
Developer Guide

AMB Access Polygon

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AMB Access Polygon Developer Guide

AMB Access Polygon: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AMB Access Polygon Developer Guide

Table of Contents

.. v
About AMB Access Polygon .. 1

Resources for first-time AMB Access Polygon users .. 1
Key concepts .. 2

Considerations and limitations .. 3
Setting up .. 5

Prerequisites for using AMB Access Polygon .. 5
Sign up for AWS .. 5

Create an IAM user with appropriate permissions .. 6
Install and configure the AWS Command Line Interface ... 6

Getting started .. 7
Create an IAM policy ... 7
Console RPC example .. 8
awscurl RPC example .. 9
Node.js RPC example ... 10

Send transaction ... 15
Read transaction ... 17

Token based access .. 19
Creating an Accessor token for token-based access ... 19
Viewing an Accessor token details ... 21
Deleting an Accessor token .. 22

JSON-RPC and API ... 23
Polygon use cases .. 33

Analyze Polygon NFT data ... 33
Support NFT purchases .. 33
Create a Polygon wallet ... 34
Wallet as a service ... 34
Token-gated experiences .. 34

Tutorials ... 35
Security .. 36

Data protection ... 37
Data encryption ... 38
Encryption in transit .. 38

Identity and access management ... 38

iii

AMB Access Polygon Developer Guide

Audience .. 38
Authenticating with identities .. 39
Managing access using policies .. 42
How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 45
Identity-based policy examples ... 52
Troubleshooting .. 56

CloudTrail logs ... 58
AMB Access Polygon information in CloudTrail ... 58
Understanding AMB Access Polygon log file entries .. 59

Using CloudTrail to track Polygon JSON-RPCs ... 59
Document history .. 62

iv

AMB Access Polygon Developer Guide

Amazon Managed Blockchain (AMB) Access Polygon is in preview release and is subject to change.

v

AMB Access Polygon Developer Guide

What is Amazon Managed Blockchain (AMB) Access
Polygon?

Amazon Managed Blockchain (AMB) Access Polygon is a fully managed service that helps you build
resilient Web3 applications on the Polygon blockchain. AMB Access Polygon provides instant and
serverless access to the Polygon blockchain.

Polygon is a scaling solution that uses the Ethereum Virtual Machine (EVM) as the foundation.
The Polygon blockchain is known for high transaction throughput and low transaction fees. The
Polygon blockchain uses a proof-of-stake consensus mechanism. Polygon is commonly used in
building decentralized applications (dApps) related to NFTs, Web3 games, and tokenization use
cases, among others.

This guide covers how to create and manage Polygon blockchain resources using Amazon Managed
Blockchain (AMB) Access Polygon.

Resources for first-time AMB Access Polygon users

If this is your first time using AMB Access Polygon, we recommend that you begin by reading the
following sections:

• Key concepts: Amazon Managed Blockchain (AMB) Access Polygon

• Getting started with Amazon Managed Blockchain (AMB) Access Polygon

• Managed Blockchain API and the JSON-RPCs supported with AMB Access Polygon

Resources for first-time AMB Access Polygon users 1

AMB Access Polygon Developer Guide

Key concepts: Amazon Managed Blockchain (AMB) Access
Polygon

Note

This guide assumes that you're familiar with the concepts that are essential to Polygon.
These concepts include staking, dApps, transactions, wallets, smart contracts, Polygon
(POL, formerly MATIC), and others. Before using Amazon Managed Blockchain (AMB) Access
Polygon, we recommend that you review the Polygon Development Documentation and
the Polygon wiki.

Amazon Managed Blockchain (AMB) Access Polygon provides you with serverless access to the
Polygon Mainnet and Polygon Mainnet networks, without requiring you to provision and manage
any Polygon infrastructure, including nodes. Polygon nodes on a network collectively store a
Polygon blockchain state, verify transactions, and participate in consensus to change a blockchain
state. You can use this managed service to access the Polygon networks quickly and on demand,
reducing your overall cost of ownership.

With AMB Access Polygon, you have access to JSON Remote Procedure (JSON-RPC) calls. You
can invoke Polygon JSON-RPCs to communicate with the Polygon blockchain through nodes
managed by Managed Blockchain. You can use the AMB Access Polygon service to develop and
use decentralized applications (dApps) that interact with the Polygon blockchain. An integral
part of dApps are smart contracts. You can create and deploy smart contracts into the Polygon
blockchain using AMB Access Polygon. You can also check balances for your wallets, transaction
details, estimate fees, and so on, by invoking JSON-RPCs against AMB Access Polygon endpoints
that run in a decentralized way across all the nodes that are peers to the Polygon network. Any
peer to the Polygon network can develop and deploy a smart contract.

Important

You are responsible for creating, maintaining, using, and managing your Polygon addresses.
You are also responsible for the contents of your Polygon addresses. AWS is not responsible
for any transactions deployed or called using Polygon nodes on Amazon Managed
Blockchain.

2

https://polygon.technology/developers
https://wiki.polygon.technology/

AMB Access Polygon Developer Guide

Considerations and limitations for using Amazon Managed
Blockchain (AMB) Access Polygon

When you use Amazon Managed Blockchain (AMB) Access Polygon, consider the following:

• Supported Polygon networks

AMB Access Polygon supports the following public networks:

• Mainnet—The public Polygon blockchain secured by proof-of-stake consensus, and on which
the Polygon (POL) token is issued and transacted. Transactions on Mainnet have actual value
(that is, they incur real costs) and are recorded on the public blockchain.

•
Networks no longer supported by Polygon

• As communicated by Polygon Labs, the Mumbai Testnet network will sunset in mid-April. In
line with this news, AMB Access Polygon ended support of the Mumbai Testnet on April 15,
2024. We recommend using Amoy Testnet for your testing workload.

• Private networks are not supported.

• Furthermore, AMB Access Polygon does not include support for the Polygon zkEVM network.

• Compatibility with popular third-party programming libraries

AMB Access Polygon is compatible with popular programming libraries, such as ethers.js,
allowing developers to interact with the Polygon blockchain using familiar tools to integrate
easily with their existing implementations or develop new applications quickly.

• Supported Regions

This service is supported only in the US East (N. Virginia) Region.

• Service endpoints

The following are the service endpoints for AMB Access Polygon. To connect with the service, you
must use an endpoint that includes one of the supported Regions.

• mainnet.polygon.managedblockchain.us-east-1.amazonaws.com

• Staking not supported

AMB Access Polygon does not support Polygon (POL) validator nodes for proof-of-stake.

• Signature Version 4 signing of Polygon JSON-RPC requests
Considerations and limitations 3

https://polygon.technology/blog/polygon-pos-is-cooking-the-napoli-upgrade-means-better-ux-the-mumbai-testnet-takes-a-bow

AMB Access Polygon Developer Guide

When making calls to the Polygon JSON-RPCs on Amazon Managed Blockchain, you can do so
over an HTTPS connection authenticated using the Signature Version 4 signing process. This
means that only authorized IAM principals in the AWS account can make Polygon JSON-RPC
calls. To do this, AWS credentials (an access key ID and a secret access key) must be provided with
the call.

Important

• Do not embed client credentials in user-facing applications.

• You cannot use IAM policies to restrict access to individual Polygon JSON-RPCs.

• Support for Token Based Access

You can also use Accessor tokens to make JSON-RPC calls to the Polygon network endpoints as
a convenient alternative to the Signature Version 4 (SigV4) signing process. You must provide a
BILLING_TOKEN from one of the Accessor tokens you create and add as a parameter with your
calls.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing
process instead.

• You can access the Polygon JSON-RPCs using Signature Version 4 (SigV4) and token-
based access. However, if you choose to use both protocols, your request is rejected.

• You must never embed Accessor tokens in user-facing applications.

• Only submissions of raw transactions are supported

Use the eth_sendrawtransaction JSON-RPC to submit transactions that update the Polygon
blockchain state.

Considerations and limitations 4

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_CreateAccessor.html

AMB Access Polygon Developer Guide

Setting up Amazon Managed Blockchain (AMB) Access
Polygon

Before you use Amazon Managed Blockchain (AMB) Access Polygon for the first time, follow the
steps in this section to create an AWS account. The following chapter discusses how to start using
AMB Access Polygon.

Prerequisites for using AMB Access Polygon

Before you use AWS for the first time, you must have an AWS account.

Sign up for AWS

When you sign up for AWS, your AWS account is automatically signed up for all AWS services,
including Amazon Managed Blockchain (AMB) Access Polygon. You're charged only for the services
that you use.

If you have an AWS account already, go to the next step. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Prerequisites for using AMB Access Polygon 5

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

AMB Access Polygon Developer Guide

Create an IAM user with appropriate permissions

To create and work with AMB Access Polygon, you must have an AWS Identity and Access
Management (IAM) principal (user or group) with permissions that allow necessary Managed
Blockchain actions.

When making calls to the Polygon JSON-RPCs on Amazon Managed Blockchain, you can do so over
an HTTPS connection authenticated using the Signature Version 4 signing process. This means that
only authorized IAM principals in the AWS account can make Polygon JSON-RPC calls. To do this,
AWS credentials (an access key ID and a secret access key) must be provided with the call.

You can also use Accessor tokens to make JSON-RPC calls to the Polygon network endpoints as
a convenient alternative to the Signature Version 4 (SigV4) signing process. You must provide a
BILLING_TOKEN from one of the Accessor tokens you create and add as a parameter with your
calls. However, you still need IAM access to get permissions to create Accessor tokens using the
AWS Management Console, AWS CLI, and SDK.

For information about how to create an IAM user, see Creating an IAM user in your AWS account.
For more information about how to attach a permissions policy to a user, see Changing permissions
for an IAM user. For an example of a permissions policy that you can use to give a user permission
to work with AMB Access Polygon, see Identity-based policy examples for Amazon Managed
Blockchain (AMB) Access Polygon.

Install and configure the AWS Command Line Interface

If you have not already done so, install the latest AWS Command Line Interface (AWS CLI) to work
with AWS resources from a terminal. For more information, see Installing or updating the latest
version of the AWS CLI.

Note

For CLI access, you need an access key ID and a secret access key. Use temporary credentials
instead of long-term access keys when possible. Temporary credentials include an access
key ID, a secret access key, and a security token that indicates when the credentials expire.
For more information, see Using temporary credentials with AWS resources in the IAM User
Guide.

Create an IAM user with appropriate permissions 6

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_CreateAccessor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

AMB Access Polygon Developer Guide

Getting started with Amazon Managed Blockchain (AMB)
Access Polygon

Get started with Amazon Managed Blockchain (AMB) Access Polygon by using the information and
procedures in this section.

Topics

• Create an IAM policy to access the Polygon blockchain network

• Make Polygon remote procedure call (RPC) requests on the AMB Access RPC editor using the AWS
Management Console

• Make AMB Access Polygon JSON-RPC requests in awscurl by using the AWS CLI

• Make Polygon JSON-RPC requests in Node.js

Create an IAM policy to access the Polygon blockchain network

To access the public endpoint for the Polygon Mainnet to make JSON-RPC calls, you must have
user credentials (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY) that have the appropriate
IAM permissions for Amazon Managed Blockchain (AMB) Access Polygon. In a terminal with the
AWS CLI installed, run the following command to create an IAM policy to access both Polygon
endpoints:

cat <<EOT > ~/amb-polygon-access-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid" : "AMBPolygonAccessPolicy",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:InvokeRpcPolygon*"
],
 "Resource": "*"
 }
]
}
EOT

Create an IAM policy 7

AMB Access Polygon Developer Guide

aws iam create-policy --policy-name AmazonManagedBlockchainPolygonAccess --policy-
document file://$HOME/amb-polygon-access-policy.json

Note

The previous example gives you access to all available Polygon networks. To get access to a
specific endpoint, use the following Action command:

• "managedblockchain:InvokeRpcPolygonMainnet"

After you create the policy, attach that policy to your IAM user’s role for it to take effect.
In the AWS Management Console, navigate to the IAM service, and attach the policy
AmazonManagedBlockchainPolygonAccess to the role assigned to your IAM user.

Make Polygon remote procedure call (RPC) requests on the
AMB Access RPC editor using the AWS Management Console

You can edit, configure, and submit remote procedure calls (RPCs) on the AWS Management
Console using AMB Access Polygon. With these RPCs, you can read data and write transactions
on the Polygon network, including retrieving data and submitting transactions to the Polygon
network.

Example

The following example shows how to get information about the latest block by using
eth_getBlockByNumber RPC. Change the highlighted variables to your own inputs or choose one
of the RPC methods listed and enter in the relevant inputs required.

1. Open the Managed Blockchain console at https://console.aws.amazon.com/
managedblockchain/.

2. Choose RPC editor.

3. In the Request section, choose POLYGON_MAINNET as the Blockchain Network.

4. Choose eth_getBlockByNumber as the RPC method.

5. Enter latest as the Block number and choose False as the Full transaction flag.

6. Then, choose Submit RPC.

Console RPC example 8

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

AMB Access Polygon Developer Guide

7. You get the results of the latest block in the Response section. You can then copy the full
raw transactions for further analysis or to use in business logic for your applications.

For more information, see the RPCs supported by AMB Access Polygon

Make AMB Access Polygon JSON-RPC requests in awscurl by
using the AWS CLI

Example

Sign requests with your IAM user credentials by using Signature Version 4 (SigV4) in order to make
Polygon JSON-RPC requests to the AMB Access Polygon endpoints. The awscurl command line
tool can help you sign requests to AWS services using SigV4. For more information, see the awscurl
README.md.

Install awscurl by using the method appropriate to your operating system. On macOS, HomeBrew
is the recommended application:

brew install awscurl

If you have already installed and configured the AWS CLI, your IAM user credentials and the default
AWS Region are set in your environment and have access to awscurl. Using awscurl, submit a
request to the Polygon Mainnet by invoking the eth_getBlockByNumber RPC. This call accepts a
string parameter corresponding to the block number for which you want to retrieve information.

The following command retrieves the block data from the Polygon Mainnet by using the block
number in the params array to select the specific block for which to retrieve the headers.

awscurl -X POST -d '{ "jsonrpc": "2.0", "id": "eth_getBlockByNumber-curltest",
 "method":"eth_getBlockByNumber", "params":["latest", false] }' --service
 managedblockchain https://mainnet.polygon.managedblockchain.us-east-1.amazonaws.com -k

Tip

You can also make this same request using curl and the AMB Access token based access
feature using Accessor tokens. For more information, see Creating and managing
Accessor tokens for token-based access to make AMB Access Polygon requests.

awscurl RPC example 9

https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-api.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://github.com/okigan/awscurl
https://github.com/okigan/awscurl#readme
https://github.com/okigan/awscurl#readme

AMB Access Polygon Developer Guide

curl -X POST -d '{"jsonrpc":"2.0", "id": "eth_getBlockByNumber-curltest",
 "method":"eth_getBlockByNumber", "params":["latest", false] }'
 'https://mainnet.polygon.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token'

The response from either command returns information about the latest block. See the following
example for illustrative purposes:

{"error":null,"id":"eth_getBlockByNumber-curltest","jsonrpc":"1.0",
 "result":{"baseFeePerGas":"0x873bf591e","difficulty":"0x18",
 "extraData":"0xd78301000683626f7288676f312e32312e32856c696e757800000000000000009a
\
 423a58511085d90eaf15201a612af21ccbf1e9f8350455adaba0d27eff0ecc4133e8cd255888304cc
\
 67176a33b451277c2c3c1a6a6482d2ec25ee1573e8ba000",
 "gasLimit":"0x1c9c380","gasUsed":"0x14ca04d",
 "hash":"0x1ee390533a3abc3c8e1306cc1690a1d28d913d27b437c74c761e1a49********;",
 "nonce":"0x0000000000000000","number":"0x2f0ec4d",

 "parentHash":"0x27d47bc2c47a6d329eb8aa62c1353f60e138fb0c596e3e8e9425de163afd6dec",

 "receiptsRoot":"0x394da96025e51cc69bbe3644bc4e1302942c2a6ca6bf0cf241a5724c74c063fd",

 "sha3Uncles":"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
 "size":"0xbd6b",
 "stateRoot":"0x7ca9363cfe9baf4d1c0dca3159461b2cca8604394e69b30af05d7d5c1beea6c3",
 "timestamp":"0x653ff542",
 "totalDifficulty":"0x33eb01dd","transactions":[...],

 "transactionsRoot":"0xda1602c66ffd746dd470e90a47488114a9d00f600ab598466ecc0f3340b24e0c",
 "uncles":[]}}

Make Polygon JSON-RPC requests in Node.js

You can invoke Polygon JSON-RPCs by submitting signed requests using HTTPS to access the
Polygon Mainnet network using the native https module in Node.js, or you can use a third-party
library such as AXIOS. The following Node.js examples show you how to make Polygon JSON-RPC

Node.js RPC example 10

https://nodejs.org/api/https.html
https://axios-http.com

AMB Access Polygon Developer Guide

requests to the AMB Access Polygon endpoint using both Signature Version 4 (SigV4) and token-
based access. The first example sends a transaction from one address to another and the following
example requests transaction details and balance information from the blockchain.

Example

To run this example Node.js script, apply the following prerequisites:

1. You must have node version manager (nvm) and Node.js installed on your machine. You can find
installation instructions for your OS here.

2. Use the node --version command and confirm that you are using Node version 18 or higher.
If required, you can use the nvm install v18.12.0 command, followed by the nvm use
v18.12.0 command, to install version 18, the LTS version of Node.

3. The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain
the credentials that are associated with your account. .

Export these variables as strings on your client by using the following commands. Replace the
values in red in the following strings with appropriate values from your IAM user account.

export AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
export AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

After you complete all prerequisites, copy the following files into a directory in your local
environment by using your preferred code editor:

package.json

{
 "name": "polygon-rpc",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "ethers": "^6.8.1",
 "@aws-crypto/sha256-js": "^5.2.0",

Node.js RPC example 11

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-tokens.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-tokens.html
https://github.com/nvm-sh/nvm

AMB Access Polygon Developer Guide

 "@aws-sdk/credential-provider-node": "^3.360.0",
 "@aws-sdk/protocol-http": "^3.357.0",
 "@aws-sdk/signature-v4": "^3.357.0",
 "axios": "^1.6.2"
 }
}

dispatch-evm-rpc.js

const axios = require("axios");
const SHA256 = require("@aws-crypto/sha256-js").Sha256;
const defaultProvider = require("@aws-sdk/credential-provider-node").defaultProvider;
const HttpRequest = require("@aws-sdk/protocol-http").HttpRequest;
const SignatureV4 = require("@aws-sdk/signature-v4").SignatureV4;

// define a signer object with AWS service name, credentials, and region
const signer = new SignatureV4({
 credentials: defaultProvider(),
 service: "managedblockchain",
 region: "us-east-1",
 sha256: SHA256,
});
const rpcRequest = async (rpcEndpoint, rpc) => {

 // parse the URL into its component parts (e.g. host, path)
 let url = new URL(rpcEndpoint);

 // create an HTTP Request object
 const req = new HttpRequest({
 hostname: url.hostname.toString(),
 path: url.pathname.toString(),
 body: JSON.stringify(rpc),
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 "Accept-Encoding": "gzip",
 host: url.hostname,
 },
 });

 // use AWS SignatureV4 utility to sign the request, extract headers and body
 const signedRequest = await signer.sign(req, { signingDate: new Date() });

Node.js RPC example 12

AMB Access Polygon Developer Guide

 try {
 //make the request using axios
 const response = await axios({
 ...signedRequest,
 url: url,
 data: req.body,
 });
 return response.data;
 } catch (error) {
 console.error("Something went wrong: ", error);
 }
};

module.exports = { rpcRequest: rpcRequest };

sendTx.js

Warning

The following code uses a hardcoded private key to generate a wallet Signer using
Ethers.js for the sake of demonstration only. Do not use this code in production
environments, as it has real funds and poses a security risk.
If needed, contact your account team to advise on wallet and Signer best practices.

const ethers = require("ethers");

//set AMB Access Polygon endpoint using token based access (TBA)
let token = "your-billing-token"
let url = `https://mainnet.polygon.managedblockchain.us-east-1.amazonaws.com?
billingtoken=${token}`;

//prevent batch RPCs
let options = {
 batchMaxCount: 1,
};

//create JSON RPC provider with AMB Access endpoint and options
let provider = new ethers.JsonRpcProvider(url, null, options);

Node.js RPC example 13

AMB Access Polygon Developer Guide

let sendTx = async (to) => {
 //create an instance of the Wallet class with a private key
 //DO NOT USE A WALLET YOU USE ON MAINNET, NEVER USE A RAW PRIVATE KEY IN PROD
 let pk = "wallet-private-key";
 let signer = new ethers.Wallet(pk, provider);

 //use this wallet to send a transaction of POL from one address to another
 const tx = await signer.sendTransaction({
 to: to,
 value: ethers.parseUnits("0.0001", "ether"),
 });

 console.log(tx);
};

sendTx("recipent-address");

readTx.js

let rpcRequest = require("./dispatch-evm-rpc").rpcRequest;
let ethers = require("ethers");

let getTxDetails = async (txHash) => {
 //set url to a Signature Version 4 endpoint for AMB Access
 let url = "https://mainnet.polygon.managedblockchain.us-east-1.amazonaws.com";

 //set RPC request body to get transaction details
 let getTransactionByHash = {
 id: "1",
 jsonrpc: "2.0",
 method: "eth_getTransactionByHash",
 params: [txHash],
 };

 //make RPC request for transaction details
 let txDetails = await rpcRequest(url, getTransactionByHash);

 //set RPC request body to get recipient user balance
 let getBalance = {
 id: "2",
 jsonrpc: "2.0",
 method: "eth_getBalance",
 params: [txDetails.result.to, "latest"],

Node.js RPC example 14

AMB Access Polygon Developer Guide

 };

 //make RPC request for recipient user balance
 let recipientBalance = await rpcRequest(url, getBalance);

 console.log("TX DETAILS: ", txDetails.result, "BALANCE: ",
 ethers.formatEther(recipientBalance.result));
};

getTxDetails("your-transaction-id");

Once these files are saved to your directory, install the dependencies that are required to run the
code using the following command:

npm install

Send a transaction in Node.js

The preceding example sends the native Polygon Mainnet token (POL) from one address to another
by signing a transaction and broadcasting it to the Polygon Mainnet using AMB Access Polygon. To
do this, use the sendTx.js script, which uses Ethers.js, a popular library for interacting with
Ethereum and Ethereum-compatible blockchains like Polygon. You need to replace three variables
in the code where highlighted in red, including the billingToken for your Accessor token for
token based access, the private key with which you sign the transaction, and the recipient's address
that receives the POL.

Tip

We recommended that you create a fresh private key (wallet) for this purpose rather than
reusing an existing wallet to eliminate the risk of losing funds. You can use the Ethers
library’s Wallet class method createRandom() to generate a wallet to test with. Additionally,
if you need to request POL from the Polygon Mainnet, you can use the public POL faucet to
request a small amount to use for testing.

Once you have your billingToken, a funded wallet’s private key, and the recipient's
address added to the code, you run the following code to sign a transaction for .0001 POL

Send transaction 15

https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-tokens.html

AMB Access Polygon Developer Guide

to be sent from your address to another and broadcast it to Polygon Mainnet invoking the
eth_sendRawTransaction JSON-RPC using the AMB Access Polygon.

node sendTx.js

The response received back resembles the following:

TransactionResponse {
provider: JsonRpcProvider {},
blockNumber: null,
blockHash: null,
index: undefined,
hash: '0x8d7538b4841261c5120c0a4dd66359e8ee189e7d1d34ac646a1d9923********',
type: 2,
to: '0xd2bb4f4f1BdC4CB54f715C249Fc5a991********',
from: '0xcf2C679AC6cb7de09Bf6BB6042ecCF05********',
nonce: 2,
gasLimit: 21000n,
gasPrice: undefined,
maxPriorityFeePerGas: 16569518669n,
maxFeePerGas: 16569518685n,
data: '0x',
value: 100000000000000n,
chainId: 80001n,
signature: Signature {
r: "0x1b90ad9e9e4e005904562d50e904f9db10430a18b45931c059960ede337238ee",
s: "0x7df3c930a964fd07fed4a59f60b4ee896ffc7df4ea41b0facfe82b470db448b7",
yParity: 0,
networkV: null
},
accessList: []
}

The response constitutes the transaction receipt. Save the value of the property hash. This is the
identifier for the transaction you just submitted to the blockchain. You use this property in the read
transaction example to get additional details about this transaction from the Polygon Mainnet.

Note that the blockNumber and blockHash are null in the response. This is because the
transaction has not yet been recorded in a block on the Polygon network. Note that these values
are defined later and you might see them when you request the transaction details in the following
section.

Send transaction 16

AMB Access Polygon Developer Guide

Read a transaction in Node.js

In this section, you request the transaction details for the previously submitted transaction
and retrieve the POL balance for the recipient address using read requests to the Polygon
Mainnet using AMB Access Polygon. In the readTx.js file, replace the variable labeled your-
transaction-id with the hash you saved from the response from running the code in the
previous section.

This code uses a utility, dispatch-evm-rpc.js, which signs HTTPS requests to AMB Access
Polygon with the requisite Signature Version 4 (SigV4) modules from the AWS SDK and sends
requests using the widely used HTTP client, AXIOS.

The response received back resembles the following:

TX DETAILS: {
blockHash: '0x59433e0096c783acab0659175460bb3c919545ac14e737d7465b3ddc********',
blockNumber: '0x28b4059',
from: '0xcf2c679ac6cb7de09bf6bb6042eccf05b7fa1394',
gas: '0x5208',
gasPrice: '0x3db9eca5d',
maxPriorityFeePerGas: '0x3db9eca4d',
maxFeePerGas: '0x3db9eca5d',
hash: '0x8d7538b4841261c5120c0a4dd66359e8ee189e7d1d34ac646a1d9923********',
input: '0x',
nonce: '0x2',
to: '0xd2bb4f4f1bdc4cb54f715c249fc5a991********',
transactionIndex: '0x0',
value: '0x5af3107a4000',
type: '0x2',
accessList: [],
chainId: '0x13881',
v: '0x0',
r: '0x1b90ad9e9e4e005904562d50e904f9db10430a18b45931c059960ede337238ee',
s: '0x7df3c930a964fd07fed4a59f60b4ee896ffc7df4ea41b0facfe82b470db448b7'
} BALANCE: 0.0003

The response represents the transaction details. Note that the blockHash and blockNumber
are now likely defined. This indicates that the transaction has been recorded in a block. If these
values are still null, wait a few minutes, then run the code again to check if your transaction has
been included in a block. Lastly, the hexadecimal representation of the recipient address balance

Read transaction 17

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://axios-http.com

AMB Access Polygon Developer Guide

(0x110d9316ec000) is converted to decimal using Ethers’ formatEther() method, which converts
the hex to decimal and shifts decimal places by 18 (10^18) to give the true balance in POL.

Tip

While the preceding code examples illustrate how to use Node.js, Ethers, and Axios to
utilize a few of the supported JSON-RPCs on AMB Access Polygon, you can modify the
examples and write other code to build your applications on Polygon using this service. For
a full list of supported JSON-RPCs on AMB Access Polygon, see Managed Blockchain API
and the JSON-RPCs supported with AMB Access Polygon.

Read transaction 18

AMB Access Polygon Developer Guide

Creating and managing Accessor tokens for token-based
access to make AMB Access Polygon requests

You can also use Accessor tokens to make JSON-RPC calls to the Polygon network endpoints as
a convenient alternative to the Signature Version 4 (SigV4) signing process. You must provide a
BILLING_TOKEN from one of the Accessor tokens you create and add as a parameter with your
calls.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process
instead.

• You can access the Polygon JSON-RPCs using Signature Version 4 (SigV4) and token-
based access. However, if you choose to use both protocols, your request is rejected.

• You must never embed Accessor tokens in user-facing applications.

In the console, the Token Accessors page displays a list of all the Accessor tokens that you can use
to make AMB Access Polygon JSON-RPC calls from your AWS account from code on a client.

For more information about AMB Access Polygon JSON-RPC requests, see Managed Blockchain API
and the JSON-RPCs supported with AMB Access Polygon.

You can create and manage Accessor tokens using the AWS Management Console. You can also
create and manage Accessor tokens using the following API operations: CreateAccessor,
GetAccessor, ListAccessors, and DeleteAccessor. A BILLING_TOKEN is a property of the
Accessor. This BILLING_TOKEN property is used to track your Accessor and for billing AMB Access
Polygon JSON-RPC requests made from your AWS account.

All API actions related to creating and managing Accessor tokens are also available through the
AWS Management Console, AWS CLI, and SDKs.

Creating an Accessor token for token-based access

You can create an Accessor token and use it to make AMB Access Polygon API calls on any AMB
Access Polygon node in your AWS account.

Creating an Accessor token for token-based access 19

https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_CreateAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_CreateAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_GetAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_GetAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_ListAccessors.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_DeleteAccessor.html

AMB Access Polygon Developer Guide

Create an Accessor token to make AMB Access Polygon JSON-RPC requests using
the AWS Management Console

1. Open the Managed Blockchain console at https://console.aws.amazon.com/
managedblockchain/.

2. Choose Token Accessors.

3. Choose Create Accessor.

4. Choose a valid Polygon blockchain Network.

5. Optional, add Tags for your Accessor.

6. Choose Create Accessor to create a new Accessor token.

Create an Accessor token to make AMB Access Polygon JSON-RPC requests using
the AWS CLI

aws managedblockchain create-accessor --accessor-type BILLING_TOKEN --network-type
 POLYGON_MAINNET

The previous command returns the AccessorId along with the BillingToken, as shown in the
following example.

{
"AccessorId": "ac-NGQ6QNKXLNEBXD3UI6********",
"NetworkType": "POLYGON_MAINNET",
"BillingToken": "jZlP8OUI-PcQSKINyX9euJJDC5-IcW9e-n********"
}

The key element in your response is the BillingToken. You can use this property to make AMB
Access Polygon JSON-RPC calls. Some values in the example have been obfuscated for security
reasons but will appear fully in actual responses.

Note

After the operation is run, Managed Blockchain provisions and configures the token for you.
The length of this process depends on many variables.

Creating an Accessor token for token-based access 20

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

AMB Access Polygon Developer Guide

Viewing an Accessor token details

You can view the properties for each Accessor token that your AWS account owns. For example, you
can view the Accessor ID or the Amazon Resource Name (ARN) of the Accessor. You can also view
the status, the type, the creation date, and the BillingToken.

To view an Accessor token's information using the AWS Management Console

1. Open the Managed Blockchain console at https://console.aws.amazon.com/
managedblockchain/.

2. In the navigation pane, choose Token Accessors.

3. Choose the Accessor ID of the token from the list.

The token details page the pops up. From this page, you can view the properties of the token.

To view an Accessor token's information using the AWS CLI

Run the following command to view the details of an Accessor token. Replace values of --
accessor-id with your Accessor ID.

aws managedblockchain get-accessor --accessor-id ac-NGQ6QNKXLNEBXD3UI6********

The BillingToken and other key properties are returned as shown in the following example.
Some values in the example have been obfuscated for security reasons but appear fully in actual
responses.

{
 "Accessor": {
 "Id": "ac-NGQ6QNKXLNEBXD3UI6********",
 "Type": "BILLING_TOKEN",
 "BillingToken": "jZlP8OUI-PcQSKINyX9euJJDC5-IcW9e-n********",
 "Status": "AVAILABLE",
 "NetworkType": "POLYGON_MAINNET"
 "CreationDate": "2022-01-04T23:09:47.750Z",
 "Arn": "arn:aws:managedblockchain:us-east-1:666666666666:accessors/ac-
NGQ6QNKXLNEBXD3UI6********"
 }
}

Viewing an Accessor token details 21

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

AMB Access Polygon Developer Guide

Deleting an Accessor token

When you delete an Accessor token, the token changes from the AVAILABLE to the
PENDING_DELETION status. You can't use an Accessor token with the PENDING_DELETION status.

To delete an Accessor token using the AWS Management Console

1. Open the Managed Blockchain console at https://console.aws.amazon.com/
managedblockchain/.

2. In the navigation pane, choose Token Accessors.

3. Select the Accessor token that you want from the list.

4. Choose Delete.

5. Confirm your choice.

You're returned to the Tokens accessors page with your deleted Accessor token. The page displays
the PENDING_DELETION status.

To delete an Accessor token using the AWS CLI

The following example shows how to delete a token. Use the delete-accessor command to
delete a token. Set the value of --accessor-id with your Accessor ID.

Deleting an Accessor token using the AWS CLI

aws managedblockchain delete-accessor --accessor-id ac-NGQ6QNKXLNEBXD3UI6********

If this command runs successfully, no messages are returned.

Deleting an Accessor token 22

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

AMB Access Polygon Developer Guide

Managed Blockchain API and the JSON-RPCs supported
with AMB Access Polygon

Amazon Managed Blockchain provides API operations for creating and managing token accessors
for AMB Access Polygon. For more information, see the Managed Blockchain API Reference Guide .

The following topic provides a list and reference of the Polygon JSON-RPCs that AMB Access
Polygon supports. Each supported JSON-RPC has a brief description of its use. You use the Polygon
JSON-RPCs to query and get smart contract data, get transaction details, submit transactions, and
other utilities such as running traces on transactions, and estimate fees.

AMB Access Polygon supports the following JSON-RPC methods. Each supported JSON-RPC has a
category and a brief description of its utility and its default request quotas. Unique considerations
for using the JSON-RPC method with Amazon Managed Blockchain are indicated where applicable.

Note

• Any methods that aren't listed are not supported.

• When making calls to the Polygon JSON-RPCs on Amazon Managed Blockchain, you can
do so over an HTTPS connection authenticated using the Signature Version 4 signing
process. This means that only authorized IAM principals in the AWS account can make
Polygon JSON-RPC calls. To do this, AWS credentials (an access key ID and a secret access
key) must be provided with the call.

• You can also use token-based access as a convenient alternative to the Signature Version
4 (SigV4) signing process. If you prioritize security and auditability over convenience,
use the SigV4 signing process instead. However, if you use both SigV4 and token-based
access, your requests will not work.

• JSON-RPC batch requests aren't supported on Amazon Managed Blockchain (AMB)
Access Polygon for this preview.

• The Quotas column in the following table lists the quota for each JSON-RPC. Quotas
are set in requests per second (RPS) per Region per Polygon network (Mainnet) for each
JSON-RPC.

For increasing your quota, you must contact AWS Support. To contact AWS Support,
sign into the AWS Support Center Console. Choose Create case. Choose Technical.

23

https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-tokens.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://console.aws.amazon.com/support

AMB Access Polygon Developer Guide

Choose Managed Blockchain as your service. Choose Access:Polygon as your Category
and General guidance as your Severity. Enter RPC Quota as the Subject and in the
Description text box list the JSON-RPC and the quota limits applicable to your needs in
RPS per Polygon network per Region. Submit your case.

Category JSON-RPC Description QuotaConsiderations

eth_blockNumber Returns the
number of the
most recent block.

150

eth_call Immediately runs
a new message call
without creating a
transaction on the
blockchain.

100eth_call
consumes 0 gas,
but has a gas
parameter for
messages that
require it.

eth_chainId Returns an integer
value for the
currently configure
d Chain Id value
that's introduced
in EIP-155. Returns
None if no Chain
Id is available.

300

Ethereum

eth_estimateGas Estimates and
returns the gas
that's required
for a transaction
without adding the
transaction to the
blockchain.

10

24

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

eth_feeHistory Returns a collectio
n of historical gas
information.

10

eth_gasPrice Returns the
current price per
gas in Wei.

100

eth_getBalance Returns the
balance of an
account for the
specified account
address and block
identifier.

100

eth_getBlockByHash Returns informati
on about the block
specified using the
block hash.

100

eth_getBlockByNumber Returns informati
on about the block
specified using the
block number.

150

eth_getBlockReceipts Returns receipts
about the block
specified using the
block number.

10

eth_getBlockTransactionCountByHash Returns the
number of
transactions in the
block specified
using the block
hash.

100

25

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

eth_getBlockTransactionCoun
tByNumber

Returns the
number of
transactions in the
block specified
using the block
number.

100

eth_getCode Returns the code
at the specified
account address
and block identifie
r.

100

eth_getLogs Returns an array
of all logs for a
specified filter
object.

10You can make
eth_getloqs
requests on any
block range with
a 1K block range
by default when a
contract address
is provided.
Contracts with
high activity may
be limited to
smaller block
ranges. If no
contract address
is provided, the
block range will be
8.

26

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

eth_getRawTransactionByHash Returns the
raw form of
the transacti
on specified by
the transacti
on_hash .

150

eth_getStorageAt Returns the value
of the specified
storage position
for the specified
account address
and block identifie
r.

150

eth_getTransactionByBlockHashAndInde
x

Returns informati
on about a
transaction using
the specified block
hash and transacti
on index position.

150

eth_getTransactionByBlockNu
mberAndIndex

Returns informati
on about a
transaction using
the specified
block number and
transaction index
position.

150

eth_getTransactionByHash Returns informati
on about the
transaction with
the specified
transaction hash.

150

27

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

eth_getTransactionCount Returns the
number of
transactions sent
from the specified
address and block
identifier.

100

eth_getTransactionReceipt Returns the receipt
of the transaction
using the specified
transaction hash.

150

eth_getUncleByBlockHashAndIndex Returns informati
on about the uncle
block specified
using the block
hash and uncle
index position.

150

eth_getUncleByBlockNumberAndIndex Returns informati
on about the uncle
block specified
using the block
number and uncle
index position.

150

eth_getUncleCountByBlockHash Returns the
number of counts
in the uncle
specified using the
uncle hash.

150

28

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

eth_getUncleCountByBlockNumber Returns the
number of counts
in the uncle
specified using the
uncle number.

150

eth_maxPriorityFeePerGas Returns the fee
per gas that's an
estimate of how
much you can
pay as a priority
fee, or "tip," to
get a transaction
included in the
current block.

300Generally you use
the value that's
returned from this
method to set the
maxFeePerGas
in the subsequen
t transaction that
you're submitting.

eth_protocolVersion Returns the
current Ethereum
protocol version.

300

eth_sendRawTransaction Creates a new
message call
transaction
or a contract
creation for signed
transactions.

10Managed
Blockchain
supports raw
transactions only.
You must create
and sign transacti
ons before sending
them.

29

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

debug_traceBlockByHash Returns the
possible tracing
result number
by executing all
transactions in the
block specified
by the block hash
with a tracer (Trace
Mode required).

10

debug_traceBlockByNumber Returns the tracing
result by executing
all transactions in
the block specified
 by number with a
tracer (Trace Mode
required).

10

debug_traceCall Returns the
number of
possible tracing
results by
executing an
eth call within
the context of
the given block
execution (Trace
Mode required).

10

Debug

debug_traceTransaction Returns all traces
of a given transacti
on (Trace Mode
required).

10

30

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

Net net_version Returns the
current network id.

300

trace_block Returns a full stack
trace of all invoked
opcodes of all
transactions that
were included in a
block.

10

trace_call Returns the
number of
possible tracing
results by
executing an
eth call within
the context of
the given block
execution (Trace
Mode required).

10

Trace

trace_transaction Returns all traces
of a given transacti
on (Trace Mode
required).

100

Tx Pool txpool_content Returns all
pending and
queued transacti
ons.

2

31

AMB Access Polygon Developer Guide

Category JSON-RPC Description QuotaConsiderations

txpool_status Provides a count
of all transactions
currently pending
inclusion in the
next blocks, and
those that are
queued (being
scheduled for
future execution
only).

10

Web web3_clientVersion Returns the
current client
version.

150

32

AMB Access Polygon Developer Guide

Polygon use cases with Amazon Managed Blockchain
(AMB) Access Polygon

The Polygon blockchain is commonly used in building decentralized applications (dApps) related to
NFTs, Web3 games, and tokenization use cases, among others. This topic provides a list of some of
the use cases that you can implement using Amazon Managed Blockchain (AMB) Access Polygon.

Topics

• Analyze Polygon NFT data

• Support NFT purchases

• Create a Polygon wallet

• Wallet as a service

• Token-gated experiences

Analyze Polygon NFT data

You can collect data about Polygon NFTs, including information like transfer events and NFT
metadata for a specified period. You can then analyze this data to draw insights like which NFTs are
trending or which users are most frequently interacting with a given collection.

For more information, see Managed Blockchain API and the JSON-RPCs supported with AMB Access
Polygon.

Support NFT purchases

You can use AMB Access Polygon to submit transactions for NFT purchases using initial mint,
allowlists, or on the secondary market. Using a combination of other AWS services, you can then
permit purchases using credit cards, accepting Fiat or cryptocurrencies, with a quick settlement for
all stakeholders involved.

For more information, see Managed Blockchain API and the JSON-RPCs supported with AMB Access
Polygon.

Analyze Polygon NFT data 33

AMB Access Polygon Developer Guide

Create a Polygon wallet

You can use AMB Access Polygon to serve critical functions of digital asset wallets, such as reading
user token balances from smart contracts on the blockchain or broadcasting signed transactions to
the blockchain.

For more information, see Managed Blockchain API and the JSON-RPCs supported with AMB Access
Polygon.

Wallet as a service

You can use AMB Access Polygon to develop an operating wallet-as-a-service needed to support
common wallet transactions such as checking a balance, asset transfer, asset send, and fee
estimations, using the supported Polygon JSON-RPCs.

For more information, see Managed Blockchain API and the JSON-RPCs supported with AMB Access
Polygon.

Token-gated experiences

You can use AMB Access Polygon to build token-gated experiences for your users. For example,
you can conditionally provide access to a piece of content only to the owners of a specific NFT. To
achieve this, you must read the blockchain to determine the NFT ownership of a user's address.

For more information, see Managed Blockchain API and the JSON-RPCs supported with AMB Access
Polygon.

Create a Polygon wallet 34

AMB Access Polygon Developer Guide

Tutorials for Amazon Managed Blockchain (AMB) Access
Polygon

The following tutorials highlighted in this section are Community Articles from AWS re:Post that
provide walkthroughs to help you learn how to perform some common tasks on the Polygon
blockchain using AMB Access Polygon.

• Sending transactions using AMB Access Polygon and web3.js

• Deploy a smart contract using AMB Access Polygon and Hardhat Ignition

• Interacting with a smart contract

• Retrieve current price data off-chain using AMB Access Polygon and Chainlink data feeds

• Analyze ERC-20 token data on Polygon Mainnet with AMB Access

35

https://repost.aws/articles/AR4_8KnunzSta9ARvlS-8YrA/send-transactions-on-the-polygon-mumbai-network-with-amb-access-and-web3-js
https://repost.aws/articles/ARMiTkQJ-GRaqeDCxHVIoPhA/deploy-a-smart-contract-on-the-polygon-mumbai-network-with-amb-access-and-hardhat-ignition
https://repost.aws/articles/ARsoZGkfl3TC-4s_nqtPcajw/interact-with-your-smart-contract-on-polygon-mumbai-with-amb-access
https://repost.aws/articles/ARx1_64bGAQRubDfM_ci20pQ/retrieve-current-price-data-off-chain-with-amb-access-polygon-and-chainlink-data-feeds
https://repost.aws/articles/ARqK_QBbYFQLWEntK0E6Svbw/analyze-erc-20-token-data-on-polygon-mainnet-with-amb-access

AMB Access Polygon Developer Guide

Security in Amazon Managed Blockchain (AMB) Access
Polygon

Cloud security at AWS is of the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as both security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Managed
Blockchain (AMB) Access Polygon, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors, including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

To provide data protection, authentication, and access control, Amazon Managed Blockchain uses
AWS features and the features of the open-source framework running in Managed Blockchain.

This documentation helps you understand how to apply the shared responsibility model when
using AMB Access Polygon. The following topics show you how to configure AMB Access Polygon to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AMB Access Polygon resources.

Topics

• Data protection in Amazon Managed Blockchain (AMB) Access Polygon

• Identity and access management for Amazon Managed Blockchain (AMB) Access Polygon

36

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AMB Access Polygon Developer Guide

Data protection in Amazon Managed Blockchain (AMB) Access
Polygon

The AWS shared responsibility model applies to data protection in Amazon Managed Blockchain
(AMB) Access Polygon. As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. You are also responsible for the security configuration
and management tasks for the AWS services that you use. For more information about data
privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS
Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AMB Access Polygon or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Data protection 37

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AMB Access Polygon Developer Guide

Data encryption

Data encryption helps prevent unauthorized users from reading data from a blockchain network
and the associated data storage systems. This includes data that might be intercepted as it travels
the network, known as data in transit.

Encryption in transit

By default, Managed Blockchain uses an HTTPS/TLS connection to encrypt all the data that's
transmitted from a client computer that runs the AWS CLI to AWS service endpoints.

You don't need to do anything to enable the use of HTTPS/TLS. It's always enabled unless you
explicitly disable it for an individual AWS CLI command by using the --no-verify-ssl command.

Identity and access management for Amazon Managed
Blockchain (AMB) Access Polygon

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AMB Access Polygon resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Managed Blockchain (AMB) Access Polygon works with IAM

• Identity-based policy examples for Amazon Managed Blockchain (AMB) Access Polygon

• Troubleshooting Amazon Managed Blockchain (AMB) Access Polygon identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AMB Access Polygon.

Service user – If you use the AMB Access Polygon service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AMB Access

Data encryption 38

AMB Access Polygon Developer Guide

Polygon features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AMB Access Polygon, see Troubleshooting Amazon Managed Blockchain
(AMB) Access Polygon identity and access.

Service administrator – If you're in charge of AMB Access Polygon resources at your company,
you probably have full access to AMB Access Polygon. It's your job to determine which AMB Access
Polygon features and resources your service users should access. You must then submit requests to
your IAM administrator to change the permissions of your service users. Review the information on
this page to understand the basic concepts of IAM. To learn more about how your company can use
IAM with AMB Access Polygon, see How Amazon Managed Blockchain (AMB) Access Polygon works
with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AMB Access Polygon. To view example AMB Access Polygon
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
Managed Blockchain (AMB) Access Polygon.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Authenticating with identities 39

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

AMB Access Polygon Developer Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Authenticating with identities 40

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

AMB Access Polygon Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Authenticating with identities 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AMB Access Polygon Developer Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most

Managing access using policies 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AMB Access Polygon Developer Guide

policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AMB Access Polygon Developer Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 44

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AMB Access Polygon Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Managed Blockchain (AMB) Access Polygon works with
IAM

Before you use IAM to manage access to AMB Access Polygon, learn what IAM features are available
to use with AMB Access Polygon.

IAM features you can use with Amazon Managed Blockchain (AMB) Access Polygon

IAM feature AMB Access Polygon support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources No

Policy condition keys No

ACLs No

ABAC (tags in policies) No

Temporary credentials No

Principal permissions No

Service roles No

Service-linked roles No

To get a high-level view of how AMB Access Polygon and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AMB Access Polygon Developer Guide

Identity-based policies for AMB Access Polygon

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AMB Access Polygon

To view examples of AMB Access Polygon identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Polygon.

Resource-based policies within AMB Access Polygon

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 46

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AMB Access Polygon Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AMB Access Polygon

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AMB Access Polygon actions, see Actions Defined by Amazon Managed Blockchain
(AMB) Access Polygon in the Service Authorization Reference.

Policy actions in AMB Access Polygon use the following prefix before the action:

managedblockchain:

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "managedblockchain::action1",
 "managedblockchain::action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word InvokeRpcPolygon, include the following action:

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 47

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AMB Access Polygon Developer Guide

"Action": "managedblockchain::InvokeRpcPolygon*"

To view examples of AMB Access Polygon identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Polygon.

Policy resources for AMB Access Polygon

Supports policy resources No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AMB Access Polygon resource types and their ARNs, see Resources Defined by
Amazon Managed Blockchain (AMB) Access Polygon in the Service Authorization Reference. To
learn with which actions you can specify the ARN of each resource, see Actions Defined by Amazon
Managed Blockchain (AMB) Access Polygon .

To view examples of AMB Access Polygon identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Polygon.

Policy condition keys for AMB Access Polygon

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 48

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AMB Access Polygon Developer Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AMB Access Polygon condition keys, see Condition Keys for Amazon Managed
Blockchain (AMB) Access Polygon in the Service Authorization Reference. To learn with which
actions and resources you can use a condition key, see Actions Defined by Amazon Managed
Blockchain (AMB) Access Polygon .

To view examples of AMB Access Polygon identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Polygon.

ACLs in AMB Access Polygon

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with AMB Access Polygon

Supports ABAC (tags in policies) No

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 49

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AMB Access Polygon Developer Guide

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with AMB Access Polygon

Supports temporary credentials No

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 50

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AMB Access Polygon Developer Guide

Cross-service principal permissions for AMB Access Polygon

Supports forward access sessions (FAS) No

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AMB Access Polygon

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AMB Access Polygon functionality.
Edit service roles only when AMB Access Polygon provides guidance to do so.

Service-linked roles for AMB Access Polygon

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

How Amazon Managed Blockchain (AMB) Access Polygon works with IAM 51

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AMB Access Polygon Developer Guide

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Managed Blockchain (AMB)
Access Polygon

By default, users and roles don't have permission to create or modify AMB Access Polygon
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AMB Access Polygon, including the format
of the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon
Managed Blockchain (AMB) Access Polygon in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AMB Access Polygon console

• Allow users to view their own permissions

• Accessing Polygon networks

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AMB Access
Polygon resources in your account. These actions can incur costs for your AWS account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies

Identity-based policy examples 52

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html

AMB Access Polygon Developer Guide

that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AMB Access Polygon console

To access the Amazon Managed Blockchain (AMB) Access Polygon console, you must have a
minimum set of permissions. These permissions must allow you to list and view details about the
AMB Access Polygon resources in your AWS account. If you create an identity-based policy that is
more restrictive than the minimum required permissions, the console won't function as intended
for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policy examples 53

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AMB Access Polygon Developer Guide

To ensure that users and roles can still use the AMB Access Polygon console, also attach the AMB
Access Polygon ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policy examples 54

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AMB Access Polygon Developer Guide

Accessing Polygon networks

Note

In order to access the public endpoints for the Polygon mainnet and mainnet to
make JSON-RPC calls, you will need user credentials (AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY) that have the appropriate IAM permissions for AMB Access
Polygon.

Example IAM Policy to access all Polygon Networks

This example grants an IAM user in your AWS account access to all Polygon networks.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessAllPolygonNetworks",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:InvokeRpcPolygon*"
],
 "Resource": "*"
 }
]
}

Example IAM Policy to access the Polygon Mainnet network

This example grants an IAM user in your AWS account access to the Polygon Mainnet network.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessPolygonTestnet",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:InvokeRpcPolygonMainnet"
],
 "Resource": "*"

Identity-based policy examples 55

AMB Access Polygon Developer Guide

 }
]
}

Troubleshooting Amazon Managed Blockchain (AMB) Access Polygon
identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AMB Access Polygon and IAM.

Topics

• I am not authorized to perform an action in AMB Access Polygon

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AMB Access Polygon resources

I am not authorized to perform an action in AMB Access Polygon

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
managedblockchain::GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 managedblockchain::GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the managedblockchain::GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AMB Access Polygon.

Troubleshooting 56

AMB Access Polygon Developer Guide

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AMB Access Polygon. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AMB Access
Polygon resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AMB Access Polygon supports these features, see How Amazon Managed
Blockchain (AMB) Access Polygon works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 57

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AMB Access Polygon Developer Guide

Logging Amazon Managed Blockchain (AMB) Access
Polygon events by using AWS CloudTrail

Note

Amazon Managed Blockchain (AMB) Access Polygon doesn’t support management events.

Amazon Managed Blockchain runs on AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Managed Blockchain. CloudTrail captures who invoked
the AMB Access Polygon endpoints for Managed Blockchain as data plane events.

If you create a properly configured trail that is subscribed to receive the desired data plane events,
you can receive continuous delivery of AMB Access Polygon related CloudTrail events to an S3
bucket. Using the information that's collected by CloudTrail, you can determine that a request was
made to one of the AMB Access Polygon endpoints, the IP address that the request came from,
who made the request, when it was made, and other additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AMB Access Polygon information in CloudTrail

CloudTrail is enabled on your AWS account when you create it. However, you must configure the
data plane events to view who invoked the AMB Access Polygon endpoints.

For an ongoing record of events in your AWS account, including events for AMB Access Polygon,
create a trail. A trail enables CloudTrail to deliver log files to an S3 bucket. By default, when you
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
supported Regions in the AWS partition and delivers the log files to the S3 bucket that you specify.
Additionally, you can configure other AWS services to analyze further and act on the event data
collected in CloudTrail logs. For more information, see the following:

• Using CloudTrail to track Polygon JSON-RPCs

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

AMB Access Polygon information in CloudTrail 58

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html

AMB Access Polygon Developer Guide

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

By analyzing the CloudTrail data events, you can monitor who invoked the AMB Access Polygon
endpoints.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials

• Whether the request was made with temporary security credentials for a role or a federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity element.

Understanding AMB Access Polygon log file entries

For data plane events, a trail is a configuration that enables delivery of events as log files to a
specified S3 bucket. Each CloudTrail log file contains one or more log entries that represent a single
request from any source. These entries provide details about the requested action, including the
date and time of the action, and any associated request parameters.

Note

CloudTrail data events in the log files aren't an ordered stack trace of the AMB Access
Polygon API calls, so they don't appear in any specific order.

Using CloudTrail to track Polygon JSON-RPCs

You can use CloudTrail to track who in your account invoked the AMB Access Polygon endpoints
and which JSON-RPC was invoked as data events. By default, when you create a trail, data events
aren't logged. To record who invoked the AMB Access Polygon endpoints as CloudTrail data events,
you must explicitly add the supported resources or resource types for which you want to collect
activity to a trail. AMB Access Polygon supports adding data events by using the AWS Management

Understanding AMB Access Polygon log file entries 59

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AMB Access Polygon Developer Guide

Console, AWS CLI, and SDK. For more information, see Log events by using advanced selectors in
the AWS CloudTrail User Guide .

To log data events in a trail, use the put-event-selectors operation after you
create the trail. Use the --advanced-event-selectors option to specify the
AWS::ManagedBlockchain::Network resource types in order to start logging data events to
determine who invoked the AMB Access Polygon endpoints.

Example Data event log entry of all your account's AMB Access Polygon endpoints requests

The following example demonstrates how to use the put-event-selectors operation to log all
your account's AMB Access Polygon endpoint requests for the trail my-polygon-trail in the us-
east-1 Region.

aws cloudtrail put-event-selectors \

--region us-east-1 \
--trail-name my-polygon-trail \
--advanced-event-selectors '[{
 "Name": "Test",
 "FieldSelectors": [
 { "Field": "eventCategory", "Equals": ["Data"] },
 { "Field": "resources.type", "Equals": ["AWS::ManagedBlockchain::Network"] }]}]'

After you subscribe, you can track usage in the S3 bucket that is connected to the trail specified in
the previous example.

The following result shows a CloudTrail data event log entry of the information that's collected
by CloudTrail. You can determine that a Polygon JSON-RPC request was made to one of the AMB
Access Polygon endpoints, the IP address that the request came from, who made the request,
when it was made, and other additional details. Some values in the following example have been
obfuscated for security reasons but appear fully in actual log entries.

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA554UO62RJ7KSB7FAX:777777777777",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/777777777777",
 "accountId": "111122223333"
 },

Using CloudTrail to track Polygon JSON-RPCs 60

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-advanced
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html

AMB Access Polygon Developer Guide

 "eventTime": "2023-04-12T19:00:22Z",
 "eventSource": "managedblockchain.amazonaws.com",
 "eventName": "gettxout",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "111.222.333.444",
 "userAgent": "python-requests/2.28.1",
 "errorCode": "-",
 "errorMessage": "-",
 "requestParameters": {
 "jsonrpc": "2.0",
 "method": "gettxout",
 "params": [],
 "id": 1
 },
 "responseElements": null,
 "requestID": "DRznHHEj********",
 "eventID": "baeb232d-2c6b-46cd-992c-0e40********",
 "readOnly": true,
 "resources": [{
 "type": "AWS::ManagedBlockchain::Network",
 "ARN": "arn:aws:managedblockchain:::networks/n-polygon-mainnet"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
}

Using CloudTrail to track Polygon JSON-RPCs 61

AMB Access Polygon Developer Guide

Document history for the AMB Access Polygon User
Guide

The following table describes the documentation releases for AMB Access Polygon.

Change Description Date

Updated quotas for JSON-
RPC

The quotas that AMB Access
Polygon supports for each
supported JSON-RPC are
updated.

April 12, 2024

End of support for the
Mumbai testnet network

AMB Access Polygon ended
support of the Mumbai
testnet on April 15, 2024.

April 10, 2024

Addition of the Tutorials topic AMB Access Polygon tutorials
from the Community Articles
section of AWS re:Post.

April 9, 2024

Public preview Public preview release of the
Amazon Managed Blockchain
(AMB) Access Polygon service.

November 24, 2023

62

https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-api.html#quotas
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/polygon-api.html#quotas
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/key-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/key-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/tutorials.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambp-dg/what-is-service.html

	AMB Access Polygon
	Table of Contents
	
	What is Amazon Managed Blockchain (AMB) Access Polygon?
	Resources for first-time AMB Access Polygon users

	Key concepts: Amazon Managed Blockchain (AMB) Access Polygon
	Considerations and limitations for using Amazon Managed Blockchain (AMB) Access Polygon

	Setting up Amazon Managed Blockchain (AMB) Access Polygon
	Prerequisites for using AMB Access Polygon
	Sign up for AWS

	Create an IAM user with appropriate permissions
	Install and configure the AWS Command Line Interface

	Getting started with Amazon Managed Blockchain (AMB) Access Polygon
	Create an IAM policy to access the Polygon blockchain network
	Make Polygon remote procedure call (RPC) requests on the AMB Access RPC editor using the AWS Management Console
	Make AMB Access Polygon JSON-RPC requests in awscurl by using the AWS CLI
	Make Polygon JSON-RPC requests in Node.js
	Send a transaction in Node.js
	Read a transaction in Node.js

	Creating and managing Accessor tokens for token-based access to make AMB Access Polygon requests
	Creating an Accessor token for token-based access
	Create an Accessor token to make AMB Access Polygon JSON-RPC requests using the AWS Management Console
	Create an Accessor token to make AMB Access Polygon JSON-RPC requests using the AWS CLI

	Viewing an Accessor token details
	To view an Accessor token's information using the AWS Management Console
	To view an Accessor token's information using the AWS CLI

	Deleting an Accessor token
	To delete an Accessor token using the AWS Management Console
	To delete an Accessor token using the AWS CLI

	Managed Blockchain API and the JSON-RPCs supported with AMB Access Polygon
	Polygon use cases with Amazon Managed Blockchain (AMB) Access Polygon
	Analyze Polygon NFT data
	Support NFT purchases
	Create a Polygon wallet
	Wallet as a service
	Token-gated experiences

	Tutorials for Amazon Managed Blockchain (AMB) Access Polygon
	Security in Amazon Managed Blockchain (AMB) Access Polygon
	Data protection in Amazon Managed Blockchain (AMB) Access Polygon
	Data encryption
	Encryption in transit

	Identity and access management for Amazon Managed Blockchain (AMB) Access Polygon
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Managed Blockchain (AMB) Access Polygon works with IAM
	Identity-based policies for AMB Access Polygon
	Identity-based policy examples for AMB Access Polygon

	Resource-based policies within AMB Access Polygon
	Policy actions for AMB Access Polygon
	Policy resources for AMB Access Polygon
	Policy condition keys for AMB Access Polygon
	ACLs in AMB Access Polygon
	ABAC with AMB Access Polygon
	Using temporary credentials with AMB Access Polygon
	Cross-service principal permissions for AMB Access Polygon
	Service roles for AMB Access Polygon
	Service-linked roles for AMB Access Polygon

	Identity-based policy examples for Amazon Managed Blockchain (AMB) Access Polygon
	Policy best practices
	Using the AMB Access Polygon console
	Allow users to view their own permissions
	Accessing Polygon networks

	Troubleshooting Amazon Managed Blockchain (AMB) Access Polygon identity and access
	I am not authorized to perform an action in AMB Access Polygon
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AMB Access Polygon resources

	Logging Amazon Managed Blockchain (AMB) Access Polygon events by using AWS CloudTrail
	AMB Access Polygon information in CloudTrail
	Understanding AMB Access Polygon log file entries
	Using CloudTrail to track Polygon JSON-RPCs

	Document history for the AMB Access Polygon User Guide

