19:20:07 (exclusive) on 2020–10–02.

POST /tracking/v0/trackers/ExampleTracker/devices/ExampleDevice/list-positions
Content-type: application/json
{
 "StartTimeInclusive": "2020-10-02T19:05:07.327Z",
 "EndTimeExclusive": "2020-10-02T19:20:07.327Z"
}

AWS CLI

To get the device location history from a tracker using AWS CLI commands

Use the get-device-position-history command.

Step 2: Start tracking 403

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_GetDevicePositionHistory.html
https://docs.aws.amazon.com/cli/latest/reference/location/get-device-position-history.html

Amazon Location Service Developer Guide

The following example uses an AWS CLI to get the device location history of ExampleDevice
from a tracker called ExampleTracker starting from 19:05:07 (inclusive) and ends at
19:20:07 (exclusive) on 2020–10–02.

aws location \
 get-device-position-history \
 --device-id "ExampleDevice" \
 --start-time-inclusive "2020-10-02T19:05:07.327Z" \
 --end-time-exclusive "2020-10-02T19:20:07.327Z" \
 --tracker-name "ExampleTracker"

List your device positions

You can view a list device positions for a tracker using the AWS CLI, or the Amazon Location APIs,
with the ListDevicePositions API. When you call the ListDevicePositions API, a list of the latest
positions for all devices associated with a given tracker is returned. By default this API returns 100
of the latest device positions per page of results for a given tracker. To only return devices within a
specific region use the FilterGeometry parameter to create a Bounding Polygon Query. This way
when you call ListDevicePositions, only devices inside the polygon will be returned.

Note

If you wish to encrypt your data using your own AWS KMS customer managed key, then
the Bounding Polygon Queries feature will be disabled by default. This is because by using
this feature, a representation of your device positions will not be encrypted using the your
AWS KMS managed key. The exact device position, however; is still encrypted using your
managed key.
You can choose to opt-in to the Bounding Polygon Queries feature. This is done by setting
the KmsKeyEnableGeospatialQueries parameter to true when creating or updating a
Tracker.

API

Use the ListDevicePositions operation from the Amazon Location Trackers APIs.

The following example is an API request to get a list of device positions in polygonal area, using
the optional parameter FilterGeometry. The example returns 3 device locations present in
the area defined by the Polygon array.

Step 2: Start tracking 404

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_ListDevicePositions.html
https://docs.aws.amazon.com/

Amazon Location Service Developer Guide

POST /tracking/v0/trackers/TrackerName/list-positions HTTP/1.1
Content-type: application/json

{
 "FilterGeometry": {
 "Polygon": [
 [
 [
 -123.12003339442259,
 49.27425121147397
],
 [
 -123.1176984148229,
 49.277063620879744
],
 [
 -123.12389509145294,
 49.277954183760926
],
 [
 -123.12755921328647,
 49.27554025235713
],
 [
 -123.12330236586217,
 49.27211836076236
],
 [
 -123.12003339442259,
 49.27425121147397
]
]
]
 },
 "MaxResults": 3,
 "NextToken": "1234-5678-9012"
}

The following is an example response for ListDevicePositions:

{
 "Entries": [
 {

Step 2: Start tracking 405

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_ListDevicePositions.html

Amazon Location Service Developer Guide

 "DeviceId": "1",
 "SampleTime": "2022-10-24T19:09:07.327Z",
 "Position": [
 -123.12245146162303,
 49.27521118043802
],
 "Accuracy": {
 "Horizontal": 10
 },
 "PositionProperties": {
 "name": "device1"
 }
 },
 {
 "DeviceId": "3",
 "SampleTime": "2022-10-02T19:09:07.327Z",
 "Position": [
 -123.12325592118916,
 49.27340530543111
]
 },
 {
 "DeviceId": "2",
 "SampleTime": "2022-10-02T19:09:07.327Z",
 "Position": [
 -123.1230104928471,
 49.27752402723152
]
 }
],
 "NextToken": "1234-5678-9012"
}

CLI

Use the list-trackers command.

The following example is an AWS CLI to get a list of devices in a polygonal area.

aws location list-device-positions TODO: add arguments add props for filter geo

Step 2: Start tracking 406

https://docs.aws.amazon.com/cli/latest/reference/location/list-trackers.html

Amazon Location Service Developer Guide

Link a tracker to a geofence collection

Now that you have a geofence collection and a tracker, you can link them together so that location
updates are automatically evaluated against all of your geofences. If you don’t want to evaluate all
location updates, or alternatively, if you aren't storing some of your locations in a tracker resource,
you can evaluate device positions against geofences on demand.

When device positions are evaluated against geofences, events are generated. You can set an
action to these events. For more information about actions that you can set for geofence events,
see Reacting to Amazon Location Service events with Amazon EventBridge.

An Amazon Location event includes the attributes of the device position update that generates
it and some attributes of the geofence that is entered or exited. For more information about the
data included in a geofence event, see Amazon EventBridge event examples for Amazon Location
Service.

The following examples link a tracker resource to a geofence collection using the console, the AWS
CLI, or the Amazon Location APIs.

Console

To link a tracker resource to a geofence collection using the Amazon Location Service
console

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Trackers.

3. Under Device trackers, select the name link of the target tracker.

4. Under Linked Geofence Collections, choose Link Geofence Collection.

5. In the Linked Geofence Collection window, select a geofence collection from the
dropdown menu.

6. Choose Link.

After you link the tracker resource, it will be assigned an Active status.

API

To link a tracker resource to a geofence collection using the Amazon Location APIs

Use the AsssociateTrackerConsumer operation from the Amazon Location Trackers APIs.

Step 3: Link a tracker to a geofence collection 407

https://docs.aws.amazon.com/location/latest/developerguide/evaluate-geofences.html
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html
https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_AssociateTrackerConsumer.html

Amazon Location Service Developer Guide

The following example uses an API request that associates ExampleTracker with a geofence
collection using its Amazon Resource Name (ARN).

POST /tracking/v0/trackers/ExampleTracker/consumers
Content-type: application/json

{
 "ConsumerArn": "arn:aws:geo:us-west-2:123456789012:geofence-
collection/ExampleGeofenceCollection"
}

AWS CLI

To link a tracker resource to a geofence collection using AWS CLI commands

Use the associate-tracker-consumer command.

The following example uses an AWS CLI to create a geofence collection called
ExampleGeofenceCollection.

aws location \
 associate-tracker-consumer \
 --consumer-arn "arn:aws:geo:us-west-2:123456789012:geofence-
collection/ExampleGeofenceCollection" \
 --tracker-name "ExampleTracker"

Evaluate device positions against geofences

There are two ways to evaluate positions against geofences to generate geofence events:

• You can link Trackers and Geofence Collections. For more information, see the section: Link a
tracker to a geofence collection.

• You can make a direct request to the geofence collection resource to evaluate one or more
positions, using the BatchEvaluateGeofences API.

Additionally, you can forecast incoming geofence events for a device entering, exiting, or remaining
idle within a geofence. Use the ForecastGeofenceEvents API to forecast events.

If you also want to track your device location history or display locations on a map, link the tracker
with a geofence collection. Alternatively, you may not want to evaluate all location updates, or you

Step 4: Evaluate device positions against geofences 408

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/cli/latest/reference/location/associate-tracker-consumer.html
https://docs.aws.amazon.com/location/latest/APIReference/API_BatchEvaluateGeofences.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ForecastGeofenceEvents.html

Amazon Location Service Developer Guide

don't intend to store location data in a tracker resource. If either of these is the case, you can make
a direct request to the geofence collection and evaluate one or more device positions against its
geofences.

Evaluating device positions against geofences generates events. You can react to these events
and route them to other AWS services. For more information about actions that you can take
when receiving geofence events, see Reacting to Amazon Location Service events with Amazon
EventBridge.

An Amazon Location event includes the attributes of the device position update that generates
it, including the time, position, accuracy, and key-value metadata, and some attributes of the
geofence that is entered or exited. For more information about the data included in a geofence
event, see Amazon EventBridge event examples for Amazon Location Service.

The following examples use the AWS CLI, or the Amazon Location APIs.

API

To evaluate device positions against the position of geofences using the Amazon Location
APIs

Use the BatchEvaluateGeofences operation from the Amazon Location Geofences APIs.

The following example uses an API request to evaluate the position of device ExampleDevice
to an associated geofence collection ExampleGeofenceCollection. Replace these values
with your own geofence and device IDs.

POST /geofencing/v0/collections/ExampleGeofenceCollection/positions HTTP/1.1
Content-type: application/json

{
 "DevicePositionUpdates": [
 {
 "DeviceId": "ExampleDevice",
 "Position": [-123.123, 47.123],
 "SampleTime": "2021-11-30T21:47:25.149Z",
 "Accuracy": {
 "Horizontal": 10.30
 },
 "PositionProperties": {
 "field1": "value1",
 "field2": "value2"

Step 4: Evaluate device positions against geofences 409

https://docs.aws.amazon.com/location/latest/developerguide/location-events.html
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_BatchEvaluateGeofences.html

Amazon Location Service Developer Guide

 }
 }
]
}

AWS CLI

To evaluate device positions against the position of geofences using AWS CLI commands

Use the batch-evaluate-geofences command.

The following example uses an AWS CLI to evaluate the position of ExampleDevice against an
associated geofence collection ExampleGeofenceCollection. Replace these values with your
own geofence and device IDs.

aws location \
 batch-evaluate-geofences \
 --collection-name ExampleGeofenceCollection \
 --device-position-updates '[{"DeviceId":"ExampleDevice","Position":
[-123.123,47.123],"SampleTime":"2021-11-30T21:47:25.149Z","Accuracy":
{"Horizontal":10.30},"PositionProperties":{"field1":"value1","field2":"value2"}}]'

Evaluating device positions against geofences generates events. Traditionally you can react to
the events by using Amazon EventBridge, but this process only lets you react to events after then
have happened. If you need to anticipate when a device enters or exits a geofence, for example if a
device is crossing a border and will be subject to a different regulations as a consequence, then you
can use the ForecastGeofenceEvents API to predict future geofence events.

The ForecastGeofenceEvents API uses criteria such as the device's time-to-breach, proximity, speed,
and position to predict events. There API will return a ForecastedBreachTime, which signals
the estimated time the geofence event will occur.

The following example uses the Amazon Location APIs.

API

To forecast geofence events using the Amazon Location APIs

Use the ForecastGeofenceEvents operation from the Amazon Location Geofences APIs.

The following example uses an API request to forecast geofence events for an ExampleDevice
relative to an ExampleGeofence. Replace these values with your own geofence and device IDs.

Step 4: Evaluate device positions against geofences 410

https://docs.aws.amazon.com/cli/latest/reference/location/batch-evaluate-geofences.html
https://docs.aws.amazon.com/location/latest/developerguide/evaluate-geofences.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ForecastGeofenceEvents.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ForecastGeofenceEvents.html
https://docs.aws.amazon.com/location/latest/APIReference/API_ForecastGeofenceEvents.html

Amazon Location Service Developer Guide

POST /geofencing/v0/collections/CollectionName/forecast-geofence-events HTTP/1.1
Content-type: application/json

{
 "DeviceState": {
 "Position": [number],
 "Speed": number
 },
 "DistanceUnit": "string",
 "MaxResults": number,
 "NextToken": "string",
 "SpeedUnit": "string",
 "TimeHorizonMinutes": number
}

Verify device positions

To check the integrity of a device position use the VerifyDevicePosition API. This API returns
information about the integrity of the device's position, by evaluating properties such as the
device's cell signal, Wi-Fi access point, Ipv4 address, and if a proxy is in use.

Prerequisites

Before being able to use the listed APIs for device verification, make sure you have the following
prerequisite:

• You have created a tracker for the device or devices you want to check. For more information, see
Start tracking.

The following example shows a request for the Amazon Location VerifyDevicePosition API.

API

To verify device positions using the Amazon Location APIs

Use the VerifyDevicePosition operation from the Amazon Location Tracking APIs.

The following example shows an API request to evaluate the integrity of the position of a
device. Replace these values with your own device IDs.

Verify device positions 411

https://docs.aws.amazon.com/location/latest/APIReference/API_VerifyDevicePosition.html
https://docs.aws.amazon.com/location/latest/APIReference/API_VerifyDevicePosition.html
https://docs.aws.amazon.com/location/latest/APIReference/API_VerifyDevicePosition.html

Amazon Location Service Developer Guide

POST /tracking/v0/trackers/TrackerName/positions/verify HTTP/1.1
Content-type: application/json

{
 "DeviceState": {
 "Accuracy": {
 "Horizontal": number
 },
 "CellSignals": {
 "LteCellDetails": [
 {
 "CellId": number,
 "LocalId": {
 "Earfcn": number,
 "Pci": number
 },
 "Mcc": number,
 "Mnc": number,
 "NetworkMeasurements": [
 {
 "CellId": number,
 "Earfcn": number,
 "Pci": number,
 "Rsrp": number,
 "Rsrq": number
 }
],
 "NrCapable": boolean,
 "Rsrp": number,
 "Rsrq": number,
 "Tac": number,
 "TimingAdvance": number
 }
]
 },
 "DeviceId": "ExampleDevice",
 "Ipv4Address": "string",
 "Position": [number],
 "SampleTime": "string",
 "WiFiAccessPoints": [
 {
 "MacAddress": "string",
 "Rss": number

Verify device positions 412

Amazon Location Service Developer Guide

 }
]
 },
 "DistanceUnit": "string"
}

Note

The Location Integrity SDK provides enhanced features related to device verification, and
it is available for use by request. To get access to the SDK, contact Sales Support.

Reacting to Amazon Location Service events with Amazon EventBridge

Amazon EventBridge is a serverless event bus that efficiently connects applications together using
data from AWS services like Amazon Location. EventBridge receives events from Amazon Location
and routes that data to targets like AWS Lambda. You can set up routing rules to determine where
to send your data to build application architectures that react in real time.

Only geofence events (ENTER and EXIT events, as devices enter or leave the geofenced areas) are
sent to EventBridge by default. You can also enable all filtered position update events for a tracker
resource. For more information, see Enable update events for a tracker.

For more information, see the Events and Event Patterns in the Amazon EventBridge User Guide.

Topics

• Enable update events for a tracker

• Create event rules for Amazon Location

• Amazon EventBridge event examples for Amazon Location Service

Enable update events for a tracker

By default, Amazon Location sends only ENTER and EXIT geofence events to EventBridge. You can
enable all filtered position UPDATE events for a tracker to be sent to EventBridge. You can do this
when you create or update a tracker.

For example, to update an existing tracker using the AWS CLI, you can use the following command
(use the name of your tracker resource in place of MyTracker).

Reacting to events with EventBridge 413

https://aws.amazon.com/contact-us/sales-support/?pg=locationprice&cta=herobtn
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/location/latest/APIReference/API_CreateTracker.html
https://docs.aws.amazon.com/location/latest/APIReference/API_UpdateTracker.html

Amazon Location Service Developer Guide

aws location update-tracker --tracker-name MyTracker --event-bridge-enabled

To turn off position events for a tracker, you must use the API or the Amazon Location Service
console.

Create event rules for Amazon Location

You can create up to 300 rules per event bus in EventBridge to configure actions taken in response
to an Amazon Location event.

For example, you can create a rule for geofence events where a push notification will be sent when
a phone is detected within a geofenced boundary.

To create a rule for Amazon Location events

Using the following values, create an EventBridge rule based on Amazon Location events:

• For Rule type, choose Rule with an event pattern.

• In the Event pattern box, add the following pattern:

{
 "source": ["aws.geo"],
 "detail-type": ["Location Geofence Event"]
}

To create a rule for tracker position updates, you can instead use the following pattern:

{
 "source": ["aws.geo"],
 "detail-type": ["Location Device Position Event"]
}

You can optionally specify only ENTER or EXIT events by adding a detail tag (if your rule is for
tracker position updates, there is only a single EventType, so there is no need to filter on it):

{
 "source": ["aws.geo"],
 "detail-type": ["Location Geofence Event"],
 "detail": {
 "EventType": ["ENTER"]
 }

Reacting to events with EventBridge 414

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-quota.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html

Amazon Location Service Developer Guide

}

You can also optionally filter on properties of the position or geofence:

{
 "source": ["aws.geo"],
 "detail-type": ["Location Geofence Event"],
 "detail": {
 "EventType": ["ENTER"],
 "GeofenceProperties": {
 "Type": "LoadingDock"
 },
 "PositionProperties": {
 "VehicleType": "Truck"
 }
 }
}

• For Select targets, choose the target action to take when an event is received from Amazon
Location Service.

For example, use an Amazon Simple Notification Service (SNS) topic to send an email or text
message when an event occurs. You first need to create an Amazon SNS topic using the Amazon
SNS console. For more information, see Using Amazon SNS for user notifications.

Warning

It's best practice to confirm that the event rule was successfully applied or your automated
action may not initiate as expected. To verify your event rule, initiate conditions for the
event rule. For example, simulate a device entering a geofenced area.

You can also capture all events from Amazon Location, by just excluding the detail-type section.
For example:

{
 "source": [
 "aws.geo"
]
}

Reacting to events with EventBridge 415

https://docs.aws.amazon.com/sns/latest/dg/sns-user-notifications.html

Amazon Location Service Developer Guide

Note

The same event may be delivered more than one time. You can use the event id to de-
duplicate the events that you receive.

Amazon EventBridge event examples for Amazon Location Service

The following is an example of an event for entering a geofence initiated by calling
BatchUpdateDevicePosition.

{
 "version": "0",
 "id": "aa11aa22-33a-4a4a-aaa5-example",
 "detail-type": "Location Geofence Event",
 "source": "aws.geo",
 "account": "636103698109",
 "time": "2020-11-10T23:43:37Z",
 "region": "eu-west-1",
 "resources": [
 "arn:aws:geo:eu-west-1:0123456789101:geofence-collection/GeofenceEvents-
GeofenceCollection_EXAMPLE",
 "arn:aws:geo:eu-west-1:0123456789101:tracker/Tracker_EXAMPLE"
],
 "detail": {
 "EventType": "ENTER",
 "GeofenceId": "polygon_14",
 "DeviceId": "Device1-EXAMPLE",
 "SampleTime": "2020-11-10T23:43:37.531Z",
 "Position": [
 -123.12390073297821,
 49.23433613216247
],
 "Accuracy": {
 "Horizontal": 15.3
 },
 "GeofenceProperties": {
 "ExampleKey1": "ExampleField1",
 "ExampleKey2": "ExampleField2"
 },
 "PositionProperties": {
 "ExampleKey1": "ExampleField1",

Reacting to events with EventBridge 416

Amazon Location Service Developer Guide

 "ExampleKey2": "ExampleField2"
 }
 }
}

The following is an example of an event for exiting a geofence initiated by calling
BatchUpdateDevicePosition.

{
 "version": "0",
 "id": "aa11aa22-33a-4a4a-aaa5-example",
 "detail-type": "Location Geofence Event",
 "source": "aws.geo",
 "account": "123456789012",
 "time": "2020-11-10T23:41:44Z",
 "region": "eu-west-1",
 "resources": [
 "arn:aws:geo:eu-west-1:0123456789101:geofence-collection/GeofenceEvents-
GeofenceCollection_EXAMPLE",
 "arn:aws:geo:eu-west-1:0123456789101:tracker/Tracker_EXAMPLE"
],
 "detail": {
 "EventType": "EXIT",
 "GeofenceId": "polygon_10",
 "DeviceId": "Device1-EXAMPLE",
 "SampleTime": "2020-11-10T23:41:43.826Z",
 "Position": [
 -123.08569321875426,
 49.23766166742559
],
 "Accuracy": {
 "Horizontal": 15.3
 },
 "GeofenceProperties": {
 "ExampleKey1": "ExampleField1",
 "ExampleKey2": "ExampleField2"
 },
 "PositionProperties": {
 "ExampleKey1": "ExampleField1",
 "ExampleKey2": "ExampleField2"
 }
 }
}

Reacting to events with EventBridge 417

Amazon Location Service Developer Guide

The following is an example of an event for a position update, initiated by calling
BatchUpdateDevicePosition.

{
 "version": "0",
 "id": "aa11aa22-33a-4a4a-aaa5-example",
 "detail-type": "Location Device Position Event",
 "source": "aws.geo",
 "account": "123456789012",
 "time": "2020-11-10T23:41:44Z",
 "region": "eu-west-1",
 "resources": [
 "arn:aws:geo:eu-west-1:0123456789101:tracker/Tracker_EXAMPLE"
],
 "detail": {
 "EventType": "UPDATE",
 "TrackerName": "tracker_2",
 "DeviceId": "Device1-EXAMPLE",
 "SampleTime": "2020-11-10T23:41:43.826Z",
 "ReceivedTime": "2020-11-10T23:41:39.235Z",
 "Position": [
 -123.08569321875426,
 49.23766166742559
],
 "Accuracy": {
 "Horizontal": 15.3
 },
 "PositionProperties": {
 "ExampleKey1": "ExampleField1",
 "ExampleKey2": "ExampleField2"
 }
 }
}

Tracking using AWS IoT and MQTT with Amazon Location Service

MQTT is a lightweight and widely adopted messaging protocol designed for constrained devices.
AWS IoT Core supports device connections that use the MQTT protocol and MQTT over WebSocket
Secure (WSS) protocol.

AWS IoT Core connects devices to AWS and enables you to send and receive messages between
them. The AWS IoT Core rules engine stores queries about your devices' message topics and

Tracking using AWS IoT and MQTT 418

http://mqtt.org/
https://aws.amazon.com/iot-core/

Amazon Location Service Developer Guide

enables you to define actions for sending messages to other AWS services, such as Amazon
Location Service. Devices that are aware of their location as coordinates can have their locations
forwarded to Amazon Location through the rules engine.

Note

Devices may know their own position, for example via built-in GPS. AWS IoT also has
support for third party device location tracking. For more information, see AWS IoT Core
Device Location in the AWS IoT Core Developer Guide.

The following walkthrough describes tracking using AWS IoT Core rules. You can also send the
device information to your own AWS Lambda function, if you need to process it before sending to
Amazon Location. For more details about using Lambda to process your device locations, see Using
AWS Lambda with MQTT.

Topics

• Prerequisite

• Create an AWS IoT Core rule

• Test your AWS IoT Core rule in the console

• Using AWS Lambda with MQTT

Prerequisite

Before you can begin tracking, you must complete the following prerequisites:

• Create a tracker resource that you will send the device location data to.

• Create an IAM role for granting AWS IoT Core access to your tracker.

When following those steps, use the following policy to give access to your tracker:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteDevicePosition",
 "Effect": "Allow",
 "Action": "geo:BatchUpdateDevicePosition",

Tracking using AWS IoT and MQTT 419

https://docs.aws.amazon.com/iot/latest/developerguide/device-location.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-location.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html

Amazon Location Service Developer Guide

 "Resource": "arn:aws:geo:*:*:tracker/*"
 }
]
}

Create an AWS IoT Core rule

Next, create an AWS IoT Core rule to forward your devices' positional telemetry to Amazon
Location Service. For more information about creating rules, see the following topics in the AWS
IoT Core Developer Guide:

• Creating an AWS IoT rule for information about creating a new rule.

• Location action for information specific to creating a rule for publishing to Amazon Location

Test your AWS IoT Core rule in the console

If no devices are currently publishing telemetry that includes location, you can test your rule using
the AWS IoT Core console. The console has a test client where you can publish a sample message to
verify the results of the solution.

1. Sign in to the AWS IoT Core console at https://console.aws.amazon.com/iot/.

2. In the left navigation, expand Test, and choose MQTT test client.

3. Under Publish to a topic, set the Topic name to iot/topic (or the name of the topic that
you set up in your AWS IoT Core rule, if different), and provide the following for the Message
payload.

{
 "payload": {
 "deviceid": "thing123",
 "timestamp": 1604940328,
 "location": { "lat": 49.2819, "long": -123.1187 },
 "accuracy": { "Horizontal": 20.5 },
 "positionProperties": { "field1": "value1", "field2": "value2" }
 }
}

4. Choose Publish to topic to send the test message.

Tracking using AWS IoT and MQTT 420

https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-rule.html
https://docs.aws.amazon.com/iot/latest/developerguide/location-rule-action.html
https://console.aws.amazon.com/iot/home

Amazon Location Service Developer Guide

5. To validate that the message was received by Amazon Location Service, use the following AWS
CLI command. If you modified it during setup, replace the tracker name with the one that you
used.

aws location batch-get-device-position --tracker-name MyTracker --device-ids
 thing123

Using AWS Lambda with MQTT

While using AWS Lambda is no longer required when sending device location data to Amazon
Location for tracking, you may still want to use Lambda in some cases. For example, if you wish to
process your device location data yourself, before sending it on to Amazon Location. The following
topics describe how to use Lambda to process messages before sending them to your tracker. For
more information about this pattern, see the reference architecture.

Topics

• Prerequisite

• Create a Lambda function

• Create an AWS IoT Core rule

• Test your AWS IoT Core rule in the console

Prerequisite

Before you can begin tracking, you must create a tracker resource. To create a tracker resource, you
can use the Amazon Location console, the AWS CLI, or the Amazon Location APIs.

The following example uses the Amazon Location Service console to create the tracker resource:

1. Open the Amazon Location Service console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose Trackers.

3. Choose Create tracker.

4. Fill out the following boxes:

• Name – Enter a unique name that has a maximum of 100 characters. Valid entries include
alphanumeric characters, hyphens, and underscores. For example, MyTracker.

Tracking using AWS IoT and MQTT 421

https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/amazon-location-service-ra.pdf
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

• Description – Enter an optional description. For example, Tracker for storing AWS
IoT Core device positions.

• Position filtering – Select the filtering that you want to use for position updates. For
example, Accuracy-based filtering.

5. Choose Create tracker.

Create a Lambda function

To create a connection between AWS IoT Core and Amazon Location Service, you need an AWS
Lambda function to process messages forwarded by AWS IoT Core. This function will extract any
positional data, format it for Amazon Location Service, and submit it through the Amazon Location
Tracker API. You can create this function through the AWS Lambda console, or you can use the AWS
Command Line Interface (AWS CLI) or the AWS Lambda APIs.

To create a Lambda function that publishes position updates to Amazon Location using the
console:

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. From the left navigation, choose Functions.

3. Choose Create Function, and make sure that Author from scratch is selected.

4. Fill out the following boxes:

• Function name – Enter a unique name for your function. Valid entries include alphanumeric
characters, hyphens, and underscores with no spaces. For example, MyLambda.

• Runtime – Choose Python 3.8.

5. Choose Create function.

6. Choose the Code tab to open the editor.

7. Overwrite the placeholder code in lambda_function.py with the following, replacing
the value assigned to TRACKER_NAME with the name of the tracker that you created as a
prerequisite.

from datetime import datetime
import json
import os

import boto3

Tracking using AWS IoT and MQTT 422

https://console.aws.amazon.com/lambda/home

Amazon Location Service Developer Guide

Update this to match the name of your Tracker resource
TRACKER_NAME = "MyTracker"

"""
This Lambda function receives a payload from AWS IoT Core and publishes device
 updates to
Amazon Location Service via the BatchUpdateDevicePosition API.

Parameter 'event' is the payload delivered from AWS IoT Core.

In this sample, we assume that the payload has a single top-level key 'payload' and
 a nested key
'location' with keys 'lat' and 'long'. We also assume that the name of the device
 is nested in
the payload as 'deviceid'. Finally, the timestamp of the payload is present as
 'timestamp'. For
example:

>>> event
{ 'payload': { 'deviceid': 'thing123', 'timestamp': 1604940328,
 'location': { 'lat': 49.2819, 'long': -123.1187 },
 'accuracy': {'Horizontal': 20.5 },
 'positionProperties': {'field1':'value1','field2':'value2'} }
}

If your data doesn't match this schema, you can either use the AWS IoT Core rules
 engine to
format the data before delivering it to this Lambda function, or you can modify the
 code below to
match it.
"""
def lambda_handler(event, context):
 update = {
 "DeviceId": event["payload"]["deviceid"],
 "SampleTime": datetime.fromtimestamp(event["payload"]
["timestamp"]).strftime("%Y-%m-%dT%H:%M:%SZ"),
 "Position": [
 event["payload"]["location"]["long"],
 event["payload"]["location"]["lat"]
]
 }
 if "accuracy" in event["payload"]:
 update["Accuracy"] = event["payload"]['accuracy']
 if "positionProperties" in event["payload"]:

Tracking using AWS IoT and MQTT 423

Amazon Location Service Developer Guide

 update["PositionProperties"] = event["payload"]['positionProperties']

 client = boto3.client("location")
 response = client.batch_update_device_position(TrackerName=TRACKER_NAME,
 Updates=[update])

 return {
 "statusCode": 200,
 "body": json.dumps(response)
 }

8. Choose Deploy to save the updated function.

9. Choose the Configuration tab.

10. In the Permissions section, choose the hyperlinked Role name to grant Amazon Location
Service permissions to your Lambda function.

11. From your role's Summary page, choose Add permissions, and then from the dropdown list,
select Create inline policy.

12. Choose the JSON tab, and overwrite the policy with the following document. This allows
your Lambda function to update device positions managed by all tracker resources across all
Regions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteDevicePosition",
 "Effect": "Allow",
 "Action": "geo:BatchUpdateDevicePosition",
 "Resource": "arn:aws:geo:*:*:tracker/*"
 }
]
}

13. Choose Review policy.

14. Enter a policy name. For example, AmazonLocationTrackerWriteOnly.

15. Choose Create policy.

You can modify this function code, as necessary, to adapt to your own device message schema.

Tracking using AWS IoT and MQTT 424

Amazon Location Service Developer Guide

Create an AWS IoT Core rule

Next, create an AWS IoT Core rule to forward your devices' positional telemetry to the AWS
Lambda function for transformation and publication to Amazon Location Service. The example
rule provided assumes that any necessary transformation of device payloads is handled by your
Lambda function. You can create this rule through the AWS IoT Core console, the AWS Command
Line Interface (AWS CLI), or the AWS IoT Core APIs.

Note

While the AWS IoT console handles the permission necessary to allow AWS IoT Core to
invoke your Lambda function, if you are creating your rule from the AWS CLI or SDK, you
must configure a policy to grant permission to AWS IoT.

To create an AWS IoT Core using the console

1. Sign in to the AWS IoT Core console at https://console.aws.amazon.com/iot/.

2. In the left navigation, expand Act, and choose Rules.

3. Choose Create a rule to start the new rule wizard.

4. Enter a name and description for your rule.

5. For the Rule query statement, update the FROM attribute to refer to a topic where at least
one device is publishing telemetry that includes location. If you are testing the solution, no
modification is needed.

SELECT * FROM 'iot/topic'

6. Under Set one or more actions , choose Add action.

7. Select Send a message to a lambda function.

8. Choose Configure action.

9. Find and select your Lambda function from the list.

10. Choose Add action.

11. Choose Create rule.

Tracking using AWS IoT and MQTT 425

https://docs.aws.amazon.com/iot/latest/developerguide/lambda-rule-action.html#lambda-rule-action-requirements
https://console.aws.amazon.com/iot/home

Amazon Location Service Developer Guide

Test your AWS IoT Core rule in the console

If no devices are currently publishing telemetry that includes location, you can test your rule and
this solution using the AWS IoT Core console. The console has a test client where you can publish a
sample message to verify the results of the solution.

1. Sign in to the AWS IoT Core console at https://console.aws.amazon.com/iot/.

2. In the left navigation, expand Test, and choose MQTT test client.

3. Under Publish to a topic, set the Topic name to iot/topic (or the name of the topic that
you set up in your AWS IoT Core rule, if different), and provide the following for the Message
payload. Replace the timestamp 1604940328 with a valid timestamp within the last 30 days
(any timestamps older than 30 days are ignored).

{
 "payload": {
 "deviceid": "thing123",
 "timestamp": 1604940328,
 "location": { "lat": 49.2819, "long": -123.1187 },
 "accuracy": { "Horizontal": 20.5 },
 "positionProperties": { "field1": "value1", "field2": "value2" }
 }
}

4. Choose Publish to topic to send the test message.

5. To validate that the message was received by Amazon Location Service, use the following AWS
CLI command. If you modified them during setup, replace the tracker name and device id with
the ones that you used.

aws location batch-get-device-position --tracker-name MyTracker --device-ids
 thing123

Managing your geofence collection resources

Manage your geofence collections using the Amazon Location console, the AWS CLI, or the Amazon
Location APIs.

Managing geofence resources 426

https://console.aws.amazon.com/iot/home

Amazon Location Service Developer Guide

List your geofence collection resources

You can view your geofence collection list using the Amazon Location console, the AWS CLI, or the
Amazon Location APIs:

Console

To view a list of geofence collections using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Geofence collections from the left navigation pane.

3. View a list of your geofence collections under My geofence collections.

API

Use the ListGeofenceCollections operation from the Amazon Location Geofences APIs.

The following example is an API request to get a list of geofence collections in the AWS account.

POST /geofencing/v0/list-collections

The following is an example response for ListGeofenceCollections:

{
 "Entries": [
 {
 "CollectionName": "ExampleCollection",
 "CreateTime": 2020-09-30T22:59:34.142Z,
 "Description": "string",
 "UpdateTime": 2020-09-30T23:59:34.142Z
 },
 "NextToken": "1234-5678-9012"
}

CLI

Use the list-geofence-collections command.

The following example is an AWS CLI to get a list of geofence collections in the AWS account.

aws location list-geofence-collections

Managing geofence resources 427

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location/latest/APIReference/API_ListGeofenceCollections.html
https://docs.aws.amazon.com/cli/latest/reference/location/list-geofence-collections.html

Amazon Location Service Developer Guide

Get geofence collection details

You can get details about any geofence collection resource in your AWS account using the Amazon
Location console, the AWS CLI, or the Amazon Location APIs:

Console

To view the details of a geofence collection using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Geofence collections from the left navigation pane.

3. Under My geofence collections, select the name link of the target geofence collection.

API

Use the DescribeGeofenceCollection operation from the Amazon Location Geofences
APIs.

The following example is an API request to get the geofence collection details for
ExampleCollection.

GET /geofencing/v0/collections/ExampleCollection

The following is an example response for DescribeGeofenceCollection:

{
 "CollectionArn": "arn:aws:geo:us-west-2:123456789012:geofence-collection/
GeofenceCollection",
 "CollectionName": "ExampleCollection",
 "CreateTime": 2020-09-30T22:59:34.142Z,
 "Description": "string",
 "KmsKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Tags": {
 "Tag1" : "Value1"
 },
 "UpdateTime": 2020-09-30T23:59:34.142Z
}

CLI

Use the describe-geofence-collection command.

Managing geofence resources 428

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeGeofenceCollection.html
https://docs.aws.amazon.com/cli/latest/reference/location/describe-geofence-collection.html

Amazon Location Service Developer Guide

The following example is an AWS CLI to get the geofence collection details for
ExampleCollection.

aws location describe-geofence-collection \
 --collection-name "ExampleCollection"

Delete a geofence collection

You can delete a geofence collection from your AWS account using the Amazon Location console,
the AWS CLI, or the Amazon Location APIs.

Console

To delete a geofence collection using the Amazon Location console

Warning

This operation deletes the resource permanently.

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Geofence collections from the left navigation pane.

3. Under My geofence collection, select the target geofence collection.

4. Choose Delete geofence collection.

API

Use the DeleteGeofenceCollection operation from the Amazon Location APIs.

The following example is an API request to delete the geofence collection
ExampleCollection.

DELETE /geofencing/v0/collections/ExampleCollection

The following is an example response for DeleteGeofenceCollection:

HTTP/1.1 200

Managing geofence resources 429

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location/latest/APIReference/API_DeleteGeofenceCollection.html

Amazon Location Service Developer Guide

CLI

Use the delete-geofence-collection command.

The following example is an AWS CLI command to delete the geofence collection
ExampleCollection.

aws location delete-geofence-collection \
 --collection-name "ExampleCollection"

List stored geofences

You can list geofences stored in a specified geofence collection using the Amazon Location console,
the AWS CLI, or the Amazon Location APIs.

Console

To view a list of geofences using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Geofence collections from the left navigation pane.

3. Under My geofence collection, select the name link of the target geofence collection.

4. View geofences in the geofence collection under Geofences

API

Use the ListGeofences operation from the Amazon Location Geofences APIs.

The following example is an API request to get a list of geofences stored in the geofence
collection ExampleCollection.

POST /geofencing/v0/collections/ExampleCollection/list-geofences

The following is an example response for ListGeofences:

{
 "Entries": [
 {
 "CreateTime": 2020-09-30T22:59:34.142Z,

Managing geofence resources 430

https://docs.aws.amazon.com/cli/latest/reference/location/delete-geofence-collection.html
https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location/latest/APIReference/API_ListGeofences.html

Amazon Location Service Developer Guide

 "GeofenceId": "geofence-1",
 "Geometry": {
 "Polygon": [
 [-5.716667, -15.933333,
 [-14.416667, -7.933333],
 [-12.316667, -37.066667],
 [-5.716667, -15.933333]
]
 },
 "Status": "ACTIVE",
 "UpdateTime": 2020-09-30T23:59:34.142Z
 }
],
 "NextToken": "1234-5678-9012"
}

CLI

Use the list-geofences command.

The following example is an AWS CLI to get a list of geofences stored in the geofence collection
ExampleCollection.

aws location list-geofences \
 --collection-name "ExampleCollection"

Get geofence details

You can get the details of a specific geofence, such as the create time, update time, geometry, and
status, from a geofence collection using the Amazon Location console, AWS CLI, or the Amazon
Location APIs.

Console

To view the status of a geofence using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Geofence collections from the left navigation pane.

3. Under My geofence collection, select the name link of the target geofence collection.

4. Under Geofences, you’ll be able to view the status of your geofences.

Managing geofence resources 431

https://docs.aws.amazon.com/cli/latest/reference/location/list-geofences.html
https://console.aws.amazon.com/location/home

Amazon Location Service Developer Guide

API

Use the GetGeofence operation from the Amazon Location Geofences APIs.

The following example is an API request to get the geofence details from a geofence collection
ExampleCollection.

GET /geofencing/v0/collections/ExampleCollection/geofences/ExampleGeofence1

The following is an example response for GetGeofence:

{
 "CreateTime": 2020-09-30T22:59:34.142Z,
 "GeofenceId": "ExampleGeofence1",
 "Geometry": {
 "Polygon": [
 [-1,-1],
 [1,-1],
 [0,1],
 [-1,-1]
]
 },
 "Status": "ACTIVE",
 "UpdateTime": 2020-09-30T23:59:34.142Z
}

CLI

Use the get-geofence command.

The following example is an AWS CLI to get the geofence collection details for
ExampleCollection.

aws location get-geofence \
 --collection-name "ExampleCollection" \
 --geofence-id "ExampleGeofence1"

Delete geofences

You can delete geofences from a geofence collection using the Amazon Location console, the AWS
CLI, or the Amazon Location APIs.

Managing geofence resources 432

https://docs.aws.amazon.com/location/latest/APIReference/API_GetGeofence.html
https://docs.aws.amazon.com/cli/latest/reference/location/get-geofence.html

Amazon Location Service Developer Guide

Console

To delete a geofence using the Amazon Location console

Warning

This operation deletes the resource permanently.

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Geofence collections from the left navigation pane.

3. Under My geofence collection, select the name link of the target geofence collection.

4. Under Geofences, select the target geofence.

5. Choose Delete geofence.

API

Use the BatchDeleteGeofence operation from the Amazon Location Geofences APIs.

The following example is an API request to delete geofences from the geofence collection
ExampleCollection.

POST /geofencing/v0/collections/ExampleCollection/delete-geofences
Content-type: application/json

{
 "GeofenceIds": ["ExampleGeofence11"]
}

The following is an example success response for BatchDeleteGeofence.

HTTP/1.1 200

CLI

Use the batch-delete-geofence command.

The following example is an AWS CLI command to delete geofences from the geofence
collection ExampleCollection.

Managing geofence resources 433

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location/latest/APIReference/API_BatchDeleteGeofence.html
https://docs.aws.amazon.com/location/latest/APIReference/API_BatchDeleteGeofence.html
https://docs.aws.amazon.com/cli/latest/reference/location/batch-delete-geofence.html

Amazon Location Service Developer Guide

aws location batch-delete-geofence \
 --collection-name "ExampleCollection" \
 --geofence-ids "ExampleGeofence11"

Managing your tracker resources

You can manage your trackers using the Amazon Location console, the AWS CLI, or the Amazon
Location APIs.

List your trackers

You can view your trackers list using the Amazon Location console, the AWS CLI, or the Amazon
Location APIs:

Console

To view a list of existing trackers using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Trackers from the left navigation.

3. View a list of your tracker resources under My trackers.

API

Use the ListTrackers operation from the Amazon Location Trackers APIs.

The following example is an API request to get a list of trackers in your AWS account.

POST /tracking/v0/list-trackers

The following is an example response for ListTrackers:

{
 "Entries": [
 {
 "CreateTime": 2020-10-02T19:09:07.327Z,
 "Description": "string",
 "TrackerName": "ExampleTracker",
 "UpdateTime": 2020-10-02T19:10:07.327Z

Managing tracker resources 434

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_ListTrackers.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_ListTrackers.html

Amazon Location Service Developer Guide

 }
],
 "NextToken": "1234-5678-9012"
}

CLI

Use the list-trackers command.

The following example is an AWS CLI to get a list of trackers in your AWS account.

aws location list-trackers

Disconnecting a tracker from a geofence collection

You can disconnect a tracker from a geofence collection using the Amazon Location console, the
AWS CLI, or the Amazon Location APIs:

Console

To disassociate a tracker from an associated geofence collection using the Amazon Location
console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Trackers from the left navigation pane.

3. Under My trackers, select the name link of the target tracker.

4. Under Linked Geofence Collections, select a geofence collection with a Linked status.

5. Choose Unlink.

API

Use the DisassociateTrackerConsumer operation from the Amazon Location Trackers APIs.

The following example is an API request to disassociate a tracker from an associated geofence
collection.

DELETE /tracking/v0/trackers/ExampleTracker/consumers/arn:aws:geo:us-
west-2:123456789012:geofence-collection/ExampleCollection

Managing tracker resources 435

https://docs.aws.amazon.com/cli/latest/reference/location/list-trackers.html
https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DisassociateTrackerConsumer.html

Amazon Location Service Developer Guide

The following is an example response for DisassociateTrackerConsumer:

HTTP/1.1 200

CLI

Use the disassociate-tracker-consumer command.

The following example is an AWS CLI command to disassociate a tracker from an associated
geofence collection.

aws location disassociate-tracker-consumer \
 --consumer-arn "arn:aws:geo:us-west-2:123456789012:geofence-collection/
ExampleCollection" \
 --tracker-name "ExampleTracker"

Get tracker details

You can get details about any tracker in your AWS account by using the Amazon Location console,
the AWS CLI, or the Amazon Location APIs.

Console

To view tracker details by using the Amazon Location console

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Trackers from the left navigation.

3. Under My trackers, select the name link of the target tracker.

4. View the tracker details under Information.

API

Use the DescribeTracker operation from the Amazon Location Tracker APIs.

The following example is an API request to get the tracker details for ExampleTracker.

GET /tracking/v0/trackers/ExampleTracker

Managing tracker resources 436

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DisassociateTrackerConsumer.html
https://docs.aws.amazon.com/cli/latest/reference/location/disassociate-tracker-consumer.html
https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DescribeTracker.html

Amazon Location Service Developer Guide

The following is an example response for DescribeTracker:

{
 "CreateTime": 2020-10-02T19:09:07.327Z,
 "Description": "string",
 "EventBridgeEnabled": false,
 "KmsKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "PositionFiltering": "TimeBased",
 "Tags": {
 "Tag1" : "Value1"
 },
 "TrackerArn": "arn:aws:geo:us-west-2:123456789012:tracker/ExampleTracker",
 "TrackerName": "ExampleTracker",
 "UpdateTime": 2020-10-02T19:10:07.327Z
}

CLI

Use the describe-tracker command.

The following example is an AWS CLI command to get tracker details for ExampleTracker.

aws location describe-tracker \
 --tracker-name "ExampleTracker"

Delete a tracker

You can delete a tracker from your AWS account using the Amazon Location console, the AWS CLI,
or the Amazon Location APIs:

Console

To delete an existing map resource using the Amazon Location console

Warning

This operation deletes the resource permanently. If the tracker resource is in use, you
may encounter an error. Make sure that the target resource isn't a dependency for your
applications.

Managing tracker resources 437

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DescribeTracker.html
https://docs.aws.amazon.com/cli/latest/reference/location/describe-tracker.html

Amazon Location Service Developer Guide

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. Choose Trackers from the left navigation pane.

3. Under My trackers, select the target tracker.

4. Choose Delete tracker.

API

Use the DeleteTracker operation from the Amazon Location Tracker APIs.

The following example is an API request to delete the tracker ExampleTracker.

DELETE /tracking/v0/trackers/ExampleTracker

The following is an example response for DeleteTracker:

HTTP/1.1 200

CLI

Use the delete-tracker command.

The following example is an AWS CLI command to delete the tracker ExampleTracker.

aws location delete-tracker \
 --tracker-name "ExampleTracker"

Sample Geofencing and Tracking mobile application

This topic covers tutorials designed to demonstrate the key features of using the Amazon Location
geofences and trackers in a mobile application. The applications demonstrate how a tracker and
geofence interact using a combination of Lambda, AWS IoT and Amazon Location features. There
are two tutorials available.

• Sample tracking and geofencing application for Android, and you can clone the project files
from GitHub: https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/
tracking-with-geofence-notifications.

Sample Geofencing and Tracking mobile application 438

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DeleteTracker.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DeleteTracker.html
https://docs.aws.amazon.com/cli/latest/reference/location/delete-tracker.html
https://docs.aws.amazon.com/location/latest/developerguide/qs-android-tracking.html
https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/tracking-with-geofence-notifications
https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/tracking-with-geofence-notifications

Amazon Location Service Developer Guide

• Sample tracking and geofencing application for iOS, and you can clone the project files from
GitHub: https://github.com/aws-geospatial/amazon-location-samples-ios/tree/main/tracking-
with-geofence-notifications.

Sample tracking and geofence application for Android

This topic covers the Android tutorial designed to demonstrate the key features of using the
Amazon Location geofences and trackers in a mobile application. The applications demonstrate
how a tracker and geonfence interact using a combination of Lambda, AWS IoT and Amazon
Location features.

Topics

• Create Amazon Location resources for your app

• Create a Geofence Collection

• Link a tracker to a geofence collection

• Using AWS Lambda with MQTT

• Set up the sample app code

• Using the sample app

Create Amazon Location resources for your app

To begin you will need to create the required Amazon Location resources. These resources will be
essential for the functionality of the application and executing the provided code snippets.

Note

If you haven't created an AWS account, follow the instructions in the AWS account
managment user guide.

To begin you will need to create a Amazon Cognito Identity Pool Id, use the following procedure:

1. Open the Amazon Cognito console and select Identity pools from the left side menu, then
select Create Identity pool.

2. Make sure Guest Access is checked, and press Next to contiue.

3. Next create a new IAM role or Use an existing IAM role.

Sample Geofencing and Tracking mobile application 439

https://docs.aws.amazon.com/location/latest/developerguide/qs-ios-tracking.html
https://github.com/aws-geospatial/amazon-location-samples-ios/tree/main/tracking-with-geofence-notifications
https://github.com/aws-geospatial/amazon-location-samples-ios/tree/main/tracking-with-geofence-notifications
https://docs.aws.amazon.com/accounts/latest/reference/welcome-first-time-user.html
https://docs.aws.amazon.com/accounts/latest/reference/welcome-first-time-user.html
https://us-east-1.console.aws.amazon.com/cognito/v2/

Amazon Location Service Developer Guide

4. Enter an Identity pool name, and make sure Identity Pool has access to Amazon Location
(geo)resources for the map and tracker you will be creating nin the next procedure.

Next you need to create and style a map in the AWS Amazon Location console, use the following
procedure:

1. Navigate to the Maps section of the Amazon Location console and select Create Map.

2. Give the new map a Name and Description. Record the name you assign, as it is used later in
the tutorial.

3. When choosing a map style, consider the map data provider. Refer to section 82 of the AWS
service terms for more details.

4. Accept the Amazon Location Terms and Conditions, then select Create Map, to finish the map
creation process.

Next you need to create a tracker in the Amazon Location console, use the following procedure:

1. Open the Maps section in the Amazon Location console.

2. Choose Create tracker.

3. Fill in the required fields. Make note of the tracker's Name as it will be refrenced throughout
this tutoiral.

4. Under the Position filtering field, choose the option that best fits how you intend to use your
tracker resource. If you do not set Position filtering, the default setting is TimeBased. For
more information, see Trackers, and PositionFiltering in the Amazon Location API Reference.

5. Choose Create tracker to finish creating the tracker.

Create a Geofence Collection

Now will you create a geofence collection. You can use either the console, API or CLI. The following
procedures walk you through each option.

• Create a geofence collection using the Amazon Location console:

1. Open the Geofence Collections section of the Amazon Location console.

2. Choose Create geofence collection.

3. Provide a name and description for the collection.

Sample Geofencing and Tracking mobile application 440

https://console.aws.amazon.com/location/maps/home
http://aws.amazon.com/service-terms
http://aws.amazon.com/service-terms
https://aws.amazon.com/service-terms/#:~:text=82.%20Amazon%20Location%20Service
https://console.aws.amazon.com/location/trackers
https://us-east-1.console.aws.amazon.com/location/geofencing/home?region=us-east-1#/

Amazon Location Service Developer Guide

4. Under the EventBridge rule with Amazon CloudWatch as a target, you can create an optional
EventBridge rule to get started reacting to geofence events. This enables Amazon Location
to publish events to Amazon CloudWatch Logs.

5. Press the Create geofence collection to finish creating the collection.

• Create a geofence collection using the Amazon Location API:

Use the CreateGeofenceCollection operation from the Amazon Location Geofences
APIs. The following example uses an API request to create a geofence collection called
GEOCOLLECTION_NAME.

POST /geofencing/v0/collections
Content-type: application/json

{
 "CollectionName": "GEOCOLLECTION_NAME",
 "Description": "Geofence collection 1 for shopping center",
 "Tags": {
 "Tag1" : "Value1"
 }
}

• Create a geofence collection using AWS CLI commands:

Use the create-geofence-collection command. The following example uses an AWS CLI to
create a geofence collection called GEOCOLLECTION_NAME. For more information on using the
AWS CLI, see the AWS Command Line Interface Documentation.

aws location \
 create-geofence-collection \
 --collection-name "ExampleGeofenceCollection" \
 --description "Shopping center geofence collection" \
 --tags Tag1=Value1

Link a tracker to a geofence collection

To link a tracker to a geofence collection you can use either the console, API, or CLI. The following
procedures walk you through each option.

Link a tracker resource to a geofence collection using the Amazon Location Service console:

Sample Geofencing and Tracking mobile application 441

https://docs.aws.amazon.com/location/latest/APIReference/API_CreateGeofenceCollection.html
https://docs.aws.amazon.com/cli/

Amazon Location Service Developer Guide

1. Open the Amazon Location console.

2. In the left navigation pane, choose Trackers.

3. Under Device Trackers, select the name link of the target tracker.

4. Under Linked Geofence Collections, choose Link Geofence Collection.

5. In the Linked Geofence Collection window, select a geofence collection from the dropdown
menu.

6. Choose Link.

7. After you link the tracker resource, it will be assigned an Active status.

Link a tracker resource to a geofence collection using the Amazon Location APIs:

Use the AsssociateTrackerConsumer operation from the Amazon Location Trackers APIs.
The following example uses an API request that associates an ExampleTracker with a geofence
collection using its Amazon Resource Name (ARN).

 POST /tracking/v0/trackers/ExampleTracker/consumers
 Content-type: application/json
 {
 "ConsumerArn": "arn:aws:geo:us-west-2:123456789012:geofence-
collection/GOECOLLECTION_NAME"
 }

Link a tracker resource to a geofence collection using AWS CLI commands:

Use the associate-tracker-consumer command. The following example uses an AWS CLI to
create a geofence collection called GOECOLLECTION_NAME.

aws location \
associate-tracker-consumer \
 --consumer-arn "arn:aws:geo:us-west-2:123456789012:geofence-
collection/GOECOLLECTION_NAME" \
 --tracker-name "ExampleTracker"

Sample Geofencing and Tracking mobile application 442

Amazon Location Service Developer Guide

Using AWS Lambda with MQTT

In order to create a connection between AWS IoT and Amazon Location, you need a Lambda
function to process messages forwarded by EventBridge CloudWatch events. This function will
extract any positional data, format it for Amazon Location, and submit it through the Amazon
Location Tracker API.

The following procedure shows you how to create this function through the Lambda console:

1. Open the console.

2. From the left navigation, choose Functions.

3. Then choose Create Function, and make sure that the Author from scratch option is selected.

4. provide a Function name, and for the Runtime option, choose Node.js 16.x.

5. Choose Create function.

6. Open the Code tab to access the editor.

7. Overwrite the placeholder code in the index.js file with the following:

 const AWS = require('aws-sdk')
 const iot = new AWS.Iot();
 exports.handler = function(event) {
 console.log("event===>>>", JSON.stringify(event));
 var param = {
 endpointType: "iot:Data-ATS"
 };
 iot.describeEndpoint(param, function(err, data) {
 if (err) {
 console.log("error===>>>", err, err.stack); // an error occurred
 } else {
 var endp = data['endpointAddress'];
 const iotdata = new AWS.IotData({endpoint: endp});
 const trackerEvent = event["detail"]["EventType"];
 const src = event["source"];
 const time = event["time"];
 const gfId = event["detail"]["GeofenceId"];
 const resources = event["resources"][0];
 const splitResources = resources.split(".");
 const geofenceCollection = splitResources[splitResources.length -
 1];
 const coordinates = event["detail"]["Position"];

Sample Geofencing and Tracking mobile application 443

https://console.aws.amazon.com/lambda/

Amazon Location Service Developer Guide

 const deviceId = event["detail"]["DeviceId"];
 console.log("deviceId===>>>", deviceId);
 const msg = {
 "trackerEventType" : trackerEvent,
 "source" : src,
 "eventTime" : time,
 "geofenceId" : gfId,
 "coordinates": coordinates,
 "geofenceCollection": geofenceCollection
 };
 const params = {
 topic: `${deviceId}/tracker`,
 payload: JSON.stringify(msg),
 qos: 0
 };
 iotdata.publish(params, function(err, data) {
 if (err) {
 console.log("error===>>>", err, err.stack); // an error
 occurred
 } else {
 console.log("Ladmbda triggered===>>>", trackerEvent); //
 successful response
 }
 });
 }
 });
 }

8. Press the Deploy to save the updated function.

9. Next open the Configuration tab.

10. In the Triggers section, press the Add Trigger button.

11. Select EventBridge (CloudWatch Events) in Source field.

12. Select the Existing Rules option.

13. Enter the rule name, for example AmazonLocationMonitor-GEOFENCECOLLECTION_NAME.

14. Press the Add button.

15. This will also attach Resource-based policy statements in the permissions tab

Now you will set up the MQTT Test Client using AWS IoT, use the following procedure:

1. Open the https://console.aws.amazon.com/iot/.

Sample Geofencing and Tracking mobile application 444

https://console.aws.amazon.com/iot/

Amazon Location Service Developer Guide

2. In the left navigation pane, select the MQTT test client.

3. You'll see a section titled MQTT test client where you can configure your MQTT connection.

4. After configuring the necessary settings, click on the Connect button to establish a connection
to the MQTT broker using the provided parameters.

5. Record endpoint, as it is used later in the tutoiral.

Once connected to the test client, you can subscribe to MQTT topics or publish messages to
topics using the respective input fields provided in the MQTT test client interface. Next you will
create an AWS IoT policy.

6. On the left side menu, under Manage expand Security option and click on Policies.

7. Click on Create Policy button.

8. Enter a policy name.

9. On Policy Document select JSON tab.

10. Copy paste the policy shown below, but make sure to update all elements with your REGION
and ACCOUNT_ID:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:REGION:ACCOUNT_ID:client/${cognito-
identity.amazonaws.com:sub}",
 "arn:aws:iot:REGION:ACCOUNT_ID:topic/${cognito-
identity.amazonaws.com:sub}",
 "arn:aws:iot:REGION:ACCOUNT_ID:topicfilter/${cognito-
identity.amazonaws.com:sub}/*",
 "arn:aws:iot:REGION:ACCOUNT_ID:topic/${cognito-identity.amazonaws.com:sub}/
tracker"
],
 "Effect": "Allow"
 }
]

Sample Geofencing and Tracking mobile application 445

Amazon Location Service Developer Guide

}

11. Select the Create button to finish.

After completing the previous procedure, you will now update the permissions for the guest role as
follows:

1. Navigate to Amazon Cognito and open your identity pool. Then, proceed to user access and
select the guest role.

2. Click on permission policies to enable editing.

{
 'Version': '2012-10-17',
 'Statement': [
 {
 'Action': [
 'geo:GetMap*',
 'geo:BatchUpdateDevicePosition',
 'geo:BatchEvaluateGeofences',
 'iot:Subscribe',
 'iot:Publish',
 'iot:Connect',
 'iot:Receive',
 'iot:AttachPrincipalPolicy',
 'iot:AttachPolicy',
 'iot:DetachPrincipalPolicy',
 'iot:DetachPolicy'
],
 'Resource': [
 'arn:aws:geo:us-east-1:{USER_ID}:map/{MAP_NAME}',
 'arn:aws:geo:us-east-1:{USER_ID}:tracker/{TRACKER_NAME}',
 'arn:aws:geo:us-east-1:{USER_ID}:geofence-collection/
{GEOFENCE_COLLECTION_NAME}',
 'arn:aws:iot:us-east-1:{USER_ID}:client/${cognito-
identity.amazonaws.com:sub}',
 'arn:aws:iot:us-east-1:{USER_ID}:topic/${cognito-
identity.amazonaws.com:sub}',
 'arn:aws:iot:us-east-1:{USER_ID}:topicfilter/${cognito-
identity.amazonaws.com:sub}/*',
 'arn:aws:iot:us-east-1:{USER_ID}:topic/${cognito-
identity.amazonaws.com:sub}/tracker'
],

Sample Geofencing and Tracking mobile application 446

Amazon Location Service Developer Guide

 'Effect': 'Allow'
 },
 {
 'Condition': {
 'StringEquals': {
 'cognito-identity.amazonaws.com:sub': '${cognito-
identity.amazonaws.com:sub}'
 }
 },
 'Action': [
 'iot:AttachPolicy',
 'iot:DetachPolicy',
 'iot:AttachPrincipalPolicy',
 'iot:DetachPrincipalPolicy'
],
 'Resource': [
 '*'
],
 'Effect': 'Allow'
 }
]
}

3. With the above policy changes, all necessary AWS resources are now configured appropriately
for the application.

Set up the sample app code

1. Clone this repository: https://github.com/aws-geospatial/amazon-location-samples-android/
tree/main/tracking-with-geofence-notifications to your local machine.

2. Open the AmazonSampleSDKApp project in Android Studio.

3. Build and run the app on your Android device or emulator.

Using the sample app

To use the sample follow these procedures:

• Create a custom.properties:

To configure your custom.properties file, follow these steps:

Sample Geofencing and Tracking mobile application 447

https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/tracking-with-geofence-notifications
https://github.com/aws-geospatial/amazon-location-samples-android/tree/main/tracking-with-geofence-notifications

Amazon Location Service Developer Guide

1. Open your preferred text editor or IDE.

2. Create a new file.

3. Save the file with the name custom.properties.

4. Update the custom.properties with the following code sample, and replace the
MQTT_END_POINT, POLICY_NAME, GEOFENCE_COLLECTION_NAME, and TOPIC_TRACKER
with your resoucre names:

MQTT_END_POINT=YOUR_END_POINT.us-east-1.amazonaws.com
POLICY_NAME=YOUR_POLICY
GEOFENCE_COLLECTION_NAME=YOUR_GEOFENCE
TOPIC_TRACKER=YOUR_TRACKER

5. Clean and Rebuild the project. After this, you can run the project.

• Sign In:

To sign in to the application, follow the below steps:

1. Press the Sign In button.

2. Provide an Identity Pool Id, Tracker name, and a Map name.

3. Press Sign In again to finish.

• Manage Filters:

Open the configuration screen, and perform the following:

1. Toggle filters on or off using the switch UI.

2. Update Time and Distance filters when needed.

• Tracking Operations:

Open the tracking screen and perform the following:

• You can start and stop tracking in foreground, background, or in battery-saver mode by
pressing the respective buttons.

Sample tracking and geofencing application for iOS

This topic covers the iOS tutorial designed to demonstrate the key features of using the Amazon
Location geofences and trackers in a mobile application. The applications demonstrate how a

Sample Geofencing and Tracking mobile application 448

Amazon Location Service Developer Guide

tracker and geonfence interact using a combination of Lambda, AWS IoT and Amazon Location
features.

Topics

• Create Amazon Location resources for your app

• Create a Geofence Collection

• Link a tracker to a geofence collection

• Using AWS Lambda with MQTT

• Setting up sample app code

• Using the sample app

Create Amazon Location resources for your app

To begin you will need to create the required Amazon Location resources. These resources will be
essential for the functionality of the application and executing the provided code snippets.

Note

If you haven't created an AWS account, follow the instructions in the AWS account
managment user guide.

To begin you will need to create a Amazon Cognito Identity Pool Id, use the following procedure:

1. Open the Amazon Cognito console and select Identity pools from the left side menu, then
select Create Identity pool.

2. Make sure Guest Access is checked, and press Next to contiue.

3. Next create a new IAM role or Use an existing IAM role.

4. Enter an Identity pool name, and make sure Identity Pool has access to Amazon Location
(geo)resources for the map and tracker you will be creating nin the next procedure.

Next you need to create and style a map in the AWS Amazon Location console, use the following
procedure:

1. Navigate to the Maps section of the Amazon Location console and select Create Map.

Sample Geofencing and Tracking mobile application 449

https://docs.aws.amazon.com/accounts/latest/reference/welcome-first-time-user.html
https://docs.aws.amazon.com/accounts/latest/reference/welcome-first-time-user.html
https://us-east-1.console.aws.amazon.com/cognito/v2/
https://console.aws.amazon.com/location/maps/home

Amazon Location Service Developer Guide

2. Give the new map a Name and Description. Record the name you assign, as it is used later in
the tutorial.

3. When choosing a map style, consider the map data provider. Refer to section 82 of the AWS
service terms for more details.

4. Accept the Amazon Location Terms and Conditions, then select Create Map, to finish the map
creation process.

Next you need to create a tracker in the Amazon Location console, use the following procedure:

1. Open the Maps section in the Amazon Location console.

2. Choose Create tracker.

3. Fill in the required fields. Make note of the tracker's Name as it will be refrenced throughout
this tutoiral.

4. Under the Position filtering field, choose the option that best fits how you intend to use
your tracker resource. If you do not set Position filtering, the default setting is TimeBased.
For more information, see Start tracking, and PositionFiltering in the Amazon Location API
Reference.

5. Choose Create tracker to finish creating the tracker.

Create a Geofence Collection

Now will you create a geofence collection. You can use either the console, API or CLI. The following
procedures walk you through each option.

• Create a geofence collection using the Amazon Location console:

1. Open the Geofence Collections section of the Amazon Location console.

2. Choose Create geofence collection.

3. Provide a name and description for the collection.

4. Under the EventBridge rule with Amazon CloudWatch as a target, you can create an optional
EventBridge rule to get started reacting to geofence events. This enables Amazon Location
to publish events to Amazon CloudWatch Logs.

5. Press the Create geofence collection to finish creating the collection.

• Create a geofence collection using the Amazon Location API:

Sample Geofencing and Tracking mobile application 450

http://aws.amazon.com/service-terms
http://aws.amazon.com/service-terms
https://aws.amazon.com/service-terms/#:~:text=82.%20Amazon%20Location%20Service
https://console.aws.amazon.com/location/trackers
https://docs.aws.amazon.com/location/latest/developerguide/start-tracking.html
https://docs.aws.amazon.com/location/latest/APIReference/API_BatchUpdateDevicePosition.html
https://us-east-1.console.aws.amazon.com/location/geofencing/home?region=us-east-1#/

Amazon Location Service Developer Guide

Use the CreateGeofenceCollection operation from the Amazon Location Geofences
APIs. The following example uses an API request to create a geofence collection called
GEOCOLLECTION_NAME.

POST /geofencing/v0/collections
Content-type: application/json

{
 "CollectionName": "GEOCOLLECTION_NAME",
 "Description": "Geofence collection 1 for shopping center",
 "Tags": {
 "Tag1" : "Value1"
 }
}

• Create a geofence collection using AWS CLI commands:

Use the create-geofence-collection command. The following example uses an AWS CLI to
create a geofence collection called GEOCOLLECTION_NAME. For more information on using the
AWS CLI, see the AWS Command Line Interface Documentation.

aws location \
 create-geofence-collection \
 --collection-name "ExampleGeofenceCollection" \
 --description "Shopping center geofence collection" \
 --tags Tag1=Value1

Link a tracker to a geofence collection

To link a tracker to a geofence collection you can use either the console, API, or CLI. The following
procedures walk you through each option.

Link a tracker resource to a geofence collection using the Amazon Location Service console:

1. Open the Amazon Location console.

2. In the left navigation pane, choose Trackers.

3. Under Device Trackers, select the name link of the target tracker.

4. Under Linked Geofence Collections, choose Link Geofence Collection.

Sample Geofencing and Tracking mobile application 451

https://docs.aws.amazon.com/location/latest/APIReference/API_CreateGeofenceCollection.html
https://docs.aws.amazon.com/cli/

Amazon Location Service Developer Guide

5. In the Linked Geofence Collection window, select a geofence collection from the dropdown
menu.

6. Choose Link.

7. After you link the tracker resource, it will be assigned an Active status.

Link a tracker resource to a geofence collection using the Amazon Location APIs:

Use the AsssociateTrackerConsumer operation from the Amazon Location Trackers APIs. The
following example uses an API request that associates ExampleTracker with a geofence collection
using its Amazon Resource Name (ARN).

POST /tracking/v0/trackers/ExampleTracker/consumers
Content-type: application/json
 {
 "ConsumerArn": "arn:aws:geo:us-west-2:123456789012:geofence-
collection/GEOCOLLECTION_NAME"
 }

Llink a tracker resource to a geofence collection using AWS CLI commands:

Use the associate-tracker-consumer command. The following example uses an AWS CLI to
create a geofence collection called GEOCOLLECTION_NAME.

aws location \
 associate-tracker-consumer \
 --consumer-arn "arn:aws:geo:us-west-2:123456789012:geofence-
collection/GEOCOLLECTION_NAME" \
 --tracker-name "ExampleTracker"

Using AWS Lambda with MQTT

In order to create a connection between AWS IoT and Amazon Location, you need a Lambda
function to process messages forwarded by EventBridge CloudWatch events. This function will
extract any positional data, format it for Amazon Location, and submit it through the Amazon
Location Tracker API.

The following procedure shows you how to create this function through the Lambda console:

1. Open the console.

2. From the left navigation, choose Functions.

Sample Geofencing and Tracking mobile application 452

https://console.aws.amazon.com/lambda/

Amazon Location Service Developer Guide

3. Then choose Create Function, and make sure that the Author from scratch option is selected.

4. provide a Function name, and for the Runtime option, choose Node.js 16.x.

5. Choose Create function.

6. Open the Code tab to access the editor.

7. Overwrite the placeholder code in the index.js file with the following:

 const AWS = require('aws-sdk')
 const iot = new AWS.Iot();
 exports.handler = function(event) {
 console.log("event===>>>", JSON.stringify(event));
 var param = {
 endpointType: "iot:Data-ATS"
 };
 iot.describeEndpoint(param, function(err, data) {
 if (err) {
 console.log("error===>>>", err, err.stack); // an error occurred
 } else {
 var endp = data['endpointAddress'];
 const iotdata = new AWS.IotData({endpoint: endp});
 const trackerEvent = event["detail"]["EventType"];
 const src = event["source"];
 const time = event["time"];
 const gfId = event["detail"]["GeofenceId"];
 const resources = event["resources"][0];
 const splitResources = resources.split(".");
 const geofenceCollection = splitResources[splitResources.length -
 1];
 const coordinates = event["detail"]["Position"];

 const deviceId = event["detail"]["DeviceId"];
 console.log("deviceId===>>>", deviceId);
 const msg = {
 "trackerEventType" : trackerEvent,
 "source" : src,
 "eventTime" : time,
 "geofenceId" : gfId,
 "coordinates": coordinates,
 "geofenceCollection": geofenceCollection
 };
 const params = {
 topic: `${deviceId}/tracker`,

Sample Geofencing and Tracking mobile application 453

Amazon Location Service Developer Guide

 payload: JSON.stringify(msg),
 qos: 0
 };
 iotdata.publish(params, function(err, data) {
 if (err) {
 console.log("error===>>>", err, err.stack); // an error
 occurred
 } else {
 console.log("Ladmbda triggered===>>>", trackerEvent); //
 successful response
 }
 });
 }
 });
 }

8. Press the Deploy to save the updated function.

9. Next open the Configuration tab.

10. In the Triggers section, press the Add Trigger button.

11. Select EventBridge (CloudWatch Events) in Source field.

12. Select the Existing Rules option.

13. Enter the rule name, for example AmazonLocationMonitor-GEOFENCECOLLECTION_NAME.

14. Press the Add button.

15. This will also attach Resource-based policy statements in the permissions tab

Now you will set up the AWS IoT MQTT Test Client, use the following procedure:

1. Open the https://console.aws.amazon.com/iot/.

2. In the left navigation pane, select the MQTT test client.

3. You'll see a section titled MQTT test client where you can configure your MQTT connection.

4. After configuring the necessary settings, click on the Connect button to establish a connection
to the MQTT broker using the provided parameters.

5. Record endpoint, as it is used later in the tutoiral.

Once connected to the test client, you can subscribe to MQTT topics or publish messages to
topics using the respective input fields provided in the MQTT test client interface. Next you will
create an AWS IoT policy.

Sample Geofencing and Tracking mobile application 454

https://console.aws.amazon.com/iot/

Amazon Location Service Developer Guide

6. On the left side menu, under Manage expand Security option and click on Policies.

7. Click on Create Policy button.

8. Enter a policy name.

9. On Policy Document select JSON tab.

10. Copy paste the policy shown below, but make sure to update all elements with your REGION
and ACCOUNT_ID:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:REGION:ACCOUNT_ID:client/${cognito-
identity.amazonaws.com:sub}",
 "arn:aws:iot:REGION:ACCOUNT_ID:topic/${cognito-
identity.amazonaws.com:sub}",
 "arn:aws:iot:REGION:ACCOUNT_ID:topicfilter/${cognito-
identity.amazonaws.com:sub}/*",
 "arn:aws:iot:REGION:ACCOUNT_ID:topic/${cognito-identity.amazonaws.com:sub}/
tracker"
],
 "Effect": "Allow"
 }
]
}

11. Select the Create button to finish.

Setting up sample app code

In order to setup the sample code you must have the following tools installed:

• Git

• XCode 15.3 or Later

Sample Geofencing and Tracking mobile application 455

Amazon Location Service Developer Guide

• iOS Simulator 16 or later

Use this procedure to set up the sample app code:

1. Clone the git repository from this URL: https://github.com/aws-geospatial/amazon-location-
samples-ios/tree/main/tracking-with-geofence-notifications.

2. Open the AWSLocationSampleApp.xcodeproj project file.

3. Wait for the package resolution process to finish.

4. On the project navigation menu rename ConfigTemplate.xcconfig to Config.xcconfig
and fill in the following values:

IDENTITY_POOL_ID = `YOUR_IDENTITY_POOL_ID`
MAP_NAME = `YOUR_MAP_NAME`
TRACKER_NAME = `YOUR_TRACKER_NAME`
WEBSOCKET_URL = `YOUR_MQTT_TEST_CLIENT_ENDPOINT`
GEOFENCE_ARN = `YOUR_GEOFENCE_COLLECTION_NAME`

Using the sample app

After setting up the sample code you can now run the app on an iOS simulator or a physical device.

1. Build and run the app.

2. The app will ask you for location and notification permissions. You need to allow them.

3. Press the Cognito Configuration button.

4. Save the configuration.

5. You can now see the Filter options for time, distance and accuracy. Use them as per your need.

6. Go to Tracking tab in the app and you will see the map and Start Tracking button.

7. If you have installed the app on a simulator you may want to simulate location changes. This
can be done in Features under the Location menu option. For example select Features, then
Location, then Freeway Drive.

8. Press the Start Tracking button. You should see the tracking points on the map.

9. The app is also tracking the locations in the background. So, when you move the app in the
background it will ask for your permission to continue tracking in background mode.

10. You can stop the tracking by tapping on Stop Tracking button.

Sample Geofencing and Tracking mobile application 456

https://github.com/aws-geospatial/amazon-location-samples-ios/tree/main/tracking-with-geofence-notifications
https://github.com/aws-geospatial/amazon-location-samples-ios/tree/main/tracking-with-geofence-notifications

Amazon Location Service Developer Guide

Tagging your Amazon Location Service resources

Use resource tagging in Amazon Location to create tags to categorize your resources by purpose,
owner, environment, or criteria. Tagging your resources helps you manage, identify, organize,
search, and filter your resources.

For example, with AWS Resource Groups, you can create groups of AWS resources based on one
or more tags or portions of tags. You can also create groups based on their occurrence in an AWS
CloudFormation stack. Using Resource Groups and Tag Editor, you can consolidate and view data
for applications that consist of multiple services, resources, and Regions in one place. For more
information on Common Tagging Strategies, see the AWS General Reference.

Each tag is a label consisting of a key and value that you define:

• Tag key – A general label that categorizes the tag values. For example, CostCenter.

• Tag value – An optional description for the tag key category. For example,
MobileAssetTrackingResourcesProd.

This topic helps you get started with tagging by reviewing tagging restrictions. It also shows you
how to create tags and use tags to track your AWS cost for each active tag by using cost allocation
reports.

Topics

• Tagging restrictions

• Grant permission to tag resources

• Add a tag to an Amazon Location Service resource

• Track resource cost by tag

• Control access to Amazon Location Service resources using tags

• Learn more

Tagging restrictions

The following basic restrictions apply to tags:

• Maximum tags per resource – 50

• For each resource, each tag key must be unique, and each tag key can have only one value.

Tagging your resources 457

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html#tag-strategies

Amazon Location Service Developer Guide

Note

If you add a new tag with the same tag key as an existing tag, the new tag overwrites the
existing tag.

• Maximum key length – 128 Unicode characters in UTF-8

• Maximum value length – 256 Unicode characters in UTF-8

• The allowed characters across services are: letters, numbers, and spaces representable in UTF-8,
and the following characters: + - = . _ : / @.

• Tag keys and values are case-sensitive.

• The aws: prefix is reserved for AWS use. If a tag has a tag key with this prefix, then you can't
edit or delete the tag's key or value. Tags with the aws: prefix don't count against your tags per
resource limit.

Grant permission to tag resources

You can use IAM policies to control access to your Amazon Location resources and grant permission
to tag a resource on creation. In addition to granting permission to create resources, the policy can
include Action permissions to allow tagging operations:

• geo:TagResource – Allows a user to assign one or more tags to a specified Amazon Location
resource.

• geo:UntagResource – Allows a user to remove one or more tags from a specified Amazon
Location resource.

• geo:ListTagsForResource – Allows a user to list all the tags assigned to an Amazon Location
resource.

The following is a policy example to allow a user to create a geofence collection and tag resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowTaggingForGeofenceCollectionOnCreation",

Grant permission to tag 458

Amazon Location Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "geo:CreateGeofenceCollection",
 "geo:TagResource"
],
 "Resource": "arn:aws:geo:region:accountID:geofence-collection/*"
]
}

Add a tag to an Amazon Location Service resource

You can add tags when creating your resources using the Amazon Location console, the AWS CLI, or
the Amazon Location APIs:

• Create a map resource

• Create a place index resource

• Create a route calculator resource

• Create a geofence collection

• Create a tracker resource

To tag existing resources, edit or delete tags

1. Open the Amazon Location console at https://console.aws.amazon.com/location/.

2. In the left navigation pane, choose the resource you want to tag. For example, Maps.

3. Choose a resource from the list.

4. Choose Manage tags to add, edit, or delete your tags.

Track resource cost by tag

You can use tags for cost allocation to track your AWS cost in detail. After you activate the cost
allocation tags, AWS uses the cost allocation tags to organize your resource billing on your cost
allocation report. This helps you categorize and track your usage costs.

There are two types of cost allocation tags you can activate:

• AWS-generated – These tags are generated by AWS. AWS tags use the aws: prefix, for example,
aws:createdBy.

Add a tag to a resource 459

https://console.aws.amazon.com/location/home
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/aws-tags.html

Amazon Location Service Developer Guide

• User-defined – These are custom tags that you create. The user-defined tags use the user:
prefix, for example, user:CostCenter.

You must activate each tag type individually. After your tags are activated, you can enable AWS
Cost Explorer or view your monthly cost allocation report.

AWS-generated tags

To activate AWS-generated tags

1. Open the Billing and Cost Management console at https://console.aws.amazon.com/
billing/.

2. In the left navigation pane, choose Cost Allocation Tags.

3. Under the AWS-Generated Cost Allocation Tags tab, select the tag keys that you want to
activate.

4. Choose Activate.

User-defined tags

To activate user-defined tags

1. Open the Billing and Cost Management console at https://console.aws.amazon.com/
billing/.

2. In the left navigation pane, choose Cost Allocation Tags.

3. Under the User-Defined Cost Allocation Tags tab, select the tag keys you want to activate.

4. Choose Activate.

After you activate your tags, AWS generates a monthly Cost Allocation Report for your resource
usage and cost. This cost allocation report includes all of your AWS costs for each billing period,
including tagged and untagged resources. For more information, see Using Cost Allocation Tags in
the AWS Billing and Cost Management User Guide.

Control access to Amazon Location Service resources using tags

AWS Identity and Access Management (IAM) policies support tag-based conditions, which enables
you to manage authorization for your resources based on specific tags key and values. For

Control access to resources using tags 460

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ce-enable.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ce-enable.html
https://console.aws.amazon.com/billing/home#/.
https://console.aws.amazon.com/billing/home#/.
https://console.aws.amazon.com/billing/home#/.
https://console.aws.amazon.com/billing/home#/.
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Location Service Developer Guide

example, an IAM role policy can include conditions to limit access to specific environments, such as
development, test, or production, based on tags.

For more information, see the topic on control resource access based on tags.

Learn more

For more information about:

• Tagging best practices, see Tagging AWS resources in the AWS General Reference.

• Using tags to control access to AWS resources, see Controlling access to AWS resources using
tags in the AWS Identity and Access Management User Guide.

Granting access to Amazon Location Service

To use Amazon Location Service, a user must be granted access to the resources and APIs that
make up Amazon Location. There are three strategies you can use to grant access to your resources.

• Use IAM – To grant access to users authenticated with AWS IAM Identity Center or AWS Identity
and Access Management (IAM), create an IAM policy that allows access to the resources that
you want. For more information about IAM and Amazon Location, see Identity and Access
Management for Amazon Location Service.

• Use API keys – To grant access to unauthenticated users, you can create API Keys that give read-
only access to your Amazon Location Service resources. This is useful in a case where you do not
want to authenticate every user. For example, a web application. For more information about API
keys, see Allowing unauthenticated guest access to your application using API keys.

• Use Amazon Cognito – An alternative to API keys is to use Amazon Cognito to grant anonymous
access. Amazon Cognito allows you to create a richer authorization with policy to define what
can be done by the unauthenticated users. For more information about using Amazon Cognito,
see Allowing unauthenticated guest access to your application using Amazon Cognito.

Note

You can also use Amazon Cognito to use your own authentication process or to combine
multiple authentication methods, using Amazon Cognito Federated Identities. For
more information, see Getting Started with Federated Identities in the Amazon Cognito
Developer Guide.

Learn more 461

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html#tag-best-practices
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-identity-pools.html

Amazon Location Service Developer Guide

Topics

• Allowing unauthenticated guest access to your application using API keys

• Allowing unauthenticated guest access to your application using Amazon Cognito

Allowing unauthenticated guest access to your application using API
keys

When you call Amazon Location Service APIs in your applications, you typically make this call as an
authenticated user who is authorized to make the API calls. However, there are some cases where
you do not want to authenticate every user of your application. For example, you might want a
web application that shows your business location to be available to anyone using the website,
whether they are logged in or not. In this case, one alternative is to use API keys to make the API
calls.

API keys are a key value that is associated with specific Amazon Location Service resources in your
AWS account, and specific actions that you can perform on those resources. You can use an API key
in your application to make unauthenticated calls to the Amazon Location APIs for those resources.
For example, if you associate an API key with the map resource myMap, and the GetMap* actions,
then an application that uses that API key will be able to view maps created with that resource, and
your account will be charged as any other usage from your account. That same API key would not
give permissions to change or update the map resource—only using the resource is allowed.

Note

API keys are available to use only with map, place, and route resources, and you cannot
modify or create those resources. If your application needs access to other resources or
actions for unauthenticated users, you can use Amazon Cognito to provide access along
with, or instead of, API keys. For more information, see Allowing unauthenticated guest
access to your application using Amazon Cognito.

API keys include a plaintext value that gives access to one or more resources in your AWS account.
If someone copies your API key, they can access those same resources. To avoid this, you can specify
the domains where the API key can be used when you create the key. These domains are called
referers. If needed, you can also create short term API Keys by setting expiration times for your API
Keys.

Using API keys 462

Amazon Location Service Developer Guide

Topics

• API keys compared to Amazon Cognito

• Creating API keys

• Using an API key to call an Amazon Location API

• Using an API key to render a map

• Managing API key lifetimes

API keys compared to Amazon Cognito

API keys and Amazon Cognito are used in similar ways for similar scenarios, so why would you use
one over the other? The following list highlights some of the differences between the two.

• API keys are available only for map, place, and route resources, and only for certain actions.
Amazon Cognito can be used to authenticate access to most Amazon Location Service APIs.

• The performance of map requests with API keys is typically faster than similar scenarios with
Amazon Cognito. Simpler authentication means fewer round trips to the service and cached
requests when getting the same map tile again in a short time period.

• With Amazon Cognito, you can use your own authentication process or combine multiple
authentication methods, using Amazon Cognito Federated Identities. For more information, see
Getting Started with Federated Identities in the Amazon Cognito Developer Guide.

Creating API keys

You can create an API key, and associate it with one or more resources in your AWS account.

You can create an API key using the Amazon Location Service console, the AWS CLI, or the Amazon
Location APIs.

Console

To create an API key using the Amazon Location Service console

1. In the Amazon Location console, choose API keys from the left menu.

2. On the API keys page, choose Create API key.

3. On the Create API key page, fill in the following information:

Using API keys 463

https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-identity-pools.html
https://console.aws.amazon.com/location

Amazon Location Service Developer Guide

• Name – A name for your API key, such as MyWebAppKey.

• Description – An optional description for your API key.

• Resources – Choose the Amazon Location resources to give access to with this API key
from the dropdown. You can add more than one resource by choosing Add resource.

• Actions – Specify the actions you want to authorize with this API key. You must select
at least one action to match each resource type you have selected. For example, if you
selected a place resource, you must select at least one of the choices under Places
Actions.

• Expiration time – Optionally, add an expiration date and time for your API key. For more
information, see Managing API key lifetimes.

• Referers – Optionally, add one or more domains where you can use the API key. For
example, if the API key is to allow an application running on the website example.com,
then you could put *.example.com/ as an allowed referer.

• Tags – Optionally, add tags to the API key.

4. Choose Create API key to create the API key.

5. On the detail page for the API key, you can see information about the API key that you
have created. Choose Show API key to see the key value that you use when calling Amazon
Location APIs. The key value will have the format v1.public.a1b2c3d4.... For more
information about using the API key to render maps, see Using an API key to render a map.

API

To create an API key using the Amazon Location APIs

Use the CreateKey operation from the Amazon Location APIs.

The following example is an API request to create an API key called ExampleKey with no
expiration date, and access to a single map resource.

POST /metadata/v0/keys HTTP/1.1
Content-type: application/json

{
 "KeyName": "ExampleKey"
 "Restrictions": {
 "AllowActions": [

Using API keys 464

https://docs.aws.amazon.com/location/latest/APIReference/API_CreateKey.html

Amazon Location Service Developer Guide

 "geo:GetMap*"
],
 "AllowResources": [
 "arn:aws:geo:region:map/mapname"
]
 },
 "NoExpiry": true
 }
}

The response includes the API key value to use when accessing resources in your applications.
The key value will have the format v1.public.a1b2c3d4.... To learn more about using the
API key to render maps, see Using an API key to render a map.

You can also use the DescribeKey API to find the key value for a key at a later time.

AWS CLI

To create an API key using AWS CLI commands

Use the create-key command.

The following example creates an API key called ExampleKey with no expiration date, and
access to a single map resource.

aws location \
 create-key \
 --key-name ExampleKey \
 --restrictions '{"AllowActions":["geo:GetMap*"],"AllowResources":
["arn:aws:geo:region:map/mapname"]}' \
 --no-expiry

The response includes the API key value to use when accessing resources in your applications.
The key value will have the format v1.public.a1b2c3d4.... To learn more about using the
API key to render maps, see Using an API key to render a map. The response to create-key
looks like the following.

{
 "Key": "v1.public.a1b2c3d4...",
 "KeyArn": "arn:aws:geo:region:accountId:api-key/ExampleKey",
 "KeyName": "ExampleKey",

Using API keys 465

https://docs.aws.amazon.com/location/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/cli/latest/reference/location/create-key.html

Amazon Location Service Developer Guide

 "CreateTime": "2023-02-06T22:33:15.693Z"
}

You can also use describe-key to find the key value at a later time. The following example
shows how to call describe-key on an API key named ExampleKey.

aws location describe-key \
 --key-name ExampleKey

Using an API key to call an Amazon Location API

After you create an API key, you can use the key value to make calls to Amazon Location APIs in
your application.

The APIs that support API keys have an additional parameter that takes the API key value. For
example, if you call the GetPlace API, you can fill in the key parameter, as follows

GET /places/v0/indexes/IndexName/places/PlaceId?key=KeyValue

If you fill in this value, you do not need to authenticate the API call with AWS Sig v4 as you
normally would.

For JavaScript developers, you can use the Amazon Location JavaScript Authentication helper to
help with authenticating API operations with API keys.

For mobile developers, you can use the following Amazon Location mobile authentication SDKs:

• Amazon Location Service Mobile Authentication SDK for iOS

• Amazon Location Service Mobile Authentication SDK for Android

For AWS CLI users, when you use the --key parameter, you should also use the --no-sign-
request parameter, to avoid signing with Sig v4.

Note

If you include both a key and and an AWS Sig v4 signature in a call to Amazon Location
Service, only the API key is used.

Using API keys 466

https://docs.aws.amazon.com/location/latest/APIReference/API_GetPlace.html#API_GetPlace_RequestSyntax
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios/
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android/

Amazon Location Service Developer Guide

Using an API key to render a map

You can use the API key value to render a map in your application using MapLibre. This is a little
bit different than using the API keys in other Amazon Location APIs that you are calling directly,
because MapLibre makes those calls for you.

The following sample code shows using the API key to render a map in a simple webpage by using
the MapLibre GL JS map control. For this code to work properly, replace the v1.public.your-
api-key-value, us-east-1, and ExampleMap strings with values that match your AWS account.

<!-- index.html -->
<html>
 <head>
 <link href="https://unpkg.com/maplibre-gl@1.14.0/dist/maplibre-gl.css"
 rel="stylesheet" />
 <style>
 body { margin: 0; }
 #map { height: 100vh; }
 </style>
 </head>
 <body>
 <!-- Map container -->
 <div id="map" />
 <!-- JavaScript dependencies -->
 <script src="https://unpkg.com/maplibre-gl@1.14.0/dist/maplibre-gl.js"></script>
 <script>
 const apiKey = "v1.public.your-api-key-value"; // API key
 const region = "us-east-1"; // Region
 const mapName = "ExampleMap"; // Map name
 // URL for style descriptor
 const styleUrl = `https://maps.geo.${region}.amazonaws.com/maps/v0/maps/
${mapName}/style-descriptor?key=${apiKey}`;
 // Initialize the map
 const map = new maplibregl.Map({
 container: "map",
 style: styleUrl,
 center: [-123.1187, 49.2819],
 zoom: 11,
 });
 map.addControl(new maplibregl.NavigationControl(), "top-left");
 </script>
 </body>

Using API keys 467

Amazon Location Service Developer Guide

</html>

Managing API key lifetimes

You can create API keys that work indefinitely. However, if you want to create a temporary API key,
rotate API keys on a regular basis, or revoke an existing API key, you can use API key expiration.

When creating a new API key, or updating an existing one, you can set the expiration time for that
API key.

• When an API key reaches its expiration time, the key is automatically deactivated. Inactive keys
can no longer be used to make maps requests.

• You can delete an API key 90 days after deactivating it.

• If you have an inactive key that you haven't yet deleted, you can restore it by updating the
expiration time to a future time.

• To create a permanent key, you can remove the expiration time.

• If you attempt to deactivate an API key that has been used within the last 7 days, you'll be
prompted to confirm that you want to make the change. If you are using the Amazon Location
Service API, or the AWS CLI, you will receive an error, unless you set ForceUpdate parameter to
true.

Allowing unauthenticated guest access to your application using
Amazon Cognito

You can use Amazon Cognito authentication as an alternative to directly using AWS Identity and
Access Management (IAM) with both frontend SDKs and direct HTTPS requests.

You may want to use this form of authentication for the following reasons:

• Unauthenticated users – If you have a website with anonymous users, you can use Amazon
Cognito identity pools. For more information, see the section on the section called “Using
Amazon Cognito”.

• Your own authentication – If you would like to use your own authentication process, or combine
multiple authentication methods, you can use Amazon Cognito Federated Identities. For more
information, see Getting Started with Federated Identities in the Amazon Cognito Developer
Guide.

Using Amazon Cognito 468

https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-identity-pools.html

Amazon Location Service Developer Guide

Amazon Cognito provides authentication, authorization, and user management for web and mobile
apps. You can use Amazon Cognito unauthenticated identity pools with Amazon Location as a way
for applications to retrieve temporary, scoped-down AWS credentials.

For more information, see Getting Started with User Pools in the Amazon Cognito Developer Guide.

Note

For mobile developers, Amazon Location provides mobile authentication SDKs for both iOS
and Android, see the following github repositories for more information:

• Amazon Location Service Mobile Authentication SDK for iOS

• Amazon Location Service Mobile Authentication SDK for Android

Create an Amazon Cognito identity pool

You can create Amazon Cognito identity pools to allow unauthenticated guest access to your
application through the Amazon Cognito console, the AWS CLI, or the Amazon Cognito APIs.

Important

The pool that you create must be in the same AWS account and AWS Region as the Amazon
Location Service resources that you're using.

You can use IAM policies associated with unauthenticated identity roles with the following actions:

• geo:GetMap*

• geo:SearchPlaceIndex*

• geo:GetPlace

• geo:CalculateRoute*

• geo:GetGeofence

• geo:ListGeofences

• geo:PutGeofence

• geo:BatchDeleteGeofence

• geo:BatchPutGeofence

Using Amazon Cognito 469

https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-cognito-user-pools.html
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-ios/
https://github.com/aws-geospatial/amazon-location-mobile-auth-sdk-android/

Amazon Location Service Developer Guide

• geo:BatchEvaluateGeofences

• geo:GetDevicePosition*

• geo:ListDevicePositions

• geo:BatchDeleteDevicePositionHistory

• geo:BatchGetDevicePosition

• geo:BatchUpdateDevicePosition

Including other Amazon Location actions will have no effect, and unauthenticated identities will be
unable to call them.

Example

To create an identity pool using the Amazon Cognito console

1. Go to the Amazon Cognito console.

2. Choose Manage Identity Pools.

3. Choose Create new identity pool, then enter a name for your identity pool.

4. From the Unauthenticated identities collapsible section, choose Enable access to
unauthenticated identities.

5. Choose Create Pool.

6. Choose which IAM roles you want to use with your identity pool.

7. Expand View Details.

8. Under Unauthenticated identities, enter a role name.

9. Expand the View Policy Document section, then choose Edit to add your policy.

10. Add your policy to grant access to your resources.

The following are policy examples for Maps, Places, Trackers, and Routes. To use the examples
for your own policy, replace the region and accountID placeholders:

Maps policy example

The following policy grants read-only access to a map resource named ExampleMap.

{
 "Version": "2012-10-17",
 "Statement": [

Using Amazon Cognito 470

https://console.aws.amazon.com/cognito/home

Amazon Location Service Developer Guide

 {
 "Sid": "MapsReadOnly",
 "Effect": "Allow",
 "Action": [
 "geo:GetMapStyleDescriptor",
 "geo:GetMapGlyphs",
 "geo:GetMapSprites",
 "geo:GetMapTile"
],
 "Resource": "arn:aws:geo:region:accountID:map/ExampleMap"
 }
]
}

Adding an IAM condition that matches aws:referer lets you limit browser access to your
resources to a list of URLs or URL prefixes. The following example allows access to a map
resource named RasterEsriImagery from only the website example.com:

Warning

While aws:referer can limit access, it is not a secuirty mechanism. It is dangerous
to include a publicly known referer header value. Unauthorized parties can use
modified or custom browsers to provide any aws:referer value that they choose.
As a result, aws:referer should not be used to prevent unauthorized parties from
making direct AWS requests. It is offered only to allow customers to protect their
digital content, such as content stored in Amazon S3, from being referenced on
unauthorized third-party sites. For more infromation, see AWS:referer.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "geo:GetMap*",
 "Resource": "arn:aws:geo:us-west-2:111122223333:map/
RasterEsriImagery",
 "Condition": {
 "StringLike": {
 "aws:referer": [

Using Amazon Cognito 471

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-referer

Amazon Location Service Developer Guide

 "https://example.com/*",
 "https://www.example.com/*"
]
 }
 }
 }
]
}

If you're using Tangram to display a map, it doesn't use the style descriptors, glyphs, or
sprites returned by the Maps API. Instead, it's configured by pointing to a .zip file that
contains style rules and necessary assets. The following policy grants read-only access to a
map resource named ExampleMap for the GetMapTile operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MapsReadOnly",
 "Effect": "Allow",
 "Action": [
 "geo:GetMapTile"
],
 "Resource": "arn:aws:geo:region:accountID:map/ExampleMap"
 }
]
}

Places policy example

The following policy grants read-only access to a place index resource named
ExamplePlaceIndex to search for places by text or positions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PlacesReadOnly",
 "Effect": "Allow",
 "Action": [
 "geo:SearchPlaceIndex*",
 "geo:GetPlace"

Using Amazon Cognito 472

https://docs.aws.amazon.com/location/latest/developerguide/tutorial-tangram.html

Amazon Location Service Developer Guide

],
 "Resource": "arn:aws:geo:region:accountID:place-index/ExamplePlaceIndex"
 }
]
}

Adding an IAM condition that matches aws:referer lets you limit browser access to
your resources to a list of URLs or URL prefixes. The following example denies access to
a place index resource named ExamplePlaceIndex from all referring websites, except
example.com.

Warning

While aws:referer can limit access, it is not a secuirty mechanism. It is dangerous
to include a publicly known referer header value. Unauthorized parties can use
modified or custom browsers to provide any aws:referer value that they choose.
As a result, aws:referer should not be used to prevent unauthorized parties from
making direct AWS requests. It is offered only to allow customers to protect their
digital content, such as content stored in Amazon S3, from being referenced on
unauthorized third-party sites. For more infromation, see AWS:referer.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "geo:*",
 "Resource": "arn:aws:geo:us-west-2:111122223333:place-
index/ExamplePlaceIndex",
 "Condition": {
 "StringLike": {
 "aws:referer": [
 "https://example.com/*",
 "https://www.example.com/*"
]
 }
 }
 }
]

Using Amazon Cognito 473

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-referer

Amazon Location Service Developer Guide

}

Trackers policy example

The following policy grants access to a tracker resource named ExampleTracker to
update device positions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UpdateDevicePosition",
 "Effect": "Allow",
 "Action": [
 "geo:BatchUpdateDevicePosition"
],
 "Resource": "arn:aws:geo:region:accountID:tracker/ExampleTracker"
 }
]
}

Adding an IAM condition that matches aws:referer lets you limit browser access to your
resources to a list of URLs or URL prefixes. The following example denies access to a tracker
resource named ExampleTracker from all referring websites, except example.com.

Warning

While aws:referer can limit access, it is not a secuirty mechanism. It is dangerous
to include a publicly known referer header value. Unauthorized parties can use
modified or custom browsers to provide any aws:referer value that they choose.
As a result, aws:referer should not be used to prevent unauthorized parties from
making direct AWS requests. It is offered only to allow customers to protect their
digital content, such as content stored in Amazon S3, from being referenced on
unauthorized third-party sites. For more infromation, see AWS:referer.

{
 "Version": "2012-10-17",
 "Statement": [

Using Amazon Cognito 474

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-referer

Amazon Location Service Developer Guide

 {
 "Effect": "Allow",
 "Action": "geo:GetDevice*",
 "Resource": "arn:aws:geo:us-
west-2:111122223333:tracker/ExampleTracker",
 "Condition": {
 "StringLike": {
 "aws:referer": [
 "https://example.com/*",
 "https://www.example.com/*"
]
 }
 }
 }
]
}

Routes policy example

The following policy grants access to a route calculator resource named
ExampleCalculator to calculate a route.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RoutesReadOnly",
 "Effect": "Allow",
 "Action": [
 "geo:CalculateRoute"
],
 "Resource": "arn:aws:geo:region:accountID:route-
calculator/ExampleCalculator"
 }
]
}

Adding an IAM condition that matches aws:referer lets you limit browser access to your
resources to a list of URLs or URL prefixes. The following example denies access to a route
calculator named ExampleCalculator from all referring websites, except example.com.

Using Amazon Cognito 475

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Location Service Developer Guide

Warning

While aws:referer can limit access, it is not a secuirty mechanism. It is dangerous
to include a publicly known referer header value. Unauthorized parties can use
modified or custom browsers to provide any aws:referer value that they choose.
As a result, aws:referer should not be used to prevent unauthorized parties from
making direct AWS requests. It is offered only to allow customers to protect their
digital content, such as content stored in Amazon S3, from being referenced on
unauthorized third-party sites. For more infromation, see AWS:referer.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "geo:*",
 "Resource": "arn:aws:geo:us-west-2:111122223333:route-
calculator/ExampleCalculator",
 "Condition": {
 "StringLike": {
 "aws:referer": [
 "https://example.com/*",
 "https://www.example.com/*"
]
 }
 }
 }
]
}

Note

While unauthenticated identity pools are intended for exposure on unsecured internet
sites, note that they will be exchanged for standard, time-limited AWS credentials.
It's important to scope the IAM roles associated with unauthenticated identity pools
appropriately.

Using Amazon Cognito 476

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-referer

Amazon Location Service Developer Guide

11. Choose Allow to create your identity pools.

The resulting identity pool follows the syntax <region>:<GUID>.

For example:

us-east-1:1sample4-5678-90ef-aaaa-1234abcd56ef

For more policy examples specific to Amazon Location, see the section called “Identity-based policy
examples”.

Using the Amazon Cognito identity pools in JavaScript

The following example exchanges the unauthenticated identity pool that you've created for
credentials that are then used to fetch the style descriptor for your map resource ExampleMap.

const AWS = require("aws-sdk");

const credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: "<identity pool ID>" // for example, us-east-1:1sample4-5678-90ef-
aaaa-1234abcd56ef
});

const client = new AWS.Location({
 credentials,
 region: AWS.config.region || "<region>"
});

console.log(await client.getMapStyleDescriptor("ExampleMap").promise());

Note

Retrieved credentials from unauthenticated identities are valid for one hour.

The following is an example of a function that automatically renews credentials before they expire.

async function refreshCredentials() {
 await credentials.refreshPromise();
 // schedule the next credential refresh when they're about to expire
 setTimeout(refreshCredentials, credentials.expireTime - new Date());

Using Amazon Cognito 477

Amazon Location Service Developer Guide

}

To simplify this work, you can use the Amazon Location JavaScript Authentication helper. This is
in place of both getting the credentials, and refreshing them. This example uses the AWS SDK for
JavaScript v3.

import { LocationClient, GetMapStyleDescriptorCommand } from "@aws-sdk/client-
location";
import { withIdentityPoolId } from "@aws/amazon-location-utilities-auth-helper";

const identityPoolId = "<identity pool ID>"; // for example, us-
east-1:1sample4-5678-90ef-aaaa-1234abcd56ef

// Create an authentication helper instance using credentials from Cognito
const authHelper = await withIdentityPoolId(identityPoolId);

const client = new LocationClient({
 region: "<region>", // The region containing both the identity pool and tracker
 resource
 ...authHelper.getLocationClientConfig(), // Provides configuration required to make
 requests to Amazon Location
});

const input = {
 MapName: "ExampleMap",
};

const command = new GetMapStyleDescriptorCommand(input);

console.log(await client.send(command));

Next steps

• To modify your roles, go to the IAM console.

• To manage your identity pools, go to the Amazon Cognito console.

Monitoring Amazon Location Service

When using Amazon Location Service, you can monitor your usage and resources over time by
using:

Monitoring Amazon Location Service 478

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cognito/home

Amazon Location Service Developer Guide

• Amazon CloudWatch. Monitors your Amazon Location Service resources, and provides metrics
with statistics in near-real time.

• AWS CloudTrail. Provides event tracking of all calls to Amazon Location Service APIs.

This section provides information about using these services.

Topics

• Monitoring Amazon Location Service with Amazon CloudWatch

• Logging and monitoring with AWS CloudTrail

Monitoring Amazon Location Service with Amazon CloudWatch

Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS in
near-real time. You can monitor Amazon Location resources using CloudWatch, which collects raw
data and processes metrics into meaningful statistics in near-real time. You can view historical
information for up to 15 months, or search metrics to view in the Amazon CloudWatch console
for more perspective about your Amazon Location resources. You can also set alarms by defining
thresholds, and send notifications or take actions when those thresholds are met.

For more information, see the Amazon CloudWatch User Guide

Topics

• Amazon Location Service metrics exported to Amazon CloudWatch

• View Amazon Location Service metrics

• Create CloudWatch alarms for Amazon Location Service metrics

• Using CloudWatch to monitor usage against quotas

• CloudWatch metric examples for Amazon Location Service

Amazon Location Service metrics exported to Amazon CloudWatch

Metrics are time-ordered data points that are exported to CloudWatch. A dimension is a name/
value pair that identifies the metric. For more information, see Using CloudWatch metrics and
CloudWatch dimensions in the Amazon CloudWatch User Guide.

The following are metrics that Amazon Location Service exports to CloudWatch in the AWS/
Location namespace.

Monitoring with CloudWatch 479

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension

Amazon Location Service Developer Guide

Metric Description

CallCount The number of calls made to a given API endpoint.

Valid Dimensions: Amazon Location Service API names

Valid Statistic: Sum

Units: Count

ErrorCount The number of error responses from calls made to a given API
endpoint.

Valid Dimensions: Amazon Location Service API names

Valid Statistic: Sum

Units: Count

SuccessCount The number of successful calls made to a given API endpoint.

Valid Dimensions: Amazon Location Service API names

Valid Statistic: Sum

Units: Count

CallLatency The amount of time the operation takes to process and return a
response when a call is made to a given API endpoint.

Valid Dimensions: Amazon Location Service API names

Valid Statistic: Average

Units: Milliseconds

View Amazon Location Service metrics

You can view metrics for Amazon Location Service on the Amazon CloudWatch console or by using
the Amazon CloudWatch API.

Monitoring with CloudWatch 480

Amazon Location Service Developer Guide

To view metrics using the CloudWatch console

Example

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. On the All metrics tab, choose the Amazon Location namespace.

4. Select the type of metric to view.

5. Select the metric and add it to the chart.

For more information, see View Available Metrics in the Amazon CloudWatch User Guide.

Create CloudWatch alarms for Amazon Location Service metrics

You can use CloudWatch to set alarms on your Amazon Location Service metrics. For example, you
can create an alarm in CloudWatch to send an email whenever an error count spike occurs.

The following topics give you a high-level overview of how to set alarms using CloudWatch. For
detailed instructions, see Using Alarms in the Amazon CloudWatch User Guide.

To set alarms using the CloudWatch console

Example

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarm.

3. Choose Create Alarm.

4. Choose Select metric.

5. On the All metrics tab, select the Amazon Location namespace.

6. Select a metric category.

7. Find the row with the metric you want to create an alarm for, then select the check box next to
this row.

8. Choose Select metric.

9. Under Metric, fill in the values .

10.Specify the alarm Conditions .

11.Choose Next.

Monitoring with CloudWatch 481

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://console.aws.amazon.com/cloudwatch/

Amazon Location Service Developer Guide

12.If you want to send a notification when the alarm conditions are met:

• Under Alarm state trigger, select the alarm state to prompt a notification to be sent.

• Under Select an SNS topic, choose Create new topic to create a new Amazon Simple
Notification Service (Amazon SNS) topic. Enter the topic name and the email to send the
notification to.

• Under Send a notification to enter additional email addresses to send the notification to.

• Choose Add notification. This list is saved and appears in the field for future alarms.

13.When done, choose Next.

14.Enter a name and description for the alarm, then choose Next.

15.Confirm the alarm details, then choose Next.

Note

When creating a new Amazon SNS topic, you must verify the email address before a
notification can be sent. If the email is not verified, the notification will not be received
when an alarm is initiated by a state change.

For more information about how to set alarms using the CloudWatch console, see Create an Alarm
that Sends Email in the Amazon CloudWatch User Guide.

Using CloudWatch to monitor usage against quotas

You can create Amazon CloudWatch alarms to notify you when your utilization of a given quota
exceeds a configurable threshold. This enables you to recognize when you are close to your quota
limits, and either adapt your utilization to avoid cost overruns, or request a quota increase, if
needed. For information about how to use CloudWatch to monitor quotas, see Visualizing your
service quotas and setting alarms in the Amazon CloudWatch User Guide.

CloudWatch metric examples for Amazon Location Service

You can use the GetMetricData API to retrieve metrics for Amazon Location.

• For example, you can monitor CallCount and set an alarm for when a drop in number occurs.

Monitoring the CallCount metrics for SendDeviceLocation can help give you perspective on
tracked assets. If the CallCount drops, it means that tracked assets, such as a fleet of trucks,

Monitoring with CloudWatch 482

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricData.html

Amazon Location Service Developer Guide

have stopped sending their current locations. Setting an alarm for this can help notify you an
issue has occurred.

• For another example, you can monitor ErrorCount and set an alarm for when a spike in number
occurs.

Trackers must be associated with geofence collections in order for device locations to be
evaluated against geofences. If you have a device fleet that requires continuous location updates,
seeing the CallCount for BatchEvaluateGeofence or BatchPutDevicePosition drop to
zero indicates that updates are no longer flowing.

The following is an example output for GetMetricData with the metrics for CallCount and
ErrorCount for creating map resources.

{
 "StartTime": 1518867432,
 "EndTime": 1518868032,
 "MetricDataQueries": [
 {
 "Id": "m1",
 "MetricStat": {
 "Metric": {
 "Namespace": "AWS/Location",
 "MetricName": "CallCount",
 "Dimensions": [
 {
 "Name": "SendDeviceLocation",
 "Value": "100"
 }
]
 },
 "Period": 300,
 "Stat": "SampleCount",
 "Unit": "Count"
 }
 },
 {
 "Id": "m2",
 "MetricStat": {
 "Metric": {
 "Namespace": "AWS/Location",
 "MetricName": "ErrorCount",

Monitoring with CloudWatch 483

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricData.html

Amazon Location Service Developer Guide

 "Dimensions": [
 {
 "Name": "AssociateTrackerConsumer",
 "Value": "0"
 }
]
 },
 "Period": 1,
 "Stat": "SampleCount",
 "Unit": "Count"
 }
 }
]
}

Logging and monitoring with AWS CloudTrail

AWS CloudTrail is a service that provides a record of actions taken by a user, role, or an AWS
service. CloudTrail records all API calls as events. You can use Amazon Location Service with
CloudTrail to monitor your API calls, which include calls from the Amazon Location Service console
and AWS SDK calls to the Amazon Location Service API operations.

When you create a trail, you can enable continuous delivery of CloudTrail events to an S3 bucket,
including events for Amazon Location Service. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to Amazon Location Service, the
IP address from which the request was made, who made the request, when it was made, and
additional details.

For more information about CloudTrail, see the AWS CloudTrail User Guide.

Topics

• Amazon Location Service Information in CloudTrail

• Understanding Amazon Location Service Log File Entries

Amazon Location Service Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs
in Amazon Location Service, that activity is recorded in a CloudTrail event along with other AWS

Using CloudTrail with Amazon Location 484

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Location Service Developer Guide

service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Location
Service, create a trail. A trail enables CloudTrail to deliver log files to an S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs.

For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Amazon Location Service actions are logged by CloudTrail and are documented in the Amazon
Location Service API references. For example, calls to the CreateTracker, UpdateTracker and
DescribeTracker actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine whether the request was made:

• With root or AWS Identity and Access Management (IAM) user credentials.

• With temporary security credentials for a role or federated user.

• By another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Amazon Location Service Log File Entries

A trail is a configuration that enables delivery of events as log files to an S3 bucket that you
specify, or to Amazon CloudWatch Logs. For more information, see Working with CloudTrail log
files in the AWS CloudTrail User Guide.

Using CloudTrail with Amazon Location 485

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/location/latest/APIReference/index.html
https://docs.aws.amazon.com/location/latest/APIReference/index.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon Location Service Developer Guide

CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested operation, the date and time of the
operation, request parameters, and so on.

Note

CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear
in any specific order. To determine the order of operations, use eventTime.

The following example shows a CloudTrail log entry that demonstrates the CreateTracker
operation, which creates a tracker resource.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "123456789012",
 "arn": "arn:aws:geo:us-east-1:123456789012:tracker/ExampleTracker"
 "accountId": "123456789012",
 "accessKeyId": "123456789012",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "123456789012",
 "arn": "arn:aws:geo:us-east-1:123456789012:tracker/ExampleTracker",
 "accountId": "123456789012",
 "userName": "exampleUser",
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-10-22T16:36:07Z"
 }
 }
 },
 "eventTime": "2020-10-22T17:43:30Z",
 "eventSource": "geo.amazonaws.com",
 "eventName": "CreateTracker",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0/24—TEST-NET-1",

Using CloudTrail with Amazon Location 486

https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_Event.html

Amazon Location Service Developer Guide

 "userAgent": "aws-internal/3 aws-sdk-java/1.11.864
 Linux/4.14.193-110.317.amzn2.x86_64 OpenJDK_64-Bit_Server_VM/11.0.8+10-LTS java/11.0.8
 kotlin/1.3.72 vendor/Amazon.com_Inc. exec-env/AWS_Lambda_java11",
 "requestParameters": {
 "TrackerName": "ExampleTracker",
 "Description": "Resource description"
 },
 "responseElements": {
 "TrackerName": "ExampleTracker",
 "Description": "Resource description"
 "TrackerArn": "arn:partition:service:region:account-id:resource-id",
 "CreateTime": "2020-10-22T17:43:30.521Z"
 },
 "requestID": "557ec619-0674-429d-8e2c-eba0d3f34413",
 "eventID": "3192bc9c-3d3d-4976-bbef-ac590fa34f2c",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012",
}

The following shows a log entry for the DescribeTracker operation, which returns the details of
a tracker resource.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "123456789012",
 "arn": "arn:partition:service:region:account-id:resource-id",
 "accountId": "123456789012",
 "accessKeyId": "123456789012",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "123456789012",
 "arn": "arn:partition:service:region:account-id:resource-id",
 "accountId": "123456789012",
 "userName": "exampleUser",
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-10-22T16:36:07Z"

Using CloudTrail with Amazon Location 487

Amazon Location Service Developer Guide

 }
 }
 },
 "eventTime": "2020-10-22T17:43:33Z",
 "eventSource": "geo.amazonaws.com",
 "eventName": "DescribeTracker",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0/24—TEST-NET-1",
 "userAgent": "aws-internal/3 aws-sdk-java/1.11.864
 Linux/4.14.193-110.317.amzn2.x86_64 OpenJDK_64-Bit_Server_VM/11.0.8+10-LTS java/11.0.8
 kotlin/1.3.72 vendor/Amazon.com_Inc. exec-env/AWS_Lambda_java11",
 "requestParameters": {
 "TrackerName": "ExampleTracker"
 },
 "responseElements": null,
 "requestID": "997d5f93-cfef-429a-bbed-daab417ceab4",
 "eventID": "d9e0eebe-173c-477d-b0c9-d1d8292da103",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012",
}

Creating Amazon Location Service resources with AWS
CloudFormation

Amazon Location Service is integrated with AWS CloudFormation, a service that helps you to
model and set up your AWS resources so that you can spend less time creating and managing your
resources and infrastructure. You create a template that describes all the AWS resources that you
want (such as Amazon Location resources), and AWS CloudFormation provisions and configures
those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your Amazon Location
resources consistently and repeatedly. Describe your resources once, and then provision the same
resources over and over in multiple AWS accounts and Regions.

Amazon Location and AWS CloudFormation templates

To provision and configure resources for Amazon Location and related services, you must
understand AWS CloudFormation templates. Templates are formatted text files in JSON or YAML.
These templates describe the resources that you want to provision in your AWS CloudFormation

Using AWS CloudFormation to create resources 488

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

Amazon Location Service Developer Guide

stacks. If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

Amazon Location supports creating the following resource types in AWS CloudFormation:

• AWS::Location::Map

• AWS::Location::PlaceIndex

• AWS::Location::RouteCalculator

• AWS::Location::Tracker

• AWS::Location::TrackerConsumer

• AWS::Location::GeofenceCollection

For more information, including examples of JSON and YAML templates for Amazon Location
resources, see the Amazon Location Service resource type reference in the AWS CloudFormation
User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Learn more about AWS CloudFormation 489

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-location-map.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-location-placeindex.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-location-routecalculator.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-location-tracker.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-location-trackerconsumer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-location-geofencecollection.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Location.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Location Service Developer Guide

Security in Amazon Location Service

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Location
Service, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Location. The following topics show you how to configure Amazon Location to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your Amazon Location resources.

Topics

• Data protection in Amazon Location Service

• Identity and Access Management for Amazon Location Service

• Incident Response in Amazon Location Service

• Compliance validation for Amazon Location Service

• Resilience in Amazon Location Service

• Infrastructure security in Amazon Location Service

• Configuration and vulnerability analysis in Amazon Location

• Cross-service confused deputy prevention

• Security best practices for Amazon Location Service

• Best practices for Amazon Location Service

490

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Location Service Developer Guide

Data protection in Amazon Location Service

The AWS shared responsibility model applies to data protection in Amazon Location Service. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon Location or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Data protection 491

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Location Service Developer Guide

Data privacy

With Amazon Location Service, you retain control of your organization’s data. Amazon Location
anonymizes all queries sent to data providers by removing customer metadata and account
information.

Amazon Location doesn't use data providers for tracking and geofencing. This means your sensitive
data remains in your AWS account. This helps shield sensitive location information, such as facility,
asset, and personnel location, from third parties, protect user privacy, and reduce your application's
security risk.

For additional information, see the AWS Data Privacy FAQ.

Data retention in Amazon Location

The following characteristics relate to how Amazon Location collects and stores data for the
service:

• Amazon Location Service Trackers – When you use the Trackers APIs to track the location of
entities, their coordinates can be stored. Device locations are stored for 30 days before being
deleted by the service.

• Amazon Location Service Geofences – When you use the Geofences APIs to define areas of
interest, the service stores the geometries you provided. They must be explicitly deleted.

Note

Deleting your AWS account delete all resources within it. For additional information, see
the AWS Data Privacy FAQ.

Data encryption at rest for Amazon Location Service

Amazon Location Service provides encryption by default to protect sensitive customer data at rest
using AWS owned encryption keys.

• AWS owned keys — Amazon Location uses these keys by default to automatically encrypt
personally identifiable data. You can't view, manage, or use AWS owned keys, or audit their use.
However, you don't have to take any action or change any programs to protect the keys that

Data privacy 492

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/

Amazon Location Service Developer Guide

encrypt your data. For more information, see AWS owned keys in the AWS Key Management
Service Developer Guide.

Encryption of data at rest by default helps reduce the operational overhead and complexity
involved in protecting sensitive data. At the same time, it enables you to build secure applications
that meet strict encryption compliance and regulatory requirements.

While you can't disable this layer of encryption or select an alternate encryption type, you can add
a second layer of encryption over the existing AWS owned encryption keys by choosing a customer
managed key when you create your tracker and geofence collection resources:

• Customer managed keys — Amazon Location supports the use of a symmetric customer
managed key that you create, own, and manage to add a second layer of encryption over the
existing AWS owned encryption. Because you have full control of this layer of encryption, you
can perform such tasks as:

• Establishing and maintaining key policies

• Establishing and maintaining IAM policies and grants

• Enabling and disabling key policies

• Rotating key cryptographic material

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

For more information, see customer managed key in the AWS Key Management Service Developer
Guide.

The following table summarizes how Amazon Location encrypts personally identifiable data.

Data type AWS owned key encryption Customer managed key
encryption (Optional)

Position

A point geometry containing
the device position details.

Enabled Enabled

Data at rest encryption 493

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DevicePosition.html

Amazon Location Service Developer Guide

Data type AWS owned key encryption Customer managed key
encryption (Optional)

PositionProperties

A set of key-value pairs
associated with the position
update.

Enabled Enabled

GeofenceGeometry

A polygon geofence geometry
representing the geofenced
 area.

Enabled Enabled

DeviceId

The device identifier specified
when uploading a device
position update to a tracker
resource.

Enabled Not supported

GeofenceId

An identifier specified when
storing a geofence geometry,
or a batch of geofences in a
given geofence collection.

Enabled Not supported

Note

Amazon Location automatically enables encryption at rest using AWS owned keys to
protect personally identifiable data at no charge.
However, AWS KMS charges apply for using a customer managed key. For more information
about pricing, see the AWS Key Management Service pricing.

For more information on AWS KMS, see What is AWS Key Management Service?

Data at rest encryption 494

https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DevicePosition.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DevicePosition.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_GeofenceGeometry.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DevicePositionUpdate.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_DevicePositionUpdate.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_PutGeofence.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_BatchPutGeofence.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Location Service Developer Guide

How Amazon Location Service uses grants in AWS KMS

Amazon Location requires a grant to use your customer managed key.

When you create a tracker resource or geofence collection encrypted with a customer managed
key, Amazon Location creates a grant on your behalf by sending a CreateGrant request to AWS
KMS. Grants in AWS KMS are used to give Amazon Location access to a KMS key in a customer
account.

Amazon Location requires the grant to use your customer managed key for the following internal
operations:

• Send DescribeKey requests to AWS KMS to verify that the symmetric customer managed KMS
key ID entered when creating a tracker or geofence collection is valid.

• Send GenerateDataKeyWithoutPlaintext requests to AWS KMS to generate data keys encrypted
by your customer managed key.

• Send Decrypt requests to AWS KMS to decrypt the encrypted data keys so that they can be used
to encrypt your data.

You can revoke access to the grant, or remove the service's access to the customer managed key
at any time. If you do, Amazon Location won't be able to access any of the data encrypted by the
customer managed key, which affects operations that are dependent on that data. For example, if
you attempt to get device positions from an encrypted tracker that Amazon Location can't access,
then the operation would return an AccessDeniedException error.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric customer managed key in the AWS Key Management
Service Developer Guide.

Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how

Data at rest encryption 495

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/location/latest/developerguide/geometry-components.html#tracking-components
https://docs.aws.amazon.com/location/latest/developerguide/geometry-components.html#geofence-components
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_GetDevicePosition.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Location Service Developer Guide

they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Managing access to customer managed keys in the AWS Key Management
Service Developer Guide.

To use your customer managed key with your Amazon Location resources, the following API
operations must be permitted in the key policy:

• kms:CreateGrant – Adds a grant to a customer managed key. Grants control access to a
specified KMS key, which allows access to grant operations Amazon Location requires. For more
information about Using Grants, see the AWS Key Management Service Developer Guide.

This allows Amazon Location to do the following:

• Call GenerateDataKeyWithoutPlainText to generate an encrypted data key and store it,
because the data key isn't immediately used to encrypt.

• Call Decrypt to use the stored encrypted data key to access encrypted data.

• Set up a retiring principal to allow the service to RetireGrant.

• kms:DescribeKey – Provides the customer managed key details to allow Amazon Location to
validate the key.

The following are policy statement examples you can add for Amazon Location:

 "Statement" : [
 {
 "Sid" : "Allow access to principals authorized to use Amazon Location",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "*"
 },
 "Action" : [
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "kms:ViaService" : "geo.region.amazonaws.com",
 "kms:CallerAccount" : "111122223333"
 }
 },
 {

Data at rest encryption 496

https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#terms-grant-operations
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

Amazon Location Service Developer Guide

 "Sid": "Allow access for key administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action" : [
 "kms:*"
],
 "Resource": "arn:aws:kms:region:111122223333:key/key_ID"
 },
 {
 "Sid" : "Allow read-only access to key metadata to the account",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*",
 "kms:RevokeGrant"
],
 "Resource" : "*"
 }
]

For more information about specifying permissions in a policy, see the AWS Key Management
Service Developer Guide.

For more information about troubleshooting key access, see the AWS Key Management Service
Developer Guide.

Specifying a customer managed key for Amazon Location

You can specify a customer managed key as a second layer encryption for the following resources:

• Tracker resource

• Geofence collection

When you create a resource, you can specify the data key by entering a KMS ID, which Amazon
Location uses to encrypt the identifiable personal data stored by the resource.

Data at rest encryption 497

https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#overview-policy-elements
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam

Amazon Location Service Developer Guide

• KMS ID — A key identifier for an AWS KMS customer managed key. Enter a key ID, key ARN, alias
name, or alias ARN.

Amazon Location Service encryption context

An encryption context is an optional set of key-value pairs that contain additional contextual
information about the data.

AWS KMS uses the encryption context as additional authenticated data to support authenticated
encryption. When you include an encryption context in a request to encrypt data, AWS KMS binds
the encryption context to the encrypted data. To decrypt data, you include the same encryption
context in the request.

Amazon Location Service encryption context

Amazon Location uses the same encryption context in all AWS KMS cryptographic operations,
where the key is aws:geo:arn and the value is the resource Amazon Resource Name (ARN).

Example

"encryptionContext": {
 "aws:geo:arn": "arn:aws:geo:us-west-2:111122223333:geofence-collection/SAMPLE-
GeofenceCollection"
}

Using encryption context for monitoring

When you use a symmetric customer managed key to encrypt your tracker or geofence collection,
you can also use the encryption context in audit records and logs to identify how the customer
managed key is being used. The encryption context also appears in logs generated by AWS
CloudTrail or Amazon CloudWatch Logs.

Using encryption context to control access to your customer managed key

You can use the encryption context in key policies and IAM policies as conditions to control
access to your symmetric customer managed key. You can also use encryption context constraints
in a grant.

Amazon Location uses an encryption context constraint in grants to control access to the customer
managed key in your account or region. The grant constraint requires that the operations that the
grant allows use the specified encryption context.

Data at rest encryption 498

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Location Service Developer Guide

Example

The following are example key policy statements to grant access to a customer managed key for a
specific encryption context. The condition in this policy statement requires that the grants have an
encryption context constraint that specifies the encryption context.

{
 "Sid": "Enable DescribeKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleReadOnlyRole"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*"
},
{
 "Sid": "Enable CreateGrant",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleReadOnlyRole"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:geo:arn": "arn:aws:geo:us-
west-2:111122223333:tracker/SAMPLE-Tracker"
 }
 }
}

Monitoring your encryption keys for Amazon Location Service

When you use an AWS KMS customer managed key with your Amazon Location Service resources,
you can use AWS CloudTrail or Amazon CloudWatch Logs to track requests that Amazon Location
sends to AWS KMS.

The following examples are AWS CloudTrail events for CreateGrant,
GenerateDataKeyWithoutPlainText, Decrypt, and DescribeKey to monitor KMS operations
called by Amazon Location to access data encrypted by your customer managed key:

Data at rest encryption 499

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon Location Service Developer Guide

CreateGrant

When you use an AWS KMS customer managed key to encrypt your tracker or geofence
collection resources, Amazon Location sends a CreateGrant request on your behalf to access
the KMS key in your AWS account. The grant that Amazon Location creates are specific to the
resource associated with the AWS KMS customer managed key. In addition, Amazon Location
uses the RetireGrant operation to remove a grant when you delete a resource.

The following example event records the CreateGrant operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2021-04-22T17:02:00Z"
 }
 },
 "invokedBy": "geo.amazonaws.com"
 },
 "eventTime": "2021-04-22T17:07:02Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "retiringPrincipal": "geo.region.amazonaws.com",
 "operations": [

Data at rest encryption 500

Amazon Location Service Developer Guide

 "GenerateDataKeyWithoutPlaintext",
 "Decrypt",
 "DescribeKey"
],
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "granteePrincipal": "geo.region.amazonaws.com"
 },
 "responseElements": {
 "grantId":
 "0ab0ac0d0b000f00ea00cc0a0e00fc00bce000c000f0000000c0bc0a0000aaafSAMPLE"
 },
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

GenerateDataKeyWithoutPlainText

When you enable an AWS KMS customer managed key for your tracker or geofence
collection resource, Amazon Location creates a unique table key. It sends a
GenerateDataKeyWithoutPlainText request to AWS KMS that specifies the AWS
KMScustomer managed key for the resource.

The following example event records the GenerateDataKeyWithoutPlainText operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "geo.amazonaws.com"

Data at rest encryption 501

Amazon Location Service Developer Guide

 },
 "eventTime": "2021-04-22T17:07:02Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "encryptionContext": {
 "aws:geo:arn": "arn:aws:geo:us-west-2:111122223333:geofence-collection/
SAMPLE-GeofenceCollection"
 },
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333",
 "sharedEventID": "57f5dbee-16da-413e-979f-2c4c6663475e"
}

Decrypt

When you access an encrypted tracker or geofence collection,Amazon Location calls the
Decrypt operation to use the stored encrypted data key to access the encrypted data.

The following example event records the Decrypt operation:

{
 "eventVersion": "1.08",

Data at rest encryption 502

Amazon Location Service Developer Guide

 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "geo.amazonaws.com"
 },
 "eventTime": "2021-04-22T17:10:51Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "encryptionContext": {
 "aws:geo:arn": "arn:aws:geo:us-west-2:111122223333:geofence-collection/
SAMPLE-GeofenceCollection"
 },
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333",
 "sharedEventID": "dc129381-1d94-49bd-b522-f56a3482d088"
}

DescribeKey

Amazon Location uses the DescribeKey operation to verify if the AWS KMS customer
managed key associated with your tracker or geofence collection exists in the account and
region.

Data at rest encryption 503

Amazon Location Service Developer Guide

The following example event records the DescribeKey operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2021-04-22T17:02:00Z"
 }
 },
 "invokedBy": "geo.amazonaws.com"
 },
 "eventTime": "2021-04-22T17:07:02Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "keyId": "00dd0db0-0000-0000-ac00-b0c000SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",

Data at rest encryption 504

Amazon Location Service Developer Guide

 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

Learn more

The following resources provide more information about data encryption at rest.

• For more information about AWS Key Management Service basic concepts, see the AWS Key
Management Service Developer Guide.

• For more information about Security best practices for AWS Key Management Service, see the
AWS Key Management Service Developer Guide.

Data in transit encryption for Amazon Location Service

Amazon Location protects data in transit, as it travels to and from the service, by automatically
encrypting all inter-network data using the Transport Layer Security (TLS) 1.2 encryption protocol.
Direct HTTPS requests sent to the Amazon Location Service APIs are signed by using the AWS
Signature Version 4 Algorithm to establish a secure connection.

Identity and Access Management for Amazon Location Service

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon Location resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

Data in transit encryption 505

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon Location Service Developer Guide

• Managing access using policies

• How Amazon Location Service works with IAM

• How Amazon Location Service works with unauthenticated users

• Identity-based policy examples for Amazon Location Service

• Troubleshooting Amazon Location Service identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon Location.

Service user – If you use the Amazon Location service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon
Location features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in Amazon Location, see Troubleshooting Amazon Location Service identity
and access.

Service administrator – If you're in charge of Amazon Location resources at your company, you
probably have full access to Amazon Location. It's your job to determine which Amazon Location
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon Location, see How Amazon Location Service works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Amazon Location. To view example Amazon Location
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
Location Service.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on

Audience 506

Amazon Location Service Developer Guide

authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

Authenticating with identities 507

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Amazon Location Service Developer Guide

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider

Authenticating with identities 508

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

Amazon Location Service Developer Guide

in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile

Authenticating with identities 509

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Location Service Developer Guide

that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed

Managing access using policies 510

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Location Service Developer Guide

policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Managing access using policies 511

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Location Service Developer Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Location Service works with IAM

Before you use IAM to manage access to Amazon Location, learn what IAM features are available to
use with Amazon Location.

IAM features you can use with Amazon Location Service

IAM feature Amazon Location support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

How Amazon Location Service works with IAM 512

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Location Service Developer Guide

IAM feature Amazon Location support

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions No

Service roles No

Service-linked roles No

To get a high-level view of how Amazon Location and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Amazon Location

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon Location

To view examples of Amazon Location identity-based policies, see Identity-based policy examples
for Amazon Location Service.

How Amazon Location Service works with IAM 513

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Location Service Developer Guide

Resource-based policies within Amazon Location

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon Location

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

How Amazon Location Service works with IAM 514

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Location Service Developer Guide

To see a list of Amazon Location actions, see Actions Defined by Amazon Location Service in the
Service Authorization Reference.

Policy actions in Amazon Location use the following prefix before the action:

geo

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "geo:action1",
 "geo:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "geo:Get*"

To view examples of Amazon Location identity-based policies, see Identity-based policy examples
for Amazon Location Service.

Policy resources for Amazon Location

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

How Amazon Location Service works with IAM 515

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Location Service Developer Guide

"Resource": "*"

To see a list of Amazon Location resource types and their ARNs, see Resources Defined by Amazon
Location Service in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions Defined by Amazon Location Service.

To view examples of Amazon Location identity-based policies, see Identity-based policy examples
for Amazon Location Service.

Policy condition keys for Amazon Location

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Amazon Location condition keys, see Condition Keys for Amazon Location Service
in the Service Authorization Reference. To learn with which actions and resources you can use a
condition key, see Actions Defined by Amazon Location Service.

How Amazon Location Service works with IAM 516

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-actions-as-permissions

Amazon Location Service Developer Guide

Amazon Location supports condition keys to allow you to allow or deny access to specific
geofences or devices in your policy statements. The following condition keys are available:

• geo:GeofenceIds for use with Geofence actions. The type is ArrayOfString.

• geo:DeviceIds for use with Tracker actions. The type is ArrayOfString.

The following actions can be used with geo:GeofenceIds in your IAM policy:

• BatchDeleteGeofences

• BatchPutGeofences

• GetGeofence

• PutGeofence

The following actions can be used with geo:DeviceIds in your IAM policy:

• BatchDeleteDevicePositionHistory

• BatchGetDevicePosition

• BatchUpdateDevicePosition

• GetDevicePosition

• GetDevicePositionHistory

Note

You can't use these condition keys with the BatchEvaluateGeofences, ListGeofences,
or ListDevicePosition actions.

To view examples of Amazon Location identity-based policies, see Identity-based policy examples
for Amazon Location Service.

ACLs in Amazon Location

Supports ACLs No

How Amazon Location Service works with IAM 517

Amazon Location Service Developer Guide

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Amazon Location

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging Amazon Location resources, see Tagging your Amazon
Location Service resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Control resource access based on tags.

Using temporary credentials with Amazon Location

Supports temporary credentials Yes

How Amazon Location Service works with IAM 518

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Location Service Developer Guide

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Amazon Location

Supports forward access sessions (FAS) No

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon Location

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

How Amazon Location Service works with IAM 519

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Location Service Developer Guide

Warning

Changing the permissions for a service role might break Amazon Location functionality.
Edit service roles only when Amazon Location provides guidance to do so.

Service-linked roles for Amazon Location

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How Amazon Location Service works with unauthenticated users

Many scenarios for using Amazon Location Service, including showing maps on the web or in a
mobile application, require allowing access to users who haven't signed in with IAM. For these
unauthenticated scenarios, you have two options.

• Use API keys – To grant access to unauthenticated users, you can create API Keys that give read-
only access to your Amazon Location Service resources. This is useful in a case where you do not
want to authenticate every user. For example, a web application. For more information about API
keys, see Allowing unauthenticated guest access to your application using API keys.

• Use Amazon Cognito – An alternative to API keys is to use Amazon Cognito to grant anonymous
access. Amazon Cognito allows you to create a richer authorization with IAM policy to define
what can be done by the unauthenticated users. For more information about using Amazon
Cognito, see Allowing unauthenticated guest access to your application using Amazon Cognito.

For an overview of providing access to unauthenticated users, see Granting access to Amazon
Location Service.

How Amazon Location Service works with unauthenticated users 520

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Location Service Developer Guide

Identity-based policy examples for Amazon Location Service

By default, users and roles don't have permission to create or modify Amazon Location resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon Location, including the format of
the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon
Location Service in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon Location console

• Allow users to view their own permissions

• Using Amazon Location Service resources in policy

• Permissions for updating device positions

• Read-only policy for tracker resources

• Policy for creating geofences

• Read-only policy for geofences

• Permissions for rendering a map resource

• Permissions to allow search operations

• Read-only policy for route calculators

• Control resource access based on condition keys

• Control resource access based on tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon Location
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

Identity-based policy examples 521

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html

Amazon Location Service Developer Guide

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon Location console

To access the Amazon Location Service console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the Amazon Location resources in
your AWS account. If you create an identity-based policy that is more restrictive than the minimum

Identity-based policy examples 522

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Location Service Developer Guide

required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can use the Amazon Location console, attach the following policy to
the entities. For more information, see Adding permissions to a user in the IAM User Guide.

The following policy gives access to the Amazon Location Service console, to be able to create,
delete, list and view details about Amazon Location resources in your AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GeoPowerUser",
 "Effect": "Allow",
 "Action": [
 "geo:*"
],
 "Resource": "*"
 }
]
}

Alternatively, you can grant read-only permissions to facilitate read-only access. With read-only
permissions, an error message will appear if the user attempts write actions such as creating or
deleting resources. As an example, see the section called “Read-only policy for trackers”

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",

Identity-based policy examples 523

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Location Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Using Amazon Location Service resources in policy

Amazon Location Service uses the following prefixes for resources:

Amazon Location resource prefix

Resource Resource prefix

Map resources map

Place resources place-index

Route resources route-calculator

Tracking resources tracker

Identity-based policy examples 524

Amazon Location Service Developer Guide

Resource Resource prefix

Geofence Collection resources geofence-collection

Use the following ARN syntax:

arn:Partition:geo:Region:Account:ResourcePrefix/ResourceName

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

Examples

• Use the following ARN to allow access to a specified map resource.

"Resource": "arn:aws:geo:us-west-2:account-id:map/map-resource-name"

• To specify access to all map resources that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:geo:us-west-2:account-id:map/*"

• Some Amazon Location actions, such as those for creating resources, can't be performed on a
specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To see a list of Amazon Location resource types and their ARNs, see Resources Defined by Amazon
Location Service in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions Defined by Amazon Location Service.

Permissions for updating device positions

To update device positions for multiple trackers, you'll want to grant a user access to one or more
of your tracker resources. You will also want to allow the user to update a batch of device positions.

In this example, in addition to granting access to the Tracker1 and Tracker2 resources, the
following policy grants permission to use the geo:BatchUpdateDevicePosition action against
the Tracker1 and Tracker2 resources.

Identity-based policy examples 525

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlocation.html#amazonlocation-actions-as-permissions

Amazon Location Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UpdateDevicePositions",
 "Effect": "Allow",
 "Action": [
 "geo:BatchUpdateDevicePosition"
],
 "Resource": [
 "arn:aws:geo:us-west-2:account-id:tracker/Tracker1",
 "arn:aws:geo:us-west-2:account-id:tracker/Tracker2"
]
 }
]
}

If you want to limit the user to only be able to update device positions for a specific device, you can
add a condition key for that device id.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UpdateDevicePositions",
 "Effect": "Allow",
 "Action": [
 "geo:BatchUpdateDevicePosition"
],
 "Resource": [
 "arn:aws:geo:us-west-2:account-id:tracker/Tracker1",
 "arn:aws:geo:us-west-2:account-id:tracker/Tracker2"
],
 "Condition":{
 "ForAllValues:StringLike":{
 "geo:DeviceIds":[
 "deviceId"
]
 }
 }
 }
]

Identity-based policy examples 526

Amazon Location Service Developer Guide

}

Read-only policy for tracker resources

To create a read-only policy for all tracker resources in your AWS account, you'll need to grant
access to all tracker resources. You'll also want to grant a user access to actions that allow them to
get the device position for multiple devices, get the device position from a single device and get
the position history.

In this example, the following policy grants permission to the following actions:

• geo:BatchGetDevicePosition to retrieve the position of multiple devices.

• geo:GetDevicePosition to retrieve the position of a single device.

• geo:GetDevicePositionHistory to retrieve the position history of a device.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetDevicePositions",
 "Effect": "Allow",
 "Action": [
 "geo:BatchGetDevicePosition",
 "geo:GetDevicePosition",
 "geo:GetDevicePositionHistory"
],
 "Resource": "arn:aws:geo:us-west-2:account-id:tracker/*"
 }
]
}

Policy for creating geofences

To create a policy to allow a user to create geofences, you'll need to grant access to specific actions
that allow users to create one or more geofences on a geofence collection.

The policy below grants permission to the following actions on Collection:

• geo:BatchPutGeofence to create multiple geofences.

Identity-based policy examples 527

Amazon Location Service Developer Guide

• geo:PutGeofence to create a single geofence.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateGeofences",
 "Effect": "Allow",
 "Action": [
 "geo:BatchPutGeofence",
 "geo:PutGeofence"
],
 "Resource": "arn:aws:geo:us-west-2:account-id:geofence-collection/Collection"
 }
]
}

Read-only policy for geofences

To create a read-only policy for geofences stored in a geofence collection in your AWS account,
you'll need to grant access to actions that read from the geofence collection storing the geofences.

The policy below grants permission to the following actions on Collection:

• geo:ListGeofences to list geofences in the specified geofence collection.

• geo:GetGeofence to retrieve a geofence from the geofence collection.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetGeofences",
 "Effect": "Allow",
 "Action": [
 "geo:ListGeofences",
 "geo:GetGeofence"
],
 "Resource": "arn:aws:geo:us-west-2:account-id:geofence-collection/Collection"
 }
]

Identity-based policy examples 528

Amazon Location Service Developer Guide

}

Permissions for rendering a map resource

To grant sufficient permissions to render maps, you'll need to grant access to map tiles, sprites,
glyphs, and the style descriptor:

• geo:GetMapTile retrieves map tiles used to selectively render features on a map.

• geo:GetMapSprites retrieves the PNG sprite sheet and corresponding JSON document
describing offsets within it.

• geo:GetMapGlyphs retrieves the glyphs used for displaying text.

• geo:GetMapStyleDescriptor retrieves the map’s style descriptor, containing rendering rules.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GetTiles",
 "Effect": "Allow",
 "Action": [
 "geo:GetMapTile",
 "geo:GetMapSprites",
 "geo:GetMapGlyphs",
 "geo:GetMapStyleDescriptor"
],
 "Resource": "arn:aws:geo:us-west-2:account-id:map/Map"
 }
]
}

Permissions to allow search operations

To create a policy to allow search operations, you'll first need to grant access to the place index
resource in your AWS account. You'll also want to grant access to actions that let the user search
using text by geocoding and search using a position by reverse geocoding.

In this example, in addition to granting access to PlaceIndex, the following policy also grants
permission to the following actions:

Identity-based policy examples 529

Amazon Location Service Developer Guide

• geo:SearchPlaceIndexForPosition allows you to search for places, or points of interest
near a given position.

• geo:SearchPlaceIndexForText allows you to search for an address, name, city or region
using free-form text.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Search",
 "Effect": "Allow",
 "Action": [
 "geo:SearchPlaceIndexForPosition",
 "geo:SearchPlaceIndexForText"
],
 "Resource": "arn:aws:geo:us-west-2:account-id:place-index/PlaceIndex"
 }
]
}

Read-only policy for route calculators

You can create a read-only policy to allow a user access to a route calculator resource to calculate a
route.

In this example, in addition to granting access to ExampleCalculator, the following policy
grants permission to the following operation:

• geo:CalculateRoute calculates a route given a departure position, destination positon, and a
list of waypoint positions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RoutesReadOnly",
 "Effect": "Allow",
 "Action": [
 "geo:CalculateRoute"

Identity-based policy examples 530

Amazon Location Service Developer Guide

],
 "Resource": "arn:aws:geo:us-west-2:accountID:route-calculator/ExampleCalculator"
 }
]
}

Control resource access based on condition keys

When you create an IAM policy to grant access to use geofences or device positions, you can use
Condition operators for more precise control over which geofences or devices a user can access.
You can do this by including the geofence id or device id in the Condition element of your policy.

The following example policy shows how you might create a policy that allows a user to update
device positions for a specific device.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UpdateDevicePositions",
 "Effect": "Allow",
 "Action": [
 "geo:BatchUpdateDevicePosition"
],
 "Resource": [
 "arn:aws:geo:us-west-2:account-id:tracker/Tracker"
],
 "Condition":{
 "ForAllValues:StringLike":{
 "geo:DeviceIds":[
 "deviceId"
]
 }
 }
 }
]
}

Control resource access based on tags

When you create an IAM policy to grant access to use your Amazon Location resources, you can use
attribute-based access control for better control over which resources a user can modify, use, or

Identity-based policy examples 531

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

Amazon Location Service Developer Guide

delete. You can do this by including tag information in the Condition element of your policy to
control access based on your resource tags.

The following example policy shows how you might create a policy that allows a user to create
geofences. This grants the permission to the following actions to create one or more geofences on
a geofence collection called Collection:

• geo:BatchPutGeofence to create multiple geofences.

• geo:PutGeofence to create a single geofence.

However, this policy uses the Condition element to grant the permission only if the Collection
tag, Owner, has the value of that user's user name.

• For example, if a user named richard-roe attempts to view an Amazon Location Collection,
the Collection must be tagged Owner=richard-roe or owner=richard-roe. Otherwise
the user is denied access.

Note

The condition tag key Owner matches both Owner and owner because condition key
names are not case-sensitive. For more information, see IAM JSON Policy Elements:
Condition in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateGeofencesIfOwner",
 "Effect": "Allow",
 "Action": [
 "geo:BatchPutGeofence",
 "geo:PutGeofence"
],
 "Resource": "arn:aws:geo:us-west-2:account-id:geofence-collection/Collection",
 "Condition": {
 "StringEquals": {"geo:ResourceTag/Owner": "${aws:username}"}
 }
 }
]

Identity-based policy examples 532

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Location Service Developer Guide

}

For a tutorial about how to define permissions to access AWS resources based on tags, see the AWS
Identity and Access Management User Guide.

Troubleshooting Amazon Location Service identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon Location and IAM.

Topics

• I am not authorized to perform an action in Amazon Location

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon Location resources

I am not authorized to perform an action in Amazon Location

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
geo:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 geo:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the geo:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon Location.

Troubleshooting 533

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Location Service Developer Guide

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon Location. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon Location
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon Location supports these features, see How Amazon Location Service
works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 534

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Location Service Developer Guide

Incident Response in Amazon Location Service

Security is the highest priority at AWS. As part of the AWS Cloud shared responsibility model, AWS
manages a data center and network architecture that meets the requirements of the most security-
sensitive organizations. As an AWS customer, you share a responsibility for maintaining security in
the cloud. This means you control the security you choose to implement from the AWS tools and
features you have access to.

By establishing a security baseline that meets the objectives for your applications running in the
cloud, you're able to detect deviations that you can respond to. Since security incident response
can be a complex topic, we encourage you to review the following resources so that you are better
able to understand the impact that incident response (IR) and your choices have on your corporate
goals: AWS Security Incident Response Guide, AWS Security Best Practices whitepaper, and the
AWS Cloud Adoption Framework (AWS CAF).

Logging and Monitoring in Amazon Location Service

Logging and monitoring are an important part of incident response. It lets you establish a security
baseline to detect deviations that you can investigate and respond to. By implementing logging
and monitoring for Amazon Location Service, you're able to maintain the reliability, availability,
and performance for your projects and resources.

AWS provides several tools that can help you log and collect data for incident response:

AWS CloudTrail

Amazon Location Service integrates with AWS CloudTrail, which is a service that provides a
record of actions taken by a user, role or AWS service. This includes actions from the Amazon
Location Service console, and programmatic calls to Amazon Location API operations. These
records of action are called events. For more information, see Logging and monitoring Amazon
Location Service with AWS CloudTrail.

Amazon CloudWatch

You can use Amazon CloudWatch to collect and analyze metrics related to your Amazon
Location Service account. You can enable CloudWatch alarms to notify you if a metric
meets certain conditions, and has reached a specified threshold. When you create an alarm,
CloudWatch sends a notification to an Amazon Simple Notification Service that you define. For
more information, see the Monitoring Amazon Location Service with Amazon CloudWatch.

Incident response 535

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/welcome.html
https://aws.amazon.com/architecture/security-identity-compliance/?cards-all.sort-by=item.additionalFields.sortDate&cards-all.sort-order=desc
https://aws.amazon.com/cloud-adoption-framework/#Security_Perspective
https://aws.amazon.com/cloud-adoption-framework/#Security_Perspective
https://docs.aws.amazon.com/location/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/location/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/location/latest/developerguide/monitoring-using-cloudwatch.html

Amazon Location Service Developer Guide

AWS Health Dashboards

Using AWS Health Dashboards, you can verify the status of the Amazon Location Service
service. You can also monitor and view historical data about any events or issues that might
affect your AWS environment. For more information, see the AWS Health User Guide.

Compliance validation for Amazon Location Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

Compliance validation 536

https://status.aws.amazon.com/
https://docs.aws.amazon.com/health/latest/ug/what-is-aws-health.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

Amazon Location Service Developer Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Location Service

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon Location offers several features to help
support your data resiliency and backup needs.

Infrastructure security in Amazon Location Service

As a managed service, Amazon Location Service is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon Location through the network. Clients must
support the following:

Resilience 537

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Location Service Developer Guide

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Configuration and vulnerability analysis in Amazon Location

Configuration and IT controls are a shared responsibility between AWS and you, our customer. For
more information, see the AWS shared responsibility model.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

Amazon Location Service does not act as a calling service on your behalf to other AWS services, so
you do not need to add these protections in this case. To learn more about confused deputy, see
The confused deputy problem in the AWS Identity and Access Management User Guide.

Security best practices for Amazon Location Service

Amazon Location Service provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Configuration and vulnerability analysis 538

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Location Service Developer Guide

Detective security best practices for Amazon Location Service

The following best practices for Amazon Location Service can help detect security incidents:

Implement AWS monitoring tools

Monitoring is critical to incident response and maintains the reliability and security of Amazon
Location Service resources and your solutions. You can implement monitoring tools from the
several tools and services available through AWS to monitor your resources and your other AWS
services.

For example, Amazon CloudWatch allows you to monitor metrics for Amazon Location Service
and enables you to setup alarms to notify you if a metric meets certain conditions you've set
and has reached a threshold you've defined. When you create an alarm, you can set CloudWatch
to sent a notification to alert using Amazon Simple Notification Service. For more information,
see the section called “Logging and Monitoring”.

Enable AWS logging tools

Logging provides a record of actions taken by a user, role or an AWS service in Amazon Location
Service. You can implement logging tools such as AWS CloudTrail to collect data on actions to
detect unusual API activity.

When you create a trail, you can configure CloudTrail to log events. Events are records of
resource operations performed on or within a resource such as the request made to Amazon
Location, the IP address from which the request was made, who made the request, when the
request was made, along with additional data. For more information, see Logging Data Events
for Trails in the AWS CloudTrail User Guide.

Preventive security best practices for Amazon Location Service

The following best practices for Amazon Location Service can help prevent security incidents:

Use secure connections

Always use encrypted connections, such as those that begin with https:// to keep sensitive
information secure in transit.

Detective best practices 539

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon Location Service Developer Guide

Implement least privilege access to resources

When you create custom policies to Amazon Location resources, grant only the permissions
required to perform a task. It's recommended to start with a minimum set of permissions
and grant additional permissions as needed. Implementing least privilege access is essential
to reducing the risk and impact that could result from errors or malicious attacks. For more
information, see the section called “Identity and Access Management”.

Use globally-unique IDs as device IDs

Use the following conventions for device IDs.

• Device IDs must be unique.

• Device IDs should not be secret, because they can be used as foreign keys to other systems.

• Device IDs should not contain personally-identifiable information (PII), such as phone device
IDs or email addresses.

• Device IDs should not be predictable. Opaque identifiers like UUIDs are recommended.

Do not include PII in device position properties

When sending device updates (for example, using DevicePositionUpdate), do not include
personally-identifiable information (PII) such as phone number or email address in the
PositionProperties.

Best practices for Amazon Location Service

This topic provides best practices to help you use Amazon Location Service. While these best
practices can help you take full advantage of the Amazon Location Service, they do not represent
a complete solution. You should follow only the recommendations that are applicable for your
environment.

Topics

• Security

• Resource management

• Billing and cost management

• Quotas and usage

Best practices 540

https://docs.aws.amazon.com/location/latest/APIReference/API_DevicePositionUpdate.html

Amazon Location Service Developer Guide

Security

To help manage or even avoid security risks, consider the following best practices:

• Use identity federation and IAM roles to manage, control, or limit access to your Amazon
Location resources. For more information, see IAM Best Practices in the IAM User Guide.

• Follow the Principle of Least Privilege to grant only the minimum required access to your
Amazon Location Service resources. For more information, see the section called “Managing
access using policies”.

• For Amazon Location Service resources used in web applications, restrict access using an
aws:referer IAM condition, limiting use by sites other than those included in the allow-list.

• Use monitoring and logging tools to track resource access and usage. For more information,
see the section called “Logging and Monitoring” and Logging Data Events for Trails in the AWS
CloudTrail User Guide.

• Use secure connections, such as those that begin with https:// to add security and protect
users against attacks while data is being transmitted between the server and browser.

For more information about detective and preventive security best practices, see the topic on the
section called “Security best practices”.

Resource management

To help effectively manage your location resources in Amazon Location Service, consider the
following best practices:

• Use regional endpoints that are central to your expected user base to improve their experience.
For information about region endpoints, see Amazon Location Regions and endpoints.

• For resources that use data providers, such as map resources and place index resources, make
sure to follow the terms of use agreement of the specific data provider. For more information,
see Data providers.

• Minimize the creation of resources by having one resource for each configuration of map, place
index, or routes. Within a region, you typically need only one resource per data provider or map
style. Most applications use existing resources, and do not create resources at run time.

• When using different resources in a single application, such as a map resource and a route
calculator, use the same data provider in each resource to ensure that the data matches. For

Security 541

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon Location Service Developer Guide

example, that a route geometry you create with your route calculator aligns with the streets on
the map drawn using the map resource.

Billing and cost management

To help manage your costs and billing, consider the following best practice:

• Use monitoring tools, such as Amazon CloudWatch, to track your resource usage. You can set
alerts that notify you when usage is about to exceed your specified limits. For more information,
see Creating a Billing Alarm to Monitor Your Estimated AWS Charges in the Amazon CloudWatch
User Guide.

Quotas and usage

You AWS account includes quotas that set a default limit your usage amount. You can set up alarms
to alert you when your usage is getting close to your limit, and you can request a raise to a quota,
when you need it. For information about how to work with quotas, see the following topics.

• Amazon Location Service quotas

• Using CloudWatch to monitor usage against quotas

• Visualizing your service quotas and setting alarms in the Amazon CloudWatch User Guide.

You can create alarms to give you advance warning when you are close to exceeding your limits. We
recommend setting alarms for each quota in each AWS Region where you use Amazon Location.
For example, you can monitor your use of the SearchPlaceIndexForText operation, and create
an alarm when you exceed 80 percent of your current quota.

When you get an alarm warning about your quota, you must decide what to do. You might be using
additional resources because your customer base has grown. In that case you may want to request
an increase to your quota, such as a 50 percent increase in the quota for an API call in that Region.
Or, maybe there's an error in your service that causes you to make additional unnecessary calls to
Amazon Location. In that case you'd want to solve the problem in your service.

Billing and cost management 542

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html

Amazon Location Service Developer Guide

Document history

The following table describes the documentation for Amazon Location Service. For notification
about updates you can subscribe to an RSS feed.

Change Description Date

Amazon Location Service
releases a new SDK for
JavaScript

To make developing Amazon
Location applications easier
with in web front ends,
Amazon Location adds a
new open source SDK that
supports AWS SDK for
JavaScript v3, simplifying
authentication and using
GeoJSON. For mor informati
on, see Amazon Location SDK.

July 6, 2023

Amazon Location Service
releases API keys to general
availability

Amazon Location adds
support for place and route
and announce general
availability of the API keys
feature. For more informati
on, see Using API keys.

July 6, 2023

Amazon Location Service
adds Amazon EventBridge
events for position updates

Amazon Location adds
support for sending tracker
position update events
to EventBridge. For more
information, including how
to enable the events for a
tracker, see Reacting to events
with EventBridge.

July 6, 2023

Amazon Location adds
metadata to geofences

Using the Amazon Location
API, you can now add
metadata properties to

June 15, 2023

543

https://docs.aws.amazon.com/location/latest/developerguide/dev-location-libraries.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html

Amazon Location Service Developer Guide

your geofences. These are
stored with your geofence,
and included in events
related to the geofence in
Amazon EventBridge. For
more information, see Draw
geofences and Create event
rules.

Amazon Location adds
categories for places

Amazon Location add
categories in place search
results, and filtering results by
category. For more informati
on, see Categories and
filtering.

June 15, 2023

Amazon Location introduces
political views

Amazon Location adds
political views to certain map
styles. For more information,
see Political views.

May 23, 2023

Amazon Location introduces
new demo and samples site

Amazon Location announces
a new web site that gives you
access to Amazon Location
demos and samples. For more
information, see Amazon
Location demo site.

May 3, 2023

Amazon Location introduce
s longer routes in Calculate
RouteMatrix

Amazon Location now allows
unlimited length routes for
route matrix routes created
with the HERE data provider.
For more information, see
Longer route planning.

April 24, 2023

544

https://docs.aws.amazon.com/location/latest/developerguide/add-geofences.html#draw-geofences
https://docs.aws.amazon.com/location/latest/developerguide/add-geofences.html#draw-geofences
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html#create-event-rule
https://docs.aws.amazon.com/location/latest/developerguide/location-events.html#create-event-rule
https://docs.aws.amazon.com/location/latest/developerguide/category-filtering.html
https://docs.aws.amazon.com/location/latest/developerguide/category-filtering.html
https://docs.aws.amazon.com/location/latest/developerguide/map-concepts.html#political-views
https://docs.aws.amazon.com/location/latest/developerguide/samples.html#sample-demo-site
https://docs.aws.amazon.com/location/latest/developerguide/samples.html#sample-demo-site
https://docs.aws.amazon.com/location/latest/developerguide/calculate-route-matrix.html#matrix-routing-position-limits

Amazon Location Service Developer Guide

Amazon Location documenta
tion adds feature differences
by data provider

Amazon Location documenta
tion has been updated with
information regarding the
differences between each
data provider in Maps, Places
search, and routing. For more
information, see Features by
data provider.

March 30, 2023

Amazon Location Open Data
maps general availability

General availability of
Amazon Location Service data
provider and style, based on
OpenStreetMap's Daylight
maps. For more information,
see Open Data.

March 7, 2023

Amazon Location adds new
authorization method in
preview

Amazon Location Service
adds API keys as a new
authorization method for
anonymous users, in preview
mode. For more information,
see Allowing unauthenticated
guest access to your applicati
on using API keys.

February 23, 2023

Amazon Location documenta
tion updated with latest IAM
best practices

Amazon Location Service
documentation has been
updated to meet the most
recent AWS Identity and
Access Management best
practices. For more informati
on, see Security in Amazon
Location Service.

January 26, 2023

545

https://docs.aws.amazon.com/location/latest/developerguide/data-provider-features.html
https://docs.aws.amazon.com/location/latest/developerguide/data-provider-features.html
https://docs.aws.amazon.com/location/latest/developerguide/open-data.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://docs.aws.amazon.com/location/latest/developerguide/using-apikeys.html
https://docs.aws.amazon.com/location/latest/developerguide/security.html
https://docs.aws.amazon.com/location/latest/developerguide/security.html

Amazon Location Service Developer Guide

Amazon Location Service
adds GrabMaps as a data
provider in Southeast Asia

Amazon Location introduces
GrabMaps as a data provider
in Southeast Asia. For more
information, see GrabMaps.

January 10, 2023

Amazon Location Service
Open Data maps in preview

New Amazon Location data
provider and style added
in public preview, based on
OpenStreetMap's Daylight
maps. For more information,
see Open Data (Preview).

December 15, 2022

New HERE satellite imagery
styles

Two new map styles have
been added for maps using
HERE as a data provider, HERE
Satellite Imagery and HERE
Hybrid map styles. For more
information, see HERE map
styles.

October 25, 2022

Units in addresses Amazon Location Service now
supports units in addresses
, for example "123 Main St,
Apartment 3B, Anytown,
USA".

September 20, 2022

Get places by ID Amazon Location Service
now includes support
finding the exact location
suggested by the SearchPla
ceIndexForSuggesti
ons operation using the
GetPlace operation. See
Using autocomplete.

September 20, 2022

546

https://docs.aws.amazon.com/location/latest/developerguide/grab.html
https://docs.aws.amazon.com/location/latest/developerguide/open-data.html
https://docs.aws.amazon.com/location/latest/developerguide/HERE.html#HERE-map-styles
https://docs.aws.amazon.com/location/latest/developerguide/HERE.html#HERE-map-styles
https://docs.aws.amazon.com/location/latest/developerguide/search-place-index-autocomplete.html#autocomplete
https://docs.aws.amazon.com/location/latest/developerguide/search-place-index-autocomplete.html#autocomplete

Amazon Location Service Developer Guide

Additional condition keys for
IAM policy

Amazon Location Service now
supports additional condition
keys that let you set access
for specific geofences or
devices in IAM policy. See
Condition keys.

August 23, 2022

Circle geofences Amazon Location Service now
supports geofences defined
as a circle with a center point
and a radius, to get events
when devices are within a
certain distance of a location.
See Adding circular geofences
.

August 11, 2022

Combined API reference Amazon Location Service now
has a single API reference
guide, rather than separate
guides for each subservic
e. For more information
about the APIs, see Amazon
Location APIs.

July 7, 2022

Service Quotas integration Amazon Location is now
integrated with Service
Quotas allowing you to view
and manage your quotas
through the AWS Managemen
t Console or using the AWS
CLI.

July 6, 2022

Updated concepts documenta
tion chapter

The Amazon Location
concepts chapter has been
updated with more informati
on for users of Amazon
Location.

April 22, 2022

547

https://docs.aws.amazon.com/location/latest/developerguide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-conditionkeys
https://docs.aws.amazon.com/location/latest/developerguide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-conditionkeys
https://docs.aws.amazon.com/location/latest/developerguide/add-geofences.html#draw-circle-geofences
https://docs.aws.amazon.com/location/latest/developerguide/add-geofences.html#draw-circle-geofences
https://docs.aws.amazon.com/location/latest/developerguide/location-actions.html
https://docs.aws.amazon.com/location/latest/developerguide/location-actions.html
https://docs.aws.amazon.com/location/latest/developerguide/location-quotas.html#service-quotas-manage
https://docs.aws.amazon.com/location/latest/developerguide/location-quotas.html#service-quotas-manage
https://docs.aws.amazon.com/location/latest/developerguide/location-quotas.html#service-quotas-manage
https://docs.aws.amazon.com/location/latest/developerguide/how-it-works.html
https://docs.aws.amazon.com/location/latest/developerguide/how-it-works.html

Amazon Location Service Developer Guide

New Android quick start
tutorial

A new quick start tutorial for
Android development using
Kotlin has been added to get
developers up and running
quickly.

April 15, 2022

New HERE Map styles Two new map styles have
been added for maps using
HERE as a data provider. For
more information, see HERE
map styles.

March 15, 2022

Restructure documentation
with added code examples
and tutorials

This developer guide has
been restructured to find
topics more easily, including
new Quick start and Code
examples chapters.

February 25, 2022

Accuracy-based position
filtering for trackers

You can now use accuracy-
based filters when creating a
tracker resource.

December 7, 2021

Autocomplete for place
indexes

You can now use autocompl
ete when searching place
indexes.

December 6, 2021

New Amplify tutorial for
using maps

A new tutorial is available
showing how to use AWS
Amplify to display maps in a
web application. The tutorial
is available at Using the
Amplify library with Amazon
Location Service.

November 24, 2021

548

https://docs.aws.amazon.com/location/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/location/latest/developerguide/HERE.html#HERE-map-styles
https://docs.aws.amazon.com/location/latest/developerguide/HERE.html#HERE-map-styles
https://docs.aws.amazon.com/location/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/location/latest/developerguide/samples.html
https://docs.aws.amazon.com/location/latest/developerguide/samples.html
https://docs.aws.amazon.com/location/latest/developerguide/start-tracking.html#start-create-tracker
https://docs.aws.amazon.com/location/latest/developerguide/start-tracking.html#start-create-tracker
https://docs.aws.amazon.com/location/latest/developerguide/search-place-index-autocomplete.html
https://docs.aws.amazon.com/location/latest/developerguide/search-place-index-autocomplete.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-map-amplify.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-map-amplify.html
https://docs.aws.amazon.com/location/latest/developerguide/tutorial-map-amplify.html

Amazon Location Service Developer Guide

Place query extensions Amazon Location Service
now supports setting a
preferred language for results
when geocoding, or reverse
geocoding, and adds the time
zone and other informati
on to the results. For more
information about geocoding
and reverse geocoding, see
Geocoding, reverse geocoding
, and searching.

November 16, 2021

Tracker position filtering Amazon Location Service
adds a new position filtering
feature to trackers that can
help you control costs. This
feature filters out some
position updates on devices
before the updates are
stored or evaluated against
geofences. For more informati
on about position filtering,
see Trackers.

October 5, 2021

Update operations The following operation
s have been added to
the Amazon Location
Service API References :
UpdateMap, UpdatePla
ceIndex, UpdateRouteCalcula
tor, UpdateGeofenceColl
ection, and UpdateTracker.

July 19, 2021

549

https://docs.aws.amazon.com/location/latest/developerguide/searching-for-places.html
https://docs.aws.amazon.com/location/latest/developerguide/searching-for-places.html
https://docs.aws.amazon.com/location/latest/developerguide/geometry-components.html#tracking-components
https://docs.aws.amazon.com/location-maps/latest/APIReference/API_UpdateMap.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_UpdatePlaceIndex.html
https://docs.aws.amazon.com/location-places/latest/APIReference/API_UpdatePlaceIndex.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_UpdateRouteCalculator.html
https://docs.aws.amazon.com/location-routes/latest/APIReference/API_UpdateRouteCalculator.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_UpdateGeofenceCollection.html
https://docs.aws.amazon.com/location-geofences/latest/APIReference/API_UpdateGeofenceCollection.html
https://docs.aws.amazon.com/location-trackers/latest/APIReference/API_UpdateTracker.html

Amazon Location Service Developer Guide

Tutorial update: Amazon
Aurora PostgreSQL user-defi
ned functions

A new tutorial has been
added for how to use Amazon
Aurora PostgreSQL user-defi
ned functions with Amazon
Location to validate, clean,
and enrich geospatial data.

July 19, 2021

AWS CloudFormation
resources

Amazon Location now
supports creating the
following resource types
in AWS CloudFormation
resources: AWS::Loca
tion::Map , AWS::Loca
tion::PlaceIndex ,
AWS::Location::Rou
teCalculator ,
AWS::Location::Tra
cker , AWS::Loca
tion::TrackerConsu
mer , and AWS::Loca
tion::GeofenceColl
ection .

June 7, 2021

Tagging resources You can now add tags to your
Amazon Location resources
 to help manage, identify,
organize, search, and filter
your resources.

June 1, 2021

General availability General availability release of
the Amazon Location Service
developer documentation:
Region and endpoints and
service quotas updated.

June 1, 2021

550

https://docs.aws.amazon.com/location/latest/developerguide/database-address-validation.html
https://docs.aws.amazon.com/location/latest/developerguide/database-address-validation.html
https://docs.aws.amazon.com/location/latest/developerguide/database-address-validation.html
https://docs.aws.amazon.com/location/latest/developerguide/database-address-validation.html
https://docs.aws.amazon.com/location/latest/developerguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/location/latest/developerguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/location/latest/developerguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/location/latest/developerguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/location/latest/developerguide/tagging.html
https://docs.aws.amazon.com/location/latest/developerguide/tagging.html
https://docs.aws.amazon.com/location/latest/developerguide/tagging.html
https://docs.aws.amazon.com/location/latest/developerguide/location-regions.html
https://docs.aws.amazon.com/location/latest/developerguide/location-quotas.html

Amazon Location Service Developer Guide

Esri Imagery Amazon Location now
supports the use of Esri map
style: Esri Imagery. For more
information, see Esri World
Imagery on the Esri website.

June 1, 2021

Calculating routes You can now use Amazon
Location route calculators to
calculate routes and estimate
travel time based on up-to-
date road network and live
traffic information from your
chosen data provider.

June 1, 2021

AWS KMS customer managed
key encryption for data at rest

Amazon Location now
supports the use of a
symmetric customer managed
key that you create, own,
and manage to add a second
layer of encryption over the
existing AWS owned encryptio
n.

June 1, 2021

Public preview release Initial release of the public
preview documentation.

December 16, 2020

Tutorial update: Displaying
maps

Tutorials for displaying maps
using MapLibre for Android
and iOS have been updated to
use the MapLibre native SDK.

March 17, 2020

551

https://docs.aws.amazon.com/location/latest/developerguide/esri.html#esri-map-styles
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://docs.aws.amazon.com/location/latest/developerguide/calculating-routes.html
https://docs.aws.amazon.com/location/latest/developerguide/calculating-routes.html
https://docs.aws.amazon.com/location/latest/developerguide/encryption-at-rest.html
https://docs.aws.amazon.com/location/latest/developerguide/encryption-at-rest.html
https://docs.aws.amazon.com/location/latest/developerguide/encryption-at-rest.html
https://docs.aws.amazon.com/location/latest/developerguide/encryption-at-rest.html

Amazon Location Service Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

552

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Location Service
	Table of Contents
	Welcome to Amazon Location Service
	What is Amazon Location Service?
	Key features in Amazon Location
	Services you can use with Amazon Location

	Quick start with Amazon Location Service
	Creating a web app
	Creating Amazon Location resources for your app
	Setting up authentication for your application
	Creating the HTML for your application
	Adding an interactive map to your application
	Adding search to your application
	Seeing the final application
	What's next

	Creating an Android app
	Creating Amazon Location resources for your app
	Setting up authentication for your application
	Creating the base Android application
	Adding an interactive map to your application
	Adding reverse geocoding search to your application
	Adding tracking to your application
	What's next

	Creating an iOS app
	Creating Amazon Location resources for your app
	Setting up authentication for your application
	Creating the base iOS application
	Setting up the initial code
	Adding an interactive map to your application
	Adding search to your application
	Adding tracking to your application
	What's next

	Amazon Location Service concepts
	Amazon Location overview
	Maps
	Map styles
	Political views
	Custom Layers
	Map rendering
	Maps terminology

	Places search
	Geocoding concepts
	Search results
	Multiple results and relevance
	Address results
	Storing geocode results
	Places terminology

	Routes
	Route calculator resources
	Calculating a route
	Planning routes
	Route terminology

	Geofences and Trackers
	Geofences
	Geofence events

	Trackers
	Using trackers with geofences
	Position filtering

	Geofence terminology
	Tracker terminology

	Common use cases for using Amazon Location Service
	User engagement and geomarketing applications
	Asset tracking applications
	Delivery applications

	What is a data provider?
	Data provider coverage and features
	Map styles
	More information about each data provider
	Esri
	Esri map styles
	Coverage: Esri
	Terms of use and data attribution: Esri
	Error reporting to Esri

	GrabMaps
	Grab map styles
	Coverage: Grab
	Countries/regions and area covered
	Grab routing travel modes

	Terms of use and data attribution: Grab
	Error reporting for GrabMaps data

	HERE Technologies
	HERE map styles
	Coverage: HERE
	Terms of use and data attribution: HERE
	Error reporting to HERE

	Open Data
	Open Data map styles
	Coverage: Open Data
	Terms of use and data attribution: Open Data
	Error reporting and contributing to Open Data

	Features by data provider
	Terms of use and data attribution for data providers

	Amazon Location Regions and endpoints
	Regions
	Endpoints
	API operation Endpoints

	Amazon Location Service quotas
	Managing your Amazon Location service quotas

	Getting started as a developer using Amazon Location Service
	Scenarios and use cases
	SDKs and tools for using Amazon Location Service
	SDKs by language
	Using MapLibre tools and libraries with Amazon Location
	Amazon Location MapLibre Geocoder Plugin

	Amazon Location SDK and libraries
	How to start using the Amazon Location SDK
	Amazon Location client
	JavaScript Authentication helper
	Authentication functions

	GeoJSON conversion helpers
	GeoJSON conversion functions

	Android Mobile Authentication SDK
	Installation
	Authentication Functions
	Usage

	iOS Mobile Authentication SDK
	Installation
	Authentication Functions
	Usage

	Android Mobile Tracking SDK
	Installation
	Usage
	Filters
	Android Mobile SDK tracking functions
	Examples

	iOS Mobile Tracking SDK
	Installation
	Usage
	Filters
	iOS Mobile SDK tracking functions
	Examples

	Amazon Location APIs
	Using Amazon Location with an AWS SDK
	Amazon Location API error message updates
	Places
	Maps
	Trackers
	Routes
	Metadata
	Geofences

	Code examples and tutorials for working with Amazon Location Service
	Amazon Location Demo site
	Tutorial: Quick start
	Tutorial: Database enrichment
	Example: Explore app
	Example: Style a map
	Example: Draw markers
	Example: Draw clustered points
	Example: Draw a polygon
	Example: Change the map language
	Blog: Estimated delivery time notifications
	Example: Stream Position Updates
	Example: Geofencing and Tracking mobile application

	How to use Amazon Location Service
	Prerequisites for using Amazon Location Service
	Sign up for an AWS account
	Create a user with administrative access
	Grant access to Amazon Location Service

	Using Amazon Location Maps in your application
	Prerequisites
	Create a map resource
	Authenticating your requests

	Display a map in your application
	Using the MapLibre library with Amazon Location Service
	Using MapLibre GL JS with Amazon Location Service
	Building the application: Scaffolding
	Building the application: Adding dependencies
	Building the application: Configuration
	Building the application: Map initialization
	Running the application

	Using the MapLibre Native SDK for Android with Amazon Location Service
	Building the application: Initialization
	Building the application: Configuration
	Building the application: Activity layout
	Building the application: Request transformation
	Building the application: Main activity

	Using the MapLibre Native SDK for iOS with Amazon Location Service
	Building the application: Initialization
	Adding MapLibre dependencies using Swift Packages
	Building the application: Configuration
	Building the application: ContentView layout
	Building the application: Request transformation
	Building the application: Map view

	Using the Amplify library with Amazon Location Service
	Building the application: Scaffolding
	Building the application: Adding dependencies
	Building the application: Configuration
	Building the application: Map initialization
	Running the application

	Using Tangram with Amazon Location Service
	Using Tangram with Amazon Location Service
	Building the application: Scaffolding
	Building the application: Adding dependencies
	Building the application: Configuration
	Building the application: Request transformation
	Building the application: Map initialization
	Running the application

	Using Tangram ES for Android with Amazon Location Service
	Building the application: Initialization
	Building the application: Configuration
	Building the application: Activity layout
	Building the application: Request transformation
	Building the application: Main activity

	Using Tangram ES for iOS with Amazon Location Service
	Building the application: Initialization
	Building the application: Add dependencies
	Building the application: Configuration
	Building the application: ContentView layout
	Building the application: Request transformation
	Building the application: Map view

	Drawing data features on a map
	Setting extents for a map using MapLibre
	Managing your map resources
	List map resources
	Get map resource details
	Delete a map resource

	Searching place and geolocation data using Amazon Location
	Prerequisites
	Creating a place index resource
	Authenticating your requests

	Geocoding
	Geocoding
	Geocode near a position
	Geocode within a bounding box
	Geocode within a country
	Filtering by category
	Geocode in a preferred language
	Example response

	Reverse geocoding
	Reverse geocoding
	Example response

	Autocomplete
	Using autocomplete
	Using the autocomplete results
	Autocomplete near a position
	Autocomplete within a bounding box
	Autocomplete within a country
	Example response

	Using place IDs
	Place categories and filtering results
	Filtering results
	Categories
	Filtering limitations by data provider

	Amazon Aurora PostgreSQL user-defined functions for Amazon Location Service
	Overview
	Prerequisites
	Quick start
	Create a place index resource
	Create an AWS Lambda function for geocoding
	Grant Amazon Aurora PostgreSQL access to AWS Lambda
	Invoke the AWS Lambda function
	Enriching a database containing address data
	Next steps

	Managing your place index resources
	List your place index resources
	Get place index resource details
	Delete a place index resource

	Calculating routes using Amazon Location Service
	Prerequisites
	Create a route calculator resource
	Authenticating your requests

	Calculate a route
	Start calculating routes
	Setting waypoints
	Example response

	Route planning with a route matrix
	Calculating a route matrix
	Restrictions on departure and destination positions
	Longer route planning

	Example response

	Positions not located on a road
	Departure time
	Travel mode
	Managing your route calculator resources
	List your route calculator resources
	Get route calculator details
	Delete a route calculator

	Geofencing an area of interest using Amazon Location
	Add geofences
	Create a geofence collection
	Draw geofences
	Adding polygon geofences
	Draw geofences using a GeoJSON tool
	Put GeoJSON geofences in a geofence collection

	Adding circular geofences

	Start tracking
	Create a tracker
	Authenticating your requests
	Update your tracker with a device position
	Get a device's location history from a tracker
	List your device positions

	Link a tracker to a geofence collection
	Evaluate device positions against geofences
	Verify device positions
	Prerequisites

	Reacting to Amazon Location Service events with Amazon EventBridge
	Enable update events for a tracker
	Create event rules for Amazon Location
	Amazon EventBridge event examples for Amazon Location Service

	Tracking using AWS IoT and MQTT with Amazon Location Service
	Prerequisite
	Create an AWS IoT Core rule
	Test your AWS IoT Core rule in the console
	Using AWS Lambda with MQTT
	Prerequisite
	Create a Lambda function
	Create an AWS IoT Core rule
	Test your AWS IoT Core rule in the console

	Managing your geofence collection resources
	List your geofence collection resources
	Get geofence collection details
	Delete a geofence collection
	List stored geofences
	Get geofence details
	Delete geofences

	Managing your tracker resources
	List your trackers
	Disconnecting a tracker from a geofence collection
	Get tracker details
	Delete a tracker

	Sample Geofencing and Tracking mobile application
	Sample tracking and geofence application for Android
	Create Amazon Location resources for your app
	Create a Geofence Collection
	Link a tracker to a geofence collection
	Using AWS Lambda with MQTT
	Set up the sample app code
	Using the sample app

	Sample tracking and geofencing application for iOS
	Create Amazon Location resources for your app
	Create a Geofence Collection
	Link a tracker to a geofence collection
	Using AWS Lambda with MQTT
	Setting up sample app code
	Using the sample app

	Tagging your Amazon Location Service resources
	Tagging restrictions
	Grant permission to tag resources
	Add a tag to an Amazon Location Service resource
	Track resource cost by tag
	Control access to Amazon Location Service resources using tags
	Learn more

	Granting access to Amazon Location Service
	Allowing unauthenticated guest access to your application using API keys
	API keys compared to Amazon Cognito
	Creating API keys
	Using an API key to call an Amazon Location API
	Using an API key to render a map
	Managing API key lifetimes

	Allowing unauthenticated guest access to your application using Amazon Cognito
	Create an Amazon Cognito identity pool
	Using the Amazon Cognito identity pools in JavaScript
	Next steps

	Monitoring Amazon Location Service
	Monitoring Amazon Location Service with Amazon CloudWatch
	Amazon Location Service metrics exported to Amazon CloudWatch
	View Amazon Location Service metrics
	Create CloudWatch alarms for Amazon Location Service metrics
	Using CloudWatch to monitor usage against quotas
	CloudWatch metric examples for Amazon Location Service

	Logging and monitoring with AWS CloudTrail
	Amazon Location Service Information in CloudTrail
	Understanding Amazon Location Service Log File Entries

	Creating Amazon Location Service resources with AWS CloudFormation
	Amazon Location and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Security in Amazon Location Service
	Data protection in Amazon Location Service
	Data privacy
	Data retention in Amazon Location
	Data encryption at rest for Amazon Location Service
	How Amazon Location Service uses grants in AWS KMS
	Create a customer managed key
	Specifying a customer managed key for Amazon Location
	Amazon Location Service encryption context
	

	Monitoring your encryption keys for Amazon Location Service
	Learn more

	Data in transit encryption for Amazon Location Service

	Identity and Access Management for Amazon Location Service
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Location Service works with IAM
	Identity-based policies for Amazon Location
	Identity-based policy examples for Amazon Location

	Resource-based policies within Amazon Location
	Policy actions for Amazon Location
	Policy resources for Amazon Location
	Policy condition keys for Amazon Location
	ACLs in Amazon Location
	ABAC with Amazon Location
	Using temporary credentials with Amazon Location
	Cross-service principal permissions for Amazon Location
	Service roles for Amazon Location
	Service-linked roles for Amazon Location

	How Amazon Location Service works with unauthenticated users
	Identity-based policy examples for Amazon Location Service
	Policy best practices
	Using the Amazon Location console
	Allow users to view their own permissions
	Using Amazon Location Service resources in policy
	Permissions for updating device positions
	Read-only policy for tracker resources
	Policy for creating geofences
	Read-only policy for geofences
	Permissions for rendering a map resource
	Permissions to allow search operations
	Read-only policy for route calculators
	Control resource access based on condition keys
	Control resource access based on tags

	Troubleshooting Amazon Location Service identity and access
	I am not authorized to perform an action in Amazon Location
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon Location resources

	Incident Response in Amazon Location Service
	Logging and Monitoring in Amazon Location Service

	Compliance validation for Amazon Location Service
	Resilience in Amazon Location Service
	Infrastructure security in Amazon Location Service
	Configuration and vulnerability analysis in Amazon Location
	Cross-service confused deputy prevention
	Security best practices for Amazon Location Service
	Detective security best practices for Amazon Location Service
	Preventive security best practices for Amazon Location Service

	Best practices for Amazon Location Service
	Security
	Resource management
	Billing and cost management
	Quotas and usage

	Document history
	AWS Glossary

