
Developer Guide

Amazon Managed Blockchain Query

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Managed Blockchain Query Developer Guide

Amazon Managed Blockchain Query: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Managed Blockchain Query Developer Guide

Table of Contents

What is Amazon Managed Blockchain (AMB) Query? ... 1
Are you a first-time AMB Query user? ... 1

Key concepts .. 2
Considerations and limitations for using Amazon Managed Blockchain (AMB) Query 2

Setting up .. 6
Prerequisites and considerations ... 6

Sign up for AWS .. 6
Create an IAM user with appropriate permissions .. 6
Install and configure the AWS Command Line Interface ... 7
Use the AWS Management Console to query blockchains using AMB Query 7

Getting started .. 9
Create an IAM policy ... 9
Examples using Go ... 10
Examples using Node.js .. 16
Examples using Python ... 20
Example using the AWS Management Console ... 22

AMB Query use cases .. 24
Query current and historical token balances ... 24
Retrieve historical transaction data ... 24
Get all token balances for a given address .. 24
List events emitted for a transaction .. 25
Get all tokens minted by a contract .. 25
List contracts and get contract information .. 25

AMB Query API Reference .. 26
Security .. 27

Data encryption .. 27
Encryption in transit .. 28

Identity and access management ... 28
Audience .. 28
Authenticating with identities .. 29
Managing access using policies .. 32
How Amazon Managed Blockchain (AMB) Query works with IAM .. 35
Identity-based policy examples ... 41
Troubleshooting .. 45

iii

Amazon Managed Blockchain Query Developer Guide

API usage metrics .. 47
API usage metrics on Amazon CloudWatch ... 47

Document history .. 49

iv

Amazon Managed Blockchain Query Developer Guide

What is Amazon Managed Blockchain (AMB) Query?

Amazon Managed Blockchain (AMB) is a fully managed service designed to help you build
resilient Web3 applications on both public and private blockchains. Use AMB Access for instant
and serverless access to multiple blockchains. Build your Web3-ready applications without the
requirement of deploying specialized blockchain infrastructure and keeping them connected
to the blockchain network. With AMB Query, you can use developer-friendly API operations to
access real-time and historical data from multiple blockchains. The standardized blockchain data
can be integrated with AWS services, without requiring specialized blockchain infrastructure or
ETL (extract, transform, and load). All AMB features scale securely for institutional grade and
mainstream consumer application builds.

Amazon Managed Blockchain (AMB) Query provides serverless access to standardized, multi-
blockchain datasets with developer-friendly API operations. You can use AMB Query to quickly ship
applications that require data from one or more public blockchains, without requiring the overhead
to parse blockchain data, trace contracts, and maintain specialized indexing infrastructure. Whether
you’re analyzing historical token balances for fungible tokens or non-fungible tokens (NFTs),
viewing the transaction history for a given wallet address, or performing data analytics on the
distribution of native cryptocurrencies such as Ether, AMB Query gives you access to the blockchain
data.

Are you a first-time AMB Query user?

If you are a first-time user of AMB Query, we recommend that you begin by reading the following
sections:

• Key concepts: Amazon Managed Blockchain (AMB) Query

• Setting up Amazon Managed Blockchain (AMB) Query

• Getting started with Amazon Managed Blockchain (AMB) Query

• Use cases with Amazon Managed Blockchain (AMB) Query

Are you a first-time AMB Query user? 1

Amazon Managed Blockchain Query Developer Guide

Key concepts: Amazon Managed Blockchain (AMB) Query

Note

This guide assumes that you're familiar with essential blockchain concepts. These concepts
include decentralization, tokens, contracts, transactions, proof-of-work, wallets, public and
private keys, staking, mining, halvings, and others.

Amazon Managed Blockchain (AMB) Query provides you with convenient access to multi-blockchain
network data, which makes it easier for you to extract contextual data related to blockchain
activity. You can use AMB Query to read data from public blockchain networks, such as Bitcoin
Mainnet and Ethereum Mainnet. You can also get information, such as current and historical
balances of addresses, or you can get a list of blockchain transactions for a given time period.
Additionally, you can get details of a given transaction, such as transaction events, which you can
further analyze or use in business logic for your applications.

Considerations and limitations for using Amazon Managed
Blockchain (AMB) Query

When you use AMB Query, consider the following:

• Available Regions

AMB Query is supported in the US East (N. Virginia) us-east-1 Region.

• Service endpoints

AMB Query is accessible by using the following endpoint:

https://managedblockchain-query.us-east-1.amazonaws.com.

• Supported blockchain networks

AMB Query supports the following public blockchain networks:

• Bitcoin Mainnet — The public Bitcoin blockchain network that is secured by proof-of-
work consensus, and on which the Bitcoin (BTC) cryptocurrency is issued and transacted.

Considerations and limitations for using Amazon Managed Blockchain (AMB) Query 2

Amazon Managed Blockchain Query Developer Guide

Transactions on Mainnet have actual value (that is, they incur real costs) and are recorded on
the public blockchain.

• Bitcoin Testnet — The testnet for the Bitcoin Mainnet. Bitcoin (BTC) on this network is
separate and distinct from Mainnet BTC, and does not usually have any value.

• Ethereum Mainnet — The proof-of-stake main network for the public Ethereum blockchain.
Transactions on Mainnet have actual value (that is, they incur real costs) and are recorded on
the distributed ledger.

• Sepolia Testnet — The testnet for the Ethereum Mainnet. Ether (ETH) on this network is
separate and distinct from Mainnet ETH, and does not usually have any value.

• Supported blockchain tokens and contracts

AMB Query supports the following native and standard Ethereum contract tokens.

• Public blockchain native tokens

• Bitcoin (BTC)— This is the native token of Bitcoin-related blockchains.

• Ether (ETH)— This is the native token of Ethereum-related blockchains.

• Ethereum contract standards

• ERC-20 Token Standard — The ERC-20 is a standard for fungible tokens. It has a property
that makes each ERC-20 token exactly the same (in type and value) as another ERC-20 token
minted, which means that one token is and will always be equal to all the other tokens. For
more information, see the ERC-20 Token Standard on Ethereum.org.

• ERC-721 Non-fungible Token Standard — The ERC-721 is a standard for non-fungible
tokens (NFTs). This type of token is unique and can have a different value than another
token from the same contract, possibly due to its age, rarity, or other properties. For more
information, see the ERC-721 Token Standard on Ethereum.org.

ERC-1155 Multi-token Standard — The ERC-1155 is a standard that creates a contract
interface that can represent and control any number of fungible and non-fungible token
types. In this way, the ERC-1155 token can function the same as ERC-20 and ERC-721
tokens, even functioning as both at the same time. The ERC-1155 token improves on the
functionality of both the ERC-20 and ERC-721 standards, making it more efficient, while
correcting obvious implementation errors. For more information, see the ERC-1155 Token
Standard on Ethereum.org.

• Finality
Considerations and limitations for using Amazon Managed Blockchain (AMB) Query 3

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155

Amazon Managed Blockchain Query Developer Guide

In blockchains, finality means that valid transactions are unlikely to be reversed. For the Bitcoin
Mainnet, AMB Query considers a transaction final after 6 blocks. For the Bitcoin Testnet, it
considers a transaction final after either 6 blocks or 60 minutes, whichever comes first. For
supported Ethereum networks, AMB Query considers a transaction final after 64 blocks.

AMB Query's token balance and contract API operations only return data that has reached
finality. However, AMB Query's transaction and transaction event API operations can return data
for transactions that are confirmed on the blockchain network even if they have not yet reached
finality.

• NULL address not supported

AMB Query does not support the NULL (0x00)
address.

• Signature Version 4 signing of API calls

When making calls to the AMB Query APIs, you can do so over an HTTPS connection
authenticated using the Signature Version 4 signing process. This means that only authorized
IAM principals in the AWS account can make AMB Query API calls. To do this, AWS credentials (an
access key ID and secret access key) must be provided with the call.

Important

Do not embed client credentials in user-facing applications.

• AMB Query supports Bitcoin transaction identifiers and transaction hashes

For Bitcoin networks, AMB Query API operations support both the transaction identifier
(transactionId) and the transaction hash (transactionHash). The transactionId is a
double-SHA hash of the transaction not including witness data. The transactionHash is a
double-SHA hash of the transaction including witness data (also known as witness transaction
id).

When invoking the GetTransaction or ListTransactionEvents API operations for
Bitcoin networks, you can specify either the transactionId or the transactionHash.

Considerations and limitations for using Amazon Managed Blockchain (AMB) Query 4

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_GetTransaction.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTransactions.html

Amazon Managed Blockchain Query Developer Guide

Also, all AMB Query operations on Bitcoin networks that return either a transactionId or a
transactionHash will include both values as a part of the response.

Considerations and limitations for using Amazon Managed Blockchain (AMB) Query 5

Amazon Managed Blockchain Query Developer Guide

Setting up Amazon Managed Blockchain (AMB) Query

Before you use Amazon Managed Blockchain (AMB) Query for the first time, follow the steps in this
section to create an AWS account. The following section discusses how to get started using AMB
Query.

Prerequisites and considerations

Before you use Amazon Web Services for the first time, you must have an AWS account.

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all AWS services, including Amazon Managed Blockchain (AMB) Query. You're charged only for
the services that you use.

If you have an AWS account already, go to the next step. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Create an IAM user with appropriate permissions

To create and work with AMB Query, you must create an AWS Identity and Access Management
(IAM) principal (user or group) with permissions that allow necessary Managed Blockchain actions.

Prerequisites and considerations 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon Managed Blockchain Query Developer Guide

Only IAM principals can make AMB Query API requests. When making calls to the AMB Query APIs,
you can do so over an HTTPS connection authenticated using the Signature Version 4 signing
process. This means that only authorized IAM principals in the AWS account can make AMB Query
API calls. To do this, AWS credentials (an access key ID and secret access key) must be provided with
the call.

For information about how to create an IAM user, see Creating an IAM user in your AWS account.
For more information about how to attach a permissions policy to a user, see Changing permissions
for an IAM user. For an example of a permissions policy that you can use to give a user permission
to work with AMB Query, see Identity-based policy examples for Amazon Managed Blockchain
(AMB) Query.

Install and configure the AWS Command Line Interface

If you have not already done so, install the latest AWS Command-Line Interface (CLI) to work with
AWS resources from a terminal. For more information, see Installing or updating the latest version
of the AWS CLI.

Note

For CLI access, you need an access key ID and a secret access key. Use temporary credentials
instead of long-term access keys when possible. Temporary credentials include an access
key ID, a secret access key, and a security token that indicates when the credentials expire.
For more information, see Using temporary credentials with AWS resources in the IAM User
Guide.

Use the AWS Management Console to query blockchains using
Amazon Managed Blockchain (AMB) Query

You can access Amazon Managed Blockchain (AMB) Query and make queries on supported
blockchain networks using the AWS Management Console. The following steps show how to do
this:

1. Open the Amazon Managed Blockchain console at https://console.aws.amazon.com/
managedblockchain/.

2. Choose Query editor from the Query section.

Install and configure the AWS Command Line Interface 7

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain Query Developer Guide

3. Choose from one of the supported Blockchain networks.

4. Choose the Query type you want to run.

5. Enter the relevant parameters for the Query type you selected and Run query.

AMB Query will run your query and you will see results in the Query results window.

Use the AWS Management Console to query blockchains using AMB Query 8

Amazon Managed Blockchain Query Developer Guide

Getting started with Amazon Managed Blockchain (AMB)
Query

Use the step-by-step tutorials in this section to learn how to perform tasks by using Amazon
Managed Blockchain (AMB) Query. These procedures requires some prerequisites. If you are new to
AMB Query, you can review the Setting up section of this guide. For more information, see Setting
up Amazon Managed Blockchain (AMB) Query.

Note

Some variables in these examples have been deliberately obfuscated. Replace them with
valid ones of your own before running these examples.

Topics

• Create an IAM policy to access AMB Query API operations

• Make Amazon Managed Blockchain (AMB) Query API requests by using Go

• Make Amazon Managed Blockchain (AMB) Query API requests by using Node.js

• Make Amazon Managed Blockchain (AMB) Query API requests by using Python

• Use Amazon Managed Blockchain (AMB) Query on the AWS Management Console to run the
GetTokenBalance operation

Create an IAM policy to access AMB Query API operations

To make AMB Query API requests, you must use the user credentials (AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY) that have the appropriate IAM permissions for Amazon Managed
Blockchain (AMB) Query. In a terminal with the AWS CLI installed, run the following command to
create an IAM policy to access AMB Query API operations:

cat <<EOT > ~/amb-query-access-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid" : "AMBQueryAccessPolicy",

Create an IAM policy 9

Amazon Managed Blockchain Query Developer Guide

 "Effect": "Allow",
 "Action": [
 "managedblockchain-query:*"
],
 "Resource": "*"
 }
]
}
EOT
aws iam create-policy --policy-name AmazonManagedBlockchainQueryAccess --policy-
document file://$HOME/amb-query-access-policy.json

After you create the policy, attach that policy to an IAM user’s Role for it to take effect.
In the AWS Management Console, navigate to the IAM service, and attach the policy
AmazonManagedBlockchainQueryAccess to the Role assigned to the IAM user that will use the
service. For more information, see Creating a Role and assigning to an IAM user.

Note

AWS recommends that you give access to specific API operations rather than using the
wild-card *. For more information, see Accessing specific Amazon Managed Blockchain
(AMB) Query API actions.

Make Amazon Managed Blockchain (AMB) Query API requests
by using Go

With Amazon Managed Blockchain (AMB) Query, you can build applications that depend on instant
access to blockchain data once it is confirmed on the blockchain, even if it has not yet reached
finality. AMB Query enables several use cases such as populating the transaction history of a
wallet, providing contextual information about a transaction based on its transaction hash, or
obtaining the balance of a native tokens as well as of ERC-721, ERC-1155, and ERC-20 tokens.

The following examples are created in the Go language and use the AMB Query API operations. For
more information on Go, see the Go Documentation. For more information on the AMB Query API,
see the Amazon Managed Blockchain (AMB) Query API Reference Documentation.

The following examples use the ListTransactions and the GetTransaction API actions to
first get a list of all transactions for a given externally owned address (EOA) on the Ethereum

Examples using Go 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://go.dev/doc/
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_Operations.html

Amazon Managed Blockchain Query Developer Guide

Mainnet, and then the next example retrieves the transaction details for a single transaction from
the list.

Example — Make the ListTransactions API action using Go

Copy the following code to a file named listTransactions.go in the ListTransactions directory.

package main

import (
 "fmt"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/managedblockchainquery"
 "time"
)

func main() {

 // Set up a session
 ambQuerySession := session.Must(session.NewSessionWithOptions(session.Options{
 Config: aws.Config{
 Region: aws.String("us-east-1"),
 },
 }))
 client := managedblockchainquery.New(ambQuerySession)

 // Inputs for ListTransactions API
 ownerAddress := "0x00000bf26964af9d7eed9e03e53415d********"
 network := managedblockchainquery.QueryNetworkEthereumMainnet
 sortOrder := managedblockchainquery.SortOrderAscending
 fromTime := time.Date(1971, 1, 1, 1, 1, 1, 1, time.UTC)
 toTime := time.Now()
 nonFinal := "NONFINAL"
 // Call ListTransactions API. Transactions that have reached finality are always
 returned
 listTransactionRequest, listTransactionResponse :=
 client.ListTransactionsRequest(&managedblockchainquery.ListTransactionsInput{
 Address: &ownerAddress,
 Network: &network,
 Sort: &managedblockchainquery.ListTransactionsSort{
 SortOrder: &sortOrder,
 },
 FromBlockchainInstant: &managedblockchainquery.BlockchainInstant{

Examples using Go 11

Amazon Managed Blockchain Query Developer Guide

 Time: &fromTime,
 },
 ToBlockchainInstant: &managedblockchainquery.BlockchainInstant{
 Time: &toTime,
 },

 ConfirmationStatusFilter: &managedblockchainquery.ConfirmationStatusFilter{
 Include: []*string{&nonFinal},
 },
 })
 errors := listTransactionRequest.Send()

 if errors == nil {
 // handle API response
 fmt.Println(listTransactionResponse)
 } else {
 // handle API errors
 fmt.Println(errors)
 }
}

After you save the file, run the code by using the following command inside the ListTransactions
directory: go run listTransactions.go.

The output that follows resembles the following:

{
 Transactions: [
 {
 ConfirmationStatus: "FINAL",
 Network: "ETHEREUM_MAINNET",
 TransactionHash:
 "0x12345ea404b45323c0cf458ac755ecc45985fbf2b18e2996af3c8e8693354321",
 TransactionTimestamp: 2020-06-01 01:59:11 +0000 UTC
 },
 {
 ConfirmationStatus: "FINAL",
 Network: "ETHEREUM_MAINNET",
 TransactionHash:
 "0x1234547c65675d867ebd2935bb7ebe0996e9ec8e432a579a4516c7113bf54321",
 TransactionTimestamp: 2021-09-01 20:06:59 +0000 UTC
 },
 {

Examples using Go 12

Amazon Managed Blockchain Query Developer Guide

 ConfirmationStatus: "NONFINAL",
 Network: "ETHEREUM_MAINNET",
 TransactionHash:
 "0x123459df7c1cd42336cd1c444cae0eb660ccf13ef3a159f05061232a24954321",
 TransactionTimestamp: 2024-01-23 17:10:11 +0000 UTC
 }
]
}

Example — Make the GetTransaction API action by using Go

This example uses a transaction hash from the previous output. Copy the following code to a file
named GetTransaction.go in the GetTransaction directory.

package main

import (
 "fmt"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/managedblockchainquery"
)

func main() {

 // Set up a session
 ambQuerySession := session.Must(session.NewSessionWithOptions(session.Options{
 Config: aws.Config{
 Region: aws.String("us-east-1"),
 },
 }))
 client := managedblockchainquery.New(ambQuerySession)

 // inputs for GetTransaction API
 transactionHash :=
 "0x123452695a82868950d9db8f64dfb2f6f0ad79284a6c461d115ede8930754321"
 network := managedblockchainquery.QueryNetworkEthereumMainnet

 // Call GetTransaction API. This operation will return transaction details for all
 // transactions that are con#rmed on the blockchain, even if they have not
 // reached #nality.
 getTransactionRequest, getTransactionResponse :=
 client.GetTransactionRequest(&managedblockchainquery.GetTransactionInput{

Examples using Go 13

Amazon Managed Blockchain Query Developer Guide

 Network: &network,
 TransactionHash: &transactionHash,
 })

 errors := getTransactionRequest.Send()
 if errors == nil {
 // handle API response
 fmt.Println(getTransactionResponse)
 } else {
 // handle API errors
 fmt.Println(errors)
 }
}

After you save the file, run the code by using the following command inside the GetTransaction
directory: go run GetTransaction.go.

The output that follows resembles the following:

{
 Transaction: {
 BlockHash: "0x000005c6a71d1afbc005a652b6ceca71cd516d97b0fc514c2a1d0f2ca3912345",
 BlockNumber: "11111111",
 CumulativeGasUsed: "5555555",
 EffectiveGasPrice: "44444444444",
 From: "0x9157f4de39ab4c657ad22b9f19997536********",
 GasUsed: "22222",
 Network: "ETHEREUM_MAINNET",
 NumberOfTransactions: 111,
 SignatureR: "0x99999894fd2df2d039b3555dab80df66753f84be475069dfaf6c6103********",
 SignatureS: "0x77777a101e7f37dd2dd0bf878b39080d5ecf3bf082c9bd4f40de783e********",
 SignatureV: 0,
 ConfirmationStatus: "FINAL",
 ExecutionStatus: "SUCCEEDED",
 To: "0x5555564f282bf135d62168c1e513280d********",
 TransactionHash:
 "0x123452695a82868950d9db8f64dfb2f6f0ad79284a6c461d115ede8930754321",
 TransactionIndex: 11,
 TransactionTimestamp: 2022-02-02 01:01:59 +0000 UTC
 }
}

Examples using Go 14

Amazon Managed Blockchain Query Developer Guide

The GetTokenBalance API provides a way for you to get the balance of native tokens (ETH and
BTC), which can be used to get the current balance of an externally owned account (EOA) at a point
in time.

Example — Use the GetTokenBalance API action to get the balance of a native token in Go

In the following example, you use the GetTokenBalance API to get an address Ether
(ETH) balance on the Ethereum Mainnet. Copy the following code to a file named
GetTokenBalanceEth.go in the GetTokenBalance directory.

package main

import (
 "fmt"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/managedblockchainquery"
)

func main() {
 // Set up a session
 ambQuerySession := session.Must(session.NewSessionWithOptions(session.Options{
 Config: aws.Config{
 Region: aws.String("us-east-1"),
 },
 }))
 client := managedblockchainquery.New(ambQuerySession)

 // inputs for GetTokenBalance API
 ownerAddress := "0xBeE510AF9804F3B459C0419826b6f225********"
 network := managedblockchainquery.QueryNetworkEthereumMainnet
 nativeTokenId := "eth" //Ether on Ethereum mainnet

 // call GetTokenBalance API
 getTokenBalanceRequest, getTokenBalanceResponse :=
 client.GetTokenBalanceRequest(&managedblockchainquery.GetTokenBalanceInput{
 TokenIdentifier: &managedblockchainquery.TokenIdentifier{
 Network: &network,
 TokenId: &nativeTokenId,
 },
 OwnerIdentifier: &managedblockchainquery.OwnerIdentifier{
 Address: &ownerAddress,
 },

Examples using Go 15

Amazon Managed Blockchain Query Developer Guide

 })
 errors := getTokenBalanceRequest.Send()

 if errors == nil {
 // process API response
 fmt.Println(getTokenBalanceResponse)
 } else {
 // process API errors
 fmt.Println(errors)
 }
}

After you save the file, run the code by using the following command inside the GetTokenBalance
directory: go run GetTokenBalanceEth.go.

The output that follows resembles the following:

{
 AtBlockchainInstant: {
 Time: 2020-12-05 11:51:01 +0000 UTC
 },
 Balance: "4343260710",
 LastTransactionHash:
 "0x00000ce94398e56641888f94a7d586d51664eb9271bf2b3c48297a50a0711111",
 LastTransactionTime: 2023-03-14 18:33:59 +0000 UTC,
 OwnerIdentifier: {
 Address: "0x12345d31750D727E6A3a7B534255BADd********"
 },
 TokenIdentifier: {
 Network: "ETHEREUM_MAINNET",
 TokenId: "eth"
 }
}

Make Amazon Managed Blockchain (AMB) Query API requests
by using Node.js

To run these Node examples, the following prerequisites apply:

1. You must have node version manager (nvm) and Node.js installed on your machine. You can find
installation instruction for your OS here.

Examples using Node.js 16

https://github.com/nvm-sh/nvm

Amazon Managed Blockchain Query Developer Guide

2. Use the node --version command and confirm that you are using Node version 14 or
higher. If required, you can use the nvm install 14 command, followed by the nvm use 14
command to install version 14.

3. The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain
the credentials that are associated with the account.

Export these variables as strings on your client by using the following commands. Replace the
highlighted values in the following with appropriate values from the IAM user account.

export AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
export AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

Note

• After you have completed all prerequisites, you can submit signed requests over HTTPS
to access Amazon Managed Blockchain (AMB) Query API operations and make requests
by using the native https module in Node.js, or you can use a third-party library such as
AXIOS and retrieve data from AMB Query.

• These examples use a third-party HTTP client for Node.js, but you can also use the AWS
JavaScript SDK to make requests to AMB Query.

• The following example shows you how to make AMB Query API requests by using Axios
and the AWS SDK modules for SigV4.

Copy the following package.json file into your local environment's working directory:

{
 "name": "amb-query-examples",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {

Examples using Node.js 17

https://nodejs.org/api/https.html
https://www.npmjs.com/package/axios

Amazon Managed Blockchain Query Developer Guide

 "@aws-crypto/sha256-js": "^4.0.0",
 "@aws-sdk/credential-provider-node": "^3.360.0",
 "@aws-sdk/protocol-http": "^3.357.0",
 "@aws-sdk/signature-v4": "^3.357.0",
 "axios": "^1.4.0"
 }
}

Example — Retrieve the historical token balance from a specific externally owned address
(EOA) by using AMB Query GetTokenBalance API

You can use the GetTokenBalance API to get the balance of various tokens (for example, ERC20,
ERC721, and ERC1155) and native coins (for example, ETH and BTC), which you can use to get
the current balance of an externally owned account (EOA) based on a historical timestamp (Unix
timestamp - seconds). In this example, you use the GetTokenBalance API to get an address
balance of an ERC20 token, USDC, on the Ethereum Mainnet.

To test the GetTokenBalance API, copy the following code into a file named token-
balance.js, and save the file into the same working directory:

const axios = require('axios').default;
const SHA256 = require('@aws-crypto/sha256-js').Sha256
const defaultProvider = require('@aws-sdk/credential-provider-node').defaultProvider
const HttpRequest = require('@aws-sdk/protocol-http').HttpRequest
const SignatureV4 = require('@aws-sdk/signature-v4').SignatureV4

// define a signer object with AWS service name, credentials, and region
const signer = new SignatureV4({
 credentials: defaultProvider(),
 service: 'managedblockchain-query',
 region: 'us-east-1',
 sha256: SHA256,
});

const queryRequest = async (path, data) => {
 //query endpoint
 let queryEndpoint = `https://managedblockchain-query.us-east-1.amazonaws.com/
${path}`;

 // parse the URL into its component parts (e.g. host, path)
 const url = new URL(queryEndpoint);

Examples using Node.js 18

https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/GetTokenBalance.html

Amazon Managed Blockchain Query Developer Guide

 // create an HTTP Request object
 const req = new HttpRequest({
 hostname: url.hostname.toString(),
 path: url.pathname.toString(),
 body: JSON.stringify(data),
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'Accept-Encoding': 'gzip',
 host: url.hostname,
 }
 });

 // use AWS SignatureV4 utility to sign the request, extract headers and body
 const signedRequest = await signer.sign(req, { signingDate: new Date() });

 try {
 //make the request using axios
 const response = await axios({...signedRequest, url: queryEndpoint, data: data})

 console.log(response.data)
 } catch (error) {
 console.error('Something went wrong: ', error)
 throw error
 }

}

let methodArg = 'get-token-balance';

let dataArg = {
 " atBlockchainInstant": {
 "time": 1688071493
 },
 "ownerIdentifier": {
 "address": "0xf3B0073E3a7F747C7A38B36B805247B2********" // externally owned
 address
 },
 "tokenIdentifier": {
 "contractAddress":"0xA0b86991c6218b36c1d19D4a2e9Eb0cE********", //USDC contract
 address

Examples using Node.js 19

Amazon Managed Blockchain Query Developer Guide

 "network":"ETHEREUM_MAINNET"
 }
}

//Run the query request.
queryRequest(methodArg, dataArg);

To run the code, open a terminal in the same directory as your files and run the following
command:

npm i
node token-balance.js

This command runs the script, passing in the arguments defined in the code to request the ERC20
USDC balance of the EOA listed on the Ethereum Mainnet. The response is similar to the following:

 {
 atBlockchainInstant: { time: 1688076218 },
 balance: '140386693440144',
 lastUpdatedTime: { time: 1688074727 },
 ownerIdentifier: { address: '0xf3b0073e3a7f747c7a38b36b805247b2********' },
 tokenIdentifier: {
 contractAddress: '0xa0b86991c6218b36c1d19d4a2e9eb0ce********',
 network: 'ETHEREUM_MAINNET'
 }

Make Amazon Managed Blockchain (AMB) Query API requests
by using Python

To run these Python examples, the following prerequisites apply:

1. You must have Python installed on your machine. You can find installation instruction for your
OS here.

2. Install the AWS SDK for Python (Boto3) .

3. Install the AWS Command Line Interface and run the command aws configure to set the
variables for your Access Key ID, Secret Access Key, and Region.

Examples using Python 20

https://wiki.python.org/moin/BeginnersGuide/Download
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Managed Blockchain Query Developer Guide

After you have completed all prerequisites, you can use the AWS SDK for Python over HTTPS to
make Amazon Managed Blockchain (AMB) Query API requests.

The following Python example uses modules from boto3 to send requests affixed with the required
SigV4 headers to the AMB Query ListTransactionEvents API operation. This example retrieves
a list of events emitted by a given transaction on the Ethereum Mainnet.

Copy the following list-transaction-events.py file into your local environment's working
directory:

import json
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.session import Session
from botocore.httpsession import URLLib3Session

def signed_request(url, method, params, service, region):

 session = Session()
 sigv4 = SigV4Auth(session.get_credentials(), service, region)
 data = json.dumps(params)
 request = AWSRequest(method, url, data=data)
 sigv4.add_auth(request)
 http_session = URLLib3Session()
 response = http_session.send(request.prepare())

 return(response)

url = 'https://managedblockchain-query.us-east-1.amazonaws.com/list-transaction-events'
method = 'POST'
params = {
'network': 'ETHEREUM_MAINNET',
'transactionHash': '0x125714bb4db48757007fff2671b37637bbfd6d47b3a4757ebbd0c5222984f905'
}
service = 'managedblockchain-query'
region = 'us-east-1'

Call the listTransactionEvents operation. This operation will return transaction
 details for
all transactions that are con#rmed on the blockchain, even if they have not reached
#nality.
listTransactionEvents = signed_request(url, method, params, service, region)

Examples using Python 21

Amazon Managed Blockchain Query Developer Guide

print(json.loads(listTransactionEvents.content.decode('utf-8')))

To run the sample code to ListTransactionEvents, save the file in your working directory
and then run the command python3 list-transaction-events.py. This command runs the
script, passing in the arguments defined in the code to request the events associated with the given
transaction hash on the Ethereum Mainnet. The response is similar to the following:

{
 'events':
 [
 {
 'contractAddress': '0x95ad61b0a150d79219dcf64e1e6cc01f********',
 'eventType': 'ERC20_TRANSFER',
 'from': '0xab5801a7d398351b8be11c439e05c5b3********',
 'network': 'ETHEREUM_MAINNET',
 'to': '0xdead0000000000000000420694206942********',
 'transactionHash':
 '0x125714bb4db48757007fff2671b37637bbfd6d47b3a4757ebbd0c522********',
 'value': '410241996771871894771826174755464'
 }
]
}

Use Amazon Managed Blockchain (AMB) Query on the AWS
Management Console to run the GetTokenBalance operation

The following example shows how to get a token's balance on the Ethereum Mainnet using Amazon
Managed Blockchain (AMB) Query on the AWS Management Console

Example

1. Open the Amazon Managed Blockchain console at https://console.aws.amazon.com/
managedblockchain/.

2. Choose Query editor from the Query section.

3. Choose ETHEREUM_MAINNET as the Blockchain network.

4. Choose GetTokenBalance as the Query type.

5. Enter your Blockchain address for the token.

6. Enter the Contract address for the token.

Example using the AWS Management Console 22

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain Query Developer Guide

7. Enter the optional Token ID for the token.

8. Choose the At date for the token balance.

9. Enter the optional At time for the token balance.

10. Choose Run query.

AMB Query will run your query and you will see results in the Query results window.

Example using the AWS Management Console 23

Amazon Managed Blockchain Query Developer Guide

Use cases with Amazon Managed Blockchain (AMB)
Query

This topic provides a list AMB Query use cases.

Topics

• Query current and historical token balances

• Retrieve historical transaction data

• Get all token balances for a given address

• List events emitted for a transaction

• Get all tokens minted by a contract

• List contracts and get contract information

Query current and historical token balances

The GetTokenBalance API gets the balance of supported tokens (ERC20, ERC721, ERC1155) and
native coins (ETH, BTC) to get the current or a historical balance by using a universal timestamp
(Unix timestamp, in seconds) of externally owned accounts (EOAs). For example, you can use the
GetTokenBalance API operation to get an address balance of the ERC20 token, USDC, on the
Ethereum Mainnet. You can also batch-retrieve balances of tokens and native coins by using the
BatchGetTokenBalance API operation.

For more information, see the Amazon Managed Blockchain (AMB) Query Reference Guide.

Retrieve historical transaction data

With Amazon Managed Blockchain (AMB) Query, you can retrieve historical data from public
blockchains such as Ethereum and Bitcoin. This features enables several use cases, such as
retrieving a transaction history on a blockchain wallet or providing contextual information about
a transaction based on its transaction hash. You can use the ListTransactions API operation
to get a list of transactions for a given externally owned address (EOA) on the Ethereum Mainnet,
and then you can use the GetTransaction API operation to retrieve the transaction details for a
single transaction from the list.

For more information, see the Amazon Managed Blockchain (AMB) Query Reference Guide.

Query current and historical token balances 24

https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_GetTokenBalance.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTransactions.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_GetTransaction.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html

Amazon Managed Blockchain Query Developer Guide

Get all token balances for a given address

You can use the ListTokenBalances API operation to get balances on wallets, user interfaces,
web3 utilities, and more. This API operation returns a list of all balances for an address across
tokens (ERC20, ERC721, ERC1155) and native coins (ETH, BTC) on a given public blockchain by
using a single API operation. For example, you can provide an externally owned address (EOA) and
a network (the Ethereum Mainnet), and you can receive a list of tokens and native coin balances in
the response.

For more information, see the Amazon Managed Blockchain (AMB) Query Reference Guide.

List events emitted for a transaction

You can use the ListTransactionEvents API operation to retrieve a list of contract events that
are emitted as a result of a given transaction, identified by its hash (transaction identifier). For
example, you can use ListTransactionEvents to retrieve the resulting events of a transaction
that calls a function of an ERC20 token contract on the Ethereum Blockchain, such as a Transfer
event or a Withdrawal event from the ERC20 contract.

For more information, see the Amazon Managed Blockchain (AMB) Query Reference Guide.

Get all tokens minted by a contract

You can use the ListTokenBalances API operation to return a list of all supported tokens
(ERC20, ERC721, ERC1155) minted by a contract when passed the contract address as input. For
example, you can retrieve information related to non-fungible tokens (NFTs) minted by the ERC721
contract standard on the Ethereum blockchain by using the ListTokenBalances API operation.

For more information, see the Amazon Managed Blockchain (AMB) Query Reference Guide.

List contracts and get contract information

You can use the ListAssetContracts API operation to list ERC-721, ERC-1155, or ERC-20
contracts deployed by a given address. Additionally, if you have the contract address, you can use
the GetAssetContract API operation to retrieve the contract's properties, such as the contract
type deployer address, and relevant token metadata.

For more information, see the Amazon Managed Blockchain (AMB) Query Reference Guide.

Get all token balances for a given address 25

https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTokenBalances.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTransactionEvents.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTransactionEvents.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTokenBalances.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_ListTokenBalances.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/ListAssetContracts.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/ListAssetContracts.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html

Amazon Managed Blockchain Query Developer Guide

Amazon Managed Blockchain (AMB) Query API Reference

Amazon Managed Blockchain (AMB) Query provides API operations for querying supported
blockchains. This includes APIs for querying tokens, transactions, and contracts. For more
information, see the AMB Query API Reference .

26

https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/Welcome.html

Amazon Managed Blockchain Query Developer Guide

Security in Amazon Managed Blockchain (AMB) Query

Cloud security at AWS is of the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as both security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Managed
Blockchain (AMB) Query, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors, including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

To provide data protection, authentication, and access control, Amazon Managed Blockchain uses
AWS features and the features of the open-source framework running in Managed Blockchain.

This documentation helps you understand how to apply the shared responsibility model when
using AMB Query. The following topics show you how to configure AMB Query to meet your
security and compliance objectives. You can also learn how to use other AWS services that help you
to monitor and secure your AMB Query resources.

Topics

• Data encryption

• Identity and access management for Amazon Managed Blockchain (AMB) Query

Data encryption

Data encryption helps prevent unauthorized users from reading data from a blockchain network
and the associated data storage systems. This includes data that might be intercepted as it travels
the network, known as data in transit.

Data encryption 27

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Managed Blockchain Query Developer Guide

Encryption in transit

By default, Managed Blockchain uses an HTTPS/TLS connection to encrypt all the data that's
transmitted from the AWS CLI client to the AWS service endpoints.

Identity and access management for Amazon Managed
Blockchain (AMB) Query

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AMB Query resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Managed Blockchain (AMB) Query works with IAM

• Identity-based policy examples for Amazon Managed Blockchain (AMB) Query

• Troubleshooting Amazon Managed Blockchain (AMB) Query identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AMB Query.

Service user – If you use the AMB Query service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more AMB Query features to do
your work, you might need additional permissions. Understanding how access is managed can help
you request the right permissions from your administrator. If you cannot access a feature in AMB
Query, see Troubleshooting Amazon Managed Blockchain (AMB) Query identity and access.

Service administrator – If you're in charge of AMB Query resources at your company, you probably
have full access to AMB Query. It's your job to determine which AMB Query features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand

Encryption in transit 28

Amazon Managed Blockchain Query Developer Guide

the basic concepts of IAM. To learn more about how your company can use IAM with AMB Query,
see How Amazon Managed Blockchain (AMB) Query works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AMB Query. To view example AMB Query identity-
based policies that you can use in IAM, see Identity-based policy examples for Amazon Managed
Blockchain (AMB) Query.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and

Authenticating with identities 29

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Managed Blockchain Query Developer Guide

is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

Authenticating with identities 30

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html

Amazon Managed Blockchain Query Developer Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

Authenticating with identities 31

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Managed Blockchain Query Developer Guide

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 32

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Managed Blockchain Query Developer Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 33

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

Amazon Managed Blockchain Query Developer Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 34

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Managed Blockchain Query Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Managed Blockchain (AMB) Query works with IAM

Before you use IAM to manage access to AMB Query, learn what IAM features are available to use
with AMB Query.

IAM features you can use with Amazon Managed Blockchain (AMB) Query

IAM feature AMB Query support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources No

Policy condition keys No

ACLs No

ABAC (tags in policies) No

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles No

To get a high-level view of how AMB Query and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How Amazon Managed Blockchain (AMB) Query works with IAM 35

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Blockchain Query Developer Guide

Identity-based policies for AMB Query

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AMB Query

To view examples of AMB Query identity-based policies, see Identity-based policy examples for
Amazon Managed Blockchain (AMB) Query.

Resource-based policies within AMB Query

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access

How Amazon Managed Blockchain (AMB) Query works with IAM 36

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Managed Blockchain Query Developer Guide

to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AMB Query

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AMB Query actions, see Actions Defined by Amazon Managed Blockchain (AMB)
Query in the Service Authorization Reference.

Policy actions in AMB Query use the following prefix before the action:

managedblockchain-query:

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "managedblockchain-query::ListTransaction",
 "managedblockchain-query::GetTransaction"
]

To view examples of AMB Query identity-based policies, see Identity-based policy examples for
Amazon Managed Blockchain (AMB) Query.

Policy resources for AMB Query

Supports policy resources: No

How Amazon Managed Blockchain (AMB) Query works with IAM 37

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

Amazon Managed Blockchain Query Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AMB Query resource types and their ARNs, see Resources Defined by Amazon
Managed Blockchain (AMB) Query in the Service Authorization Reference. To learn with which
actions you can specify the ARN of each resource, see Actions Defined by Amazon Managed
Blockchain (AMB) Query .

To view examples of AMB Query identity-based policies, see Identity-based policy examples for
Amazon Managed Blockchain (AMB) Query.

Policy condition keys for AMB Query

Supports service-specific policy condition keys: No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

How Amazon Managed Blockchain (AMB) Query works with IAM 38

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Managed Blockchain Query Developer Guide

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AMB Query condition keys, see Condition Keys for Amazon Managed Blockchain
(AMB) Query in the Service Authorization Reference. To learn with which actions and resources you
can use a condition key, see Actions Defined by Amazon Managed Blockchain (AMB) Query .

To view examples of AMB Query identity-based policies, see Identity-based policy examples for
Amazon Managed Blockchain (AMB) Query.

ACLs in AMB Query

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with AMB Query

Supports ABAC (tags in policies): No

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

How Amazon Managed Blockchain (AMB) Query works with IAM 39

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Managed Blockchain Query Developer Guide

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with AMB Query

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AMB Query

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AMB Query

Supports service roles: No

How Amazon Managed Blockchain (AMB) Query works with IAM 40

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Managed Blockchain Query Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AMB Query functionality. Edit
service roles only when AMB Query provides guidance to do so.

Service-linked roles for AMB Query

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Managed Blockchain (AMB)
Query

By default, users and roles don't have permission to create or modify AMB Query resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by AMB Query, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon
Managed Blockchain (AMB) Query in the Service Authorization Reference.

Identity-based policy examples 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html

Amazon Managed Blockchain Query Developer Guide

Topics

• Policy best practices

• Allow users to view their own permissions

• Accessing specific Amazon Managed Blockchain (AMB) Query API actions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AMB Query
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API

Identity-based policy examples 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

Amazon Managed Blockchain Query Developer Guide

operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }

Identity-based policy examples 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Managed Blockchain Query Developer Guide

]
}

Accessing specific Amazon Managed Blockchain (AMB) Query API actions

Note

In order to access the AMB Query to make API calls, you will need user credentials
(AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY) that have the appropriate IAM
permissions for AMB Query.

Example IAM Policy to access all Amazon Managed Blockchain (AMB) Query APIs

This example grants an IAM user in your AWS account access to all AMB Query APIs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessAllAMBQueryAPIs",
 "Effect": "Allow",
 "Action": [
 "managedblockchain-query:*"
],
 "Resource": "*"
 }
]
}

Example IAM Policy to access Amazon Managed Blockchain (AMB) Query ListTransactions
and GetTransaction APIs

This example grants an IAM user in your AWS account access to the AMB Query ListTransaction
and GetTransaction APIs

Identity-based policy examples 44

Amazon Managed Blockchain Query Developer Guide

Note

You can replace or add on the APIs in the example with other APIs to give access to other or
more APIs. For a list of AMB Query APIs, see the Amazon Managed Blockchain (AMB) Query
API Reference Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessAMBQueryAPIs",
 "Effect": "Allow",
 "Action": [
 "managedblockchain-query:ListTransactions",
 "managedblockchain-query:GetTransaction"
],
 "Resource": "*"
 }
]
}

Troubleshooting Amazon Managed Blockchain (AMB) Query identity
and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AMB Query and IAM.

Topics

• I am not authorized to perform an action in AMB Query

I am not authorized to perform an action in AMB Query

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

Troubleshooting 45

Amazon Managed Blockchain Query Developer Guide

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
managedblockchain-query::GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 managedblockchain-query::GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the managedblockchain-query::GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 46

Amazon Managed Blockchain Query Developer Guide

Amazon Managed Blockchain (AMB) Query API usage
metrics on Amazon CloudWatch

API usage metrics on Amazon CloudWatch

The API usage metrics published to CloudWatch correspond to the Amazon Managed Blockchain
(AMB) Query service quotas. You can configure alarms to alert you when your usage approaches a
service quota. For more information about CloudWatch integration with service quotas, see AWS
usage metrics in the Amazon CloudWatch User Guide.

AMB Query publishes the following API metrics in the AWS/Usage namespace, with the Amazon
Managed Blockchain Query service name.

Metric Description

CallCount The total number of calls made to an API in
AMB Query. SUM represents the total number
of calls to the API during the specified period.

Amazon Managed Blockchain (AMB) Query publishes usage metrics to the AWS/Usage namespace
with the following dimensions.

Dimension Description

Service The name of the AWS service containing the
resource. Amazon Managed Blockchai
n Query will always be the value for this
dimension.

Type The type of the entity being reported. API will
always be the value for this dimension.

Resource The type of resources being reported. The
name of the AMB Query API operation used
will be the value for this dimension.

API usage metrics on Amazon CloudWatch 47

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Service-Quota-Integration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Service-Quota-Integration.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_Operations.html

Amazon Managed Blockchain Query Developer Guide

Dimension Description

Class The class of the resource being reported. None
will always be the value for this dimension.

API usage metrics on Amazon CloudWatch 48

Amazon Managed Blockchain Query Developer Guide

Document history for the AMB Query User Guide

The following table describes the documentation releases for AMB Query.

Change Description Date

AMB Query supports Bitcoin
transaction identifiers and
transaction hashes

For Bitcoin networks, AMB
Query API operations support
both the transaction identifie
r (transactionId) and the
transaction hash (transacti
onHash).

March 21, 2024

Support for API usage metrics
on Amazon CloudWatch

AMB Query added support
for API usage metrics on
CloudWatch. These usage
metrics correspond to the
AMB Query service quotas.

February 8, 2024

Support for transactions that
have not reached finality

AMB Query added support
for transactions that have
not reached finality. It
also removes support
for the status property
from the response of the
GetTransaction operation
. Instead, you will use the
confirmationStatus
and executionStatus
properties to determine the
status of the transaction.

February 1, 2024

Deprecation of the status
property in the Transaction
data type

Amazon Managed Blockchai
n (AMB) Query has deprecate
d the status property
in the Transaction data
type. You must use the

December 20, 2023

49

https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/key-concepts.html#bitcoin-enhancement
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/key-concepts.html#bitcoin-enhancement
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/key-concepts.html#bitcoin-enhancement
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/cw-usage-metrics.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/cw-usage-metrics.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_GetTransaction.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_GetTransaction.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/key-concepts.html#finality
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_Transaction.html#API_Transaction_Contents
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_Transaction.html#API_Transaction_Contents
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/API_Transaction.html#API_Transaction_Contents

Amazon Managed Blockchain Query Developer Guide

confirmationStatus
and executionStatus
fields to determine if the
status of the transaction is
FINAL or FAILED.

Support for Sepolia Testnet Amazon Managed Blockchai
n (AMB) Query now supports
queries on the Ethereum
Sepolia Testnet.

October 19, 2023

Support for asset contracts You can use the ListAsset
Contracts API operation
to list deployed by a given
address. Additionally, if you
have the contract address,
you can use the GetAssetC
ontract API operation to
retrieve the contract's details.

October 16, 2023

Support for Bitcoin Testnet Amazon Managed Blockchai
n (AMB) Query now supports
queries on the Bitcoin Testnet.

October 16, 2023

Initial release Initial release of the AMB
Query service.

July 27, 2023

50

https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/key-concepts.html#ambq-considerations
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/query-usecases.html#query-contract-info
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/ListAssetContracts.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/ListAssetContracts.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/ListAssetContracts.html
https://docs.aws.amazon.com/managed-blockchain/latest/AMBQ-APIReference/ListAssetContracts.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/key-concepts.html#ambq-considerations
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg/what-is-service.html

	Amazon Managed Blockchain Query
	Table of Contents
	What is Amazon Managed Blockchain (AMB) Query?
	Are you a first-time AMB Query user?

	Key concepts: Amazon Managed Blockchain (AMB) Query
	Considerations and limitations for using Amazon Managed Blockchain (AMB) Query

	Setting up Amazon Managed Blockchain (AMB) Query
	Prerequisites and considerations
	Sign up for AWS

	Create an IAM user with appropriate permissions
	Install and configure the AWS Command Line Interface
	Use the AWS Management Console to query blockchains using Amazon Managed Blockchain (AMB) Query

	Getting started with Amazon Managed Blockchain (AMB) Query
	Create an IAM policy to access AMB Query API operations
	Make Amazon Managed Blockchain (AMB) Query API requests by using Go
	Make Amazon Managed Blockchain (AMB) Query API requests by using Node.js
	Make Amazon Managed Blockchain (AMB) Query API requests by using Python
	Use Amazon Managed Blockchain (AMB) Query on the AWS Management Console to run the GetTokenBalance operation

	Use cases with Amazon Managed Blockchain (AMB) Query
	Query current and historical token balances
	Retrieve historical transaction data
	Get all token balances for a given address
	List events emitted for a transaction
	Get all tokens minted by a contract
	List contracts and get contract information

	Amazon Managed Blockchain (AMB) Query API Reference
	Security in Amazon Managed Blockchain (AMB) Query
	Data encryption
	Encryption in transit

	Identity and access management for Amazon Managed Blockchain (AMB) Query
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Managed Blockchain (AMB) Query works with IAM
	Identity-based policies for AMB Query
	Identity-based policy examples for AMB Query

	Resource-based policies within AMB Query
	Policy actions for AMB Query
	Policy resources for AMB Query
	Policy condition keys for AMB Query
	ACLs in AMB Query
	ABAC with AMB Query
	Using temporary credentials with AMB Query
	Cross-service principal permissions for AMB Query
	Service roles for AMB Query
	Service-linked roles for AMB Query

	Identity-based policy examples for Amazon Managed Blockchain (AMB) Query
	Policy best practices
	Allow users to view their own permissions
	Accessing specific Amazon Managed Blockchain (AMB) Query API actions

	Troubleshooting Amazon Managed Blockchain (AMB) Query identity and access
	I am not authorized to perform an action in AMB Query

	Amazon Managed Blockchain (AMB) Query API usage metrics on Amazon CloudWatch
	API usage metrics on Amazon CloudWatch

	Document history for the AMB Query User Guide

