
Developer Guide

Amazon Lookout for Vision

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Lookout for Vision Developer Guide

Amazon Lookout for Vision: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Lookout for Vision Developer Guide

Table of Contents

What is Amazon Lookout for Vision? ... 1
Key benefits ... 1
Are you a first-time Amazon Lookout for Vision end user? ... 1

Setting up Amazon Lookout for Vision .. 2
Step 1: Create an AWS account .. 2

Sign up for an AWS account .. 2
Create a user with administrative access ... 3

Step 2: Set up permissions .. 4
Setting console access with AWS managed policies .. 5
Setting Amazon S3 bucket permissions ... 5
Assigning permissions .. 6

Step 3: Create the console bucket .. 7
Creating the console bucket with the Amazon Lookout for Vision console 8
Creating the console bucket with Amazon S3 .. 9
Console bucket settings .. 10

Step 4: Set up the AWS CLI and AWS SDKs ... 10
Install the AWS SDKS ... 10
Grant programmatic access .. 11
Set up SDK permissions .. 14
Call an Amazon Lookout for Vision operation ... 18

Step 5: (Optional) Using your own AWS KMS key .. 22
Understanding Amazon Lookout for Vision ... 24

Choose your model type .. 25
Image classification model ... 25
Image segmentation model .. 25

Create your model ... 27
Create a project ... 27
Create a dataset .. 27
Train your model ... 29

Evaluate your model ... 29
Use your model .. 30
Use your model on an edge device ... 30
Use your dashboard ... 30

Getting started .. 31

iii

Amazon Lookout for Vision Developer Guide

Step 1: Create the manifest file and upload images .. 33
Step 2: Create the model ... 34
Step 3: Start the model .. 41
Step 4: Analyze an image .. 44
Step 5: Stop the model .. 49
Next steps .. 51

Creating your model ... 52
Creating your project .. 52

Creating a project (console) .. 53
Creating a project (SDK) .. 53

Creating your dataset .. 55
Preparing images for a dataset ... 56
Creating the dataset .. 57
Local computer .. 59
Amazon S3 bucket .. 60
Manifest file ... 63

Labeling images .. 90
Choosing the model type ... 91
Classifying images (console) ... 91
Segmenting images (console) .. 92

Training your model .. 96
Training a model (console) ... 97
Training a model (SDK) ... 98

Troubleshooting model training ... 104
Anomaly label colors don't match color of anomalies in mask image 104
Mask images aren't in PNG format ... 106
Segmentation or classification labels are inaccurate or missing .. 107

Improving your model .. 109
Step 1: Evaluate the performance of your model .. 109

Image classification metrics ... 109
Image segmentation model metrics ... 110
Precision .. 110
Recall ... 111
F1 score .. 111
Average Intersection over Union (IoU) ... 112
Testing results ... 113

iv

Amazon Lookout for Vision Developer Guide

Step 2: Improve your model ... 113
Viewing performance metrics ... 115

Viewing performance metrics (console) .. 115
Viewing performance metrics (SDK) ... 116

Verifying your model .. 120
Running a trial detection task ... 121
Verifying trial detection results ... 122
Correcting segmentation labels with the annotation tool ... 123

Running your model ... 125
Inference units .. 125

Managing throughput with inference units .. 126
Availability Zones ... 128
Starting your model .. 128

Starting your model (console) ... 129
Starting your model (SDK) ... 130

Stopping your model .. 135
Stopping your model (console) ... 135
Stopping your model (SDK) ... 136

Detecting anomalies in an image ... 141
Calling DetectAnomalies .. 141
Understanding the response from DetectAnomalies ... 145

Classification model ... 145
Segmentation model ... 146

Determining if an image is anomalous ... 148
Classification .. 148
Segmentation .. 150

Showing classification and segmentation information .. 155
Finding anomalies with an AWS Lambda function ... 170

Step 1: Create an AWS Lambda function (console) ... 170
Step 2: (Optional) Create a layer (console) ... 172
Step 3: Add Python code (console) .. 173
Step 4: Try your Lambda function .. 178

Using your model on an edge device ... 183
Deploying a model to a core device .. 185
Core device requirements .. 185

Tested devices, chip architectures, and operating systems ... 186

v

Amazon Lookout for Vision Developer Guide

Core device memory and storage ... 187
Required software .. 187

Setting up your core device .. 189
Setting up your core device ... 189

Packaging your model .. 191
Package settings ... 191
Packaging your model (Console) ... 194
Packaging your model (SDK) ... 194
Getting information about model packaging jobs .. 198

Writing your client application component ... 200
Setting up your environment .. 201
Using a model ... 203
Creating the client application component .. 208

Deploying your components to a device .. 213
IAM permissions for deploying components .. 213
Deploying your components (console) ... 214
Deploying the components (SDK) ... 215

Lookout for Vision Edge Agent API Reference .. 217
Detecting anomalies with a model ... 217
Getting model information .. 217
Running a model .. 218
DetectAnomalies ... 218
DescribeModel ... 224
ListModels .. 226
StartModel ... 227
StopModel .. 229
ModelStatus ... 230

Using the dashboard ... 232
Managing your resources .. 235

Viewing your projects ... 235
Viewing your projects (console) .. 236
Viewing your projects (SDK) ... 236

Deleting a project .. 239
Deleting a project (console) ... 239
Deleting a project (SDK) ... 240

Viewing your datasets .. 242

vi

Amazon Lookout for Vision Developer Guide

Viewing the datasets in a project (console) .. 242
Viewing the datasets in a project (SDK) .. 242

Adding images to your dataset .. 245
Adding more images .. 245
Adding more images (SDK) .. 246

Removing images from your dataset .. 252
Removing images from a dataset (Console) ... 252
Removing images from a dataset (SDK) .. 253

Deleting a dataset ... 254
Deleting a dataset (console) .. 242
Deleting a dataset (SDK) ... 254

Exporting datasets from a project (SDK) .. 257
Viewing your models .. 265

Viewing your models (console) .. 266
Viewing your models (SDK) .. 266

Deleting a model ... 269
Deleting a model (console) .. 269
Deleting a model (SDK) ... 269

Tagging models .. 273
Tagging models (console) ... 273
Tagging models (SDK) ... 275

Viewing your trial detection tasks ... 276
Viewing your trial detection tasks (console) ... 277

Example code and datasets .. 278
Example code .. 278
Example datasets ... 278

Image segmentation datasets .. 279
Image classification dataset ... 279

Security .. 282
Data protection .. 282

Data encryption .. 283
Internetwork traffic privacy .. 284

Identity and access management ... 285
Audience ... 285
Authenticating with identities ... 286
Managing access using policies ... 289

vii

Amazon Lookout for Vision Developer Guide

How Amazon Lookout for Vision works with IAM ... 292
Identity-based policy examples ... 299
AWS managed policies .. 302
Troubleshooting .. 312

Compliance validation .. 313
Resilience ... 315
Infrastructure security ... 315

Monitoring ... 316
Monitoring with CloudWatch .. 316
CloudTrail logs .. 319

Lookout for Vision information in CloudTrail ... 320
Understanding Lookout for Vision log file entries .. 321

AWS CloudFormation resources ... 323
Lookout for Vision and AWS CloudFormation templates .. 323
Learn more about AWS CloudFormation .. 323

AWS PrivateLink .. 324
Considerations for Lookout for Vision VPC endpoints ... 324
Creating an interface VPC endpoint for Lookout for Vision ... 324
Creating a VPC endpoint policy for Lookout for Vision ... 325

Quotas .. 327
Model quotas .. 327

Document history .. 329
AWS Glossary ... 334

viii

Amazon Lookout for Vision Developer Guide

What is Amazon Lookout for Vision?

You can use Amazon Lookout for Vision to find visual defects in industrial products, accurately and
at scale. It uses computer vision to identify missing components in an industrial product, damage
to vehicles or structures, irregularities in production lines, and even minuscule defects in silicon
wafers—or any other physical item where quality is important such as a missing capacitor on
printed circuit boards.

Key benefits

Amazon Lookout for Vision provides the following benefits:

• Quickly and efficiently improve processes – You can use Amazon Lookout for Vision to
implement computer vision-based inspection in industrial processes quickly and efficiently,
at scale. You can provide as few as 30 baseline good images and Lookout for Vision can
automatically build a custom ML model for defect detection. You can then process images from
IP cameras, in batch or in real time, to quickly and accurately identify anomalies like dents,
cracks, and scratches.

• Increase production quality, fast – With Amazon Lookout for Vision you can reduce defects in
production processes, in real time. It identifies and reports visual anomalies in a dashboard so
you can take action quickly to stop more defects from occurring—increasing production quality
and reducing costs.

• Reduce operational costs – Amazon Lookout for Vision reports trends in your visual inspection
data, such as identifying processes with the highest defect rate or flagging recent variations
in defects. Using this information, you can determine whether to schedule maintenance on
the process line or reroute production to another machine before costly, unplanned downtime
occurs.

Are you a first-time Amazon Lookout for Vision end user?

If you're a first-time user of Amazon Lookout for Vision, we recommend that you read the following
sections in order:

1. Setting up Amazon Lookout for Vision – In this section, you set your account details.

2. Getting started with Amazon Lookout for Vision – In this section, you learn about creating your
first Amazon Lookout for Vision model.

Key benefits 1

Amazon Lookout for Vision Developer Guide

Setting up Amazon Lookout for Vision

In this section, you sign up for an AWS account and set up Amazon Lookout for Vision.

For information about the AWS Regions that support Amazon Lookout for Vision, see Amazon
Lookout for Vision Endpoints and Quotas.

Topics

• Step 1: Create an AWS account

• Step 2: Set up permissions

• Step 3: Create the console bucket

• Step 4: Set up the AWS CLI and AWS SDKs

• Step 5: (Optional) Using your own AWS Key Management Service key

Step 1: Create an AWS account

In this step, you sign up for an AWS account and create an administrative user.

Topics

• Sign up for an AWS account

• Create a user with administrative access

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign

Step 1: Create an AWS account 2

https://docs.aws.amazon.com/general/latest/gr/lookoutvision_region.html
https://docs.aws.amazon.com/general/latest/gr/lookoutvision_region.html
https://portal.aws.amazon.com/billing/signup

Amazon Lookout for Vision Developer Guide

administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Create a user with administrative access 3

https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Lookout for Vision Developer Guide

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Step 2: Set up permissions

To use Amazon Lookout for Vision, you needs access permissions to the Lookout for Vision console,
AWS SDK operations, and the Amazon S3 bucket that you use for model training.

Note

If you only use AWS SDK operations, you can use policies that are scoped to AWS SDK
operations. For more information, see Set up SDK permissions.

Topics

• Setting console access with AWS managed policies

• Setting Amazon S3 bucket permissions

• Assigning permissions

Step 2: Set up permissions 4

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon Lookout for Vision Developer Guide

Setting console access with AWS managed policies

Use the following AWS managed policies to apply appropriate access permissions for the Amazon
Lookout for Vision console and SDK operations.

• AmazonLookoutVisionConsoleFullAccess — allows full access to the Amazon Lookout for
Vision console and SDK operations. You need AmazonLookoutVisionConsoleFullAccess
permissions to create the console bucket. For more information, see Step 3: Create the console
bucket.

• AmazonLookoutVisionConsoleReadOnlyAccess— allows read-only access to the Amazon Lookout
for Vision console and SDK operations.

To assign permissions, see Assigning permissions.

For information about AWS managed policies, see AWS managed policies.

Setting Amazon S3 bucket permissions

Amazon Lookout for Vision uses an Amazon S3 bucket to store the following files:

• Dataset images — Images that are used to train a model. For more information, see Creating
your dataset.

• Amazon SageMaker Ground Truth format manifest files. For example, the manifest file output
from SageMaker GroundTruth job. For more information, see Creating a dataset using an
Amazon SageMaker Ground Truth manifest file.

• The output from model training.

If you use the console, Lookout for Vision creates an Amazon S3 bucket (console
bucket) to manage your projects. The LookoutVisionConsoleReadOnlyAccess and
LookoutVisionConsoleFullAccess managed policies include Amazon S3 access permissions
for the console bucket.

You can use the console bucket to store dataset images and SageMaker Ground Truth format
manifest files. Alternatively, You can use a different Amazon S3 bucket. The bucket must be owned
by your AWS account and must be located in the AWS Region in which you are using Lookout for
Vision.

Setting console access with AWS managed policies 5

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Lookout for Vision Developer Guide

To use a different bucket, add the following policy to the desired user or group. Replace my-
bucket with the name of the desired bucket. For information about adding IAM policies, see
Creating IAM Policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LookoutVisionS3BucketAccessPermissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::my-bucket"
]
 },
 {
 "Sid": "LookoutVisionS3ObjectAccessPermissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my-bucket/*"
]
 }
]
}

To assign permissions, see Assigning permissions.

Assigning permissions

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Assigning permissions 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Lookout for Vision Developer Guide

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Create the console bucket

To use the Amazon Lookout for Vision console, you need an Amazon S3 bucket that is known as
the console bucket. The console bucket stores the following:

• Images that you upload to a dataset with the console.

• Training results for model training that you start with console.

• Trial detection results.

• Temporary manifest files that the console creates when you use the console to create a dataset
by automatically labeling images in an S3 bucket. The console doesn't delete the manifest files.

When you first open the Amazon Lookout for Vision console in a new AWS Region, Lookout for
Vision creates the console bucket on your behalf. Note the console bucket name because you might
need to use the bucket name in AWS SDK operations or console tasks, such as creating a dataset.

Alternatively, you can create the console bucket by using Amazon S3. Use this approach if Amazon
S3 bucket policies don't let the Amazon Lookout for Vision console successfully create the console
bucket. For example, a policy that disallows the automatic creation of an Amazon S3 bucket.

Note

If you only use the AWS SDK and not the Lookout for Vision console, you don't need to
create the console bucket. You can use a different S3 bucket with a name of your choosing.

Step 3: Create the console bucket 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Lookout for Vision Developer Guide

The format of the console bucket name is lookoutvision-<region>-<random value>. The
random value ensures that there isn't a collision between bucket names.

Topics

• Creating the console bucket with the Amazon Lookout for Vision console

• Creating the console bucket with Amazon S3

• Console bucket settings

Creating the console bucket with the Amazon Lookout for Vision
console

Use the following procedure to create the console bucket for an AWS Region with the Amazon
Lookout for Vision console. For information about the S3 bucket settings that we enable, see
Console bucket settings.

To create the console bucket by using the Amazon Lookout for Vision console

1. Ensure that the user or group you are using has
AmazonLookoutVisionConsoleFullAccess permission. For more information, see Step 2:
Set up permissions.

2. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

3. On the navigation bar, choose Select a region. Then choose the AWS Region for which you
want to create the console bucket.

4. Choose Get started.

5. If this is the first time that you've opened the console in the current AWS Region, do the
following in the First time set up dialog box:

a. Copy down the name of the Amazon S3 bucket that's shown. You'll need this information
later.

b. Choose Create S3 bucket to let Amazon Lookout for Vision create the console bucket on
your behalf.

The First time set up dialog box is not shown if the console bucket for the current AWS Region
already exists.

Creating the console bucket with the Amazon Lookout for Vision console 8

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

6. Close the browser window.

Creating the console bucket with Amazon S3

You can use Amazon S3 to create the console bucket. You must create the bucket with Amazon S3
versioning enabled. We recommend that you use an Amazon S3 lifecycle configuration to remove
noncurrent (previous) versions of an object and delete incomplete multipart uploads. We don't
recommend a lifecycle configuration that deletes current versions of an object. For information
about the S3 bucket settings we enable for console buckets that you create with the Amazon
Lookout for Vision console, see Console bucket settings.

1. Decide the AWS Region in which you want to create a console bucket. For information about
supported regions, see Amazon Lookout for Vision endpoints and quotas.

2. Create a bucket using the S3 console instructions at Creating a bucket. Do the following:

a. For step 3 specify a bucket name that is prepended with
lookoutvision-region-your-identifier. Change region to the region code you
chose in the previous step. Change your-identifier to a unique identifier of your
choosing. For example, lookoutvision-us-east-1-my-console-bucket-1

b. For step 4 choose the AWS Region that you want to use.

3. Enable versioning for the bucket by following the S3 console instructions at Enabling
versioning on buckets.

4. (Optional) Specify a lifecycle configuration for the bucket by following the S3 console
instructions at Setting lifecycle configuration on a bucket. Do the following to remove
noncurrent (previous) versions of an object and delete incomplete multipart uploads. You
don't need to do steps 6, 8, 9, 10.

a. For step 5 choose Apply to all objects in the bucket.

b. For step 7 select Permanently delete noncurrent versions of objects and Delete expired
object delete markers or incomplete multipart uploads.

c. For step 11 enter the numbers of days to wait before deleting noncurrent versions of an
object.

d. For step 12 enter the number of days to wait before deleting incomplete multipart
uploads.

Creating the console bucket with Amazon S3 9

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/general/latest/gr/lookoutvision.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/manage-versioning-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/manage-versioning-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html

Amazon Lookout for Vision Developer Guide

Console bucket settings

If you create the console bucket with the Amazon Lookout for Vision console, we enable the
following settings on the console bucket.

• Versioning of objects in the console bucket.

• Server-side encryption of objects in the console bucket.

• A lifecycle configuration for the deletion of noncurrent objects (30 days) and incomplete
multipart uploads (3 days).

• Block public access to the console bucket.

Step 4: Set up the AWS CLI and AWS SDKs

The following steps show you how to install the AWS Command Line Interface (AWS CLI) and AWS
SDKs. The examples in this documentation use the AWS CLI, Python, and Java AWS SDKs.

Topics

• Install the AWS SDKS

• Grant programmatic access

• Set up SDK permissions

• Call an Amazon Lookout for Vision operation

Install the AWS SDKS

Follow the steps to download and configure the AWS SDKs.

To set up the AWS CLI and the AWS SDKs

• Download and install the AWS CLI and the AWS SDKs that you want to use. This guide provides
examples for the AWS CLI, Java, and Python. For information about installing AWS SDKs, see
Tools for Amazon Web Services.

Console bucket settings 10

https://docs.aws.amazon.com/AmazonS3/latest/userguide/manage-versioning-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#installation
https://aws.amazon.com/tools/

Amazon Lookout for Vision Developer Guide

Grant programmatic access

You can run the AWS CLI and code examples in this guide on your local computer or other AWS
environments, such as an Amazon Elastic Compute Cloud instance. To run the examples, you need
to grant access to the AWS SDK operations that the examples use.

Topics

• Running code on your local computer

• Running code in AWS environments

Running code on your local computer

To run code on a local computer, we recommend that you use short-term credentials to grant a
user access to AWS SDK operations. For specific information about running the AWS CLI and code
examples on a local computer, see Using a profile on your local computer.

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in

Grant programmatic access 11

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Amazon Lookout for Vision Developer Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Using a profile on your local computer

You can run the AWS CLI and code examples in this guide with the short-term credentials
you create in Running code on your local computer. To get the credentials and other settings
information, the examples use a profile named lookoutvision-access For example:

session = boto3.Session(profile_name='lookoutvision-access')

Grant programmatic access 12

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Lookout for Vision Developer Guide

lookoutvision_client = session.client("lookoutvision")

The user that the profile represents must have permissions to call the Lookout for Vision SDK
operations and other AWS SDK operations needed by the examples. For more information, see Set
up SDK permissions. To assign permissions, see Assigning permissions.

To create a profile that works with the AWS CLI and code examples, choose one of the following.
Make sure the name of the profile you create is lookoutvision-access.

• Users managed by IAM — Follow the instructions at Switching to an IAM role (AWS CLI).

• Workforce identity (Users managed by AWS IAM Identity Center) — Follow the instructions at
Configuring the AWS CLI to use AWS IAM Identity Center. For the code examples, we recommend
using an Integrated Development Environment (IDE), which supports the AWS Toolkit enabling
authentication through IAM Identity Center. For the Java examples, see Start building with Java.
For the Python examples, see Start building with Python. For more information, see IAM Identity
Center credentials.

Note

You can use code to get short-term credentials. For more information, see Switching to an
IAM role (AWS API). For IAM Identity Center, get the short-term credentials for a role by
following the instructions at Getting IAM role credentials for CLI access.

Running code in AWS environments

You shouldn't use user credentials to sign AWS SDK calls in AWS environments, such as production
code running in an AWS Lambda function. Instead, you configure a role that defines the
permissions that your code needs. You then attach the role to the environment that your code runs
in. How you attach the role and make temporary credentials available varies depending on the
environment that your code runs in:

• AWS Lambda function — Use the temporary credentials that Lambda automatically provides
to your function when it assumes the Lambda function's execution role. The credentials are
available in the Lambda environment variables. You don't need to specify a profile. For more
information, see Lambda execution role.

Grant programmatic access 13

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://aws.amazon.com/developer/language/java/
https://aws.amazon.com/developer/tools/#IDE_and_IDE_Toolkits
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lookout for Vision Developer Guide

• Amazon EC2 — Use the Amazon EC2 instance metadata endpoint credentials provider. The
provider automatically generates and refreshes credentials for you using the Amazon EC2
instance profile you attach to the Amazon EC2 instance. For more information, see Using an IAM
role to grant permissions to applications running on Amazon EC2 instances

• Amazon Elastic Container Service — Use the Container credentials provider. Amazon ECS sends
and refreshes credentials to a metadata endpoint. A task IAM role that you specify provides a
strategy for managing the credentials that your application uses. For more information, see
Interact with AWS services.

• Greengrass core device — Use X.509 certificates to connect to AWS IoT Core using TLS mutual
authentication protocols. These certificates let devices interact with AWS IoT without AWS
credentials. The AWS IoT credentials provider authenticates devices using the X.509 certificate
and issues AWS credentials in the form of a temporary, limited-privilege security token. For more
information, see Interact with AWS services.

For more information about credential providers, see Standardized credential providers.

Set up SDK permissions

To use Amazon Lookout for Vision SDK operations, you need access permissions to the Lookout for
Vision API and the Amazon S3 bucket used for model training.

Topics

• Granting SDK operation permissions

• Granting Amazon S3 Bucket permissions

• Assigning permissions

Granting SDK operation permissions

We recommend that you grant only the permissions required to perform a task (least-
privilege permissions). For example, to call DetectAnomalies, you need permission to perform
lookoutvision:DetectAnomalies. To find the permissions for an operation, check the API
reference.

When you are just starting out with an application, you might not know the specific permissions
you need, so you can start with broader permissions. AWS managed policies provide permissions to
help you get started.

Set up SDK permissions 14

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interact-with-aws-services.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalies.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/Welcome.html

Amazon Lookout for Vision Developer Guide

• AmazonLookoutVisionFullAccess — allows full access to Amazon Lookout for Vision SDK
operations.

• AmazonLookoutVisionReadOnlyAccess — allows access to the read-only SDK operations.

The managed policies for the console also provide access permissions for SDK operations. For more
information, see Step 2: Set up permissions.

For information about AWS managed policies, see AWS managed policies.

When you know the permissions that your application needs, reduce permissions further by
defining customer managed policies specific to your use cases. For more information, see Customer
managed policies.

Note

The getting started instructions require s3:PutObject permissions. For more information,
see Step 1: Create the manifest file and upload images.

To assign permissions, see Assigning permissions.

Granting Amazon S3 Bucket permissions

To train a model, you need an Amazon S3 bucket with appropriate permissions to store the images,
manifest files and training output. The bucket must be owned by your AWS account and must be
located in the AWS Region in which you are using Amazon Lookout for Vision.

The SDK-only managed policies (AmazonLookoutVisionFullAccess and
AmazonLookoutVisionReadOnlyAccess) don't include Amazon S3 bucket permissions and you
need to apply the following permission policy to access the buckets you use, including existing
console buckets.

The console managed policies (AmazonLookoutVisionConsoleFullAccess and
AmazonLookoutVisionConsoleReadOnlyAccess) include access permissions to the console
bucket. If you are accessing the console bucket with SDK operations and have console managed
policy permissions, you don't need to use the following policy. For more information, see Step 2:
Set up permissions.

Set up SDK permissions 15

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Amazon Lookout for Vision Developer Guide

Deciding task permissions

Use the following information to decide which permissions are needed for the tasks you want to
do.

Creating a dataset

To create a dataset with CreateDataset, you need the following permissions.

• s3:GetBucketLocation — allows Lookout for Vision to validate that your bucket is in the
same region in which you are using Lookout for Vision.

• s3:GetObject — Allows access to the manifest file specifed in the DatasetSource input
parameter. If you want to specify an exact S3 object version of the manifest file, you also need
s3:GetObjectVersion on the manifest file. For more information, see Using versioning in S3
buckets.

Creating a model

To create a model with CreateModel, you need the following permissions.

• s3:GetBucketLocation — allows Lookout for Vision to validate that your bucket is in the
same region in which you are using Lookout for Vision.

• s3:GetObject — allows access to the images specified in the project’s training and test
datasets.

• s3:PutObject — allows permission to store training output in the specified bucket. You
specify the output bucket location in the OutputConfig parameter. Optionally, you can scope
permissions down to only object keys specified in the Prefix field of the S3Location input
field. For more information, see OutputConfig.

Accessing images, manifest files, and training output

Amazon S3 bucket permissions aren't required to view Amazon Lookout for Vision operation
responses. You do need s3:GetObject permission if you want to access images, manifests files,
and training output referenced in operation responses. If you are accessing a versioned Amazon S3
object, you need s3:GetObjectVersion permission.

Set up SDK permissions 16

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateDataset
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateModel
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_OutputConfig.html

Amazon Lookout for Vision Developer Guide

Setting Amazon S3 bucket policy

You can use the following policy to specify the Amazon S3 bucket permissions needed to create a
dataset (CreateDataset), create a model (CreateModel), and access images, manifest files, and
training output. Change the value of my-bucket to the name of the bucket that you want use.

You can adjust the policy to your needs. For more information, see Deciding task permissions. Add
the policy to the desired user. For more information, see Creating IAM Policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LookoutVisionS3BucketAccess",
 "Effect": "Allow",
 "Action": "s3:GetBucketLocation",
 "Resource": [
 "arn:aws:s3:::my-bucket"
],
 "Condition": {
 "Bool": {
 "aws:ViaAWSService": "true"
 }
 }
 },
 {
 "Sid": "LookoutVisionS3ObjectAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my-bucket/*"
],
 "Condition": {
 "Bool": {
 "aws:ViaAWSService": "true"
 }
 }
 }
]

Set up SDK permissions 17

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Lookout for Vision Developer Guide

}

To assign permissions, see Assigning permissions.

Assigning permissions

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Call an Amazon Lookout for Vision operation

Run the following code to confirm that you can make calls to the Amazon Lookout for Vision
API. The code lists the projects in your AWS account, in the current AWS Region. If you haven't
previously created a project, the response is empty, but does confirm that you can call the
ListProjects operation.

In general, calling an example function requires an AWS SDK Lookout for Vision client and any
other required parameters. The AWS SDK Lookout for Vision client is declared in the main function.

If the code fails, check that the user that you use has the correct permissions. Also check the AWS
Region that you using as Amazon Lookout for Vision is not available in all AWS Regions.

To call an Amazon Lookout for Vision operation

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

Call an Amazon Lookout for Vision operation 18

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Lookout for Vision Developer Guide

2. Use the following example code to view your projects.

CLI

Use the list-projects command to list the projects in your account.

aws lookoutvision list-projects \
--profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

from botocore.exceptions import ClientError
import boto3

class GettingStarted:

 @staticmethod
 def list_projects(lookoutvision_client):
 """
 Lists information about the projects that are in in your AWS account
 and in the current AWS Region.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 """
 try:
 response = lookoutvision_client.list_projects()
 for project in response["Projects"]:
 print("Project: " + project["ProjectName"])
 print("ARN: " + project["ProjectArn"])
 print()
 print("Done!")
 except ClientError:
 raise
def main():

Call an Amazon Lookout for Vision operation 19

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 session = boto3.Session(profile_name='lookoutvision-access')
 lookoutvision_client = session.client("lookoutvision")

 GettingStarted.list_projects(lookoutvision_client)

if __name__ == "__main__":
 main()

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/*
 Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 SPDX-License-Identifier: Apache-2.0
*/

package com.example.lookoutvision;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.services.lookoutvision.LookoutVisionClient;
import software.amazon.awssdk.services.lookoutvision.model.ProjectMetadata;
import
 software.amazon.awssdk.services.lookoutvision.paginators.ListProjectsIterable;
import software.amazon.awssdk.services.lookoutvision.model.ListProjectsRequest;
import
 software.amazon.awssdk.services.lookoutvision.model.LookoutVisionException;

import java.util.ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

public class GettingStarted {

 public static final Logger logger =
 Logger.getLogger(GettingStarted.class.getName());

 /**
 * Lists the Amazon Lookoutfor Vision projects in the current AWS account
 and

Call an Amazon Lookout for Vision operation 20

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/ListProjects.java

Amazon Lookout for Vision Developer Guide

 * AWS Region.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @return List<ProjectMetadata> Metadata for each project.
 */
 public static List<ProjectMetadata> listProjects(LookoutVisionClient
 lfvClient)
 throws LookoutVisionException {

 logger.log(Level.INFO, "Getting projects:");
 ListProjectsRequest listProjectsRequest = ListProjectsRequest.builder()
 .maxResults(100)
 .build();

 List<ProjectMetadata> projectMetadata = new ArrayList<>();

 ListProjectsIterable projects =
 lfvClient.listProjectsPaginator(listProjectsRequest);

 projects.stream().flatMap(r -> r.projects().stream())
 .forEach(project -> {
 projectMetadata.add(project);
 logger.log(Level.INFO, project.projectName());
 });

 logger.log(Level.INFO, "Finished getting projects.");

 return projectMetadata;

 }

 public static void main(String[] args) throws Exception {

 try {

 // Get the Lookout for Vision client.
 LookoutVisionClient lfvClient = LookoutVisionClient.builder()

 .credentialsProvider(ProfileCredentialsProvider.create("lookoutvision-access"))
 .build();

 List<ProjectMetadata> projects = Projects.listProjects(lfvClient);

 System.out.printf("Projects%n--------%n");

Call an Amazon Lookout for Vision operation 21

Amazon Lookout for Vision Developer Guide

 for (ProjectMetadata project : projects) {
 System.out.printf("Name: %s%n", project.projectName());
 System.out.printf("ARN: %s%n", project.projectArn());
 System.out.printf("Date: %s%n%n",
 project.creationTimestamp().toString());
 }

 } catch (LookoutVisionException lfvError) {
 logger.log(Level.SEVERE, "Could not list projects: {0}: {1}",
 new Object[] { lfvError.awsErrorDetails().errorCode(),
 lfvError.awsErrorDetails().errorMessage() });
 System.out.println(String.format("Could not list projects: %s",
 lfvError.getMessage()));
 System.exit(1);
 }

 }

}

Step 5: (Optional) Using your own AWS Key Management
Service key

You can use AWS Key Management Service (KMS) to manage encryption for the input images that
you store in Amazon S3 buckets.

By default your images are encrypted with a key that AWS owns and manages. You can also choose
to use your own AWS Key Management Service (KMS) key. For more information, see AWS Key
Management Service concepts.

If you want to use your own KMS key, use the following policy to specify the KMS key. Change
kms_key_arn to the ARN of the KMS key (or KMS alias ARN) that you want to use. Alternatively,
specify * to use any KMS key. For information about adding the policy to a user or role, see
Creating IAM Policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Step 5: (Optional) Using your own AWS KMS key 22

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Lookout for Vision Developer Guide

 "Sid": "LookoutVisionKmsDescribeAccess",
 "Effect": "Allow",
 "Action": "kms:DescribeKey",
 "Resource": "kms_key_arn"
 },
 {
 "Sid": "LookoutVisionKmsCreateGrantAccess",
 "Effect": "Allow",
 "Action": "kms:CreateGrant",
 "Resource": "kms_key_arn",
 "Condition": {
 "StringLike": {
 "kms:ViaService": "lookoutvision.*.amazonaws.com"
 },
 "Bool": {
 "kms:GrantIsForAWSResource": "true"
 }
 }
 }
]
}

Step 5: (Optional) Using your own AWS KMS key 23

Amazon Lookout for Vision Developer Guide

Understanding Amazon Lookout for Vision

You can use Amazon Lookout for Vision to find visual defects in industrial products, accurately and
at scale, for tasks such as:

• Detecting damaged parts – Spot damage to a product’s surface quality, color, and shape during
the fabrication and assembly process.

• Identifying missing components – Determine missing components based on the absence,
presence, or placements of objects. For example, a missing capacitor on a printed circuit board.

• Uncovering process issues – Detect defects with repeating patterns, such as repeated scratches
in the same spot on a silicon wafer.

With Lookout for Vision you create a computer vision model that predicts the presence of
anomalies in an image. You provide the images that Amazon Lookout for Vision uses to train and
test your model. Amazon Lookout for Vision provides metrics that you can use to evaluate and
improve your trained model. You can host the trained model in the AWS cloud or you can deploy
the model to an edge device. A simple API operation returns the predictions that your model
makes.

The general workflow for creating, evaluating, and using a model is as follows:

Topics

24

Amazon Lookout for Vision Developer Guide

• Choose your model type

• Create your model

• Evaluate your model

• Use your model

• Use your model on an edge device

• Use your dashboard

Choose your model type

Before you can create a model, you must decide which type of model you want. You can create two
types of model, image classification and image segmentation. You decide which type of model to
create based on your use case.

Image classification model

If you only need to know if an image contains an anomaly, but don’t need to know its location,
create an image classification model. An image classification model makes a prediction of whether
an image contains an anomaly. The prediction includes the model's confidence in the accuracy of
the prediction. The model doesn’t provide any information about the location of any anomalies
found on the image.

Image segmentation model

If you need to know the location of an anomaly, such as the location of a scratch, create an image
segmentation model. Amazon Lookout for Vision models use semantic segmentation to identify the
pixels on an image where the types of anomalies (such as a scratch or a missing part) are present.

Note

A semantic segmentation model locates different types of anomaly. It doesn't provide
instance information for individual anomalies. For example, if an image contains two dents,
Lookout for Vision returns information about both dents in a single entity representing the
dent anomaly type.

An Amazon Lookout for Vision segmentation model predicts the following:

Choose your model type 25

Amazon Lookout for Vision Developer Guide

Classification

The model returns a classification for an analyzed image (normal/anomaly), which includes the
model's confidence in the prediction. Classification information is calculated separately from
segmentation information and you shouldn't assume a relationship between them.

Segmentation

The model returns an image mask that marks the pixels where anomalies occur on the image.
Different types of anomaly are color coded according to the color assigned to the anomaly label in
the dataset. An anomaly label represents the type of an anomaly. For example, the blue mask in
the following image marks the location of a scratch anomaly type found on a car.

The model returns the color code for each anomaly label in the mask. The model also returns the
percentage covering of the image that an anomaly label has.

With a Lookout for Vision segmentation model, you can use various criteria to analyze the analysis
results from the model. For example:

• Anomaly location – If you need to know the location of anomalies, use segmentation information
to see masks that cover anomalies.

• Types of anomaly – Use segmentation information to decide if an image contains more than an
acceptable number of anomaly types.

• Area of coverage – Use segmentation information to decide if an anomaly type covers more than
an acceptable area of an image.

• Image classification – If you don't need to know the location of anomalies, use classification
information to determine if an image contains anomalies.

For example code, see Detecting anomalies in an image.

Image segmentation model 26

Amazon Lookout for Vision Developer Guide

After you decide which type of model you want, you create a project and a dataset to manage
your model. Using Labels, you can classify images as normal or an anomaly. Labels also identify
segmentation information such as masks and anomaly types. How you label the images in your
dataset determines the type of model that Lookout for Vision creates for you.

Labeling an image segmentation model is more complex than labeling an image classification
model. To train a segmentation model, you have to classify the training images as normal or
anomalous. You also have to define anomaly masks and anomaly types for each anomalous image.
A classification model only requires you to identify training images as normal or anomalous.

Create your model

The steps to create a model are creating a project, creating a dataset, and training the model are as
follows:

Create a project

Create a project to manage the datasets and the models that you create. A project should be used
for a single use case, such as detecting anomalies in a single type of machine part.

You can use the dashboard to get an overview of your projects. For more information, see Using
the Amazon Lookout for Vision dashboard.

More information: Create your project.

Create a dataset

To train a model Amazon Lookout for Vision needs images of normal and anomalous objects for
your use case. You supply these images in a dataset.

A dataset is a set of images and labels that describe those images. The images should represent a
single type of object on which anomalies can occur. For more information, see Preparing images for
a dataset.

With Amazon Lookout for Vision you can have a project that uses a single dataset, or a project that
has separate training and test datasets. We recommend using a single dataset project unless you
want finer control over training, testing, and performance tuning.

You create a dataset by importing the images. Depending on how you import the images, the
images might be also be labeled. If not, you use the console to label the images.

Create your model 27

Amazon Lookout for Vision Developer Guide

Importing images

If you create the dataset with the Lookout for Vision console, you can import the images in one of
the following ways:

• Import images from your local computer. The images aren't labeled.

• Import images from an S3 bucket. Amazon Lookout for Vision can classify the images using
the folder names that contain the images. Use normal for normal images. Use anomaly for
anomalous images. You can't automatically assign segmentation labels.

• Import an Amazon SageMaker Ground Truth manifest file. Images in a manifest file are labeled.
You can create and import your own manifest file. If you have many images, consider using the
SageMaker Ground Truth labeling service. You then import the output manifest file from the
Amazon SageMaker Ground Truth job.

Labeling images

Labels describe an image in a dataset. Labels specify if an image is normal or anomalous
(classification). Labels also describe the location of anomalies on an image (segmentation).

If your images aren't labeled, you can use the console to label them.

The labels you assign to images in your dataset determines the type of model that Lookout for
Vision creates:

Image classification

To create an image classification model, use the Lookout for Vision console to classify images in
the dataset as normal or an anomaly.

You can also use the CreateDataset operation to create a dataset from a manifest file that
includes classification information.

Image segmentation

To create an image segmentation model, use the Lookout for Vision console to classify images
in the dataset as normal or an anomaly. You also specify pixel masks for anomalous areas on the
image (if they exist) as well as an anomaly label for individual anomaly masks.

You can also use the CreateDataset operation to create a dataset from a manifest file that
includes segmentation and classification information.

Create a dataset 28

Amazon Lookout for Vision Developer Guide

If your project has separate training and test datasets, Lookout for Vision uses the training dataset
to learn and determine the model type. You should label the images in your test dataset in the
same way.

More information: Creating your dataset.

Train your model

Training creates a model and trains it to predict the presence of anomalies in images. A new version
of your model is created each time you train.

At the start of training, Amazon Lookout for Vision chooses the most suitable algorithm to train
your model with. The model is trained and then tested. In Getting started with Amazon Lookout
for Vision, you train a single dataset project, the dataset is internally split to create a training
dataset and a test dataset. You can also create a project that has separate training and test
datasets. In this configuration, Amazon Lookout for Vision trains your model with the training
dataset and tests the model with the test dataset.

Important

You are charged for the amount of time that it takes to successfully train your model.

More information: Train your model.

Evaluate your model

Evaluate the performance of your model by using the performance metrics created during testing.

Using performance metrics, you can better understand the performance of your trained model, and
decide if you're ready to use it in production.

More information: Improving your model.

If the performance metrics indicate that improvements are needed, you can add more training data
by running a trial detection task with new images. After the task completes, you can verify the
results and add the verified images to your training dataset. Alternatively, you can add new training
images directly to the dataset. Next, you retrain your model and recheck the performance metrics.

More information: Verifying your model with a trial detection task .

Train your model 29

Amazon Lookout for Vision Developer Guide

Use your model

Before you can use your model in the AWS cloud, you start the model with the StartModel
operation. You can get the StartModel CLI command for your model from the console.

More information: Start your model.

A trained Amazon Lookout for Vision model predicts whether an input image contains normal or
anomalous content. If your model is a segmentation model, the prediction includes an anomaly
mask that marks the pixels where anomalies are found.

To make a prediction with your model, call the DetectAnomalies operation and pass an input image
from your local computer. You can get the CLI command that calls DetectAnomalies from the
console.

More information: Detect anomalies in an image.

Important

You are charged for the time that your model is running.

If you are no longer using your model, use the StopModel operation to stop the model. You can get
the CLI command from the console.

More information: Stop your model.

Use your model on an edge device

You can use a Lookout for Vision model on an AWS IoT Greengrass Version 2 core device.

More information: Using your Amazon Lookout for Vision model on an edge device.

Use your dashboard

You can use the dashboard to get an overview of all your projects and overview information for
individual projects.

More information: Use your dashboard.

Use your model 30

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModel
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalies
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StopModel

Amazon Lookout for Vision Developer Guide

Getting started with Amazon Lookout for Vision

Before starting these Getting started instructions, we recommend that you read Understanding
Amazon Lookout for Vision.

The Getting Started instructions show you how to use create an example image segmentation
model. If you want to create an example image classification model, see Image classification
dataset.

If you want to quickly try an example model, we provide example training images and mask
images. We also provide a Python script that creates an image segmentation manifest file. You use
the manifest file to create a dataset for your project and you don't need to label the images in the
dataset. When you create a model with your own images, you must label the images in the dataset.
For more information, see Creating your dataset.

The images we provide are of normal and anomalous cookies. An anomalous cookie has a crack
across the cookie shape. The model you train with the images predicts a classification (normal or
anomalous) and finds the area (mask) of cracks in an anomalous cookie, as shown in the following
example.

31

Amazon Lookout for Vision Developer Guide

Topics

• Step 1: Create the manifest file and upload images

• Step 2: Create the model

• Step 3: Start the model

• Step 4: Analyze an image

• Step 5: Stop the model

• Next steps

32

Amazon Lookout for Vision Developer Guide

Step 1: Create the manifest file and upload images

In this procedure, you clone the Amazon Lookout for Vision documentation repository to your
computer. You then use a Python (version 3.7 or higher) script to create a manifest file and upload
the training images and mask images to an Amazon S3 location that you specify. You use the
manifest file to create your model. Later, you use test images in the local repository to try your
model.

To create the manifest file and upload images

1. Set up Amazon Lookout for Vision by following the instructions at Setup Amazon Lookout for
Vision. Be sure to install the AWS SDK for Python.

2. In the AWS Region in which you want to use Lookout for Vision, create an S3 bucket.

3. In the Amazon S3 bucket, create a folder named getting-started.

4. Note the Amazon S3 URI and Amazon Resource name (ARN) for the folder. You use them to set
up permissions and to run the script.

5. Make sure that the user calling the script has permissions to call the s3:PutObject
operation. You can use the following policy. To assign permissions, see Assigning permissions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "Statement1",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3::: ARN for S3 folder in step 4/*"
]
 }]
}

6. Make sure that you have a local profile named lookoutvision-access and that the profile
user has the permission from the previous step. For more information, see Using a profile on
your local computer.

7. Download the zip file, getting-started.zip. The zip file contains the getting started dataset and
set up script.

Step 1: Create the manifest file and upload images 33

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#installation
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html#create-folder
samples/getting-started.zip

Amazon Lookout for Vision Developer Guide

8. Unzip the file getting-started.zip.

9. At the command prompt, do the following:

a. Navigate to the getting-started folder.

b. Run the following command to create a manifest file and upload the training images and
image masks to the Amazon S3 path you noted in step 4.

python getting_started.py S3-URI-from-step-4

c. When the script completes, note the path to the train.manifest file that the script
displays after Create dataset using manifest file:. The path should be similar
to s3://path to getting started folder/manifests/train.manifest.

Step 2: Create the model

In this procedure, you create a project and dataset using the images and manifest file that you
previously uploaded to your Amazon S3 bucket. You then create the model and view the evaluation
results from model training.

Because you create the dataset from the getting started manifest file, you don't need to label the
dataset's images. When you create a dataset with your own images, you do need to label images.
For more information, see Labeling images.

Important

You are charged for a successful training of a model.

To create a model

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Make sure you are in the same AWS Region that you created the Amazon S3 bucket in Step 1:
Create the manifest file and upload images. To change the Region, choose the name of the
currently displayed Region in the navigation bar. Then select the Region to which you want to
switch.

3. Choose Get started.

Step 2: Create the model 34

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

4. In the Projects section, choose Create project.

5. On the Create project page, do the following:

a. In Project name, enter getting-started.

b. Choose Create project.

Step 2: Create the model 35

Amazon Lookout for Vision Developer Guide

6. On the project page, in the How it works section, choose Create dataset.

Step 2: Create the model 36

Amazon Lookout for Vision Developer Guide

7. On the Create dataset page, do the following:

a. Choose Create a single dataset.

b. In the Image source configuration section, choose Import images labeled by SageMaker
Ground Truth.

c. For .manifest file location, enter the Amazon S3 location of the manifest file that you
noted in step 6.c. of Step 1: Create the manifest file and upload images. The Amazon S3
location should be similar to s3://path to getting started folder/manifests/
train.manifest

d. Choose Create dataset.

Step 2: Create the model 37

Amazon Lookout for Vision Developer Guide

Step 2: Create the model 38

Amazon Lookout for Vision Developer Guide

8. On the project details page, in the Images section, view the dataset images. You can view the
classification and image segmentation information (mask and anomaly labels) for each dataset
image. You can also search for images, filter images by labeling status (labeled/unlabeled), or
filter images by the anomaly labels assigned to them.

9. On the project details page, choose Train model.

10. On the Train model details page, choose Train model.

Step 2: Create the model 39

Amazon Lookout for Vision Developer Guide

11. In the Do you want to train your model? dialog box, choose Train model.

12. In the project Models page, you can see that training has started. Check the current status by
viewing the Status column for the model version. Training the model takes at least 30 minutes
to complete. Training has successfully finished when the status changes to Training complete.

13. When training finishes, choose the model Model 1 in the Models page.

14. In the model's details page, view the evaluation results in the Performance metrics tab. There
are metrics for the following:

• Overall model performance metrics (precision, recall, and F1 score) for the classification
predictions made by the model.

• Performance metrics for anomaly labels found in the test images (Average IoU, F1 score)

Step 2: Create the model 40

Amazon Lookout for Vision Developer Guide

• Predictions for test images (classification, segmentation masks, and anomaly labels)

As model training is non-deterministic, your evaluation results might differ from the results
on shown on this page. For more information, see Improving your Amazon Lookout for Vision
model.

Step 3: Start the model

In this step, you start hosting the model so that it is ready to analyze images. For more
information, see Running your trained Amazon Lookout for Vision model.

Step 3: Start the model 41

Amazon Lookout for Vision Developer Guide

Note

You are charged for the amount of time that your model runs. You stop your model in Step
5: Stop the model.

To start the model.

1. On the model's details page, choose Use model and then choose Integrate API to the cloud.

2. In the AWS CLI commands section, copy the start-model AWS CLI command.

3. Make sure that the AWS CLI is configured to run in the same AWS Region in which you are
using the Amazon Lookout for Vision console. To change the AWS Region that the AWS CLI
uses, see Install the AWS SDKS.

4. At the command prompt, start the model by entering the start-model command. If you are
using the lookoutvision profile to get credentials, add the --profile lookoutvision-
access parameter. For example:

aws lookoutvision start-model \
 --project-name getting-started \
 --model-version 1 \
 --min-inference-units 1 \

Step 3: Start the model 42

Amazon Lookout for Vision Developer Guide

 --profile lookoutvision-access

If the call is successful, the following output is displayed:

{
 "Status": "STARTING_HOSTING"
}

5. Back in the console, choose Models in the navigation pane.

6. Wait until the status of the model (Model 1) in the Status column displays Hosted. If you've
previously trained a model in the project, wait for the latest model version to complete.

Step 3: Start the model 43

Amazon Lookout for Vision Developer Guide

Step 4: Analyze an image

In this step, you analyze an image with your model. We provide example images that you can use
in the getting started test-images folder in the Lookout for Vision documentation repository on
your computer. For more information, see Detecting anomalies in an image.

To analyze an image

1. On the Models page, choose the model Model 1.

2. On the model's details page, choose Use model and then choose Integrate API to the cloud.

Step 4: Analyze an image 44

Amazon Lookout for Vision Developer Guide

3. In the AWS CLI commands section, copy the detect-anomalies AWS CLI command.

4. At the command prompt, analyze an anomalous image by entering the detect-anomalies
command from the previous step. For the --body parameter, specify an anomalous image
from the getting started test-images folder on your computer. If you are using the
lookoutvision profile to get credentials, add the --profile lookoutvision-access
parameter. For example:

aws lookoutvision detect-anomalies \
 --project-name getting-started \
 --model-version 1 \
 --content-type image/jpeg \
 --body /path/to/test-images/test-anomaly-1.jpg \
 --profile lookoutvision-access

The output should look similar to the following:

{
 "DetectAnomalyResult": {
 "Source": {
 "Type": "direct"
 },
 "IsAnomalous": true,
 "Confidence": 0.983975887298584,
 "Anomalies": [
 {

Step 4: Analyze an image 45

Amazon Lookout for Vision Developer Guide

 "Name": "background",
 "PixelAnomaly": {
 "TotalPercentageArea": 0.9818974137306213,
 "Color": "#FFFFFF"
 }
 },
 {
 "Name": "cracked",
 "PixelAnomaly": {
 "TotalPercentageArea": 0.018102575093507767,
 "Color": "#23A436"
 }
 }
],
 "AnomalyMask": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAMACA......"
 }
}

5. In the output, note the following:

• IsAnomalous is a Boolean for the predicted classification. true if the image is anomalous,
otherwise false.

• Confidence is a float value representing the confidence that Amazon Lookout for Vision
has in the prediction. 0 is the lowest confidence, 1 is the highest confidence.

• Anomalies is a list of anomalies found in the image. Name is the anomaly
label. PixelAnomaly includes the total percentage area of the anomaly
(TotalPercentageArea) and a color (Color) for the anomaly label. The list also includes a
"background" anomaly that covers the area outside of anomalies found on the image.

• AnomalyMask is a mask image that shows the location of the anomalies on the analyzed
image.

You can use information in the response to display a blend of the analyzed image and anomaly
mask, as shown in the following example. For example code, see Showing classification and
segmentation information.

Step 4: Analyze an image 46

Amazon Lookout for Vision Developer Guide

Step 4: Analyze an image 47

Amazon Lookout for Vision Developer Guide

6. At the command prompt, analyze a normal image from the getting started test-images
folder. If you are using the lookoutvision profile to get credentials, add the --profile
lookoutvision-access parameter. For example:

aws lookoutvision detect-anomalies \
 --project-name getting-started \
 --model-version 1 \
 --content-type image/jpeg \
 --body /path/to/test-images/test-normal-1.jpg \
 --profile lookoutvision-access

The output should look similar to the following:

{
 "DetectAnomalyResult": {
 "Source": {
 "Type": "direct"
 },
 "IsAnomalous": false,
 "Confidence": 0.9916400909423828,
 "Anomalies": [
 {
 "Name": "background",
 "PixelAnomaly": {
 "TotalPercentageArea": 1.0,
 "Color": "#FFFFFF"
 }
 }
],
 "AnomalyMask": "iVBORw0KGgoAAAANSUhEUgAAAkAAAA....."
 }
}

7. In the output, note that the false value for IsAnomalous classifies the image as having no
anomalies. Use Confidence to help decide your confidence in the classification. Also, the
Anomalies array only has the background anomaly label.

Step 4: Analyze an image 48

Amazon Lookout for Vision Developer Guide

Step 5: Stop the model

In this step, you stop hosting the model. You are charged for the amount of time your model is
running. If you aren't using the model, you should stop it. You can restart the model when you next
need it. For more information, see Starting your Amazon Lookout for Vision model.

To stop the model.

1. Choose Models in the navigation pane.

2. In the Models page, choose the model Model 1.

Step 5: Stop the model 49

Amazon Lookout for Vision Developer Guide

3. On the model's details page, choose Use model and then choose Integrate API to the cloud.

4. In the AWS CLI commands section, copy the stop-model AWS CLI command.

5. At the command prompt, stop the model by entering the stop-model AWS CLI command
from the previous step. If you are using the lookoutvision profile to get credentials, add the
--profile lookoutvision-access parameter. For example:

aws lookoutvision stop-model \
 --project-name getting-started \
 --model-version 1 \
 --profile lookoutvision-access

If the call is successful, the following output is displayed:

Step 5: Stop the model 50

Amazon Lookout for Vision Developer Guide

{
 "Status": "STOPPING_HOSTING"
}

6. Back in the console, choose Models in the left navigation page.

7. The model has stopped when the status of the model in the Status column is Training
complete.

Next steps

When you are ready create a model with your own images, start by following the instructions in
Creating your project. The instructions include steps for creating a model with the Amazon Lookout
for Vision console and with the AWS SDK.

If you want to try other example datasets, see Example code and datasets.

Next steps 51

Amazon Lookout for Vision Developer Guide

Creating your Amazon Lookout for Vision model

An Amazon Lookout for Vision model is a machine learning model that predicts the presence of
anomalies in new images by finding patterns in images used to train the model. This section shows
you how to create and train a model. After you train your model, you evaluate its performance. For
more information, see Improving your Amazon Lookout for Vision model.

Before you create your first model, we recommend that you read Understanding Amazon Lookout
for Vision and Getting started with Amazon Lookout for Vision. If you are using the AWS SDK, read
Call an Amazon Lookout for Vision operation.

Topics

• Creating your project

• Creating your dataset

• Labeling images

• Training your model

• Troubleshooting model training

Creating your project

An Amazon Lookout for Vision project is a grouping of the resources needed to create and manage
a Lookout for Vision model. A project manages the following:

• Dataset – The images and image labels used to train a model. For more information, see Creating
your dataset.

• Model – The software that you train to detect anomalies. You can have multiple versions of a
model. For more information, see Training your model.

We recommend that you use a project for a single use case, such as detecting anomalies in a single
type of machine part.

Creating your project 52

Amazon Lookout for Vision Developer Guide

Note

You can use AWS CloudFormation to provision and configure Amazon Lookout for Vision
projects. For more information, see Creating Amazon Lookout for Vision resources with
AWS CloudFormation.

To view your projects, see Viewing your projects or open the Using the Amazon Lookout for Vision
dashboard. To delete a model, see Deleting a model.

Topics

• Creating a project (console)

• Creating a project (SDK)

Creating a project (console)

The following procedure shows you how to create a project using the console.

To create a project (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. In the left navigation pane, choose Projects.

3. Choose Create project.

4. In Project name, enter a name for your project.

5. Choose Create project. The details page for your project is displayed.

6. Follow the steps in Creating your dataset to create your dataset.

Creating a project (SDK)

You use the CreateProject operation to create an Amazon Lookout for Vision project. The response
from CreateProject includes the project name and the Amazon Resource Name (ARN) of the
project. Afterwards, call CreateDataset to add a training and a test dataset to your project. For
more information, see Creating a dataset with a manifest file (SDK).

Creating a project (console) 53

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateProject
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateDataset

Amazon Lookout for Vision Developer Guide

To view the projects that you have created in a project, call ListProjects. For more information,
see Viewing your projects.

To create a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to create a model.

CLI

Change the value of project-name to the name that you want to use for the project.

aws lookoutvision create-project --project-name project name \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def create_project(lookoutvision_client, project_name):
 """
 Creates a new Lookout for Vision project.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name for the new project.
 :return project_arn: The ARN of the new project.
 """
 try:
 logger.info("Creating project: %s", project_name)
 response =
 lookoutvision_client.create_project(ProjectName=project_name)
 project_arn = response["ProjectMetadata"]["ProjectArn"]
 logger.info("project ARN: %s", project_arn)
 except ClientError:
 logger.exception("Couldn't create project %s.", project_name)
 raise
 else:
 return project_arn

Creating a project (SDK) 54

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Creates an Amazon Lookout for Vision project.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project that you want to create.
 * @return ProjectMetadata Metadata information about the created project.
 */
public static ProjectMetadata createProject(LookoutVisionClient lfvClient,
 String projectName)
 throws LookoutVisionException {

 logger.log(Level.INFO, "Creating project: {0}", projectName);
 CreateProjectRequest createProjectRequest =
 CreateProjectRequest.builder().projectName(projectName)
 .build();

 CreateProjectResponse response =
 lfvClient.createProject(createProjectRequest);

 logger.log(Level.INFO, "Project created. ARN: {0}",
 response.projectMetadata().projectArn());

 return response.projectMetadata();

}

3. Follow the steps in Creating a dataset using an Amazon SageMaker Ground Truth manifest file
to create your dataset.

Creating your dataset

A dataset contains the images and assigned labels that you use to train and test a model. You
create the dataset for your project with the Amazon Lookout for Vision console or with the

Creating your dataset 55

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/CreateProject.java

Amazon Lookout for Vision Developer Guide

CreateDataset operation. The dataset images must be labeled according to the type of model that
you want to create (image classification or image segmentation).

Topics

• Preparing images for a dataset

• Creating the dataset

• Creating a dataset using images stored on your local computer

• Creating a dataset using images stored in an Amazon S3 bucket

• Creating a dataset using an Amazon SageMaker Ground Truth manifest file

Preparing images for a dataset

You need a collection of images to create a dataset. Your images must be PNG or JPEG format files.
The number and type of images you need depends on if your project has a single a single dataset
or separate training and test datasets.

Single dataset project

To create an image classification model, you need the following to start training:

• At least 20 images of normal objects.

• At least 10 images of anomalous objects.

To create an image segmentation model, you need the following to start training:

• At least 20 images of each anomaly type.

• Each anomalous image (image with anomaly types present) must have only one type of anomaly.

• At least 20 images of normal objects.

Separate training and test dataset project

To create an image classification model, you need the following:

• At least 10 images of normal objects in the training dataset.

• At least 10 images of normal objects in the test dataset.

Preparing images for a dataset 56

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateDataset

Amazon Lookout for Vision Developer Guide

• At least 10 images of anomalous objects in the test dataset.

To create an image segmentation model, you need the following:

• Each dataset needs at least 10 images of each anomaly type.

• Each anomalous image (image with anomaly types present) must contain only one type of
anomaly.

• Each dataset must have at least 10 images of normal objects.

To create a higher quality model, use more than the minimum number of images. If you are
creating a segmentation model, we recommend including images with multiple anomaly types, but
these don't count towards the minimum that Lookout for Vision needs to start training.

Your images should be of a single type of object. Also, you should have consistent image capture
conditions, such as camera positioning, lighting, and object pose.

All images in the training and test datasets must have the same dimensions. Later, the images
that you analyze with your trained model must have the same dimensions as the training and test
dataset images. For more information, see Detecting anomalies in an image.

All training and test images must be unique images, preferably of unique objects. Normal images
should capture the normal variations of the object being analyzed. Anomalous images should
capture a diverse sampling of anomalies.

Amazon Lookout for Vision provides example images that you can use. For more information, see
Image classification dataset.

For image limits, see Quotas.

Creating the dataset

When you create the dataset for your project, you choose the initial dataset configuration of your
project. You also choose where Lookout for Vision imports the images from.

Choosing a dataset configuration for your project

When you create the first dataset in your project, you choose one of the following dataset
configurations:

Creating the dataset 57

Amazon Lookout for Vision Developer Guide

• Single dataset – A single dataset project uses a single dataset to train and test your model. Using
a single dataset simplifies training by letting Amazon Lookout for Vision choose the training
and test images. During training, Amazon Lookout for Vision, internally splits the dataset into a
training dataset and a test dataset. You don't have access to the split datasets. We recommend
using a single dataset project for most scenarios.

• Separate training and test datasets – If you want finer control over training, testing, and
performance tuning, you can configure your project to have separate training and test datasets.
Use a separate test dataset if you want control over the images used for testing, or if you already
have a benchmark set of images that you want to use.

You can add a test dataset to an existing single dataset project. The single dataset then becomes
the training dataset. If you remove the test dataset from a project with separate training and
test datasets, the project becomes a single dataset project. For more information, see Deleting a
dataset.

Importing images

When you create a dataset, you choose where to import the images from. Depending on how you
import the images, the images might already be labeled. If the images aren't labeled after creating
the dataset, see Labeling images.

You create a dataset and import its images in one of the following ways:

• Import images from your local computer. The images aren't labeled. You add or labels by using
the Lookout for Vision console.

• Import images from an S3 bucket. Amazon Lookout for Vision can classify images by using the
folder names to label the images. Use normal for normal images. Use anomaly for anomalous
images. You can't automatically assign segmentation labels.

• Import an Amazon SageMaker Ground Truth manifest file, which includes labeled images. You
can create and import your own manifest file. If you have many images, consider using the
SageMaker Ground Truth labeling service. You then import the output manifest file from the
Amazon SageMaker Ground Truth job. If necessary, you can use the Lookout for Vision console to
add or change labels.

If you're using the AWS SDK, you create a dataset with an Amazon SageMaker Ground Truth
manifest file. For more information, see Creating a dataset using an Amazon SageMaker Ground
Truth manifest file.

Creating the dataset 58

Amazon Lookout for Vision Developer Guide

If, after creating your dataset, your images are labeled, you can train the model. If the images
aren't labeled, add the labels according to the type of model that you want to create. For more
information, see Labeling images.

You can add more images to an existing dataset. For more information, see Adding images to your
dataset.

Creating a dataset using images stored on your local computer

You can create a dataset by using images that are loaded directly from your computer. You can
upload up to 30 images at a time. In this procedure, you can create a single dataset project, or a
project with separate training and test datasets.

Note

If you've just completed Creating your project, the console should show your project
dashboard and you don't need to do steps 1 - 3.

To create a dataset using images on a local computer (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. In the left navigation pane, choose Projects.

3. In the Projects page, choose the project to which you want to add a dataset.

4. On the project details page, choose Create dataset.

5. Choose the Single dataset tab or the Separate training and test datasets tab and follow the
steps.

Single dataset

a. In the Dataset configuration section, choose Create a single dataset.

b. In the Image source configuration section, choose Upload images from your computer.

c. Choose Create dataset.

d. On the dataset page, choose Add images.

e. Choose the images you want to upload into the dataset from your computer files. You
can drag the images or choose the images that you want to upload from your local
computer.

Local computer 59

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

f. Choose Upload images.

Separate training and test datasets

a. In the Dataset configuration section, choose Create a training dataset and a test
dataset.

b. In the Training dataset details section, choose Upload images from your computer.

c. In the Test dataset details section, choose Upload images from your computer.

Note

Your training and test datasets can have different image sources.

d. Choose Create dataset. A dataset page appears with a Training tab and a Test tab for
the respective datasets.

e. Choose Actions and then choose Add images to training dataset.

f. Choose the images you want to upload to the dataset. You can drag the images or
choose the images that you want to upload from your local computer.

g. Choose Upload images.

h. Repeat steps 5e - 5g. For step 5e, choose Actions and then choose Add images to test
dataset.

6. Follow the steps in Labeling images to label your images.

7. Follow the steps in Training your model to train your model.

Creating a dataset using images stored in an Amazon S3 bucket

You can create a dataset using images stored in an Amazon S3 bucket. With this option, you can
use the folder structure in your Amazon S3 bucket to automatically classify your images. You can
store the images in the console bucket or another Amazon S3 bucket in your account.

Setting up folders for automatic labeling

During dataset creation, you can choose to assign label names to images based on the name of the
folder that contains the images. The folders must be a child of the Amazon S3 folder path that you
specify in S3 URI when you create the dataset.

Amazon S3 bucket 60

Amazon Lookout for Vision Developer Guide

The following is the train folder for the Getting Started example images. If you specify the
Amazon S3 folder location as S3-bucket/circuitboard/train/, the images in the folder
normal are assigned the label Normal. Images in the folder anomaly are assigned the label
Anomaly. The names of deeper child folders aren't used to label images.

S3-bucket
 ### circuitboard
 ### train
 ### anomaly
 ### train-anomaly_1.jpg
 ### train-anomaly_2.jpg
 ### .
 ### .
 ### normal
 ### train-normal_1.jpg
 ### train-normal_2.jpg
 ### .
 ### .

Creating a dataset using images from an Amazon S3 bucket

The following procedure creates a dataset using the classification example images stored in an
Amazon S3 bucket. To use your own images, create the folder structure described in Setting up
folders for automatic labeling.

The procedure also shows how to create a single dataset project, or a project that uses separate
training and test datasets.

If you don't choose to automatically label your images, you need to label the images after the
datasets is created. For more information, see Classifying images (console).

Note

If you've just completed Creating your project, the console should show your project
dashboard and you don't need to do steps 1 - 4.

Amazon S3 bucket 61

Amazon Lookout for Vision Developer Guide

To create a dataset using images stored in an Amazon S3 bucket

1. If you haven't already done so, upload the getting started images to your Amazon S3 bucket.
For more information, see Image classification dataset.

2. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

3. In the left navigation pane, choose Projects.

4. In the Projects page, choose the project to which you want to add a dataset. The details page
for your project is displayed.

5. Choose Create dataset. The Create dataset page is shown.

Tip

If you're following the Getting Started instructions, choose Create a training dataset
and a test dataset.

6. Choose the Single dataset tab or the Separate training and test datasets tab and follow the
steps.

Single dataset

a. In the Dataset configuration section, choose Create a single dataset.

b. Enter the information for steps 7 - 9 in the Image source configuration section.

Separate training and test datasets

a. In the Dataset configuration section, choose Create a training dataset and a test
dataset.

b. For your training dataset, enter the information for steps 7 - 9 in the Training dataset
details section.

c. For your test dataset, enter the information for steps 7 - 9 in the Test dataset details
section.

Note

Your training and test datasets can have different image sources.

Amazon S3 bucket 62

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

7. Choose Import images from Amazon S3 bucket.

8. In S3 URI, enter the Amazon S3 bucket location and folder path. Change bucket to the name
of your Amazon S3 bucket.

a. If you're creating a single dataset project or a training dataset, enter the following:

s3://bucket/circuitboard/train/

b. If you're creating a test dataset enter the following:

s3://bucket/circuitboard/test/

9. Choose Automatically attach labels to images based on the folder.

10. Choose Create dataset. A dataset page opens with your labeled images.

11. Follow the steps in Training your model to train your model.

Creating a dataset using an Amazon SageMaker Ground Truth manifest
file

A manifest file contains information about the images and image labels that you can use to train
and test a model. You can store a manifest file in an Amazon S3 bucket and use it to create a
dataset. You can create your own manifest file or you can use an existing manifest file, such as the
output from an Amazon SageMaker Ground Truth job.

Topics

• Using an Amazon Sagemaker Ground Truth job

• Creating a manifest file

Using an Amazon Sagemaker Ground Truth job

Labeling images can take significant time. For example, it can take 10s of seconds to accurately
draw a mask around an anomaly. If you have 100s of images, it might take several hours to label
them. As an alternative to labeling the images yourself, consider using Amazon SageMaker Ground
Truth.

Manifest file 63

Amazon Lookout for Vision Developer Guide

With Amazon SageMaker Ground Truth, you can use workers from either Amazon Mechanical Turk
a vendor company that you choose, or an internal, private workforce to create a labeled set of
images. For more information, see Use Amazon SageMaker Ground Truth to Label Data.

There is a cost for using Amazon Mechanical Turk. Also, It might take several days to complete an
Amazon Ground Truth labeling job. If cost is an issue, or if you need to train your model quickly, we
recommend that you use the Amazon Lookout for Vision console to label your images.

You can use an Amazon SageMaker Ground Truth labeling job to label images suitable for images
classification models and image segmentation models. After the job completes, you use the output
manifest file to create an Amazon Lookout for Vision dataset.

Image classification

To label images for an image classification model, create a labeling job for an Image Classification
(Single Label) task.

Image segmentation

To label images for an image segmentation model, create a labeling job for an Image Classification
(Single Label) task. Then, chain the job to create a labeling job for an Image Semantic
Segmentation task.

You can also use a labeling job to create a partial manifest file for an image segmentation model.
For example, you can classify images with an Image Classification (Single Label) task. After creating
a Lookout for Vision dataset with the job output, use the Amazon Lookout for Vision console to
add segmentation masks and anomaly labels to the dataset images.

Labeling images with Amazon SageMaker Ground Truth

The following procedure shows how to label images with Amazon SageMaker Ground Truth image
labeling tasks. The procedure creates an image classification manifest file and optionally chains the
image labeling task to create an image segmentation manifest file. If you want your project to have
a separate test dataset, repeat this procedure to create the manifest file for the test dataset.

To label images with Amazon SageMaker Ground Truth (Console)

1. Create a Ground Truth job for an Image Classification (Single Label) task by following the
instructions at Create a Labeling Job (Console).

a. For step 10, choose Image from the Task category dropdown menu, and choose Image
Classification (Single Label) as the task type.

Manifest file 64

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-reusing-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-console.html

Amazon Lookout for Vision Developer Guide

b. For step 16, in the Image classification (Single Label) labeling tool section, add two
labels: normal and anomaly.

2. Wait until the workforce finishes classifying your images.

3. If you are creating a dataset for an image segmentation model, do the following. Otherwise go
to to step 4.

a. In the Amazon SageMaker Ground Truth console, open the Labeling jobs page.

b. Choose the job you previously created. This enables the Actions menu.

c. From the Actions menu, choose Chain. The job details page opens.

d. In task type, choose semantic segmentation.

e. Choose Next.

f. In the Semantic segmentation labeling tool section, add anomaly labels for each type of
anomaly that you want your model to find.

g. Choose Create.

h. Wait until the workforce labels your images.

4. Open the Ground Truth console and open the Labeling jobs page.

5. If you are creating an image classification model, choose the job you created in step 1. If you
are creating an image segmentation model, choose the job created in step 3.

6. In Labeling job summary open the S3 location in Output dataset location. Note the manifest
file location, which should be s3://output-dataset-location/manifests/output/
output.manifest.

7. Repeat this procedure if you want to create a manifest file for a test dataset. Otherwise, follow
the instructions at Creating the dataset to create a dataset with the manifest file.

Creating the dataset

Use this procedure to create a dataset in a Lookout for Vision project with the manifest file that
you noted in step 6 of Labeling images with Amazon SageMaker Ground Truth. The manifest file
creates the training dataset for a single dataset project. If you want your project to have a separate
test dataset, you can run another Amazon SageMaker Ground Truth job to create a manifest file
for the test dataset. Or you can create the manifest file yourself. You can also import images to
your test dataset from an Amazon S3 bucket or from your local computer. (The images might need
labeling before you can train the model).

This procedure assumes that your project doesn't have any datasets.

Manifest file 65

Amazon Lookout for Vision Developer Guide

To create a dataset with Lookout for Vision (Console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. Choose the project that you want to add to use with the manifest file.

5. In the How it works section, choose Create dataset.

6. Choose the Single dataset tab or the Separate training and test datasets tab and follow the
steps.

Single dataset

1. Choose Create a single dataset.

2. In the Image source configuration section, choose Import images labeled by
SageMaker Ground Truth.

3. For .manifest file location, enter the location of the manifest file you noted in step 6 of
Labeling images with Amazon SageMaker Ground Truth.

Separate training and test datasets

1. Choose Create a training dataset and a test dataset.

2. In the Training dataset details section, choose Import images labeled by SageMaker
Ground Truth.

3. In .manifest file location, the location of the manifest file you noted in step 6 of
Labeling images with Amazon SageMaker Ground Truth.

4. In the Test dataset details section, choose Import images labeled by SageMaker
Ground Truth.

5. In .manifest file location, the location of the manifest file you noted in step 6 of
Labeling images with Amazon SageMaker Ground Truth. Remember that you need a
separate manifest file for the test dataset.

7. Choose Submit.

8. Follow the steps in Training your model to train your model.

Manifest file 66

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

Creating a manifest file

You can create a dataset by importing an SageMaker Ground Truth format manifest file. If your
images are labeled in a format that isn't a SageMaker Ground Truth manifest file, use the following
information to create an SageMaker Ground Truth format manifest file.

Manifest files are in JSON lines format where each line is a complete JSON object representing the
labeling information for an image. There are different formats for image classification and image
segmentation. Manifest files must be encoded using UTF-8 encoding.

Note

The JSON line examples in this section are formatted for readability.

The images referenced by a manifest file must be located in the same Amazon S3 bucket. The
manifest file can be in a different bucket. You specify the location of an image in the source-ref
field of a JSON line.

You can create a manifest file by using code. The Amazon Lookout for Vision Lab Python Notebook
shows how to create an image classification manifest file for the circuitboard example images.
Alternatively, you can use the Datasets example code in the AWS Code Examples Repository.
You can easily create a manifest file by using a Comma Separated Values (CSV) file. For more
information, see Creating a classification manifest file from a CSV file.

Topics

• Defining JSON lines for image classification

• Defining JSON lines for image segmentation

• Creating a classification manifest file from a CSV file

• Creating a dataset with a manifest file (console)

• Creating a dataset with a manifest file (SDK)

Defining JSON lines for image classification

You define a JSON line for each image that you want to use in an Amazon Lookout for Vision
manifest file. If you want to create a classification model, the JSON line must include an image
classification that is either normal or an anomaly. A JSON line is in SageMaker Ground Truth

Manifest file 67

http://jsonlines.org
https://github.com/aws-samples/amazon-lookout-for-vision/blob/main/Amazon%20Lookout%20for%20Vision%20Lab.ipynb
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/python/example_code/lookoutvision/datasets.py

Amazon Lookout for Vision Developer Guide

Classification Job Output format. A manifest file is made of one or more JSON lines, one for each
image that you want to import.

To create a manifest file for classified images

1. Create an empty text file.

2. Add a JSON line for each image the that you want to import. Each JSON line should look
similar to the following:

{"source-ref":"s3://lookoutvision-console-us-east-1-nnnnnnnnnn/gt-job/manifest/
IMG_1133.png","anomaly-label":1,"anomaly-label-metadata":{"confidence":0.95,"job-
name":"labeling-job/testclconsolebucket","class-name":"normal","human-
annotated":"yes","creation-date":"2020-04-15T20:17:23.433061","type":"groundtruth/
image-classification"}}

3. Save the file.

Note

You can use the extension .manifest, but it is not required.

4. Create a dataset using the manifest file that you created. For more information, see Creating a
manifest file.

Classification JSON lines

In this section, you learn how to create a JSON line that classifies an image as normal or
anomalous.

Anomaly JSON line

The following JSON line shows an image that is labeled as an anomaly. Note that the value of
class-name is anomaly.

{
 "source-ref": "s3: //bucket/image/anomaly/abnormal-1.jpg",
 "anomaly-label-metadata": {
 "confidence": 1,
 "job-name": "labeling-job/auto-label",

Manifest file 68

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html#sms-output-class

Amazon Lookout for Vision Developer Guide

 "class-name": "anomaly",
 "human-annotated": "yes",
 "creation-date": "2020-11-10T03:37:09.600",
 "type": "groundtruth/image-classification"
 },
 "anomaly-label": 1
}

Normal JSON line

The following JSON line shows an image labeled as normal. Note that the value of class-name is
normal.

{
 "source-ref": "s3: //bucket/image/normal/2020-10-20_12-14-55_613.jpeg",
 "anomaly-label-metadata": {
 "confidence": 1,
 "job-name": "labeling-job/auto-label",
 "class-name": "normal",
 "human-annotated": "yes",
 "creation-date": "2020-11-10T03:37:09.603",
 "type": "groundtruth/image-classification"
 },
 "anomaly-label": 0
}

JSON line keys and values

The following information describes the keys and values in an Amazon Lookout for Vision JSON
line.

source-ref

(Required) The Amazon S3 location of the image. The format is "s3://BUCKET/OBJECT_PATH".
Images in an imported dataset must be stored in the same Amazon S3 bucket.

anomaly-label

(Required) The label attribute. Use the key anomaly-label, or another key name that you choose.
The key value (0 in the preceding example) is required by Amazon Lookout for Vision, but it isn't
used. The output manifest created by Amazon Lookout for Vision converts the value to 1 for an

Manifest file 69

Amazon Lookout for Vision Developer Guide

anomalous image and a value of 0 for a normal image. The value of class-name determines if the
image is normal or anomalous.

There must be corresponding metadata identified by the field name with -metadata appended. For
example, "anomaly-label-metadata".

anomaly-label-metadata

(Required) Metadata about the label attribute. The field name must be the same as the label
attribute with -metadata appended.

confidence

(Optional) Currently not used by Amazon Lookout for Vision. If you do specify a value, use a
value of 1.

job-name

(Optional) A name that you choose for the job that processes the image.

class-name

(Required) If the image contains normal content, specify normal, otherwise specify anomaly. If
the value of class-name is any other value, the image is added to the dataset as an unlabeled
image. To label an image, see Adding images to your dataset.

human-annotated

(Required) Specify "yes", if the annotation was completed by a human. Otherwise, specify
"no".

creation-date

(Optional) The Coordinated Universal Time (UTC) date and time that the label was created.

type

(Required) The type of processing that should be applied to the image. For image-level anomaly
labels, the value is "groundtruth/image-classification".

Defining JSON lines for image segmentation

You define a JSON line for each image that you want to use in an Amazon Lookout for Vision
manifest file. If you want to create a segmentation model, The JSON line must include

Manifest file 70

Amazon Lookout for Vision Developer Guide

segmentation and classification information for the image. A manifest file is made of one or more
JSON lines, one for each image that you want to import.

To create a manifest file for segmented images

1. Create an empty text file.

2. Add a JSON line for each image the that you want to import. Each JSON line should look
similar to the following:

{"source-ref":"s3://path-to-image","anomaly-label":1,"anomaly-label-metadata":
{"class-name":"anomaly","creation-date":"2021-10-12T14:16:45.668","human-
annotated":"yes","job-name":"labeling-job/classification-job","type":"groundtruth/
image-classification","confidence":1},"anomaly-mask-ref":"s3://path-to-
image","anomaly-mask-ref-metadata":{"internal-color-map":{"0":{"class-
name":"BACKGROUND","hex-color":"#ffffff","confidence":0.0},"1":{"class-
name":"scratch","hex-color":"#2ca02c","confidence":0.0},"2":{"class-
name":"dent","hex-color":"#1f77b4","confidence":0.0}},"type":"groundtruth/
semantic-segmentation","human-annotated":"yes","creation-
date":"2021-11-23T20:31:57.758889","job-name":"labeling-job/segmentation-job"}}

3. Save the file.

Note

You can use the extension .manifest, but it is not required.

4. Create a dataset using the manifest file that you created. For more information, see Creating a
manifest file.

Segmentation JSON lines

In this section, you learn how to create a JSON line that includes segmentation and classification
information for an image.

The following JSON line shows an image with segmentation and classification information.
anomaly-label-metadata contains classification information. anomaly-mask-ref and
anomaly-mask-ref-metadata contain segmentation information.

{

Manifest file 71

Amazon Lookout for Vision Developer Guide

 "source-ref": "s3://path-to-image",
 "anomaly-label": 1,
 "anomaly-label-metadata": {
 "class-name": "anomaly",
 "creation-date": "2021-10-12T14:16:45.668",
 "human-annotated": "yes",
 "job-name": "labeling-job/classification-job",
 "type": "groundtruth/image-classification",
 "confidence": 1
 },
 "anomaly-mask-ref": "s3://path-to-image",
 "anomaly-mask-ref-metadata": {
 "internal-color-map": {
 "0": {
 "class-name": "BACKGROUND",
 "hex-color": "#ffffff",
 "confidence": 0.0
 },
 "1": {
 "class-name": "scratch",
 "hex-color": "#2ca02c",
 "confidence": 0.0
 },
 "2": {
 "class-name": "dent",
 "hex-color": "#1f77b4",
 "confidence": 0.0
 }
 },
 "type": "groundtruth/semantic-segmentation",
 "human-annotated": "yes",
 "creation-date": "2021-11-23T20:31:57.758889",
 "job-name": "labeling-job/segmentation-job"
 }
}

JSON line keys and values

The following information describes the keys and values in an Amazon Lookout for Vision JSON
line.

Manifest file 72

Amazon Lookout for Vision Developer Guide

source-ref

(Required) The Amazon S3 location of the image. The format is "s3://BUCKET/OBJECT_PATH".
Images in an imported dataset must be stored in the same Amazon S3 bucket.

anomaly-label

(Required) The label attribute. Use the key anomaly-label, or another key name that you choose.
The key value (1 in the preceding example) is required by Amazon Lookout for Vision, but it isn't
used. The output manifest created by Amazon Lookout for Vision converts the value to 1 for an
anomalous image and a value of 0 for a normal image. The value of class-name determines if the
image is normal or anomalous.

There must be corresponding metadata identified by the field name with -metadata appended. For
example, "anomaly-label-metadata".

anomaly-label-metadata

(Required) Metadata about the label attribute. Contains classification information. The field name
must be the same as the label attribute with -metadata appended.

confidence

(Optional) Currently not used by Amazon Lookout for Vision. If you do specify a value, use a
value of 1.

job-name

(Optional) A name that you choose for the job that processes the image.

class-name

(Required) If the image contains normal content, specify normal, otherwise specify anomaly. If
the value of class-name is any other value, the image is added to the dataset as an unlabeled
image. To label an image, see Adding images to your dataset.

human-annotated

(Required) Specify "yes", if the annotation was completed by a human. Otherwise, specify
"no".

creation-date

(Optional) The Coordinated Universal Time (UTC) date and time that the label was created.

Manifest file 73

Amazon Lookout for Vision Developer Guide

type

(Required) The type of processing that should be applied to the image. Use the value
"groundtruth/image-classification".

anomaly-mask-ref

(Required) The Amazon S3 location of the mask image. Use anomaly-mask-ref for the key
name or use a key name of your choosing. The key must end with -ref. The mask image
must contain colored masks for each anomaly type internal-color-map. The format is
"s3://BUCKET/OBJECT_PATH". Images in an imported dataset must be stored in the same
Amazon S3 bucket. The mask image must be a Portable Network Graphic (PNG) format image.

anomaly-mask-ref-metadata

(Required) Segmentation metadata for the image. Use anomaly-mask-ref-metadata for the key
name or use a key name of your choosing. The key name must end with -ref-metadata.

internal-color-map

(Required) A map of colors that map to individual anomaly types. The colors must match the
colors in the mask image (anomaly-mask-ref).

key

(Required) The key into the map. The entry 0 must contain the class-name BACKGROUND
that represents areas outside of anomalies on the image.

class-name

(Required) The name of the anomaly type, such as scratch or dent.

hex-color

(Required) The hex color for the anomaly type, such as #2ca02c. The color must match
a color in anomaly-mask-ref. The value for the BACKGROUND anomaly type is always
#ffffff.

confidence

(Required) Currently not used by Amazon Lookout for Vision, but a float value is required.

Manifest file 74

Amazon Lookout for Vision Developer Guide

human-annotated

(Required) Specify "yes", if the annotation was completed by a human. Otherwise, specify
"no".

creation-date

(Optional) The Coordinated Universal Time (UTC) date and time that the segmentation
information was created.

type

(Required) The type of processing that should be applied to the image. Use the value
"groundtruth/semantic-segmentation".

Creating a classification manifest file from a CSV file

This example Python script simplifies the creation of a classification manifest file by using a
Comma Separated Values (CSV) file to label images. You create the CSV file.

A manifest file describes the images used to train a model. A manifest file is made up of one or
more JSON lines. Each JSON line describes a single image. For more information, see Defining
JSON lines for image classification.

A CSV file represents tabular data over multiple rows in a text file. Fields on a row are separated by
commas. For more information, see comma separated values. For this script, each row in your CSV
file includes the S3 location of an image and the anomaly classification for the image (normal or
anomaly). Each row maps to a JSON Line in the manifest file.

For example, The following CSV file describes some of the images in the example images.

s3://s3bucket/circuitboard/train/anomaly/train-anomaly_1.jpg,anomaly
s3://s3bucket/circuitboard/train/anomaly/train-anomaly_10.jpg,anomaly
s3://s3bucket/circuitboard/train/anomaly/train-anomaly_11.jpg,anomaly
s3://s3bucket/circuitboard/train/normal/train-normal_1.jpg,normal
s3://s3bucket/circuitboard/train/normal/train-normal_10.jpg,normal
s3://s3bucket/circuitboard/train/normal/train-normal_11.jpg,normal

The script generates JSON Lines for each row. For example, the following is the JSON
Line for the first row (s3://s3bucket/circuitboard/train/anomaly/train-
anomaly_1.jpg,anomaly) .

Manifest file 75

https://en.wikipedia.org/wiki/Comma-separated_values

Amazon Lookout for Vision Developer Guide

{"source-ref": "s3://s3bucket/csv_test/train_anomaly_1.jpg","anomaly-label":
 1,"anomaly-label-metadata": {"confidence": 1,"job-name": "labeling-job/anomaly-
classification","class-name": "anomaly","human-annotated": "yes","creation-date":
 "2022-02-04T22:47:07","type": "groundtruth/image-classification"}}

If your CSV file doesn't include the Amazon S3 path for the images, use the --s3-path command
line argument to specify the Amazon S3 path to the images.

Before creating the manifest file, the script checks for duplicate images in the CSV file and any
image classifications that are not normal or anomaly. If duplicates image or image classification
errors are found, the script does the following:

• Records the first valid image entry for all images in a deduplicated CSV file.

• Records duplicate occurences of an image in the errors file.

• Records image classifications that are not normal or anomaly in the errors file.

• Doesn't create a manifest file.

The errors file includes the line number where a duplicate image or classification error is found
in the input CSV file. Use the errors CSV file to update the input CSV file and then run the script
again. Alternatively, use the errors CSV file to update the deduplicated CSV file, which only
contains unique image entries and images with no image classification errors. Rerun the script with
the updated deduplicated CSV file.

If no duplicates or errors are found in the input CSV file, the script deletes the deduplicated image
CSV file and errors file, as they are empty.

In this procedure, you create the CSV file and run the Python script to create the manifest file. The
script has been tested with Python version 3.7.

To create a manifest file from a CSV file

1. Create a CSV file with the following fields in each row (one row per image). Don't add a header
row to the CSV file.

Field 1 Field 2

The image name or the Amazon S3 path the
image. For example, s3://s3bucket/

The anomaly classification for the image
(normal or anomaly).

Manifest file 76

Amazon Lookout for Vision Developer Guide

Field 1 Field 2

circuitboard/train/anomaly/
train-anomaly_10.jpg . You can't
have a mixture of images with the Amazon
S3 path and images without.

For example s3://s3bucket/circuitboard/train/anomaly/image_10.jpg,anomaly
or image_11.jpg,normal

2. Save the CSV file.

3. Run the following Python script. Supply the following arguments:

• csv_file – The CSV file that you created in step 1.

• (Optional)--s3-path s3://path_to_folder/ – The Amazon S3 path to add to the
image file names (field 1). Use --s3-path if the images in field 1 don't already contain an
S3 path.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
Purpose
Shows how to create an Amazon Lookout for Vision manifest file from a CSV file.
The CSV file format is image location,anomaly classification (normal or anomaly)
For example:
s3://s3bucket/circuitboard/train/anomaly/train_11.jpg,anomaly
s3://s3bucket/circuitboard/train/normal/train_1.jpg,normal

If necessary, use the bucket argument to specify the Amazon S3 bucket folder for
 the images.
"""

from datetime import datetime, timezone
import argparse
import logging
import csv
import os
import json

logger = logging.getLogger(__name__)

Manifest file 77

Amazon Lookout for Vision Developer Guide

def check_errors(csv_file):
 """
 Checks for duplicate images and incorrect classifications in a CSV file.
 If duplicate images or invalid anomaly assignments are found, an errors CSV
 file
 and deduplicated CSV file are created. Only the first
 occurrence of a duplicate is recorded. Other duplicates are recorded in the
 errors file.
 :param csv_file: The source CSV file
 :return: True if errors or duplicates are found, otherwise false.
 """

 logger.info("Checking %s.", csv_file)

 errors_found = False
 errors_file = f"{os.path.splitext(csv_file)[0]}_errors.csv"
 deduplicated_file = f"{os.path.splitext(csv_file)[0]}_deduplicated.csv"

 with open(csv_file, 'r', encoding="UTF-8") as input_file,\
 open(deduplicated_file, 'w', encoding="UTF-8") as dedup,\
 open(errors_file, 'w', encoding="UTF-8") as errors:

 reader = csv.reader(input_file, delimiter=',')
 dedup_writer = csv.writer(dedup)
 error_writer = csv.writer(errors)
 line = 1
 entries = set()
 for row in reader:

 # Skip empty lines.
 if not ''.join(row).strip():
 continue

 # Record any incorrect classifications.
 if not row[1].lower() == "normal" and not row[1].lower() == "anomaly":
 error_writer.writerow(
 [line, row[0], row[1], "INVALID_CLASSIFICATION"])
 errors_found = True

 # Write first image entry to dedup file and record duplicates.
 key = row[0]
 if key not in entries:

Manifest file 78

Amazon Lookout for Vision Developer Guide

 dedup_writer.writerow(row)
 entries.add(key)
 else:
 error_writer.writerow([line, row[0], row[1], "DUPLICATE"])
 errors_found = True
 line += 1

 if errors_found:
 logger.info("Errors found check %s.", errors_file)
 else:
 os.remove(errors_file)
 os.remove(deduplicated_file)

 return errors_found

def create_manifest_file(csv_file, manifest_file, s3_path):
 """
 Read a CSV file and create an Amazon Lookout for Vision classification manifest
 file.
 :param csv_file: The source CSV file.
 :param manifest_file: The name of the manifest file to create.
 :param s3_path: The Amazon S3 path to the folder that contains the images.
 """
 logger.info("Processing CSV file %s.", csv_file)

 image_count = 0
 anomalous_count = 0

 with open(csv_file, newline='', encoding="UTF-8") as csvfile,\
 open(manifest_file, "w", encoding="UTF-8") as output_file:

 image_classifications = csv.reader(
 csvfile, delimiter=',', quotechar='|')

 # Process each row (image) in the CSV file.
 for row in image_classifications:
 # Skip empty lines.
 if not ''.join(row).strip():
 continue

 source_ref = str(s3_path) + row[0]
 classification = 0

Manifest file 79

Amazon Lookout for Vision Developer Guide

 if row[1].lower() == 'anomaly':
 classification = 1
 anomalous_count += 1

 # Create the JSON line.
 json_line = {}
 json_line['source-ref'] = source_ref
 json_line['anomaly-label'] = str(classification)

 metadata = {}
 metadata['confidence'] = 1
 metadata['job-name'] = "labeling-job/anomaly-classification"
 metadata['class-name'] = row[1]
 metadata['human-annotated'] = "yes"
 metadata['creation-date'] = datetime.now(timezone.utc).strftime('%Y-%m-
%dT%H:%M:%S.%f')
 metadata['type'] = "groundtruth/image-classification"

 json_line['anomaly-label-metadata'] = metadata

 output_file.write(json.dumps(json_line))
 output_file.write('\n')
 image_count += 1

 logger.info("Finished creating manifest file %s.\n"
 "Images: %s\nAnomalous: %s",
 manifest_file,
 image_count,
 anomalous_count)
 return image_count, anomalous_count

def add_arguments(parser):
 """
 Add command line arguments to the parser.
 :param parser: The command line parser.
 """

 parser.add_argument(
 "csv_file", help="The CSV file that you want to process."
)

 parser.add_argument(
 "--s3_path", help="The Amazon S3 bucket and folder path for the images."

Manifest file 80

Amazon Lookout for Vision Developer Guide

 " If not supplied, column 1 is assumed to include the Amazon S3 path.",
 required=False
)

def main():

 logging.basicConfig(level=logging.INFO,
 format="%(levelname)s: %(message)s")

 try:

 # Get command line arguments.
 parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
 add_arguments(parser)
 args = parser.parse_args()
 s3_path = args.s3_path
 if s3_path is None:
 s3_path = ""

 csv_file = args.csv_file
 csv_file_no_extension = os.path.splitext(csv_file)[0]
 manifest_file = csv_file_no_extension + '.manifest'

 # Create manifest file if there are no duplicate images.
 if check_errors(csv_file):
 print(f"Issues found. Use {csv_file_no_extension}_errors.csv "\
 "to view duplicates and errors.")
 print(f"{csv_file}_deduplicated.csv contains the first"\
 "occurrence of a duplicate.\n"
 "Update as necessary with the correct information.")
 print(f"Re-run the script with
 {csv_file_no_extension}_deduplicated.csv")
 else:
 print('No duplicates found. Creating manifest file.')

 image_count, anomalous_count = create_manifest_file(csv_file,
 manifest_file, s3_path)

 print(f"Finished creating manifest file: {manifest_file} \n")

 normal_count = image_count-anomalous_count
 print(f"Images processed: {image_count}")
 print(f"Normal: {normal_count}")

Manifest file 81

Amazon Lookout for Vision Developer Guide

 print(f"Anomalous: {anomalous_count}")

 except FileNotFoundError as err:
 logger.exception("File not found.:%s", err)
 print(f"File not found: {err}. Check your input CSV file.")

if __name__ == "__main__":
 main()

4. If duplicate images occur or classification errors occur:

a. Use the errors file to update the dedupulicated CSV file or the input CSV file.

b. Run the script again with the updated deduplicated CSV file or updated input CSV file.

5. If you plan to use a test dataset, repeat steps 1–4 to create a manifest file for your test
dataset.

6. If necessary, copy the images from your computer to the Amazon S3 bucket path that you
specified in column 1 of the CSV file (or specified in the --s3-path command line). To copy
the images, enter the following command at the command prompt.

aws s3 cp --recursive your-local-folder/ s3://your-target-S3-location/

7. Follow the instructions at Creating a dataset with a manifest file (console) to create a dataset.
If you are use the AWS SDK, see Creating a dataset with a manifest file (SDK).

Creating a dataset with a manifest file (console)

The following procedure shows you how to create a training or test dataset by importing an
SageMaker format manifest file that is stored in an Amazon S3 bucket.

After you create the dataset, you can add more images to the dataset, or add labels to images. For
more information, see Adding images to your dataset.

To create a dataset using an SageMaker Ground Truth format manifest file (console)

1. Create, or use an existing, Amazon Lookout for Vision compatible SageMaker Ground Truth
format manifest file. For more information, see Creating a manifest file.

2. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Manifest file 82

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Lookout for Vision Developer Guide

3. In an Amazon S3 bucket, create a folder to hold your manifest file.

4. Upload your manifest file to the folder that you just created.

5. In the Amazon S3 bucket, create a folder to store your images.

6. Upload your images to the folder you just created.

Important

The source-ref field value in each JSON line must map to images in the folder.

7. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

8. Choose Get started.

9. In the left navigation pane, choose Projects.

10. Choose the project that you want to add to use with the manifest file.

11. In the How it works section, choose Create dataset.

12. Choose the Single dataset tab or the Separate training and test datasets tab and follow the
steps.

Single dataset

1. Choose Create a single dataset.

2. In the Image source configuration section, choose Import images labeled by
SageMaker Ground Truth.

3. For .manifest file location, enter the location of your manifest file.

Separate training and test datasets

1. Choose Create a training dataset and a test dataset.

2. In the Training dataset details section, choose Import images labeled by SageMaker
Ground Truth.

3. In .manifest file location, enter the location of your training manifest file.

4. In the Test dataset details section, choose Import images labeled by SageMaker
Ground Truth.

5. In .manifest file location, enter the location of your test manifest file.
Manifest file 83

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-folder.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

Note

Your training and test datasets can have different image sources.

13. Choose Submit.

14. Follow the steps in Training your model to train your model.

Amazon Lookout for Vision creates a dataset in the Amazon S3 bucket datasets folder. Your
original .manifest file remains unchanged.

Creating a dataset with a manifest file (SDK)

You use the CreateDataset operation to create the datasets associated with an Amazon Lookout for
Vision project.

If you want to use a single dataset for training and testing, create a single dataset with the
DatasetType value set to train. During training, the dataset is internally split to make a training
and test dataset. You don't have access to the split training and test datasets. If you want a
separate test dataset, make a second call to CreateDataset with the DatasetType value set
test. During training, the training and test datasets are used to train and test the model.

You can optionally use the DatasetSource parameter to specify the location of a SageMaker
Ground Truth format manifest file that's used to populate the dataset. In this case, the call to
CreateDataset is asynchronous. To check the current status, call DescribeDataset. For more
information, see Viewing your datasets. If a validation error occurs during import, the value of
Status is set to CREATE_FAILED and the status message (StatusMessage) is set.

Tip

If you are creating a dataset with the getting started example dataset, use the manifest file
(getting-started/dataset-files/manifests/train.manifest) that the script
creates in Step 1: Create the manifest file and upload images.
If you are creating a dataset with the circuitboard example images, you have two options:

1. Create the manifest file using code. The Amazon Lookout for Vision Lab Python
Notebook shows how to create the manifest file for the circuitboard example images.
Alternatively, use the Datasets example code in the AWS Code Examples Repository.

Manifest file 84

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateDataset
https://github.com/aws-samples/amazon-lookout-for-vision/blob/main/Amazon%20Lookout%20for%20Vision%20Lab.ipynb
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/python/example_code/lookoutvision/datasets.py

Amazon Lookout for Vision Developer Guide

2. If you've already used the Amazon Lookout for Vision console to create a dataset
with the circuitboard example images, reuse the manifest files created for you
by Amazon Lookout for Vision. The training and test manifest file locations are
s3://bucket/datasets/project name/train or test/manifests/output/
output.manifest.

If you don't specify DatasetSource, an empty dataset is created. In this case, the call to
CreateDataset is synchronous. Later, you can labeled images to the dataset by calling
UpdateDatasetEntries. For example code, see Adding more images (SDK).

If you want to replace a dataset, first delete the existing dataset with DeleteDataset and then
create a new dataset of the same dataset type by calling CreateDataset. For more information,
see Deleting a dataset.

After you create the datasets, you can create the model. For more information, see Training a
model (SDK).

You can view the labeled images (JSON lines) within a dataset by calling ListDatasetEntries. You
can add labeled images by calling UpdateDatasetEntries.

To view information about the test and training datasets, see Viewing your datasets.

To create a dataset (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to create a dataset.

CLI

Change the following values:

• project-name to the name of the project that you want to associate the dataset with.

• dataset-type to the type of dataset that you want to create (train or test).

• dataset-source to the Amazon S3 location of the manifest file.

• Bucket to the name of the Amazon S3 bucket that contains the manifest file.

• Key to the path and file name of the manifest file in the Amazon S3 bucket.

Manifest file 85

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UpdateDatasetEntries
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DeleteDataset
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListDatasetEntries

Amazon Lookout for Vision Developer Guide

aws lookoutvision create-dataset --project-name project\
 --dataset-type train or test\
 --dataset-source '{ "GroundTruthManifest": { "S3Object": { "Bucket": "bucket",
 "Key": "manifest file" } } }' \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def create_dataset(lookoutvision_client, project_name, manifest_file,
 dataset_type):
 """
 Creates a new Lookout for Vision dataset

 :param lookoutvision_client: A Lookout for Vision Boto3 client.
 :param project_name: The name of the project in which you want to
 create a dataset.
 :param bucket: The bucket that contains the manifest file.
 :param manifest_file: The path and name of the manifest file.
 :param dataset_type: The type of the dataset (train or test).
 """
 try:
 bucket, key = manifest_file.replace("s3://", "").split("/", 1)
 logger.info("Creating %s dataset type...", dataset_type)
 dataset = {
 "GroundTruthManifest": {"S3Object": {"Bucket": bucket, "Key":
 key}}
 }
 response = lookoutvision_client.create_dataset(
 ProjectName=project_name,
 DatasetType=dataset_type,
 DatasetSource=dataset,
)
 logger.info("Dataset Status: %s", response["DatasetMetadata"]
["Status"])
 logger.info(
 "Dataset Status Message: %s",
 response["DatasetMetadata"]["StatusMessage"],

Manifest file 86

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

)
 logger.info("Dataset Type: %s", response["DatasetMetadata"]
["DatasetType"])

 # Wait until either created or failed.
 finished = False
 status = ""
 dataset_description = {}
 while finished is False:
 dataset_description = lookoutvision_client.describe_dataset(
 ProjectName=project_name, DatasetType=dataset_type
)
 status = dataset_description["DatasetDescription"]["Status"]

 if status == "CREATE_IN_PROGRESS":
 logger.info("Dataset creation in progress...")
 time.sleep(2)
 elif status == "CREATE_COMPLETE":
 logger.info("Dataset created.")
 finished = True
 else:
 logger.info(
 "Dataset creation failed: %s",
 dataset_description["DatasetDescription"]
["StatusMessage"],
)
 finished = True

 if status != "CREATE_COMPLETE":
 message = dataset_description["DatasetDescription"]
["StatusMessage"]
 logger.exception("Couldn't create dataset: %s", message)
 raise Exception(f"Couldn't create dataset: {message}")

 except ClientError:
 logger.exception("Service error: Couldn't create dataset.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

Manifest file 87

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/CreateDataset.java

Amazon Lookout for Vision Developer Guide

/**
 * Creates an Amazon Lookout for Vision dataset from a manifest file.
 * Returns after Lookout for Vision creates the dataset.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project in which you want to create a
 * dataset.
 * @param datasetType The type of dataset that you want to create (train or
 * test).
 * @param bucket The S3 bucket that contains the manifest file.
 * @param manifestFile The name and location of the manifest file within the S3
 * bucket.
 * @return DatasetDescription The description of the created dataset.
 */
public static DatasetDescription createDataset(LookoutVisionClient lfvClient,
 String projectName,
 String datasetType,
 String bucket,
 String manifestFile)
 throws LookoutVisionException, InterruptedException {

 logger.log(Level.INFO, "Creating {0} dataset for project {1}",
 new Object[] { projectName, datasetType });

 // Build the request. If no bucket supplied, setup for empty dataset
 creation.
 CreateDatasetRequest createDatasetRequest = null;

 if (bucket != null && manifestFile != null) {

 InputS3Object s3Object = InputS3Object.builder()
 .bucket(bucket)
 .key(manifestFile)
 .build();

 DatasetGroundTruthManifest groundTruthManifest =
 DatasetGroundTruthManifest.builder()
 .s3Object(s3Object)
 .build();

 DatasetSource datasetSource = DatasetSource.builder()
 .groundTruthManifest(groundTruthManifest)
 .build();

Manifest file 88

Amazon Lookout for Vision Developer Guide

 createDatasetRequest = CreateDatasetRequest.builder()
 .projectName(projectName)
 .datasetType(datasetType)
 .datasetSource(datasetSource)
 .build();
 } else {
 createDatasetRequest = CreateDatasetRequest.builder()
 .projectName(projectName)
 .datasetType(datasetType)
 .build();
 }

 lfvClient.createDataset(createDatasetRequest);

 DatasetDescription datasetDescription = null;

 boolean finished = false;

 // Wait until dataset is created, or failure occurs.
 while (!finished) {

 datasetDescription = describeDataset(lfvClient, projectName,
 datasetType);

 switch (datasetDescription.status()) {
 case CREATE_COMPLETE:
 logger.log(Level.INFO, "{0}dataset created for
 project {1}",
 new Object[] { datasetType,
 projectName });
 finished = true;
 break;
 case CREATE_IN_PROGRESS:
 logger.log(Level.INFO, "{0} dataset creating for
 project {1}",
 new Object[] { datasetType,
 projectName });

 TimeUnit.SECONDS.sleep(5);

 break;

 case CREATE_FAILED:

Manifest file 89

Amazon Lookout for Vision Developer Guide

 logger.log(Level.SEVERE,
 "{0} dataset creation failed for
 project {1}. Error {2}",
 new Object[] { datasetType,
 projectName,

 datasetDescription.statusAsString() });
 finished = true;
 break;
 default:
 logger.log(Level.SEVERE, "{0} error when
 creating {1} dataset for project {2}",
 new Object[] { datasetType,
 projectName,

 datasetDescription.statusAsString() });
 finished = true;
 break;

 }
 }

 logger.log(Level.INFO, "Dataset info. Status: {0}\n Message: {1} }",
 new Object[] { datasetDescription.statusAsString(),
 datasetDescription.statusMessage() });

 return datasetDescription;

}

3. Train your model by following the steps at Training a model (SDK).

Labeling images

You can use the Amazon Lookout for Vision console to add or modify the labels assigned to
images in your dataset. If you're using the SDK, the labels are part of the manifest file you supply
to CreateDataset. You can update the labels for an image by calling UpdateDatasetEntries. For
example code, see Adding more images (SDK).

Labeling images 90

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateDataset
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UpdateDatasetEntries

Amazon Lookout for Vision Developer Guide

Choosing the model type

The labels you assign to images determine the type of model that Lookout for Vision creates. If
your project has a separate test dataset, label the images in the same way.

Image classification model

To create an image classification model, you classify each image as normal or anomalous. For each
image, do Classifying images (console).

Image segmentation model

To create an image segmentation model, you classify each image as normal or anomalous. For
each anomalous image, you also specify a pixel mask for each anomalous area on the image and
an anomaly label for the type of anomaly within the pixel mask. For example, the blue mask in the
following image marks the location of a scratch anomaly type on a car. You can specify more than
one type of anomaly label in an image. For each image, do Segmenting images (console).

Classifying images (console)

You use the Lookout for Vision console to classify images in a dataset as normal or an anomaly.
Unclasified images aren’t used to train your model.

If you're creating an image segmentation model, skip this procedure and do Segmenting images
(console), which includes steps to classify images.

Note

If you've just completed Creating your dataset, the console should currently show your
model dashboard and you don't need to do steps 1 - 4.

Choosing the model type 91

Amazon Lookout for Vision Developer Guide

To classify your images (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. In the left navigation pane, choose Projects.

3. In the Projects page, choose the project that you want to use.

4. In the left navigation pane of your project, choose Dataset.

5. If you have separate training and test datasets, choose the tab for the dataset that you want to
use.

6. Choose Start labeling.

7. Choose Select all images on this page.

8. If the images are normal, choose Classify as normal, otherwise choose Classify as anomaly. A
label appears underneath each picture.

9. If you need to change the label for an image, do the following:

a. Choose Anomaly or Normal under the image.

b. If you can't determine the correct label for an image, magnify the image by choosing the
image in the gallery.

Note

You can filter image labels by choosing the desired label, or label state, in the Filters
section.

10. Repeat steps 7-9 on each page as necessary until all the images in the dataset have been
labeled correctly.

11. Choose Save changes.

12. If you've finished labeling your images, you can train your model.

Segmenting images (console)

If you're creating an image segmentation model, you must classify images as normal or anomaly.
You must also add segmentation information to anomalous images. To specify segmentation
information, you first specify anomaly labels for each type of anomaly, such as a dent or scratch,

Segmenting images (console) 92

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

that you want your model to find. Then you specify an anomaly mask and anomaly label for each
anomaly on anomalous images in your dataset.

Note

If you're creating an image classification model, you don't need to segment images and you
don't need to specify anomaly labels.

Topics

• Specifying anomaly labels

• Labeling an image

• Segmenting an image with the annotation tool

Specifying anomaly labels

You define an anomaly label for each type of anomaly that's in the dataset images.

Specify anomaly labels

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. In the left navigation pane, choose Projects.

3. In the Projects page, choose the project that you want to use.

4. In the left navigation pane of your project, choose Dataset.

5. In Anomaly labels choose Add anomaly labels. If you've previously added an anomaly label,
choose Manage.

6. In the dialog box, do the following:

a. Enter the anomaly label that you want to add and choose Add anomaly label.

b. Repeat the previous step until you have entered every anomaly label that you want your
model to find.

c. (Optional) Choose the edit icon to change the label name.

d. (Optional) Choose the delete icon to delete a new anomaly label. You can't delete
anomaly types that your dataset is currently using using.

7. Choose Confirm to add the new anomaly labels to the dataset.

Segmenting images (console) 93

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

After you specify the anomaly labels, label the images by doing Labeling an image.

Labeling an image

To label an image for image segmentation, classify the image as normal or an anomaly. Then, use
the annotation tool to segment the image by drawing masks that tightly cover the areas for each
type of anomaly present in the image.

To label an image

1. If you have separate training and test datasets, choose the tab for the dataset that you want to
use.

2. If you haven't already, specify the anomaly types for your dataset by doing Specifying anomaly
labels.

3. Choose Start labeling.

4. Choose Select all images on this page.

5. If the images are normal, choose Classify as normal, otherwise choose Classify as anomaly.

6. To change the label for a single image, choose Normal or Anomaly under the image.

Note

You can filter image labels by choosing the desired label, or label state, in the Filters
section. You can sort by confidence score in the Sorting options section.

7. For each anomalous image, choose the image to open the annotation tool. Add segmentation
information by doing Segmenting an image with the annotation tool.

8. Choose Save changes.

9. If you've finished labeling your images, you can train your model.

Segmenting an image with the annotation tool

You use the annotation tool to segment an image by marking anomalous areas with a mask.

To segment an image with the annotation tool

1. Open the annotation tool by selecting the image in the dataset gallery. If necessary, choose
Start labeling to enter labeling mode.

Segmenting images (console) 94

Amazon Lookout for Vision Developer Guide

2. In the Anomaly labels section choose the anomaly label that you want to mark. If necessary,
choose Add anomaly labels to add a new anomaly label.

3. Choose a drawing tool at the bottom of the page and draw masks that tightly covers
anomalous areas for the anomaly label. The following image is an example of a mask that
tightly covers an anomaly.

The following is an example of a poor mask that doesn't tightly cover an anomaly.

Segmenting images (console) 95

Amazon Lookout for Vision Developer Guide

4. If you have more images to segment, choose Next and repeat steps 2 and 3.

5. Choose Submit and close to finish segmenting images.

Training your model

After you have created your datasets and labeled the images, you can train your model. As part
of the training process, a test dataset is used. If you have a single dataset project, the images in
the dataset are automatically split into a test dataset and a training dataset as part of the training
process. If your project has a training and a test dataset, they are used to separately train and test
the dataset.

After training is complete, you can evaluate the performance of the model and make any necessary
improvements. For more information, see Improving your Amazon Lookout for Vision model.

To train your model, Amazon Lookout for Vision makes a copy of your source training and test
images. By default the copied images are encrypted with a key that AWS owns and manages. You
can also choose to use your own AWS Key Management Service (KMS) key. For more information,
see AWS Key Management Service concepts. Your source images are unaffected.

You can assign metadata to your model in the form of tags. For more information, see Tagging
models.

Training your model 96

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Amazon Lookout for Vision Developer Guide

Each time you train a model, a new version of the model is created. If you no longer need a version
of a model, you can delete it. For more information, see Deleting a model.

You are charged for the amount of time it takes to successfully train your model. For more
information, see Training Hours.

To view the existing models in a project, Viewing your models.

Note

If you've just completed Creating your dataset or Adding images to your dataset. The
console should currently show your model dashboard and you don't need to do steps 1 - 4.

Topics

• Training a model (console)

• Training a model (SDK)

Training a model (console)

The following procedure shows you how to train your model using the console.

To train your model (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. In the left navigation pane, choose Projects.

3. In the Projects page, choose the project that contains the model that you want to train.

4. On the project details page, choose Train model. The Train model button is available if you
have enough labeled images to train the model. If the button isn't available, add more images
until you have enough labeled images.

5. (Optional) If you want to use your own AWS KMS encryption key, do the following:

a. In Image data encryption choose Customize encryption settings (advanced).

b. In encryption.aws_kms_key enter the Amazon Resource Name (ARN) of your key, or
choose an existing AWS KMS key. To create a new key, choose Create an AWS IMS key.

Training a model (console) 97

https://aws.amazon.com/lookout-for-vision/pricing/#Training_Hours
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

6. (Optional) if you want to add tags to your model do the following:

a. In the Tags section, choose Add new tag.

b. Enter the following:

i. The name of the key in Key.

ii. The value of the key in Value.

c. To add more tags, repeat steps 6a and 6b.

d. (Optional) If you want to remove a tag, choose Remove next to the tag that you want
to remove. If you are removing a previously saved tag, it is removed when you save your
changes.

7. Choose Train model.

8. In the Do you want to train your model? dialog box, choose Train model.

9. In the Models view, you can see that training has started and you can check the current status
by viewing the Status column for the model version. Training a model takes a while to
complete.

10. When training is finished, you can evaluate its performance. For more information, see
Improving your Amazon Lookout for Vision model.

Training a model (SDK)

You use the CreateModel operation to start the training, testing and evaluation of a model.
Amazon Lookout for Vision trains the model using the training and test dataset associated with the
project. For more information, see Creating a project (SDK).

Each time you call CreateModel, a new version of the model is created. The response from
CreateModel includes the version of the model.

You are charged for each successful model training. Use the ClientToken input parameter to
help prevent charges due to unnecessary or accidental repeats of model training by your users.
ClientToken is an idempotent input parameter that ensures CreateModel only completes once
for a specific set of parameters — A repeat call to CreateModel with the same ClientToken
value ensures that training isn't repeated. If you don't supply a value for ClientToken, the AWS
SDK you are using inserts a value for you. This prevents retries after a network error from starting
multiple training jobs, but you'll need to provide your own value for your own use cases. For more
information, see CreateModel.

Training a model (SDK) 98

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateModel

Amazon Lookout for Vision Developer Guide

Training takes a while to complete. To check the current status, call DescribeModel and pass
the project name (specified in the call to CreateProject) and the model version. The status
field indicates the current status of the model training. For example code, see Viewing your models
(SDK).

If training is successful, you can evaluate model. For more information, see Improving your Amazon
Lookout for Vision model.

To view the models that you have created in a project, call ListModels. For example code, see
Viewing your models.

To train a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to train a model.

CLI

Change the following values:

• project-name to the name of the project that contains the model that you want to
create.

• output-config to the location where you want to save training results. Replace the
following values:

• output bucket with the name of the Amazon S3 bucket where Amazon Lookout for
Vision saves the training results.

• output folder with the name of the folder where you want to save the training
results.

• Key with the name of a tag key.

• Value with a value to associate with tag_key.

aws lookoutvision create-model --project-name "project name"\
 --output-config '{ "S3Location": { "Bucket": "output bucket", "Prefix":
 "output folder" } }'\
 --tags '[{"Key":"Key","Value":"Value"}]' \
 --profile lookoutvision-access

Training a model (SDK) 99

Amazon Lookout for Vision Developer Guide

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def create_model(
 lookoutvision_client,
 project_name,
 training_results,
 tag_key=None,
 tag_key_value=None,
):
 """
 Creates a version of a Lookout for Vision model.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project in which you want to create
 a
 model.
 :param training_results: The Amazon S3 location where training results
 are stored.
 :param tag_key: The key for a tag to add to the model.
 :param tag_key_value - A value associated with the tag_key.
 return: The model status and version.
 """
 try:
 logger.info("Training model...")
 output_bucket, output_folder = training_results.replace("s3://",
 "").split(
 "/", 1
)
 output_config = {
 "S3Location": {"Bucket": output_bucket, "Prefix": output_folder}
 }
 tags = []
 if tag_key is not None:
 tags = [{"Key": tag_key, "Value": tag_key_value}]

 response = lookoutvision_client.create_model(
 ProjectName=project_name, OutputConfig=output_config, Tags=tags
)

Training a model (SDK) 100

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 logger.info("ARN: %s", response["ModelMetadata"]["ModelArn"])
 logger.info("Version: %s", response["ModelMetadata"]
["ModelVersion"])
 logger.info("Started training...")

 print("Training started. Training might take several hours to
 complete.")

 # Wait until training completes.
 finished = False
 status = "UNKNOWN"
 while finished is False:
 model_description = lookoutvision_client.describe_model(
 ProjectName=project_name,
 ModelVersion=response["ModelMetadata"]["ModelVersion"],
)
 status = model_description["ModelDescription"]["Status"]

 if status == "TRAINING":
 logger.info("Model training in progress...")
 time.sleep(600)
 continue

 if status == "TRAINED":
 logger.info("Model was successfully trained.")
 else:
 logger.info(
 "Model training failed: %s ",
 model_description["ModelDescription"]["StatusMessage"],
)
 finished = True
 except ClientError:
 logger.exception("Couldn't train model.")
 raise
 else:
 return status, response["ModelMetadata"]["ModelVersion"]

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

Training a model (SDK) 101

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/CreateModel.java

Amazon Lookout for Vision Developer Guide

/**
 * Creates an Amazon Lookout for Vision model. The function returns after model
 * training completes. Model training can take multiple hours to complete.
 * You are charged for the amount of time it takes to successfully train a
 model.
 * Returns after Lookout for Vision creates the dataset.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project in which you want to create a
 * model.
 * @param description A description for the model.
 * @param bucket The S3 bucket in which Lookout for Vision stores the
 * training results.
 * @param folder The location of the training results within the S3
 * bucket.
 * @return ModelDescription The description of the created model.
 */
public static ModelDescription createModel(LookoutVisionClient lfvClient, String
 projectName,
 String description, String bucket, String folder)
 throws LookoutVisionException, InterruptedException {

 logger.log(Level.INFO, "Creating model for project: {0}.", new Object[]
 { projectName });

 // Setup input parameters.
 S3Location s3Location = S3Location.builder()
 .bucket(bucket)
 .prefix(folder)
 .build();

 OutputConfig config = OutputConfig.builder()
 .s3Location(s3Location)
 .build();

 CreateModelRequest createModelRequest = CreateModelRequest.builder()
 .projectName(projectName)
 .description(description)
 .outputConfig(config)
 .build();

 // Create and train the model.

Training a model (SDK) 102

Amazon Lookout for Vision Developer Guide

 CreateModelResponse response =
 lfvClient.createModel(createModelRequest);

 String modelVersion = response.modelMetadata().modelVersion();
 boolean finished = false;
 DescribeModelResponse descriptionResponse = null;

 // Wait until training finishes or fails.

 do {
 DescribeModelRequest describeModelRequest =
 DescribeModelRequest.builder()
 .projectName(projectName)
 .modelVersion(modelVersion)
 .build();

 descriptionResponse =
 lfvClient.describeModel(describeModelRequest);

 switch (descriptionResponse.modelDescription().status()) {
 case TRAINED:
 logger.log(Level.INFO, "Model training completed
 for project {0} version {1}.",
 new Object[] { projectName,
 modelVersion });
 finished = true;
 break;

 case TRAINING:
 logger.log(Level.INFO,
 "Model training in progress for
 project {0} version {1}.",
 new Object[] { projectName,
 modelVersion });
 TimeUnit.SECONDS.sleep(60);

 break;

 case TRAINING_FAILED:
 logger.log(Level.SEVERE,
 "Model training failed for for
 project {0} version {1}.",
 new Object[] { projectName,
 modelVersion });

Training a model (SDK) 103

Amazon Lookout for Vision Developer Guide

 finished = true;
 break;

 default:
 logger.log(Level.SEVERE,
 "Unexpected error when training
 model project {0} version {1}: {2}.",
 new Object[] { projectName,
 modelVersion,

 descriptionResponse.modelDescription()

 .status() });
 finished = true;
 break;

 }
 } while (!finished);

 return descriptionResponse.modelDescription();

}

3. When training is finished, you can evaluate its performance. For more information, see
Improving your Amazon Lookout for Vision model.

Troubleshooting model training

Issues with your manifest file or training images can cause model training to fail. Before retraining
your model, check the following potential issues.

Anomaly label colors don't match color of anomalies in mask image

If you are training an image segmentation model, the color of the anomaly label in the manifest
file must match the color that's in the mask image. The JSON line for an image in the manifest
file has metadata (internal-color-map) that tells Amazon Lookout for Vision which color
corresponds to an anomaly label. For example, the color for the scratch anomaly label in the
following JSON line is #2ca02c.

{

Troubleshooting model training 104

Amazon Lookout for Vision Developer Guide

 "source-ref": "s3://path-to-image",
 "anomaly-label": 1,
 "anomaly-label-metadata": {
 "class-name": "anomaly",
 "creation-date": "2021-10-12T14:16:45.668",
 "human-annotated": "yes",
 "job-name": "labeling-job/classification-job",
 "type": "groundtruth/image-classification",
 "confidence": 1
 },
 "anomaly-mask-ref": "s3://path-to-image",
 "anomaly-mask-ref-metadata": {
 "internal-color-map": {
 "0": {
 "class-name": "BACKGROUND",
 "hex-color": "#ffffff",
 "confidence": 0.0
 },
 "1": {
 "class-name": "scratch",
 "hex-color": "#2ca02c",
 "confidence": 0.0
 },
 "2": {
 "class-name": "dent",
 "hex-color": "#1f77b4",
 "confidence": 0.0
 }
 },
 "type": "groundtruth/semantic-segmentation",
 "human-annotated": "yes",
 "creation-date": "2021-11-23T20:31:57.758889",
 "job-name": "labeling-job/segmentation-job"
 }
}

If the colors in the mask image don't match the values in hex-color, training fails and you need
to update the manifest file.

To update the color values in a manifest file

1. Using a text editor, open the manifest file that you used to create the dataset.

Anomaly label colors don't match color of anomalies in mask image 105

Amazon Lookout for Vision Developer Guide

2. For each JSON line (image), check that the colors (hex-color) within the internal-color-
map field match the colors for the anomaly labels in the mask image.

You can get location of the mask image from anomaly-mask-ref field. Download the image
to your computer and use the following code to get the colors in an image.

from PIL import Image
img = Image.open('path to local copy of mask file')
colors = img.convert('RGB').getcolors() #this converts the mode to RGB
for color in colors:
 print('#%02x%02x%02x' % color[1])

3. For each image with an incorrect color assignment, update the hex-color field in the JSON
line for the image.

4. Save the update manifest file.

5. Delete the existing dataset from the project.

6. Create a new dataset in the project with the updated manifest file.

7. Train the model.

Alternatively, for steps 5 and 6, you can update individual images in the dataset by calling the
UpdateDatasetEntries operation and supplying updated JSON lines for the images you want to
update. For example code, see Adding more images (SDK).

Mask images aren't in PNG format

If you are training an image segmentation model, the mask images must be in PNG format. If you
create a dataset from a manifest file, make sure the mask images you reference in the anomaly-
mask-ref are PNG format. If the mask images are not in PNG format, you need to convert them to
PNG format. It is not sufficient to rename the extension for an image file to .png.

Mask images that you create in the Amazon Lookout for Vision console or with a SageMaker
Ground Truth job are created in PNG format. You do not need to change the format of these
images.

To correct non-PNG format mask images in a manifest file

1. Using a text editor, open the manifest file that you used to create the dataset.

Mask images aren't in PNG format 106

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UpdateDatasetEntries.html

Amazon Lookout for Vision Developer Guide

2. For each JSON lines (image) make image sure that the anomaly-mask-ref references a PNG
format image. For more information, see Creating a manifest file.

3. Save the updated manifest file.

4. Delete the existing dataset from the project.

5. Create a new dataset in the project with the updated manifest file.

6. Train the model.

Segmentation or classification labels are inaccurate or missing

Missing or inaccurate labels can cause training to fail or create a model that performs poorly.
We recommend that you label all images in your dataset. If you don't label all images and model
training fails, or your model performs poorly, add more images.

Check the following:

• If you are creating a segmentation model, masks must tightly cover the anomalies on your
dataset images. To check the masks in your dataset, view the images in the project's dataset
gallery. If necessary, redraw the image masks. For more information, see Segmenting images
(console).

• Make sure that anomalous images in your dataset images are classified. If you're creating an
image segmentation model, make sure anomalous images have anomaly labels and image
masks.

It's important to remember which type of model (segmentation or classification) you are
creating. A classification model doesn't require image masks on anomalous images. Don't add
masks to dataset images intended for a classification model.

To update missing labels

1. Open the project's dataset gallery.

2. Filter Unlabeled images to see which images do not have labels.

3. Do one of the following:

• If you are creating an image classification model, classify each unlabeled image.

Segmentation or classification labels are inaccurate or missing 107

Amazon Lookout for Vision Developer Guide

• If you are creating an image segmentation model, classify and segment each unlabeled
image.

4. If you are creating an image segmentation model, add masks to any classified anomalous
images that are missing masks.

5. Train the model.

If you choose not to fix poor or missing labels, we recommend that you add more labeled images
or remove the affected images from the dataset. You can add more from the console or by using
the UpdateDatasetEntries operation. For more information, see Adding images to your dataset.

If you choose to remove the images, you must recreate the dataset without the affected images, as
you can't delete an image from a dataset. For more information, see Removing images from your
dataset.

Segmentation or classification labels are inaccurate or missing 108

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UpdateDatasetEntries.html

Amazon Lookout for Vision Developer Guide

Improving your Amazon Lookout for Vision model

During training Lookout for Vision tests your model with the test dataset and uses the results to
create performance metrics. You can use performance metrics to evaluate the performance of your
model. If necessary, you can take steps to improve your datasets and then retrain your model.

If you're satisfied with the performance of your model, you can begin to use it. For more
information, see Running your trained Amazon Lookout for Vision model.

Topics

• Step 1: Evaluate the performance of your model

• Step 2: Improve your model

• Viewing performance metrics

• Verifying your model with a trial detection task

Step 1: Evaluate the performance of your model

You can access the performance metrics from the console and from the DescribeModel operation.
Amazon Lookout for Vision provides summary performance metrics for the test dataset and the
predicted results for all individual images. If your model is a segmentation model, the console also
shows summary metrics for each anomaly label.

To view the performance metrics and test image predictions in the console, see Viewing
performance metrics (console). For information about accessing performance metrics and test
image predictions with the DescribeModel operation, see Viewing performance metrics (SDK).

Image classification metrics

Amazon Lookout for Vision provides the following summary metrics for the classifications that a
model makes during testing:

• Precision

• Recall

• F1 score

Step 1: Evaluate the performance of your model 109

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModel

Amazon Lookout for Vision Developer Guide

Image segmentation model metrics

If the model is an image segmentation model, Amazon Lookout for Vision provides summary
image classification metrics and summary performance metrics for each anomaly label:

• F1 score

• Average Intersection over Union (IoU)

Precision

The precision metric answers the question – When the model predicts that an image contains an
anomaly, how often is that prediction correct?

Precision is a useful metric for situations where the cost of a false positive is high. For example, the
cost of removing a machine part that is not defective from an assembled machine.

Amazon Lookout for Vision provides a summary precision metric value for the entire test dataset.

Precision is the fraction of correctly predicted anomalies (true positives) over all predicted
anomalies (true and false positives). The formula for precision is as follows.

Precision value = true positives / (true positives + false positives)

The possible values for precision range from 0–1. The Amazon Lookout for Vision console displays
precision as a percentage value (0–100).

A higher precision value indicates that more of the predicted anomalies are correct. For example,
suppose your model predicts that 100 images are anomalous. If 85 of the predictions are correct
(the true positives) and 15 are incorrect (the false positives), the precision is calculated as follows:

85 true positives / (85 true positives + 15 false positives) = 0.85 precision value

However, if the model only predicts 40 images correctly out of 100 anomaly predictions, the
resulting precision value is lower at 0.40 (that is, 40 / (40 + 60) = 0.40). In this case, your model
is making more incorrect predictions than correct predictions. To fix this, consider making
improvements to your model. For more information, see Step 2: Improve your model.

For more information, see Precision and recall.

Image segmentation model metrics 110

https://en.wikipedia.org/wiki/Precision_and_recall

Amazon Lookout for Vision Developer Guide

Recall

The recall metric answers the question - Of the total number of anomalous images in the test
dataset, how many are correctly predicted as anomalous?

The recall metric is useful for situations where the cost of a false negative is high. For example,
when the cost of not removing a defective part is high. Amazon Lookout for Vision provides a
summary recall metric value for the entire test dataset.

Recall is the fraction of the anomalous test images that were detected correctly. It is a measure of
how often the model can correctly predict an anomalous image, when it's actually present in the
images of your test dataset. The formula for recall is calculated as follows:

Recall value = true positives / (true positives + false negatives)

The range for recall is 0–1. The Amazon Lookout for Vision console displays recall as a percentage
value (0–100).

A higher recall value indicates that more of the anomalous images are correctly identified. For
example, suppose the test dataset contains 100 anomalous images. If the model correctly detects
90 of the 100 anomalous images, then the recall is as follows:

90 true positives / (90 true positives + 10 false negatives) = 0.90 recall value

A recall value of 0.90 indicates that your model is correctly predicting most of the anomalous
images in the test dataset. If the model only predicts 20 of the anomalous images correctly, the
recall is lower at 0.20 (that is, 20 / (20 + 80) = 0.20).

In this case, you should consider making improvements to your model. For more information, see
Step 2: Improve your model.

For more information, see Precision and recall.

F1 score

Amazon Lookout for Vision provides an average model performance score for the test dataset.
Specifically, model performance for anomaly classification is measured by the F1 score metric,
which is the harmonic mean of the precision and recall scores.

F1 score is an aggregate measure that takes into account both precision and recall. The model
performance score is a value between 0 and 1. The higher the value, the better the model is

Recall 111

https://en.wikipedia.org/wiki/Precision_and_recall

Amazon Lookout for Vision Developer Guide

performing for both recall and precision. For example, for a model with precision of 0.9 and a recall
of 1.0, the F1 score is 0.947.

If the model isn't performing well, for example, with a low precision of 0.30 and a high recall of
1.0, the F1 score is 0.46. Similarly, if the precision is high (0.95) and the recall is low (0.20), the F1
score is 0.33. In both cases, the F1 score is low, which indicates problems with the model.

For more information, see F1 score.

Average Intersection over Union (IoU)

The average percentage overlap between the anomaly masks in the test images and the anomaly
masks that the model predicts for the test images. Amazon Lookout for Vision returns the Average
IoU for each anomaly label and is only returned by image segmentation models.

A low percentage value indicates that the model isn't accurately matching its predicted masks for a
label with the masks in the test images.

The following image has a low IoU. The orange mask is the prediction from the model and doesn't
tightly cover the blue mask that represents the mask in a test image.

The following image has a higher IoU. The blue mask (test image) is tightly covered by the orange
mask (predicted mask).

Average Intersection over Union (IoU) 112

https://en.wikipedia.org/wiki/F1_score

Amazon Lookout for Vision Developer Guide

Testing results

During testing, the model predicts classification for each test image in the test dataset. The result
for each prediction is compared to the label (normal or anomaly) of the corresponding test image
as follows:

• Correctly predicting that an image is anomalous is considered a true positive.

• Incorrectly predicting that an image is anomalous is considered a false positive.

• Correctly predicting that an image is normal is considered a true negative.

• Incorrectly predicting that an image is normal is considered a false negative.

If the model is a segmentation model, the model also predicts masks and anomaly labels for the
location of anomalies on the test image.

Amazon Lookout for Vision uses the results of the comparisons to generate the performance
metrics.

Step 2: Improve your model

The performance metrics might show that you can improve your model. For example, if the model
doesn't detect all anomalies in the test dataset, your model has low recall (that is, the recall metric
has a low value). If you need to improve your model, consider the following:

• Check that the training and test dataset images are properly labeled.

• Reduce the variability of image capture conditions such as lighting and object pose, and train
your model on objects of the same type.

• Ensure that your images show only the required content. For example, if your project detects
anomalies in machine parts, make sure that no other objects are in your images.

Testing results 113

Amazon Lookout for Vision Developer Guide

• Add more labeled images to your train and test datasets. If your test dataset has excellent recall
and precision but the model performs poorly when deployed, your test dataset might not be
representative enough and you need to extend it.

• If your test dataset results in poor recall and precision, consider how well the anomalies and
image capture conditions in the training and test datasets match. If your training images aren’t
representative of the expected anomalies and conditions, but images in the test images are, add
images to the training training dataset with the expected anomalies and conditions. If the test
dataset images aren’t in the expected conditions, but the training images are, update the test
dataset.

For more information, see Adding more images. An alternative way to add labeled images to
your training dataset is to run a trial detection task and verify the results. You can then add the
verified images to the training dataset. For more information, see Verifying your model with a
trial detection task.

• Ensure you have sufficiently diverse normal and anomalous images in your training and test
dataset. The images must represent the type of normal and anomalous images that your model
will encounter. For example, when analyzing circuit boards, your normal images should represent
the variations in position and soldering of components, such as resistors and transistors. The
anomalous images should represent the different types of anomalies that the system might
encounter, such as misplaced or missing components.

• If your model has low Average IoU for detected anomaly types, check the mask outputs from the
segmentation model. For some use cases, such as scratches, the model might output scratches
that are very close to groundtruth scratches in the test images, but with a low pixel overlap.
For example, two parallel lines that are 1 pixel distance apart. In those cases, Average IOU is an
unreliable indicator to measure prediction success.

• If the image size is small, or the image resolution is low, consider capturing images at a higher
resolution. Image dimensions can range from 64 x 64 pixels up to 4096 pixels X 4096 pixels.

• If the anomaly size is small, consider dividing the images into separate tiles and use the tiled
images for training and testing. This lets the model see defects at a larger size in an image.

After you have improved your training and test dataset, retrain and re-evaluate your model. For
more information, see Training your model.

If the metrics show that you model has acceptable performance, you can verify its performance by
adding the results of a trial detection task to the test dataset. After retraining, the performance

Step 2: Improve your model 114

Amazon Lookout for Vision Developer Guide

metrics should confirm the performance metrics from the previous training. For more information,
see Verifying your model with a trial detection task.

Viewing performance metrics

You can get performance metrics from the console and by calling the DescribeModel operation.

Topics

• Viewing performance metrics (console)

• Viewing performance metrics (SDK)

Viewing performance metrics (console)

After training is complete, the console displays the performance metrics.

The Amazon Lookout for Vision console shows the following performance metrics for the
classifications made during testing:

• Precision

• Recall

• F1 score

If the model is a segmentation model, the console also shows the following performance metrics
for each anomaly label:

• The number of test images where the anomaly label was found.

• F1 score

• Average Intersection over Union (IoU)

The test results overview section shows you the total correct and incorrect predictions for images
in the test dataset. You can also see the predicted and actual label assignments for individual
images in the test dataset.

The following procedure shows how to get the performance metrics from a project's model list
view.

Viewing performance metrics 115

Amazon Lookout for Vision Developer Guide

To view performance metrics (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. In the projects view, choose the project that contains the version of the model that you want
to view.

5. In the left navigation pane, under the project name, choose Models.

6. In the models list view, choose the versions of the model that you want to view.

7. On the model details page, view the performance metrics on the Performance metrics tab.

8. Note the following:

a. The Model performance metrics section contains overall model metrics (precision, recall,
F1 score) for the classification predictions that the model made for the test images.

b. If the model is an image segmentation model, the Performance per label section contains
the number of test images where the anomaly label was found. You also see metrics (F1
score, Average IoU) for each anomaly label.

c. The Test results overview section provides the results for each test image that Lookout
for Vision uses to evaluate the model. It includes the following:

• The total number of correct (true positive) and incorrect (false negative) classification
predictions (normal or anomaly) for all test images.

• The classification prediction for each test image. If you see Correct under an image, the
predicted classification matches the actual classification for the image. Otherwise the
model didn't correctly classify the image.

• With an image segmentation model, you see anomaly labels that the model assigned to
the image and masks on the image that match the colors of the anomaly labels.

Viewing performance metrics (SDK)

You can use the DescribeModel operation to get the summary performance metrics (classification)
for the model, the evaluation manifest, and the evaluation results for a model.

Viewing performance metrics (SDK) 116

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModel

Amazon Lookout for Vision Developer Guide

Getting the summary performance metrics

The summary performance metrics for the classification predictions made by the model during
testing (Precision, Recall, and F1 score) are returned in the Performance field returned by a call to
DescribeModel.

 "Performance": {
 "F1Score": 0.8,
 "Recall": 0.8,
 "Precision": 0.9
 },

The Performance field doesn't include the anomaly label performance metrics returned by a
segmentation model. You can get them from the EvaluationResult field. For more information,
see Reviewing the evaluation result.

For information about summary performance metrics see Step 1: Evaluate the performance of your
model. For example code, see Viewing your models (SDK).

Using the evaluation manifest

The evaluation manifest provides test prediction metrics for the individual images used to
test a model. For each image in the test dataset, a JSON line contains the original test (ground
truth) information and the model's prediction for the image. Amazon Lookout for Vision
stores the evaluation manifest in an Amazon S3 bucket. You can get the location from the
EvaluationManifest field in the response from DescribeModel operation.

"EvaluationManifest": {
 "Bucket": "lookoutvision-us-east-1-nnnnnnnnnn",
 "Key": "my-sdk-project-model-output/EvaluationManifest-my-sdk-
project-1.json"
 }

The file name format is EvaluationManifest-project name.json. For example code, see
Viewing your models.

In the following sample JSON line, the class-name is the ground truth for the contents of
the image. In this example the image contains an anomaly. The confidence field shows the
confidence that Amazon Lookout for Vision has in the prediction.

Viewing performance metrics (SDK) 117

Amazon Lookout for Vision Developer Guide

{
 "source-ref"*: "s3://customerbucket/path/to/image.jpg",
 "source-ref-metadata": {
 "creation-date": "2020-05-22T21:33:37.201882"
 },

 // Test dataset ground truth
 "anomaly-label": 1,
 "anomaly-label-metadata": {
 "class-name": "anomaly",
 "type": "groundtruth/image-classification",
 "human-annotated": "yes",
 "creation-date": "2020-05-22T21:33:37.201882",
 "job-name": "labeling-job/anomaly-detection"
 },
 // Anomaly label detected by Lookout for Vision
 "anomaly-label-detected": 1,
 "anomaly-label-detected-metadata": {
 "class-name": "anomaly",
 "confidence": 0.9,
 "type": "groundtruth/image-classification",
 "human-annotated": "no",
 "creation-date": "2020-05-22T21:33:37.201882",
 "job-name": "training-job/anomaly-detection",
 "model-arn": "lookoutvision-some-model-arn",
 "project-name": "lookoutvision-some-project-name",
 "model-version": "lookoutvision-some-model-version"
 }
}

Reviewing the evaluation result

The evaluation result has the following aggregate performance metrics (classification) for the
entire set of test images:

• Precision

• Recall

• ROC curve (not shown in console)

• Average precision (not shown in console)

• F1 score

Viewing performance metrics (SDK) 118

Amazon Lookout for Vision Developer Guide

The evaluation result also includes the number of images used for training and testing the model.

If the model is a segmentation model, the evaluation result also includes the following metrics for
each anomaly label found in the test dataset:

• Precision

• Recall

• F1 score

• Average Intersection over Union (IoU)

Amazon Lookout for Vision stores the evaluation result in an Amazon S3 bucket. You can get the
location by checking the value of EvaluationResult in the response from DescribeModel
operation.

"EvaluationResult": {
 "Bucket": "lookoutvision-us-east-1-nnnnnnnnnn",
 "Key": "my-sdk-project-model-output/EvaluationResult-my-sdk-project-1.json"
 }

The file name format is EvaluationResult-project name.json. For an example, see Viewing
your models.

The following schema shows the evaluation result.

 {
 "Version": 1,
 "EvaluationDetails":
 {
 "ModelArn": "string", // The Amazon Resource Name (ARN) of the model
 version.
 "EvaluationEndTimestamp": "string", // The UTC date and time that
 evaluation finished.
 "NumberOfTrainingImages": int, // The number of images that were
 successfully used for training.
 "NumberOfTestingImages": int // The number of images that were
 successfully used for testing.
 },
 "AggregatedEvaluationResults":
 {
 "Metrics":

Viewing performance metrics (SDK) 119

Amazon Lookout for Vision Developer Guide

 { //Classification metrics.
 "ROCAUC": float, // ROC area under the curve.
 "AveragePrecision": float, // The average precision of the model.
 "Precision": float, // The overall precision of the model.
 "Recall": float, // The overall recall of the model.
 "F1Score": float, // The overal F1 score for the model.

 "PixelAnomalyClassMetrics": //Segmentation metrics.
 [
 {
 "Precision": float, // The precision for the anomaly
 label.
 "Recall": float, // The recall for the anomaly label.
 "F1Score": float, // The F1 score for the anomaly
 label.
 "AIOU" : float, // The average Intersection Over
 Union for the anomaly label.
 "ClassName": "string" // The anomaly label.
 }
]
 }
 }
 }

Verifying your model with a trial detection task

If you want to verify or improve the quality of your model, you can run a trial detection task. A trial
detection task detects anomalies in new images that you supply.

You can verify the detection results and add the verified images to your dataset. If you have
separate training and test datasets, the verified images are added to the training dataset.

You can verify images from your local computer or images located in an Amazon S3 bucket. If you
want to add verified images to the dataset, images located in an S3 bucket must be in the same S3
bucket as the images in your dataset.

Note

To run a trial detection task, ensure that your S3 bucket has versioning enabled. For more
information, see Using versioning. The console bucket is created with versioning enabled.

Verifying your model 120

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

Amazon Lookout for Vision Developer Guide

By default your images are encrypted with a key that AWS owns and manages. You can also choose
to use your own AWS Key Management Service (KMS) key. For more information, see AWS Key
Management Service concepts.

Topics

• Running a trial detection task

• Verifying trial detection results

• Correcting segmentation labels with the annotation tool

Running a trial detection task

Perform the following steps to run a trial detection task.

To run a trial detection (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. In the projects view, choose the project that contains the version of the model that you want
to view.

5. In the left navigation pane, under the project name, choose Trial detections.

6. In the trial detections view, choose the Run trial detection.

7. On the Run trial detection page, enter a name for your trial detection task in Task name.

8. In Choose model, choose the version of that model that you want to use.

9. Import the images according to the source of the images as follows:

• If you are importing your source images from an Amazon S3 bucket, enter the S3 URI.

Tip

If you're using the Getting Started example images, use the extra_images folder. The
Amazon S3 URI is s3://your bucket/circuitboard/extra_images.

• If you are uploading images from your computer, add the images after you choose Detect
anomalies.

Running a trial detection task 121

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

10. (Optional) If you want to use your own AWS KMS encryption key, do the following:

a. For Image data encryption, choose Customize encryption settings (advanced).

b. In encryption.aws_kms_key, enter the Amazon Resource Name (ARN) of your key, or
choose an existing AWS KMS key. To create a new key, choose Create an AWS IMS key.

11. Choose Detect anomalies and then choose Run trial detection to start the trial detection task.

12. Check the current status in the trial detections view. The trial detection might take a while to
complete.

Verifying trial detection results

Verifying the results of a trial detection can help you improve your model.

If the performance metrics are poor, improve your model by running a trial detection and then add
verified images to the dataset (training dataset, if you have a separate datasets).

If the model's performance metrics are good, but the results of a trial detection are poor, you
can improve your model by adding verified images to the dataset (training dataset). If you have a
separate test dataset, consider adding more images to the test dataset.

After you add verified images to your dataset, retrain and re-evaluate your model. For more
information, see Training your model.

To verify the results of a trial detection

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. In the left navigation pane, choose Projects.

3. In the Projects page, choose the project that you want to use. The dashboard for your project
is displayed.

4. In the left navigation pane, choose Trial detections.

5. Choose the trial detection that you want to verify.

6. On the trial detection page, choose Verify machine predictions.

7. Choose Select all images on this page.

8. If the predictions are correct, choose Verify as correct. Otherwise, choose Verify as incorrect.
The prediction and prediction confidence score is shown under each image.

Verifying trial detection results 122

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

9. If you need to change the label for an image, do the following:

a. Choose Correct or Incorrect under the image.

b. If you can't determine the correct label for an image, magnify the image by choosing the
image in the gallery.

Note

You can filter image labels by choosing the desired label, or label state, in the Filters
section. You can sort by confidence score in the Sorting options section.

10. If your model is a segmentation model and the mask or anomaly label for an image is
wrong, choose Anomalous area under the image and open the annotation tool. Update the
segmentation information by doing Correcting segmentation labels with the annotation tool.

11. Repeat steps 7-10 on each page as necessary until all the images have been verified.

12. Choose Add verified images to dataset. If you have separate datasets, the images are added
to the training dataset.

13. Retrain your model. For more information, see the section called “Training your model”.

Correcting segmentation labels with the annotation tool

You use the annotation tool to segment an image by marking anomalous areas with a mask.

To correct the segmentation labels for an image with the annotation tool

1. Open the annotation tool by selecting anomalous area under an image in the dataset gallery.

2. If the anomaly label for a mask isn't correct, choose the mask and then choose the correct
anomaly label under Anomaly labels. If necessary, choose Add anomaly label to add a new
anomaly label.

3. If the mask isn't correct, choose a drawing tool at the bottom of the page and draw masks that
tightly covers anomalous areas for the anomaly label. The following image is an example of a
mask that tightly covers an anomaly.

Correcting segmentation labels with the annotation tool 123

Amazon Lookout for Vision Developer Guide

The following is an example of a poor mask that doesn't tightly cover an anomaly.

4. If you have more images to correct, choose Next and repeat steps 2 and 3.

5. Choose Submit and close to finish updating images.

Correcting segmentation labels with the annotation tool 124

Amazon Lookout for Vision Developer Guide

Running your trained Amazon Lookout for Vision model

To detect anomalies in images with your model, you must first start your model with the
StartModel operation. The Amazon Lookout for Vision console provides AWS CLI commands that
you can use to start and stop your model. This section includes example code that you can use.

After your model starts, you can use the DetectAnomalies operation to detect anomalies in an
image. For more information, see Detecting anomalies in an image.

Topics

• Inference units

• Availability Zones

• Starting your Amazon Lookout for Vision model

• Stopping your Amazon Lookout for Vision model

Inference units

When you start your model, Amazon Lookout for Vision provisions a minimum of one compute
resource, known as an inference unit. You specify the number of inference units to use in the
MinInferenceUnits input parameter to the StartModel API. The default allocation for a model
is 1 inference unit.

Important

You are charged for the number of hours that your model is running and for the number
of inference units that your model uses while it's running, based on how you configure the
running of your model. For example, if you start the model with two inference units and
use the model for 8 hours, you are charged for 16 inference hours (8 hours running time *
two inference units). For more information, see Amazon Lookout for Vision Pricing. If you
don't explicitly stop your model by calling StopModel, you are charged even if you are not
actively analyzing images with your model.

The transactions per second (TPS) that a single inference unit supports is affected by the following:

Inference units 125

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModel
https://aws.amazon.com/lookout-for-vision/pricing/
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StopModel

Amazon Lookout for Vision Developer Guide

• The algorithm that Lookout for Vision uses to train the model. When you train a model, multiple
models are trained. Lookout for Vision selects the model with the best performance based on the
size of the dataset and its composition of normal and anomalous images.

• Higher resolution images require more time for analysis.

• Smaller sized images (measured in MBs) are analyzed faster than larger images.

Managing throughput with inference units

You can increase or decrease the throughput of your model depending on the demands on your
application. To increase throughput, use additional inference units. Each additional inference
unit increases your processing speed by one inference unit. For information about calculating the
number of inference units that you need, see Calculate inference units for Amazon Rekognition
Custom Labels and Amazon Lookout for Vision models. If you want to change the supported
throughput of your model, you have two options:

Manually add or remove inference units

Stop the model and then restart with the required number of inference units. The disadvantage
with this approach is that the model can't receive requests while it's restarting and can't be used to
handle spikes in demand. Use this approach if your model has steady throughput and your use case
can tolerate 10–20 minutes of downtime. An example would be if you want to batch calls to your
model using a weekly schedule.

Auto-scale inference units

If your model has to accommodate spikes in demand, Amazon Lookout for Vision can automatically
scale the number of inference units that your model uses. As demand increases, Amazon Lookout
for Vision adds additional inference units to the model and removes them when demand decreases.

To let Lookout for Vision automatically scale inference units for a model, start the model and
set the maximum number of inference units that it can use by using the MaxInferenceUnits
parameter. Setting a maximum number of inference units lets you manage the cost of running the
model by limiting the number of inference units available to it. If you don't specify a maximum
number of units, Lookout for Vision won't automatically scale your model, only using the number
of inference units that you started with. For information regarding the maximum number of
inference units, see Service Quotas.

Managing throughput with inference units 126

https://aws.amazon.com/blogs/machine-learning/calculate-inference-units-for-an-amazon-rekognition-custom-labels-model/
https://aws.amazon.com/blogs/machine-learning/calculate-inference-units-for-an-amazon-rekognition-custom-labels-model/
https://docs.aws.amazon.com/general/latest/gr/rekognition.html#limits_lookoutvision

Amazon Lookout for Vision Developer Guide

You can also specify a minimum number of inference units by using the MinInferenceUnits
parameter. This lets you specify the minimum throughput for your model, where a single inference
unit represents 1 hour of processing time.

Note

You can't set the maximum number of inference units with the Lookout for Vision console.
Instead, specify the MaxInferenceUnits input parameter to the StartModel operation.

Lookout for Vision provides the following Amazon CloudWatch Logs metrics that you can use to
determine the current automatic scaling status for a model.

Metric Description

DesiredInferenceUnits The number of inference units to which
Lookout for Vision is scaling up or down.

InServiceInferenceUnits The number of inference units that the model
is using.

If DesiredInferenceUnits = InServiceInferenceUnits, Lookout for Vision is not currently
scaling the number of inference units.

If DesiredInferenceUnits > InServiceInferenceUnits, Lookout for Vision is scaling up to
the value of DesiredInferenceUnits.

If DesiredInferenceUnits < InServiceInferenceUnits, Lookout for Vision is scaling down
to the value of DesiredInferenceUnits.

For more information regarding the metrics returned by Lookout for Vision and filtering
dimensions, see Monitoring Lookout for Vision with Amazon CloudWatch.

To find out the maximum number of inference units that you requested for a model, call
DescribeModel and check the MaxInferenceUnits field in the response.

Managing throughput with inference units 127

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/security-monitoring-cloudwatch.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModel

Amazon Lookout for Vision Developer Guide

Availability Zones

Amazon Lookout for Vision; distributes inference units across multiple Availability Zones within an
AWS Region to provide increased availability. For more information, see Availability Zones. To help
protect your production models from Availability Zone outages and inference unit failures, start
your production models with at least two inference units.

If an Availability Zone outage occurs, all inference units in the Availability Zone are unavailable
and model capacity is reduced. Calls to DetectAnomalies are redistributed across the remaining
inference units. Such calls succeed if they don’t exceed the supported Transactions Per Seconds
(TPS) of the remaining inference units. After AWS repairs the Availability Zone, the inference units
are restarted, and full capacity is restored.

If a single inference unit fails, Amazon Lookout for Vision automatically starts a new inference unit
in the same Availability Zone. Model capacity is reduced until the new inference unit starts.

Starting your Amazon Lookout for Vision model

Before you can use an Amazon Lookout for Vision model to detect anomalies, you must first start
the model. You start a model by calling the StartModel API and passing the following:

• ProjectName – The name of the project that contains the model that you want to start.

• ModelVersion – The version of the model that you want to start.

• MinInferenceUnits – The minimum number of inference units. For more information, see
Inference units.

• (Optional) MaxInferenceUnits – The maximum number of inference units that Amazon Lookout
for Vision can use to automatically scale the model. For more information, see Auto-scale
inference units.

The Amazon Lookout for Vision console provides example code that you can use to start and stop a
model.

Note

You are charged for the amount of the time that your model is running. To stop a running
model, see Stopping your Amazon Lookout for Vision model.

Availability Zones 128

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/#Availability_Zones
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalies
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModel

Amazon Lookout for Vision Developer Guide

You can use the AWS SDK to view running models across all AWS Regions in which Lookout
for Vision is available. For example code, see find_running_models.py.

Topics

• Starting your model (console)

• Starting your Amazon Lookout for Vision model (SDK)

Starting your model (console)

The Amazon Lookout for Vision console provides a AWS CLI command that you can use to start a
model. After the model starts, you can start detecting anomalies in images. For more information,
see Detecting anomalies in an image.

To start a model (console)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

3. Choose Get started.

4. In the left navigation pane, choose Projects.

5. On the Projects resources page, choose the project that contains the trained model that you
want to start.

6. In the Models section, choose the model that you want to start.

7. On the model's details page, choose Use model and then choose Integrate API to the cloud.

Tip

If you want to deploy your model to an edge device, choose Create model packaging
job. For more information, see Packaging your Amazon Lookout for Vision model.

8. Under AWS CLI commands, copy the AWS CLI command that calls start-model.

9. At the command prompt, enter the start-model command that you copied in the previous
step. If you are using the lookoutvision profile to get credentials, add the --profile
lookoutvision-access parameter.

Starting your model (console) 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/find_running_models.py
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

10. In the console, choose Models in the left navigation page.

11. Check the Status column for the current status of the model, When the status is Hosted,
you can use the model to detect anomalies in images. For more information, see Detecting
anomalies in an image.

Starting your Amazon Lookout for Vision model (SDK)

You start a model by calling the StartModel operation.

A model might take a while to start. You can check the current status by calling DescribeModel. For
more information, see Viewing your models.

To start your model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to start a model.

CLI

Change the following values:

• project-name to the name of the project that contains the model that you want to
start.

• model-version to the version of the model that you want to start.

• --min-inference-units to the number of inference units that you want to use.

• (Optional) --max-inference-units to the maximum number of inference units that
Amazon Lookout for Vision can use to automatically scale the model.

aws lookoutvision start-model --project-name "project name"\
 --model-version model version\
 --min-inference-units minimum number of units\
 --max-inference-units max number of units \
 --profile lookoutvision-access

Starting your model (SDK) 130

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModel
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModel

Amazon Lookout for Vision Developer Guide

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def start_model(
 lookoutvision_client, project_name, model_version,
 min_inference_units, max_inference_units = None):
 """
 Starts the hosting of a Lookout for Vision model.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that contains the version
 of the
 model that you want to start hosting.
 :param model_version: The version of the model that you want to start
 hosting.
 :param min_inference_units: The number of inference units to use for
 hosting.
 :param max_inference_units: (Optional) The maximum number of inference
 units that
 Lookout for Vision can use to automatically scale the model.
 """
 try:
 logger.info(
 "Starting model version %s for project %s", model_version,
 project_name)

 if max_inference_units is None:
 lookoutvision_client.start_model(
 ProjectName = project_name,
 ModelVersion = model_version,
 MinInferenceUnits = min_inference_units)

 else:
 lookoutvision_client.start_model(
 ProjectName = project_name,
 ModelVersion = model_version,
 MinInferenceUnits = min_inference_units,
 MaxInferenceUnits = max_inference_units)

 print("Starting hosting...")

Starting your model (SDK) 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 status = ""
 finished = False

 # Wait until hosted or failed.
 while finished is False:
 model_description = lookoutvision_client.describe_model(
 ProjectName=project_name, ModelVersion=model_version)
 status = model_description["ModelDescription"]["Status"]

 if status == "STARTING_HOSTING":
 logger.info("Host starting in progress...")
 time.sleep(10)
 continue

 if status == "HOSTED":
 logger.info("Model is hosted and ready for use.")
 finished = True
 continue

 logger.info("Model hosting failed and the model can't be used.")
 finished = True

 if status != "HOSTED":
 logger.error("Error hosting model: %s", status)
 raise Exception(f"Error hosting model: {status}")
 except ClientError:
 logger.exception("Couldn't host model.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Starts hosting an Amazon Lookout for Vision model. Returns when the model has
 * started or if hosting fails. You are charged for the amount of time that a
 * model is hosted. To stop hosting a model, use the StopModel operation.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project that contains the model that you
 * want to host.

Starting your model (SDK) 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/StartModel.java

Amazon Lookout for Vision Developer Guide

 * @modelVersion The version of the model that you want to host.
 * @minInferenceUnits The number of inference units to use for hosting.
 * @maxInferenceUnits The maximum number of inference units that Lookout for
 * Vision can use for automatically scaling the model. If the
 * value is null, automatic scaling doesn't happen.
 * @return ModelDescription The description of the model, which includes the
 * model hosting status.
 */
public static ModelDescription startModel(LookoutVisionClient lfvClient, String
 projectName, String modelVersion,
 Integer minInferenceUnits, Integer maxInferenceUnits) throws
 LookoutVisionException, InterruptedException {

 logger.log(Level.INFO, "Starting Model version {0} for project {1}.",
 new Object[] { modelVersion, projectName });

 StartModelRequest startModelRequest = null;

 if (maxInferenceUnits == null) {

 startModelRequest =
 StartModelRequest.builder().projectName(projectName).modelVersion(modelVersion)
 .minInferenceUnits(minInferenceUnits).build();
 } else {
 startModelRequest =
 StartModelRequest.builder().projectName(projectName).modelVersion(modelVersion)

 .minInferenceUnits(minInferenceUnits).maxInferenceUnits(maxInferenceUnits).build();
 }

 // Start hosting the model.
 lfvClient.startModel(startModelRequest);

 DescribeModelRequest describeModelRequest =
 DescribeModelRequest.builder().projectName(projectName)
 .modelVersion(modelVersion).build();

 ModelDescription modelDescription = null;

 boolean finished = false;
 // Wait until model is hosted or failure occurs.
 do {

Starting your model (SDK) 133

Amazon Lookout for Vision Developer Guide

 modelDescription =
 lfvClient.describeModel(describeModelRequest).modelDescription();

 switch (modelDescription.status()) {

 case HOSTED:
 logger.log(Level.INFO, "Model version {0} for project {1} is
 running.",
 new Object[] { modelVersion, projectName });
 finished = true;
 break;

 case STARTING_HOSTING:
 logger.log(Level.INFO, "Model version {0} for project {1} is
 starting.",
 new Object[] { modelVersion, projectName });

 TimeUnit.SECONDS.sleep(60);

 break;
 case HOSTING_FAILED:
 logger.log(Level.SEVERE, "Hosting failed for model version {0} for
 project {1}.",
 new Object[] { modelVersion, projectName });
 finished = true;
 break;

 default:
 logger.log(Level.SEVERE, "Unexpected error when hosting model
 version {0} for project {1}: {2}.",
 new Object[] { projectName, modelVersion,
 modelDescription.status() });
 finished = true;
 break;

 }

 } while (!finished);

 logger.log(Level.INFO, "Finished starting model version {0} for project {1}
 status: {2}",
 new Object[] { modelVersion, projectName,
 modelDescription.statusMessage() });

Starting your model (SDK) 134

Amazon Lookout for Vision Developer Guide

 return modelDescription;

}

3. If the output of the code is Model is hosted and ready for use, you can use the model
to detect anomalies in images. For more information, see Detecting anomalies in an image.

Stopping your Amazon Lookout for Vision model

To stop a running model, you call the StopModel operation and pass the following:

• Project – The name of the project that contains the model that you want to stop.

• ModelVersion – The version of the model that you want to stop.

The Amazon Lookout for Vision console provides example code that you can use to stop a model.

Note

You are charged for the amount of the time that your model is running.

Topics

• Stopping your model (console)

• Stopping your Amazon Lookout for Vision model (SDK)

Stopping your model (console)

Perform the steps in the following procedure to stop your model using the console.

To stop your model (console)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

3. Choose Get started.

Stopping your model 135

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

4. In the left navigation pane, choose Projects.

5. On the Projects resources page, choose the project that contains the running model that you
want to stop.

6. In the Models section, choose the model that you want to stop.

7. On the model's details page, choose Use model and then choose Integrate API to the cloud.

8. Under AWS CLI commands, copy the AWS CLI command that calls stop-model.

9. At the command prompt, enter the stop-model command that you copied in the previous
step. If you are using the lookoutvision profile to get credentials, add the --profile
lookoutvision-access parameter.

10. At the console, choose Models in the left navigation page.

11. Check the Status column for the current status of the model. The model has stopped when the
Status column value is Training complete.

Stopping your Amazon Lookout for Vision model (SDK)

You stop a model by calling the StopModel operation.

A model might take a while to stop. To check the current status, use DescribeModel.

To stop your model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to stop a running model.

CLI

Change the following values:

• project-name to the name of the project that contains the model that you want to
stop.

• model-version to the version of the model that you want to stop.

aws lookoutvision stop-model --project-name "project name"\
 --model-version model version \
 --profile lookoutvision-access

Stopping your model (SDK) 136

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StopModel

Amazon Lookout for Vision Developer Guide

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def stop_model(lookoutvision_client, project_name, model_version):
 """
 Stops a running Lookout for Vision Model.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that contains the version
 of
 the model that you want to stop hosting.
 :param model_version: The version of the model that you want to stop
 hosting.
 """
 try:
 logger.info("Stopping model version %s for %s", model_version,
 project_name)
 response = lookoutvision_client.stop_model(
 ProjectName=project_name, ModelVersion=model_version
)
 logger.info("Stopping hosting...")

 status = response["Status"]
 finished = False

 # Wait until stopped or failed.
 while finished is False:
 model_description = lookoutvision_client.describe_model(
 ProjectName=project_name, ModelVersion=model_version
)
 status = model_description["ModelDescription"]["Status"]

 if status == "STOPPING_HOSTING":
 logger.info("Host stopping in progress...")
 time.sleep(10)
 continue

 if status == "TRAINED":
 logger.info("Model is no longer hosted.")
 finished = True

Stopping your model (SDK) 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 continue

 logger.info("Failed to stop model: %s ", status)
 finished = True

 if status != "TRAINED":
 logger.error("Error stopping model: %s", status)
 raise Exception(f"Error stopping model: {status}")
 except ClientError:
 logger.exception("Couldn't stop hosting model.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Stops the hosting an Amazon Lookout for Vision model. Returns when model has
 * stopped or if hosting fails.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project that contains the model that you
 * want to stop hosting.
 * @modelVersion The version of the model that you want to stop hosting.
 * @return ModelDescription The description of the model, which includes the
 * model hosting status.
 */

public static ModelDescription stopModel(LookoutVisionClient lfvClient, String
 projectName,
 String modelVersion) throws LookoutVisionException,
 InterruptedException {

 logger.log(Level.INFO, "Stopping Model version {0} for project {1}.",
 new Object[] { modelVersion, projectName });

 StopModelRequest stopModelRequest = StopModelRequest.builder()
 .projectName(projectName)
 .modelVersion(modelVersion)
 .build();

Stopping your model (SDK) 138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/StopModel.java

Amazon Lookout for Vision Developer Guide

 // Stop hosting the model.

 lfvClient.stopModel(stopModelRequest);

 DescribeModelRequest describeModelRequest =
 DescribeModelRequest.builder()
 .projectName(projectName)
 .modelVersion(modelVersion)
 .build();

 ModelDescription modelDescription = null;

 boolean finished = false;
 // Wait until model is stopped or failure occurs.
 do {

 modelDescription =
 lfvClient.describeModel(describeModelRequest).modelDescription();

 switch (modelDescription.status()) {

 case TRAINED:
 logger.log(Level.INFO, "Model version {0} for
 project {1} has stopped.",
 new Object[] { modelVersion,
 projectName });
 finished = true;
 break;

 case STOPPING_HOSTING:
 logger.log(Level.INFO, "Model version {0} for
 project {1} is stopping.",
 new Object[] { modelVersion,
 projectName });

 TimeUnit.SECONDS.sleep(60);

 break;

 default:
 logger.log(Level.SEVERE,
 "Unexpected error when stopping
 model version {0} for project {1}: {2}.",

Stopping your model (SDK) 139

Amazon Lookout for Vision Developer Guide

 new Object[] { projectName,
 modelVersion,

 modelDescription.status() });
 finished = true;
 break;

 }

 } while (!finished);

 logger.log(Level.INFO, "Finished stopping model version {0} for project
 {1} status: {2}",
 new Object[] { modelVersion, projectName,
 modelDescription.statusMessage() });

 return modelDescription;

}

Stopping your model (SDK) 140

Amazon Lookout for Vision Developer Guide

Detecting anomalies in an image

To detect anomalies in an image with a trained Amazon Lookout for Vision model, you call the
DetectAnomalies operation. The result from DetectAnomalies includes a Boolean prediction that
classifies the image as containing one or more anomalies and a confidence value for the prediction.
If the model is an image segmentation model, the result also includes a colored mask showing the
positions of different types of anomalies.

The images you supply to DetectAnomalies must have the same width and height dimensions as
the images that you used to train the model.

DetectAnomalies accepts images as PNG or JPG format images. We recommend that the images
are in the same encoding and compression format as those used to train the model. For example, if
you train the model with PNG format images, call DetectAnomalies with PNG format images.

Before calling DetectAnomalies, you must first start your model with the StartModel
operation. For more information, see Starting your Amazon Lookout for Vision model. You are
charged for the amount of time, in minutes, that a model runs and for the number of anomaly
detection units that your model uses. If you are not using a model, use the StopModel operation
to stop your model. For more information, see Stopping your Amazon Lookout for Vision model.

Topics

• Calling DetectAnomalies

• Understanding the response from DetectAnomalies

• Determining if an image is anomalous

• Showing classification and segmentation information

• Finding anomalies with an AWS Lambda function

Calling DetectAnomalies

To call DetectAnomalies, specify the following:

• Project – The name of the project that contains the model that you want to use.

• ModelVersion – The version of the model that you want to use.

• ContentType – The type of image that you want analyze. Valid values are image/png (PNG
format images) and image/jpeg (JPG format images).

Calling DetectAnomalies 141

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalies

Amazon Lookout for Vision Developer Guide

• Body – The unencoded binary bytes that represent the image.

The image must have the same dimensions as the images used to train the model.

The following example shows how to call DetectAnomalies. You can use the function response
from the Python and Java examples to call functions in Determining if an image is anomalous.

AWS CLI

This AWS CLI command displays the JSON output for the DetectAnomalies CLI operation.
Change the values of the following input parameters:

• project name with the name of the project that you want to use.

• model version with the version of the model that you want to use.

• content type with the type of the image that you want to use. Valid values are image/png
(PNG format images) and image/jpeg (JPG format images).

• file name with the path and file name of the image that you want to use. Ensure that the
file type matches the value of content-type.

aws lookoutvision detect-anomalies --project-name project name\
 --model-version model version\
 --content-type content type\
 --body file name \
 --profile lookoutvision-access

Python

For the complete code example, see GitHub.

 def detect_anomalies(lookoutvision_client, project_name, model_version, photo):
 """
 Calls DetectAnomalies using the supplied project, model version, and image.
 :param lookoutvision_client: A Lookout for Vision Boto3 client.
 :param project: The project that contains the model that you want to use.
 :param model_version: The version of the model that you want to use.
 :param photo: The photo that you want to analyze.
 :return: The DetectAnomalyResult object that contains the analysis results.
 """

Calling DetectAnomalies 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/inference.py

Amazon Lookout for Vision Developer Guide

 image_type = imghdr.what(photo)
 if image_type == "jpeg":
 content_type = "image/jpeg"
 elif image_type == "png":
 content_type = "image/png"
 else:
 logger.info("Invalid image type for %s", photo)
 raise ValueError(
 f"Invalid file format. Supply a jpeg or png format file: {photo}")

 # Get images bytes for call to detect_anomalies
 with open(photo, "rb") as image:
 response = lookoutvision_client.detect_anomalies(
 ProjectName=project_name,
 ContentType=content_type,
 Body=image.read(),
 ModelVersion=model_version)

 return response['DetectAnomalyResult']

Java V2

 public static DetectAnomalyResult detectAnomalies(LookoutVisionClient lfvClient,
 String projectName,
 String modelVersion,
 String photo) throws IOException, LookoutVisionException {
 /**
 * Creates an Amazon Lookout for Vision dataset from a manifest file.
 * Returns after Lookout for Vision creates the dataset.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project in which you want to create a
 * dataset.
 * @param modelVersion The version of the model that you want to use.
 *
 * @param photo The photo that you want to analyze.
 *
 * @return DetectAnomalyResult The analysis result from DetectAnomalies.
 */

 logger.log(Level.INFO, "Processing local file: {0}", photo);

Calling DetectAnomalies 143

Amazon Lookout for Vision Developer Guide

 // Get image bytes.

 InputStream sourceStream = new FileInputStream(new File(photo));
 SdkBytes imageSDKBytes = SdkBytes.fromInputStream(sourceStream);
 byte[] imageBytes = imageSDKBytes.asByteArray();

 // Get the image type. Can be image/jpeg or image/png.
 String contentType = getImageType(imageBytes);

 // Detect anomalies in the supplied image.
 DetectAnomaliesRequest request =
 DetectAnomaliesRequest.builder().projectName(projectName)
 .modelVersion(modelVersion).contentType(contentType).build();

 DetectAnomaliesResponse response = lfvClient.detectAnomalies(request,
 RequestBody.fromBytes(imageBytes));

 /*
 * Tip: You can also use the following to analyze a local file.
 * Path path = Paths.get(photo);
 * DetectAnomaliesResponse response = lfvClient.detectAnomalies(request,
 path);
 */
 DetectAnomalyResult result = response.detectAnomalyResult();

 String prediction = "Prediction: Normal";

 if (Boolean.TRUE.equals(result.isAnomalous())) {
 prediction = "Prediction: Anomalous";
 }

 // Convert confidence to percentage.
 NumberFormat defaultFormat = NumberFormat.getPercentInstance();
 defaultFormat.setMinimumFractionDigits(1);
 String confidence = String.format("Confidence: %s",
 defaultFormat.format(result.confidence()));

 // Log classification result.
 String photoPath = "File: " + photo;
 String[] imageLines = { photoPath, prediction, confidence };
 logger.log(Level.INFO, "Image: {0}\nAnomalous: {1}\nConfidence {2}",
 imageLines);

 return result;

Calling DetectAnomalies 144

Amazon Lookout for Vision Developer Guide

 }

 // Gets the image mime type. Supported formats are image/jpeg and image/png.
 private static String getImageType(byte[] image) throws IOException {

 InputStream is = new BufferedInputStream(new ByteArrayInputStream(image));
 String mimeType = URLConnection.guessContentTypeFromStream(is);

 logger.log(Level.INFO, "Image type: {0}", mimeType);

 if (mimeType.equals("image/jpeg") || mimeType.equals("image/png")) {
 return mimeType;
 }
 // Not a supported file type.
 logger.log(Level.SEVERE, "Unsupported image type: {0}", mimeType);
 throw new IOException(String.format("Wrong image type. %s format isn't
 supported.", mimeType));
 }

Understanding the response from DetectAnomalies

The response from DetectAnomalies varies depending on the type of the model that you train
(classification model or segmentation model). In both cases the response is a DetectAnomalyResult
object.

Classification model

If your model is an Image classification model, the response from DetectAnomalies contains the
following:

• IsAnomalous– A Boolean indicator that the image contains one or more anomalies.

• Confidence– The confidence that Amazon Lookout for Vision has in the accuracy of the anomaly
prediction (IsAnomalous). Confidence is a floating point value between 0 and 1. A higher
value indicates a higher confidence.

• Source – Information about the image passed to DetectAnomalies.

{
 "DetectAnomalyResult": {

Understanding the response from DetectAnomalies 145

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalyResult

Amazon Lookout for Vision Developer Guide

 "Source": {
 "Type": "direct"
 },
 "IsAnomalous": true,
 "Confidence": 0.9996867775917053
 }
}

You determine if in an image is anomalous by checking the IsAnomalous field and confirming
that the Confidence value is high enough for your needs.

If you're finding the confidence values returned by DetectAnomalies are too low, consider
retraining the model. For example code, see Classification.

Segmentation model

If your model is an Image segmentation model, the response includes classification information
and segmentation information, such as an image mask and anomaly types. Classification
information is calculated separately from segmentation information and you shouldn't assume
a relationship between them. If you don't get segmentation information in the response, check
that you have the latest version of the AWS SDK installed (AWS Command Line Interface, if you
are using the AWS CLI). For example code, see Segmentation and Showing classification and
segmentation information.

• IsAnomalous (classification) – A Boolean indicator that classifies the image as either normal or
anomalous.

• Confidence (classification) – The confidence that Amazon Lookout for Vision has in the accuracy
of the classification of the image (IsAnomalous). Confidence is a floating point value between
0 and 1. A higher value indicates a higher confidence.

• Source – Information about the image passed to DetectAnomalies.

• AnomalyMask (segmentation) – A pixel mask covering anomalies found in the analyzed image.
There can be multiple anomalies on the image. The color of a mask maps indicates the type
of an anomaly. The mask colors map to the colors assigned to anomaly types in the training
dataset. To find the anomaly type from a mask color, check Color in the PixelAnomaly field of
each anomaly returned in the Anomalies list. For example code, see Showing classification and
segmentation information.

Segmentation model 146

Amazon Lookout for Vision Developer Guide

• Anomalies (segmentation) – A list of anomalies found in the image. Each anomaly includes the
anomaly type (Name), and pixel information (PixelAnomaly). TotalPercentageArea is the
percentage area of the image that the anomaly covers. Color is the mask color for the anomaly.

The first element in the list is always an anomaly type representing the image background
(BACKGROUND) and shouldn't be considered an anomaly. Amazon Lookout for Vision
automatically adds the background anomaly type to the response. You don't need to declare a
background anomaly type in your dataset.

{
 "DetectAnomalyResult": {
 "Source": {
 "Type": "direct"
 },
 "IsAnomalous": true,
 "Confidence": 0.9996814727783203,
 "Anomalies": [
 {
 "Name": "background",
 "PixelAnomaly": {
 "TotalPercentageArea": 0.998999834060669,
 "Color": "#FFFFFF"
 }
 },
 {
 "Name": "scratch",
 "PixelAnomaly": {
 "TotalPercentageArea": 0.0004034999874420464,
 "Color": "#7ED321"
 }
 },
 {
 "Name": "dent",
 "PixelAnomaly": {
 "TotalPercentageArea": 0.0005966666503809392,
 "Color": "#4DD8FF"
 }
 }
],
 "AnomalyMask": "iVBORw0....."
 }

Segmentation model 147

Amazon Lookout for Vision Developer Guide

}

Determining if an image is anomalous

You can determine if an image is anomalous in a variety of ways. The method you choose depends
on your use case and the type of your model. The following are potential solutions.

Topics

• Classification

• Segmentation

Classification

IsAnomalous classifies an image as anomalous, use the Confidence field to help decide if the
image is actually anomalous. A higher value indicates greater confidence. For example, you might
decide a product is defective only if the confidence is over 80%. You can classify images analyzed
by classification models or by image segmentation models.

Python

For the complete code example, see GitHub.

 def reject_on_classification(image, prediction, confidence_limit):
 """
 Returns True if the anomaly confidence is greater than or equal to
 the supplied confidence limit.
 :param image: The name of the image file that was analyzed.
 :param prediction: The DetectAnomalyResult object returned from
 DetectAnomalies
 :param confidence_limit: The minimum acceptable confidence. Float value
 between 0 and 1.
 :return: True if the error condition indicates an anomaly, otherwise False.
 """

 reject = False

 logger.info("Checking classification for %s", image)

 if prediction['IsAnomalous'] and prediction['Confidence'] >=
 confidence_limit:

Determining if an image is anomalous 148

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/inference.py

Amazon Lookout for Vision Developer Guide

 reject = True
 reject_info=(f"Rejected: Anomaly confidence
 ({prediction['Confidence']:.2%}) is greater"
 f" than limit ({confidence_limit:.2%})")
 logger.info("%s", reject_info)

 if not reject:
 logger.info("No anomalies found.")
 return reject

Java V2

 public static boolean rejectOnClassification(String image, DetectAnomalyResult
 prediction, float minConfidence) {
 /**
 * Rejects an image based on its anomaly classification and prediction
 * confidence
 *
 * @param image The file name of the analyzed image.
 * @param prediction The prediction for an image analyzed with
 * DetectAnomalies.
 * @param minConfidence The minimum acceptable confidence for the prediction
 * (0-1).
 *
 * @return boolean True if the image is anomalous, otherwise False.
 */

 Boolean reject = false;

 logger.log(Level.INFO, "Checking classification for {0}", image);

 String[] logParameters = { prediction.confidence().toString(),
 String.valueOf(minConfidence) };

 if (Boolean.TRUE.equals(prediction.isAnomalous()) && prediction.confidence()
 >= minConfidence) {
 logger.log(Level.INFO, "Rejected: Anomaly confidence {0} is greater than
 confidence limit {1}",
 logParameters);
 reject = true;
 }
 if (Boolean.FALSE.equals(reject))
 logger.log(Level.INFO, ": No anomalies found.");

Classification 149

Amazon Lookout for Vision Developer Guide

 return reject;

 }

Segmentation

If your model is an image segmentation model, you can use the segmentation information to
determine if an image contains anomalies. You can also use an image segmentation model to
classify images. For example code that gets and display image masks, see Showing classification
and segmentation information

Area of anomaly

Use the percentage coverage (TotalPercentageArea) of an anomaly on the image. For example,
you might decide a product is defective if the area of an anomaly is greater than 1% of the image.

Python

For the complete code example, see GitHub.

 def reject_on_coverage(image, prediction, confidence_limit, anomaly_label,
 coverage_limit):
 """
 Checks if the coverage area of an anomaly is greater than the coverage limit
 and if
 the prediction confidence is greater than the confidence limit.
 :param image: The name of the image file that was analyzed.
 :param prediction: The DetectAnomalyResult object returned from
 DetectAnomalies
 :param confidence_limit: The minimum acceptable confidence (float 0-1).
 :anomaly_label: The anomaly label for the type of anomaly that you want to
 check.
 :coverage_limit: The maximum acceptable percentage coverage of an anomaly
 (float 0-1).
 :return: True if the error condition indicates an anomaly, otherwise False.
 """

 reject = False

 logger.info("Checking coverage for %s", image)

Segmentation 150

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/inference.py

Amazon Lookout for Vision Developer Guide

 if prediction['IsAnomalous'] and prediction['Confidence'] >=
 confidence_limit:
 for anomaly in prediction['Anomalies']:
 if (anomaly['Name'] == anomaly_label and
 anomaly['PixelAnomaly']['TotalPercentageArea'] >
 (coverage_limit)):
 reject = True
 reject_info=(f"Rejected: Anomaly confidence
 ({prediction['Confidence']:.2%}) "
 f"is greater than limit ({confidence_limit:.2%}) and
 {anomaly['Name']} "
 f"coverage ({anomaly['PixelAnomaly']
['TotalPercentageArea']:.2%}) "
 f"is greater than limit ({coverage_limit:.2%})")

 logger.info("%s", reject_info)

 if not reject:
 logger.info("No anomalies found.")

 return reject

Java V2

 public static Boolean rejectOnCoverage(String image, DetectAnomalyResult
 prediction, float minConfidence,
 String anomalyType, float maxCoverage) {
 /**
 * Rejects an image based on a maximum allowable coverage area for an
 anomaly
 * type.
 *
 * @param image The file name of the analyzed image.
 * @param prediction The prediction for an image analyzed with
 * DetectAnomalies.
 * @param minConfidence The minimum acceptable confidence for the prediction
 * (0-1).
 * @param anomalyTypes The anomaly type to check.
 * @param maxCoverage The maximum allowable coverage area of the anomaly
 type.
 * (0-1).

Segmentation 151

Amazon Lookout for Vision Developer Guide

 *
 * @return boolean True if the coverage area of the anomaly type exceeds the
 * maximum allowed, otherwise False.
 */

 Boolean reject = false;

 logger.log(Level.INFO, "Checking coverage for {0}", image);

 if (Boolean.TRUE.equals(prediction.isAnomalous()) && prediction.confidence()
 >= minConfidence) {
 for (Anomaly anomaly : prediction.anomalies()) {

 if (Objects.equals(anomaly.name(), anomalyType)
 && anomaly.pixelAnomaly().totalPercentageArea() >=
 maxCoverage) {

 String[] logParameters = { prediction.confidence().toString(),
 String.valueOf(minConfidence),

 String.valueOf(anomaly.pixelAnomaly().totalPercentageArea()),
 String.valueOf(maxCoverage) };
 logger.log(Level.INFO,
 "Rejected: Anomaly confidence {0} is greater than
 confidence limit {1} and " +
 "{2} anomaly type coverage is higher than
 coverage limit {3}\n",
 logParameters);
 reject = true;

 }
 }
 }

 if (Boolean.FALSE.equals(reject))
 logger.log(Level.INFO, ": No anomalies found.");

 return reject;
 }

Segmentation 152

Amazon Lookout for Vision Developer Guide

Number of anomaly types

Use a count of different anomaly types (Name) found on the image. For example, you might decide
a product is defective if there is more than two types of anomaly present.

Python

For the complete code example, see GitHub.

 def reject_on_anomaly_types(image, prediction, confidence_limit,
 anomaly_types_limit):
 """
 Checks if the number of anomaly types is greater than than the anomaly types
 limit and if the prediction confidence is greater than the confidence limit.
 :param image: The name of the image file that was analyzed.
 :param prediction: The DetectAnomalyResult object returned from
 DetectAnomalies
 :param confidence: The minimum acceptable confidence. Float value between 0
 and 1.
 :param anomaly_types_limit: The maximum number of allowable anomaly types
 (Integer).
 :return: True if the error condition indicates an anomaly, otherwise False.
 """

 logger.info("Checking number of anomaly types for %s",image)

 reject = False

 if prediction['IsAnomalous'] and prediction['Confidence'] >=
 confidence_limit:

 anomaly_types = {anomaly['Name'] for anomaly in prediction['Anomalies']\
 if anomaly['Name'] != 'background'}

 if len (anomaly_types) > anomaly_types_limit:
 reject = True
 reject_info = (f"Rejected: Anomaly confidence
 ({prediction['Confidence']:.2%}) "
 f"is greater than limit ({confidence_limit:.2%}) and "
 f"the number of anomaly types ({len(anomaly_types)-1}) is "
 f"greater than the limit ({anomaly_types_limit})")

 logger.info("%s", reject_info)

Segmentation 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/inference.py

Amazon Lookout for Vision Developer Guide

 if not reject:
 logger.info("No anomalies found.")
 return reject

Java V2

 public static Boolean rejectOnAnomalyTypeCount(String image, DetectAnomalyResult
 prediction,
 float minConfidence, Integer maxAnomalyTypes) {

 /**
 * Rejects an image based on a maximum allowable number of anomaly types.
 *
 * @param image The file name of the analyzed image.
 * @param prediction The prediction for an image analyzed with
 * DetectAnomalies.
 * @param minConfidence The minimum acceptable confidence for the
 predictio
 * (0-1).
 * @param maxAnomalyTypes The maximum allowable number of anomaly types.
 *
 * @return boolean True if the image contains more than the maximum allowed
 * anomaly types, otherwise False.
 */

 Boolean reject = false;

 logger.log(Level.INFO, "Checking coverage for {0}", image);

 Set<String> defectTypes = new HashSet<>();

 if (Boolean.TRUE.equals(prediction.isAnomalous()) && prediction.confidence()
 >= minConfidence) {
 for (Anomaly anomaly : prediction.anomalies()) {
 defectTypes.add(anomaly.name());
 }
 // Reduce defect types by one to account for 'background' anomaly type.
 if ((defectTypes.size() - 1) > maxAnomalyTypes) {
 String[] logParameters = { prediction.confidence().toString(),
 String.valueOf(minConfidence),
 String.valueOf(defectTypes.size()),
 String.valueOf(maxAnomalyTypes) };

Segmentation 154

Amazon Lookout for Vision Developer Guide

 logger.log(Level.INFO, "Rejected: Anomaly confidence {0} is >=
 minimum confidence {1} and " +
 "the number of anomaly types {2} > the allowable number of
 anomaly types {3}\n", logParameters);
 reject = true;
 }

 }

 if (Boolean.FALSE.equals(reject))
 logger.log(Level.INFO, ": No anomalies found.");

 return reject;
 }

Showing classification and segmentation information

This example shows the analyzed image and overlays the analysis results. If the response includes
an anomaly mask, the mask is shown in the colors of the associated anomaly types.

To show image classification and image segmentation information

1. If you haven't already done so, do the following:

a. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For
more information, see Step 4: Set up the AWS CLI and AWS SDKs.

b. Train your model.

c. Start your model.

2. Make sure the user calling DetectAnomalies has access to the model version that you want
to use. For more information, see Set up SDK permissions.

3. Use the following code.

Python

The following example code detects anomalies in an image that you supply. The example
takes the following command line options:

• project – the name of the project that you want to use.

• version – the version of the model, within the project, that you want to use.

Showing classification and segmentation information 155

Amazon Lookout for Vision Developer Guide

• image – the path and file of a local image file (JPEG or PNG format).

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
Shows how to detect and show anomalies in an image using a trained Amazon
 Lookout
for Vision model. The script displays the analysed image and overlays mask and
 analysis
output.
"""

import argparse
import logging
import io
import boto3
from PIL import Image, ImageDraw, ImageFont

from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)

class ShowAnomalies:
 """
 Class to detect and show anomalies in an image analyzed by detect_anomalies.
 """

 @staticmethod
 def draw_line(draw, text, fnt, y_coordinate, color):
 """
 Draws a line of text on the supplied drawing surface.
 :param draw: The surface on which to draw the text.
 :param text: The text to draw in the drawing surface.
 :param fnt: The font for the text.
 :param y_coordinate: The y position for the text.
 :param color: The color for the text.
 :returns The y coordinate for the next line of text.
 """
 text_width, text_height = draw.textsize(text, fnt)
 draw.rectangle([(10, y_coordinate), (text_width + 10,

Showing classification and segmentation information 156

Amazon Lookout for Vision Developer Guide

 y_coordinate + text_height)],
 fill="black")
 draw.text((10, y_coordinate), text, fill=color, font=fnt)

 y_coordinate += text_height

 return y_coordinate

 @staticmethod
 def draw_analysis_text(image, analysis):
 """
 Draws classification and segmentation info onto supplied image
 overlay analysis results on an image analyzed by detect_anomalies.
 :param analysis: The response from a call to detect_anomalies.
 :returns Nothing
 """

 ## Calculate a reasonable font size based on image width.
 font_size = int(image.size[0]/32)

 fnt = ImageFont.truetype('/Library/Fonts/Tahoma.ttf', font_size)

 draw = ImageDraw.Draw(image)

 y_coordinate = 0

 # Draw classification information.
 prediction = "Anomalous" if analysis["DetectAnomalyResult"]
["IsAnomalous"] \
 else "Normal"

 confidence = analysis["DetectAnomalyResult"]["Confidence"]
 found_anomalies = analysis["DetectAnomalyResult"]['Anomalies']
 segmentation_info = False

 logger.info("Prediction: %s", format(prediction))
 logger.info("Confidence: %s", format(confidence))

 y_coordinate = 0
 y_coordinate = ShowAnomalies.draw_line(
 draw, "Classification", fnt, y_coordinate, "white")
 y_coordinate = ShowAnomalies.draw_line(
 draw, f" Prediction: {prediction}", fnt, y_coordinate, "white")
 y_coordinate = ShowAnomalies.draw_line(

Showing classification and segmentation information 157

Amazon Lookout for Vision Developer Guide

 draw, f" Confidence: {confidence:.2%}", fnt, y_coordinate, "white")

 # Draw segmentation information, if present.
 if (len(found_anomalies)) > 1:
 logger.info("Anomalies:")

 y_coordinate = ShowAnomalies.draw_line(
 draw, "Segmentation:", fnt, y_coordinate, "white")
 for i in range(1, len(found_anomalies)):

 # Only display info if more than 0% coverage found.
 percent_coverage = found_anomalies[i]['PixelAnomaly']
['TotalPercentageArea']
 if percent_coverage > 0:
 segmentation_info = True
 logger.info(" %s", found_anomalies[i]['Name'])
 logger.info(" Color: %s",
 found_anomalies[i]['PixelAnomaly']['Color'])
 logger.info(" Area: %s", percent_coverage)
 y_coordinate = ShowAnomalies.draw_line(
 draw,
 f" Anomaly: {found_anomalies[i]['Name']}. Area:
 {percent_coverage:.2%}",
 fnt,
 y_coordinate,
 found_anomalies[i]['PixelAnomaly']['Color'])

 if not segmentation_info:
 y_coordinate = ShowAnomalies.draw_line(
 draw, "No segmentation information found.", fnt,
 y_coordinate, "white")

 @staticmethod
 def show_anomaly_prediction(lookoutvision_client, project_name,
 model_version, photo):
 """
 Detects anomalies in an image (jpg/png) by using your Amazon Lookout for
 Vision
 model. Displays the image and overlays prediction information text.
 :param lookoutvision_client: An Amazon Lookout for Vision Boto3 client.

Showing classification and segmentation information 158

Amazon Lookout for Vision Developer Guide

 :param project_name: The name of the project that contains the model
 that
 you want to use.
 :param model_version: The version of the model that you want to use.
 :param photo: The path and name of the image in which you want to detect
 anomalies.
 """
 try:

 logger.info("Detecting anomalies in %s", photo)

 image = Image.open(photo)
 image_type = Image.MIME[image.format]

 # Check that image type is valid.
 if image_type not in ("image/jpeg", "image/png"):
 logger.info("Invalid image type for %s", photo)
 raise ValueError(
 f"Invalid file format. Supply a jpeg or png format file:
 {photo}"
)

 # Get images bytes for call to detect_anomalies.
 image_bytes = io.BytesIO()
 image.save(image_bytes, format=image.format)
 image_bytes = image_bytes.getvalue()

 # Analyze the image.
 response = lookoutvision_client.detect_anomalies(
 ProjectName=project_name,
 ContentType=image_type,
 Body=image_bytes,
 ModelVersion=model_version
)

 # Overlay mask onto analyzed image.
 image_mask_bytes = response["DetectAnomalyResult"]["AnomalyMask"]
 image_mask = Image.open(io.BytesIO(image_mask_bytes))

 final_img = Image.blend(image, image_mask, 0.5) \
 if response["DetectAnomalyResult"]["IsAnomalous"] else image

 # Overlay analysis output on image.
 ShowAnomalies.draw_analysis_text(final_img, response)

Showing classification and segmentation information 159

Amazon Lookout for Vision Developer Guide

 final_img.show()

 except ClientError as err:
 logger.info(format(err))
 raise

def add_arguments(parser):
 """
 Adds command line arguments to the parser.
 :param parser: The command line parser.
 """

 parser.add_argument(
 "project", help="The project containing the model that you want to use."
)
 parser.add_argument(
 "version", help="The version of the model that you want to use."
)
 parser.add_argument(
 "image",
 help="The file that you want to analyze. "
 "Supply a local file path.",
)

def main():
 """
 Entrypoint for anomaly detection example.
 """

 try:
 logging.basicConfig(level=logging.INFO,
 format="%(levelname)s: %(message)s")

 session = boto3.Session(
 profile_name='lookoutvision-access')

 lookoutvision_client = session.client("lookoutvision")

 parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)

 add_arguments(parser)

Showing classification and segmentation information 160

Amazon Lookout for Vision Developer Guide

 args = parser.parse_args()

 # Analyze the image and show results.
 ShowAnomalies.show_anomaly_prediction(
 lookoutvision_client, args.project, args.version, args.image
)

 except ClientError as err:
 print("A service error occured: " +
 format(err.response["Error"]["Message"]))
 except FileNotFoundError as err:
 print("The supplied file couldn't be found: " + err.filename)
 except ValueError as err:
 print("A value error occured. " + format(err))
 else:
 print("Successfully completed analysis.")

if __name__ == "__main__":
 main()

Java 2

The following example code detects anomalies in an image that you supply. The example
takes the following command line options:

• project – the name of the project that you want to use.

• version – the version of the model, within the project, that you want to use.

• image – the path and file of a local image file (JPEG or PNG format).

/*
 Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 SPDX-License-Identifier: Apache-2.0
*/

package com.example.lookoutvision;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;

Showing classification and segmentation information 161

Amazon Lookout for Vision Developer Guide

import software.amazon.awssdk.core.sync.RequestBody;
import software.amazon.awssdk.services.lookoutvision.LookoutVisionClient;
import software.amazon.awssdk.services.lookoutvision.model.Anomaly;
import
 software.amazon.awssdk.services.lookoutvision.model.DetectAnomaliesRequest;
import
 software.amazon.awssdk.services.lookoutvision.model.DetectAnomaliesResponse;
import software.amazon.awssdk.services.lookoutvision.model.DetectAnomalyResult;
import
 software.amazon.awssdk.services.lookoutvision.model.LookoutVisionException;

import java.io.BufferedInputStream;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.net.URLConnection;

import java.text.NumberFormat;
import java.awt.*;
import java.awt.font.LineMetrics;
import java.awt.image.BufferedImage;
import javax.imageio.ImageIO;
import javax.swing.*;

import java.util.logging.Level;
import java.util.logging.Logger;

// Finds anomalies on a supplied image.
public class ShowAnomalies extends JPanel {
/**
 * Finds and displays anomalies on a supplied image.
 */

 private static final long serialVersionUID = 1L;
 private transient BufferedImage image;
 private transient BufferedImage maskImage;
 private transient Dimension dimension;
 public static final Logger logger =
 Logger.getLogger(ShowAnomalies.class.getName());

 // Constructor. Finds anomalies in a local image file.

Showing classification and segmentation information 162

Amazon Lookout for Vision Developer Guide

 public ShowAnomalies(LookoutVisionClient lfvClient, String projectName,
 String modelVersion,
 String photo) throws IOException, LookoutVisionException {

 logger.log(Level.INFO, "Processing local file: {0}", photo);

 maskImage = null;

 // Get image bytes and buffered image.
 InputStream sourceStream = new FileInputStream(new File(photo));
 SdkBytes imageSDKBytes = SdkBytes.fromInputStream(sourceStream);
 byte[] imageBytes = imageSDKBytes.asByteArray();
 ByteArrayInputStream inputStream = new
 ByteArrayInputStream(imageSDKBytes.asByteArray());
 image = ImageIO.read(inputStream);

 // Get the image type. Can be image/jpeg or image/png.
 String contentType = getImageType(imageBytes);

 // Set the size of the window that shows the image.
 setWindowDimensions();

 // Detect anomalies in the supplied image.
 DetectAnomaliesRequest request =
 DetectAnomaliesRequest.builder().projectName(projectName)
 .modelVersion(modelVersion).contentType(contentType).build();

 DetectAnomaliesResponse response = lfvClient.detectAnomalies(request,
 RequestBody.fromBytes(imageBytes));

 /*
 * Tip: You can also use the following to analyze a local file.
 * Path path = Paths.get(photo);
 * DetectAnomaliesResponse response = lfvClient.detectAnomalies(request,
 path);
 */
 DetectAnomalyResult result = response.detectAnomalyResult();

 if (result.anomalyMask() != null){
 SdkBytes maskSDKBytes = result.anomalyMask();

 ByteArrayInputStream maskInputStream = new
 ByteArrayInputStream(maskSDKBytes.asByteArray());

Showing classification and segmentation information 163

Amazon Lookout for Vision Developer Guide

 maskImage = ImageIO.read(maskInputStream);
 }

 drawImageInfo(result);

 }

 // Sets window dimensions to 1/2 screen size, unless image is smaller.
 public void setWindowDimensions() {
 dimension = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 dimension.width = (int) dimension.getWidth() / 2;
 dimension.height = (int) dimension.getHeight() / 2;

 if (image.getWidth() < dimension.width || image.getHeight() <
 dimension.height) {
 dimension.width = image.getWidth();
 dimension.height = image.getHeight();
 }
 setPreferredSize(dimension);

 }

 private int drawLine(Graphics2D g2d, String line, FontMetrics metrics, int
 yPos, Color color) {
 /**
 * Draws a line of text at the spsecified y position and color.
 * confidence
 *
 * @param g2D The Graphics2D object for the image.
 * @param line The line of text to draw.
 * @param metrics The font information to use.
 * @param yPos The y position for the line of text.
 *
 * @return The yPos for the next line of text.
 */

 int indent = 10;

 // Get text height, width, and descent.
 int textWidth = metrics.stringWidth(line);
 LineMetrics lm = metrics.getLineMetrics(line, g2d);
 int textHeight = (int) lm.getHeight();
 int descent = (int) lm.getDescent();

Showing classification and segmentation information 164

Amazon Lookout for Vision Developer Guide

 int y2Pos = (yPos + textHeight) - descent;

 // Draw black rectangle.
 g2d.setColor(Color.BLACK);
 g2d.fillRect(indent, yPos, textWidth, textHeight);

 // Draw text.
 g2d.setColor(color);
 g2d.drawString(line, indent, y2Pos);

 yPos += textHeight;

 return yPos;

 }

 public void drawImageInfo(DetectAnomalyResult result) {
 /**
 * Draws the results from DetectAnomalies onto the output image.
 *
 * @param result The response from a call to
 * DetectAnomalies.
 *
 */

 // Set up drawing.
 Graphics2D g2d = image.createGraphics();

 if (result.anomalyMask() != null){
 Composite composite = g2d.getComposite();
 g2d.setComposite(AlphaComposite.SrcOver.derive(0.5f));
 int x = (image.getWidth() - maskImage.getWidth()) / 2;
 int y = (image.getHeight() - maskImage.getHeight()) / 2;
 g2d.drawImage(maskImage, x, y, null);
 // Set composite for overlaying text.
 g2d.setComposite(composite);
 }

 //Calculate font size based on arbitary 32 pixel image width.
 int fontSize = (image.getWidth() / 32);

 g2d.setFont(new Font("Tahoma", Font.PLAIN, fontSize));

Showing classification and segmentation information 165

Amazon Lookout for Vision Developer Guide

 Font font = g2d.getFont();
 FontMetrics metrics = g2d.getFontMetrics(font);

 // Get classification information.

 String prediction = "Prediction: Normal";

 if (Boolean.TRUE.equals(result.isAnomalous())) {
 prediction = "Prediction: Anomalous";
 }

 // Convert prediction to percentage.
 NumberFormat defaultFormat = NumberFormat.getPercentInstance();
 defaultFormat.setMinimumFractionDigits(1);
 String confidence = String.format("Confidence: %s",
 defaultFormat.format(result.confidence()));

 // Draw classification information.
 int yPos = 0;

 yPos = drawLine(g2d, "Classification:", metrics, yPos, Color.WHITE);
 yPos = drawLine(g2d, prediction, metrics, yPos, Color.WHITE);
 yPos = drawLine(g2d, confidence, metrics, yPos, Color.WHITE);

 // Draw segmentation info.
 yPos = drawLine(g2d, "Segmentation:", metrics, yPos, Color.WHITE);

 // Ignore background label, so size must be > 1
 if (result.anomalies().size() > 1) {
 for (Anomaly anomaly : result.anomalies()) {
 if (anomaly.name().equals("background"))
 continue;
 String label = String.format("Anomaly: %s. Area: %s",
 anomaly.name(),

 defaultFormat.format(anomaly.pixelAnomaly().totalPercentageArea()));
 Color anomalyColor =
 Color.decode((anomaly.pixelAnomaly().color()));
 yPos = drawLine(g2d, label, metrics, yPos, anomalyColor);

 }

 } else {
 drawLine(g2d, "None found.", metrics, yPos, Color.WHITE);

Showing classification and segmentation information 166

Amazon Lookout for Vision Developer Guide

 }

 g2d.dispose();

 }

 @Override
 public void paintComponent(Graphics g)
 /**
 * Draws the image and analysis results.
 *
 * @param g The Graphics context object for drawing.
 * DetectAnomalies.
 *
 */
 {

 Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g.

 // Draw the image.
 g2d.drawImage(image, 0, 0, dimension.width, dimension.height, this);

 }

 // Gets the image mime type. Supported formats are image/jpeg and image/png.

 private String getImageType(byte[] image) throws IOException
 /**
 * Gets the file type of a supplied image. Raises an exception if the image
 * isn't compatible with with Amazon Lookout for Vision.
 *
 * @param image The image that you want to check.
 *
 * @return String The type of the image.
 */

 {
 InputStream is = new BufferedInputStream(new
 ByteArrayInputStream(image));
 String mimeType = URLConnection.guessContentTypeFromStream(is);

 logger.log(Level.INFO, "Image type: {0}", mimeType);

Showing classification and segmentation information 167

Amazon Lookout for Vision Developer Guide

 if (mimeType.equals("image/jpeg") || mimeType.equals("image/png")) {
 return mimeType;
 }
 // Not a supported file type.
 logger.log(Level.SEVERE, "Unsupported image type: {0}", mimeType);
 throw new IOException(String.format("Wrong image type. %s format isn't
 supported.", mimeType));
 }

 public static void main(String[] args) throws Exception {

 String photo = null;
 String projectName = null;
 String modelVersion = null;

 final String USAGE = "\n" +
 "Usage:\n" +
 " DetectAnomalies <project> <version> <image> \n\n" +
 "Where:\n" +
 " project - The Lookout for Vision project.\n\n" +
 " version - The version of the model within the project.\n\n"
 +
 " image - The path and filename of a local image. \n\n";

 try {

 if (args.length != 3) {
 System.out.println(USAGE);
 System.exit(1);
 }

 projectName = args[0];
 modelVersion = args[1];
 photo = args[2];
 ShowAnomalies panel = null;

 // Get the Lookout for Vision client.
 LookoutVisionClient lfvClient = LookoutVisionClient.builder()

 .credentialsProvider(ProfileCredentialsProvider.create("lookoutvision-access"))
 .build();

 // Create frame and panel.
 JFrame frame = new JFrame(photo);

Showing classification and segmentation information 168

Amazon Lookout for Vision Developer Guide

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 panel = new ShowAnomalies(lfvClient, projectName, modelVersion,
 photo);

 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);

 } catch (LookoutVisionException lfvError) {
 logger.log(Level.SEVERE, "Lookout for Vision client error: {0}:
 {1}",
 new Object[] { lfvError.awsErrorDetails().errorCode(),
 lfvError.awsErrorDetails().errorMessage() });
 System.out.println(String.format("lookout for vision client error:
 %s", lfvError.getMessage()));
 System.exit(1);

 } catch (FileNotFoundException fileError) {
 logger.log(Level.SEVERE, "Could not find file: {0}",
 fileError.getMessage());
 System.out.println(String.format("Could not find file: %s",
 fileError.getMessage()));
 System.exit(1);

 } catch (IOException ioError) {
 logger.log(Level.SEVERE, "IO error {0}", ioError.getMessage());
 System.out.println(String.format("IO error: %s",
 ioError.getMessage()));
 System.exit(1);
 }

 }
}

4. If you aren't planning to continue using your model, stop your model.

Showing classification and segmentation information 169

Amazon Lookout for Vision Developer Guide

Finding anomalies with an AWS Lambda function

AWS Lambda is a compute service that lets you run code without provisioning or managing servers.
For example, you can analyze images submitted from a mobile application without having to create
a server to host the application code. The following instructions show how to create a Lambda
function in Python that calls DetectAnomalies. The function analyzes a supplied image and returns
a classification for the presence of anomalies in that image. The instructions include example
Python code showing how to call the Lambda function with an image in an Amazon S3 bucket, or
an image supplied from a local computer.

Topics

• Step 1: Create an AWS Lambda function (console)

• Step 2: (Optional) Create a layer (console)

• Step 3: Add Python code (console)

• Step 4: Try your Lambda function

Step 1: Create an AWS Lambda function (console)

In this step, you create an empty AWS function and an IAM execution role that lets your function
call the DetectAnomalies operation. It also grants access to the Amazon S3 bucket that stores
images for analysis. You also specify environment variables for the following:

• The Amazon Lookout for Vision project and model version that you want your Lambda function
to use.

• The confidence limit that you want the model to use.

Later you add the source code and optionally a layer to the Lambda function.

To create an AWS Lambda function (console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function. For more information, see Create a Lambda Function with the
Console.

3. Choose the following options.

Finding anomalies with an AWS Lambda function 170

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalies
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

Amazon Lookout for Vision Developer Guide

• Choose Author from scratch.

• Enter a value for Function name.

• For Runtime choose Python 3.10.

4. Choose Create function to create the AWS Lambda function.

5. On the function page, Choose the Configuration tab.

6. On the Environment variables pane, choose Edit.

7. Add the following environment variables. For each variable choose Add enviroment variable
and then enter the variable key and value.

Key Value

PROJECT_NAME The Lookout for Vision project that contains
the model you want to use.

MODEL_VERSION The version of the model that you want to
use.

CONFIDENCE The minumum value (0-100) for the model's
confidence that the prediction is anomalous
. If the confidence is lower, the classification
is deemed normal.

8. Choose Save to save the environment variables.

9. On the Permissions pane, Under Role name, choose the execution role to open the role in the
IAM console.

10. In the Permissions tab, choose Add permissions and then Create inline policy.

11. Choose JSON and replace the existing policy with the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "lookoutvision:DetectAnomalies",
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "DetectAnomaliesAccess"

Step 1: Create an AWS Lambda function (console) 171

Amazon Lookout for Vision Developer Guide

 }
]
}

12. Choose Next.

13. In Policy details, enter a name for the policy, such as DetectAnomalies-access.

14. Choose Create policy.

15. If you are storing images for analysis in an Amazon S3 bucket, repeat steps 10–14.

a. For step 11, use the following policy. Replace bucket/folder path with the Amazon S3
bucket and folder path to the images that you want to analyze.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3Access",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::bucket/folder path/*"
 }
]
}

b. For step 13, choose a different policy name, such as S3Bucket-access.

Step 2: (Optional) Create a layer (console)

To run this example, You don't need to do this step. The DetectAnomalies operation is included
in the default Lambda Python environment as part of AWS SDK for Python (Boto3). If other parts
of your Lambda function need recent AWS service updates that aren't in the default Lambda
Python environment, do this step to add the latest Boto3 SDK release as a layer to your function.

First, you create a .zip file archive that contains the Boto3 SDK. You then create a layer and add
the .zip file archive to the layer. For more information, see Using layers with your Lambda function.

To create and add a layer (console)

1. Open a command prompt and enter the following commands.

Step 2: (Optional) Create a layer (console) 172

https://docs.aws.amazon.com/lambda/latest/dg/invocation-layers.html#invocation-layers-using

Amazon Lookout for Vision Developer Guide

pip install boto3 --target python/.
zip boto3-layer.zip -r python/

2. Note the name of the zip file (boto3-layer.zip). You need it in step 6 of this procedure.

3. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

4. In the navigation pane, choose Layers.

5. Choose Create layer.

6. Enter values for Name and Description.

7. Choose Upload a .zip file and choose Upload.

8. In the dialog box, choose the .zip file archive (boto3-layer.zip) that you created in step 1 of this
procedure.

9. For compatible runtimes, choose Python 3.9.

10. Choose Create to create the layer.

11. Choose the navigation pane menu icon.

12. In the navigation pane, choose Functions.

13. In the resources list, choose the function that you created in Step 1: Create an AWS Lambda
function (console).

14. Choose the Code tab.

15. In the Layers section, choose Add a layer.

16. Choose Custom layers.

17. In Custom layers, choose the layer name that you entered in step 6.

18. In Version choose the layer version, which should be 1.

19. Choose Add.

Step 3: Add Python code (console)

In this step, you add Python code to your Lambda function by using the Lambda console code
editor. The code analyzes a supplied image with DetectAnomalies and returns a classification
(true if the image is anomalous, false if the image is normal). The supplied image can be located in
an Amazon S3 bucket or provided as byte64 encoded image bytes.

Step 3: Add Python code (console) 173

https://console.aws.amazon.com/lambda/

Amazon Lookout for Vision Developer Guide

To add Python code (console)

1. If you're not in the Lambda console, do the following:

a. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

b. Open the Lambda function you created in Step 1: Create an AWS Lambda function
(console).

2. Choose the Code tab.

3. In Code source, replace the code in lambda_function.py with the following:

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

"""
Purpose
An AWS lambda function that analyzes images with an Amazon Lookout for Vision
 model.
"""
import base64
import imghdr
from os import environ
from io import BytesIO
import logging
import boto3

from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)

Get the model and confidence.
project_name = environ['PROJECT_NAME']
model_version = environ['MODEL_VERSION']
min_confidence = int(environ.get('CONFIDENCE', 50))

lookoutvision_client = boto3.client('lookoutvision')

def lambda_handler(event, context):
 """
 Lambda handler function

Step 3: Add Python code (console) 174

https://console.aws.amazon.com/lambda/

Amazon Lookout for Vision Developer Guide

 param: event: The event object for the Lambda function.
 param: context: The context object for the lambda function.
 return: The labels found in the image passed in the event
 object.
 """

 try:

 file_name = ""

 # Determine image source.
 if 'image' in event:
 # Decode the encoded image
 image_bytes = event['image'].encode('utf-8')
 img_b64decoded = base64.b64decode(image_bytes)
 image_type = get_image_type(img_b64decoded)
 image = BytesIO(img_b64decoded)
 file_name = event['filename']

 elif 'S3Object' in event:
 bucket = boto3.resource('s3').Bucket(event['S3Object']['Bucket'])
 image_object = bucket.Object(event['S3Object']['Name'])
 image = image_object.get().get('Body').read()
 image_type = get_image_type(image)
 file_name = f"s3://{event['S3Object']['Bucket']}/{event['S3Object']
['Name']}"

 else:
 raise ValueError(
 'Invalid image source. Only base 64 encoded image bytes or images
 in S3 buckets are supported.')

 # Analyze the image.
 response = lookoutvision_client.detect_anomalies(
 ProjectName=project_name,
 ContentType=image_type,
 Body=image,
 ModelVersion=model_version)

 reject = reject_on_classification(
 response['DetectAnomalyResult'],
 confidence_limit=float(environ['CONFIDENCE'])/100)

 status = "anomalous" if reject else "normal"

Step 3: Add Python code (console) 175

Amazon Lookout for Vision Developer Guide

 lambda_response = {
 "statusCode": 200,
 "body": {
 "Reject": reject,
 "RejectMessage": f"Image {file_name} is {status}."
 }
 }

 except ClientError as err:
 error_message = f"Couldn't analyze {file_name}. " + \
 err.response['Error']['Message']

 lambda_response = {
 'statusCode': 400,
 'body': {
 "Error": err.response['Error']['Code'],
 "ErrorMessage": error_message,
 "Image": file_name
 }
 }
 logger.error("Error function %s: %s",
 context.invoked_function_arn, error_message)

 except ValueError as val_error:

 lambda_response = {
 'statusCode': 400,
 'body': {
 "Error": "ValueError",
 "ErrorMessage": format(val_error),
 "Image": event['filename']
 }
 }
 logger.error("Error function %s: %s",
 context.invoked_function_arn, format(val_error))

 return lambda_response

def get_image_type(image):
 """
 Gets the format of the image. Raises an error
 if the type is not PNG or JPEG.
 :param image: The image that you want to check.

Step 3: Add Python code (console) 176

Amazon Lookout for Vision Developer Guide

 :return The type of the image.

 """
 image_type = imghdr.what(None, image)

 if image_type == "jpeg":
 content_type = "image/jpeg"
 elif image_type == "png":
 content_type = "image/png"
 else:
 logger.info("Invalid image type")
 raise ValueError(
 "Invalid file format. Supply a jpeg or png format file.")
 return content_type

def reject_on_classification(prediction, confidence_limit):
 """
 Returns True if the anomaly confidence is greater than or equal to
 the supplied confidence limit.
 :param image: The name of the image file that was analyzed.
 :param prediction: The DetectAnomalyResult object returned from DetectAnomalies
 :param confidence_limit: The minimum acceptable confidence. Float value between
 0 and 1.
 :return: True if the error condition indicates an anomaly, otherwise False.
 """

 reject = False

 if prediction['IsAnomalous'] and prediction['Confidence'] >= confidence_limit:
 reject = True
 reject_info = (f"Rejected: Anomaly confidence
 ({prediction['Confidence']:.2%}) is greater"
 f" than limit ({confidence_limit:.2%})")
 logger.info("%s", reject_info)

 if not reject:
 logger.info("No anomalies found.")
 return reject

4. Choose Deploy to deploy your Lambda function.

Step 3: Add Python code (console) 177

Amazon Lookout for Vision Developer Guide

Step 4: Try your Lambda function

In this step you use Python code on your computer to pass a local image, or an image in an
Amazon S3 bucket, to your Lambda function. Images passed from a local computer must be
smaller than 6291456 bytes. If your images are larger, upload the images to an Amazon S3 bucket
and call the script with the Amazon S3 path to the image. For information about uploading image
files to an Amazon S3 bucket, see Uploading objects.

Make sure you run the code in the same AWS Region in which you created the Lambda function.
You can view the AWS Region for your Lambda function in the navigation bar of the function
details page in the Lambda console.

If the AWS Lambda function returns a timeout error, extend the timeout period for the Lambda
function function, For more information, see Configuring function timeout (console).

For more information about invoking a Lambda function from your code, see Invoking AWS
Lambda Functions.

To try your Lambda function

1. If you haven't already done so, do the following:

a. Make sure the user using the client code has lambda:InvokeFunction permission. You
can use the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LambdaPermission",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "ARN for lambda function"
 }
]
}

You can get the ARN for your Lambda function function from the function overview in the
Lambda console.

To provide access, add permissions to your users, groups, or roles:

Step 4: Try your Lambda function 178

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-functions.html
https://console.aws.amazon.com/lambda/

Amazon Lookout for Vision Developer Guide

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS
IAM Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a
third-party identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for
an IAM user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group.
Follow the instructions in Adding permissions to a user (console) in the IAM User
Guide.

b. Install and configure AWS SDK for Python. For more information, see Step 4: Set up the
AWS CLI and AWS SDKs.

c. Start the model that you specified in step 7 of Step 1: Create an AWS Lambda function
(console) .

2. Save the following code to a file named client.py.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

"""
Purpose: Shows how to call the anomaly detection
AWS Lambda function.
"""
from botocore.exceptions import ClientError

import argparse
import logging
import base64
import json
import boto3
from os import environ

logger = logging.getLogger(__name__)

Step 4: Try your Lambda function 179

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Lookout for Vision Developer Guide

def analyze_image(function_name, image):
 """
 Analyzes an image with an AWS Lambda function.
 :param image: The image that you want to analyze.
 :return The status and classification result for
 the image analysis.
 """

 lambda_client = boto3.client('lambda')

 lambda_payload = {}

 if image.startswith('s3://'):
 logger.info("Analyzing image from S3 bucket: %s", image)
 bucket, key = image.replace("s3://", "").split("/", 1)
 s3_object = {
 'Bucket': bucket,
 'Name': key
 }
 lambda_payload = {"S3Object": s3_object}

 # Call the lambda function with the image.
 else:
 with open(image, 'rb') as image_file:
 logger.info("Analyzing local image image: %s ", image)
 image_bytes = image_file.read()
 data = base64.b64encode(image_bytes).decode("utf8")
 lambda_payload = {"image": data, "filename": image}

 response = lambda_client.invoke(FunctionName=function_name,
 Payload=json.dumps(lambda_payload))
 return json.loads(response['Payload'].read().decode())

def add_arguments(parser):
 """
 Adds command line arguments to the parser.
 :param parser: The command line parser.
 """

 parser.add_argument(
 "function", help="The name of the AWS Lambda function "
 "that you want to use to analyze the image.")
 parser.add_argument(

Step 4: Try your Lambda function 180

Amazon Lookout for Vision Developer Guide

 "image", help="The local image that you want to analyze.")

def main():
 """
 Entrypoint for script.
 """
 try:
 logging.basicConfig(level=logging.INFO,
 format="%(levelname)s: %(message)s")

 # Get command line arguments.
 parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
 add_arguments(parser)
 args = parser.parse_args()

 # Analyze image and display results.

 result = analyze_image(args.function, args.image)

 status = result['statusCode']

 if status == 200:
 classification = result['body']
 print(f"classification: {classification['Reject']}")
 print(f"Message: {classification['RejectMessage']}")
 else:
 print(f"Error: {result['statusCode']}")
 print(f"Message: {result['body']}")

 except ClientError as error:
 logging.error(error)
 print(error)

if __name__ == "__main__":
 main()

3. Run the code. For the command line argument, supply the Lambda function name and the
path to a local image that you want to analyze. For example:

python client.py function_name /bucket/path/image.jpg

Step 4: Try your Lambda function 181

Amazon Lookout for Vision Developer Guide

If successful, the output is a classification for the anomalies found in the image. If a
classification isn't returned, consider lowering the confidence value that you set in step 7 of
Step 1: Create an AWS Lambda function (console).

4. If you have finished with the Lambda function and the model isn't used by other applications,
stop the model. Remember to start the model the next time you want use the Lambda
function.

Step 4: Try your Lambda function 182

Amazon Lookout for Vision Developer Guide

Using your Amazon Lookout for Vision model on an edge
device

You can use your Amazon Lookout for Vision model on edge devices managed by AWS IoT
Greengrass Version 2. AWS IoT Greengrass is an open source Internet of Things (IoT) edge runtime
and cloud service. You can use it to build, deploy, and manage IoT applications on your devices. For
more information, see AWS IoT Greengrass.

You deploy the same Amazon Lookout for Vision models that you've trained in the cloud onto AWS
IoT Greengrass V2 compatible edge devices. You can then use your deployed model to perform
anomaly detection on premises, such as a factory floor, without continually streaming data to the
cloud. That way you can minimize bandwidth costs and detect anomalies locally with real-time
image analysis.

Tip

Before deploying a Lookout for Vision model with AWS IoT Greengrass, we recommend that
you read the AWS IoT Greengrass Version 2 developer guide. For more information, see What
is AWS IoT Greengrass?.

To use a Lookout for Vision model on an AWS IoT Greengrass V2 core device, you deploy the model
and supporting software as components to the core device. A component is a software module,
such as a Lookout for Vision model, that runs on a Greengrass core device. There are two forms
of component. A custom component is a component that you create and is only accessible to you.
It is also known as a private component. An AWS supplied component is a pre-built component
that AWS provides. It is also known as a public component. For more information, see https://
docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html.

The components that you deploy to a core device for a Lookout for Vision model and supporting
software are:

• Model component. A custom component that contains your Lookout for Vision model. To create
the model component, you use Lookout for Vision to create a model packaging job. A model
packaging job creates a component for the model and makes it available as a custom component
within AWS IoT Greengrass V2. For more information, see Packaging your Amazon Lookout for
Vision model.

183

https://aws.amazon.com/greengrass
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html

Amazon Lookout for Vision Developer Guide

• Client application component. A custom component you create that implements the code for your
business requirements. For example, finding anomalous circuit boards from images taken after
assembly. For more information, see Writing your client application component.

• Amazon Lookout for Vision Edge Agent component. An AWS supplied component that provides an
API for using and managing your model. For example, code in your client application component
can use the DetectAnomalies API to detect anomalies in images. The Lookout for Vision Edge
Agent component is a dependency of the model component. It is automatically installed on the
core device when you deploy the model component. For more information, see Amazon Lookout
for Vision Edge Agent API reference.

After you create the model component and client application component, you can use AWS
IoT Greengrass V2 to deploy the components and dependencies to the core device. For more
information, see Deploying your components to a device.

Important

The predictions that your model makes with DetectAnomalies on a core device might
differ from predictions made using the same model hosted in the cloud. We recommend
that you test your model on a core device before using it in a production environment.
To reduce prediction mismatches between device hosted models and cloud hosted models,
we recommend increasing the number of normal and anomalous images in your training

184

Amazon Lookout for Vision Developer Guide

dataset. We don't recommend reusing existing images to increase the size of the training
dataset.

Deploying a model and client application component to a AWS
IoT Greengrass Version 2 core device

The procedure for deploying an Amazon Lookout for Vision model and client application
component on an AWS IoT Greengrass Version 2 core device is as follows:

1. Set up your core devices with AWS IoT Greengrass Version 2.

2. Create a model packaging job by using Lookout for Vision. The job creates your model
component.

3. Write a client application component. The component implements your business logic.

4. Deploy the model component and client application component to the core device by using AWS
IoT Greengrass V2.

After the components and dependencies are deployed to the core device, you can use the model on
the core device.

Note

You must use the same AWS Region and AWS account to create and deploy your Lookout
for Vision model and client application component.

AWS IoT Greengrass Version 2 core device requirements

To use an Amazon Lookout for Vision model on an AWS IoT Greengrass Version 2 core device, your
model has various requirements of the core device.

Topics

• Tested devices, chip architectures, and operating systems

• Core device memory and storage

• Required software

Deploying a model to a core device 185

Amazon Lookout for Vision Developer Guide

Tested devices, chip architectures, and operating systems

We expect Amazon Lookout for Vision to work on the following hardware:

• CPU architectures

• X86_64 (64-bit version of the x86 instruction set)

• Aarch64 (ARMv8 64-bit CPU)

• (GPU accelerated inference only) NVIDIA GPU Accelerator with sufficient memory capacity (At
least 6.0 GB for a running model).

The Amazon Lookout for Vision team has tested Lookout for Vision models on the following
devices, chip architectures, and operating systems.

Devices

Device Operating
system

Architecture Accelerator Compiler
options

jetson_xavier
(NVIDIA® Jetson
AGX Xavier)

Linux Aarch64 NVIDIA {"gpu-
code":
"sm_72",
"trt-ver"
: "7.1.3",
"cuda-ver":
"10.2"}

{"gpu-
code":
"sm_72",
"trt-ver"
: "8.2.1",
"cuda-ver":
"10.2"}

g4dn.xlarge (EC2
Instances (G4)
with NVIDIA

Linux X86_64/X86-64 NVIDIA {"gpu-
code":

Tested devices, chip architectures, and operating systems 186

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://en.wikipedia.org/wiki/AArch64
https://aws.amazon.com/blogs/aws/now-available-ec2-instances-g4-with-nvidia-t4-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/now-available-ec2-instances-g4-with-nvidia-t4-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/now-available-ec2-instances-g4-with-nvidia-t4-tensor-core-gpus/
https://en.wikipedia.org/wiki/X86-64

Amazon Lookout for Vision Developer Guide

Device Operating
system

Architecture Accelerator Compiler
options

T4 Tensor Core
GPUs)

"sm_75",
"trt-ver"
: "7.1.3",
"cuda-ver":
"10.2"}

g5.xlarge (EC2
Instances (G5)
with NVIDIA
A10G Tensor
Core GPUs)

Linux X86_64/X86-64 NVIDIA {"gpu-
code":
"sm_80",
"trt-ver"
: "8.2.0",
"cuda-ver":
"11.2"}

c5.2xlarge
(Amazon EC2 C5
Instances)

Linux X86_64/X86-64 CPU {"mcpu":
"core-avx
2"}

Core device memory and storage

To run a single model and the Amazon Lookout for Vision Edge Agent, your core device has the
following memory and storage requirements. You might need more memory and storage for your
client application component.

• Storage – At least 1.5 GB.

• Memory – At least 6.0 GB for a running model.

Required software

A core device requires the following software.

Jetson Devices

If your core device is a Jetson device, you need the following software installed on the core device.

Core device memory and storage 187

https://aws.amazon.com/blogs/aws/now-available-ec2-instances-g4-with-nvidia-t4-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/now-available-ec2-instances-g4-with-nvidia-t4-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/new-ec2-instances-g5-with-nvidia-a10g-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/new-ec2-instances-g5-with-nvidia-a10g-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/new-ec2-instances-g5-with-nvidia-a10g-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/new-ec2-instances-g5-with-nvidia-a10g-tensor-core-gpus/
https://aws.amazon.com/blogs/aws/new-ec2-instances-g5-with-nvidia-a10g-tensor-core-gpus/
https://en.wikipedia.org/wiki/X86-64
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c5/
https://en.wikipedia.org/wiki/X86-64

Amazon Lookout for Vision Developer Guide

Software Supported versions

Jetpack SDK 4.4 to 4.6.1

Python and Python virtual environment for
Lookout for Vision Edge Agent version 1.x

3.8 or 3.9

X86 hardware

If your core device uses x86 hardware, you need the following software installed on the core device.

CPU inference

Software Supported versions

Python and Python virtual environment for
Lookout for Vision Edge Agent version 1.x

3.8 or 3.9

GPU accelerated inference

Software versions vary depending on the microarchitecture of the NVIDIA GPU that you use.

NVIDIA GPU with microarchitecture prior to Ampere (compute capability is less than 8.0)

Required software for an NVIDIA GPU with a microarchitecture prior to Ampere (compute capability
that is less than 8.0). The gpu-code must be less than sm_80.

Software Supported versions

NVIDIA CUDA 10.2

NVIDIA TensorRT At least 7.1.3 and less than 8.0.0

Python and Python virtual environment for
Lookout for Vision Edge Agent version 1.x

3.8 or 3.9

Required software 188

Amazon Lookout for Vision Developer Guide

NVIDIA GPU with Ampere microarchitecture (compute capability 8.0)

Required software for an NVIDIA GPU with the Ampere microarchitecture (compute capability is
8.0). The gpu-code must be sm_80).

Software Supported versions

NVIDIA CUDA 11.2

NVIDIA TensorRT 8.2.0

Python and Python virtual environment for
Lookout for Vision Edge Agent version 1.x

3.8 or 3.9

Setting up your AWS IoT Greengrass Version 2 core device

Amazon Lookout for Vision uses AWS IoT Greengrass Version 2 to simplify the deployment of the
model component, Amazon Lookout for Vision Edge Agent component, and client application
component to your AWS IoT Greengrass V2 core device. For information about the devices and
hardware that you can use, see AWS IoT Greengrass Version 2 core device requirements.

Setting up your core device

Use the following information to set up your core device.

To set up your core device

1. Set up your GPU libraries. Don't do this step if you aren't using GPU accelerated inference.

a. Verify that you have a GPU that supports CUDA. For more information, see Verify You
Have a CUDA-Capable GPU.

b. Setup CUDA, cuDNN, and TensorRT on your device by doing one of the following:

• If you are using a Jetson device, install JetPack version 4.4 - 4.6.1. For more information,
see JetPack Archive.

• If you are using x86 based hardware, and your NVIDIA GPU microarchitecture is prior to
Ampere (compute capability is less than 8.0), do the following:

Setting up your core device 189

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#verify-you-have-cuda-enabled-system
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#verify-you-have-cuda-enabled-system
https://developer.nvidia.com/embedded/jetpack-archive

Amazon Lookout for Vision Developer Guide

1. Set up CUDA version 10.2 by following the instructions at NVIDIA CUDA Installation
Guide for Linux.

2. Install cuDNN, by following the instructions at NVIDIA cuDNN Documentation.

3. Set up TensorRT (version 7.1.3 or later, but earlier than 8.0.0) by following the
instructions at NVIDIA TENSORRT DOCUMENTATION.

• If you are using x86 based hardware, and your NVIDIA GPU microarchitecture is Ampere
(compute capability is 8.0), do the following:

1. Set up CUDA (version 11.2) by following the instructions at NVIDIA CUDA Installation
Guide for Linux.

2. Install cuDNN, by following the instructions at NVIDIA cuDNN Documentation.

3. Set up TensorRT (version 8.2.0) by following the instructions at NVIDIA TENSORRT
DOCUMENTATION.

2. Install the AWS IoT Greengrass Version 2 core software on your core device. For more
information, see Install the AWS IoT Greengrass Core software in the AWS IoT Greengrass
Version 2 Developer Guide.

3. To read from the Amazon S3 bucket that stores the model, attach permission to the IAM role
(token exchange role) that you create during AWS IoT Greengrass Version 2 setup. For more
information, see Allow access to S3 buckets for component artifacts.

4. At the command prompt, enter the folllowing command to install Python and a Python virtual
environment onto the core device.

sudo apt install python3.8 python3-venv python3.8-venv

5. Use the following command to add the Greengrass user to the video group. This lets
Greengrass deployed components access the GPU:

sudo usermod -a -G video ggc_user

6. (Optional) If you want to call Lookout for Vision Edge Agent API from a different user, add the
required user to the ggc_group. This lets the user communicate with the Lookout for Vision
Edge Agent over the Unix Domain socket:

sudo usermod -a -G ggc_group $(whoami)

Setting up your core device 190

https://docs.nvidia.com/cuda/archive/10.2/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/archive/10.2/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/cuda/archive/11.2.0/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/archive/11.2.0/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#install-greengrass-v2
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-service-role.html#device-service-role-access-s3-bucket

Amazon Lookout for Vision Developer Guide

Packaging your Amazon Lookout for Vision model

A model packaging job packages an Amazon Lookout for Vision model as a model component.

To create a model packaging job, you choose the model you want to package and provide settings
for the model component that the job creates. You can only package a model that has been
successfully trained.

You can use the Lookout for Vision console or AWS SDK to create the model packaging job. You can
also get information about the model packaging jobs you create. For more information, see Getting
information about model packaging jobs. You can use AWS IoT Greengrass V2 console or the AWS
SDK to deploy the components to the AWS IoT Greengrass Version 2 core device.

Topics

• Package settings

• Packaging your model (Console)

• Packaging your model (SDK)

• Getting information about model packaging jobs

Package settings

Use the following information to decide the package settings for your model packaging job.

To create a model packaging job, see Packaging your model (Console) or Packaging your model
(SDK).

Topics

• Target hardware

• Component settings

Target hardware

You can choose a target device or target platform for your model, but not both. For more
information, see Tested devices, chip architectures, and operating systems.

Packaging your model 191

Amazon Lookout for Vision Developer Guide

Target device

The target device for the model, such as NVIDIA® Jetson AGX Xavier. You don't need to specify
compiler options.

Target platform

Amazon Lookout for Vision supports the following platform configurations:

• X86_64 (64-bit version of the x86 instruction set) and Aarch64 (ARMv8 64-bit CPU) architectures.

• Linux operating system.

• Inference using NVIDIA or CPU accelerators.

You need to specify the correct compiler options for your target platform.

Compiler options

Compiler options allow you to specify the target platform for your AWS IoT Greengrass Version 2
core device. Currently you can specify the following compiler options.

NVIDIA accelerator

• gpu-code — Specifies the gpu code of the core device that runs the model component.

• trt-ver — Specifies the TensorRT version in x.y.z. format.

• cuda-ver — Specifies the CUDA version in x.y format.

CPU accelerator

• (Optional) mcpu — specifies the instruction set. For example core-avx2. If you don't provide a
value, Lookout for Vision uses the value core-avx2.

You specify the options in JSON format. For example:

{"gpu-code": "sm_75", "trt-ver": "7.1.3", "cuda-ver": "10.2"}

For more examples, see Tested devices, chip architectures, and operating systems.

Package settings 192

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/

Amazon Lookout for Vision Developer Guide

Component settings

The model packaging job creates a model component that contains your model. The job creates
artifacts that AWS IoT Greengrass V2 uses to deploy the model component to the core device.

You can't create a model component with the same component name and component version as an
existing component.

Component name

A name for the model component that Lookout for Vision creates during model packaging. The
component name you specify is displayed in the AWS IoT Greengrass V2 console. You use the
component name in the recipe that you create for the client application component. For more
information, see Creating the client application component.

Component description

(Optional) A description for the model component.

Component version

A version number for the model component. You can accept the default version number or
choose your own. The version number must follow the semantic version number system –
major.minor.patch. For example, version 1.0.0 represents the first major release for a component.
For more information, see Semantic Versioning 2.0.0. If you don't provide a value, Lookout for
Vision uses the version number of your model to generate a version for you.

Component location

The Amazon S3 location where you want the model packaging job to save the model component
artifacts. The Amazon S3 bucket must be in the same AWS Region and AWS account in which you
use AWS IoT Greengrass Version 2. To create an Amazon S3 bucket, see Creating a bucket.

Tags

You can identify, organize, search for, and filter your components by using tags. Each tag is a label
consisting of a user-defined key and value. The tags are attached to the model component when
the model packaging job creates the model component in Greengrass. A component is an AWS IoT
Greengrass V2 resource. The tags aren't attached to any of your Lookout for Vision resources, such
as your models. For more information, see Tagging AWS resources.

Package settings 193

https://semver.org/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

Amazon Lookout for Vision Developer Guide

Packaging your model (Console)

You can create a model packaging job by using the Amazon Lookout for Vision console.

For information about package settings, see Package settings.

To package a model (console)

1. Create an Amazon S3 bucket, or reuse an existing bucket, that Lookout for Vision uses to store
the packaging job artifacts (model component).

2. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

3. Choose Get started.

4. In the left navigation pane, choose Projects.

5. In the Projects section, choose the project that contains the model you want to package.

6. In the left navigation pane, under the project name, choose Edge model packages.

7. In the Model packaging jobs section, choose Create model packaging job.

8. Enter the settings for the package. For more information, see Package settings.

9. Choose Create model packaging job.

10. Wait until the packaging job finishes. The job is finished when the status of the job is Success.

11. Choose the packaging job in the Model packaging jobs section.

12. Choose Continue deployment in Greengrass to continue deployment of your model
component in AWS IoT Greengrass Version 2. For more information, see Deploying your
components to a device.

Packaging your model (SDK)

You package a model as a model component by creating a model packaging job. To create a model
packaging job you call the StartModelPackagingJob API. The job might take a while to complete.
To find out the current status, call DescribeModelPackagingJob and check the Status field in the
response.

For information about package settings, see Package settings.

Packaging your model (Console) 194

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob

Amazon Lookout for Vision Developer Guide

The following procedure shows you how to start a packaging job by using the AWS CLI. You
can package the model for a target platform or a target device. For example Java code, see
StartModelPackagingJob.

To package your model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Make sure that you have the correct permissions to start a model packaging job. For more
information, see StartModelPackagingJob.

3. Use the following CLI commands to package your model for either a target device or a target
platform.

Target platform

The following CLI command shows how to package a model for a target platform with an
NVIDIA accelerator.

Change the following values:

• project_name to the name of the project that contains the model that you want to
package.

• model_version to the version of the model that you want to package.

• (Optional) description to a description for your model packaging job.

• architecture to the architecture (ARM64 or X86_64) of the AWS IoT Greengrass
Version 2 core device where you run the model component.

• gpu_code to the gpu code of the core device where you run the model component.

• trt_ver to the TensorRT version you have installed on your core device.

• cuda_ver to the CUDA version you have installed on your core device.

• component_name to a name for the model component that you want to create on AWS
IoT Greengrass V2.

• (Optional) component_version to a version for the model component that the
packaging job creates. Use the format major.minor.patch. For example, 1.0.0
represents the first major release for a component.

• bucket to the Amazon S3 bucket where the packaging job stores the model component
artifacts.

Packaging your model (SDK) 195

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/StartModelPackagingJob.java
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModelPackagingJob.html

Amazon Lookout for Vision Developer Guide

• prefix to the location within the Amazon S3 bucket where the packaging job stores the
model component artifacts.

• (Optional) component_description to a description for the model component.

• (Optional) tag_key1 and tag_key2 to the keys for tags that are attached to the model
component.

• (Optional) tag_value1 and tag_value2 to the key values for the tags that are
attached to the model component.

aws lookoutvision start-model-packaging-job \
 --project-name project_name \
 --model-version model_version \
 --description="description" \
 --configuration
 "Greengrass={TargetPlatform={Os='LINUX',Arch='architecture',Accelerator='NVIDIA'},CompilerOptions='{\"gpu-
code\": \"gpu_code\", \"trt-ver\": \"trt_ver\", \"cuda-ver\":
 \"cuda_ver\"}',S3OutputLocation={Bucket='bucket',Prefix='prefix'},ComponentName='Component_name',ComponentVersion='component_version',ComponentDescription='component_description',Tags=[{Key='tag_key1',Value='tag_value1'},
 {Key='tag_key2',Value='tag_value2'}]}" \
 --profile lookoutvision-access

For example:

aws lookoutvision start-model-packaging-job \
 --project-name test-project-01 \
 --model-version 1 \
 --description="Model Packaging Job for G4 Instance using TargetPlatform
 Option" \
 --configuration
 "Greengrass={TargetPlatform={Os='LINUX',Arch='X86_64',Accelerator='NVIDIA'},CompilerOptions='{\"gpu-
code\": \"sm_75\", \"trt-ver\": \"7.1.3\", \"cuda-ver\":
 \"10.2\"}',S3OutputLocation={Bucket='bucket',Prefix='test-project-01/
folder'},ComponentName='SampleComponentNameX86TargetPlatform',ComponentVersion='0.1.0',ComponentDescription='This
 is my component',Tags=[{Key='modelKey0',Value='modelValue'},
 {Key='modelKey1',Value='modelValue'}]}" \
 --profile lookoutvision-access

Target Device

Use the following CLI commands to package a model for a target device.

Packaging your model (SDK) 196

Amazon Lookout for Vision Developer Guide

Change the following values:

• project_name to the name of the project that contains the model that you want to
package.

• model_version to the version of the model that you want to package.

• (Optional) description to a description for your model packaging job.

• component_name to a name for the model component that you want to create on AWS
IoT Greengrass V2.

• (Optional) component_version to a version for the model component that the
packaging job creates. Use the format major.minor.patch. For example, 1.0.0
represents the first major release for a component.

• bucket to the Amazon S3 bucket where the packaging job stores the model component
artifacts.

• prefix to the location within the Amazon S3 bucket where the packaging job stores the
model component artifacts.

• (Optional) component_description to a description for the model component.

• (Optional) tag_key1 and tag_key2 to the keys for tags that are attached to the model
component.

• (Optional) tag_value1 and tag_value2 to the key values for the tags that are
attached to the model component.

aws lookoutvision start-model-packaging-job \
 --project-name project_name \
 --model-version model_version \
 --description="description" \
 --configuration
 "Greengrass={TargetDevice='jetson_xavier',S3OutputLocation={Bucket='bucket',Prefix='prefix'},ComponentName='component_name',ComponentVersion='component_version',ComponentDescription='component_description',Tags=[{Key='tag_key1',Value='tag_value1'},
 {Key='tag_key2',Value='tag_value2'}]}" \
 --profile lookoutvision-access

For example:

aws lookoutvision start-model-packaging-job \
 --project-name project_01 \

Packaging your model (SDK) 197

Amazon Lookout for Vision Developer Guide

 --model-version 1 \
 --description="description" \
 --configuration
 "Greengrass={TargetDevice='jetson_xavier',S3OutputLocation={Bucket='bucket',Prefix='component_folder'},ComponentName='jetson_component',ComponentVersion='2.0.0',ComponentDescription='jetson
 model component',Tags=[{Key='tag_key1',Value='tag_value1'},
 {Key='tag_key2',Value='tag_value2'}]}" \
 --profile lookoutvision-access

4. Note the value of JobName in the response. You need it in the next step. For example:

{
 "JobName": "6bcfd0ff-90c3-4463-9a89-6b4be3daf972"
}

5. Use DescribeModelPackagingJob to get the current status of the job. Change the
following:

• project_name to the name of the project that you are using.

• job_name to the name of the job that you noted in the previous step.

aws lookoutvision describe-model-packaging-job \
 --project-name project_name \
 --job-name job_name \
 --profile lookoutvision-access

The model packaging job is complete if the value of Status is SUCCEEDED. If the value is
different, wait a minute and try again.

6. Continue deployment using AWS IoT Greengrass V2. For more information, see Deploying your
components to a device.

Getting information about model packaging jobs

You can use the Amazon Lookout for Vision console and AWS SDK to get information about the
model packaging jobs that you create.

Topics

• Getting model packaging job information (Console)

• Getting model packaging job information (SDK)

Getting information about model packaging jobs 198

Amazon Lookout for Vision Developer Guide

Getting model packaging job information (Console)

To get model packaging job information (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. In the Projects section, choose the project that contains the model packaging job you want to
view.

5. In the left navigation pane, under the project name, choose Edge model packages.

6. In the Model packaging job section, choose the model packaging job that you want to view.
The details page for the model packaging job is shown.

Getting model packaging job information (SDK)

You can use the AWS SDK to list the model packaging jobs in a project and get information about a
specific model packaging job.

List model packaging jobs

You can list the model packaging jobs in a project by calling the ListModelPackagingJobs API. The
response includes a list of ModelPackagingJobMetadata objects that provides information about
each model packaging job. Also included is a pagination token that you can use to get the next set
of results, if the list is incomplete.

To list your model packaging jobs

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following CLI command. Change project_name to the name of the project that you
want to use.

aws lookoutvision list-model-packaging-jobs \
 --project-name project_name \

Getting information about model packaging jobs 199

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListModelPackagingJobs
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ModelPackagingJobMetadata

Amazon Lookout for Vision Developer Guide

 --profile lookoutvision-access

Describe a model packaging job

Use the DescribeModelPackagingJob API to get information about a model packaging job. The
response is a ModelPackagingDescription object that includes the current status of the job and
other information.

To describe a package

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following CLI command. Change the following:

• project_name to the name of the project that you are using.

• job_name to the name of the job. You get the job name (JobName) when you call
StartModelPackagingJob.

aws lookoutvision describe-model-packaging-job \
 --project-name project_name \
 --job-name job_name \
 --profile lookoutvision-access

Writing your client application component

A client application component is a custom AWS IoT Greengrass Version 2 component that you
write. It implements the business logic you need to use an Amazon Lookout for Vision model on an
AWS IoT Greengrass Version 2 core device.

To access a model, your client application component uses the Lookout for Vision Edge Agent
component. The Lookout for Vision Edge Agent component provides an API that you use to analyze
images with a model and manage the models on a core device.

The Lookout for Vision Edge Agent API is implemented using gRPC, which is a protocol for making
remote procedure calls. For more information, see gRPC. To write your code, you can use any
language supported by gRPC. We provide example Python code. For more information, see Using a
model in your client application component.

Writing your client application component 200

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ModelPackagingDescription
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModelPackagingJob
https://grpc.io/

Amazon Lookout for Vision Developer Guide

Note

The Lookout for Vision Edge Agent component is a dependency of the model component
that you deploy. It is automatically deployed to the core device when you deploy the model
component to the core device.

To write a client application component, you do the following.

1. Set up your environment to use gRPC and install third-party libraries.

2. Write code to use the model.

3. Deploy the code as a custom component to the core device.

For an example client application component that shows how to perform anomaly detection in a
custom GStreamer pipeline, see https://github.com/awslabs/aws-greengrass-labs-lookoutvision-
gstreamer.

Setting up your environment

To write client code, your development environment connects remotely to an AWS IoT Greengrass
Version 2 core device to which you have deployed a Amazon Lookout for Vision model component
and dependencies. Alternatively, you can write code on a core device. For more information, see
AWS IoT Greengrass development tools and Develop AWS IoT Greengrass components.

Your client code should use gRPC client to access the Amazon Lookout for Vision Edge Agent. This
section shows how to set up your development environment with gRPC and install third-party
dependencies needed for the DetectAnomalies example code.

After you finish writing your client code, you create a custom component and deploy the custom
component to your edge devices. For more information, see Creating the client application
component.

Topics

• Setting up gRPC

• Adding third-party dependencies

Setting up your environment 201

https://github.com/awslabs/aws-greengrass-labs-lookoutvision-gstreamer
https://github.com/awslabs/aws-greengrass-labs-lookoutvision-gstreamer
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-tools.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/develop-greengrass-components.html

Amazon Lookout for Vision Developer Guide

Setting up gRPC

In your development environment, you need a gRPC client that you use in your code to call the
Lookout for Vision Edge Agent API. To do this, you create a gRPC stub by using a .protoservice
definition file for the Lookout for Vision Edge Agent.

Note

You can also get the service definition file from the Lookout for Vision Edge Agent
application bundle. The application bundle is installed when the Lookout for Vision
Edge Agent component is installed as a dependency of the model component.
The application bundle is located at /greengrass/v2/packages/artifacts-
unarchived/aws.iot.lookoutvision.EdgeAgent/edge_agent_version/
lookoutvision_edge_agent. Replace edge_agent_version with version of the
Lookout for Vision Edge Agent that you are using. To get the application bundle, you need
to deploy the Lookout for Vision Edge Agent to a core device.

To set up gRPC

1. Download the zip file, proto.zip. The zip file contains the .proto service definition file (edge-
agent.proto).

2. Unzip the content.

3. Open a command prompt and navigate to the folder that contains edge-agent.proto.

4. Use the following commands to generate the Python client interfaces.

%%bash
python3 -m pip install grpcio
python3 -m pip install grpcio-tools
python3 -m grpc_tools.protoc --proto_path=. --python_out=. --grpc_python_out=.
 edge-agent.proto

If the commands are successful, the stubs edge_agent_pb2_grpc.py and
edge_agent_pb2.py are created in the working directory.

5. Write the client code that uses your model. For more information, see Using a model in your
client application component.

Setting up your environment 202

samples/proto.zip

Amazon Lookout for Vision Developer Guide

Adding third-party dependencies

The DetectAnomalies example code uses the Pillow library to work with images. For more
information, see Detecting Anomalies by using image bytes.

Use the following command to install the Pillow library.

python3 -m pip install Pillow

Using a model in your client application component

The steps for using a model from a client application component are similar to using a model
hosted in the cloud.

1. Start running the model.

2. Detect anomalies in images.

3. Stop the model, if no longer needed.

The Amazon Lookout for Vision Edge Agent provides API to start a model, detect anomalies
in an image, and stop a model. You can also use the API to list the models on a device and get
information about a deployed model. For more information, see Amazon Lookout for Vision Edge
Agent API reference.

You can get error information by checking the gRPC status codes. For more information, see
Getting error information.

To write your code, you can use any language supported by gRPC. We provide example Python
code.

Topics

• Using the stub in your client application component

• Starting the model

• Detecting anomalies

• Stopping the model

• Listing models on a device

• Describing a model

• Getting error information

Using a model 203

https://python-pillow.org/

Amazon Lookout for Vision Developer Guide

Using the stub in your client application component

Use the following code to set up access to your model through the Lookout for Vision Edge Agent.

import grpc
from edge_agent_pb2_grpc import EdgeAgentStub
import edge_agent_pb2 as pb2

Creating stub.
 with grpc.insecure_channel("unix:///tmp/aws.iot.lookoutvision.EdgeAgent.sock") as
 channel:
 stub = EdgeAgentStub(channel)
 # Add additional code that works with Edge Agent in this block to prevent resources
 leakage

Starting the model

You start a model by calling the StartModel API. The model might take a while to start. You can
check the current status by calling DescribeModel. The model is running if the value of the status
field is Running.

Example code

Replace component_name with the name of your model component.

import time

import grpc
from edge_agent_pb2_grpc import EdgeAgentStub
import edge_agent_pb2 as pb2

model_component_name = "component_name"

def start_model_if_needed(stub, model_name):
 # Starting model if needed.
 while True:
 model_description_response =
 stub.DescribeModel(pb2.DescribeModelRequest(model_component=model_name))
 print(f"DescribeModel() returned {model_description_response}")
 if model_description_response.model_description.status == pb2.RUNNING:
 print("Model is already running.")

Using a model 204

Amazon Lookout for Vision Developer Guide

 break
 elif model_description_response.model_description.status == pb2.STOPPED:
 print("Starting the model.")
 stub.StartModel(pb2.StartModelRequest(model_component=model_name))
 continue
 elif model_description_response.model_description.status == pb2.FAILED:
 raise Exception(f"model {model_name} failed to start")
 print(f"Waiting for model to start.")
 if model_description_response.model_description.status != pb2.STARTING:
 break
 time.sleep(1.0)

Creating stub.
with grpc.insecure_channel("unix:///tmp/aws.iot.lookoutvision.EdgeAgent.sock") as
 channel:
 stub = EdgeAgentStub(channel)
 start_model_if_needed(stub, model_component_name)

Detecting anomalies

You use the DetectAnomalies API to detect anomalies in an image.

The DetectAnomalies operation expects the image bitmap to be passed in RGB888 packed
format. The first byte represents the red channel, the second byte represents the green channel,
and the third byte represents the blue channel. If you provide the image in a different format, such
as BGR, the predictions from DetectAnomalies are incorrect.

By default, OpenCV uses the BGR format for image bitmaps. If you are using OpenCV to capture
images for analysis with DetectAnomalies, you must convert the image to RGB888 format
before you pass the image to DetectAnomalies.

The images you supply to DetectAnomalies must have the same width and height dimensions as
the images that you used to train the model.

Detecting Anomalies by using image bytes

You can detect anomalies in an image by supplying the image as image bytes. In the following
example, the image bytes are retrieved from an image stored in the local file system.

Replace sample.jpg with the name of the image file that you want to analyze. Replace
component_name with the name of your model component.

Using a model 205

Amazon Lookout for Vision Developer Guide

import time

from PIL import Image
import grpc
from edge_agent_pb2_grpc import EdgeAgentStub
import edge_agent_pb2 as pb2

model_component_name = "component_name"

....
Detecting anomalies.
def detect_anomalies(stub, model_name, image_path):
 image = Image.open(image_path)
 image = image.convert("RGB")
 detect_anomalies_response = stub.DetectAnomalies(
 pb2.DetectAnomaliesRequest(
 model_component=model_name,
 bitmap=pb2.Bitmap(
 width=image.size[0],
 height=image.size[1],
 byte_data=bytes(image.tobytes())
)
)
)
 print(f"Image is anomalous -
 {detect_anomalies_response.detect_anomaly_result.is_anomalous}")
 return detect_anomalies_response.detect_anomaly_result

Creating stub.
with grpc.insecure_channel("unix:///tmp/aws.iot.lookoutvision.EdgeAgent.sock") as
 channel:
 stub = EdgeAgentStub(channel)
 start_model_if_needed(stub, model_component_name)
 detect_anomalies(stub, model_component_name, "sample.jpg")

Detecting Anomalies by using shared memory segment

You can detect anomalies in an image by supplying the image as image bytes in the POSIX
shared memory segment. For best performance, we recommend using shared memory for
DetectAnomalies requests. For more information, see DetectAnomalies.

Using a model 206

Amazon Lookout for Vision Developer Guide

Stopping the model

If you are no longer using the model, the StopModel API to stop the model running.

stop_model_response = stub.StopModel(
 pb2.StopModelRequest(
 model_component=model_component_name
)
)
print(f"New status of the model is {stop_model_response.status}")

Listing models on a device

You can use the the section called “ListModels” API to list the models that are deployed to a device.

models_list_response = stub.ListModels(
 pb2.ListModelsRequest()
)
for model in models_list_response.models:
 print(f"Model Details {model}")

Describing a model

You can get information about a model that's deployed to a device by calling the DescribeModel
API. Using DescribeModel is useful for getting the current status of a model. For example, you
need to know if a model is running before you can call DetectAnomalies. For example code, see
Starting the model.

Getting error information

gRPC status codes are used to report API results.

You can get error information by catching the RpcError exception, as shown in the following
example. For information about the error status codes, see the reference topic for an API.

Error handling.
try:
 stub.DetectAnomalies(detect_anomalies_request)
except grpc.RpcError as e:

Using a model 207

Amazon Lookout for Vision Developer Guide

 print(f"Error code: {e.code()}, Status: {e.details()}")

Creating the client application component

You can create the client application component once you have generated your gRPC stubs and you
have your client application code ready. The component you create is a custom component that
you deploy to an AWS IoT Greengrass Version 2 core device with AWS IoT Greengrass V2. A recipe
that you create describes your custom component. The recipe includes any dependencies that also
need to be deployed. In this case, you specify the model component that you create in Packaging
your Amazon Lookout for Vision model. For more information about component recipes, see AWS
IoT Greengrass Version 2 component recipe reference.

The procedures on this topic show you how to create the client application component from a
recipe file and publish it as an AWS IoT Greengrass V2 custom component. You can use the AWS
IoT Greengrass V2 console or the AWS SDK to publish the component.

For detailed information about creating a custom component, see the following in the AWS IoT
Greengrass V2 documentation.

• Develop and test a component on your device

• Create AWS IoT Greengrass components

• Publish components to deploy to your core devices

Topics

• IAM permissions for publishing a client application component

• Creating the recipe

• Publishing the client application component (Console)

• Publishing the client application component (SDK)

IAM permissions for publishing a client application component

To create and publish your client application component, you need the following IAM permissions:

• greengrass:CreateComponentVersion

• greengrass:DescribeComponent

• s3:PutObject

Creating the client application component 208

https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#create-first-component
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/publish-components.html

Amazon Lookout for Vision Developer Guide

Creating the recipe

In this procedure, you create the recipe for a simple client application component. The code in
lookoutvision_edge_agent_example.py lists the models that are deployed to the device and
is automatically run after you deploy the component to the core device. To view the output, check
the component log after you deploy the component. For more information, see Deploying your
components to a device. When you are ready, use this procedure to create the recipe for code that
implements your business logic.

You create the recipe as a JSON or YAML format file. You also upload the client application code to
an Amazon S3 bucket.

To create the client application component recipe

1. If you haven't already, create the gRPC stub files. For more information, see Setting up gRPC.

2. Save the following code to a file named lookoutvision_edge_agent_example.py

import grpc
from edge_agent_pb2_grpc import EdgeAgentStub
import edge_agent_pb2 as pb2

Creating stub.
with grpc.insecure_channel("unix:///tmp/aws.iot.lookoutvision.EdgeAgent.sock") as
 channel:
 stub = EdgeAgentStub(channel)
 # Add additional code that works with Edge Agent in this block to prevent
 resources leakage

 models_list_response = stub.ListModels(
 pb2.ListModelsRequest()
)
 for model in models_list_response.models:
 print(f"Model Details {model}")

3. Create an Amazon S3 bucket (or use an existing bucket) to store the source files for your client
application component. The bucket must in your AWS account and in the same AWS Region in
which you use AWS IoT Greengrass Version 2 and Amazon Lookout for Vision.

4. Upload lookoutvision_edge_agent_example.py, edge_agent_pb2_grpc.py and
edge_agent_pb2.py to the Amazon S3 bucket that you created in the previous step.

Creating the client application component 209

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Lookout for Vision Developer Guide

Note the Amazon S3 path of each file. You created edge_agent_pb2_grpc.py and
edge_agent_pb2.py in Setting up gRPC.

5. In an editor create the following JSON or YAML recipe file.

• model_component to the name of your model component. For more information, see
Component settings.

• Change the URI entries to the S3 paths of lookoutvision_edge_agent_example.py,
edge_agent_pb2_grpc.py, and edge_agent_pb2.py.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.lookoutvision.EdgeAgentPythonExample",
 "ComponentVersion": "1.0.0",
 "ComponentType": "aws.greengrass.generic",
 "ComponentDescription": "Lookout for Vision Edge Agent Sample Application",
 "ComponentPublisher": "Sample App Publisher",
 "ComponentDependencies": {
 "model_component": {
 "VersionRequirement": ">=1.0.0",
 "DependencyType": "HARD"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "pip3 install grpcio grpcio-tools protobuf Pillow",
 "run": {
 "script": "python3 {artifacts:path}/
lookoutvision_edge_agent_example.py"
 }
 },
 "Artifacts": [
 {
 "Uri": "S3 path to lookoutvision_edge_agent_example.py"
 },
 {

Creating the client application component 210

Amazon Lookout for Vision Developer Guide

 "Uri": "S3 path to edge_agent_pb2_grpc.py"
 },
 {
 "Uri": "S3 path to edge_agent_pb2.py"
 }
]
 }
],
 "Lifecycle": {}
}

YAML

RecipeFormatVersion: 2020-01-25
ComponentName: com.lookoutvison.EdgeAgentPythonExample
ComponentVersion: 1.0.0
ComponentDescription: Lookout for Vision Edge Agent Sample Application
ComponentPublisher: Sample App Publisher
ComponentDependencies:
 model_component:
 VersionRequirement: '>=1.0.0'
 DependencyType: HARD
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: |-
 pip3 install grpcio
 pip3 install grpcio-tools
 pip3 install protobuf
 pip3 install Pillow
 run:
 script: |-
 python3 {artifacts:path}/lookout_vision_agent_example.py
 Artifacts:
 - URI: S3 path to lookoutvision_edge_agent_example.py
 - URI: S3 path to edge_agent_pb2_grpc.py
 - URI: S3 path to edge_agent_pb2.py

6. Save the JSON or YAML file to your computer.

7. Create the client application component by doing one of the following:

Creating the client application component 211

Amazon Lookout for Vision Developer Guide

• If you want to use the AWS IoT Greengrass console, do Publishing the client application
component (Console).

• If you want use the AWS SDK, do Publishing the client application component (SDK).

Publishing the client application component (Console)

You can use the AWS IoT Greengrass V2 console to publish the client application component.

To publish the client application component

1. If you haven't already, create the recipe for your client appication component by doing
Creating the recipe.

2. Open the AWS IoT Greengrass console at https://console.aws.amazon.com/iot/

3. In the left navigation pane, under Greengrass choose Components.

4. Under My components choose Create component.

5. On the Create component page choose Enter recipe as JSON if you want to use a JSON
format recipe. Choose Enter recipe as YAML if you want to use a YAML format recipe.

6. Under Recipe replace the existing recipe with the JSON or YAML recipe that you created in
Creating the recipe.

7. Choose Create component.

8. Next, deploy your client application component.

Publishing the client application component (SDK)

You can publish the client application component by using the CreateComponentVersion API.

To publish the client application component (SDK)

1. If you haven't already, create the recipe for your client appication component by doing
Creating the recipe.

2. At the command prompt, enter the following command to create the client application
component. Replace recipe-file with the name of the recipe file you created in Creating
the recipe.

aws greengrassv2 create-component-version --inline-recipe fileb://recipe-file

Creating the client application component 212

https://console.aws.amazon.com/greengrass/
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateComponentVersion.html

Amazon Lookout for Vision Developer Guide

Note the ARN of the component in the response. You need it in the next step.

3. Use the following command to get the status of the client application component. Replace
component-arn with the ARN that you noted in the previous step. The client application
component is ready if the value of componentState is DEPLOYABLE.

aws greengrassv2 describe-component --arn component-arn

4. Next, deploy your client application component.

Deploying your components to a device

To deploy the model component and client application component to an AWS IoT Greengrass
Version 2 core device you use the AWS IoT Greengrass V2 console or use the CreateDeployment
API. For more information, see Create deployments or in the AWS IoT Greengrass Version 2
Developer Guide. For information about updating a component that is deployed to a core device,
see Revise deployments.

Topics

• IAM permissions for deploying components

• Deploying your components (console)

• Deploying the components (SDK)

IAM permissions for deploying components

To deploy a component with AWS IoT Greengrass V2 you need the following permissions:

• greengrass:ListComponents

• greengrass:ListComponentVersions

• greengrass:ListCoreDevices

• greengrass:CreateDeployment

• greengrass:GetDeployment

• greengrass:ListDeployments

Deploying your components to a device 213

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-deployments.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/revise-deployments.html

Amazon Lookout for Vision Developer Guide

CreateDeployment and GetDeployment have dependent actions. For more information, see
Actions defined by AWS IoT Greengrass V2.

For information about changing IAM permissions, see Changing permissions for a user.

Deploying your components (console)

Use the following procedure to deploy the client application component to a core device. The client
application depends on the model component (which in turn depends on the Lookout for Vision
Edge Agent). Deploying the client application component also starts the deployment of the model
component and the Lookout for Vision Edge Agent.

Note

You can add your components to an existing deployment. You can also deploy components
to a thing group.

To run this procedure, you must have a configured AWS IoT Greengrass V2 core device. For more
information, see Setting up your AWS IoT Greengrass Version 2 core device.

To deploy your components to a device

1. Open the AWS IoT Greengrass console at https://console.aws.amazon.com/iot/.

2. In the left navigation pane, under Greengrass choose Deployments.

3. Under Deployments choose Create.

4. On the Specify target page, do the following:

1. Under Deployment information, enter or modify the friendly name for your deployment.

2. Under Deployment target, select Core device and enter a target name.

3. Choose Next.

5. On the Select components page, do the following:

1. Under My components, choose the name of your client application component
(com.lookoutvison.EdgeAgentPythonExample).

2. Choose Next

6. On the Configure components page, keep the current configuration and choose Next.

7. On the Configure advanced settings page, keep the current settings and choose Next.

Deploying your components (console) 214

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotgreengrassv2.html#awsiotgreengrassv2-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://console.aws.amazon.com/greengrass/

Amazon Lookout for Vision Developer Guide

8. On the Review page, choose Deploy to start deploying your component.

Checking deployment status (Console)

You can check the status of your deployment from the AWS IoT Greengrass V2 console. If your
client application component uses the example recipe and code from the section called “Creating
the client application component”, view the client application component log after the deployment
completes. If successful, the log includes a list of the Lookout for Vision models that are deployed
to the component.

For information about using the AWS SDK to check deployment status, see Check deployment
status.

To check deployment status

1. Open the AWS IoT Greengrass console at https://console.aws.amazon.com/iot/

2. On the left navigation pane, choose Core devices.

3. Under Greengrass core devices choose your core device.

4. Choose the Deployments tab to view the current deployment status.

5. After the deployments succeeds (status is Completed), open a terminal window on
the core device and view the client application component log at /greengrass/
v2/logs/com.lookoutvison.EdgeAgentPythonExample.log. If your
deployment uses the example recipe and code, the log includes the output from
lookoutvision_edge_agent_example.py. For example:

Model Details model_component:"ModelComponent"

Deploying the components (SDK)

Use the following procedure to deploy the client application component, model component, and
the Amazon Lookout for Vision Edge Agent to your core device.

1. Create a deployment.json file to define the deployment configuration for your
components. This file should look like the following example.

{
 "targetArn":"targetArn",

Deploying the components (SDK) 215

https://docs.aws.amazon.com/greengrass/v2/developerguide/monitor-logs.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/check-deployment-status.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/check-deployment-status.html
https://console.aws.amazon.com/greengrass/

Amazon Lookout for Vision Developer Guide

 "components": {
 "com.lookoutvison.EdgeAgentPythonExample": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 }
 }
 }
}

• In the targetArn field, replace targetArn with the Amazon Resource Name (ARN) of the
thing or thing group to target for the deployment, in the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

2. Check if the deployment target has an existing deployment that you want to revise. Do the
following:

a. Run the following command to list the deployments for the deployment target. Replace
targetArn with the Amazon Resource Name (ARN) of the target AWS IoT thing or thing
group. To get the ARNs of the things in the current AWS Region, use the command aws
iot list-things.

aws greengrassv2 list-deployments --target-arn targetArn

The response contains a list with the latest deployment for the target. If the response
is empty, the target doesn't have an existing deployment, and you can skip to Step 3.
Otherwise, copy the deploymentId from the response to use in the next step.

b. Run the following command to get the deployment's details. These details include
metadata, components, and job configuration. Replace deploymentId with the ID from
the previous step.

aws greengrassv2 get-deployment --deployment-id deploymentId

c. Copy any of the following key-value pairs from the previous command's response into
deployment.json. You can change these values for the new deployment.

• deploymentName — The deployment's name.

• components — The deployment's components. To uninstall a component, remove it
from this object.

Deploying the components (SDK) 216

Amazon Lookout for Vision Developer Guide

• deploymentPolicies — The deployment's policies.

• tags — The deployment's tags.

3. Run the following command to deploy the components on the device. Note the value of the
deploymentId in the response.

aws greengrassv2 create-deployment \
 --cli-input-json file://path/to/deployment.json

4. Run the following command to get the status of the deployment. Change deployment-id
to the value you noted in the previous step. The deployment has completed successfuly if the
value of deploymentStatus is COMPLETED.

aws greengrassv2 get-deployment --deployment-id deployment-id

5. After the deployments succeeds, open a terminal window on the core
device and view the client application component log at /greengrass/
v2/logs/com.lookoutvison.EdgeAgentPythonExample.log. If your
deployment uses the example recipe and code, the log includes the output from
lookoutvision_edge_agent_example.py. For example:

Model Details model_component:"ModelComponent"

Amazon Lookout for Vision Edge Agent API reference

This section is the API reference for the Amazon Lookout for Vision Edge Agent.

Detecting anomalies with a model

You use the DetectAnomalies API to detect anomalies in images by using a running model on an
AWS IoT Greengrass Version 2 core device.

Getting model information

APIs that get information about models deployed to a core device.

• ListModels

• DescribeModel

Lookout for Vision Edge Agent API Reference 217

Amazon Lookout for Vision Developer Guide

Running a model

APIs for starting and stopping an Amazon Lookout for Vision model that's deployed to a core
device.

• StartModel

• StopModel

DetectAnomalies

Detects anomalies in the supplied image.

The response from DetectAnomalies includes a Boolean prediction that the image contains
one or more anomalies and a confidence value for the prediction. If the model is a segmentation
model, the response includes the following:

• A mask image that covers each anomaly type in a unique color. You can have DetectAnomalies
store the mask image in shared memory, or return the mask as image bytes.

• The percentage area of the image that an anomaly type covers.

• The hex color for an anomaly type on the mask image.

Note

The model that you use with DetectAnomalies must be running. You can get the current
status by calling DescribeModel. To start running a model, see StartModel.

DetectAnomalies supports packed bitmaps (images) in interleaved RGB888 format. The first
byte represents the red channel, the second byte represents the green channel, and the third
byte represents the blue channel. If you provide the image in a different format, such as BGR, the
predictions from DetectAnomalies are incorrect.

By default, OpenCV uses the BGR format for image bitmaps. If you are using OpenCV to capture
images for analysis with DetectAnomalies, you must convert the image to RGB888 format
before you pass the image to DetectAnomalies.

The minimum supported image dimension is 64x64 pixels. The maximum supported image
dimension is 4096x4096 pixels.

Running a model 218

Amazon Lookout for Vision Developer Guide

You can send the image in the protobuf message or through a shared memory segment.
Serializing large images into the protobuf message can significantly increase the latency of calls to
DetectAnomalies. For the least latency, we recommended that you use shared memory.

rpc DetectAnomalies(DetectAnomaliesRequest) returns (DetectAnomaliesResponse);

DetectAnomaliesRequest

The input parameters for DetectAnomalies.

message Bitmap {
 int32 width = 1;
 int32 height = 2;
 oneof data {
 bytes byte_data = 3;
 SharedMemoryHandle shared_memory_handle = 4;
 }
}

message SharedMemoryHandle {
 string name = 1;
 uint64 size = 2;
 uint64 offset = 3;
}

message AnomalyMaskParams {
SharedMemoryHandle shared_memory_handle = 2;
}

message DetectAnomaliesRequest {
string model_component = 1;
Bitmap bitmap = 2;
AnomalyMaskParams anomaly_mask_params = 3;
}

DetectAnomalies 219

Amazon Lookout for Vision Developer Guide

Bitmap

The image that you want to analyze with DetectAnomalies.

width

The width of the image in pixels.

height

The height of the image in pixels.

byte_data

Image bytes passed in protobuf message.

shared_memory_handle

Image bytes passed in shared memory segment.

SharedMemoryHandle

Represents a POSIX shared memory segment.

name

The name of the POSIX memory segment. For information about creating shared memory, see
shm_open.

size

The image buffer size in bytes starting from the offset.

offset

The offset, in bytes, to the beginning of the image buffer from the start of the shared memory
segment.

AnomalyMaskParams

Parameters for outputting an anomaly mask. (Segmentation model).

shared_memory_handle

DetectAnomalies 220

https://man7.org/linux/man-pages/man3/shm_open.3.html

Amazon Lookout for Vision Developer Guide

Contains the image bytes for the mask, if shared_memory_handle wasn't provided.

DetectAnomaliesRequest

model_component

The name of the AWS IoT Greengrass V2 component that contains the model you want to use.

bitmap

The image that you want analyze with DetectAnomalies.

anomaly_mask_params

Optional parameters for outputting the mask. (Segmentation model).

DetectAnomaliesResponse

The response from DetectAnomalies.

message DetectAnomalyResult {
bool is_anomalous = 1;
float confidence = 2;
Bitmap anomaly_mask = 3;
repeated Anomaly anomalies = 4;
float anomaly_score = 5;
float anomaly_threshold = 6;
}

message Anomaly {
string name = 1;
PixelAnomaly pixel_anomaly = 2;

message PixelAnomaly {
float total_percentage_area = 1;
string hex_color = 2;
}

message DetectAnomaliesResponse {

DetectAnomalies 221

Amazon Lookout for Vision Developer Guide

 DetectAnomalyResult detect_anomaly_result = 1;
}

Anomaly

Represents an anomaly found on an image. (Segmentation model).

name

The name of an anomaly type found in an image. name maps to an anomaly type in the training
dataset. The service automatically inserts the background anomaly type into the response from
DetectAnomalies.

pixel_anomaly

Information about the pixel mask that covers an anomaly type.

PixelAnomaly

Information about the pixel mask that covers an anomaly type. (Segmentation model).

total_percentage_area

The percentage area of the image that the anomaly type covers.

hex_color

A hex color value that represents the anomaly type on the image. The color maps to the color of
the anomaly type used in the training dataset.

DetectAnomalyResult

is_anomalous

Indicates if the image contains an anomaly. true if the image contains an anomaly. false if the
image is normal.

confidence

The confidence that DetectAnomalies has in the accuracy of the prediction. confidence is a
floating point value between 0 and 1.

DetectAnomalies 222

Amazon Lookout for Vision Developer Guide

anomaly_mask

if shared_memory_handle wasn't provided, contains the image bytes for the mask. (Segmentation
model).

anomalies

A list of 0 or more anomalies found within the input image. (Segmentation model).

anomaly_score

A number that quantifies how much anomalies predicted for an image deviate from an image
without anomalies. anomaly_score is a float value ranging from 0.0 to (lowest deviation from a
normal image) to 1.0 (highest deviation from a normal image). Amazon Lookout for Vision returns
a value for anomaly_score, even if the prediction for an image is normal.

anomaly_threshold

A number (float) that determines when the predicted classification for an image is normal
or anomalous. Images with an anomaly_score that is equal to or above the value of
anomaly_threshold are deemed anomalous. A anomaly_score value that is below
anomaly_threshold indicates a normal image. The value of anomaly_threshold that a model
uses is calculated by by Amazon Lookout for Vision when you train the model. You can't set or
change the value of anomaly_threshold

Status codes

Code Number Description

OK 0 DetectAnomalies
successfully made a predictio
n

UNKNOWN 2 An unknown error has
occurred.

INVALID_ARGUMENT 3 One or more input parameter
s are invalid. Check the error
message for more details.

DetectAnomalies 223

Amazon Lookout for Vision Developer Guide

Code Number Description

NOT_FOUND 5 A model with the specified
name wasn't found.

RESOURCE_EXHAUSTED 8 There aren't enough resources
to perform this operation.
For example, The Lookout for
Vision Edge Agent can't keep
up with the rate of calls to
DetectAnomalies . Check
the error message for more
details.

FAILED_PRECONDITION 9 DetectAnomalies was
called for model that is not in
the RUNNING state.

INTERNAL 13 An internal error has
occurred.

DescribeModel

Describes an Amazon Lookout for Vision model that's deployed to an AWS IoT Greengrass Version 2
core device.

rpc DescribeModel(DescribeModelRequest) returns (DescribeModelResponse);

DescribeModelRequest

message DescribeModelRequest {
 string model_component = 1;
}

model_component

The name of the AWS IoT Greengrass V2 component that contains the model you want to describe.

DescribeModel 224

Amazon Lookout for Vision Developer Guide

DescribeModelResponse

message ModelDescription {
 string model_component = 1;
 string lookout_vision_model_arn = 2;
 ModelStatus status = 3;
 string status_message = 4;
}

message DescribeModelResponse {
 ModelDescription model_description = 1;
}

ModelDescription

model_component

The name of AWS IoT Greengrass Version 2 component that contains the Amazon Lookout for
Vision model.

lookout_vision_model_arn

The Amazon Resource Name ARN of the Amazon Lookout for Vision model that was used to
generate the AWS IoT Greengrass V2 component.

status

The current status of the model. For more information, see ModelStatus.

status_message

The status message for the model.

Status codes

Code Number Description

OK 0 The call was successful.

DescribeModel 225

Amazon Lookout for Vision Developer Guide

Code Number Description

UNKNOWN 2 An unknown error has
occurred.

INVALID_ARGUMENT 3 One or more input parameter
s are invalid. Check the error
message for more details.

NOT_FOUND 5 A model with the supplied
name wasn't found.

INTERNAL 13 An internal error has
occurred.

ListModels

Lists the models deployed to an AWS IoT Greengrass Version 2 core device.

rpc ListModels(ListModelsRequest) returns (ListModelsResponse);

ListModelsRequest

message ListModelsRequest {}

ListModelsResponse

message ModelMetadata {
 string model_component = 1;
 string lookout_vision_model_arn = 2;
 ModelStatus status = 3;
 string status_message = 4;
}

message ListModelsResponse {
 repeated ModelMetadata models = 1;

ListModels 226

Amazon Lookout for Vision Developer Guide

}

ModelMetadata

model_component

The name of AWS IoT Greengrass Version 2 component that contains an Amazon Lookout for
Vision model.

lookout_vision_model_arn

The Amazon Resource Name (ARN) of the Amazon Lookout for Vision model that was used to
generate the AWS IoT Greengrass V2 component.

status

The current status of the model. For more information, see ModelStatus.

status_message

The status message for the model.

Status codes

Code Number Description

OK 0 The call was successful.

UNKNOWN 2 An unknown error has
occurred.

INTERNAL 13 An internal error has
occurred.

StartModel

Starts a model running on an AWS IoT Greengrass Version 2 core device. It might take a while for
the model to start running. To check the current status call DescribeModel. The model is running if
the Status field is RUNNING.

StartModel 227

Amazon Lookout for Vision Developer Guide

The number of models that you can run concurrently depends on the hardware specification of
your core device.

rpc StartModel(StartModelRequest) returns (StartModelResponse);

StartModelRequest

message StartModelRequest {
 string model_component = 1;
}

model_component

The name of the AWS IoT Greengrass Version 2 component that contains the model you want to
start.

StartModelResponse

message StartModelResponse {
 ModelStatus status = 1;
}

status

The current status of the model. The response is STARTING if the call succeeds. For more
information, see ModelStatus.

Status codes

Code Number Description

OK 0 The model is starting

UNKNOWN 2 An unknown error has
occurred.

INVALID_ARGUMENT 3 One or more input parameter
s are invalid. Check the error
message for more details.

StartModel 228

Amazon Lookout for Vision Developer Guide

Code Number Description

NOT_FOUND 5 A model with the supplied
name wasn't found.

RESOURCE_EXHAUSTED 8 There isn't enough resources
to perform this operation. For
example, there is isn't enough
memory to load the model.
Check the error message for
more details.

FAILED_PRECONDITION 9 The method was called for
model that is not in the
STOPPED or FAILED state.

INTERNAL 13 An internal error has
occurred.

StopModel

Stops a model running on an AWS IoT Greengrass Version 2 core device. StopModel returns after
the model has stopped. The model has stopped successfully if the Status field in the response is
STOPPED.

 rpc StopModel(StopModelRequest) returns (StopModelResponse);

StopModelRequest

message StopModelRequest {
 string model_component = 1;
}

model_component

The name of the AWS IoT Greengrass Version 2 component that contains the model you want to
stop.

StopModel 229

Amazon Lookout for Vision Developer Guide

StopModelResponse

message StopModelResponse {
 ModelStatus status = 1;
}

status

The current status of the model. The response is STOPPED if the call succeeds. For more
information, see ModelStatus.

Status codes

Code Number Description

OK 0 The model is stopping.

UNKNOWN 2 An unknown error has
occurred.

INVALID_ARGUMENT 3 One or more input parameter
s are invalid. Check the error
message for more details.

NOT_FOUND 5 A model with the supplied
name wasn't found.

FAILED_PRECONDITION 9 The method was called for
a model that is not in the
RUNNING state.

INTERNAL 13 An internal error has
occurred.

ModelStatus

The status of a model that's deployed to an AWS IoT Greengrass Version 2 core device. To get the
current status, call DescribeModel.

ModelStatus 230

Amazon Lookout for Vision Developer Guide

enum ModelStatus {
 STOPPED = 0;
 STARTING = 1;
 RUNNING = 2;
 FAILED = 3;
 STOPPING = 4;
}

ModelStatus 231

Amazon Lookout for Vision Developer Guide

Using the Amazon Lookout for Vision dashboard

The dashboard provides an overview of metrics for your Amazon Lookout for Vision projects, such
as the total number of anomalies detected over the last week. With the dashboard you get an
overview for all of your projects and an overview for each individual project. You can choose the
timeline over which metrics are shown. You can also use the dashboard to create a new project.

The Overview section shows the total number of projects, total number of images, and the total
number of images detected by all of your projects.

The Projects section shows the following overview information for individual projects:

• The total number or anomalies detected.

• The total number of images processed.

• The total anomaly ratio (that is, the percentage of images detected with an anomaly).

• A graph shows the anomaly detections over the chosen time frame.

You can also get further information about a project.

232

Amazon Lookout for Vision Developer Guide

To use your dashboard

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Dashboard.

4. To view metrics over a specific time frame, do the following:

a. Choose the time frame in the upper-right side of the dashboard.

b. Choose the refresh button to show the dashboard with the new timeline.

233

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

5. To get further details about a project, choose the project name in the Projects section (for
example, ManufacturingLine01).

6. To create a project, choose Create project in the Projects section.

234

Amazon Lookout for Vision Developer Guide

Managing your Amazon Lookout for Vision resources

You can manage your Amazon Lookout for Vision resources by using the console or the AWS SDK.
Amazon Lookout for Vision has the following resources:

• Projects

• Datasets

• Models

• Trial detections

Note

You can't delete a trial detection task. Also, you can't manage trial detections by using the
AWS SDK.

Topics

• Viewing your projects

• Deleting a project

• Viewing your datasets

• Adding images to your dataset

• Removing images from your dataset

• Deleting a dataset

• Exporting datasets from a project (SDK)

• Viewing your models

• Deleting a model

• Tagging models

• Viewing your trial detection tasks

Viewing your projects

You can get a list of Amazon Lookout for Vision projects and information about individual projects
from the console or by using the AWS SDK.

Viewing your projects 235

Amazon Lookout for Vision Developer Guide

Note

The list of projects is eventually consistent. If you create or delete a project, you might have
to wait a short while before the projects list is up to date.

Viewing your projects (console)

Perform the steps in the following procedure to view your projects in the console.

To view your projects

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects. The projects view is shown.

4. Choose a project name to see the project's details.

Viewing your projects (SDK)

A project manages the datasets and models for a single use case. For example, detecting anomalies
in machine parts. The following example calls ListProjects to get a list of your projects.

To view your projects (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to view your projects.

CLI

Use the list-projects command to list the projects in your account.

aws lookoutvision list-projects \
 --profile lookoutvision-access

Use the describe-project command to get information about a project.

Viewing your projects (console) 236

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

Change the value of project-name to the name of the project that you want to describe.

aws lookoutvision describe-project --project-name project_name \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def list_projects(lookoutvision_client):
 """
 Lists information about the projects that are in in your AWS account
 and in the current AWS Region.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 """
 try:
 response = lookoutvision_client.list_projects()
 for project in response["Projects"]:
 print("Project: " + project["ProjectName"])
 print("\tARN: " + project["ProjectArn"])
 print("\tCreated: " + str(["CreationTimestamp"]))
 print("Datasets")
 project_description = lookoutvision_client.describe_project(
 ProjectName=project["ProjectName"]
)
 if not project_description["ProjectDescription"]["Datasets"]:
 print("\tNo datasets")
 else:
 for dataset in project_description["ProjectDescription"][
 "Datasets"
]:
 print(f"\ttype: {dataset['DatasetType']}")
 print(f"\tStatus: {dataset['StatusMessage']}")

 print("Models")
 response_models = lookoutvision_client.list_models(
 ProjectName=project["ProjectName"]
)
 if not response_models["Models"]:

Viewing your projects (SDK) 237

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 print("\tNo models")
 else:
 for model in response_models["Models"]:
 Models.describe_model(
 lookoutvision_client,
 project["ProjectName"],
 model["ModelVersion"],
)

 print("--\n")
 print("Done!")
 except ClientError:
 logger.exception("Problem listing projects.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Lists the Amazon Lookout for Vision projects in the current AWS account and
 AWS
 * Region.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project that you want to create.
 * @return List<ProjectMetadata> Metadata for each project.
 */
public static List<ProjectMetadata> listProjects(LookoutVisionClient lfvClient)
 throws LookoutVisionException {

 logger.log(Level.INFO, "Getting projects:");
 ListProjectsRequest listProjectsRequest = ListProjectsRequest.builder()
 .maxResults(100)
 .build();

 List<ProjectMetadata> projectMetadata = new ArrayList<>();

Viewing your projects (SDK) 238

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/ListProjects.java

Amazon Lookout for Vision Developer Guide

 ListProjectsIterable projects =
 lfvClient.listProjectsPaginator(listProjectsRequest);

 projects.stream().flatMap(r -> r.projects().stream())
 .forEach(project -> {
 projectMetadata.add(project);
 logger.log(Level.INFO, project.projectName());
 });

 logger.log(Level.INFO, "Finished getting projects.");

 return projectMetadata;

}

Deleting a project

You can delete a project from the projects view page in the console or by using the
DeleteProject operation.

The images referenced by a project's datasets aren't deleted.

Deleting a project (console)

Use the following procedure to delete a project. If you use the console procedure, associated model
versions and datasets are deleted for you.

To delete a project

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. On the Projects page, select the project that you want to delete.

5. Choose Delete at the top of the page.

6. In the Delete dialog box, enter delete to confirm that you want to delete the project.

7. If necessary, choose to delete any associated datasets and models.

8. Choose Delete project.

Deleting a project 239

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

Deleting a project (SDK)

You delete an Amazon Lookout for Vision project by calling DeleteProject and supplying the name
of the project that you want to delete.

Before you can delete a project, you must first delete all models in the project. For more
information, see Deleting a model (SDK). You also have to delete the datasets associated with the
model. For more information, see Deleting a dataset.

The project might take a few moments to delete. During that time, the status of the project is
DELETING. The project is deleted if a subsequent call to DeleteProject doesn't include the
project that you deleted.

To delete a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following code to delete a project.

AWS CLI

Change the value of project-name to the name of the project that you want to delete.

aws lookoutvision delete-project --project-name project_name \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def delete_project(lookoutvision_client, project_name):
 """
 Deletes a Lookout for Vision Model

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that you want to delete.
 """
 try:

Deleting a project (SDK) 240

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DeleteProject
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 logger.info("Deleting project: %s", project_name)
 response =
 lookoutvision_client.delete_project(ProjectName=project_name)
 logger.info("Deleted project ARN: %s ", response["ProjectArn"])
 except ClientError as err:
 logger.exception("Couldn't delete project %s.", project_name)
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Deletes an Amazon Lookout for Vision project.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project that you want to create.
 * @return String The ARN of the deleted project.
 */
public static String deleteProject(LookoutVisionClient lfvClient, String
 projectName)
 throws LookoutVisionException {

 logger.log(Level.INFO, "Deleting project: {0}", projectName);

 DeleteProjectRequest deleteProjectRequest =
 DeleteProjectRequest.builder()
 .projectName(projectName)
 .build();

 DeleteProjectResponse response =
 lfvClient.deleteProject(deleteProjectRequest);

 logger.log(Level.INFO, "Deleted project: {0} ARN: {1}",
 new Object[] { projectName, response.projectArn() });

 return response.projectArn();

}

Deleting a project (SDK) 241

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/DeleteProject.java

Amazon Lookout for Vision Developer Guide

Viewing your datasets

A project can have a single dataset that's used for training and testing your model. Alternatively,
You can have separate training and test datasets. You can use the console to view your datasets.
You can also use the DescribeDataset operation to get information about a dataset (training or
test).

Viewing the datasets in a project (console)

Perform the steps in the following procedure to view your project's datasets in the console.

To view your datasets (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. On the Projects page, select the project that contains the datasets that you want to view.

5. In the left navigation pane, choose Dataset to view the dataset details. If you have a training
and a test dataset, a tab for each dataset is shown.

Viewing the datasets in a project (SDK)

You can use the DescribeDataset operation to get information about the training or test dataset
associated with a project.

To view your datasets (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to view a dataset.

CLI

Change the following values:

• project-name to the name of the project that contains the model that you want to
view.

Viewing your datasets 242

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

• dataset-type to the type of dataset that you want to view (train or test).

aws lookoutvision describe-dataset --project-name project name\
 --dataset-type train or test \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def describe_dataset(lookoutvision_client, project_name, dataset_type):
 """
 Gets information about a Lookout for Vision dataset.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that contains the dataset
 that
 you want to describe.
 :param dataset_type: The type (train or test) of the dataset that you
 want
 to describe.
 """
 try:
 response = lookoutvision_client.describe_dataset(
 ProjectName=project_name, DatasetType=dataset_type
)
 print(f"Name: {response['DatasetDescription']['ProjectName']}")
 print(f"Type: {response['DatasetDescription']['DatasetType']}")
 print(f"Status: {response['DatasetDescription']['Status']}")
 print(f"Message: {response['DatasetDescription']['StatusMessage']}")
 print(f"Images: {response['DatasetDescription']['ImageStats']
['Total']}")
 print(f"Labeled: {response['DatasetDescription']['ImageStats']
['Labeled']}")
 print(f"Normal: {response['DatasetDescription']['ImageStats']
['Normal']}")
 print(f"Anomaly: {response['DatasetDescription']['ImageStats']
['Anomaly']}")
 except ClientError:

Viewing the datasets in a project (SDK) 243

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 logger.exception("Service error: problem listing datasets.")
 raise
 print("Done.")

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Gets the description for a Amazon Lookout for Vision dataset.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project in which you want to describe a
 * dataset.
 * @param datasetType The type of the dataset that you want to describe (train
 * or test).
 * @return DatasetDescription A description of the dataset.
 */
public static DatasetDescription describeDataset(LookoutVisionClient lfvClient,
 String projectName,
 String datasetType) throws LookoutVisionException {

 logger.log(Level.INFO, "Describing {0} dataset for project {1}",
 new Object[] { datasetType, projectName });

 DescribeDatasetRequest describeDatasetRequest =
 DescribeDatasetRequest.builder()
 .projectName(projectName)
 .datasetType(datasetType)
 .build();

 DescribeDatasetResponse describeDatasetResponse =
 lfvClient.describeDataset(describeDatasetRequest);
 DatasetDescription datasetDescription =
 describeDatasetResponse.datasetDescription();

 logger.log(Level.INFO, "Project: {0}\n"
 + "Created: {1}\n"
 + "Type: {2}\n"
 + "Total: {3}\n"
 + "Labeled: {4}\n"

Viewing the datasets in a project (SDK) 244

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/DescribeDataset.java

Amazon Lookout for Vision Developer Guide

 + "Normal: {5}\n"
 + "Anomalous: {6}\n",
 new Object[] {
 datasetDescription.projectName(),
 datasetDescription.creationTimestamp(),
 datasetDescription.datasetType(),

 datasetDescription.imageStats().total().toString(),

 datasetDescription.imageStats().labeled().toString(),

 datasetDescription.imageStats().normal().toString(),

 datasetDescription.imageStats().anomaly().toString(),
 });

 return datasetDescription;

}

Adding images to your dataset

After you create a dataset, you might want to add more images to the dataset. For example, if
model evaluation indicates a poor model, you can enhance the quality of your model by adding
more images. If you have created a test dataset, adding more images can increase the accuracy of
your model's performance metrics.

Retrain your model after updating your datasets.

Topics

• Adding more images

• Adding more images (SDK)

Adding more images

You can add more images to your datasets by uploading images from your local computer. To add
more labeled images with the SDK, use the UpdateDatasetEntries operation.

Adding images to your dataset 245

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UpdateDatasetEntries

Amazon Lookout for Vision Developer Guide

To add more images to your dataset (console)

1. Choose Actions and select the dataset that you want to add images to.

2. Choose the images you want to upload to the dataset. You can drag the images or choose the
images that you want to upload from your local computer. You can upload up to 30 images at
a time.

3. Choose Upload images.

4. Choose Save changes.

When you are done adding more images, you need to label them so that they can be used to train
the model. For more information, see Classifying images (console).

Adding more images (SDK)

To add more labeled images with the SDK, use the UpdateDatasetEntries operation. You supply a
manifest file that contains the images that you want to add. You can also update existing images
by specifying the image in the source-ref field of the JSON line in the manifest file. For more
information, see Creating a manifest file.

To add more images to a dataset (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to add more images to a dataset.

CLI

Change the following values:

• project-name to the name of the project that contains the dataset you want to update.

• dataset-type to the type of dataset that you want to update (train or test).

• changes to the location the manifest file that contain dataset updates.

aws lookoutvision update-dataset-entries\
 --project-name project\
 --dataset-type train or test\
 --changes fileb://manifest file \

Adding more images (SDK) 246

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UpdateDatasetEntries

Amazon Lookout for Vision Developer Guide

 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def update_dataset_entries(lookoutvision_client, project_name, dataset_type,
 updates_file):
 """
 Adds dataset entries to an Amazon Lookout for Vision dataset.
 :param lookoutvision_client: The Amazon Rekognition Custom Labels Boto3
 client.
 :param project_name: The project that contains the dataset that you want
 to update.
 :param dataset_type: The type of the dataset that you want to update
 (train or test).
 :param updates_file: The manifest file of JSON Lines that contains the
 updates.
 """

 try:
 status = ""
 status_message = ""
 manifest_file = ""

 # Update dataset entries
 logger.info(f"""Updating {dataset_type} dataset for project
 {project_name}
with entries from {updates_file}.""")

 with open(updates_file) as f:
 manifest_file = f.read()

 lookoutvision_client.update_dataset_entries(
 ProjectName=project_name,
 DatasetType=dataset_type,
 Changes=manifest_file,
)

 finished = False
 while finished == False:

Adding more images (SDK) 247

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 dataset =
 lookoutvision_client.describe_dataset(ProjectName=project_name,

 DatasetType=dataset_type)

 status = dataset['DatasetDescription']['Status']
 status_message = dataset['DatasetDescription']['StatusMessage']

 if status == "UPDATE_IN_PROGRESS":
 logger.info(
 (f"Updating {dataset_type} dataset for project
 {project_name}."))
 time.sleep(5)
 continue

 if status == "UPDATE_FAILED_ROLLBACK_IN_PROGRESS":
 logger.info(
 (f"Update failed, rolling back {dataset_type} dataset
 for project {project_name}."))
 time.sleep(5)
 continue

 if status == "UPDATE_COMPLETE":
 logger.info(
 f"Dataset updated: {status} : {status_message} :
 {dataset_type} dataset for project {project_name}.")
 finished = True
 continue

 if status == "UPDATE_FAILED_ROLLBACK_COMPLETE":
 logger.info(
 f"Rollback complated after update failure: {status} :
 {status_message} : {dataset_type} dataset for project {project_name}.")
 finished = True
 continue

 logger.exception(
 f"Failed. Unexpected state for dataset update: {status} :
 {status_message} : {dataset_type} dataset for project {project_name}.")
 raise Exception(
 f"Failed. Unexpected state for dataset update: {status} :
 {status_message} :{dataset_type} dataset for project {project_name}.")

Adding more images (SDK) 248

Amazon Lookout for Vision Developer Guide

 logger.info(f"Added entries to dataset.")

 return status, status_message

 except ClientError as err:
 logger.exception(
 f"Couldn't update dataset: {err.response['Error']['Message']}")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Updates an Amazon Lookout for Vision dataset from a manifest file.
 * Returns after Lookout for Vision updates the dataset.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project in which you want to update a
 * dataset.
 * @param datasetType The type of the dataset that you want to update (train or
 * test).
 * @param manifestFile The name and location of a local manifest file that you
 want to
 * use to update the dataset.
 * @return DatasetStatus The status of the updated dataset.
 */

public static DatasetStatus updateDatasetEntries(LookoutVisionClient lfvClient,
 String projectName,
 String datasetType, String updateFile) throws
 FileNotFoundException, LookoutVisionException,
 InterruptedException {

 logger.log(Level.INFO, "Updating {0} dataset for project {1}",
 new Object[] { datasetType, projectName });

 InputStream sourceStream = new FileInputStream(updateFile);
 SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream);

 UpdateDatasetEntriesRequest updateDatasetEntriesRequest =
 UpdateDatasetEntriesRequest.builder()

Adding more images (SDK) 249

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/UpdateDatasetEntries.java

Amazon Lookout for Vision Developer Guide

 .projectName(projectName)
 .datasetType(datasetType)
 .changes(sourceBytes)
 .build();

 lfvClient.updateDatasetEntries(updateDatasetEntriesRequest);

 boolean finished = false;
 DatasetStatus status = null;

 // Wait until update completes.

 do {

 DescribeDatasetRequest describeDatasetRequest =
 DescribeDatasetRequest.builder()
 .projectName(projectName)
 .datasetType(datasetType)
 .build();
 DescribeDatasetResponse describeDatasetResponse = lfvClient
 .describeDataset(describeDatasetRequest);

 DatasetDescription datasetDescription =
 describeDatasetResponse.datasetDescription();

 status = datasetDescription.status();

 switch (status) {

 case UPDATE_COMPLETE:
 logger.log(Level.INFO, "{0} Dataset updated for
 project {1}.",
 new Object[] { datasetType,
 projectName });
 finished = true;
 break;

 case UPDATE_IN_PROGRESS:

 logger.log(Level.INFO, "{0} Dataset update for
 project {1} in progress.",
 new Object[] { datasetType,
 projectName });
 TimeUnit.SECONDS.sleep(5);

Adding more images (SDK) 250

Amazon Lookout for Vision Developer Guide

 break;

 case UPDATE_FAILED_ROLLBACK_IN_PROGRESS:
 logger.log(Level.SEVERE,
 "{0} Dataset update failed for
 project {1}. Rolling back",
 new Object[] { datasetType,
 projectName });

 TimeUnit.SECONDS.sleep(5);

 break;

 case UPDATE_FAILED_ROLLBACK_COMPLETE:
 logger.log(Level.SEVERE,
 "{0} Dataset update failed for
 project {1}. Rollback completed.",
 new Object[] { datasetType,
 projectName });
 finished = true;
 break;

 default:
 logger.log(Level.SEVERE,
 "{0} Dataset update failed for
 project {1}. Unexpected error returned.",
 new Object[] { datasetType,
 projectName });
 finished = true;

 }

 } while (!finished);

 return status;

}

3. Repeat the previous step and provide values for the other dataset type.

Adding more images (SDK) 251

Amazon Lookout for Vision Developer Guide

Removing images from your dataset

You can't delete images directly from a dataset. Instead you must delete the existing dataset
and create a new dataset without the images that you want to remove. How you remove images
depends how you imported images into the existing dataset (manifest file, Amazon S3 bucket, or
local computer).

You can also use the AWS SDK to remove images. This is useful when creating an image
segmentation model without an image segmentation manifest file, making it unnecessary to
redraw the image masks with the Amazon Lookout for Vision console.

Topics

• Removing images from a dataset (Console)

• Removing images from a dataset (SDK)

Removing images from a dataset (Console)

Use the following procedure to remove images from a dataset with the Amazon Lookout for Vision
console.

To remove images from a dataset (console)

1. Open the project's dataset gallery.

2. Note the name of each image that you want to remove.

3. Delete the existing dataset.

4. Do one of the following:

• If you created the dataset with a manifest file, do:

a. In a text editor, open the manifest file that you used to create the dataset.

b. Remove the JSON line for each image that you noted in step 2. You can identify the
JSON line for an image by checking the source-ref field.

c. Save the manifest file.

d. Create a new dataset with the updated manifest file.

• If you created the dataset from images imported from an Amazon S3 bucket, do:

a. Delete the images you noted in step 2 from the Amazon S3 bucket.

Removing images from your dataset 252

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-objects.html

Amazon Lookout for Vision Developer Guide

b. Create a new dataset with the remaining images in the Amazon S3 bucket. If you
classify images by folder name, you don't need to classify images in the next step.

c. Do one of the following:

• If you are creating an image classification model, classify each unlabeled image.

• If you are creating an image segmentation model, classify and segment each
unlabeled image.

• If you created the dataset from images imported from a local computer, do:

a. On your computer, create a folder with the images that you want to use. Don't include
the images you want to remove from the dataset. For more information, see Creating
a dataset using images stored on your local computer.

b. Create the dataset with the images in the folder that you created in step 4.a.

c. Do one of the following:

• If you are creating an image classification model, classify each unlabeled image.

• If you are creating an image segmentation model, classify and segment each
unlabeled image.

5. Train the model.

Removing images from a dataset (SDK)

You can use the AWS SDK to remove images from a dataset.

To remove images from a dataset (SDK)

1. Open the project's dataset gallery.

2. Note the name of each image that you want to remove.

3. Export the JSON lines for the dataset by using the ListDatasetEntries operation.

4. Create a manifest file with the exported JSON lines.

5. In a text editor, open the manifest file.

6. Remove the JSON line for each image that you noted in step 2. You can identify the JSON line
for an image by checking the source-ref field.

7. Save the manifest file.

8. Delete the existing dataset.

9. Create a new dataset with the updated manifest file.

Removing images from a dataset (SDK) 253

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListDatasetEntries.html

Amazon Lookout for Vision Developer Guide

10. Train the model.

Deleting a dataset

You can delete a dataset from a project by using the console or the DeleteDataset operation.
The images referenced by a dataset aren't deleted. If you delete the test dataset from a project
that has a training and a test dataset, the project reverts to a single dataset project—the remaining
dataset is split during training to create a training and test dataset. If you delete the training
dataset, you can't train a model in the project until you create a new training dataset.

Deleting a dataset (console)

Perform the steps in the following procedure to delete a dataset. If you delete all of the datasets in
a project, the Create dataset page is displayed.

To delete a dataset (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. On the Projects page, select the project that contains the dataset that you want to delete.

5. In the left navigation pane, choose Dataset.

6. Choose Actions and then select the dataset that you want to delete.

7. In the Delete dialog box, enter delete to confirm that you want to delete the dataset.

8. Choose Delete training dataset or Delete test dataset to delete the dataset.

Deleting a dataset (SDK)

Use the DeleteDataset operation to delete a dataset.

To delete a dataset (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to delete a model.

Deleting a dataset 254

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

CLI

Change the value of the following

• project-name to the name of the project that contains the model that you want to
delete.

• dataset-type to either train or test, depending on which dataset you want to
delete. If you have a single dataset project, specify train to delete the dataset.

aws lookoutvision delete-dataset --project-name project name\
 --dataset-type dataset type \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def delete_dataset(lookoutvision_client, project_name, dataset_type):
 """
 Deletes a Lookout for Vision dataset

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that contains the dataset
 that
 you want to delete.
 :param dataset_type: The type (train or test) of the dataset that you
 want to delete.
 """
 try:
 logger.info(
 "Deleting the %s dataset for project %s.", dataset_type,
 project_name
)
 lookoutvision_client.delete_dataset(
 ProjectName=project_name, DatasetType=dataset_type
)
 logger.info("Dataset deleted.")
 except ClientError:

Deleting a dataset (SDK) 255

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 logger.exception("Service error: Couldn't delete dataset.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Deletes the train or test dataset in an Amazon Lookout for Vision project.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project in which you want to delete a
 * dataset.
 * @param datasetType The type of the dataset that you want to delete (train or
 * test).
 * @return Nothing.
 */
public static void deleteDataset(LookoutVisionClient lfvClient, String
 projectName, String datasetType)
 throws LookoutVisionException {

 logger.log(Level.INFO, "Deleting {0} dataset for project {1}",
 new Object[] { datasetType, projectName });

 DeleteDatasetRequest deleteDatasetRequest =
 DeleteDatasetRequest.builder()
 .projectName(projectName)
 .datasetType(datasetType)
 .build();

 lfvClient.deleteDataset(deleteDatasetRequest);

 logger.log(Level.INFO, "Deleted {0} dataset for project {1}",
 new Object[] { datasetType, projectName });

}

Deleting a dataset (SDK) 256

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/DeleteDataset.java

Amazon Lookout for Vision Developer Guide

Exporting datasets from a project (SDK)

You can use the AWS SDK to export datasets from an Amazon Lookout for Vision project to an
Amazon S3 bucket location.

By exporting a dataset, you can do tasks such as creating a Lookout for Vision project with a copy
of a source project's datasets. You also can create a snapshot of the datasets used for a specific
version of a model.

The Python code in this procedure exports the training dataset (manifest and dataset images)
for a project to a destination Amazon S3 location that you specify. If present in the project, the
code also exports the test dataset manifest and dataset images. The destination can be in the
same Amazon S3 bucket as the source project, or a different Amazon S3 bucket. The code uses
the ListDatasetEntries operation to get the dataset manifest files. Amazon S3 operations copy the
dataset images and updated manifest files to the destination Amazon S3 location.

This procedure shows how to export a project's datasets. It also shows how to create a new project
with the exported datasets.

To export the datasets from a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Determine the destination Amazon S3 path for the dataset export. Be sure that the destination
is in an AWS Region that Amazon Lookout for Vision supports. To create a new Amazon S3
bucket, see Creating a bucket.

3. Make sure the user has access permissions to the destination Amazon S3 path for the dataset
export and the S3 locations for the image files in the source project datasets. You can use the
following policy which assumes the images files can be in any location. Replace bucket/path
with the destination bucket and path for the dataset export.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PutExports",
 "Effect": "Allow",
 "Action": [
 "S3:PutObjectTagging",

Exporting datasets from a project (SDK) 257

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListDatasetEntries.html
https://docs.aws.amazon.com/general/latest/gr/lookoutvision.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Lookout for Vision Developer Guide

 "S3:PutObject"
],
 "Resource": "arn:aws:s3:::bucket/path/*"
 },
 {
 "Sid": "GetSourceRefs",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectTagging",
 "s3:GetObjectVersion"
],
 "Resource": "*"
 }
]
}

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-
party identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an
IAM user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow
the instructions in Adding permissions to a user (console) in the IAM User Guide.

4. Save the following code to a file named dataset_export.py.

"""
Purpose

Shows how to export the datasets (manifest files and images)
from an Amazon Lookout for Vision project to a new Amazon

Exporting datasets from a project (SDK) 258

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Lookout for Vision Developer Guide

S3 location.
"""

import argparse
import json
import logging

import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)

def copy_file(s3_resource, source_file, destination_file):
 """
 Copies a file from a source Amazon S3 folder to a destination
 Amazon S3 folder.
 The destination can be in a different S3 bucket.
 :param s3: An Amazon S3 Boto3 resource.
 :param source_file: The Amazon S3 path to the source file.
 :param destination_file: The destination Amazon S3 path for
 the copy operation.
 """

 source_bucket, source_key = source_file.replace("s3://", "").split("/", 1)
 destination_bucket, destination_key = destination_file.replace("s3://",
 "").split(
 "/", 1
)

 try:
 bucket = s3_resource.Bucket(destination_bucket)
 dest_object = bucket.Object(destination_key)
 dest_object.copy_from(CopySource={"Bucket": source_bucket, "Key":
 source_key})
 dest_object.wait_until_exists()
 logger.info("Copied %s to %s", source_file, destination_file)
 except ClientError as error:
 if error.response["Error"]["Code"] == "404":
 error_message = (
 f"Failed to copy {source_file} to "
 f"{destination_file}. : {error.response['Error']['Message']}"
)
 logger.warning(error_message)

Exporting datasets from a project (SDK) 259

Amazon Lookout for Vision Developer Guide

 error.response["Error"]["Message"] = error_message
 raise

def upload_manifest_file(s3_resource, manifest_file, destination):
 """
 Uploads a manifest file to a destination Amazon S3 folder.
 :param s3: An Amazon S3 Boto3 resource.
 :param manifest_file: The manifest file that you want to upload.
 :destination: The Amazon S3 folder location to upload the manifest
 file to.
 """

 destination_bucket, destination_key = destination.replace("s3://",
 "").split("/", 1)

 bucket = s3_resource.Bucket(destination_bucket)

 put_data = open(manifest_file, "rb")
 obj = bucket.Object(destination_key + manifest_file)

 try:
 obj.put(Body=put_data)
 obj.wait_until_exists()
 logger.info("Put manifest file '%s' to bucket '%s'.", obj.key,
 obj.bucket_name)
 except ClientError:
 logger.exception(
 "Couldn't put manifest file '%s' to bucket '%s'.", obj.key,
 obj.bucket_name
)
 raise
 finally:
 if getattr(put_data, "close", None):
 put_data.close()

def get_dataset_types(lookoutvision_client, project):
 """
 Determines the types of the datasets (train or test) in an
 Amazon Lookout for Vision project.
 :param lookoutvision_client: A Lookout for Vision Boto3 client.
 :param project: The Lookout for Vision project that you want to check.
 :return: The dataset types in the project.

Exporting datasets from a project (SDK) 260

Amazon Lookout for Vision Developer Guide

 """

 try:
 response = lookoutvision_client.describe_project(ProjectName=project)

 datasets = []

 for dataset in response["ProjectDescription"]["Datasets"]:
 if dataset["Status"] in ("CREATE_COMPLETE", "UPDATE_COMPLETE"):
 datasets.append(dataset["DatasetType"])
 return datasets

 except lookoutvision_client.exceptions.ResourceNotFoundException:
 logger.exception("Project %s not found.", project)
 raise

def process_json_line(s3_resource, entry, dataset_type, destination):
 """
 Creates a JSON line for a new manifest file, copies image and mask to
 destination.
 :param s3_resource: An Amazon S3 Boto3 resource.
 :param entry: A JSON line from the manifest file.
 :param dataset_type: The type (train or test) of the dataset that
 you want to create the manifest file for.
 :param destination: The destination Amazon S3 folder for the manifest
 file and dataset images.
 :return: A JSON line with details for the destination location.
 """
 entry_json = json.loads(entry)

 print(f"source: {entry_json['source-ref']}")

 # Use existing folder paths to ensure console added image names don't clash.
 bucket, key = entry_json["source-ref"].replace("s3://", "").split("/", 1)
 logger.info("Source location: %s/%s", bucket, key)

 destination_image_location = destination + dataset_type + "/images/" + key

 copy_file(s3_resource, entry_json["source-ref"], destination_image_location)

 # Update JSON for writing.
 entry_json["source-ref"] = destination_image_location

Exporting datasets from a project (SDK) 261

Amazon Lookout for Vision Developer Guide

 if "anomaly-mask-ref" in entry_json:
 source_anomaly_ref = entry_json["anomaly-mask-ref"]
 mask_bucket, mask_key = source_anomaly_ref.replace("s3://", "").split("/",
 1)

 destination_mask_location = destination + dataset_type + "/masks/" +
 mask_key
 entry_json["anomaly-mask-ref"] = destination_mask_location

 copy_file(s3_resource, source_anomaly_ref, entry_json["anomaly-mask-ref"])

 return entry_json

def write_manifest_file(
 lookoutvision_client, s3_resource, project, dataset_type, destination
):
 """
 Creates a manifest file for a dataset. Copies the manifest file and
 dataset images (and masks, if present) to the specified Amazon S3 destination.
 :param lookoutvision_client: A Lookout for Vision Boto3 client.
 :param project: The Lookout for Vision project that you want to use.
 :param dataset_type: The type (train or test) of the dataset that
 you want to create the manifest file for.
 :param destination: The destination Amazon S3 folder for the manifest file
 and dataset images.
 """

 try:
 # Create a reusable Paginator
 paginator = lookoutvision_client.get_paginator("list_dataset_entries")

 # Create a PageIterator from the Paginator
 page_iterator = paginator.paginate(
 ProjectName=project,
 DatasetType=dataset_type,
 PaginationConfig={"PageSize": 100},
)

 output_manifest_file = dataset_type + ".manifest"

 # Create manifest file then upload to Amazon S3 with images.
 with open(output_manifest_file, "w", encoding="utf-8") as manifest_file:
 for page in page_iterator:

Exporting datasets from a project (SDK) 262

Amazon Lookout for Vision Developer Guide

 for entry in page["DatasetEntries"]:
 try:
 entry_json = process_json_line(
 s3_resource, entry, dataset_type, destination
)

 manifest_file.write(json.dumps(entry_json) + "\n")

 except ClientError as error:
 if error.response["Error"]["Code"] == "404":
 print(error.response["Error"]["Message"])
 print(f"Excluded JSON line: {entry}")
 else:
 raise
 upload_manifest_file(
 s3_resource, output_manifest_file, destination + "datasets/"
)

 except ClientError:
 logger.exception("Problem getting dataset_entries")
 raise

def export_datasets(lookoutvision_client, s3_resource, project, destination):
 """
 Exports the datasets from an Amazon Lookout for Vision project to a specified
 Amazon S3 destination.
 :param project: The Lookout for Vision project that you want to use.
 :param destination: The destination Amazon S3 folder for the exported datasets.
 """
 # Add trailing backslash, if missing.
 destination = destination if destination[-1] == "/" else destination + "/"

 print(f"Exporting project {project} datasets to {destination}.")

 # Get each dataset and export to destination.

 dataset_types = get_dataset_types(lookoutvision_client, project)
 for dataset in dataset_types:
 logger.info("Copying %s dataset to %s.", dataset, destination)

 write_manifest_file(
 lookoutvision_client, s3_resource, project, dataset, destination
)

Exporting datasets from a project (SDK) 263

Amazon Lookout for Vision Developer Guide

 print("Exported dataset locations")
 for dataset in dataset_types:
 print(f" {dataset}: {destination}datasets/{dataset}.manifest")

 print("Done.")

def add_arguments(parser):
 """
 Adds command line arguments to the parser.
 :param parser: The command line parser.
 """

 parser.add_argument("project", help="The project that contains the dataset.")
 parser.add_argument("destination", help="The destination Amazon S3 folder.")

def main():
 """
 Exports the datasets from an Amazon Lookout for Vision project to a
 destination Amazon S3 location.
 """
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
 add_arguments(parser)

 args = parser.parse_args()

 try:
 session = boto3.Session(profile_name="lookoutvision-access")
 lookoutvision_client = session.client("lookoutvision")
 s3_resource = session.resource("s3")

 export_datasets(
 lookoutvision_client, s3_resource, args.project, args.destination
)
 except ClientError as err:
 logger.exception(err)
 print(f"Failed: {format(err)}")

if __name__ == "__main__":
 main()

Exporting datasets from a project (SDK) 264

Amazon Lookout for Vision Developer Guide

5. Run the code. Supply the following command line arguments:

• project – The name of the source project that contains the datasets that you want to export.

• destination – The destination Amazon S3 path for the datasets.

For example, python dataset_export.py myproject s3://bucket/path/

6. Note the manifest file locations that the code displays. You need them in step 8.

7. Create a new Lookout for Vision project with exported dataset by following the instructions at
Creating your project.

8. Do one of the following:

• Use the Lookout for Vision console to create datasets for your new project by following
the instructions at Creating a dataset with a manifest file (console). You don't need to do
steps 1–6.

For step 12, do the following:

a. If the source project has a test dataset, choose Separate training and test datasests,
otherwise choose single dataset.

b. For .manifest file location, enter the location of the appropriate manifest file (train
or test) that you noted in step 6.

• Use the CreateDataset operation to create datasets for your new project by using the code
at Creating a dataset with a manifest file (SDK). For the manifest_file parameter, use
the manifest file location you noted in step 6. If the source project has a test dataset, use
the code again to create the test dataset.

9. If you're ready, train the model by following the instructions at Training your model.

Viewing your models

A project can have multiple versions of a model. You can use the console to view the models in a
project. You can also use the ListModels operation.

Viewing your models 265

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateDataset.html

Amazon Lookout for Vision Developer Guide

Note

The list of models is eventually consistent. If you create a model, you might have to wait a
short while before the models list is up to date.

Viewing your models (console)

Perform the steps in the following procedure to view your project's models in the console.

To view your models (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. On the Projects page, select the project that contains the models that you want to view.

5. In the left navigation pane, choose Models and then view the model details.

Viewing your models (SDK)

To get view the versions of a model you use the ListModels operation. To get information about
a specific model version, use the DescribeModel operation. The following example lists all the
model versions in a project and then displays performance and output configuration information
for individual model versions.

To view your models (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to list your models and get information about a model.

CLI

Use the list-models command to list the models in a project.

Change the following value:

Viewing your models (console) 266

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

• project-name to the name of the project that contains the model that you want to
view.

aws lookoutvision list-models --project-name project name \
 --profile lookoutvision-access

Use the describe-model command to get information about a model. Change the
following values:

• project-name to the name of the project that contains the model that you want to
view.

• model-version to the version of the model that you want to describe.

aws lookoutvision describe-model --project-name project name\
 --model-version model version \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def describe_models(lookoutvision_client, project_name):
 """
 Gets information about all models in a Lookout for Vision project.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that you want to use.
 """
 try:
 response =
 lookoutvision_client.list_models(ProjectName=project_name)
 print("Project: " + project_name)
 for model in response["Models"]:
 Models.describe_model(
 lookoutvision_client, project_name, model["ModelVersion"]
)

Viewing your models (SDK) 267

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 print()
 print("Done...")
 except ClientError:
 logger.exception("Couldn't list models.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
 * Lists the models in an Amazon Lookout for Vision project.
 *
 * @param lfvClient An Amazon Lookout for Vision client.
 * @param projectName The name of the project that contains the models that
 * you want to list.
 * @return List <Metadata> A list of models in the project.
 */
public static List<ModelMetadata> listModels(LookoutVisionClient lfvClient,
 String projectName)
 throws LookoutVisionException {

 ListModelsRequest listModelsRequest = ListModelsRequest.builder()
 .projectName(projectName)
 .build();

 // Get a list of models in the supplied project.
 ListModelsResponse response = lfvClient.listModels(listModelsRequest);

 for (ModelMetadata model : response.models()) {
 logger.log(Level.INFO, "Model ARN: {0}\nVersion: {1}\nStatus:
 {2}\nMessage: {3}", new Object[] {
 model.modelArn(),
 model.modelVersion(),
 model.statusMessage(),
 model.statusAsString() });
 }

 return response.models();

Viewing your models (SDK) 268

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/ListModels.java

Amazon Lookout for Vision Developer Guide

}

Deleting a model

You can delete a version of a model by using the console or by using the DeleteModel operation.
You can't delete model version that is running or being trained.

If the model is version running, first use the StopModel operation to stop the model version. For
more information, see Stopping your Amazon Lookout for Vision model. If a model is training, wait
until it finishes before you delete the model.

It might take a few seconds to delete a model. To determine if a model has been deleted, call
ListProjects and check if the version of the model (ModelVersion) is in the Models array.

Deleting a model (console)

Perform the following steps to delete a model from the console.

To delete a model (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Projects.

4. On the Projects page, select the project that contains the model that you want to delete.

5. In the left navigation pane, choose Models.

6. On the models view, select the radio button for the model that you want to delete.

7. Choose Delete at the top of the page.

8. In the Delete dialog box, enter delete to confirm that you want to delete the model.

9. Choose Delete model to delete the model.

Deleting a model (SDK)

Use the following procedure to delete model with the DeleteModel operation.

Deleting a model 269

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListProjects
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

To delete a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to delete a model.

CLI

Change the following values:

• project-name to the name of the project that contains the model that you want to
delete.

• model-version to the version of the model that you want to delete.

aws lookoutvision delete-model --project-name project name\
 --model-version model version \
 --profile lookoutvision-access

Python

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

 @staticmethod
 def delete_model(lookoutvision_client, project_name, model_version):
 """
 Deletes a Lookout for Vision model. The model must first be stopped and
 can't
 be in training.

 :param lookoutvision_client: A Boto3 Lookout for Vision client.
 :param project_name: The name of the project that contains the desired
 model.
 :param model_version: The version of the model that you want to delete.
 """
 try:
 logger.info("Deleting model: %s", model_version)
 lookoutvision_client.delete_model(
 ProjectName=project_name, ModelVersion=model_version
)

Deleting a model (SDK) 270

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py

Amazon Lookout for Vision Developer Guide

 model_exists = True
 while model_exists:
 response =
 lookoutvision_client.list_models(ProjectName=project_name)

 model_exists = False
 for model in response["Models"]:
 if model["ModelVersion"] == model_version:
 model_exists = True

 if model_exists is False:
 logger.info("Model deleted")
 else:
 logger.info("Model is being deleted...")
 time.sleep(2)

 logger.info("Deleted Model: %s", model_version)
 except ClientError:
 logger.exception("Couldn't delete model.")
 raise

Java V2

This code is taken from the AWS Documentation SDK examples GitHub repository. See the
full example here.

/**
* Deletes an Amazon Lookout for Vision model.
*
* @param lfvClient An Amazon Lookout for Vision client. Returns after the
 model is deleted.
* @param projectName The name of the project that contains the model that you
 want to delete.
* @param modelVersion The version of the model that you want to delete.
* @return void
*/
public static void deleteModel(LookoutVisionClient lfvClient,
 String projectName,
 String modelVersion) throws LookoutVisionException,
 InterruptedException {

Deleting a model (SDK) 271

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/DeleteModel.java

Amazon Lookout for Vision Developer Guide

 DeleteModelRequest deleteModelRequest = DeleteModelRequest.builder()
 .projectName(projectName)
 .modelVersion(modelVersion)
 .build();

 lfvClient.deleteModel(deleteModelRequest);

 boolean deleted = false;

 do {

 ListModelsRequest listModelsRequest =
 ListModelsRequest.builder()
 .projectName(projectName)
 .build();

 // Get a list of models in the supplied project.
 ListModelsResponse response =
 lfvClient.listModels(listModelsRequest);

 ModelMetadata modelMetadata = response.models().stream()
 .filter(model ->
 model.modelVersion().equals(modelVersion)).findFirst()
 .orElse(null);

 if (modelMetadata == null) {
 deleted = true;
 logger.log(Level.INFO, "Deleted: Model version {0} of
 project {1}.",
 new Object[] { modelVersion,
 projectName });

 } else {
 logger.log(Level.INFO, "Not yet deleted: Model version
 {0} of project {1}.",
 new Object[] { modelVersion,
 projectName });
 TimeUnit.SECONDS.sleep(60);
 }

 } while (!deleted);

Deleting a model (SDK) 272

Amazon Lookout for Vision Developer Guide

}

Tagging models

You can identify, organize, search for, and filter your Amazon Lookout for Vision models by
using tags. Each tag is a label consisting of a user-defined key and value. For example, to help
determine billing for your models, you could tag your models with a Cost center key and add
the appropriate cost center number as a value. For more information, see Tagging AWS resources.

Use tags to:

• Track billing for a model by using cost allocation tags. For more information, see Using Cost
Allocation Tags.

• Control access to a model by using Identity and Access Management (IAM). For more information,
see Controlling access to AWS resources using resource tags.

• Automate model management. For example, you can run automated start or stop scripts that
turn off development models during non-business hours to reduce costs. For more information,
see Running your trained Amazon Lookout for Vision model.

You can tag models by using the Amazon Lookout for Vision console or by using the AWS SDKs.

Topics

• Tagging models (console)

• Tagging models (SDK)

Tagging models (console)

You can use the Amazon Lookout for Vision console to add tags to models, view the tags attached
to a model, and remove tags.

Adding or removing tags (console)

This procedure explains how to add tags to, or remove tags from, an existing model. You can also
add tags to a new model when it is trained. For more information, see Training your model.

Tagging models 273

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
@url-iam-user;access_tags.html

Amazon Lookout for Vision Developer Guide

To add tags to, or remove tags from, an existing model (console)

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the navigation pane, choose Projects.

4. On the Projects resources page, choose the project that contains the model that you want to
tag.

5. In the navigation pane, under the project you previously chose, choose Models.

6. In the Models section, choose the model that you want to add a tag to.

7. On the model's details page, choose the Tags tab.

8. In the Tags section, choose Manage tags.

9. On the Manage tags page, choose Add new tag.

10. Enter a key and a value.

a. For Key, enter a name for the key.

b. For Value, enter a value.

11. To add more tags, repeat steps 9 and 10.

12. (Optional) To remove a tag, choose Remove next to the tag that you want to remove. If you
are removing a previously saved tag, it is removed when you save your changes.

13. Choose Save changes to save your changes.

Viewing model tags (console)

You can use the Amazon Lookout for Vision console to view the tags attached to a model.

To view the tags attached to all models within a project, you must use the AWS SDK. For more
information, see Listing model tags (SDK).

To view the tags attached to a model

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the navigation pane, choose Projects.

Tagging models (console) 274

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

4. On the Projects resources page, choose the project that contains the model whose tag you
want to view.

5. In the navigation pane, under the project you previously chose, choose Models.

6. In the Models section, choose the model whose tag you want to view.

7. On the model's details page, choose the Tags tab. The tags are shown in Tags section.

Tagging models (SDK)

You can use the AWS SDK to:

• Add tags to a new model

• Add tags to an existing model

• List the tags attached to a model

• Remove tags from a model

This section includes AWS CLI examples. If you haven't installed the AWS CLI, see Step 4: Set up the
AWS CLI and AWS SDKs.

Adding tags to a new model (SDK)

You can add tags to a model when you create it using the CreateModel operation. Specify one or
more tags in the Tags array input parameter.

aws lookoutvision create-model --project-name "project name"\
 --output-config '{ "S3Location": { "Bucket": "output bucket", "Prefix": "output
 folder" } }'\
 --tags '[{"Key":"Key","Value":"Value"}]' \
 --profile lookoutvision-access

For information about creating and training a model, see Training a model (SDK).

Adding tags to an existing model (SDK)

To add one or more tags to an existing model, use the TagResource operation. Specify the model's
Amazon Resource Name (ARN) (ResourceArn) and the tags (Tags) that you want to add.

aws lookoutvision tag-resource --resource-arn "resource-arn"\

Tagging models (SDK) 275

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_CreateModel
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_TagResource

Amazon Lookout for Vision Developer Guide

 --tags '[{"Key":"Key","Value":"Value"}]' \
 --profile lookoutvision-access

For example Java code, see TagModel.

Listing model tags (SDK)

To list the tags attached to a model, use the ListTagsForResource operation and specify the model's
Amazon Resource Name (ARN), the (ResourceArn). The response is a map of tag keys and values
that are attached to the specified model.

aws lookoutvision list-tags-for-resource --resource-arn resource-arn \
 --profile lookoutvision-access

To see which models in a project have a specific tag, call ListModels to get a list of models.
Then call ListTagsForResource for each model in the response from ListModels. Inspect the
response from ListTagsForResource to see if the required tag is present.

For example Java code, see ListModelTags. For example Python code that searches for a tag value
across all projects, see find_tag.py.

Removing tags from a model (SDK)

To remove one or more tags from a model, use the UntagResource operation. Specify the model's
Amazon Resource Name (ARN) (ResourceArn) and the tag keys (Tag-Keys) that you want to
remove.

aws lookoutvision untag-resource --resource-arn resource-arn\
 --tag-keys '["Key"]' \
 --profile lookoutvision-access

For example Java code, see UntagModel.

Viewing your trial detection tasks

You can view your trial detections by using the console. You can't use the AWS SDK to view trial
detection tasks.

Viewing your trial detection tasks 276

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/TagModel.java
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListTagsForResource
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/ListModelTags.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/python/example_code/lookoutvision/find_tag.py
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_UntagResource
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/lookoutvision/src/main/java/com/example/lookoutvision/UntagModel.java

Amazon Lookout for Vision Developer Guide

Note

The list of trial detections is eventually consistent. If you create a trial detection, you might
have to wait a short while before the trial detections list is up to date.

Viewing your trial detection tasks (console)

Use the following procedures to view your trial detections.

To view your trial detection tasks

1. Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/
lookoutvision/.

2. Choose Get started.

3. In the left navigation pane, choose Trial detections.

4. On the trial detections page, choose a trial detection task to view its details.

Viewing your trial detection tasks (console) 277

https://console.aws.amazon.com/lookoutvision/
https://console.aws.amazon.com/lookoutvision/

Amazon Lookout for Vision Developer Guide

Example code and datasets

The following are code examples and datasets that you can use with Amazon Lookout for Vision.

Topics

• Example code

• Example datasets

Example code

The following code examples for Amazon Lookout for Vision are available.

Example Description

GitHub Example Python code that trains and hosts an
Amazon Lookout for Vision model.

Amazon Lookout for Vision Lab A Python Notebook that you can use to create
a model with the circuitboard example images.

Python example code Python examples used in the Amazon Lookout
for Vision documentation.

Java example code Java examples used in the Amazon Lookout
for Vision documentation.

Example datasets

The following are example datasets that you can use with Amazon Lookout for Vision.

Topics

• Image segmentation datasets

• Image classification dataset

Example code 278

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/lookoutvision/train_host.py
https://github.com/aws-samples/amazon-lookout-for-vision/blob/main/Amazon%20Lookout%20for%20Vision%20Lab.ipynb
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/python/example_code/lookoutvision
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lookoutvision

Amazon Lookout for Vision Developer Guide

Image segmentation datasets

Getting started with Amazon Lookout for Vision provides a dataset of broken cookies that you can
use to create an image segmentation model.

For another dataset that creates an image segmentation model, see Identify the location of
anomalies using Amazon Lookout for Vision at the edge without using a GPU.

Image classification dataset

Amazon Lookout for Vision provides example images of circuit boards that you can use to create an
image classification model.

You can copy the images from the https://github.com/aws-samples/amazon-lookout-for-vision
GitHub repository. The images are in the circuitboard folder.

The circuitboard folder has the following folders.

• train – Images you can use in a training dataset.

Image segmentation datasets 279

https://aws.amazon.com/blogs/machine-learning/identify-the-location-of-anomalies-using-amazon-lookout-for-vision-at-the-edge-without-using-a-gpu/
https://aws.amazon.com/blogs/machine-learning/identify-the-location-of-anomalies-using-amazon-lookout-for-vision-at-the-edge-without-using-a-gpu/
https://github.com/aws-samples/amazon-lookout-for-vision

Amazon Lookout for Vision Developer Guide

• test – Images you can use in a test dataset.

• extra_images – Images you can use to run a trial detection or to try out your trained model
with the DetectAnomalies operation.

The train and test folders each have a subfolder named normal (contains images that are
normal) and a subfolder named anomaly (contains images with anomalies).

Note

Later, when you create a dataset with the console, Amazon Lookout for Vision can use
the folder names (normal and anomaly) to label the images automatically. For more
information, see the section called “Amazon S3 bucket”.

To prepare the dataset images

1. Clone the https://github.com/aws-samples/amazon-lookout-for-vision repository to your
computer. For more information, see Cloning a repository.

2. Create an Amazon S3 bucket. For more information, see How do I create an S3 Bucket?.

3. At the command prompt, enter the following command to copy the dataset images from your
computer to your Amazon S3 bucket.

aws s3 cp --recursive your-repository-folder/circuitboard s3://your-bucket/
circuitboard

After uploading the images, you can create a model. You can automatically classify the images by
adding the images from the Amazon S3 location that you previously uploaded the circuit board
images to. Remember that you are charged for each successful training of a model and for the
amount of time that a model is running (hosted).

To create a classification model

1. Do Creating a project (console).

2. Do Creating a dataset using images stored in an Amazon S3 bucket.

• For step 6, choose the Separate training and test datasets tab.

Image classification dataset 280

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DetectAnomalies
https://github.com/aws-samples/amazon-lookout-for-vision
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Lookout for Vision Developer Guide

• For step 8a, enter the S3 URI for the training images you uploaded in To prepare the dataset
images. For example s3://your-bucket/circuitboard/train. For step 8b, enter the
S3 URI for the test dataset. For example, s3://your-bucket/circuitboard/test.

• Be sure to do step 9.

3. Do Training a model (console).

4. Do Starting your model (console).

5. Do Detecting anomalies in an image. You can use images from the test_images folder.

6. When you're finished with the model, do Stopping your model (console).

Image classification dataset 281

Amazon Lookout for Vision Developer Guide

Security in Amazon Lookout for Vision

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Lookout
for Vision, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Lookout for Vision. The following topics show you how to configure Lookout for Vision to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Lookout for Vision resources.

Topics

• Data protection in Amazon Lookout for Vision

• Identity and access management for Amazon Lookout for Vision

• Compliance validation for Amazon Lookout for Vision

• Resilience in Amazon Lookout for Vision

• Infrastructure security in Amazon Lookout for Vision

Data protection in Amazon Lookout for Vision

The AWS shared responsibility model applies to data protection in Amazon Lookout for Vision. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on

Data protection 282

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Lookout for Vision Developer Guide

this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Lookout for Vision or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Data encryption

The following information explains where Amazon Lookout for Vision uses data encryption to
protect your data.

Encryption at rest

Images

To train your model, Amazon Lookout for Vision makes a copy of your source training and test
images. The copied images are encrypted at rest in Amazon Simple Storage Service (S3) using

Data encryption 283

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Lookout for Vision Developer Guide

server-side encryption with an AWS owned key or a key that you provide. The keys are stored
using AWS Key Management Service (SSE-KMS). Your source images are unaffected. For more
information, see Training your model.

Amazon Lookout for Vision models

By default, trained models and manifest files are encrypted in Amazon S3 using server-side
encryption with KMS keys stored in AWS Key Management Service (SSE-KMS). Lookout for Vision
uses an AWS owned key. For more information, see Protecting Data Using Server-Side Encryption.
Training results are written to the bucket specified in the output_bucket input parameter to
CreateModel. The training results are encrypted using the configured encryption settings for the
bucket (output_bucket).

Amazon Lookout for Vision console bucket

The Amazon Lookout for Vision console creates an Amazon S3 bucket (console bucket) that you
can use to manage your projects. The console bucket is encrypted using the default Amazon S3
encryption. For more information, see Amazon Simple Storage Service default encryption for S3
buckets. If you are using your own KMS key, configure the console bucket after it is created. For
more information, see Protecting Data Using Server-Side Encryption. Amazon Lookout for Vision
blocks public access to the console bucket.

Encryption in transit

Amazon Lookout for Vision API endpoints only support secure connections over HTTPS. All
communication is encrypted with Transport Layer Security (TLS).

Key management

You can use AWS Key Management Service (KMS) to manage encryption for the input images that
you store in Amazon S3 buckets. For more information, see Step 5: (Optional) Using your own AWS
Key Management Service key.

By default your images are encrypted with a key that AWS owns and manages. You can also choose
to use your own AWS Key Management Service (KMS) key. For more information, see AWS Key
Management Service concepts.

Internetwork traffic privacy

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for Amazon Lookout for Vision is a
logical entity within a VPC that allows connectivity only to Amazon Lookout for Vision. Amazon

Internetwork traffic privacy 284

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Amazon Lookout for Vision Developer Guide

VPC routes requests to Amazon Lookout for Vision and routes responses back to the VPC. For
more information, see VPC Endpoints in the Amazon VPC User Guide. For information about using
Amazon VPC endpoints with Amazon Lookout for Vision see Access Amazon Lookout for Vision
using an interface endpoint (AWS PrivateLink).

Identity and access management for Amazon Lookout for
Vision

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Lookout for Vision resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Lookout for Vision works with IAM

• Amazon Lookout for Vision identity-based policy examples

• AWS managed policies for Amazon Lookout for Vision

• Troubleshooting Amazon Lookout for Vision identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Lookout for Vision.

Service user – If you use the Lookout for Vision service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Lookout for
Vision features to do your work, you might need additional permissions. Understanding how access
is managed can help you request the right permissions from your administrator. If you cannot
access a feature in Lookout for Vision, see Troubleshooting Amazon Lookout for Vision identity and
access.

Service administrator – If you're in charge of Lookout for Vision resources at your company, you
probably have full access to Lookout for Vision. It's your job to determine which Lookout for Vision

Identity and access management 285

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Lookout for Vision Developer Guide

features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Lookout for Vision, see How Amazon Lookout for Vision works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Lookout for Vision. To view example Lookout for Vision
identity-based policies that you can use in IAM, see Amazon Lookout for Vision identity-based
policy examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

Authenticating with identities 286

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Lookout for Vision Developer Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Authenticating with identities 287

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon Lookout for Vision Developer Guide

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the

Authenticating with identities 288

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Lookout for Vision Developer Guide

principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

Managing access using policies 289

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Lookout for Vision Developer Guide

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Managing access using policies 290

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Lookout for Vision Developer Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 291

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Lookout for Vision Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Lookout for Vision works with IAM

Before you use IAM to manage access to Lookout for Vision, learn what IAM features are available
to use with Lookout for Vision.

IAM features you can use with Amazon Lookout for Vision

IAM feature Lookout for Vision support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles No

Service-linked roles No

To get a high-level view of how Lookout for Vision and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

How Amazon Lookout for Vision works with IAM 292

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Lookout for Vision Developer Guide

Identity-based policies for Lookout for Vision

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Lookout for Vision

To view examples of Lookout for Vision identity-based policies, see Amazon Lookout for Vision
identity-based policy examples.

Resource-based policies within Lookout for Vision

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How Amazon Lookout for Vision works with IAM 293

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Lookout for Vision Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Lookout for Vision

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Lookout for Vision actions, see Actions defined by Amazon Lookout for Vision in the
Service Authorization Reference.

Policy actions in Lookout for Vision use the following prefix before the action:

lookoutvision

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "lookoutvision:action1",
 "lookoutvision:action2"
]

To view examples of Lookout for Vision identity-based policies, see Amazon Lookout for Vision
identity-based policy examples.

How Amazon Lookout for Vision works with IAM 294

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions

Amazon Lookout for Vision Developer Guide

Policy resources for Lookout for Vision

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Lookout for Vision resource types and their ARNs, see Resources defined by Amazon
Lookout for Vision in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Actions defined by Amazon Lookout for Vision.

To view examples of Lookout for Vision identity-based policies, see Amazon Lookout for Vision
identity-based policy examples.

Policy condition keys for Lookout for Vision

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How Amazon Lookout for Vision works with IAM 295

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Lookout for Vision Developer Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Lookout for Vision condition keys, see Condition keys for Amazon Lookout for Vision
in the Service Authorization Reference. To learn with which actions and resources you can use a
condition key, see Actions defined by Amazon Lookout for Vision.

To view examples of Lookout for Vision identity-based policies, see Amazon Lookout for Vision
identity-based policy examples.

ACLs in Lookout for Vision

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Lookout for Vision

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How Amazon Lookout for Vision works with IAM 296

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions

Amazon Lookout for Vision Developer Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Lookout for Vision

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Lookout for Vision

Supports forward access sessions (FAS) Yes

How Amazon Lookout for Vision works with IAM 297

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Lookout for Vision Developer Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Lookout for Vision

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Lookout for Vision functionality.
Edit service roles only when Lookout for Vision provides guidance to do so.

Service-linked roles for Lookout for Vision

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How Amazon Lookout for Vision works with IAM 298

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Lookout for Vision Developer Guide

Amazon Lookout for Vision identity-based policy examples

By default, users and roles don't have permission to create or modify Lookout for Vision resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Lookout for Vision, including the format
of the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
Lookout for Vision in the Service Authorization Reference.

Topics

• Policy best practices

• Accessing a single Amazon Lookout for Vision project

• Tag-based policy examples

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Lookout for Vision
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

Identity-based policy examples 299

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Amazon Lookout for Vision Developer Guide

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Accessing a single Amazon Lookout for Vision project

In this example, you want to grant a user in your AWS account access to one of your Amazon
Lookout for Vision projects.

{
 "Sid": "SpecificProjectOnly",
 "Effect": "Allow",
 "Action": [
 "lookoutvision:DetectAnomalies"
],
 "Resource": "arn:aws:lookoutvision:us-east-1:123456789012:model/myproject/*"
}

Tag-based policy examples

Tag-based policies are JSON policy documents that specify the actions that a principal can perform
on tagged resources.

Identity-based policy examples 300

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Lookout for Vision Developer Guide

Use a tag to access a resource

This example policy grants a user or role in your AWS account permission to use the
DetectAnomalies operation with any model tagged with the key stage and the value
production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "LookoutVision:DetectAnomalies"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "production"
 }
 }
 }
]
}

Use a tag to deny access to specific Amazon Lookout for Vision operations

This example policy denies permission for a user or role in your AWS account to call the
DeleteModel or StopModel operations with any model tagged with the key stage and the value
production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "LookoutVision:DeleteModel",
 "LookoutVision:StopModel"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {

Identity-based policy examples 301

Amazon Lookout for Vision Developer Guide

 "aws:ResourceTag/stage": "production"
 }
 }
 }
]
}

AWS managed policies for Amazon Lookout for Vision

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonLookoutVisionReadOnlyAccess

Use the AmazonLookoutVisionReadOnlyAccess policy to allow users read-only access to
Amazon Lookout for Vision (and its dependencies) with the following Amazon Lookout for Vision
actions (SDK operations). For example, you can use DescribeModel to get information about an
existing model.

• DescribeDataset

• DescribeModel

• DescribeModelPackagingJob

AWS managed policies 302

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeDataset
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModel
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob

Amazon Lookout for Vision Developer Guide

• DescribeProject

• ListDatasetEntries

• ListModelPackagingJobs

• ListModels

• ListProjects

• ListTagsForResource

To call read-only actions, users don't need Amazon S3 bucket permissions. However, operation
responses might include references to Amazon S3 buckets. For example, the source-ref entry in
the response from ListDatasetEntries is a reference to an image in an Amazon S3 bucket. Add
Amazon S3 bucket permissions if your users need to access referenced buckets. For example, a user
might want to download an image referenced by a source-ref field. For more information, see
Granting Amazon S3 Bucket permissions.

You can attach the AmazonLookoutVisionReadOnlyAccess policy to your IAM identities.

Permissions details

This policy includes the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LookoutVisionReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "lookoutvision:DescribeDataset",
 "lookoutvision:DescribeModel",
 "lookoutvision:DescribeProject",
 "lookoutvision:DescribeModelPackagingJob",
 "lookoutvision:ListDatasetEntries",
 "lookoutvision:ListModels",
 "lookoutvision:ListProjects",
 "lookoutvision:ListTagsForResource",
 "lookoutvision:ListModelPackagingJobs"
],

AWS managed policies 303

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeProject
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListDatasetEntries
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListModels
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListModels
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListProjects
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListTagsForResource

Amazon Lookout for Vision Developer Guide

 "Resource": "*"
 }
]
}

AWS managed policy: AmazonLookoutVisionFullAccess

Use the AmazonLookoutVisionFullAccess policy to allow users full access to Amazon Lookout
for Vision (and its dependencies) with Amazon Lookout for Vision actions (SDK operations). For
example, you can train a model without having to use the Amazon Lookout for Vision console. For
more information, see Actions.

To create a dataset (CreateDataset) or create a model (CreateModel), your users must have
full access permissions to the Amazon S3 bucket that stores dataset images, Amazon SageMaker
Ground Truth manifest files, and training output. For more information, see Step 2: Set up
permissions.

You can also give permission to Amazon Lookout for Vision SDK actions by using the
AmazonLookoutVisionConsoleFullAccess policy.

You can attach the AmazonLookoutVisionFullAccess policy to your IAM identities.

Permissions details

This policy includes the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LookoutVisionFullAccess",
 "Effect": "Allow",
 "Action": [
 "lookoutvision:*"
],
 "Resource": "*"
 }
]
}

AWS managed policies 304

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_Operations.html

Amazon Lookout for Vision Developer Guide

AWS managed policy: AmazonLookoutVisionConsoleFullAccess

Use the AmazonLookoutVisionFullAccess policy to allow users full access to the Amazon
Lookout for Vision console, actions (SDK operations), and any dependencies that the service has.
For more information, see Getting started with Amazon Lookout for Vision.

The LookoutVisionConsoleFullAccess policy includes permissions to your Amazon Lookout
for Vision console bucket. For information about the console bucket, see Step 3: Create the
console bucket. To store datasets, images, and Amazon SageMaker Ground Truth manifest files in a
different Amazon S3 bucket, your users need additional permissions. For more information, see the
section called “Setting Amazon S3 bucket permissions”.

You can attach the AmazonLookoutVisionConsoleFullAccess policy to your IAM identities.

Permissions groupings

This policy is grouped into statements based on the set of permissions provided:

• LookoutVisionFullAccess – Allows access to perform all Lookout for Vision actions.

• LookoutVisionConsoleS3BucketSearchAccess – Allows listing of all Amazon S3 buckets
owned by the caller. Lookout for Vision uses this action to identify the AWS Region-specific
Lookout for Vision console bucket, if one exists in the caller’s account.

• LookoutVisionConsoleS3BucketFirstUseSetupAccessPermissions – Allows creating
and configuring Amazon S3 buckets that match the Lookout for Vision console bucket name
pattern. Lookout for Vision uses these actions to create and configure a Region-specific Lookout
for Vision console bucket when it can't find one.

• LookoutVisionConsoleS3BucketAccess – Allows dependent Amazon S3 actions on
buckets that match the Lookout for Vision console bucket name pattern. Lookout for Vision uses
s3:ListBucket to search for image objects when creating a dataset from an Amazon S3 bucket
and when starting a trial detection task. Lookout for Vision uses s3:GetBucketLocation and
s3:GetBucketVersioning to validate the bucket's AWS Region, owner, and configuration as
part of the following:

• Creating a dataset

• Training a model

• Starting a trial detection task

• Performing trial detection feedback

AWS managed policies 305

Amazon Lookout for Vision Developer Guide

LookoutVisionConsoleS3ObjectAccess – Allows reading and writing of Amazon S3
objects inside buckets that match the Lookout for Vision Console bucket name pattern. Lookout
for Vision uses these actions to display images in console gallery views and to upload new
images for use in datasets. Additionally, these permissions allow Lookout for Vision to write
out metadata while creating a dataset, training a model, starting a trial detection task, and
performing trial detection feedback.

• LookoutVisionConsoleDatasetLabelingToolsAccess – Allows dependent Amazon
SageMaker GroundTruth labeling actions. Lookout for Vision uses these actions to scan S3
buckets for images, create GroundTruth manifest files, and to annotate trial detection task
results with validation labels.

• LookoutVisionConsoleDashboardAccess - Allows reading of Amazon CloudWatch metrics.
Lookout for Vision uses these actions to populate the dashboard graphs and anomalies-detected
statistics.

• LookoutVisionConsoleTagSelectorAccess – Allows reading account-specific tag key and
tag value suggestions. Lookout for Vision uses these permissions to provide recommendations
for tag keys and tag values within the Manage tags console pages.

• LookoutVisionConsoleKmsKeySelectorAccess – Allows listing AWS Key Management
Service (KMS) keys and aliases. Amazon Lookout for Vision uses this permission to populate the
KMS keys in the suggested Tags selection on certain Lookout for Vision actions that support
customer managed KMS keys for encryption.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LookoutVisionFullAccess",
 "Effect": "Allow",
 "Action": [
 "lookoutvision:*"
],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleS3BucketSearchAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"

AWS managed policies 306

Amazon Lookout for Vision Developer Guide

],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleS3BucketFirstUseSetupAccess",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutBucketVersioning",
 "s3:PutLifecycleConfiguration",
 "s3:PutEncryptionConfiguration",
 "s3:PutBucketPublicAccessBlock"
],
 "Resource": "arn:aws:s3:::lookoutvision-*"
 },
 {
 "Sid": "LookoutVisionConsoleS3BucketAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:GetBucketAcl",
 "s3:GetBucketVersioning"
],
 "Resource": "arn:aws:s3:::lookoutvision-*"
 },
 {
 "Sid": "LookoutVisionConsoleS3ObjectAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource": "arn:aws:s3:::lookoutvision-*/*"
 },
 {
 "Sid": "LookoutVisionConsoleDatasetLabelingToolsAccess",
 "Effect": "Allow",
 "Action": [
 "groundtruthlabeling:RunGenerateManifestByCrawlingJob",
 "groundtruthlabeling:AssociatePatchToManifestJob",

AWS managed policies 307

Amazon Lookout for Vision Developer Guide

 "groundtruthlabeling:DescribeConsoleJob"
],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleDashboardAccess",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics"
],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleTagSelectorAccess",
 "Effect": "Allow",
 "Action": [
 "tag:GetTagKeys",
 "tag:GetTagValues"
],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleKmsKeySelectorAccess",
 "Effect": "Allow",
 "Action": [
 "kms:ListAliases"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AmazonLookoutVisionConsoleReadOnlyAccess

Use the AmazonLookoutVisionConsoleReadOnlyAccess policy to allow users read-only access
to the Amazon Lookout for Vision console, actions (SDK operations), and any dependencies that
the service has.

The AmazonLookoutVisionConsoleReadOnlyAccess policy includes Amazon S3 permissions
for the Amazon Lookout for Vision console bucket. If your dataset images or Amazon SageMaker
Ground Truth manifest files are in a different Amazon S3 bucket, your users need additional
permissions. For more information, see the section called “Setting Amazon S3 bucket permissions”.

AWS managed policies 308

Amazon Lookout for Vision Developer Guide

You can attach the AmazonLookoutVisionConsoleReadOnlyAccess policy to your IAM
identities.

Permissions groupings

This policy is grouped into statements based on the set of permissions provided:

• LookoutVisionReadOnlyAccess – Allows access to perform read-only Lookout for Vision
actions.

• LookoutVisionConsoleS3BucketSearchAccess – Allows listing of all S3 buckets owned
by the caller. Lookout for Vision uses this action to identify the AWS Region-specific Lookout for
Vision console bucket, if there is one in the caller’s account.

• LookoutVisionConsoleS3ObjectReadAccess – Allows reading Amazon S3 objects and
Amazon S3 object versions in Lookout for Vision console buckets. Lookout for Vision uses these
actions to display the images in datasets, models, and trial detections.

• LookoutVisionConsoleDashboardAccess – Allows reading Amazon CloudWatch metrics.
Lookout for Vision uses these actions to populate statistics for dashboard graphs and anomalies
detected.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LookoutVisionReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "lookoutvision:DescribeDataset",
 "lookoutvision:DescribeModel",
 "lookoutvision:DescribeProject",
 "lookoutvision:DescribeTrialDetection",
 "lookoutvision:DescribeModelPackagingJob",
 "lookoutvision:ListDatasetEntries",
 "lookoutvision:ListModels",
 "lookoutvision:ListProjects",
 "lookoutvision:ListTagsForResource",
 "lookoutvision:ListTrialDetections",
 "lookoutvision:ListModelPackagingJobs"

AWS managed policies 309

Amazon Lookout for Vision Developer Guide

],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleS3BucketSearchAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "LookoutVisionConsoleS3ObjectReadAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": "arn:aws:s3:::lookoutvision-*/*"
 },
 {
 "Sid": "LookoutVisionConsoleDashboardAccess",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics"
],
 "Resource": "*"
 }
]
}

Lookout for Vision updates to AWS managed policies

View details about updates to AWS managed policies for Lookout for Vision since this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the Lookout for Vision Document history page.

AWS managed policies 310

Amazon Lookout for Vision Developer Guide

Change Description Date

Model packaging operations
added

Amazon Lookout for Vision
added the following model
packaging operations to
the AmazonLookoutVisio
nFullAccess and AmazonLoo
koutVisionConsoleFullAccess
 policies:

• DescribeModelPacka
gingJob

• ListModelPackagingJobs

• StartModelPackagingJob

Amazon Lookout for Vision
added the following model
packaging operations to
the AmazonLookoutVisio
nReadOnlyAccess and
AmazonLookoutVisio
nConsoleReadOnlyAccess
policies:

• DescribeModelPacka
gingJob

• ListModelPackagingJobs

December 7th, 2021

New policies added Amazon Lookout for Vision
added the following policies.

• AmazonLookoutVisio
nReadOnlyAccess

• AmazonLookoutVisio
nFullAccess

• AmazonLookoutVisio
nConsoleFullAccess

• AmazonLookoutVisio
nConsoleReadOnlyAccess

May 11th, 2021

Lookout for Vision started
tracking changes

Amazon Lookout for Vision
started tracking changes for
its AWS managed policies.

March 1st, 2021

AWS managed policies 311

https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListModelPackagingJobs
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_StartModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_DescribeModelPackagingJob
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_ListModelPackagingJobs

Amazon Lookout for Vision Developer Guide

Troubleshooting Amazon Lookout for Vision identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Lookout for Vision and IAM.

Topics

• I am not authorized to perform an action in Lookout for Vision

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Lookout for Vision resources

I am not authorized to perform an action in Lookout for Vision

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
lookoutvision:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 lookoutvision:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the lookoutvision:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Lookout for Vision.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Lookout for Vision. However, the action requires the service to have

Troubleshooting 312

Amazon Lookout for Vision Developer Guide

permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Lookout for
Vision resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Lookout for Vision supports these features, see How Amazon Lookout for
Vision works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for Amazon Lookout for Vision

Third-party auditors assess the security and compliance of Amazon Lookout for Vision as part of
multiple AWS compliance programs. Amazon Lookout for Vision is compliant with General Data
Protection Regulation (GDPR).

Compliance validation 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/gdpr-center/
https://aws.amazon.com/compliance/gdpr-center/

Amazon Lookout for Vision Developer Guide

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

Compliance validation 314

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html

Amazon Lookout for Vision Developer Guide

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Lookout for Vision

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon Lookout for Vision

As a managed service, Amazon Lookout for Vision is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Lookout for Vision through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Resilience 315

https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Lookout for Vision Developer Guide

Monitoring Amazon Lookout for Vision

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Lookout for Vision and your other AWS solutions. AWS provides the following monitoring
tools to watch Lookout for Vision, report when something is wrong, and take automatic actions
when appropriate:

• Amazon CloudWatch monitors your AWS resources and and the applications you run on AWS
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• Amazon EventBridge can be used to automate your AWS services and respond automatically
to system events, such as application availability issues or resource changes. Events from AWS
services are delivered to EventBridge in near real time. You can write simple rules to indicate
which events are of interest to you and which automated actions to take when an event matches
a rule. For more information, see Amazon EventBridge User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Monitoring Lookout for Vision with Amazon CloudWatch

You can monitor Lookout for Vision using CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. These statistics are kept for 15 months, so that you can
access historical information and gain a better perspective on how your web application or service
is performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

Monitoring with CloudWatch 316

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Lookout for Vision Developer Guide

The Lookout for Vision service reports the following metrics in the AWS/LookoutVision
namespace.

Metric Description

DetectedAnomalyCount The number of anomalies detected in a project

Valid Statistics: Sum,Average

Unit: Count

ProcessedImageCount The total number of images run through anomaly
detection

Valid Statistics: Sum,Average

Unit: Count

InvalidImageCount The number of images that were invalid and could
not return a result

Valid Statistics: Sum,Average

Unit: Count

SuccessfulRequestCount The number of successful API calls

Valid Statistics: Sum,Average

Unit: Count

ErrorCount The number of API errors

Valid Statistics: Sum,Average

Unit: Count

ThrottledCount The number of API errors that were due to throttlin
g

Valid Statistics: Sum,Average

Monitoring with CloudWatch 317

Amazon Lookout for Vision Developer Guide

Metric Description

Unit: Count

Time The time in milliseconds for Lookout for Vision to
compute the anomaly detection

Valid Statistics: Data Samples,Average

Units: Milliseconds for Average statistics and Count
for Data Samples statistics

MinInferenceUnits The minimum number of inference units specified
during the StartModel request.

Valid statistics: Average

Unit: Count

MaxInferenceUnits The maximum number of inference units specified
during the StartModel request.

Valid statistics: Average

Unit: Count

DesiredInferenceUnits The number of inference units to which Lookout for
Vision is scaling up or down.

Valid statistics: Average

Unit: Count

Monitoring with CloudWatch 318

Amazon Lookout for Vision Developer Guide

Metric Description

InServiceInferenceUnits The number of inference units that the model is
using.

Valid statistics: Average

It is recommended that you use the Average
statistic to obtain the 1 minute average of how
many instances are used.

Unit: Count

The following dimensions are supported for the Lookout for Vision metrics.

Dimension Description

ProjectName You can split metrics by project to see which
projects are having problems or need to be
updated.

ModelVersion You can split metrics by model version to see which
models are having problems or need to be updated.

Logging Lookout for Vision API calls with AWS CloudTrail

Amazon Lookout for Vision is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in Lookout for Vision. CloudTrail captures all API
calls for Lookout for Vision as events. The calls captured include calls from the Lookout for Vision
console and code calls to the Lookout for Vision API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Lookout
for Vision. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the
request that was made to Lookout for Vision, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

CloudTrail logs 319

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Lookout for Vision Developer Guide

Lookout for Vision information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Lookout for Vision, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Lookout for Vision,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Lookout for Vision actions are logged by CloudTrail and are documented in the Lookout
for Vision API reference documentation. For example, calls to the CreateProject,
DetectAnomalies and StartModel actions generate entries in the CloudTrail log files.

If you monitor Amazon Lookout for Vision API calls, you might see calls to the following APIs.

• lookoutvision:StartTriallDetection

• lookoutvision:ListTriallDetection

• lookoutvision:DescribeTrialDetection

These special calls are used by Amazon Lookout for Vision to support various operations related to
trial detection. For more information, see Verifying your model with a trial detection task.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

Lookout for Vision information in CloudTrail 320

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/lookout-for-vision/latest/APIReference/API_Operations.html

Amazon Lookout for Vision Developer Guide

• Whether the request was made with root or AWS Identity and Access Management user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Lookout for Vision log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateDataset
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAYN4CJAYDEXAMPLE:user",
 "arn": "arn:aws:sts::123456789012:assumed-role/Admin/MyUser",
 "accountId": "123456789012",
 "accessKeyId": "ASIAYN4CJAYEXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAYN4CJAYDCGEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-11-20T13:15:09Z"
 }
 }

Understanding Lookout for Vision log file entries 321

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Lookout for Vision Developer Guide

 },
 "eventTime": "2020-11-20T13:15:43Z",
 "eventSource": "lookoutvision.amazonaws.com",
 "eventName": "CreateDataset",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "128.0.0.1",
 "userAgent": "aws-cli/3",
 "requestParameters": {
 "projectName": "P1",
 "datasetType": "train",
 "datasetSource": {
 "groundTruthManifest": {
 "s3Object": {
 "bucket": "myuser-bucketname",
 "key": "training.manifest"
 }
 }
 },
 "clientToken": "EXAMPLE-0526-47dd-a5d3-2ca975820a34"
 },
 "responseElements": {
 "status": "CREATE_IN_PROGRESS"
 },
 "requestID": "EXAMPLE-15e1-4bc9-be38-cda2537c75bf",
 "eventID": "EXAMPLE-c5e7-43e0-8449-8d9b87e15acb",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "123456789012"
}

Understanding Lookout for Vision log file entries 322

Amazon Lookout for Vision Developer Guide

Creating Amazon Lookout for Vision resources with AWS
CloudFormation

Amazon Lookout for Vision is integrated with AWS CloudFormation, a service that helps you
model and set up your AWS resources so that you can spend less time creating and managing your
resources and infrastructure. You create a template that describes all the AWS resources that you
want, and AWS CloudFormation takes care of provisioning and configuring those resources for you.

You can use AWS CloudFormation to provision and configure Amazon Lookout for Vision projects.

When you use AWS CloudFormation, you can reuse your template to set up your Lookout for Vision
projects consistently and repeatedly. Just describe your projects once, and then provision the same
projects over and over in multiple AWS accounts and Regions.

Lookout for Vision and AWS CloudFormation templates

To provision and configure projects for Lookout for Vision and related services, you must
understand AWS CloudFormation templates. Templates are formatted text files in JSON or YAML.
These templates describe the resources that you want to provision in your AWS CloudFormation
stacks. If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

For reference information about Lookout for Vision projects, including examples of JSON and YAML
templates, see LookoutVision resource type reference.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Lookout for Vision and AWS CloudFormation templates 323

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_LookoutVision.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Lookout for Vision Developer Guide

Access Amazon Lookout for Vision using an interface
endpoint (AWS PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and Amazon
Lookout for Vision. You can access Lookout for Vision as if it were in your VPC, without the use of
an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in
your VPC don't need public IP addresses to access Lookout for Vision.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for Lookout for Vision.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for Lookout for Vision VPC endpoints

Before you set up an interface endpoint for Lookout for Vision, review Considerations in the AWS
PrivateLink Guide.

Lookout for Vision supports making calls to all of its API actions through the interface endpoint.

VPC endpoint policies are not supported for Lookout for Vision. By default, full access to Lookout
for Vision is allowed through the interface endpoint. Alternatively, you can associate a security
group with the endpoint network interfaces to control traffic to Lookout for Vision through the
interface endpoint.

Creating an interface VPC endpoint for Lookout for Vision

You can create an interface endpoint for Lookout for Vision using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Create an interface
endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for Lookout for Vision using the following service name:

com.amazonaws.region.lookoutvision

Considerations for Lookout for Vision VPC endpoints 324

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon Lookout for Vision Developer Guide

If you enable private DNS for the interface endpoint, you can make API requests to Lookout
for Vision using its default Regional DNS name. For example, lookoutvision.us-
east-1.amazonaws.com.

Creating a VPC endpoint policy for Lookout for Vision

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to Lookout for Vision through the interface endpoint. To control
the access allowed to Lookout for Vision from your VPC, attach a custom endpoint policy to the
interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for Lookout for Vision actions

The following is an example of a custom endpoint policy for Lookout for Vision. When you attach
this policy to your interface endpoint, it specifies that all users who have access to the VPC
interface endpoint are allowed to call the DetectAnomalies API operation for the Lookout for
Vision model myModel associated with project myProject.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "lookoutvision:DetectAnomalies"
],
 "Resource": "arn:aws:lookoutvision:us-west-2:123456789012:model/myProject/
myModel"
 }
]

Creating a VPC endpoint policy for Lookout for Vision 325

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Lookout for Vision Developer Guide

}

Creating a VPC endpoint policy for Lookout for Vision 326

Amazon Lookout for Vision Developer Guide

Quotas in Amazon Lookout for Vision

The following tables describe the current quotas within Amazon Lookout for Vision. For
information about quotas that can be changed, see AWS service quotas.

Model quotas

The following quotas apply to the testing, training, and functionality of a model.

Resource Quota

Supported file format PNG and JPEG image formats

Minimum image dimension of image file in an
Amazon S3 bucket

64 pixels x 64 pixels

Maximum image dimension of image file in an
Amazon S3 bucket

4096 pixels X 4096 pixels is the maximum.
Smaller dimensions are able to upload faster.

Differing image dimensions of image files used
in a project

All images in the dataset must have the same
dimensions

Maximum file size for an image in an Amazon
S3 bucket

8 MB

Lack of labels Images must be labeled as normal or anomaly
before training. Images without labels are
ignored during training.

Minimum number of images labeled normal in
training dataset

10 for a project with separate training and test
datasets. 20 for project with a single dataset.

Minimum number of images labeled anomaly
in a training dataset

0 for a project with separate training and test
datasets. 10 for a project with a single dataset.

Maximum number of images in classification
training dataset

16,000

Model quotas 327

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Lookout for Vision Developer Guide

Resource Quota

Maximum number of images in a classification
test dataset

4,000

Minimum number of images labeled normal in
test dataset

10

Minimum number of images labeled anomaly
in test dataset

10

Maximum number of images in an anomaly
localization training dataset

8000

Maximum number of images in an anomaly
localization test dataset

800

Maximum number of images in trial detection
dataset

2,000

Maximum dataset manifest file size 1 GB

Maximum number of training datasets in a
model

1

Maximum training time 24 hours

Maximum testing time 24 hours

Maximum number of anomaly labels in a
project

100

Maximum number of anomaly labels on a
mask image

20

Minimum number of images for an anomaly
label. To count, the image must contain only
one type of anomaly label.

20 for a single dataset project. 10 for each
dataset in a project with separate training and
test datasets.

Model quotas 328

Amazon Lookout for Vision Developer Guide

Document history for Amazon Lookout for Vision

The following table describes important changes in each release of the Amazon Lookout for Vision
Developer Guide. For notification about updates to this documentation, you can subscribe to an RSS
feed.

• Latest documentation update: February 20th, 2023

Change Description Date

Added example Lambda
function

Example showing how to
find anomalies with an AWS
Lambda function. For more
information, see Finding
anomalies with an AWS
Lambda function.

February 20, 2023

Updated the IAM guidance for
AWS WAF

Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

February 8, 2023

Added dataset export
example

Added Python example
showing how to use the
ListDatasetEntries

 operation to export the
datasets from an Amazon
Lookout for Vision project.
For more information, see
Exporting datasets from a
project (SDK).

December 2, 2022

Updated getting started topic Updated getting started
to show creating an image
segmentation model with an
example dataset. For more
information, see Getting

October 20, 2022

329

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/example-lambda.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/example-lambda.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/example-lambda.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/export-dataset-sdk.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/export-dataset-sdk.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/getting-started.html

Amazon Lookout for Vision Developer Guide

started with Amazon Lookout
for Vision.

Added troubleshooting topic Added model training
troubleshooting topic.
For more information, see
Troubleshooting model
training.

October 17, 2022

Added topic on using Amazon
SageMaker Ground Truth jobs

Instead of labeling images
yourself, you can use Amazon
SageMaker Ground Truth
jobs to label images for
classification and image
segmentation models. For
more information, see Using
an Amazon SageMaker
Ground Truth job.

August 19, 2022

Amazon Lookout for Vision
now provides anomaly
localization.

You can create a segmentat
ion model that finds the
locations on an image where
different types of anomalies
(such as a scratch, dent, or
tear) are present, the label
of the anomaly and the size
of the anomaly, For more
information, see Running your
trained Amazon Lookout for
Vision model.

August 16, 2022

330

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/troubleshoot-model-training.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/troubleshoot-model-training.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/create-dataset-groundtruth-labeling-lob.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/create-dataset-groundtruth-labeling-lob.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/create-dataset-groundtruth-labeling-lob.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html

Amazon Lookout for Vision Developer Guide

Amazon Lookout for Vision
now provides CPU inference
on edge devices.

Amazon Lookout for Vision
models can now be deployed
to run inference locally on
an x86 compute platform
running Linux with just
a CPU, without needing
a GPU accelerator. For
more information, see CPU
accelerator.

August 16, 2022

Amazon Lookout for Vision
can now automatically scale
inference units.

To help with spikes in
demand, Amazon Lookout
for Vision can now scale
the number of inference
units that your model uses.
For more information, see
Running your trained Amazon
Lookout for Vision model.

August 16, 2022

Java examples added The Amazon Lookout for
Vision developer guide now
includes Java examples. For
more information, see Getting
started with the AWS SDK.

May 2, 2022

General availability of model
deployment to an edge device

Model deployment to an edge
device managed by AWS IoT
Greengrass Version 2 is now
generally available. For more
information, see Using your
Amazon Lookout for Vision
model on an edge device.

March 14, 2022

331

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/package-settings.html#package-settings-target-platform-cpu-accelerator
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/package-settings.html#package-settings-target-platform-cpu-accelerator
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/su-sdk-list-projects.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/su-sdk-list-projects.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html

Amazon Lookout for Vision Developer Guide

Updated console bucket
information

Updated information on
console bucket contents and
alternative approaches to
creating the console bucket.
For more information, see
Step 4: Create the console
bucket.

March 7, 2022

Create a manifest file from a
CSV file

You can now simplify the
creation of a manifest file
by using a script that reads
classification information
from a CSV file. For more
information, see Creating a
manifest file from a CSV file.

February 10, 2022

Preview release of model
deployment to an edge device

The preview release of model
deployment to an edge
device managed by AWS IoT
Greengrass Version 2 is now
available. For more informati
on, see Using your Amazon
Lookout for Vision model on
an edge device.

December 7, 2021

New Python and Java 2
examples added

Added Python and Java
2 examples for analyzing
images with DetectAno
malies . For more informati
on, see Detecting anomalies
in an image.

September 7, 2021

332

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/su-create-console-bucket.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/su-create-console-bucket.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/ex-csv-manifest.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/ex-csv-manifest.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/inference-detect-anomalies.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/inference-detect-anomalies.html

Amazon Lookout for Vision Developer Guide

New AWS managed policies
added.

Amazon Lookout for Vision
adds support for AWS
managed policies. For
more information, see AWS
managed policies for Amazon
Lookout for Vision.

May 11, 2021

Updated inference unit
information.

Added information describin
g inference units and how
they are charged. For more
information, see Running your
trained Amazon Lookout for
Vision model.

March 15, 2021

General availability for
Amazon Lookout for Vision.

Amazon Lookout for Vision
is now generally available
. Python code examples
updated to handle asynchron
ous tasks such as training a
model.

February 17, 2021

Tagging and AWS CloudForm
ation support added.

You can now tag Amazon
Lookout for Vision models
and create projects with AWS
CloudFormation. For more
information, see Tagging
models and Creating Amazon
Lookout for Vision projects
with AWS CloudFormation.

January 31, 2021

New feature and guide This is the initial release
of the Amazon Lookout
for Vision service Amazon
Lookout for Vision Developer
Guide.

December 1, 2020

333

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/running-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/model-train.html#create-model-sdk
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/model-train.html#create-model-sdk
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/tagging-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/tagging-model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/creating-projects-with-cloudformation.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/creating-projects-with-cloudformation.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/creating-projects-with-cloudformation.html

Amazon Lookout for Vision Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

334

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Lookout for Vision
	Table of Contents
	What is Amazon Lookout for Vision?
	Key benefits
	Are you a first-time Amazon Lookout for Vision end user?

	Setting up Amazon Lookout for Vision
	Step 1: Create an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Step 2: Set up permissions
	Setting console access with AWS managed policies
	Setting Amazon S3 bucket permissions
	Assigning permissions

	Step 3: Create the console bucket
	Creating the console bucket with the Amazon Lookout for Vision console
	Creating the console bucket with Amazon S3
	Console bucket settings

	Step 4: Set up the AWS CLI and AWS SDKs
	Install the AWS SDKS
	Grant programmatic access
	Running code on your local computer
	Using a profile on your local computer

	Running code in AWS environments

	Set up SDK permissions
	Granting SDK operation permissions
	Granting Amazon S3 Bucket permissions
	Deciding task permissions
	Creating a dataset
	Creating a model
	Accessing images, manifest files, and training output

	Setting Amazon S3 bucket policy

	Assigning permissions

	Call an Amazon Lookout for Vision operation

	Step 5: (Optional) Using your own AWS Key Management Service key

	Understanding Amazon Lookout for Vision
	Choose your model type
	Image classification model
	Image segmentation model
	Classification
	Segmentation

	Create your model
	Create a project
	Create a dataset
	Importing images
	Labeling images
	Image classification
	Image segmentation

	Train your model

	Evaluate your model
	Use your model
	Use your model on an edge device
	Use your dashboard

	Getting started with Amazon Lookout for Vision
	Step 1: Create the manifest file and upload images
	Step 2: Create the model
	Step 3: Start the model
	Step 4: Analyze an image
	Step 5: Stop the model
	Next steps

	Creating your Amazon Lookout for Vision model
	Creating your project
	Creating a project (console)
	Creating a project (SDK)

	Creating your dataset
	Preparing images for a dataset
	Single dataset project
	Separate training and test dataset project

	Creating the dataset
	Choosing a dataset configuration for your project
	Importing images

	Creating a dataset using images stored on your local computer
	Creating a dataset using images stored in an Amazon S3 bucket
	Setting up folders for automatic labeling
	Creating a dataset using images from an Amazon S3 bucket

	Creating a dataset using an Amazon SageMaker Ground Truth manifest file
	Using an Amazon Sagemaker Ground Truth job
	Image classification
	Image segmentation
	Labeling images with Amazon SageMaker Ground Truth
	Creating the dataset

	Creating a manifest file
	Defining JSON lines for image classification
	Classification JSON lines
	Anomaly JSON line
	Normal JSON line

	JSON line keys and values
	source-ref
	anomaly-label
	anomaly-label-metadata

	Defining JSON lines for image segmentation
	Segmentation JSON lines
	JSON line keys and values
	source-ref
	anomaly-label
	anomaly-label-metadata
	anomaly-mask-ref
	anomaly-mask-ref-metadata

	Creating a classification manifest file from a CSV file
	Creating a dataset with a manifest file (console)
	Creating a dataset with a manifest file (SDK)

	Labeling images
	Choosing the model type
	Image classification model
	Image segmentation model

	Classifying images (console)
	Segmenting images (console)
	Specifying anomaly labels
	Labeling an image
	Segmenting an image with the annotation tool

	Training your model
	Training a model (console)
	Training a model (SDK)

	Troubleshooting model training
	Anomaly label colors don't match color of anomalies in mask image
	Mask images aren't in PNG format
	Segmentation or classification labels are inaccurate or missing

	Improving your Amazon Lookout for Vision model
	Step 1: Evaluate the performance of your model
	Image classification metrics
	Image segmentation model metrics
	Precision
	Recall
	F1 score
	Average Intersection over Union (IoU)
	Testing results

	Step 2: Improve your model
	Viewing performance metrics
	Viewing performance metrics (console)
	Viewing performance metrics (SDK)
	Getting the summary performance metrics
	Using the evaluation manifest
	Reviewing the evaluation result

	Verifying your model with a trial detection task
	Running a trial detection task
	Verifying trial detection results
	Correcting segmentation labels with the annotation tool

	Running your trained Amazon Lookout for Vision model
	Inference units
	Managing throughput with inference units
	Manually add or remove inference units
	Auto-scale inference units

	Availability Zones
	Starting your Amazon Lookout for Vision model
	Starting your model (console)
	Starting your Amazon Lookout for Vision model (SDK)

	Stopping your Amazon Lookout for Vision model
	Stopping your model (console)
	Stopping your Amazon Lookout for Vision model (SDK)

	Detecting anomalies in an image
	Calling DetectAnomalies
	Understanding the response from DetectAnomalies
	Classification model
	Segmentation model

	Determining if an image is anomalous
	Classification
	Segmentation
	Area of anomaly
	Number of anomaly types

	Showing classification and segmentation information
	Finding anomalies with an AWS Lambda function
	Step 1: Create an AWS Lambda function (console)
	Step 2: (Optional) Create a layer (console)
	Step 3: Add Python code (console)
	Step 4: Try your Lambda function

	Using your Amazon Lookout for Vision model on an edge device
	Deploying a model and client application component to a AWS IoT Greengrass Version 2 core device
	AWS IoT Greengrass Version 2 core device requirements
	Tested devices, chip architectures, and operating systems
	Devices

	Core device memory and storage
	Required software
	Jetson Devices
	X86 hardware
	CPU inference
	GPU accelerated inference
	NVIDIA GPU with microarchitecture prior to Ampere (compute capability is less than 8.0)
	NVIDIA GPU with Ampere microarchitecture (compute capability 8.0)

	Setting up your AWS IoT Greengrass Version 2 core device
	Setting up your core device

	Packaging your Amazon Lookout for Vision model
	Package settings
	Target hardware
	Target device
	Target platform
	Compiler options
	NVIDIA accelerator
	CPU accelerator

	Component settings

	Packaging your model (Console)
	Packaging your model (SDK)
	Getting information about model packaging jobs
	Getting model packaging job information (Console)
	Getting model packaging job information (SDK)
	List model packaging jobs
	Describe a model packaging job

	Writing your client application component
	Setting up your environment
	Setting up gRPC
	Adding third-party dependencies

	Using a model in your client application component
	Using the stub in your client application component
	Starting the model
	Example code

	Detecting anomalies
	Detecting Anomalies by using image bytes
	Detecting Anomalies by using shared memory segment

	Stopping the model
	Listing models on a device
	Describing a model
	Getting error information

	Creating the client application component
	IAM permissions for publishing a client application component
	Creating the recipe
	Publishing the client application component (Console)
	Publishing the client application component (SDK)

	Deploying your components to a device
	IAM permissions for deploying components
	Deploying your components (console)
	Checking deployment status (Console)

	Deploying the components (SDK)

	Amazon Lookout for Vision Edge Agent API reference
	Detecting anomalies with a model
	Getting model information
	Running a model
	DetectAnomalies
	DetectAnomaliesRequest
	Bitmap
	SharedMemoryHandle

	AnomalyMaskParams
	DetectAnomaliesRequest

	DetectAnomaliesResponse
	Anomaly
	PixelAnomaly
	DetectAnomalyResult
	Status codes

	DescribeModel
	DescribeModelRequest
	DescribeModelResponse
	ModelDescription

	Status codes

	ListModels
	ListModelsRequest
	ListModelsResponse
	ModelMetadata

	Status codes

	StartModel
	StartModelRequest
	StartModelResponse
	Status codes

	StopModel
	StopModelRequest
	StopModelResponse
	Status codes

	ModelStatus

	Using the Amazon Lookout for Vision dashboard
	Managing your Amazon Lookout for Vision resources
	Viewing your projects
	Viewing your projects (console)
	Viewing your projects (SDK)

	Deleting a project
	Deleting a project (console)
	Deleting a project (SDK)

	Viewing your datasets
	Viewing the datasets in a project (console)
	Viewing the datasets in a project (SDK)

	Adding images to your dataset
	Adding more images
	Adding more images (SDK)

	Removing images from your dataset
	Removing images from a dataset (Console)
	Removing images from a dataset (SDK)

	Deleting a dataset
	Deleting a dataset (console)
	Deleting a dataset (SDK)

	Exporting datasets from a project (SDK)
	Viewing your models
	Viewing your models (console)
	Viewing your models (SDK)

	Deleting a model
	Deleting a model (console)
	Deleting a model (SDK)

	Tagging models
	Tagging models (console)
	Adding or removing tags (console)
	Viewing model tags (console)

	Tagging models (SDK)
	Adding tags to a new model (SDK)
	Adding tags to an existing model (SDK)
	Listing model tags (SDK)
	Removing tags from a model (SDK)

	Viewing your trial detection tasks
	Viewing your trial detection tasks (console)

	Example code and datasets
	Example code
	Example datasets
	Image segmentation datasets
	Image classification dataset

	Security in Amazon Lookout for Vision
	Data protection in Amazon Lookout for Vision
	Data encryption
	Encryption at rest
	Images
	Amazon Lookout for Vision models
	Amazon Lookout for Vision console bucket

	Encryption in transit
	Key management

	Internetwork traffic privacy

	Identity and access management for Amazon Lookout for Vision
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Lookout for Vision works with IAM
	Identity-based policies for Lookout for Vision
	Identity-based policy examples for Lookout for Vision

	Resource-based policies within Lookout for Vision
	Policy actions for Lookout for Vision
	Policy resources for Lookout for Vision
	Policy condition keys for Lookout for Vision
	ACLs in Lookout for Vision
	ABAC with Lookout for Vision
	Using temporary credentials with Lookout for Vision
	Forward access sessions for Lookout for Vision
	Service roles for Lookout for Vision
	Service-linked roles for Lookout for Vision

	Amazon Lookout for Vision identity-based policy examples
	Policy best practices
	Accessing a single Amazon Lookout for Vision project
	Tag-based policy examples
	Use a tag to access a resource
	Use a tag to deny access to specific Amazon Lookout for Vision operations

	AWS managed policies for Amazon Lookout for Vision
	AWS managed policy: AmazonLookoutVisionReadOnlyAccess
	AWS managed policy: AmazonLookoutVisionFullAccess
	AWS managed policy: AmazonLookoutVisionConsoleFullAccess
	AWS managed policy: AmazonLookoutVisionConsoleReadOnlyAccess
	Lookout for Vision updates to AWS managed policies

	Troubleshooting Amazon Lookout for Vision identity and access
	I am not authorized to perform an action in Lookout for Vision
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Lookout for Vision resources

	Compliance validation for Amazon Lookout for Vision
	Resilience in Amazon Lookout for Vision
	Infrastructure security in Amazon Lookout for Vision

	Monitoring Amazon Lookout for Vision
	Monitoring Lookout for Vision with Amazon CloudWatch
	Logging Lookout for Vision API calls with AWS CloudTrail
	Lookout for Vision information in CloudTrail
	Understanding Lookout for Vision log file entries

	Creating Amazon Lookout for Vision resources with AWS CloudFormation
	Lookout for Vision and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Access Amazon Lookout for Vision using an interface endpoint (AWS PrivateLink)
	Considerations for Lookout for Vision VPC endpoints
	Creating an interface VPC endpoint for Lookout for Vision
	Creating a VPC endpoint policy for Lookout for Vision

	Quotas in Amazon Lookout for Vision
	Model quotas

	Document history for Amazon Lookout for Vision
	AWS Glossary

