
Ethereum Developer Guide

Amazon Managed Blockchain (AMB)

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Amazon Managed Blockchain (AMB): Ethereum Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Table of Contents

What is Amazon Managed Blockchain (AMB) Access Ethereum .. 1
Key concepts .. 3

Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum 4
Setting up .. 7

Sign up for AWS ... 7
Create an IAM user with appropriate permissions .. 7
Install and configure the AWS Command Line Interface ... 8

Getting started .. 9
Create an IAM policy ... 9
Create a node ... 11
Create an Accessor token ... 13
Make JSON-RPC calls .. 14

Working with nodes .. 15
Creating a node .. 15
Viewing node details ... 17
Deleting a node .. 20

Using token based access ... 22
Creating an Accessor token for token based access ... 23
Viewing an Accessor token details ... 24
Deleting an Accessor token .. 25

JSON-RPC and API ... 27
Supported JSON-RPC methods ... 27

Examples using the JSON-RPC API ... 44
Supported Consensus API methods ... 58

Examples making Consensus API calls ... 62
Security .. 71

Data Protection ... 71
Encryption in transit .. 71

Authentication and access control ... 72
Identity and Access Management ... 72

Tagging resources .. 101
Create and add tags for AMB Access Ethereum resources .. 101
Tag naming and usage conventions .. 102
Working with tags ... 102

iii

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

CloudTrail logs ... 104
Managed Blockchain information in CloudTrail .. 104
Understanding log file entries .. 105
Using CloudTrail to track Ethereum calls ... 106

Document history .. 109

iv

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

What is Amazon Managed Blockchain (AMB) Access
Ethereum

Amazon Managed Blockchain (AMB) Access provides you with public blockchain nodes for
Ethereum and Bitcoin, and you can also create private blockchain networks with the Hyperledger
Fabric framework. Choose from various methods to engage with public blockchains, including
fully managed, single-tenant (dedicated), and serverless multi-tenant API operations to public
blockchain nodes. For use cases where access controls are important, you can choose from fully
managed private blockchain networks. Standardized API operations give you instant scalability on
a fully managed, resilient infrastructure, so you can build blockchain applications.

AMB Access gives you two distinct types of blockchain infrastructure services: multi-tenant
blockchain network access API operations and dedicated blockchain nodes and networks. With
dedicated blockchain infrastructure, you can create and use public Ethereum blockchain nodes
and private Hyperledger Fabric blockchain networks for your own use. Multi-tenant, API-based
offerings, however, such as AMB Access Bitcoin, are composed of a fleet of Bitcoin nodes behind an
API layer where the underlying blockchain node infrastructure is shared among customers.

Ethereum is a decentralized and programmable blockchain network on which users around the
world can transact, collaborate, and build applications. The Ethereum virtual machine (EVM)
helps developers create powerful and composable decentralized applications (dApps) in the
form of smart contracts. Use Amazon Managed Blockchain (AMB) Access Ethereum to build
Ethereum dApps on Mainnet and select testnets with Ethereum full nodes using the go-ethereum
(Geth) execution client and the Lighthouse consensus client. You can use your dedicated (single-
tenant) Ethereum node(s) to invoke the Ethereum JSON-RPC APIs for both the Execution and
Consensus layers to build and test smart contracts, perform fungible or non-fungible token (NFT)
transactions, or query data from the Ethereum blockchain.

Important

Ethereum Mainnet has merged with the Beacon chain's proof-of-stake system. Ethereum
nodes on Amazon Managed Blockchain (AMB) support this change and require no further
action on your part. For more information on using the Consensus API to query the Beacon
chain, see Supported Consensus API methods. For more information on the merge, see The
Merge topic on the Ethereum website.

1

https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

This guide covers the how to create and manage Ethereum blockchain resources using Amazon
Managed Blockchain (AMB) Access Ethereum. For information about working with AMB Access
Hyperledger Fabric, see Amazon Managed Blockchain (AMB) Hyperledger Fabric Developer Guide.

2

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Key concepts: Amazon Managed Blockchain (AMB) Access
Ethereum

Note

This guide assumes that you're familiar with the concepts that are essential to Ethereum.
These concepts include nodes, dapps, transactions, gas, Ether, and others. Before you
deploy a node using AMB Access Ethereum and develop dapps, we recommend that you
review the Ethereum Development Documentation and Mastering Ethereum.

You can use Amazon Managed Blockchain (AMB) Access Ethereum to quickly provision Ethereum
nodes and join them to the public Ethereum mainnet or popular public testnets. Ethereum nodes
on a network collectively store an Ethereum blockchain state, verify transactions, and participate in
consensus to change a blockchain state.

You can use an Ethereum node to develop and use decentralized applications (dapps) that
interact with an Ethereum blockchain. The "backend" of a dapp is a smart contract that runs in a
decentralized way across all the nodes that are joined to an Ethereum network. Anyone that joined
to the network can develop and deploy a smart contract that adds functionality.

The "frontend" of a dapp can use Ethereum API operations and libraries, specifically the JSON-
RPC API or the Consensus API, to interact with the Ethereum network. You can use these APIs
to communicate with Ethereum node in Amazon Managed Blockchain (AMB). These APIs allow
the dapp to read data and write transactions. You can use the JSON-RPC API to query the smart
contract data and submit transactions to an Ethereum node on the AMB Access. You can use the
Consensus API to query the Beacon chain and its configuration. You can also use Consensus API to
get the health of nodes on the Mainnet.

With Ethereum APIs in AMB Access, your "frontend" dapp can use an HTTP or WebSocket (JSON-
RPC API only) connection to make API calls. Only users in the AWS account that owns the node
can make API calls. Calls over HTTP and WebSocket connections are authenticated by using the
Signature Version 4 signing process.

3

https://ethereum.org/en/developers/docs/
https://cypherpunks-core.github.io/ethereumbook/01what-is.html
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Important

• Amazon Managed Blockchain (AMB) helps you provision Ethereum nodes. You are
responsible for creating, maintaining, and using of your Ethereum Accounts. You are
also responsible for the contents of your Ethereum Accounts. This includes, but is not
limited to, Ether (ETH) and smart contracts. AWS is not responsible for any of your
smart contracts tested, compiled, deployed or called using Ethereum nodes in Amazon
Managed Blockchain (AMB).

• For historic data that requires archival nodes, use Amazon Managed Blockchain (AMB)
Query. For more information, see the AMB Query Developer Guide.

Considerations and limitations for Amazon Managed
Blockchain (AMB) Access Ethereum

When you use Amazon Managed Blockchain (AMB) Access Ethereum to host a node on an
Ethereum network, consider the following.

• Supported networks

Ethereum has a public mainnet and several public testnets used for development, testing, and
proof of concept. AMB Access supports the following public networks.

• Mainnet – The proof-of-stake network of the primary public Ethereum blockchain.
Transactions on Mainnet have actual value (that is, they incur real costs) and are recorded on
the distributed ledger. This network supports the JSON-RPC and Consensus API operations.

•
Networks no longer supported

AMB Access Ethereum no longer supports the following public networks. Private networks aren't
supported.

• Ropsten – A public proof-of-stake read-only testnet. Ether on this network has no real
monetary value. You can't provision new nodes on Ropsten as of February 28th, 2023. The
Ethereum foundation ceased support of Ropsten on December 31st, 2022..

• Rinkeby – A public proof-of-authority read-only testnet for Go Ethereum (Geth) clients. Ether
on this network has no real monetary value. You can't provision new nodes on Rinkeby as of
August 10th, 2023. The Ethereum foundation ceased support of Rinkeby on May 31st, 2023.

Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum 4

https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg
https://twitter.com/etherscan/status/1569311894279958531
https://blog.ethereum.org/2022/11/30/ropsten-shutdown-announcement
https://twitter.com/etherscan/status/1569311894279958531
https://blog.ethereum.org/2022/06/21/testnet-deprecation

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Görli (Goerli) – A public cross-client, proof-of-stake network. Ether on this network has no real
monetary value.

In line with the April 17, 2024 sunsetting of the Goerli testnet communicated by the Ethereum
Foundation, AMB Access Ethereum ended support of the Goerli testnet on April 1, 2024. We
recommend using the Sepolia or Holesky testnets for your testing workload.

• Compatibility with popular third-party programming libraries

AMB Access Ethereum is compatible with popular programming libraries, such as ethers.js
allowing developers to interact with the Polygon blockchain using familiar tools to integrate
easily with their existing implementations or develop new applications quickly.

• Staking not supported

Ethereum nodes that are created using AMB Access don't support staking.

• Different endpoints for WebSockets and HTTP

AMB Access Ethereum supports the Ethereum API over HTTP and WebSocket (JSON-RPC API
only). Each Ethereum node in AMB Access hosts different endpoints for HTTP and WebSocket
connections.

• JSON-RPC batch requests aren't supported

Ethereum nodes that are created using AMB Access don't support JSON-RPC batch requests.

• Payload quotas for API calls

WebSocket calls have a 512 KB payload quota. Some calls might exceed this quota and cause
a "message response is too large" error. For this reason, we recommend you use HTTP for
these requests instead of WebSocket connections. If your HTTP response is larger than 5.9
MB, you will get an error. To correct this, you must set both compression headers as Accept:
application/gzip and Accept-Encoding: gzip. The compressed response your client then
receives contains the following headers: Content-Type: application/json and Content-
Encoding: gzip.

• Signature Version 4 signing of API calls

Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be
authenticated by using the Signature Version 4 (SigV4) signing process. This means that only
authorized IAM principals in the AWS account that created the node can interact with it using the

Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum 5

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Ethereum APIs. AWS credentials (an access key ID and secret access key) must be provided with
the call.

Important

Never embed client credentials in user-facing applications. To expose an Ethereum node
in AMB Access to anonymous users visiting from trusted web domains, you can set up a
separate endpoint in Amazon API Gateway backed by a Lambda function that forwards
requests to your node that uses the proper IAM credentials.

• Support for Token Based Access

You can use Accessor tokens to make Ethereum API calls to an Ethereum node as a
convenient alternative to the Signature Version 4 (SigV4) signing process. You must provide a
BILLING_TOKEN from one of the Accessor tokens that you create as a query parameter with the
call.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing
process instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based
access. However, if you choose to use token based access, then any security benefits
that are provided by using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

• Only raw transactions are supported

AMB Access only supports the use of the eth_sendRawTransaction method to submit
transactions that update the Ethereum blockchain state. Before transactions can be sent, you
must create and sign transactions using Ethereum private keys outside AMB Access. In other
words, you can't use AMB Access as an Ethereum wallet. You must generate and store Ethereum
transactions and private keys externally.

• Node limit per account

AMB Access supports a maximum of 50 Ethereum nodes for each account.

Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum 6

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Setting up for AMB Access Ethereum

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all AWS services, including Amazon Managed Blockchain (AMB). You're charged only for the
services that you use.

With AMB Access Ethereum, you pay for the node, the storage that you use, and the number of
requests between the node and the network.

If you have an AWS account already, go to the next step. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Create an IAM user with appropriate permissions

To create and work with Ethereum resources in Amazon Managed Blockchain (AMB), you need an
AWS Identity and Access Management (IAM) principal (user or group) with permissions that allow
necessary AMB Access actions on those resources. Example actions include creating or deleting
nodes.

An IAM principal is also required to make AMB Access API requests. Ethereum API calls to an
Ethereum node in Amazon Managed Blockchain (AMB) can be authenticated by using the Signature
Version 4 (SigV4) signing process. This means that only authorized IAM principals in the AWS

Sign up for AWS 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

account that created the node can interact with it using the Ethereum APIs. AWS credentials (an
access key ID and secret access key) must be provided with the call.

You can also use Accessor tokens to make JSON-RPC calls to the Ethereum network as a convenient
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN
from one of the Accessor tokens you create and add as a parameter with your requests. However,
you still need IAM access to get permissions to create Accessor tokens using the AWS Management
Console, AWS CLI, and SDK.

For information about how to create an IAM user, see Creating an IAM user in your AWS account.
For more information about how to attach a permissions policy to a user, see Changing permissions
for an IAM user. For an example of a permissions policy that you can use to give a user permission
to work with AMB Access Ethereum resources, see Performing all available actions for AMB Access
Ethereum.

Install and configure the AWS Command Line Interface

If you have not already done so, install the latest AWS Command Line Interface (AWS CLI) to work
with AWS resources from a terminal. For more information, see Installing or updating the latest
version of the AWS CLI.

Note

For CLI access, you need an access key ID and a secret access key. Use temporary credentials
instead of long-term access keys when possible. Temporary credentials include an access
key ID, a secret access key, and a security token that indicates when the credentials expire.
For more information, see Using temporary credentials with AWS resources in the IAM User
Guide.

Install and configure the AWS Command Line Interface 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Getting started with Amazon Managed Blockchain (AMB)
Access Ethereum

The step-by-step tutorials in this section will show you how to perform the following tasks using
Amazon Managed Blockchain (AMB) Access Ethereum. Each task builds on the previous one, ending
in making JSON-RPC calls to your Ethereum node.

Topics

• Create an IAM policy to access the Ethereum network

• Create a node using the AWS Management Console

• Create an Accessor token using the AWS Management Console

• Find your HTTP or Websocket endpoints and make JSON-RPC calls

Create an IAM policy to access the Ethereum network

In order to access the Ethereum Mainnet to make JSON-RPC and Consensus API calls, you must
have user credentials (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY) that have the
appropriate IAM permissions for Amazon Managed Blockchain (AMB) Access Ethereum.

This example shows how you grant users AWS account access in the us-east-1 Region so that
they can do the following:

• List all Ethereum networks

• Create and list nodes on all those networks

• Get and delete nodes in AWS account 111122223333

• Get and delete accessors in AWS account 555555555555

• Create WebSocket connections, and send HTTP requests to an Ethereum node

Note

• If you want to grant access across all Regions, replace us-east-1 with *.

• You must specify the AWS account ID of the node and accessor resources in the policy
that you want to enforce.

Create an IAM policy 9

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WorkWithEthereumNetworks",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:ListNetworks",
 "managedblockchain:GetNetwork"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1::networks/n-ethereum-mainnet"

]
 },
 {
 "Sid": "CreateAndListEthereumNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:CreateNode",
 "managedblockchain:ListNodes"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1::networks/*"
]
 },
 {
 "Sid": "ManageEthereumNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:GetNode",
 "managedblockchain:DeleteNode"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:111122223333:nodes/*"
]
 },
 {
 "Sid": "GetAndDeleteAccessors",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:GetAccessor",

Create an IAM policy 10

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "managedblockchain:DeleteAccessor"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:555555555555:accessors/*"
]
 },
 {
 "Sid": "CreateAndListAccessors",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:CreateAccessor",
 "managedblockchain:ListAccessors"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "WorkWithEthereumNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:POST",
 "managedblockchain:GET",
 "managedblockchain:Invoke"

],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:111122223333:*"
]
 }
]
}

After you create the policy, attach that policy to your IAM user’s role for it to take effect. For more
information, see Creating a Role and assigning to an IAM user.

Create a node using the AWS Management Console

You must create an Ethereum node to make requests to the Ethereum network. The following
example shows you how to create a node using the AWS Management Console

To create an Ethereum node, you must consider and select the following characteristics:

Create a node 11

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

• Blockchain network – Amazon Managed Blockchain (AMB) supports the following public
Ethereum networks:

Mainnet – The proof-of-stake network of the primary public Ethereum blockchain. Transactions
on Mainnet have actual value (that is, they incur real costs) and are recorded on the distributed
ledger. This network supports the JSON-RPC and Consensus API operations.

• Blockchain instance type – This determines the computational and memory capacity allocated
to this node for the blockchain workload. If you anticipate a more demanding workload for each
node, you can choose more CPU and RAM. For example, your nodes might need to process a
higher rate of transactions. Different instance types are subject to different pricing.

Note

For optimal performance and minimal degradation, we recommend the bc.t3.xlarge
(or larger) instance size.

• Ethereum node type – The only node type that is currently supported is Full node (Geth). The
node uses the Geth execution client and the Lighthouse consensus client. For more information
about node types, see Node Types in the Ethereum developer documentation. For more
information on Execution clients such as Geth, see Execution clients in the Ethereum developer
documentation. For more information on Consensus clients such as Lighthouse, see Consensus
clients in the Ethereum developer documentation.

• Availability Zone – You can select the Availability Zone to launch the Ethereum node in. You can
distribute nodes across different Availability Zones. This way, you can design your blockchain
application for resiliency. For more information, see Regions and Availability Zones in the
Amazon EC2 User Guide.

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. Choose Networks from the Access header in the left navigation.

3. Choose the Dedicated networks tab and select Ethereum Mainnet as your network to the
details page.

4. Choose Create node.

5. In the Create node page, choose the Blockchain instance type suitable for your application. If
your nodes need to process a higher rate of transactions more efficiently, choose an instance
type with more CPU and RAM.

6. Choose the Ethereum node type, choose Full node (Geth).

Create a node 12

https://ethereum.org/en/developers/docs/nodes-and-clients/#node-types
https://ethereum.org/en/developers/docs/nodes-and-clients/#execution-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

7. Choose the Availability zone such as us-east-1.

8. Optional, choose Add new tag in the Tags section.

9. Choose Create node.

Note

Amazon Managed Blockchain (AMB) Access Ethereum provisions and configures
the node for you. The length of this process is not instantaneous depends on many
variables.

After you create the node, the Node details page in the AWS Management Console displays the
endpoints that you can use to make Ethereum API calls from code on a client. There are separate
endpoints for HTTP connections and WebSocket connections. For more information about sending
API calls to an Ethereum node in Amazon Managed Blockchain (AMB) to interact with smart
contracts, see Using Ethereum APIs with Amazon Managed Blockchain (AMB).

Create an Accessor token using the AWS Management Console

You can use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN
from one of the Accessor tokens that you create as a query parameter with the call.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based
access. However, if you choose to use token based access, then any security benefits that
are provided by using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

The following example shows how to create an Accessor token on the AWS Management Console
and use it to make Ethereum API calls on any Ethereum node in your AWS account.

<result>

Create an Accessor token 13

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

AMB Access then provisions and configures the token for you. The length of this process depends
on many variables.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. Choose Token accessors.

3. Choose Create accessor.

4. Choose a valid Ethereum blockchain Network.

5. Optional, add Tags for your Accessor.

6. Choose Create accessor to create a new Accessor token.

Find your HTTP or Websocket endpoints and make JSON-RPC
calls

In the console, the Token accessors page displays a list of all the Accessor tokens that you can use
to make Ethereum API calls to nodes in your AWS account from code on a client. There are separate
endpoints for HTTP connections and WebSocket connections.

These endpoints will be formatted as follows:

• HTTPS — https://your-node-id-lowercase.t.ethereum.managedblockchain.us-
east-1.amazonaws.com/?billingtoken=your-billing-token

• Websocket — wss://your-node-id-
lowercase.wss.t.ethereum.managedblockchain.us-east-1.amazonaws.com/?
billingtoken=your-billing-token

After you have completed all the steps in this chapter, you have set up your IAM permissions,
created your Ethereum node and Accessor tokens, and have your relevant endpoints. You can
proceed to the Using token based access to make JSON-RPC API calls to an Ethereum node topic
and run those examples.

Make JSON-RPC calls 14

https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Working with Ethereum nodes using AMB Access

You can use AMB Access Ethereum to create nodes and join them to Ethereum public networks.
A node is a computer that connects to a blockchain network. A blockchain network consists of
multiple parties (or peers) that are connected to each other in a decentralized way. When you use
AMB Access Ethereum, you pay for the nodes, the storage that you use, and the requests that are
made between the nodes and the network.

Creating a node

When you create an Ethereum node, you select the network that the node joins and the
configuration details such as the instance type and the Ethereum node type. When you create an
Ethereum node in Amazon Managed Blockchain (AMB), a full Geth node on the selected Ethereum
network is created. The IAM principal (user or group) that you use must have permissions to create
nodes and view node information. For more information, see Performing all available actions for
AMB Access Ethereum.

To create an Ethereum node, you must consider and select the following characteristics:

• Blockchain network – Amazon Managed Blockchain (AMB) supports the following public
Ethereum networks:

Mainnet – The proof-of-stake network of the primary public Ethereum blockchain. Transactions
on Mainnet have actual value (that is, they incur real costs) and are recorded on the distributed
ledger. This network supports the JSON-RPC and Consensus API operations.

• Blockchain instance type – This determines the computational and memory capacity allocated
to this node for the blockchain workload. If you anticipate a more demanding workload for each
node, you can choose more CPU and RAM. For example, your nodes might need to process a
higher rate of transactions. Different instance types are subject to different pricing.

Note

For optimal performance and minimal degradation, we recommend the bc.t3.xlarge
(or larger) instance size.

• Ethereum node type – The only node type that is currently supported is Full node (Geth). The
node uses the Geth execution client and the Lighthouse consensus client. For more information

Creating a node 15

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

about node types, see Node Types in the Ethereum developer documentation. For more
information on Execution clients such as Geth, see Execution clients in the Ethereum developer
documentation. For more information on Consensus clients such as Lighthouse, see Consensus
clients in the Ethereum developer documentation.

• Availability Zone – You can select the Availability Zone to launch the Ethereum node in. You can
distribute nodes across different Availability Zones. This way, you can design your blockchain
application for resiliency. For more information, see Regions and Availability Zones in the
Amazon EC2 User Guide.

To create an Ethereum node using the AWS Management Console

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. Choose Networks from the Access header in the left navigation.

3. Choose the Dedicated networks tab and select Ethereum Mainnet as your network to the
details page.

4. Choose Create node.

5. In the Create node page, choose the Blockchain instance type suitable for your application. If
your nodes need to process a higher rate of transactions more efficiently, choose an instance
type with more CPU and RAM.

6. Choose the Ethereum node type, choose Full node (Geth).

7. Choose the Availability zone such as us-east-1.

8. Optional, choose Add new tag in the Tags section.

9. Choose Create node.

Note

Amazon Managed Blockchain (AMB) Access Ethereum provisions and configures
the node for you. The length of this process is not instantaneous depends on many
variables.

To create an Ethereum node using the AWS CLI

The following example shows how to use the create-node command. Replace the value of --
network-id, InstanceType, and AvailabilityZone as appropriate.

Creating a node 16

https://ethereum.org/en/developers/docs/nodes-and-clients/#node-types
https://ethereum.org/en/developers/docs/nodes-and-clients/#execution-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#consensus-clients
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

aws managedblockchain create-node \
 --node-configuration '{"InstanceType":"bc.t3.xlarge","AvailabilityZone":"us-
east-1a"}' \
 --network-id n-ethereum-mainnet

Ethereum public networks have the following network IDs:

• n-ethereum-mainnet

The command returns the node ID, as shown in the following snippet.

{
 "NodeId": "nd-RG3GM4U7HFFHHHGJHHU7UNPCLU"
}

After you create the node, the Node details page in the AWS Management Console displays the
endpoints that you can use to make Ethereum API calls from code on a client. There are separate
endpoints for HTTP connections and WebSocket connections. For more information about sending
API calls to an Ethereum node in Amazon Managed Blockchain (AMB) to interact with smart
contracts, see Using Ethereum APIs with Amazon Managed Blockchain (AMB).

Viewing node details

After you create a node, you can view administrative properties for each node that your AWS
account owns. For example, you can view the endpoints to use for Ethereum API calls on HTTP and
WebSocket (JSON-RPC API only) connections, the node status, and important performance metrics
for the node. The IAM principal (user or group) that you use must have permissions to list and get
node information. For more information, see Identity-based policy examples.

Information such as the AMB Access instance type, Availability Zone, and creation date, is available
for the node. The following properties are also available:

• Status

• Creating

AMB Access is provisioning and configuring the AMB Access instance for the node. The amount
of time that it takes to create a node depends on many factors. Nodes on testnets typically
take a few minutes to create. Nodes on mainnet might take an hour or longer to create.

Viewing node details 17

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

• Available

The node is running and available on the network.

• Unhealthy

AMB Access detected a problem and is automatically replacing the blockchain instance
that the node runs on. Nodes in an unhealthy state typically return to an available state in
approximately five minutes.

• Failed

The node has an issue that caused AMB Access to add it to the deny list on the network. This
usually indicates that the node reached its memory or storage capacity. As a first step, we
recommend that you delete the instance and provision an instance type with more capability.

• Create Failed

The node couldn't be created with the AMB Access instance type and the Availability Zone
specified. We recommend trying another availability zone, a different instance type, or both.

• Deleting

The node is being deleted.

• Deleted

The node is now deleted. For possible reasons, see the previous item.

• Endpoints

Endpoints are used to make Ethereum API calls to the node. When AMB Access creates the node,
it assigns unique endpoints. Nodes support connections over HTTP and WebSockets (JSON-RPC
API only). You use a different endpoint for each connection. For more information, see Using
Ethereum APIs with Amazon Managed Blockchain (AMB).

To view Ethereum node information using the AWS Management Console

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. If the console doesn't open to the Networks list, choose Networks from the navigation pane.

3. Choose the Name of the Ethereum network that the node belongs to from the list.

4. On the network details page, under Nodes, choose the Node ID.
Viewing node details 18

https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

5. The following example shows how the node details page displays key properties and metrics
for the node.

To view Ethereum node information using the AWS CLI

The following example shows how to use the get-node command to view Ethereum node
information. Replace the value of --network-id and --node-id as appropriate.

aws managedblockchain get-node \
 --network-id n-ethereum-mainnet \
 --node-id nd-RG3GM4U7HFFHHHGJHHU7UNPCLU

The command returns the following output that includes the node's HttpEndpoint,
WebSocketEndpoint, and other key properties.

Viewing node details 19

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

{
 "Node": {
 "NetworkId": "n-ethereum-mainnet",
 "Id": "nd-RG3GM4U7HFFHHHGJHHU7UNPCLU",
 "InstanceType": "bc.t3.xlarge",
 "AvailabilityZone": "us-east-1a",
 "FrameworkAttributes": {
 "Ethereum": {
 "HttpEndpoint": "nd-
rg3gm4u7hffhhhgjhhu7unpclu.ethereum.managedblockchain.us-east-1.amazonaws.com",
 "WebSocketEndpoint": "nd-
rg3gm4u7hffhhhgjhhu7unpclu.wss.ethereum.managedblockchain.us-east-1.amazonaws.com"
 }
 },
 "Status": "CREATING",
 "CreationDate": "2021-06-25T20:10:18.555000+00:00",
 "Tags": {},
 "Arn": "arn:aws:managedblockchain:us-east-1:111122223333:nodes/nd-
RG3GM4U7HFFHHHGJHHU7UNPCLU"
 }
}

Deleting a node

When you delete an Ethereum node from AMB Access, all resources that are stored on that node
are immediately deleted. The IAM principal (user or group) that you use must have permissions to
delete nodes. For more information, see Performing all available actions for AMB Access Ethereum.

To delete an Ethereum node using the AWS Management Console

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. If the console doesn't open to the Networks list, choose Networks from the navigation pane.

3. Choose the Name of the Ethereum network that the node belongs to from the list.

4. On the network details page, under Nodes, select the Node ID, and then choose Delete.

To delete an Ethereum node using the AWS CLI

Use the delete-node command to delete an Ethereum node. Replace the value of --network-
id and --node-id as appropriate.

Deleting a node 20

https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

aws managedblockchain delete-node \
 --network-id n-ethereum-mainnet \
 --node-id nd-RG3GM4U7HFFHHHGJHHU7UNPCLU

Deleting a node 21

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Using token based access to make Ethereum API calls to
Ethereum nodes in Amazon Managed Blockchain (AMB)

You can use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN
from one of the Accessor tokens that you create as a query parameter with the call.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based
access. However, if you choose to use token based access, then any security benefits that
are provided by using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

In the console, the Token accessors page displays a list of all the Accessor tokens that you can use
to make Ethereum API calls to nodes in your AWS account from code on a client. There are separate
endpoints for HTTP connections and WebSocket connections.

To learn more about how to make Ethereum API calls using token based access with your Accessor
tokens, see:

• Using token based access to make JSON-RPC API calls to an Ethereum node.

• Using token based access to make Consensus API calls to an Ethereum node.

You can create and manage Accessor tokens using the AWS Management Console. You can also
create and manage Accessor tokens using the following API operations: CreateAccessor,
GetAccessor, ListAccessors, and DeleteAccessor. A BILLING_TOKEN is a property of the
Accessor. This BillingToken property is used to track your Accessor and for billing Ethereum API
requests made to Ethereum nodes in your AWS account.

All API actions related to creating and managing Accessor tokens are also available through the
AWS CLI and SDKs.

22

https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_CreateAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_GetAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_GetAccessor.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_ListAccessors.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_DeleteAccessor.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Creating an Accessor token for token based access

You can create an Accessor token and use it to make Ethereum API calls on any Ethereum node in
your AWS account.

Create an Accessor token to access an Ethereum node using the AWS Management
Console

<result>

AMB Access then provisions and configures the token for you. The length of this process depends
on many variables.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. Choose Token accessors.

3. Choose Create accessor.

4. Choose a valid Ethereum blockchain Network.

5. Optional, add Tags for your Accessor.

6. Choose Create accessor to create a new Accessor token.

Create an Accessor token to access an Ethereum node using the AWS CLI

aws managedblockchain create-accessor --accessor-type BILLING_TOKEN --network-type
 ETHEREUM_MAINNET

The previous command returns the AccessorId along with the BillingToken, as shown in the
following example.

{
"AccessorId": "ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA",
"NetworkType": "ETHEREUM_MAINNET",
"BillingToken": "jZlP8OUI-PcQSKINyX9euJJDC5-IcW9e-nm1NyKH3n"
}

The key element in the response is the BillingToken. You can use this property to make
Ethereum API calls to your Ethereum nodes.

Creating an Accessor token for token based access 23

https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Note

You can use BillingToken to make Ethereum API calls to all the nodes owned by the
AWS account that created the Accessor token.

Viewing an Accessor token details

You can view the properties for each Accessor token that your AWS account owns. For example, you
can view the Accessor ID or the Amazon Resource Name (ARN) of the Accessor. You can also view
the status, the type, the creation date, and the BILLING_TOKEN.

To view an Accessor token's information using the AWS Management Console

<result>

The token details page pops up. From this page, you can view the properties of the token including
endpoints to use for Ethereum API calls on HTTP and WebSocket (JSON-RPC API only) connections,
the status, and the unique identifier for the token.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. In the navigation pane, choose Token accessors.

3. Choose the Accessor ID of the token from the list.

To view an Accessor token's information using the AWS CLI

Run the following command to view the details of an Accessor token. Replace values of --
accessor-id with your Accessor ID.

aws managedblockchain get-accessor --accessor-id ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA

The BillingToken and other key properties are returned as shown in the following example.

{
 "Accessor": {
 "Id": "ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA",

Viewing an Accessor token details 24

https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "Type": "BILLING_TOKEN",
 "BillingToken": "jZlP8OUI-PcQSKINyX9euJJDC5-IcW9e-nm1NyKH3n",
 "Status": "AVAILABLE",
 "NetworkType": "ETHEREUM_MAINNET",
 "CreationDate": "2022-01-04T23:09:47.750Z",
 "Arn": "arn:aws:managedblockchain:us-east-1:251534485660:accessors/ac-
NGQ6QNKXLNEBXD3UI6XFDIL3VA"
 }
}

Deleting an Accessor token

When you delete an Accessor token, the token changes from the AVAILABLE to the
PENDING_DELETION status. You can't use an Accessor token with the PENDING_DELETION status
for WebSocket requests and HTTP requests.

Note

WebSocket connections that were initiated while the Accessor token was in AVAILABLE
status might remain open for up to 2 hours after they expire. An Accessor token with the
PENDING_DELETION status eventually becomes unavailable through GetAccessor calls.
Within 48 hours, it also disappears from ListAccessor results.

To delete an Accessor token using the AWS Management Console

<result>

You're returned to the Tokens accessors page with your deleted Accessor token. The page displays
the PENDING_DELETION status.
</result>

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. In the navigation pane, choose Token accessors.

3. Select the Accessor token that you want from the list.

4. Choose Delete.

5. Confirm your choice.

Deleting an Accessor token 25

https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

To delete an Accessor token using the AWS CLI

The following example shows how to delete a token. Use the delete-accessor command to
delete a token. Set the value of --accessor-id with your Accessor ID.

Deleting an Accessor token using the AWS CLI

aws managedblockchain delete-accessor --accessor-id ac-NGQ6QNKXLNEBXD3UI6XFDIL3VA

If this command runs successfully, no messages are returned.

Deleting an Accessor token 26

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Using Ethereum APIs with Amazon Managed Blockchain
(AMB)

Amazon Managed Blockchain (AMB) provides API operations for creating and managing token
accessors, nodes, and networks for AMB Access Ethereum. For more information, see the AMB
Access API Reference Guide .

The following section provides a list and reference of the Ethereum (JSON-RPC and Consensus)
API methods that Amazon Managed Blockchain (AMB) supports. It also includes code examples
that implement API calls from clients using either HTTP or WebSocket (JSON-RPC API only)
connections.

You use the Ethereum API from a client to query smart contract data and submit transactions to an
Ethereum node on Amazon Managed Blockchain (AMB). You use the Ethereum Consensus API from
a client to query the Beacon chain, its configuration, and the node health. For more information,
see Viewing node details.

Execution and consensus client support

The Ethereum Merge transitioned the Ethereum blockchain to a proof-of-stake consensus, and
it resulted in a new modular design for Ethereum. After the Merge, the original Ethereum stack
forked into two distinct layers: the execution layer and the consensus layer. There are many
different client implementations for both of these layers; however, Amazon Managed Blockchain
(AMB) provides a fully managed Ethereum node that uses the GoEthereum (Geth) execution client
and the Lighthouse consensus client.

Topics

• Supported JSON-RPC methods

• Supported Consensus API methods

Supported JSON-RPC methods

Amazon Managed Blockchain (AMB) Access Ethereum supports the following Ethereum JSON-RPC
API methods. Each supported API call has a brief description of its utility. Unique considerations
for using the JSON-RPC method with an Ethereum node in Amazon Managed Blockchain (AMB) are
indicated where applicable.

Supported JSON-RPC methods 27

https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/Welcome.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Note

• Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be
authenticated by using the Signature Version 4 (SigV4) signing process. This means that
only authorized IAM principals in the AWS account that created the node can interact
with it using the Ethereum APIs. AWS credentials (an access key ID and secret access key)
must be provided with the call.

• Token based access can also be used to make Ethereum API calls to an Ethereum node
as a convenient alternative to the Signature Version 4 (SigV4) signing process. If you
prioritize security and auditability over convenience, use the SigV4 signing process
instead. However, if you use token based access to make Ethereum APIs calls, any security
benefits that are provided by using the SigV4 signing process is negated.

• JSON-RPC batch requests aren't supported on Amazon Managed Blockchain (AMB)
Access Ethereum.

• WebSocket calls have a 512 KB payload quota. Some calls might exceed this quota and
cause a "message response is too large" error. For this reason, we recommend you use
HTTP for these requests instead of WebSocket connections.

• If your HTTP response is larger than 5.9 MB, you will get an error. To correct this, you
must set both compression headers as Accept: application/gzip and Accept-
Encoding: gzip. The compressed response your client then receives contains the
following headers: Content-Type: application/json and Content-Encoding:
gzip.

• For historic data that requires archival nodes, use Amazon Managed Blockchain (AMB)
Query. For more information, see the AMB Query Developer Guide.

Topics

• Making JSON-RPC API calls to an Ethereum node in Amazon Managed Blockchain (AMB)

The block identifier parameter

Some methods have an extra block identifier parameter. The following options are possible values
for this parameter:

• A hexadecimal string value that represents an integer block number.

Supported JSON-RPC methods 28

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/managed-blockchain/latest/ambq-dg

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

• "earliest" – String for the genesis block.

• "latest" – String for the latest mined block.

• "pending" – String for the pending state transactions.

Method Description Considerations

debug_traceBlock Returns the full
stack trace of
all the invoked
opcodes for all
the transacti
ons that were
included in the
block provided
as a parameter
in RLP format.

Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

debug_traceBlockByHash Returns the full
stack trace of
all the transacti
ons that were
included in a
specified block
by its hash.

Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

debug_traceBlockByNumber Returns the full
stack trace of
all the transacti
ons that were
included in the
specified block
number.

Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

debug_traceCall Returns the
full stack trace
after running

Only data for
the most recent
128 blocks is

Supported JSON-RPC methods 29

https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtraceblock
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtraceblockbyhash
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtraceblockbynumber
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtracecall

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

an eth_call
within the
context of the
given block
execution. The
method is also
used to simulate
the outcomes of
transactions and
supports custom
tracers.

supported.
Archival data is
not supported.

debug_traceTransaction Attempts to
return all traces
for a given
transaction.

eth_blockNumber Returns the
number of the
most recent
block.

eth_call Immediate
ly runs a new
message call
without creating
a transaction on
the blockchain.

eth_call
consumes 0
gas, but has a
gas parameter
for messages
that require it.
Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

Supported JSON-RPC methods 30

https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debugtracetransaction
https://eth.wiki/json-rpc/API#eth_blocknumber
https://eth.wiki/json-rpc/API#eth_call

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_chainId Returns an
integer value
for the currently
configured
Chain Id value
that's introduce
d in EIP-155.
Returns None if
no Chain Id is
available.

Supported JSON-RPC methods 31

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_createAccessList This method
creates an
EIP2930 type
accessList
based on a given
Transaction .
The accessLis
t contains all
the storage slots
and addresses
read and written
by the transacti
on, except for
the sender
account and
the precompil
es. This method
uses the same
transacti
on call object
and blockNumb
erOrTag
object as
eth_call.

An accessLis
t can be used
to unstuck
contracts that
became inaccessi
ble due to gas
cost increases.

eth_estimateGas Estimates and
returns the gas
that's required
for a transaction
without adding
the transaction
to the blockchai
n.

Supported JSON-RPC methods 32

https://eips.ethereum.org/EIPS/eip-2930
https://eth.wiki/json-rpc/API#eth_estimategas

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_feeHistory Returns a
collection of
historical gas
information.

eth_gasPrice Returns the
current price per
gas in Wei.

eth_getBalance Returns the
balance of an
account for
the specified
account address
and block
identifier.

Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

eth_getBlockByHash Returns
information
about the block
specified using
the block hash.

eth_getBlockByNumber Returns
information
about the
block specified
using the block
number.

eth_getBlockTransactionCountByHash Returns the
number of
transactions
in the block
specified using
the block hash.

Supported JSON-RPC methods 33

https://eth.wiki/json-rpc/API#eth_gasprice
https://eth.wiki/json-rpc/API#eth_getbalance
https://eth.wiki/json-rpc/API#eth_getblockbyhash
https://eth.wiki/json-rpc/API#eth_getblockbynumber
https://eth.wiki/json-rpc/API#eth_getblocktransactioncountbyhash

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_getBlockTransactionCountByNumber Returns the
number of
transactions
in the block
specified using
the block
number.

eth_getCode Returns the code
at the specified
account address
and block
identifier.

Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

eth_getFilterChanges Polls the
specified filter
ID, retuning an
array of logs
that occurred
since the last
poll.

Filters are
ephemeral. If
AMB Access
needs to
manage or
maintain node
instances for
availability and
performance,
and an instance
is replaced,
filters might
be deleted. We
recommend
that you write
your application
code to handle
the occasiona
l deletion of
filters.

Supported JSON-RPC methods 34

https://eth.wiki/json-rpc/API#eth_getblocktransactioncountbynumber
https://eth.wiki/json-rpc/API#eth_getcode
https://eth.wiki/json-rpc/API#eth_getfilterchanges

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_getFilterLogs Returns an array
of all logs for
the specified
filter ID.

Filters are
ephemeral. If
AMB Access
needs to
manage or
maintain node
instances for
availability and
performance,
and an instance
is replaced,
filters might
be deleted. We
recommend
that you write
your application
code to handle
the occasiona
l deletion of
filters.

Supported JSON-RPC methods 35

https://eth.wiki/json-rpc/API#eth_getfilterlogs

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_getLogs Returns an array
of all logs for a
specified filter
object.

Filters are
ephemeral. If
AMB Access
needs to
manage or
maintain node
instances for
availability and
performance,
and an instance
is replaced,
filters might
be deleted. We
recommend
that you write
your application
code to handle
the occasiona
l deletion of
filters.

eth_getProof Experimental
– Returns the
account and
storage values
of the specified
account,
including the
Merkle proof.

Supported JSON-RPC methods 36

https://eth.wiki/json-rpc/API#eth_getlogs

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_getStorageAt Returns the
value of the
specified storage
position for
the specified
account address
and block
identifier.

Only data for
the most recent
128 blocks is
supported.
Archival data is
not supported.

eth_getTransactionByBlockHashAndIndex Returns
information
about a transacti
on using the
specified block
hash and
transaction
index position.

eth_getTransactionByBlockNumberAndIndex Returns
information
about a transacti
on using the
specified block
number and
transaction
index position.

eth_getTransactionByHash Returns
information
about the
transaction with
the specified
transaction
hash.

Supported JSON-RPC methods 37

https://eth.wiki/json-rpc/API#eth_getstorageat
https://eth.wiki/json-rpc/API#eth_gettransactionbyblockhashandindex
https://eth.wiki/json-rpc/API#eth_gettransactionbyblocknumberandindex
https://eth.wiki/json-rpc/API#eth_gettransactionbyhash

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_getTransactionCount Returns the
number of
transactions
sent from
the specified
address and
block identifier.

eth_getTransactionReceipt Returns the
receipt of
the transacti
on using the
specified
transaction
hash.

eth_getUncleByBlockHashAndIndex Returns
information
about the uncle
block specified
using the block
hash and uncle
index position.

eth_getUncleByBlockNumberAndIndex Returns
information
about the uncle
block specified
using the block
number and
uncle index
position.

Supported JSON-RPC methods 38

https://eth.wiki/json-rpc/API#eth_gettransactioncount
https://eth.wiki/json-rpc/API#eth_gettransactionreceipt
https://eth.wiki/json-rpc/API#eth_getunclebyblockhashandindex
https://eth.wiki/json-rpc/API#eth_getunclebyblocknumberandindex

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_getUncleCountByBlockHash Returns the
number of
counts in the
uncle specified
using the uncle
hash.

eth_getUncleCountByBlockNumber Returns the
number of
counts in the
uncle specified
using the uncle
number.

eth_getWork Returns the hash
of the current
block, the
seedHash, and
the boundary
condition (also
called the
"target") to be
met.

eth_maxPriorityFeePerGas Returns the fee
per gas that's an
estimate of how
much you can
pay as a priority
fee, or "tip," to
get a transaction
included in the
current block.

Generally you
use the value
that's returned
from this
method to set
the maxFeePer
Gas in the
subsequent
transaction that
you're submittin
g.

Supported JSON-RPC methods 39

https://eth.wiki/json-rpc/API#eth_getunclecountbyblockhash
https://eth.wiki/json-rpc/API#eth_getunclecountbyblocknumber
https://eth.wiki/json-rpc/API#eth_getwork

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_newBlockFilter Creates a filter
in the node to
notify when
a new block
arrives. Use
eth_getFi
lterChang
es to check for
state changes.

eth_newFilter Creates a filter
object with the
specified filter
options (such as
from block, to
block, contract
address, or
topics).

eth_newPendingTransactionFilter Creates a filter
in the node to
notify when
new pending
transactions
arrive. Use
<code>eth
_getFilte
rChanges<
/code> to
check for state
changes.

Supported JSON-RPC methods 40

https://eth.wiki/json-rpc/API#eth_newblockfilter
https://eth.wiki/json-rpc/API#eth_newfilter
https://eth.wiki/json-rpc/API#eth_newpendingtransactionfilter

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_protocolVersion Returns
the current
Ethereum
protocol version.

eth_sendRawTransaction Creates a new
message call
transaction
or a contract
creation for
signed transacti
ons.

AMB Access
supports raw
transactions
only. You must
create and sign
transactions
before sending
them. For more
information, see
How to create
raw transactions
in Ethereum.

eth_subscribe Experimental
for publicati
on subscript
ion – Creates a
subscription for
specified events
and returns a
subscription ID.

Available only
when using
WebSocket
connections.
Subscriptions
are coupled to
each connectio
n. When the
connection
closes, the
subscription is
removed.

Supported JSON-RPC methods 41

https://eth.wiki/json-rpc/API#eth_protocolversion
https://eth.wiki/json-rpc/API#eth_sendrawtransaction
https://medium.com/blockchain-musings/how-to-create-raw-transactions-in-ethereum-part-1-1df91abdba7c
https://medium.com/blockchain-musings/how-to-create-raw-transactions-in-ethereum-part-1-1df91abdba7c
https://medium.com/blockchain-musings/how-to-create-raw-transactions-in-ethereum-part-1-1df91abdba7c
https://geth.ethereum.org/docs/interacting-with-geth/rpc/pubsub

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

eth_syncing Returns an
object with sync
status data or
false when not
syncing.

eth_uninstallFilter Uninstalls the
filter with the
specified filter
ID.

eth_unsubscribe Experimental
for publicati
on subscript
ion – Cancels
the subscript
ion with the
specified
subscription ID.

net_listening Returns true
if the client is
actively listening
for network
connections.

net_peerCount Returns the
number of
peers currently
connected to the
client.

net_version Returns the
current network
ID.

Supported JSON-RPC methods 42

https://eth.wiki/json-rpc/API#eth_syncing
https://eth.wiki/json-rpc/API#eth_uninstallfilter
https://geth.ethereum.org/docs/interacting-with-geth/rpc/pubsub#cancel-subscriptions
https://eth.wiki/json-rpc/API#net_listening
https://eth.wiki/json-rpc/API#net_peercount
https://eth.wiki/json-rpc/API#net_version

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description Considerations

txpool_inspect Lists a textual
summary of all
the transacti
ons that are
currently
pending
inclusion in the
next blocks, and
those that are
queued (being
scheduled for
future execution
 only).

txpool_status Provides a count
of all transacti
ons currently
pending
inclusion in the
next blocks, and
those that are
queued (being
scheduled for
future execution
only).

web3_clientVersion Returns the
current client
version.

web3_sha3 Returns
Keccak-256 (not
the standardized
SHA3-256) of
the given data.

Supported JSON-RPC methods 43

https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-txpool#txpool-inspect
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-txpool#txpool-status
https://eth.wiki/json-rpc/API#web3_clientversion
https://eth.wiki/json-rpc/API#web3_sha3

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Making JSON-RPC API calls to an Ethereum node in Amazon Managed
Blockchain (AMB)

The following examples demonstrate ways to make Ethereum JSON-RPC API calls to an Ethereum
node in Amazon Managed Blockchain (AMB).

Topics

• Using Signature Version 4 to make JSON-RPC API calls to an Ethereum node

• Using token based access to make JSON-RPC API calls to an Ethereum node

Using Signature Version 4 to make JSON-RPC API calls to an Ethereum node

The following sections demonstrate ways to make JSON-RPC API calls to an Ethereum node on
Amazon Managed Blockchain (AMB) using the Signature Version 4 signing process.

Important

The Signature Version 4 signing process requires the credentials that are associated with
an AWS account. Some examples in this section export these sensitive credentials to the
shell environment of the client. Only use these examples on a client that run in a trusted
context. Do not use these examples in an untrusted context, such as in a web browser
or mobile app. Never embed client credentials in user-facing applications. To expose an
Ethereum node in AMB Access to anonymous users visiting from trusted web domains, you
can set up a separate endpoint in Amazon API Gateway that's backed by a Lambda function
that forwards requests to your node using the proper IAM credentials.

Topics

• Endpoint format for making JSON-RPC API calls over WebSocket and HTTP connections using
Signature Version 4

• Using web3.js to make JSON-RPC API calls

• Making JSON-RPC API call using AWS SDK for JavaScript with a WebSocket connection to an
Ethereum node in Amazon Managed Blockchain (AMB)

• Making JSON-RPC API calls using awscurl over HTTP

Examples using the JSON-RPC API 44

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Endpoint format for making JSON-RPC API calls over WebSocket and HTTP connections using
Signature Version 4

Example

An Ethereum node created using AMB Access Ethereum hosts one endpoint for WebSocket
connections and another for HTTP connections. These endpoints conform to the following
patterns.

Note

The node ID is case sensitive and must be lowercase where indicated, or a signature
mismatch error occurs.

WebSocket endpoint format

wss://your-node-id-lowercase.wss.ethereum.managedblockchain.us-east-1.amazonaws.com/

For example: wss://
nd-6eaj5va43jggnpxouzp7y47e4y.wss.ethereum.managedblockchain.us-
east-1.amazonaws.com/

HTTP endpoint format

https://your-node-id-lowercase.ethereum.managedblockchain.us-east-1.amazonaws.com/

For example, https://
nd-6eaj5va43jggnpxouzp7y47e4y.ethereum.managedblockchain.us-
east-1.amazonaws.com/

Using web3.js to make JSON-RPC API calls

Web3.js is a popular collection of JavaScript libraries available using the Node package manager
(npm). You can run the following examples to send a JSON-RPC API call to Ethereum using a
Javascript file for Node.js. The examples demonstrate an HTTP connection and a WebSocket
connection to an Ethereum node.

Examples using the JSON-RPC API 45

https://web3js.readthedocs.io/en/v1.3.0/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Both HTTP and WebSocket connection types rely on a local connection provider library to open
the Signature Version 4 authenticated connection to the Ethereum node. You install the provider
for the connection locally by copying the source code to a file on your client. Then, reference the
library files in the script that makes the Ethereum API call.

Prerequisites

Example

Running the example scripts requires the following prerequisites. Prerequisites for both HTTP and
WebSocket connections are included.

1. You must have node version manager (nvm) and Node.js installed on your machine. If you use
an Amazon EC2 instance as your Ethereum client, see Tutorial: Setting Up Node.js on an Amazon
EC2 Instance for more information.

2. Type node --version and verify that you are using Node version 14 or later. If necessary,
you can use the nvm install 14 command followed by the nvm use 14 command to install
version 14.

3. The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain
the credentials that are associated with the same AWS account that created the node. The
environment variables AMB_HTTP_ENDPOINT and AMB_WS_ENDPOINT must contain your
Ethereum node's HTTP and WebSocket endpoints respectively.

Export these variables as strings on your client using the following commands. Replace the
values with appropriate values from your IAM user account.

export AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"

export AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

export
 AMB_HTTP_ENDPOINT="https://
nd-6eaj5va43jggnpxouzp7y47e4y.ethereum.managedblockchain.us-east-1.amazonaws.com/"

export
 AMB_WS_ENDPOINT="wss://
nd-6eaj5va43jggnpxouzp7y47e4y.wss.ethereum.managedblockchain.us-
east-1.amazonaws.com/"

Examples using the JSON-RPC API 46

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Example

To make an Ethereum API call using web3.js over HTTP to your Ethereum node in the AMB
Access

1. This example script uses the ECMAScript (ES) module. Therefore, add the "type": "module"
line to your package.json file. The example package.json snippet that follows shows the
contents required to successfully run this example.

{
 "type": "module",
 "dependencies": {
 "@aws-crypto/sha256-js": "^4.0.0",
 "@aws-sdk/credential-providers": "^3.352.0",
 "@aws-sdk/fetch-http-handler": "^3.353.0",
 "@aws-sdk/protocol-http": "^3.347.0",
 "@aws-sdk/signature-v4": "^3.347.0",
 "@aws-sdk/types": "^3.347.0",
 "web3": "^1.10.0",
 "xhr2": "^0.2.1"
 }
}

2. Use node package manager (npm) to install the requisite dependencies.

npm install

3. Copy the contents of the example that follows, and then use your preferred text editor to save
it to a file that's named awsHttpSigV4-v2.js on your client machine in the same directory
where you run your script.

Contents of awsHttpSigV4-v2.js

///
// Authored by Rafia Tapia
// Senior Blockchain Solutions Architect, AWS
// licensed under GNU Lesser General Public License
// https://github.com/ethereum/web3.js
///
import HttpProvider from 'web3-providers-http';
import XHR2 from 'xhr2';
import { fromEnv} from '@aws-sdk/credential-providers';

Examples using the JSON-RPC API 47

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

import sigv4 from '@aws-sdk/signature-v4';
import http from '@aws-sdk/protocol-http';
import crypto from "@aws-crypto/sha256-js";
export default class AWSHttpSigV4_v2Provider extends HttpProvider {
 constructor(connectionStr) {
 super(connectionStr);
 }
 send(payload, callback) {
 const self = this;
 /* ******************** XHR2 *************************** */
 const request = new XHR2(); // eslint-disable-line
 request.timeout = self.timeout;
 request.open('POST', self.host, true);
 request.setRequestHeader('Content-Type', 'application/json');
 request.onreadystatechange = () => {
 if (request.readyState === 4 && request.timeout !== 1) {
 let result = request.responseText; // eslint-disable-line
 let error = null; // eslint-disable-line
 try {
 result = JSON.parse(result);
 } catch (jsonError) {
 let message;
 if (!!result && !!result.error && !!result.error.message) {
 message = `[aws-ethjs-provider-http] ${result.error.message}`;
 } else {
 message = `[aws-ethjs-provider-http] Invalid JSON RPC response from
 host provider ${self.host}: ` +
 `${JSON.stringify(result, null, 2)}`;
 }
 error = new Error(message);
 }
 self.connected = true;
 callback(error, result);
 }
 };
 request.ontimeout = () => {
 self.connected = false;
 callback(`[aws-ethjs-provider-http] CONNECTION TIMEOUT: http request timeout
 after ${self.timeout} ` +
 `ms. (i.e. your connect has timed out for whatever reason, check your
 provider).`, null);
 };
 /* ******************** END XHR2 *************************** */
 const strPayload = JSON.stringify(payload);

Examples using the JSON-RPC API 48

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 const region = process.env.AWS_DEFAULT_REGION || 'us-east-1';
 try {
 const urlparser=new URL(self.host)
 let signerV4 = new sigv4.SignatureV4({ credentials: fromEnv(), region:
 region, service: "managedblockchain", sha256: crypto.Sha256 });
 let requestOptions={
 protocol:urlparser.protocol,
 hostname:urlparser.hostname,
 method: 'POST',
 body:strPayload,
 headers:{'host':urlparser.host},
 path:urlparser.pathname
 }
 const newReq = new http.HttpRequest(requestOptions);
 signerV4.sign(newReq,{signingDate:new Date(),}).then(signedHttpRequest => {
 request.setRequestHeader('authorization',
 signedHttpRequest.headers['authorization']);
 request.setRequestHeader('x-amz-date', signedHttpRequest.headers['x-amz-
date']);
 request.setRequestHeader('x-amz-content-sha256',
 signedHttpRequest.headers['x-amz-content-sha256']);
 request.send(strPayload);
 }).catch(sigError => {
 console.log(sigError);
 });
 } catch (error) {
 callback(`[aws-ethjs-provider-http] CONNECTION ERROR: Couldn't connect to
 node '${self.host}': ` +
 `${JSON.stringify(error, null, 2)}`, null);
 }
 }
}

4. Copy the contents of the following example, and then use your preferred text editor to save
it to a file that's named web3-example-http.js in the same directory where you saved the
provider from the previous step. The example script runs the getNodeInfo Ethereum method.
You can modify the script to include other methods and their parameters.

Contents of web3-example-http.js

import AWSHttpSigV4_v2Provider from './awsHttpSigV4-v2.js';
const endpoint = process.env.AMB_HTTP_ENDPOINT
const web3 = new Web3(new AWSHttpSigV4_v2Provider(endpoint));

Examples using the JSON-RPC API 49

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

web3.eth.getNodeInfo().then(console.log);

5. Run the script to call the Ethereum API method over HTTP on your Ethereum node.

node web3-example-http.js

The output is similar to the following.

Geth/v1.9.24-stable-cc05b050/linux-amd64/go1.15.5

To make an Ethereum API call using web3.js over WebSocket to your Ethereum node in the AMB
Access

1. The following example package.json snippet that follows shows the dependencies required
to successfully run the example.

"@aws-sdk/credential-providers": "^3.352.0",
"@aws-sdk/fetch-http-handler": "^3.353.0",
"@aws-sdk/protocol-http": "^3.347.0",
"@aws-sdk/signature-v4": "^3.347.0",
"@aws-sdk/types": "^3.347.0",
"web3": "^1.10.0",
"websocket": "^1.0.34"1*"

2. Use node package manager (npm) to install the requisite dependencies.

npm install

3. Copy the contents of the example that follows, and then use a text editor of your choosing
to save it to a file that's named web3-example-ws.js in the same directory on your client
where you run your script.

Contents of web3-example-ws.js

// Authored by Rafia Tapia
// Senior Blockchain Solutions Architect, AWS
// licensed under GNU Lesser General Public License
// https://github.com/ethereum/web3.js
///

Examples using the JSON-RPC API 50

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

import Web3 from 'web3';
import WebsocketProvider from 'web3-providers-ws';
import { fromEnv } from '@aws-sdk/credential-providers';
import sigv4 from '@aws-sdk/signature-v4';
import http from '@aws-sdk/protocol-http';
import crypto from "@aws-crypto/sha256-js";

const endpoint = process.env.AMB_WS_ENDPOINT
const region = process.env.AWS_DEFAULT_REGION || 'us-east-1';
const urlparser = new URL(endpoint);
let signerV4 = new sigv4.SignatureV4({ credentials: fromEnv(), region: region,
 service: "managedblockchain", sha256: crypto.Sha256 });
let reqOptions = {
 protocol: "HTTPS",
 hostname: urlparser.hostname,
 method: 'GET',
 body: "",
 headers: { 'host': urlparser.host },
 path: urlparser.pathname

};
const newReq = new http.HttpRequest(reqOptions);
signerV4.sign(newReq, { signingDate: new Date(), }).then(signedHttpRequest => {
 const options = {
 headers: {
 'Authorization': signedHttpRequest.headers['authorization'],
 "X-Amz-Date": signedHttpRequest.headers['x-amz-date'],
 "X-Amz-Content-Sha256": signedHttpRequest.headers['x-amz-content-
sha256'],
 'host':signedHttpRequest.headers['host']
 }
 };
 const web3 = new Web3(new WebsocketProvider(endpoint, options));
 web3.eth.getNodeInfo().then(console.log).then(() => {
 web3.currentProvider.connection.close();
 });

}).catch(sigError => {
 console.log(sigError);
})

4. Run the script to call the Ethereum API method over WebSocket on your Ethereum node.

Examples using the JSON-RPC API 51

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

node web3-example-ws.js

The output is similar to following.

Geth/v1.9.24-stable-cc05b050/linux-amd64/go1.15.5

Making JSON-RPC API call using AWS SDK for JavaScript with a WebSocket connection to an
Ethereum node in Amazon Managed Blockchain (AMB)

The following example uses a JavaScript file for Node.js to open a WebSocket connection to the
Ethereum node endpoint in AMB Access and sends an Ethereum JSON-RPC API call.

Running the example script requires the following:

• Node.js is installed on your machine. If you are using an Amazon EC2 instance, see Tutorial:
Setting Up Node.js on an Amazon EC2 Instance.

• The following example package.json snippet that follows shows the dependencies required to
successfully run the example.

"@aws-sdk/credential-providers": "^3.352.0",
"@aws-sdk/fetch-http-handler": "^3.353.0",
"@aws-sdk/protocol-http": "^3.347.0",
"@aws-sdk/signature-v4": "^3.347.0",
"@aws-sdk/types": "^3.347.0",
"web3": "^1.10.0",
"websocket-client": "^1.0.0",
"ws": "^8.14.2"

• Use node package manager (npm) to install the requisite dependencies.

Example To make an Ethereum API call over WebSocket to your Ethereum node on AMB Access

1. Copy the contents of the following script and save it to a file on your machine (for example,
ws-ethereum-example.js).

The example calls the Ethereum JSON-RPC method eth_subscribe along with the
newHeads parameter. You can replace this method and its parameters with any method that's
listed in Supported JSON-RPC methods.

Examples using the JSON-RPC API 52

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Contents of ws-ethereum-example.js

// Authored by Rafia Tapia
// Senior Blockchain Solutions Architect, AWS
// licensed under GNU Lesser General Public License
// https://github.com/ethereum/web3.js
///

import Web3 from 'web3';
import { fromEnv } from '@aws-sdk/credential-providers';
import sigv4 from '@aws-sdk/signature-v4';
import http from '@aws-sdk/protocol-http';
import crypto from "@aws-crypto/sha256-js";
import WebSocket from 'ws';

const endpoint = process.env.AMB_WS_ENDPOINT
const region = process.env.AWS_DEFAULT_REGION || 'us-east-1';
const urlparser = new URL(endpoint);
let signerV4 = new sigv4.SignatureV4({ credentials: fromEnv(), region: region,
 service: "managedblockchain", sha256: crypto.Sha256 });
let reqOptions = {
 protocol: "HTTPS",
 hostname: urlparser.hostname,
 method: 'GET',
 body: "",
 headers: { 'host': urlparser.host },
 path: urlparser.pathname

};
const newReq = new http.HttpRequest(reqOptions);
signerV4.sign(newReq, { signingDate: new Date(), }).then(signedHttpRequest => {
 let payload = {
 jsonrpc: '2.0',
 method: 'eth_subscribe',
 params: ["newHeads"],
 id: 67
 }
 const ws = new WebSocket(endpoint, { headers: signedHttpRequest.headers });
 ws.onopen = async () => {
 ws.send(JSON.stringify(payload));
 console.log('Sent request');
 }
 ws.onerror = (error) => {

Examples using the JSON-RPC API 53

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 console.error(`WebSocket error: ${error.message}`)
 }
 ws.onmessage = (e) => {
 console.log(e.data)
 }
}).catch(sigError => {
 console.log(sigError);
})

2. Run the following command to call the Ethereum API method over WebSocket on your
Ethereum node.

node ws-ethereum-example.js

The eth_subscribe method with the newHeads parameter generates a notification each
time a new header is appended to the chain. Output is similar to the following example. The
WebSocket connection remains open and additional notifications appear until you cancel the
command.

sent request
{"id":67,"jsonrpc":"2.0","result":"0xabcd123456789efg0h123ijk45l6m7n8"}

Making JSON-RPC API calls using awscurl over HTTP

Example

The example that follows uses awscurl, which sends a signed HTTP request based on the current
credentials you have set for the AWS CLI. If you construct your own HTTP requests, see Signing
AWS requests with Signature Version 4 in the AWS General Reference.

Replace your-node-id-lowercase with the ID of a node in your account (for example,
nd-6eaj5va43jggnpxouzp7y47e4y). The example calls the web3_clientVersion method,
which takes an empty parameter block. You can replace this method and its parameters with any
method that's listed in Supported JSON-RPC methods.

awscurl --service managedblockchain \
-X POST -d '{"jsonrpc": "2.0", "method": "web3_clientVersion", "params": [], "id": 67}'
 \
https://your-node-id-lowercase.ethereum.managedblockchain.us-east-1.amazonaws.com

Examples using the JSON-RPC API 54

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

The command returns output similar to the following.

{"jsonrpc":"2.0","id":67,"result":"Geth/v1.9.22-stable-c71a7e26/linux-amd64/go1.15.5"}

Using token based access to make JSON-RPC API calls to an Ethereum node

You can use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN
from one of the Accessor tokens that you create as a query parameter with the call. For more
information on creating and managing Accessor tokens, see the topic on Using token based access.

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based
access. However, if you choose to use token based access, then any security benefits that
are provided by using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

The following examples demonstrate ways to make Ethereum JSON-RPC API calls to an Ethereum
node on Amazon Managed Blockchain (AMB) using token based access.

Topics

• Endpoint format for WebSocket and HTTP connections using token based access

• Using wscat to connect and JSON-RPC API calls to your Ethereum node over WebSocket
connection using token based access

• Using awscurl to make JSON-RPC API calls to your Ethereum node over HTTP using token based
access

Endpoint format for WebSocket and HTTP connections using token based access

Example

Each Ethereum node hosts one endpoint for WebSocket connections and another for HTTP
connections. For token based access, these endpoints conform to the following patterns:

Examples using the JSON-RPC API 55

https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Note

The node ID is case sensitive and must be lowercase where indicated, or a signature
mismatch error occurs.

WebSocket endpoint format

wss://your-node-id-lowercase.wss.t.ethereum.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token

For example,
nd-6eaj5va43jggnpxouzp7y47e4y.wss.t.ethereum.managedblockchain.us-
east-1.amazonaws.com?billingtoken=n-MWY63ZJZU5HGNCMBQER7IN6OIU

HTTP endpoint format

https://your-node-id-lowercase.t.ethereum.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token

For example, https://
nd-6eaj5va43jggnpxouzp7y47e4y.t.ethereum.managedblockchain.us-
east-1.amazonaws.com?billingtoken=n-MWY63ZJZU5HGNCMBQER7IN6OIU

Using wscat to connect and JSON-RPC API calls to your Ethereum node over WebSocket
connection using token based access

Example

This section describes how you can use a third party utility, wscat, to connect to your node using a
token.

After installing wscat, use the following command to open a WebSocket connection to your
ethereum node.

wscat --connect wss://your-node-id.wss.t.ethereum.managedblockchain.us-
east-1.amazonaws.com?billingtoken=your-billing-token

This opens an active WebSocket connection to your node as shown in the following example
response:

Examples using the JSON-RPC API 56

https://www.npmjs.com/package/wscat

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Connected (press CTRL+C to quit)
>

JSON-RPC calls can now be executed as follows,

{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id": 1}

A reply should arrive back with the same id.

> {"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id": 1}
< {"jsonrpc":"2.0","id":1,"result":"0x9798e5

For subscriptions, calls can be executed in the following format,

> {"jsonrpc":"2.0","method":"eth_subscribe","params":["newHeads"],"id": 1}
< {"id":1,"jsonrpc":"2.0","result":"0x4742411a16a232389a5877d4184e57b9"}

You should continuously get subscription messages that correspond to new blocks roughly every
15 seconds. To stop the messages, unsubscribe by using the subscription ID from the initial
response.

> {"jsonrpc":"2.0","method":"eth_unsubscribe","params":
["0x4742411a16a232389a5877d4184e57b9"],"id": 1}
< {"id":1,"jsonrpc":"2.0","result":true}

Using awscurl to make JSON-RPC API calls to your Ethereum node over HTTP using token based
access

Example

The following example uses awscurl, which sends a signed HTTP request based on the credentials
that you set for the AWS CLI.

awscurl -X POST -d '{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id": 1}'
 'https://your-node-id.t.ethereum.managedblockchain.us-east-1.amazonaws.com?
billingtoken=your-billing-token'

Example Reply (Contents may differ):

Examples using the JSON-RPC API 57

https://pypi.org/project/awscurl/0.6/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

{"jsonrpc":"2.0","id":1,"result":"0x9798d2"}

Supported Consensus API methods

Amazon Managed Blockchain (AMB) Access Ethereum supports the following Ethereum Consensus
API methods. Each supported API has a brief description of its utility. Unique considerations for
using the Consensus method with an Ethereum node in Amazon Managed Blockchain (AMB) are
indicated where applicable.

Note

• The Consensus API doesn't support WebSocket connections.

• Any methods that aren't listed are not supported.

• Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be
authenticated by using the Signature Version 4 (SigV4) signing process. This means that
only authorized IAM principals in the AWS account that created the node can interact
with it using the Ethereum APIs. AWS credentials (an access key ID and secret access key)
must be provided with the call.

• Token based access can also be used to make Ethereum API calls to an Ethereum node
as a convenient alternative to the Signature Version 4 (SigV4) signing process. If you
prioritize security and auditability over convenience, use the SigV4 signing process
instead. However, if you use token based access to make Ethereum APIs calls, any security
benefits that are provided by using the SigV4 signing process is negated.

Topics

• Making Consensus API calls to an Ethereum node in Amazon Managed Blockchain (AMB)

State related APIs are supported only for the following states:

• /eth/v1/beacon/states/head

• /eth/v1/beacon/states/finalized

• /eth/v1/beacon/states/justified

• /eth/v1/beacon/states/genesis

Supported Consensus API methods 58

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description

/eth/v1/beacon/genesis Returns the details
of the chain's genesis
block.

/eth/v1/beacon/states/{state_id}/root Calculates the
HashTreeRoot for the
state with a given
state_id. If the
state_id is root, the
same value will be
returned.

/eth/v1/beacon/states/{state_id}/fork Gets the fork object
for the requested
state_id.

/eth/v1/beacon/states/{state_id}/finality_che
ckpoints

Returns the finality
checkpoints for
a state with a
given state_id.
In case finality is
not yet achieved,
the checkpoint
returns epoch 0 and
ZERO_HASH as root.

/eth/v1/beacon/states/{state_id}/committees Returns the
committees for a
given state_id.

/eth/v1/beacon/headers Returns the block
headers matching a
given query.

Supported Consensus API methods 59

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description

/eth/v1/beacon/headers/headers/{block_id} Returns the block
header for a given
block_id.

/eth/v2/beacon/blocks/{block_id} Returns the block
details for a given
block_id.

/eth/v1/beacon/blocks/{block_id}/root Returns the
hashTreeRoot of a
BeaconBlock/Beacon
BlockHeader for a
given block_id.

/eth/v1/beacon/blocks/{block_id}/attestations Returns the attestati
ons of a block using
its block_id.

/eth/v1/config/fork_schedule Returns all the forks;
past, present, and
future, of which this
node is aware.

/eth/v1/config/spec Returns the configura
tion specification
used for this node.

/eth/v1/config/deposit_contract Returns the Eth1
deposit contract
address and chain ID.

/eth/v2/debug/beacon/heads Returns all the
possible chain heads
(leaves of the fork
choice tree).

Supported Consensus API methods 60

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Method Description

/eth/v1/node/identity Returns data about
the node's network
presence.

/eth/v1/node/peers Returns data about
the node's network
peers.

/eth/v1/node/peers/{peer_id} Returns data about
a peer given the
peer_id.

/eth/v1/node/peer_count Returns the number
of known peers.

/eth/v1/node/version Requests the Beacon
node identify
information about
its implementation
in a format similar to
a HTTP User-Agent
field.

/eth/v1/node/syncing Requests the Beacon
node to describe if it's
currently syncing, and
if it's, what block it's
up to.

/eth/v1/node/health Returns the Beacon
node's health status
in HTTP status
codes. This is useful
information for load
balancers.

Supported Consensus API methods 61

https://datatracker.ietf.org/doc/html/rfc7231#section-5.5.3

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Making Consensus API calls to an Ethereum node in Amazon Managed
Blockchain (AMB)

The following examples demonstrate ways to make Ethereum Consensus API calls to an Ethereum
node in Amazon Managed Blockchain (AMB).

Topics

• Using Consensus API calls signed using Signature Version 4 to an Ethereum node

• Using token based access to make Consensus API calls to an Ethereum node

Using Consensus API calls signed using Signature Version 4 to an Ethereum node

The following sections demonstrate ways to make Consensus API calls to an Ethereum node on
Amazon Managed Blockchain (AMB) using the Signature Version 4 signing process.

Important

The Signature Version 4 signing process requires the credentials that are associated with
an AWS account. Some examples in this section export these sensitive credentials to the
shell environment of the client. Only use these examples on a client that run in a trusted
context. Do not use these examples in an untrusted context, such as in a web browser
or mobile app. Never embed client credentials in user-facing applications. To expose an
Ethereum node in AMB Access to anonymous users visiting from trusted web domains,
you can set up a separate endpoint in Amazon API Gateway that are backed by a Lambda
function that forwards requests to your node using the proper IAM credentials.

Topics

• Endpoint format for making Consensus API calls over HTTP

• Making Consensus API calls using AWS SDK for JavaScript over HTTP

• Using awscurl to make Consensus API calls over HTTP

Endpoint format for making Consensus API calls over HTTP

An Ethereum node that's created using AMB Access Ethereum hosts one endpoint for HTTP
connections. This endpoint conforms to the following patterns.

Examples making Consensus API calls 62

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Note

The node ID is case sensitive and must be lowercase where indicated, or a signature
mismatch error occurs.

HTTP endpoint format

https://your-node-id-lowercase.ethereum.managedblockchain.us-
east-1.amazonaws.com/<followed by HTTP path of the Consensus API>

For example:
https://nd-6eaj5va43jggnpxouzp7y47e4y.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis

Making Consensus API calls using AWS SDK for JavaScript over HTTP

The following example uses a JavaScript file for Node.js to make Consensus API calls by sending
HTTP requests to the Ethereum node endpoint in Amazon Managed Blockchain (AMB).

Running the example script requires the following:

• Node.js is installed on your machine. If you use an Amazon EC2 instance, see Tutorial: Setting Up
Node.js on an Amazon EC2 Instance.

• The Node package manager (npm) is used to install the AWS SDK for JavaScript. The script uses
classes from these packages.

npm install aws-sdk

• The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain
the credentials that are associated with the same account that created the node.

Otherwise, the alternative is that the ~/.aws/credentials file is populated.

Example — Make a Consensus API call using AWS SDK for JavaScript with an HTTP connection
to an Ethereum node in Amazon Managed Blockchain (AMB)

1. Copy the contents of the script that follows and save it to a file on your machine (for example,
consensus-ethereum-example.js).

Examples making Consensus API calls 63

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Contents of consensus-ethereum-example.js

const AWS = require('aws-sdk');
const REGION = process.env.AWS_DEFAULT_REGION || 'us-east-1';

async function signedManagedBlockchainRequest(endpoint, credentials, host) {
 const awsRequest = new AWS.HttpRequest(new AWS.Endpoint(endpoint), REGION);
 awsRequest.method = 'GET';
 awsRequest.headers['host'] = host;
 const signer = new AWS.Signers.V4(awsRequest, 'managedblockchain');
 signer.addAuthorization(credentials, new Date());

 return awsRequest
}

/**
 * Sends Consensus API requests to AMB Ethereum node.
 * @param {*} nodeId - Node ID
 * @param {*} consensusApi - Consensus API to invoke, such as "/eth/v1/beacon/
genesis".
 * @param {*} credentials - AWS credentials.
 * @returns A promise with invocation result.
 */
async function sendRequest(nodeId, consensusApi, credentials) {
 const host = `${nodeId}.ethereum.managedblockchain.${REGION}.amazonaws.com`
 const endpoint = `https://${host}${consensusApi}`;
 request = await signedManagedBlockchainRequest(endpoint, credentials, host)
 const client = new AWS.HttpClient();
 return await new Promise((resolve, reject) => {
 client.handleRequest(request, null, response => {
 let data = []
 response.on('data', chunk => {
 data.push(chunk);
 });
 response.on('end', () => {
 var responseBody = Buffer.concat(data);
 resolve(responseBody.toString('utf8'))
 });
 })
 });
}

const nodeId = process.env.NODE_ID;

Examples making Consensus API calls 64

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

new AWS.CredentialProviderChain()
 .resolvePromise()
 .then(credentials => sendRequest(nodeId, '/eth/v1/beacon/states/finalized/
root', credentials))
 .then(console.log)
 .catch(err => console.error('ERROR: ' + err))

2. Run the script to call the Consensus API method over HTTP on your Ethereum node.

NODE_ID=nd-6eaj5va43jggnpxouzp7y47e4y AWS_DEFAULT_REGION=us-east-1 node consensus-
ethereum-example.js

Using awscurl to make Consensus API calls over HTTP

The following example uses awscurl, which sends a signed HTTP request based on the credentials
that you set for the AWS CLI. If you make your own HTTP requests, see Signing AWS requests with
Signature Version 4 in the AWS General Reference.

This example calls the /eth/v1/beacon/genesis method, which takes an empty parameter
block. You can replace this method and its parameters with any method listed in Supported
Consensus API methods. Replace your-node-id-lowercase with the ID of a node in your
account (for example, nd-6eaj5va43jggnpxouzp7y47e4y).

awscurl --service managedblockchain \
-X GET 'https://your-node-id-lowercase.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis'

The command returns output similar to the following.

{"data":
{"genesis_time":"1606824023","genesis_validators_root":"0x4b363db94e286120d76eb905340fdd4e54bfe9f06bf33ff6cf5ad27f511bfe95","genesis_fork_version":"0x00000000"}}

Using token based access to make Consensus API calls to an Ethereum node

You can use Accessor tokens to make Ethereum API calls to an Ethereum node as a convenient
alternative to the Signature Version 4 (SigV4) signing process. You must provide a BILLING_TOKEN
from one of the Accessor tokens that you create as a query parameter with the call. For more
information on creating and managing Accessor tokens, see the topic on Using token based access.

Examples making Consensus API calls 65

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Important

• If you prioritize security and auditability over convenience, use the SigV4 signing process
instead.

• You can access the Ethereum APIs using Signature Version 4 (SigV4) and token based
access. However, if you choose to use token based access, then any security benefits that
are provided by using SigV4 are negated.

• Never embed Accessor tokens in user-facing applications.

The following examples demonstrate ways to make Ethereum Consensus API calls to an Ethereum
node on Amazon Managed Blockchain (AMB) using token based access.

Topics

• Endpoint format for making Consensus API calls over HTTP using token based access

• Making Consensus API calls using AWS SDK for JavaScript over HTTP using token based access

• Using awscurl to make Consensus API calls over HTTP using token based access

Endpoint format for making Consensus API calls over HTTP using token based access

An Ethereum node that's created using AMB Access Ethereum hosts one endpoint for HTTP
connections. This endpoint conforms to the following patterns.

Note

The node ID is case sensitive and must be lowercase where indicated, or a signature
mismatch error occurs.

HTTP endpoint format

https://your-node-id-lowercase.t.ethereum.managedblockchain.us-
east-1.amazonaws.com/<followed by HTTP path of the Consensus API>?billingtoken=your-
billing-token

For example:
https://nd-6eaj5va43jggnpxouzp7y47e4y.t.ethereum.managedblockchain.us-

Examples making Consensus API calls 66

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

east-1.amazonaws.com/eth/v1/beacon/genesis?billingtoken=n-
MWY63ZJZU5HGNCMBQER7IN6OIU

Making Consensus API calls using AWS SDK for JavaScript over HTTP using token based access

The following example uses a JavaScript file for Node.js to make Consensus API calls using token
based access by sending HTTP requests to the Ethereum node endpoint in Amazon Managed
Blockchain (AMB).

Running the example script requires the following:

• Node.js is installed on your machine. If you use an Amazon EC2 instance, see Tutorial: Setting Up
Node.js on an Amazon EC2 Instance.

• The Node package manager (npm) is used to install the AWS SDK for JavaScript. The script uses
classes from these packages.

npm install aws-sdk

• The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must contain
the credentials that are associated with the same account that created the node.

Otherwise, the alternative is that the ~/.aws/credentials file is populated.

Example — Make a Consensus API call using AWS SDK for JavaScript with an HTTP connection
using token based access to an Ethereum node in Amazon Managed Blockchain (AMB)

1. Copy the contents of the script that follows and save it to a file on your machine (for example,
consensus-ethereum-example.js).

Contents of consensus-ethereum-example.js

const AWS = require('aws-sdk');
const REGION = process.env.AWS_DEFAULT_REGION || 'us-east-1';

function getManagedBlockchainClient(){
 const endpoint = `https://managedblockchain.${REGION}.amazonaws.com`;
 const client = new AWS.ManagedBlockchain();
 client.setEndpoint(endpoint);
 return client;
}

Examples making Consensus API calls 67

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

async function getAccessTokenFromManagedBlockChain() {
 const client = getManagedBlockchainClient();
 const accessorType = { AccessorType : "BILLING_TOKEN"};
 const networkType = { NetworkType : "ETHEREUM_MAINNET"};
 const tokenResponse = await new Promise((resolve, reject) => {
 client.createAccessor(accessorType, networkType, (err, data) => {
 if (err) {
 console.error(err);
 reject(err.message);
 }
 else {
 resolve(data);
 }
 });
 });
 return tokenResponse;
}

async function deleteAccessTokenFromManagedBlockChain(accessorId) {
 const client = getManagedBlockchainClient();
 const id = { AccessorId : accessorId };
 const tokenResponse = await new Promise((resolve, reject) => {
 client.deleteAccessor(id, (err, data) => {
 if (err) {
 console.error(err);
 reject(err.message);
 }
 else resolve(data);
 });
 });
}

function getManagedBlockchainRequest(endpoint, host) {

 const awsRequest = new AWS.HttpRequest(new AWS.Endpoint(endpoint), REGION);
 awsRequest.method = "GET";
 awsRequest.headers['host'] = host;
 awsRequest.headers['Content-Type'] = 'application/json'

 return awsRequest
}

/**
 * Sends Consensus API requests to AMB Ethereum node.

Examples making Consensus API calls 68

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 * @param {*} nodeId - Node ID
 * @param {*} consensusApi - Consensus API to invoke, such as "/eth/v1/beacon/
genesis".
 * @param {*} credentials - AWS credentials.
 * @returns A promise with invocation result.
 */
async function sendRequest(nodeId, consensusApi) {
 const token = await getAccessTokenFromManagedBlockChain();

 const host = `${nodeId}.t.ethereum.managedblockchain.${REGION}.amazonaws.com`;
 const endpoint = `https://${host}${consensusApi}?billingtoken=
${token.BillingToken}`;
 request = getManagedBlockchainRequest(endpoint, host)
 const client = new AWS.HttpClient();

 const promise = await new Promise((resolve, reject) => {
 client.handleRequest(request, null, response => {
 let data = []
 response.on('data', chunk => {
 data.push(chunk);
 });
 response.on('end', () => {
 var responseBody = Buffer.concat(data);
 resolve(responseBody.toString('utf8'))
 });
 })
 });
 deleteAccessTokenFromManagedBlockChain(token.AccessorId);
 return promise;
}

const nodeId = process.env.NODE_ID;
new AWS.CredentialProviderChain()
 .resolvePromise()
 .then(() => sendRequest(nodeId, '/eth/v1/beacon/states/finalized/root'))
 .then(console.log)
 .catch(err => console.error('ERROR: ' + err))

2. Run the script to call the Consensus API method over HTTP on your Ethereum node.

NODE_ID=nd-6eaj5va43jggnpxouzp7y47e4y AWS_DEFAULT_REGION=us-east-1 node consensus-
ethereum-example.js

Examples making Consensus API calls 69

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Using awscurl to make Consensus API calls over HTTP using token based access

The following example uses awscurl, which sends a signed HTTP request based on the credentials
that you set for the AWS CLI.

This example calls the /eth/v1/beacon/genesis method, which takes an empty parameter
block. You can replace this method and its parameters with any method listed in Supported
Consensus API methods. Replace your-node-id-lowercase with the ID of a node in your
account (for example, nd-6eaj5va43jggnpxouzp7y47e4y).

awscurl --service managedblockchain \
-X GET 'https://your-node-id-lowercase.t.ethereum.managedblockchain.us-
east-1.amazonaws.com/eth/v1/beacon/genesis?billingtoken=your-billing-token'

The command returns output similar to the following.

{"data":{"root":"0x71ef3f7c2470a7564af6eb8232855b602401cc9acdfc02c9fdf699e643cf8ba4"}}

Examples making Consensus API calls 70

https://pypi.org/project/awscurl/0.6/
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Amazon Managed Blockchain (AMB) Access Ethereum
Security

To provide data protection, authentication, and access control, Amazon Managed Blockchain (AMB)
benefits from AWS features and the features of the open-source framework running in AMB Access.

This chapter covers security information specific to AMB Access Ethereum. For security information
specific to AMB Access Hyperledger Fabric, see AMB Access Hyperledger Fabric Security in the
Amazon Managed Blockchain (AMB) Hyperledger Fabric Developer Guide.

Topics

• Data protection for Amazon Managed Blockchain (AMB) Access Ethereum

• Authentication and access control for Amazon Managed Blockchain (AMB) Access Ethereum

Data protection for Amazon Managed Blockchain (AMB) Access
Ethereum

Data encryption helps prevent unauthorized users from reading data from a blockchain network
and the associated data storage systems. This includes data that might be intercepted as it travels
the network, known as data in transit.

Encryption in transit

By default, AMB Access uses an HTTPS/TLS connection to encrypt all the data that's transmitted
from a client computer that runs the AWS CLI to AWS service endpoints.

You don't need to do anything to enable the use of HTTPS/TLS. It's always enabled unless you
explicitly disable it for an individual AWS CLI command by using the --no-verify-ssl command
line option.

Data Protection 71

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-security.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Authentication and access control for Amazon Managed
Blockchain (AMB) Access Ethereum

IAM permissions policies are associated with AWS users in your account and determine who has
access to what. Permissions policies specify the actions that each user can perform using AMB
Access and other AWS services.

Before you configure IAM permissions, see Identity and Access Management for Amazon Managed
Blockchain (AMB) Access Ethereum. We also recommend What is IAM? and IAM JSON Policy
Reference in the IAM User Guide.

Identity and Access Management for Amazon Managed Blockchain
(AMB) Access Ethereum

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AMB Access Ethereum resources. IAM is an AWS service
that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Managed Blockchain (AMB) Access Ethereum works with IAM

• Troubleshooting Amazon Managed Blockchain (AMB) Access Ethereum identity and access

• Identity-based policy examples for Amazon Managed Blockchain (AMB) Access Ethereum

• Using Service-Linked Roles for AMB Access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AMB Access Ethereum.

Service user – If you use the AMB Access Ethereum service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AMB Access

Authentication and access control 72

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Ethereum features to do your work, you might need additional permissions. Understanding
how access is managed can help you request the right permissions from your administrator. If
you cannot access a feature in AMB Access Ethereum, see Troubleshooting Amazon Managed
Blockchain (AMB) Access Ethereum identity and access.

Service administrator – If you're in charge of AMB Access Ethereum resources at your company,
you probably have full access to AMB Access Ethereum. It's your job to determine which AMB
Access Ethereum features and resources your service users should access. You must then submit
requests to your IAM administrator to change the permissions of your service users. Review the
information on this page to understand the basic concepts of IAM. To learn more about how your
company can use IAM with AMB Access Ethereum, see How Amazon Managed Blockchain (AMB)
Access Ethereum works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AMB Access Ethereum. To view example AMB Access
Ethereum identity-based policies that you can use in IAM, see Identity-based policy examples for
Amazon Managed Blockchain (AMB) Access Ethereum.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Identity and Access Management 73

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Identity and Access Management 74

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Identity and Access Management 75

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most

Identity and Access Management 76

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Identity and Access Management 77

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Identity and Access Management 78

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Managed Blockchain (AMB) Access Ethereum works with IAM

Before you use IAM to manage access to AMB Access Ethereum, learn what IAM features are
available to use with AMB Access Ethereum.

IAM features you can use with Amazon Managed Blockchain (AMB) Access Ethereum

IAM feature AMB Access Ethereum support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) No

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how AMB Access Ethereum and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity and Access Management 79

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Important

Ethereum API calls to an Ethereum node in Amazon Managed Blockchain (AMB) can be
authenticated by using the Signature Version 4 (SigV4) signing process. This means that
only authorized IAM principals in the AWS account that created the node can interact with
it using the Ethereum APIs. AWS credentials (an access key ID and secret access key) must
be provided with the call.

Identity-based policies for AMB Access Ethereum

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AMB Access Ethereum

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Ethereum.

Resource-based policies within AMB Access Ethereum

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Identity and Access Management 80

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AMB Access Ethereum

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AMB Access Ethereum actions, see Actions defined by Amazon Managed Blockchain
(AMB) Access Ethereum in the Service Authorization Reference.

Policy actions in AMB Access Ethereum use the following prefix before the action:

managedblockchain:

For example, to grant someone permission to create a node with the AMB Access CreateNode
API operation, you include the managedblockchain:CreateNode action in their policy. Policy
statements must include either an Action or NotAction element. AMB Access Ethereum defines
its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "managedblockchain::action1",

Identity and Access Management 81

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "managedblockchain::action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "managedblockchain::List*"

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Ethereum.

Policy resources for AMB Access Ethereum

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

AMB Access resource types that can be used in IAM permissions policy statements for resources on
Ethereum networks include the following:

• network

• node

• accessor

Nodes and accessors are associated with your account. Networks are associated with Ethereum
public networks and are not associated with AWS Regions.

For example an Ethereum public network resource on AMB Access has one of the following ARNs.

Identity and Access Management 82

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

arn:aws:managedblockchain:::networks/n-ethereum-mainnet

To see a list of AMB Access Ethereum resource types and their ARNs, see Resources defined by
Amazon Managed Blockchain (AMB) Access Ethereum in the Service Authorization Reference. To
learn with which actions you can specify the ARN of each resource, see Actions defined by Amazon
Managed Blockchain (AMB) Access Ethereum.

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Ethereum.

Policy condition keys for AMB Access Ethereum

Supports service-specific policy condition keys: No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Note

AMB Access Ethereum does not provide any service-specific condition keys, but it does
support using some AWS global condition keys.

Identity and Access Management 83

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

To see a list of the AWS global condition keys supported, see Condition keys for Amazon Managed
Blockchain (AMB) Access Ethereum in the Service Authorization Reference. To learn with which
actions and resources you can use a condition key, see Actions defined by Amazon Managed
Blockchain (AMB) Access Ethereum.

To view examples of AMB Access Ethereum identity-based policies, see Identity-based policy
examples for Amazon Managed Blockchain (AMB) Access Ethereum.

ACLs in AMB Access Ethereum

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with AMB Access Ethereum

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

To control access based on tags, you provide tag information in the condition element of a policy
using the managedblockchain::ResourceTag/key-name, aws:RequestTag/key-name,

Identity and Access Management 84

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html#amazonmanagedblockchain-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

or aws:TagKeys condition keys. For more information about tagging AMB Access Ethereum
resources, see Tagging Amazon Managed Blockchain (AMB) resources.

To view example identity-based policies for allowing or denying access to resources and actions
based on tags, see Controlling access using tags.

Using temporary credentials with AMB Access Ethereum

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AMB Access Ethereum

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AMB Access Ethereum

Supports service roles: Yes

Identity and Access Management 85

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AMB Access Ethereum
functionality. Edit service roles only when AMB Access Ethereum provides guidance to do
so.

Service-linked roles for AMB Access Ethereum

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Troubleshooting Amazon Managed Blockchain (AMB) Access Ethereum identity
and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AMB Access Ethereum and IAM.

Topics

• I am not authorized to perform an action in AMB Access Ethereum

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AMB Access Ethereum resources

Identity and Access Management 86

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

I am not authorized to perform an action in AMB Access Ethereum

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
managedblockchain::GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 managedblockchain::GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the managedblockchain::GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AMB Access Ethereum.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AMB Access Ethereum. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Identity and Access Management 87

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

I want to allow people outside of my AWS account to access my AMB Access Ethereum resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AMB Access Ethereum supports these features, see How Amazon Managed
Blockchain (AMB) Access Ethereum works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Identity-based policy examples for Amazon Managed Blockchain (AMB) Access
Ethereum

By default, users and roles don't have permission to create or modify AMB Access Ethereum
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AMB Access Ethereum, including the
format of the ARNs for each of the resource types, see Actions, resources, and condition keys for
Amazon Managed Blockchain (AMB) Access Ethereum in the Service Authorization Reference.

Topics

• Policy best practices

Identity and Access Management 88

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedblockchain.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

• Using the AMB Access Ethereum console

• Allow users to view their own permissions

• Performing all available actions for AMB Access Ethereum

• Controlling access using tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AMB Access
Ethereum resources in your account. These actions can incur costs for your AWS account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when

Identity and Access Management 89

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AMB Access Ethereum console

To access the Amazon Managed Blockchain (AMB) Access Ethereum console, you must have a
minimum set of permissions. These permissions must allow you to list and view details about the
AMB Access Ethereum resources in your AWS account. If you create an identity-based policy that is
more restrictive than the minimum required permissions, the console won't function as intended
for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the AMB Access Ethereum console, also attach the AMB
Access Ethereum ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

AmazonManagedBlockchainConsoleFullAccess

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",

Identity and Access Management 90

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Performing all available actions for AMB Access Ethereum

This example shows how you grant users AWS account access in the us-east-1 Region so that
they can do the following:

• List all Ethereum networks

• Create and list nodes on all those networks

• Get and delete nodes in AWS account 111122223333

• Get and delete accessors in AWS account 555555555555

• Create WebSocket connections, and send HTTP requests to an Ethereum node

Note

• If you want to grant access across all Regions, replace us-east-1 with *.

• You must specify the AWS account ID of the node and accessor resources in the policy
that you want to enforce.

Identity and Access Management 91

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WorkWithEthereumNetworks",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:ListNetworks",
 "managedblockchain:GetNetwork"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1::networks/n-ethereum-mainnet"

]
 },
 {
 "Sid": "CreateAndListEthereumNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:CreateNode",
 "managedblockchain:ListNodes"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1::networks/*"
]
 },
 {
 "Sid": "ManageEthereumNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:GetNode",
 "managedblockchain:DeleteNode"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:111122223333:nodes/*"
]
 },
 {
 "Sid": "GetAndDeleteAccessors",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:GetAccessor",

Identity and Access Management 92

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "managedblockchain:DeleteAccessor"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:555555555555:accessors/*"
]
 },
 {
 "Sid": "CreateAndListAccessors",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:CreateAccessor",
 "managedblockchain:ListAccessors"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "WorkWithEthereumNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:POST",
 "managedblockchain:GET",
 "managedblockchain:Invoke"

],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:111122223333:*"
]
 }
]
}

Controlling access using tags

The following example policies demonstrate how you can use tags to limit access to AMB Access
Ethereum resources and actions performed on those resources.

Note

This topic includes examples of policy statements with a Deny effect. These policies assume
that other policies with Allow effect for those actions exist with broader applicability.

Identity and Access Management 93

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

The Deny policy statement is being used to restrict that otherwise overly-permissive allow
statement.

Example – Deny access to networks with a specific tag key

The following identity-based policy statement denies the IAM principal the ability to retrieve or
view network information if the network has a tag with the tag key of restricted.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyTaggedNetworkAccess",
 "Effect": "Deny",
 "Action": [
 "managedblockchain:GetNetwork"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/restricted": [
 "*"
]
 }
 }
 }
]
}

Example – Deny node creation on networks that have a specific tag and value

The following identity-based policy statement denies the IAM principal the ability to create a node
on an Ethereum public network tagged in the AWS account with the tag key of department and
the value accounting.

{
 "Version": "2012-10-17",
 "Statement": [

Identity and Access Management 94

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 {
 "Sid": "DenyCreateNodeForNetworkWithTag",
 "Effect": "Deny",
 "Action": [
 "managedblockchain:CreateNode"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/department": [
 "accounting"
]
 }
 }
 }
]
}

Example – Require a specific tag key and value to be added when a node is created

The following identity-based policy statements allow an IAM principal to create a node for the AWS
account 111122223333 only if a key with the tag key of department and a value of accounting
is added during creation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RequireTagForCreateNode",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:CreateNode"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/department": [
 "accounting"
]

Identity and Access Management 95

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 }
 }
 },
 {
 "Sid": "AllowTaggingNodes",
 "Effect": "Allow",
 "Action": [
 "managedblockchain:TagResource"
],
 "Resource": [
 "arn:aws:managedblockchain:us-east-1:111122223333:nodes/*"
]
 }
]
}

Example – Deny listing nodes for networks that have a specific tag key and value

The following identity-based policy statement denies the IAM principal the ability to list nodes on
an Ethereum public network tagged in the AWS account with the tag key of department and the
value accounting.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyListNodesForNetworkWithTag",
 "Effect": "Deny",
 "Action": [
 "managedblockchain:ListNodes"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/department": [
 "accounting"
]
 }
 }
 }
]

Identity and Access Management 96

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

}

Example – Deny retrieving and viewing node information for nodes with a specific tag key and
value

The following identity-based policy statement denies the IAM principal the ability to view
node information for nodes that have a tag with the tag key of department and the value
accounting.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyGetNodeWithNodeTag",
 "Effect": "Deny",
 "Action": [
 "managedblockchain:GetNode"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/department": [
 "accounting"
]
 }
 }
 }
]
}

Using Service-Linked Roles for AMB Access

Amazon Managed Blockchain (AMB) uses AWS Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to AMB Access.
Service-linked roles are predefined by AMB Access and include all the permissions that the service
requires to call other AWS services on your behalf.

Identity and Access Management 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

A service-linked role can make setting up AMB Access easier because you don’t have to manually
add the necessary permissions. AMB Access defines the permissions of its service-linked roles, and,
unless defined otherwise, only AMB Access can assume its roles. The defined permissions include
the trust policy and the permissions policy. The permissions policy cannot be attached to any other
IAM entity.

You can delete a service-linked role only after first deleting its related resources. This protects your
AMB Access resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-Linked Role Permissions for AMB Access

AMB Access uses the service-linked role named AWSServiceRoleForAmazonManagedBlockchain.
This role enables access to AWS Services and Resources used or managed by Amazon Managed
Blockchain.

The AWSServiceRoleForAmazonManagedBlockchain service-linked role trusts the following services
to assume the role:

• managedblockchain.amazonaws.com

The role permissions policy allows AMB Access to complete actions on the specified resources
shown in the following example policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:log-group:/aws/managedblockchain/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",

Identity and Access Management 98

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/managedblockchain/*:log-stream:*"
]
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a Service-Linked Role for AMB Access

You don't need to manually create a service-linked role. When you create a network, a member,
or a peer node, AMB Access creates the service-linked role for you. It doesn't matter if you use the
AWS Management Console, the AWS CLI, or the AWS API. The IAM entity performing the action
must have permissions to create the service-linked role. After the role is created in your account,
AMB Access can use it for all networks and members.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a network, member, or node, AMB Access
creates the service-linked role for you again.

Editing a Service-Linked Role for AMB Access

AMB Access does not allow you to edit the AWSServiceRoleForAmazonManagedBlockchain service-
linked role. After you create a service-linked role, you cannot change the name of the role because
various entities might reference the role. However, you can edit the description of the role using
IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for AMB Access

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Identity and Access Management 99

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Note

If the AMB Access service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForAmazonManagedBlockchain service-linked role. For more information, see
Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for AMB Access Service-Linked Roles

AMB Access supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Regions and Endpoints.

Identity and Access Management 100

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Tagging Amazon Managed Blockchain (AMB) resources

A tag is a custom attribute label that you assign or that AWS assigns to an AWS resource. Each tag
has two parts:

• A tag key, such as CostCenter, Environment, or Project. Tag keys are case-sensitive.

• An optional field known as a tag value, such as 111122223333 or Production. Omitting the
tag value is the same as using an empty string. Like tag keys, tag values are case-sensitive.

Tags help you do the following:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can assign
the same tag to resources from different services to indicate that the resources are related. For
example, you could assign the same tag to an Amazon Managed Blockchain (AMB) node and an
EC2 instance that you use as a client for the AMB Access framework.

• Track your AWS costs. You activate these tags on the AWS Billing and Cost Management
dashboard. AWS uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Using cost allocation tags in the AWS Billing User Guide.

• Control access to your AWS resources with AWS Identity and Access Management (IAM). For
information, see Controlling access using tags in this developer guide and Control access using
IAM tags in the IAM User Guide.

For more information about tags, see the Tagging Best Practices guide.

The following sections provide more information about tags for AMB Access.

Create and add tags for AMB Access Ethereum resources

You can tag the following resources:

• Networks

• Nodes

Tags that you create for Ethereum public networks are scoped only to the account in which you
create them. Other AWSaccounts participating on the network cannot access the tags.

Create and add tags for AMB Access Ethereum resources 101

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_iam-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_iam-tags.html
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Tag naming and usage conventions

The following basic naming and usage conventions apply to tags used with AMB Access resources:

• Each resource can have a maximum of 50 tags.

• For each resource, each tag key must be unique, and each tag key can have only one value.

• The maximum tag key length is 128 Unicode characters in UTF-8.

• The maximum tag value length is 256 Unicode characters in UTF-8.

• Allowed characters are letters, numbers, spaces representable in UTF-8, and the following
characters: . : + = @ _ / - (hyphen).

• Tag keys and values are case-sensitive. As a best practice, decide on a strategy for capitalizing
tags, and consistently implement that strategy across all resource types. For example, decide
whether to use Costcenter, costcenter, or CostCenter, and use the same convention for all
tags. Avoid using similar tags with inconsistent case treatment.

• The aws: prefix is reserved for AWS use. You can't edit or delete a tag's key or value when the
tag has a tag key with the aws: prefix. Tags with this prefix do not count against your limit of
tags per resource.

Working with tags

You can use the AMB Access console, the AWS CLI, or the AMB Access API to add, edit, or delete tag
keys and tag values. You can assign tags when you create a resource, or you can apply tags after
the resource is created.

For more information about AMB Access API actions for tagging, see the following topics in the
Amazon Managed Blockchain (AMB) API Reference:

• ListTagsForResource

• TagResource

• UntagResource

Using the AMB Access console, you can add a tag to an Ethereum node when you create it or when
viewing node details. You can remove a tag when viewing node details. For more information, see
Working with Ethereum nodes using AMB Access.

Tag naming and usage conventions 102

https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/API_TagResource.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

AMB Access allows you to tag public Ethereum networks after you create a node on the network
using AMB Access.

To add or remove a tag for an Ethereum network using the AWS Management Console

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. If the console doesn't open to the Networks list, choose Networks from the navigation pane.

3. Choose the network from the list.

4. Under Tags, choose Edit tags, and then do one of the following:

• To add a tag, choose Add new tag, enter a Key and optional Value, and then choose Save.

• To remove a tag, choose Remove next to the Tag you want to remove, and then choose
Save.

To add or remove a tag for a node

1. Open the AMB Access console at https://console.aws.amazon.com/managedblockchain/.

2. Choose Networks and then choose an Ethereum network from the list.

3. Under Nodes, choose a Node ID from the list.

4. Choose Tags, choose Edit tags, and then do one of the following:

• To add a tag, choose Add new tag, enter a Key and optional Value, and then choose Save.

• To remove a tag, choose Remove next to the Tag you want to remove, and then choose
Save.

Working with tags 103

https://console.aws.amazon.com/managedblockchain/
https://console.aws.amazon.com/managedblockchain/

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Logging Amazon Managed Blockchain API calls using
AWS CloudTrail

Amazon Managed Blockchain is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in Managed Blockchain. CloudTrail captures all
API calls for Managed Blockchain as events. The calls captured include calls from the Managed
Blockchain console and code calls to the Managed Blockchain API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Managed Blockchain. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history. Using the information that's
collected by CloudTrail, you can determine the request that was made to Managed Blockchain, the
IP address that the request was made from, who made the request, when it was made, and other
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Managed Blockchain information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Managed Blockchain, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Managed Blockchain,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions that Amazon Managed
Blockchain is available in. The trail logs events from all the Regions in the AWS partition and
delivers the log files to the S3 bucket that you specify. Additionally, you can configure other AWS
services to further analyze and act on the event data that's collected in CloudTrail logs. For more
information, see the following:

• Creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

Managed Blockchain information in CloudTrail 104

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

All your Managed Blockchain actions are logged as management events by CloudTrail and
are documented in the Amazon Managed Blockchain API Reference. For example, calls to the
CreateNode, GetNode and DeleteNetwork actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. You can use the
identity information to determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding Managed Blockchain log file entries

A trail is a configuration that enables delivery of events as log files to an S3 bucket that you
specify. Managed Blockchain supports logging management events. For more information, see
Logging management events for trails in the AWS CloudTrail User Guide. Managed Blockchain also
supports logging data events for Ethereum API calls over HTTP or WebSockets (JSON-RPC API
only) connections. For more information, see Using CloudTrail to track Ethereum calls.

CloudTrail log files contain one or more log entries. An event represents a single request from any
source. It includes information about the requested action, the date and time of the action, and
request parameters. CloudTrail log files aren't an ordered stack trace of the public API calls. This
way, they don't appear in any specific order.

Example – Management event log entry

The following example shows a CloudTrail management event log entry that demonstrates the
GetNode action.

{
 "eventVersion": "1.05",

Understanding log file entries 105

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/managed-blockchain/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "ABCD1EF23G4EXAMPLE56:carlossalazar",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/carlossalazar",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-12-10T05:36:38Z"
 }
 }
 },
 "eventTime": "2020-12-10T05:50:48Z",
 "eventSource": "managedblockchain.amazonaws.com",
 "eventName": "GetNode",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "198.51.100.1",
 "userAgent": "aws-cli/2.0.7 Python/3.7.3 Linux/5.4.58-37.125.amzn2int.x86_64
 botocore/2.0.0dev11",
 "requestParameters": {
 "networkId": "n-ethereum-mainnet",
 "nodeId": "nd-6EAJ5VA43JGGNPXOUZP7Y47E4Y"
 },
 "responseElements": null,
 "requestID": "1e2xa3m4-56p7-8l9e-0ex1-23456a78m90p",
 "eventID": "ex12345a-m678-901p-23e4-567ex8a9mple",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Using CloudTrail to track Ethereum calls

You can track Ethereum API as data events using CloudTrail. By default, when you create a trail,
data events aren't logged. To record Ethereum API calls as CloudTrail data events, you must
explicitly add the supported resources or resource types that you want to collect activity to a
trail for. Amazon Managed Blockchain supports adding data events using the AWS CLI. For more
information, see Log events by using advanced selectors in the AWS CloudTrail User Guide.

To log data events for a trail, run the put-event-selectors command after you create the trail. Use
the --advanced-event-selectors option to specify the data events to log. The following

Using CloudTrail to track Ethereum calls 106

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-advanced
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

example demonstrates a put-event-selectors command that logs all Ethereum API calls for a
trail that's named my-ethereum-trail in the us-east-1 Region.

aws cloudtrail put-event-selectors \
--region us-east-1 \
--trail-name my-ethereum-trail \
--advanced-event-selectors '[{
 "Name": "MyDataEventSelectorForEtherumJsonRpcCalls",
 "FieldSelectors": [
 { "Field": "eventCategory", "Equals": ["Data"] },
 { "Field": "resources.type", "Equals": ["AWS::ManagedBlockchain::Node"] }]}]'

Example Data event log entry for an Ethereum JSON-RPC API call

The following example demonstrates a CloudTrail data event log entry for an Ethereum JSON-RPC
API all, web3_clientVersion, from a client to a node in Amazon Managed Blockchain.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "ABCD1EF23G4EXAMPLE56:carlossalazar",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/carlossalazar",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-12-11T16:51:12Z"
 }
 }
 },
 "eventTime": "2020-12-11T19:56:36Z",
 "eventSource": "managedblockchain.amazonaws.com",
 "eventName": "web3_clientVersion",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "198.51.100.1",
 "userAgent": "python-requests/2.23.0",
 "requestParameters": {
 "id": 67,
 "jsonrpc": "2.0",
 "method": "web3_clientVersion",
 "params": []

Using CloudTrail to track Ethereum calls 107

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

 },
 "responseElements": {
 "result": "Geth/v1.9.24-stable-cc05b050/linux-amd64/go1.15.5",
 "id": 67,
 "jsonrpc": "2.0"
 },
 "requestID": "1e2xa3m4-56p7-8l9e-0ex1-23456a78m90p",
 "eventID": "ex12345a-m678-901p-23e4-567ex8a9mple",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Using CloudTrail to track Ethereum calls 108

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Document history

The following table describes important additions to the Amazon Managed Blockchain (AMB) Access
Ethereum Developer Guide.

Change Description Date

Added a getting started topic This topic shows you how
to perform tasks using AMB
Access Ethereum. Each task
builds on the previous one,
ending in making JSON-RPC
calls to your Ethereum node.

April 17, 2024

Ending support for the Goerli
network

AMB Access Ethereum
ended support of the Goerli
testnet on April 1, 2024. The
Ethereum foundation sunset
Goerli on April 17, 2024.

March 27, 2024

No new nodes provisioned on
the Rinkeby network

. You can't provision new
nodes on Rinkeby as of
August 10th, 2023. The
Ethereum foundation ceased
support of Rinkeby on May
31st, 2023.

August 19, 2023

Amazon Managed Blockchain
(AMB) Access

Updated terminology to
change Amazon Managed
Blockchain to Amazon
Managed Blockchain (AMB)
Access Ethereum.

August 10, 2023

Amazon Managed Blockchain
(AMB) Access

Updated terminology to
change Amazon Managed
Blockchain to Amazon

July 27, 2023

109

https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/getting-started.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/managed-blockchain-ethereum-overview.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/managed-blockchain-ethereum-overview.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/managed-blockchain-ethereum-overview.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/managed-blockchain-ethereum-overview.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Managed Blockchain (AMB)
Access.

Token based access (GA) The Accessor tokens feature is
in general availability. This is a
convenient alternative to the
Signature Version 4 signing
process.

February 28, 2023

No new nodes provisioned on
the Ropsten network

. You can't provision new
nodes on Ropsten as of
February 28th, 2023. The
Ethereum foundation ceased
support of Ropsten on
December 31st, 2022.

February 28, 2023

Token based access (preview) Use Accessor tokens as a
convenient alternative to the
Signature Version 4 signing
process. This feature is in
preview release and is subject
to change.

October 21, 2022

The Merge Mainnet has merged with the
Beacon chain's proof-of-stake
system. Ethereum nodes on
Amazon Managed Blockchai
n (AMB) support this change
and require no further action
on your part.

September 15, 2022

Goerli support for the
Consensus API for the Beacon
chain

Goerli now supports
Consensus APIs for the
Beacon chain.

August 11, 2022

Mainnet support for the
Consensus API for the Beacon
chain

Mainnet now supports
Consensus APIs for the
Beacon chain.

July 27, 2022

110

https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#retired
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-tokens.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html

Amazon Managed Blockchain (AMB) Ethereum Developer Guide

Consensus API for the Beacon
chain

Release of the Consensus API
for the Beacon chain on the
Ropsten testnet.

June 8, 2022

Görli (Goerli) Release of the Görli (Goerli)
testnet.

May 2, 2022

Initial Release Initial release. December 15, 2020

111

https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/supported-consensus-apis.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-concepts.html#ethereum-considerations
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev

	Amazon Managed Blockchain (AMB)
	Table of Contents
	What is Amazon Managed Blockchain (AMB) Access Ethereum
	Key concepts: Amazon Managed Blockchain (AMB) Access Ethereum
	Considerations and limitations for Amazon Managed Blockchain (AMB) Access Ethereum

	Setting up for AMB Access Ethereum
	Sign up for AWS
	Create an IAM user with appropriate permissions
	Install and configure the AWS Command Line Interface

	Getting started with Amazon Managed Blockchain (AMB) Access Ethereum
	Create an IAM policy to access the Ethereum network
	Create a node using the AWS Management Console
	Create an Accessor token using the AWS Management Console
	Find your HTTP or Websocket endpoints and make JSON-RPC calls

	Working with Ethereum nodes using AMB Access
	Creating a node
	To create an Ethereum node using the AWS Management Console
	To create an Ethereum node using the AWS CLI

	Viewing node details
	To view Ethereum node information using the AWS Management Console
	To view Ethereum node information using the AWS CLI

	Deleting a node
	To delete an Ethereum node using the AWS Management Console
	To delete an Ethereum node using the AWS CLI

	Using token based access to make Ethereum API calls to Ethereum nodes in Amazon Managed Blockchain (AMB)
	Creating an Accessor token for token based access
	Create an Accessor token to access an Ethereum node using the AWS Management Console
	Create an Accessor token to access an Ethereum node using the AWS CLI

	Viewing an Accessor token details
	To view an Accessor token's information using the AWS Management Console
	To view an Accessor token's information using the AWS CLI

	Deleting an Accessor token
	To delete an Accessor token using the AWS Management Console
	To delete an Accessor token using the AWS CLI

	Using Ethereum APIs with Amazon Managed Blockchain (AMB)
	Supported JSON-RPC methods
	Making JSON-RPC API calls to an Ethereum node in Amazon Managed Blockchain (AMB)
	Using Signature Version 4 to make JSON-RPC API calls to an Ethereum node
	Endpoint format for making JSON-RPC API calls over WebSocket and HTTP connections using Signature Version 4
	Using web3.js to make JSON-RPC API calls
	Prerequisites

	Making JSON-RPC API call using AWS SDK for JavaScript with a WebSocket connection to an Ethereum node in Amazon Managed Blockchain (AMB)
	Making JSON-RPC API calls using awscurl over HTTP

	Using token based access to make JSON-RPC API calls to an Ethereum node
	Endpoint format for WebSocket and HTTP connections using token based access
	Using wscat to connect and JSON-RPC API calls to your Ethereum node over WebSocket connection using token based access
	Using awscurl to make JSON-RPC API calls to your Ethereum node over HTTP using token based access

	Supported Consensus API methods
	Making Consensus API calls to an Ethereum node in Amazon Managed Blockchain (AMB)
	Using Consensus API calls signed using Signature Version 4 to an Ethereum node
	Endpoint format for making Consensus API calls over HTTP
	Making Consensus API calls using AWS SDK for JavaScript over HTTP
	Using awscurl to make Consensus API calls over HTTP

	Using token based access to make Consensus API calls to an Ethereum node
	Endpoint format for making Consensus API calls over HTTP using token based access
	Making Consensus API calls using AWS SDK for JavaScript over HTTP using token based access
	Using awscurl to make Consensus API calls over HTTP using token based access

	Amazon Managed Blockchain (AMB) Access Ethereum Security
	Data protection for Amazon Managed Blockchain (AMB) Access Ethereum
	Encryption in transit

	Authentication and access control for Amazon Managed Blockchain (AMB) Access Ethereum
	Identity and Access Management for Amazon Managed Blockchain (AMB) Access Ethereum
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Managed Blockchain (AMB) Access Ethereum works with IAM
	Identity-based policies for AMB Access Ethereum
	Identity-based policy examples for AMB Access Ethereum

	Resource-based policies within AMB Access Ethereum
	Policy actions for AMB Access Ethereum
	Policy resources for AMB Access Ethereum
	Policy condition keys for AMB Access Ethereum
	ACLs in AMB Access Ethereum
	ABAC with AMB Access Ethereum
	Using temporary credentials with AMB Access Ethereum
	Cross-service principal permissions for AMB Access Ethereum
	Service roles for AMB Access Ethereum
	Service-linked roles for AMB Access Ethereum

	Troubleshooting Amazon Managed Blockchain (AMB) Access Ethereum identity and access
	I am not authorized to perform an action in AMB Access Ethereum
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AMB Access Ethereum resources

	Identity-based policy examples for Amazon Managed Blockchain (AMB) Access Ethereum
	Policy best practices
	Using the AMB Access Ethereum console
	Allow users to view their own permissions
	Performing all available actions for AMB Access Ethereum
	Controlling access using tags

	Using Service-Linked Roles for AMB Access
	Service-Linked Role Permissions for AMB Access
	Creating a Service-Linked Role for AMB Access
	Editing a Service-Linked Role for AMB Access
	Deleting a Service-Linked Role for AMB Access
	Supported Regions for AMB Access Service-Linked Roles

	Tagging Amazon Managed Blockchain (AMB) resources
	Create and add tags for AMB Access Ethereum resources
	Tag naming and usage conventions
	Working with tags

	Logging Amazon Managed Blockchain API calls using AWS CloudTrail
	Managed Blockchain information in CloudTrail
	Understanding Managed Blockchain log file entries
	Using CloudTrail to track Ethereum calls

	Document history

