
User Guide

AWS Elemental MediaStore

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Elemental MediaStore User Guide

AWS Elemental MediaStore: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Elemental MediaStore User Guide

Table of Contents

What is MediaStore? .. 1
Concepts and terminology ... 1
Related services .. 3
Accessing MediaStore .. 3
Pricing ... 4
Regions and endpoints .. 4

Setting Up AWS Elemental MediaStore ... 5
Sign up for an AWS account .. 5
Create a user with administrative access .. 5

Getting started .. 8
Step 1: Access AWS Elemental MediaStore .. 8
Step 2: Create a container .. 8
Step 3: Upload an object .. 9
Step 4: Access an object ... 9

Containers .. 11
Rules for container names ... 11
Creating a container .. 11
Viewing container details ... 13
Viewing a list of containers ... 14
Deleting a container .. 15

Policies ... 16
Container policies ... 16

Viewing a container policy ... 16
Editing a container policy ... 18
Example container policies ... 19

CORS policies .. 25
Use-case scenarios .. 26
Adding a CORS policy .. 27
Viewing a CORS policy .. 28
Editing a CORS policy .. 29
Deleting a CORS policy ... 30
Troubleshooting .. 31
Example CORS policies .. 31

Object lifecycle policies .. 33

iii

AWS Elemental MediaStore User Guide

Components of an object lifecycle policy ... 34
Adding an object lifecycle policy .. 40
Viewing an object lifecycle policy ... 41
Editing an object lifecycle policy ... 43
Deleting an object lifecycle policy .. 44
Example object lifecycle policies ... 44

Metric policies ... 49
Adding a metric policy .. 49
Viewing a metric policy ... 50
Editing a metric policy ... 50
Example metric policies ... 50

Folders .. 55
Rules for folder names ... 55
Creating a folder .. 56
Deleting a folder .. 56

Objects ... 57
Uploading an object .. 57
Viewing a list .. 59
Viewing object details ... 61
Downloading an object ... 62
Deleting objects .. 64

Deleting one object .. 64
Emptying a container ... 65

Security .. 66
Data protection ... 67

Data encryption ... 67
Identity and Access Management ... 68

Audience .. 68
Authenticating with identities .. 69
Managing access using policies .. 72
How AWS Elemental MediaStore works with IAM ... 75
Identity-based policy examples ... 82
Troubleshooting .. 85

Logging and monitoring ... 87
Amazon CloudWatch alarms .. 87
AWS CloudTrail logs ... 87

iv

AWS Elemental MediaStore User Guide

AWS Trusted Advisor .. 87
Compliance validation ... 88
Resilience .. 89
Infrastructure Security .. 89
Cross-service confused deputy prevention ... 90

Monitoring and tagging .. 92
Logging API calls with CloudTrail ... 93

MediaStore Information in CloudTrail .. 93
Example: Log file entries ... 95

Monitoring with CloudWatch ... 96
CloudWatch Logs .. 97
CloudWatch Events .. 107
CloudWatch metrics ... 110

Tagging ... 115
Supported resources in AWS Elemental MediaStore ... 116
Tag naming and usage conventions ... 116
Managing tags ... 116

Working with CDNs ... 118
Allowing CloudFront to access your container .. 118

Using Origin Access Control (OAC) ... 119
Using Shared Secrets ... 119

MediaStore's interaction with HTTP caches ... 121
Conditional requests .. 122

Quotas .. 124
Related information .. 127
Document history .. 128
AWS Glossary ... 132

v

AWS Elemental MediaStore User Guide

What is AWS Elemental MediaStore?

AWS Elemental MediaStore is a video origination and storage service that offers the high
performance and immediate consistency required for live origination. With MediaStore, you can
manage video assets as objects in containers to build dependable, cloud-based media workflows.

To use the service, you upload your objects from a source, such as an encoder or data feed, to a
container that you create in MediaStore.

MediaStore is a great choice for storing fragmented video files when you need strong consistency,
low-latency reads and writes, and the ability to handle high volumes of concurrent requests. If you
don't deliver live streaming videos, consider using Amazon Simple Storage Service (Amazon S3)
instead.

Topics

• AWS Elemental MediaStore concepts and terminology

• Related services

• Accessing AWS Elemental MediaStore

• Pricing for AWS Elemental MediaStore

• Regions and endpoints for AWS Elemental MediaStore

AWS Elemental MediaStore concepts and terminology

ARN

An Amazon Resource Name.

Body

The data to be uploaded into an object.

(Byte) range

A subset of object data to be addressed. For more information, see range from the HTTP
specification.

Container

A namespace that holds objects. A container has an endpoint that you can use for writing and
retrieving objects and attaching access policies.

Concepts and terminology 1

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35

AWS Elemental MediaStore User Guide

Endpoint

An entry point to the MediaStore service, given as an HTTPS root URL.

ETag

An entity tag, which is a hash of the object data.

Folder

A division of a container. A folder can hold objects and other folders.

Item

A term used to refer to objects and folders.

Object

An asset, similar to an Amazon S3 object. Objects are the fundamental entities that are stored
in MediaStore. The service accepts all file types.

Origination service

MediaStore is considered an origination service because it is the point of distribution for media
content delivery.

Path

A unique identifier for an object or folder, which indicates its location in the container.

Part

A subset of data (chunk) of an object.

Policy

An IAM policy.

Resource

An entity in AWS that you can work with. Each AWS resource is assigned an Amazon Resource
Name (ARN) that acts as a unique identifier. In MediaStore, this is the resource and its ARN
format:

• Container: aws:mediastore:region:account-id:container/:containerName

Concepts and terminology 2

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
https://docs.aws.amazon.com/s3/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS Elemental MediaStore User Guide

Related services

• Amazon CloudFront is a global content delivery network (CDN) service that securely delivers
data and videos to your viewers. Use CloudFront to deliver content with the best possible
performance. For more information, see the Amazon CloudFront Developer Guide.

• AWS CloudFormation is a service that helps you model and set up your AWS resources.
You create a template that describes all the AWS resources that you want (like MediaStore
containers), and AWS CloudFormation takes care of provisioning and configuring those resources
for you. You don't need to individually create and configure AWS resources and figure out what's
dependent on what; AWS CloudFormation handles all of that. For more information, see the AWS
CloudFormation User Guide.

• AWS CloudTrail is a service that lets you monitor the calls made to the CloudTrail API for your
account, including calls made by the AWS Management Console, AWS CLI, and other services. For
more information, see the AWS CloudTrail User Guide.

• Amazon CloudWatch is a monitoring service for AWS Cloud resources and the applications that
you run on AWS. Use CloudWatch Events to track changes in the status of containers and objects
in MediaStore. For more information, see the Amazon CloudWatch documentation.

• AWS Identity and Access Management (IAM) is a web service that helps you securely control
access to AWS resources for your users. Use IAM to control who can use your AWS resources
(authentication) and what resources users can use in which ways (authorization). For more
information, see Setting Up AWS Elemental MediaStore.

• Amazon Simple Storage Service (Amazon S3) is object storage built to store and retrieve any
amount of data from anywhere. For more information, see the Amazon S3 documentation.

Accessing AWS Elemental MediaStore

You can access MediaStore using any of the following methods:

• AWS Management Console - The procedures throughout this guide explain how to use the AWS
Management Console to perform tasks for MediaStore. To access MediaStore using the console:

https://<region>.console.aws.amazon.com/mediastore/home

• AWS Command Line Interface – For more information, see the AWS Command Line Interface
User Guide. To access MediaStore using the CLI endpoint:

Related services 3

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/s3/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

AWS Elemental MediaStore User Guide

aws mediastore

• MediaStore API – If you're using a programming language that an SDK isn't available for, see the
AWS Elemental MediaStore API Reference for information about API actions and about how to
make API requests. To access MediaStore using the REST API endpoint:

https://mediastore.<region>.amazonaws.com

• AWS SDKs – If you're using a programming language that AWS provides an SDK for, you can
use an SDK to access MediaStore. SDKs simplify authentication, integrate easily with your
development environment, and provide easy access to MediaStore commands. For more
information, see Tools for Amazon Web Services.

• AWS Tools for Windows PowerShell – For more information, see the AWS Tools for Windows
PowerShell User Guide.

Pricing for AWS Elemental MediaStore

As with other AWS products, there are no contracts or minimum commitments for using
MediaStore. You are charged a per GB ingest fee when content enters into the service and a per GB
monthly fee for content that you store in the service. For more information, see AWS Elemental
MediaStore Pricing.

Regions and endpoints for AWS Elemental MediaStore

To reduce data latency in your applications, MediaStore offers a regional endpoint to make your
request:

https://mediastore.<region>.amazonaws.com

To view the complete list of AWS Regions where MediaStore is available, see AWS Elemental
MediaStore endpoints and quotas in the AWS General Reference.

Pricing 4

https://docs.aws.amazon.com/mediastore/latest/apireference/
https://aws.amazon.com/tools
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://aws.amazon.com/mediastore/pricing/
https://aws.amazon.com/mediastore/pricing/
https://docs.aws.amazon.com/general/latest/gr/mediastore.html
https://docs.aws.amazon.com/general/latest/gr/mediastore.html

AWS Elemental MediaStore User Guide

Setting Up AWS Elemental MediaStore

This section guides you through the steps required to configure users to access AWS Elemental
MediaStore. For background and additional information about identity and access management for
MediaStore, see Identity and Access Management for AWS Elemental MediaStore.

To start using AWS Elemental MediaStore, complete the following steps.

Topics

• Sign up for an AWS account

• Create a user with administrative access

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account 5

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

AWS Elemental MediaStore User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create a user with administrative access 6

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS Elemental MediaStore User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS Elemental MediaStore User Guide

Getting started with AWS Elemental MediaStore

This Getting Started tutorial shows you how to use AWS Elemental MediaStore to create a
container and upload an object.

Topics

• Step 1: Access AWS Elemental MediaStore

• Step 2: Create a container

• Step 3: Upload an object

• Step 4: Access an object

Step 1: Access AWS Elemental MediaStore

Once you have set up your AWS account and created users and roles, you sign in to the console for
AWS Elemental MediaStore.

To access AWS Elemental MediaStore

• Sign in to the AWS Management Console and open the MediaStore console at https://
console.aws.amazon.com/mediastore/.

Note

You can login using any of the IAM credentials you have created for this account. For
information about creating IAM credentials, see Setting Up AWS Elemental MediaStore.

Step 2: Create a container

You use containers in AWS Elemental MediaStore to store your folders and objects. You can use
containers to group related objects in the same way that you use a directory to group files in a file
system. You aren’t charged when you create containers; you are charged only when you upload an
object to a container.

To create a container

1. On the Containers page, choose Create container.

Step 1: Access AWS Elemental MediaStore 8

https://console.aws.amazon.com/mediastore/
https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

2. For Container name, type a name for your container. For more information, see Rules for
container names.

3. Choose Create container. AWS Elemental MediaStore adds the new container to a list of
containers. Initially, the status of the container is Creating, and then it changes to Active.

Step 3: Upload an object

You can upload objects (up to 25 MB each) to a container or to a folder within a container. To
upload an object to a folder, you specify the path to the folder. If the folder already exists, AWS
Elemental MediaStore stores the object in the folder. If the folder doesn’t exist, the service creates
it, and then stores the object in the folder.

Note

Object file names can contain only letters, numbers, periods (.), underscores (_), tildes (~),
and hyphens (-).

To upload an object

1. On the Containers page, choose the name of the container that you just created. The details
page for the container appears.

2. Choose Upload object.

3. For Target path, type a path for the folders. For example, premium/canada. If any of the
folders in the path don’t exist yet, AWS Elemental MediaStore creates them automatically.

4. For Object, choose Browse.

5. Navigate to the appropriate folder, and choose one object to upload.

6. Choose Open, and then choose Upload.

Step 4: Access an object

You can download your objects to a specified endpoint.

1. On the Containers page, choose the name of the container that has the object that you want
to download.

Step 3: Upload an object 9

AWS Elemental MediaStore User Guide

2. If the object that you want to download is in a subfolder, continue choosing the folder names
until you see the object.

3. Choose the name of the object.

4. On the details page for the object, choose Download.

Step 4: Access an object 10

AWS Elemental MediaStore User Guide

Containers in AWS Elemental MediaStore

You use containers in MediaStore to store your folders and objects. Related objects can be grouped
in containers in the same way that you use a directory to group files in a file system. You aren’t
charged when you create containers; you are charged only when you upload an object to a
container. For more information about charges, see AWS Elemental MediaStore Pricing.

Topics

• Rules for container names

• Creating a container

• Viewing the details for a container

• Viewing a list of containers

• Deleting a container

Rules for container names

When you choose a name for your container, remember the following:

• The name must be unique within the current account for the current AWS Region.

• The name can contain uppercase letters, lowercase letters, numbers, and underscores (_).

• The name must be from 1 to 255 characters long.

• Names are case sensitive. For example, you can have a container named myContainer and a
folder named mycontainer because those names are unique.

• A container can’t be renamed after it has been created.

Creating a container

You can create up to 100 containers for each AWS account. You can create as many folders as you
want, as long as they are not nested more than 10 levels within a container. In addition, you can
upload as many objects as you want to each container.

Rules for container names 11

https://aws.amazon.com/mediastore/pricing/

AWS Elemental MediaStore User Guide

Tip

You can also create a container automatically by using an AWS CloudFormation template.
The AWS CloudFormation template manages data for five API actions: creating a container,
setting access logging, updating the default container policy, adding a cross-origin resource
sharing (CORS) policy, and adding an object lifecycle policy. For more information, see the
AWS CloudFormation User Guide.

To create a container (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose Create container.

3. For Container name, enter a name for the container. For more information, see Rules for
container names.

4. Choose Create container. AWS Elemental MediaStore adds the new container to a list of
containers. Initially, the status of the container is Creating, and then it changes to Active.

To create a container (AWS CLI)

• In the AWS CLI, use the create-container command:

aws mediastore create-container --container-name ExampleContainer --region us-
west-2

The following example shows the return value:

{
 "Container": {
 "AccessLoggingEnabled": false,
 "CreationTime": 1563557265.0,
 "Name": "ExampleContainer",
 "Status": "CREATING",
 "ARN": "arn:aws:mediastore:us-west-2:111122223333:container/
ExampleContainer"
 }
}

Creating a container 12

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-mediastore-container.html
https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Viewing the details for a container

Details for a container include the container policy, endpoint, ARN, and creation time.

To view the details for a container (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container.

The container details page appears. This page is divided into two sections:

• The Objects section, which lists the objects and folders in the container.

• The Container policy section, which shows the resource-based policy that is associated with
this container. For information about resource policies, see Container policies.

To view the details for a container (AWS CLI)

• In the AWS CLI, use the describe-container command:

aws mediastore describe-container --container-name ExampleContainer --region us-
west-2

The following example shows the return value:

{
 "Container": {
 "CreationTime": 1563558086.0,
 "AccessLoggingEnabled": false,
 "ARN": "arn:aws:mediastore:us-west-2:111122223333:container/
ExampleContainer",
 "Status": "ACTIVE",
 "Name": "ExampleContainer",
 "Endpoint": "https://aaabbbcccdddee.data.mediastore.us-
west-2.amazonaws.com"
 }
}

Viewing container details 13

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Viewing a list of containers

You can view a list of all the containers that are associated with your account.

To view a list of containers (console)

• Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

The Containers page appears, listing all the containers that are associated with your account.

To view a list of containers (AWS CLI)

• In the AWS CLI, use the list-containers command.

aws mediastore list-containers --region us-west-2

The following example shows the return value:

{
 "Containers": [
 {
 "CreationTime": 1505317931.0,
 "Endpoint": "https://aaabbbcccdddee.data.mediastore.us-
west-2.amazonaws.com",
 "Status": "ACTIVE",
 "ARN": "arn:aws:mediastore:us-west-2:111122223333:container/
ExampleLiveDemo",
 "AccessLoggingEnabled": false,
 "Name": "ExampleLiveDemo"
 },
 {
 "CreationTime": 1506528818.0,
 "Endpoint": "https://fffggghhhiiijj.data.mediastore.us-
west-2.amazonaws.com",
 "Status": "ACTIVE",
 "ARN": "arn:aws:mediastore:us-west-2:111122223333:container/
ExampleContainer",
 "AccessLoggingEnabled": false,
 "Name": "ExampleContainer"
 }
]

Viewing a list of containers 14

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

}

Deleting a container

You can delete a container only if it has no objects.

To delete a container (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the option to the left of the container name.

3. Choose Delete.

To delete a container (AWS CLI)

• In the AWS CLI, use the delete-container command:

aws mediastore delete-container --container-name=ExampleLiveDemo --region us-west-2

This command has no return value.

Deleting a container 15

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Policies in AWS Elemental MediaStore

You can apply one or more of these policies to your AWS Elemental MediaStore container:

• Container policy - Sets access rights to all folders and objects within the container. MediaStore
sets a default policy that allows users to perform all MediaStore operations on the container.
This policy specifies that all operations must be performed over HTTPS. After you create a
container, you can edit the container policy.

• Cross-origin resource sharing (CORS) policy - Allows client web applications from one domain to
interact with resources in a different domain. MediaStore does not set a default CORS policy.

• Metrics policy - Allows MediaStore to send metrics to Amazon CloudWatch. MediaStore does not
set a default metric policy.

• Object lifecycle policy - Controls how long objects remain in a MediaStore container. MediaStore
does not set a default object lifecycle policy.

Container policies in AWS Elemental MediaStore

Each container has a resource-based policy that governs access rights to all folders and objects in
that container. The default policy, which is automatically attached to all new containers, allows
access to all AWS Elemental MediaStore operations on the container. It specifies that this access
has the condition of requiring HTTPS for the operations. After you create a container, you can edit
the policy that is attached to that container.

You can also specify an object lifecycle policy that governs the expiration date of objects in a
container. After objects reach the maximum age that you specify, the service deletes the objects
from the container.

Topics

• Viewing a container policy

• Editing a container policy

• Example container policies

Viewing a container policy

You can use the console or the AWS CLI to view the resource-based policy of a container.

Container policies 16

AWS Elemental MediaStore User Guide

To view a container policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the container name.

The container details page appears. The policy is displayed in the Container policy section.

To view a container policy (AWS CLI)

• In the AWS CLI, use the get-container-policy command:

aws mediastore get-container-policy --container-name ExampleLiveDemo --region us-
west-2

The following example shows the return value:

{
 "Policy": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublicReadOverHttps",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root",
 },
 "Action": [
 "mediastore:GetObject",
 "mediastore:DescribeObject",
],
 "Resource": "arn:aws:mediastore:us-
west-2:111122223333:container/ExampleLiveDemo/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 }
]
 }
}

Viewing a container policy 17

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Editing a container policy

You can edit the permissions in the default container policy, or you can create a new policy that
replaces the default policy. It takes up to five minutes for the new policy to take effect.

To edit a container policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the container name.

3. Choose Edit policy. For examples that show how to set different permissions, see the section
called “Example container policies”.

4. Make the appropriate changes, and then choose Save.

To edit a container policy (AWS CLI)

1. Create a file that defines the container policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublicReadOverHttps",
 "Effect": "Allow",
 "Action": ["mediastore:GetObject", "mediastore:DescribeObject"],
 "Principal": "*",
 "Resource": "arn:aws:mediastore:us-
west-2:111122223333:container/ExampleLiveDemo/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 }
]
}

2. In the AWS CLI, use the put-container-policy command:

aws mediastore put-container-policy --container-name ExampleLiveDemo --
policy file://ExampleContainerPolicy.json --region us-west-2

Editing a container policy 18

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

This command has no return value.

Example container policies

The following examples show container policies that are constructed for different user groups.

Topics

• Example container policy: Default

• Example container policy: Public read access over HTTPS

• Example container policy: Public read access over HTTP or HTTPS

• Example container policy: Cross-account read access—HTTP enabled

• Example container policy: Cross-account read access over HTTPS

• Example container policy: Cross-account read access to a role

• Example container policy: Cross-account full access to a role

• Example container policy: Access restricted to specific IP addresses

Example container policy: Default

When you create a container, AWS Elemental MediaStore automatically attaches the following
resource-based policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MediaStoreFullAccess",
 "Action": ["mediastore:*"],
 "Principal":{
 "AWS" : "arn:aws:iam::<aws_account_number>:root"},
 "Effect": "Allow",
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 "Condition": {
 "Bool": { "aws:SecureTransport": "true" }
 }
 }
]

Example container policies 19

AWS Elemental MediaStore User Guide

}

The policy is built into the service, so you don’t have to create it. However, you can edit the policy
on the container if the permissions in the default policy don't align with the permissions that you
want to use for the container.

The default policy that is assigned to all new containers allows access to all MediaStore operations
on the container. It specifies that this access has the condition of requiring HTTPS for the
operations.

Example container policy: Public read access over HTTPS

This example policy allows users to retrieve an object through an HTTPS request. It allows read
access to anyone over a secured SSL/TLS connection: authenticated users and anonymous users
(users who are not logged in). The statement has the name PublicReadOverHttps. It allows
access to the GetObject and DescribeObject operations on any object (as specified by the * at
the end of the resource path). It specifies that this access has the condition of requiring HTTPS for
the operations:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublicReadOverHttps",
 "Effect": "Allow",
 "Action": ["mediastore:GetObject", "mediastore:DescribeObject"],
 "Principal": "*",
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 }
]
}

Example container policies 20

AWS Elemental MediaStore User Guide

Example container policy: Public read access over HTTP or HTTPS

This example policy allows access to the GetObject and DescribeObject operations on any
object (as specified by the * at the end of the resource path). It allows read access to anyone,
including all authenticated users and anonymous users (users who are not logged in):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublicReadOverHttpOrHttps",
 "Effect": "Allow",
 "Action": ["mediastore:GetObject", "mediastore:DescribeObject"],
 "Principal": "*",
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 "Condition": {
 "Bool": { "aws:SecureTransport": ["true", "false"] }
 }
 }
]
}

Example container policy: Cross-account read access—HTTP enabled

This example policy allows users to retrieve an object through an HTTP request. It allows this
access to authenticated users with cross-account access. The object is not required to be hosted on
a server with an SSL/TLS certificate:

{
 "Version" : "2012-10-17",
 "Statement" : [{
 "Sid" : "CrossAccountReadOverHttpOrHttps",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::<other acct number>:root"
 },
 "Action" : ["mediastore:GetObject", "mediastore:DescribeObject"],
 "Resource" : "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 "Condition" : {
 "Bool" : {

Example container policies 21

AWS Elemental MediaStore User Guide

 "aws:SecureTransport" : ["true", "false"]
 }
 }
 }]
}

Example container policy: Cross-account read access over HTTPS

This example policy allows access to the GetObject and DescribeObject operations on any
object (as specified by the * at the end of the resource path) that is owned by root user user of the
specified <other acct number>. It specifies that this access has the condition of requiring HTTPS for
the operations:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountReadOverHttps",
 "Effect": "Allow",
 "Action": ["mediastore:GetObject", "mediastore:DescribeObject"],
 "Principal":{
 "AWS": "arn:aws:iam::<other acct number>:root"},
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 }
]
}

Example container policy: Cross-account read access to a role

The example policy allows access to the GetObject and DescribeObject operations on any
object (as specified by the * at the end of the resource path) that is owned by the <owner acct
number>. It allows this access to any user of the <other acct number> if that account has assumed
the role that is specified in <role name>:

{
 "Version": "2012-10-17",

Example container policies 22

AWS Elemental MediaStore User Guide

 "Statement": [
 {
 "Sid": "CrossAccountRoleRead",
 "Effect": "Allow",
 "Action": ["mediastore:GetObject", "mediastore:DescribeObject"],
 "Principal":{
 "AWS": "arn:aws:iam::<other acct number>:role/<role name>"},
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 }
]
}

Example container policy: Cross-account full access to a role

This example policy allows cross-account access to update any object in the account, as long as the
user is logged in over HTTP. It also allows cross-account access to delete, download, and describe
objects over HTTP or HTTPS to an account that has assumed the specified role:

• The first statement is CrossAccountRolePostOverHttps. It allows access to the PutObject
operation on any object and allows this access to any user of the specified account if that
account has assumed the role that is specified in <role name>. It specifies that this access has
the condition of requiring HTTPS for the operation (this condition must always be included when
providing access to PutObject).

In other words, any principal that has cross-account access can access PutObject, but only over
HTTPS.

• The second statement is CrossAccountFullAccessExceptPost. It allows access to all
operations except PutObject on any object. It allows this access to any user of the specified
account if that account has assumed the role that is specified in <role name>. This access does
not have the condition of requiring HTTPS for the operations.

In other words, any account that has cross-account access can access DeleteObject,
GetObject, and so on (but not PutObject), and can do this over HTTP or HTTPS.

If you don’t exclude PutObject from the second statement, the statement won’t be valid
(because if you include PutObject you must explicitly set HTTPS as a condition).

{

Example container policies 23

AWS Elemental MediaStore User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountRolePostOverHttps",
 "Effect": "Allow",
 "Action": "mediastore:PutObject",
 "Principal":{
 "AWS": "arn:aws:iam::<other acct number>:role/<role name>"},
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 },
 {
 "Sid": "CrossAccountFullAccessExceptPost",
 "Effect": "Allow",
 "NotAction": "mediastore:PutObject",
 "Principal":{
 "AWS": "arn:aws:iam::<other acct number>:role/<role name>"},
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/<container
 name>/*"
 }
]
}

Example container policy: Access restricted to specific IP addresses

This example policy allows access to all AWS Elemental MediaStore operations on objects in the
specified container. However, the request must originate from the range of IP addresses specified in
the condition.

The condition in this statement identifies the 198.51.100.* range of allowed Internet Protocol
version 4 (IPv4) IP addresses, with one exception: 198.51.100.188.

The Condition block uses the IpAddress and NotIpAddress conditions and the
aws:SourceIp condition key, which is an AWS-wide condition key. The aws:sourceIp IPv4
values use the standard CIDR notation. For more information, see IP Address Condition Operators
in the IAM User Guide.

Example container policies 24

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress

AWS Elemental MediaStore User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessBySpecificIPAddress",
 "Effect": "Allow",
 "Action": [
 "mediastore:GetObject",
 "mediastore:DescribeObject"
],
 "Principal": "*",
 "Resource": "arn:aws:mediastore:<region>:<owner acct number>:container/
<container name>/*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "198.51.100.0/24"
]
 },
 "NotIpAddress": {
 "aws:SourceIp": "198.51.100.188/32"
 }
 }
 }
]
}

Cross-origin resource sharing (CORS) policies in AWS Elemental
MediaStore

Cross-origin resource sharing (CORS) defines a way for client web applications that are loaded in
one domain to interact with resources in a different domain. With CORS support in AWS Elemental
MediaStore, you can build rich client-side web applications with MediaStore and selectively allow
cross-origin access to your MediaStore resources.

CORS policies 25

AWS Elemental MediaStore User Guide

Note

If you are using Amazon CloudFront to distribute content from a container that has a CORS
policy, be sure to configure the distribution for AWS Elemental MediaStore (including the
step to edit the cache behavior to set up CORS).

This section provides an overview of CORS. The subtopics describe how you can enable CORS using
the AWS Elemental MediaStore console, or programmatically using the MediaStore REST API and
the AWS SDKs.

Topics

• CORS use-case scenarios

• Adding a CORS policy to a container

• Viewing a CORS policy

• Editing a CORS policy

• Deleting a CORS policy

• Troubleshooting CORS issues

• Example CORS policies

CORS use-case scenarios

The following are example scenarios for using CORS:

• Scenario 1: Suppose you are distributing live streaming video in an AWS Elemental
MediaStore container named LiveVideo. Your users load the video manifest endpoint http://
livevideo.mediastore.ap-southeast-2.amazonaws.com from a specific origin like
www.example.com. You want to use a JavaScript video player to access videos that are
originated from this container via unauthenticated GET and PUT requests. A browser would
typically block JavaScript from allowing those requests, but you can set a CORS policy on your
container to explicitly enable these requests from www.example.com.

• Scenario 2: Suppose you want to host the same live stream as in Scenario 1 from your
MediaStore container, but want to allow requests from any origin. You can configure a CORS
policy to allow wildcard (*) origins, so that requests from any origin can access the video.

Use-case scenarios 26

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/live-streaming.html#video-streaming-mediastore

AWS Elemental MediaStore User Guide

Adding a CORS policy to a container

This section explains how to add a cross-origin resource sharing (CORS) configuration to an AWS
Elemental MediaStore container. CORS allows client web applications that are loaded in one
domain to interact with resources in another domain.

To configure your container to allow cross-origin requests, you add a CORS policy to the container.
A CORS policy defines rules that identify the origins that you allow to access your container, the
operations (HTTP methods) supported for each origin, and other operation-specific information.

When you add a CORS policy to the container, the container policies (that govern access rights to
the container) continue to apply.

To add a CORS policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to create a CORS
policy for.

The container details page appears.

3. In the Container CORS policy section, choose Create CORS policy.

4. Insert the policy in JSON format, and then choose Save.

To add a CORS policy (AWS CLI)

1. Create a file that defines the CORS policy:

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "HEAD"
],
 "AllowedOrigins": [
 "*"
],
 "MaxAgeSeconds": 3000

Adding a CORS policy 27

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

 }
]

2. In the AWS CLI, use the put-cors-policy command.

aws mediastore put-cors-policy --container-name ExampleContainer --cors-policy
 file://corsPolicy.json --region us-west-2

This command has no return value.

Viewing a CORS policy

Cross-origin resource sharing (CORS) defines a way for client web applications that are loaded in
one domain to interact with resources in a different domain.

To view a CORS policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to view the CORS
policy for.

The container details page appears, with the CORS policy in the Container CORS policy
section.

To view a CORS policy (AWS CLI)

• In the AWS CLI, use the get-cors-policy command:

aws mediastore get-cors-policy --container-name ExampleContainer --region us-west-2

The following example shows the return value:

{
 "CorsPolicy": [
 {
 "AllowedMethods": [
 "GET",
 "HEAD"
],

Viewing a CORS policy 28

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

 "MaxAgeSeconds": 3000,
 "AllowedOrigins": [
 "*"
],
 "AllowedHeaders": [
 "*"
]
 }
]
}

Editing a CORS policy

Cross-origin resource sharing (CORS) defines a way for client web applications that are loaded in
one domain to interact with resources in a different domain.

To edit a CORS policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to edit the CORS
policy for.

The container details page appears.

3. In the Container CORS policy section, choose Edit CORS policy.

4. Make your changes to the policy, and then choose Save.

To edit a CORS policy (AWS CLI)

1. Create a file that defines the updated CORS policy:

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "HEAD"
],
 "AllowedOrigins": [

Editing a CORS policy 29

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

 "https://www.example.com"
],
 "MaxAgeSeconds": 3000
 }
]

2. In the AWS CLI, use the put-cors-policy command.

aws mediastore put-cors-policy --container-name ExampleContainer --cors-policy
 file://corsPolicy2.json --region us-west-2

This command has no return value.

Deleting a CORS policy

Cross-origin resource sharing (CORS) defines a way for client web applications that are loaded
in one domain to interact with resources in a different domain. Deleting the CORS policy from a
container removes permissions for cross-origin requests.

To delete a CORS policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to delete the CORS
policy for.

The container details page appears.

3. In the Container CORS policy section, choose Delete CORS policy.

4. Choose Continue to confirm, and then choose Save.

To delete a CORS policy (AWS CLI)

• In the AWS CLI, use the delete-cors-policy command:

aws mediastore delete-cors-policy --container-name ExampleContainer --region us-
west-2

This command has no return value.

Deleting a CORS policy 30

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Troubleshooting CORS issues

If you encounter unexpected behavior when you access a container that has a CORS policy, follow
these steps to troubleshoot the issue.

1. Verify that the CORS policy is attached to the container.

For instructions, see the section called “Viewing a CORS policy”.

2. Capture the complete request and response using a tool of your choice (such as your browser's
developer console). Verify that the CORS policy that is attached to the container includes at
least one CORS rule that matches the data in your request, as follows:

a. Verify that the request has an Origin header.

If the header is missing, AWS Elemental MediaStore does not treat the request as a cross-
origin request and does not send CORS response headers back in the response.

b. Verify that the Origin header in your request matches at least one of the
AllowedOrigins elements in the specific CORSRule.

The scheme, the host, and the port values in the Origin request header must match the
AllowedOrigins in the CORSRule. For example, if you set CORSRule to allow the origin
http://www.example.com, then both https://www.example.com and http://
www.example.com:80 origins in your request do not match the allowed origin in your
configuration.

c. Verify that the method in your request (or the method specified in the Access-Control-
Request-Method in case of a preflight request) is one of the AllowedMethods elements
in the same CORSRule.

d. For a preflight request, if the request includes an Access-Control-Request-Headers
header, verify that the CORSRule includes the AllowedHeaders entries for each value in
the Access-Control-Request-Headers header.

Example CORS policies

The following examples show cross-origin resource sharing (CORS) policies.

Topics

• Example CORS policy: Read access for any domain

Troubleshooting 31

AWS Elemental MediaStore User Guide

• Example CORS policy: Read access for a specific domain

Example CORS policy: Read access for any domain

The following policy allows a webpage from any domain to retrieve content from your AWS
Elemental MediaStore container. The request includes all HTTP headers from the originating
domain, and the service responds only to HTTP GET and HTTP HEAD requests from the originating
domain. The results are cached for 3,000 seconds before a new set of results is delivered.

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "HEAD"
],
 "AllowedOrigins": [
 "*"
],
 "MaxAgeSeconds": 3000
 }
]

Example CORS policy: Read access for a specific domain

The following policy allows a webpage from https://www.example.com to retrieve content
from your AWS Elemental MediaStore container. The request includes all HTTP headers from
https://www.example.com, and the service responds only to HTTP GET and HTTP HEAD
requests from https://www.example.com. The results are cached for 3,000 seconds before a
new set of results is delivered.

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",

Example CORS policies 32

AWS Elemental MediaStore User Guide

 "HEAD"
],
 "AllowedOrigins": [
 "https://www.example.com"
],
 "MaxAgeSeconds": 3000
 }
]

Object lifecycle policies in AWS Elemental MediaStore

For each container, you can create an object lifecycle policy that governs how long objects should
be stored in the container. When objects reach the maximum age that you specify, AWS Elemental
MediaStore deletes the objects. You can delete objects after they are no longer needed to save on
storage costs.

You can also specify that MediaStore should move objects to the infrequent access (IA) storage
class after they reach a certain age. Objects that are stored in the IA storage class have different
rates for storage and retrieval than objects that are stored in the standard storage class. For more
information, see MediaStore Pricing.

An object lifecycle policy contains rules, which dictate the lifespan of objects by subfolder. (You
can't assign an object lifecycle policy to individual objects). You can attach only one object lifecycle
policy to a container, but you can add up to 10 rules to each object lifecycle policy. For more
information, see Components of an object lifecycle policy.

Topics

• Components of an object lifecycle policy

• Adding an object lifecycle policy to a container

• Viewing an object lifecycle policy

• Editing an object lifecycle policy

• Deleting an object lifecycle policy

• Example object lifecycle policies

Object lifecycle policies 33

https://aws.amazon.com/mediastore/pricing/

AWS Elemental MediaStore User Guide

Components of an object lifecycle policy

Object lifecycle policies govern how long objects remain in an AWS Elemental MediaStore
container. Each object lifecycle policy consists of one or more rules, which dictate the lifespan of
objects. A rule can apply to one folder, multiple folders, or the entire container.

You can attach one object lifecycle policy to a container, and each object lifecycle policy can
contain up to 10 rules. You can't assign an object lifecycle policy to an individual object.

Rules in an object lifecycle policy

You can create three types of rules:

• Transient data

• Delete object

• Lifecycle transition

Transient data

A transient data rule sets objects to expire within seconds. This type of rule applies only to objects
that are added to the container after the policy becomes effective. It takes up to 20 minutes for
MediaStore to apply the new policy to the container.

An example of a rule for transient data looks like this:

 {
 "definition": {
 "path": [{"wildcard": "Football/index*.m3u8"}],
 "seconds_since_create": [
 {"numeric": [">", 120]}
]
 },
 "action": "EXPIRE"
 },

Transient data rules have three parts:

• path: Always set to wildcard. You use this part to define which objects you want to delete.
You can use one or more wildcards, represented by an asterisk (*). Each wildcard represents

Components of an object lifecycle policy 34

AWS Elemental MediaStore User Guide

any combination of zero or more characters. For example, "path": [{"wildcard":
"Football/index*.m3u8"}], applies to all files in the Football folder that match the
pattern of index*.m3u8 (such as index.m3u8, index1.m3us8, and index123456.m3u8). You can
include up to 10 paths in a single rule.

• seconds_since_create: Always set to numeric. You can specify a value from 1-300 seconds.
You can also set the operator to greater than (>) or greater than or equal to (>=).

• action: Always set to EXPIRE.

For transient data rules (objects expire within seconds), there is no lag between the expiration of an
object and the deletion of the object.

Note

Objects that are subject to a transient data rule are not included in a list-items
response. In addition, objects that expire because of a transient data rule do not emit a
CloudWatch event when they expire.

Delete object

A delete object rule sets objects to expire within days. This type of rule applies to all objects in the
container, even if they were added to the container before the policy was created. It takes up to 20
minutes for MediaStore to apply the new policy, but it can take up to 24 hours for the objects to
clear from the container.

An example of two rules for deleting objects looks like this:

 {
 "definition": {
 "path": [{ "prefix": "FolderName/" }],
 "days_since_create": [
 {"numeric": [">" , 5]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [{ "wildcard": "Football/*.ts" }],

Components of an object lifecycle policy 35

AWS Elemental MediaStore User Guide

 "days_since_create": [
 {"numeric": [">" , 5]}
]
 },
 "action": "EXPIRE"
 }

Delete object rules have three parts:

• path: Set to either prefix or wildcard. You can't mix prefix and wildcard in the same rule.
If you want to use both, you must create one rule for prefix and a separate rule for wildcard,
as shown in the example above.

• prefix - You set the path to prefix if you want to delete all objects within a particular
folder. If the parameter is empty ("path": [{ "prefix": "" }],), the target is all
objects that are stored anywhere within the current container. You can include up to 10
prefix paths in a single rule.

• wildcard - You set the path to wildcard if you want to delete specific objects based on
file name and/or file type. You can use one or more wildcards, represented by an asterisk (*).
Each wildcard represents any combination of zero or more characters. For example, "path":
[{"wildcard": "Football/*.ts"}], applies to all files in the Football folder that
match the pattern of *.ts (such as filename.ts, filename1.ts, and filename123456.ts). You can
include up to 10 wildcard paths in a single rule.

• days_since_create: Always set to numeric. You can specify a value from 1-36,500 days. You
can also set the operator to greater than (>) or greater than or equal to (>=).

• action: Always set to EXPIRE.

For delete object rules (objects expire within days), there might be a slight lag between the
expiration of an object and the deletion of the object. However, changes in billing happen as
soon as the object expires. For example, if a lifecycle rule specifies 10 days_since_create, the
account isn't billed for the object after the object is 10 days old, even if the object isn't deleted yet.

Lifecycle transition

A lifecycle transition rule sets objects to be moved to the infrequent access (IA) storage class after
they reach a certain age, measured in days. Objects that are stored in the IA storage class have
different rates for storage and retrieval than objects that are stored in the standard storage class.
For more information, see MediaStore Pricing.

Components of an object lifecycle policy 36

https://aws.amazon.com/mediastore/pricing/

AWS Elemental MediaStore User Guide

Once an object has moved to the IA storage class, you can't move it back to the standard storage
class.

The lifecycle transition rule applies to all objects in the container, even if they were added to the
container before the policy was created. It takes up to 20 minutes for MediaStore to apply the new
policy, but it can take up to 24 hours for the objects to clear from the container.

An example of a lifecycle transition rule looks like this:

 {
 "definition": {
 "path": [
 {"prefix": "AwardsShow/"}
],
 "days_since_create": [
 {"numeric": [">=" , 30]}
]
 },
 "action": "ARCHIVE"
 }

Lifecycle transition rules have three parts:

• path: Set to either prefix or wildcard. You can't mix prefix and wildcard in the same rule.
If you want to use both, you must create one rule for prefix and a separate rule for wildcard.

• prefix - You set the path to prefix if you want to transition all objects within a particular
folder to the IA storage class. If the parameter is empty ("path": [{ "prefix":
"" }],), the target is all objects that are saved anywhere within the current container. You
can include up to 10 prefix paths in a single rule.

• wildcard - You set the path to wildcard if you want to transition specific objects to the
IA storage class based on file name and/or file type. You can use one or more wildcards,
represented by an asterisk (*). Each wildcard represents any combination of zero or more
characters. For example, "path": [{"wildcard": "Football/*.ts"}], applies to all
files in the Football folder that match the pattern of *.ts (such as filename.ts, filename1.ts,
and filename123456.ts). You can include up to 10 wildcard paths in a single rule.

• days_since_create: Always set to "numeric": [">=" , 30].

• action: Always set to ARCHIVE.

Components of an object lifecycle policy 37

AWS Elemental MediaStore User Guide

Example

Suppose that a container named LiveEvents has four subfolders: Football, Baseball,
Basketball, and AwardsShow. The object lifecycle policy assigned to the LiveEvents folder
might look like this:

{
 "rules": [
 {
 "definition": {
 "path": [
 {"prefix": "Football/"},
 {"prefix": "Baseball/"}
],
 "days_since_create": [
 {"numeric": [">" , 28]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [{ "prefix": "AwardsShow/" }],
 "days_since_create": [
 {"numeric": [">=" , 15]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [{ "prefix": "" }],
 "days_since_create": [
 {"numeric": [">" , 40]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [{ "wildcard": "Football/*.ts" }],
 "days_since_create": [
 {"numeric": [">" , 20]}

Components of an object lifecycle policy 38

AWS Elemental MediaStore User Guide

]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [
 {"wildcard": "Football/index*.m3u8"}
],
 "seconds_since_create": [
 {"numeric": [">" , 15]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [
 {"prefix": "Program/"}
],
 "days_since_create": [
 {"numeric": [">=" , 30]}
]
 },
 "action": "ARCHIVE"
 }
]
}

The preceding policy specifies the following:

• The first rule instructs AWS Elemental MediaStore to delete objects that are stored in the
LiveEvents/Football folder and the LiveEvents/Baseball folder after they are older
than 28 days.

• The second rule instructs the service to delete objects that are stored in the LiveEvents/
AwardsShow folder when they are 15 days old or older.

• The third rule instructs the service to delete objects that are stored anywhere in the
LiveEvents container after they are older than 40 days. This rule applies to objects stored
directly in the LiveEvents container, as well as objects stored in any of the container's four
subfolders.

Components of an object lifecycle policy 39

AWS Elemental MediaStore User Guide

• The fourth rule instructs the service to delete objects in the Football folder that match the
pattern *.ts after they are older than 20 days.

• The fifth rule instructs the service to delete objects in the Football folder that match the
pattern index*.m3u8 after they are older than 15 seconds. MediaStore deletes these files 16
seconds after they are placed in the container.

• The sixth rule instructs the service to move objects in the Program folder to the IA storage class
after they are 30 days old.

For more examples of object lifecycle policies, see Example object lifecycle policies.

Adding an object lifecycle policy to a container

An object lifecycle policy lets you specify how long to store your objects in a container. You set an
expiration date, and after the expiration date AWS Elemental MediaStore deletes the objects. It
takes up to 20 minutes for the service to apply the new policy to the container.

For information about how to construct a lifecycle policy, see Components of an object lifecycle
policy.

Note

For delete object rules (objects expire within days), there might be a slight lag between
the expiration of an object and the deletion of the object. However, changes in billing
happen as soon as the object expires. For example, if a lifecycle rule specifies 10
days_since_create, the account isn't billed for the object after the object is 10 days old,
even if the object isn't deleted yet.

To add an object lifecycle policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to create an object
lifecycle policy for.

The container details page appears.

3. In the Object lifecycle policy section, choose Create object lifecycle policy.

4. Insert the policy in JSON format, and then choose Save.

Adding an object lifecycle policy 40

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

To add an object lifecycle policy (AWS CLI)

1. Create a file that defines the object lifecycle policy:

{
 "rules": [
 {
 "definition": {
 "path": [
 {"prefix": "Football/"},
 {"prefix": "Baseball/"}
],
 "days_since_create": [
 {"numeric": [">" , 28]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [
 {"wildcard": "AwardsShow/index*.m3u8"}
],
 "seconds_since_create": [
 {"numeric": [">" , 8]}
]
 },
 "action": "EXPIRE"
 }
]
}

2. In the AWS CLI, use the put-lifecycle-policy command:

aws mediastore put-lifecycle-policy --container-name LiveEvents --lifecycle-
policy file://LiveEventsLifecyclePolicy.json --region us-west-2

This command has no return value. The service attaches the specified policy to the container.

Viewing an object lifecycle policy

An object lifecycle policy specifies how long objects should be kept in a container.

Viewing an object lifecycle policy 41

AWS Elemental MediaStore User Guide

To view an object lifecycle policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to view the object
lifecycle policy for.

The container details page appears, with the object lifecycle policy in the Object lifecycle
policy section.

To view an object lifecycle policy (AWS CLI)

• In the AWS CLI, use the get-lifecycle-policy command:

aws mediastore get-lifecycle-policy --container-name LiveEvents --region us-west-2

The following example shows the return value:

{
 "LifecyclePolicy": "{
 "rules": [
 {
 "definition": {
 "path": [
 {"prefix": "Football/"},
 {"prefix": "Baseball/"}
],
 "days_since_create": [
 {"numeric": [">" , 28]}
]
 },
 "action": "EXPIRE"
 }
]
 }"
}

Viewing an object lifecycle policy 42

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Editing an object lifecycle policy

You can't edit an existing object lifecycle policy. However, you can change an existing policy by
uploading a replacement policy. It takes up to 20 minutes for the service to apply the updated
policy to the container.

To edit an object lifecycle policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to edit the object
lifecycle policy for.

The container details page appears.

3. In the Object lifecycle policy section, choose Edit object lifecycle policy.

4. Make your changes to the policy, and then choose Save.

To edit an object lifecycle policy (AWS CLI)

1. Create a file that defines the updated object lifecycle policy:

{
 "rules": [
 {
 "definition": {
 "path": [
 {"prefix": "Football/"},
 {"prefix": "Baseball/"}
 {"prefix": "Basketball/"}
],
 "days_since_create": [
 {"numeric": [">" , 28]}
]
 },
 "action": "EXPIRE"
 }
]
}

2. In the AWS CLI, use the put-lifecycle-policy command:

Editing an object lifecycle policy 43

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

aws mediastore put-lifecycle-policy --container-name LiveEvents --lifecycle-
policy file://LiveEvents2LifecyclePolicy --region us-west-2

This command has no return value. The service attaches the specified policy to the container,
replacing the previous policy.

Deleting an object lifecycle policy

When you delete an object lifecycle policy, it takes up to 20 minutes for the service to apply the
change to the container.

To delete an object lifecycle policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to delete the object
lifecycle policy for.

The container details page appears.

3. In the Object lifecycle policy section, choose Delete lifecycle policy.

4. Choose Continue to confirm, and then choose Save.

To delete an object lifecycle policy (AWS CLI)

• In the AWS CLI, use the delete-lifecycle-policy command:

aws mediastore delete-lifecycle-policy --container-name LiveEvents --region us-
west-2

This command has no return value.

Example object lifecycle policies

The following examples show object lifecycle policies.

Topics

• Example object lifecycle policy: Expire within seconds

Deleting an object lifecycle policy 44

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

• Example object lifecycle policy: Expire within days

• Example object lifecycle policy: Transition to infrequent access storage class

• Example object lifecycle policy: Multiple rules

• Example object lifecycle policy: Empty container

Example object lifecycle policy: Expire within seconds

The following policy specifies that MediaStore deletes objects that match all of the following
criteria:

• The object is added to the container after the policy becomes effective.

• The object is stored in the Football folder.

• The object has a file extension of m3u8.

• The object has been in the container for more than 20 seconds.

{
 "rules": [
 {
 "definition": {
 "path": [
 {"wildcard": "Football/*.m3u8"}
],
 "seconds_since_create": [
 {"numeric": [">", 20]}
]
 },
 "action": "EXPIRE"
 }
]
}

Example object lifecycle policy: Expire within days

The following policy specifies that MediaStore deletes objects that match all of the following
criteria:

• The object is stored in the Program folder

Example object lifecycle policies 45

AWS Elemental MediaStore User Guide

• The object has a file extension of ts

• The object has been in the container for more than 5 days

{
 "rules": [
 {
 "definition": {
 "path": [
 {"wildcard": "Program/*.ts"}
],
 "days_since_create": [
 {"numeric": [">", 5]}
]
 },
 "action": "EXPIRE"
 }
]
}

Example object lifecycle policy: Transition to infrequent access storage class

The following policy specifies that MediaStore moves objects to the infrequent access (IA) storage
class when they are 30 days old. Objects that are stored in the IA storage class have different rates
for storage and retrieval than objects that are stored in the standard storage class.

The days_since_create field must be set to "numeric": [">=" ,30].

{
 "rules": [
 {
 "definition": {
 "path": [
 {"prefix": "Football/"},
 {"prefix": "Baseball/"}
],
 "days_since_create": [
 {"numeric": [">=" , 30]}
]
 },
 "action": "ARCHIVE"
 }

Example object lifecycle policies 46

AWS Elemental MediaStore User Guide

]
}

Example object lifecycle policy: Multiple rules

The following policy specifies that MediaStore does the following:

• Move objects that are stored in the AwardsShow folder to the infrequent access (IA) storage class
after 30 days

• Delete objects that have a file extension of m3u8 and are stored in the Football folder after 20
seconds

• Delete objects that are stored in the April folder after 10 days

• Delete objects that have a file extension of ts and are stored in the Program folder after 5 days

{
 "rules": [
 {
 "definition": {
 "path": [
 {"prefix": "AwardsShow/"}
],
 "days_since_create": [
 {"numeric": [">=" , 30]}
]
 },
 "action": "ARCHIVE"
 },
 {
 "definition": {
 "path": [
 {"wildcard": "Football/*.m3u8"}
],
 "seconds_since_create": [
 {"numeric": [">", 20]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [

Example object lifecycle policies 47

AWS Elemental MediaStore User Guide

 {"prefix": "April"}
],
 "days_since_create": [
 {"numeric": [">", 10]}
]
 },
 "action": "EXPIRE"
 },
 {
 "definition": {
 "path": [
 {"wildcard": "Program/*.ts"}
],
 "days_since_create": [
 {"numeric": [">", 5]}
]
 },
 "action": "EXPIRE"
 }
]
}

Example object lifecycle policy: Empty container

The following object lifecycle policy specifies that MediaStore deletes all objects in the container,
including folders and subfolders, 1 day after they are added to the container. If the container
holds any objects before this policy is applied, MediaStore deletes the objects 1 day after the
policy becomes effective. It takes up to 20 minutes for the service to apply the new policy to the
container.

{
 "rules": [
 {
 "definition": {
 "path": [
 {"wildcard": "*"}
],
 "days_since_create": [
 {"numeric": [">=", 1]}
]
 },
 "action": "EXPIRE"
 }

Example object lifecycle policies 48

AWS Elemental MediaStore User Guide

]
}

Metric policies in AWS Elemental MediaStore

For each container, you can add a metric policy to allow AWS Elemental MediaStore to send
metrics to Amazon CloudWatch. It takes up to 20 minutes for the new policy to take effect. For a
description of each MediaStore metric, see MediaStore metrics.

A metric policy contains the following:

• A setting to enable or disable metrics at the container level.

• Anywhere from zero to five rules that enable metrics at the object level. If the policy contains
rules, each rule must include both of the following:

• An object group that defines which objects to include in the group. The definition can be a
path or a file name, but it can't have more than 900 characters. Valid characters are: a-z, A-Z,
0-9, _ (underscore), = (equal), : (colon), . (period), - (hyphen), ~ (tilde), / (forward slash), and *
(asterisk). Wildcards (*) are acceptable.

• An object group name that allows you to refer to the object group. The name can't have more
than 30 characters. Valid characters are: a-z, A-Z, 0-9, and _ (underscore).

If an object matches multiple rules, CloudWatch displays a data point for each matching rule. For
example, if an object matches two rules named rule1 and rule2, CloudWatch displays two data
points for these rules. The first has a dimension of ObjectGroupName=rule1 and the second has
a dimension of ObjectGroupName=rule2.

Topics

• Adding a metric policy

• Viewing a metric policy

• Editing a metric policy

• Example metric policies

Adding a metric policy

A metric policy contains rules that dictate which metrics AWS Elemental MediaStore sends to
Amazon CloudWatch. For examples of metric policies, see Example metric policies.

Metric policies 49

AWS Elemental MediaStore User Guide

To add a metric policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that you want to add a metric
policy to.

The container details page appears.

3. In the Metric policy section, choose Create metric policy.

4. Insert the policy in JSON format, and then choose Save.

Viewing a metric policy

You can use the console or the AWS CLI to view the metric policy of a container.

To view a metric policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the container name.

The container details page appears. The policy is displayed in the Metric policy section.

Editing a metric policy

A metric policy contains rules that dictate which metrics AWS Elemental MediaStore sends to
Amazon CloudWatch. When you edit an existing metric policy, it takes up to 20 minutes for the
new policy to take effect. For examples of metric policies, see Example metric policies.

To edit a metric policy (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the container name.

3. In the Metric policy section, choose Edit metric policy.

4. Make the appropriate changes, and then choose Save.

Example metric policies

The following examples show metric policies that are constructed for different use cases.

Viewing a metric policy 50

https://console.aws.amazon.com/mediastore/
https://console.aws.amazon.com/mediastore/
https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Topics

• Example metric policy: Container-level metrics

• Example metric policy: Path-level metrics

• Example metric policy: Container-level and path-level metrics

• Example metric policy: Path-level metrics using wildcards

• Example metric policy: Path-level metrics with overlapping rules

Example metric policy: Container-level metrics

This example policy indicates that AWS Elemental MediaStore should send metrics to Amazon
CloudWatch at the container level. For example, this includes the RequestCount metric that
counts the number of Put requests made to the container. Alternatively, you can set this to
DISABLED.

Because there are no rules in this policy, MediaStore does not send metrics at the path level.
For example, you can't see how many Put requests were made to a particular folder within this
container.

{
 "ContainerLevelMetrics": "ENABLED"
}

Example metric policy: Path-level metrics

This example policy indicates that AWS Elemental MediaStore should not send metrics to Amazon
CloudWatch at the container level. In addition, MediaStore should send metrics for objects in two
specific folders: baseball/saturday and football/saturday. The metrics for MediaStore
requests are as follows:

• Requests to the baseball/saturday folder have a CloudWatch dimension of
ObjectGroupName=baseballGroup.

• Requests to the football/saturday folder have a dimension
ObjectGroupName=footballGroup.

{

Example metric policies 51

AWS Elemental MediaStore User Guide

 "ContainerLevelMetrics": "DISABLED",
 "MetricPolicyRules": [
 {
 "ObjectGroup": "baseball/saturday",
 "ObjectGroupName": "baseballGroup"
 },
 {
 "ObjectGroup": "football/saturday",
 "ObjectGroupName": "footballGroup"
 }
]
}

Example metric policy: Container-level and path-level metrics

This example policy indicates that AWS Elemental MediaStore should send metrics to Amazon
CloudWatch at the container level. In addition, MediaStore should send metrics for objects in two
specific folders: baseball/saturday and football/saturday. The metrics for MediaStore
requests are as follows:

• Requests to the baseball/saturday folder have a CloudWatch dimension of
ObjectGroupName=baseballGroup.

• Requests to the football/saturday folder have a CloudWatch dimension
ObjectGroupName=footballGroup.

{
 "ContainerLevelMetrics": "ENABLED",
 "MetricPolicyRules": [
 {
 "ObjectGroup": "baseball/saturday",
 "ObjectGroupName": "baseballGroup"
 },
 {
 "ObjectGroup": "football/saturday",
 "ObjectGroupName": "footballGroup"
 }
]
}

Example metric policies 52

AWS Elemental MediaStore User Guide

Example metric policy: Path-level metrics using wildcards

This example policy indicates that AWS Elemental MediaStore should send metrics to Amazon
CloudWatch at the container level. In addition, MediaStore should also send metrics for objects
based on their file name. A wildcard indicates that the objects can be stored anywhere in the
container and they can have any file name, as long as it ends with a .m3u8 extension.

{
 "ContainerLevelMetrics": "ENABLED",
 "MetricPolicyRules": [
 {
 "ObjectGroup": "*.m3u8",
 "ObjectGroupName": "index"
 }
]
 }

Example metric policy: Path-level metrics with overlapping rules

This example policy indicates that AWS Elemental MediaStore should send metrics to Amazon
CloudWatch at the container level. In addition, MediaStore should send metrics for two folders:
sports/football/saturday and sports/football.

The metrics for MediaStore requests to the sports/football/saturday folder have a
CloudWatch dimension of ObjectGroupName=footballGroup1. Because objects that are stored
in the sports/football folder match both rules, CloudWatch displays two data points for these
objects: one with a dimension of ObjectGroupName=footballGroup1 and the second with a
dimension of ObjectGroupName=footballGroup2.

{
 "ContainerLevelMetrics": "ENABLED",
 "MetricPolicyRules": [
 {
 "ObjectGroup": "sports/football/saturday",
 "ObjectGroupName": "footballGroup1"
 },
 {
 "ObjectGroup": "sports/football",
 "ObjectGroupName": "footballGroup2"
 }
]

Example metric policies 53

AWS Elemental MediaStore User Guide

 }

Example metric policies 54

AWS Elemental MediaStore User Guide

Folders in AWS Elemental MediaStore

Folders are divisions within a container. You use folders to subdivide your container in the same
way that you create subfolders to divide a folder in a file system. You can create up to 10 levels of
folders (not including the container itself).

Folders are optional; you can choose to upload your objects directly to a container instead of a
folder. However, folders are an easy way to organize your objects.

To upload an object to a folder, you specify the path to the folder. If the folder already exists, AWS
Elemental MediaStore stores the object in the folder. If the folder doesn’t exist, the service creates
it, and then stores the object in the folder.

For example, suppose you have a container named movies, and you upload a file named mlaw.ts
with the path premium/canada. AWS Elemental MediaStore stores the object in the subfolder
canada under the folder premium. If neither folder exists, the service creates both the premium
folder and the canada subfolder, and then stores your object in the canada subfolder. If you
specify only the container movies (with no path), the service stores the object directly in the
container.

AWS Elemental MediaStore automatically deletes a folder when you delete the last object in that
folder. The service also deletes any empty folders above that folder. For example, suppose that you
have a folder named premium that doesn’t contain any files but does contain one subfolder named
canada. The canada subfolder contains one file named mlaw.ts. If you delete the file mlaw.ts,
the service deletes both the premium and canada folders. This automatic deletion applies only to
folders. The service does not delete empty containers.

Topics

• Rules for folder names

• Creating a folder

• Deleting a folder

Rules for folder names

When you choose a name for your folder, remember the following:

Rules for folder names 55

AWS Elemental MediaStore User Guide

• The name can contain only the following characters: uppercase letters (A-Z), lowercase letters (a-
z), numbers (0-9), periods (.), hyphens (-), tildes (~), underscores (_), equal signs (=), and colons (:).

• The name must be at least one character long. Empty folder names (such as folder1//
folder3/) are not allowed.

• Names are case sensitive. For example, you can have a folder named myFolder and a folder
named myfolder in the same container or folder because those names are unique.

• The name must be unique only within its parent container or folder. For example, you can
create a folder named myfolder in two different containers: movies/myfolder and sports/
myfolder.

• The name can have the same name as its parent container.

• The folder can’t be renamed after it has been created.

Creating a folder

You can create folders when you upload objects. To upload an object to a folder, you specify the
path to the folder. If the folder already exists, AWS Elemental MediaStore stores the object in the
folder. If the folder doesn’t exist, the service creates it, and then stores the object in the folder.

For more information, see the section called “Uploading an object”.

Deleting a folder

You can delete folders only if the folder is empty; you can’t delete folders that contain objects.

AWS Elemental MediaStore automatically deletes a folder when you delete the last object in that
folder. The service also deletes any empty folders above that folder. For example, suppose that you
have a folder named premium that doesn’t contain any files but does contain one subfolder named
canada. The canada subfolder contains one file named mlaw.ts. If you delete the file mlaw.ts,
the service deletes both the premium and canada folders. This automatic deletion applies only to
folders. The service does not delete empty containers.

For more information, see Deleting an object.

Creating a folder 56

AWS Elemental MediaStore User Guide

Objects in AWS Elemental MediaStore

AWS Elemental MediaStore assets are called objects. You can upload an object to a container or to
a folder within the container.

In MediaStore, you can upload, download, and delete objects:

• Upload – Add an object to a container or folder. This is not the same as creating an object. You
must create your objects locally before you can upload them to MediaStore.

• Download – Copy an object from MediaStore to another location. This does not remove the
object from MediaStore.

• Delete – Remove an object from MediaStore completely. You can delete objects individually, or
you can add an object lifecycle policy to automatically delete objects within a container after a
specified duration.

MediaStore accepts all file types.

Topics

• Uploading an object

• Viewing a list of objects

• Viewing the details of an object

• Downloading an object

• Deleting objects

Uploading an object

You can upload objects to a container or to a folder within a container. To upload an object to a
folder, you specify the path to the folder. If the folder already exists, AWS Elemental MediaStore
stores the object in the folder. If the folder doesn’t exist, the service creates it, and then stores the
object in the folder. For more information about folders, see Folders in AWS Elemental MediaStore.

You can use the MediaStore console or the AWS CLI to upload objects.

MediaStore supports chunked transfer of objects, which reduces latency by making an object
available for downloading while it is still being uploaded. To use this capability, set the object's

Uploading an object 57

AWS Elemental MediaStore User Guide

upload availability to streaming. You can set the value of this header when you upload the object
using the API. If you don't specify this header in your request, MediaStore assigns the default value
of standard for the object’s upload availability.

Object sizes can't exceed 25 MB for standard upload availability and 10 MB for streaming upload
availability.

Note

Object file names can contain only letters, numbers, periods (.), underscores (_), tildes (~),
hyphens (-), equal signs (=), and colons (:).

To upload an object (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container. The details panel for the container
appears.

3. Choose Upload object.

4. For Target path, type a path for the folders. For example, premium/canada. If any of the
folders in the path that you specify don’t exist yet, the service creates them automatically.

5. In the Object section, choose Browse.

6. Navigate to the appropriate folder, and choose one object to upload.

7. Choose Open, and then choose Upload.

Note

If a file with the same name already exists in the selected folder, the service replaces
the original file with the uploaded file.

To upload an object (AWS CLI)

• In the AWS CLI, use the put-object command. You can also include any of the following
parameters: content-type, cache-control (to allow the caller to control the object's cache
behavior), and path (to put the object in a folder within the container).

Uploading an object 58

https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Note

After you upload the object, you can’t edit the content-type, cache-control, or
path.

aws mediastore-data put-object --endpoint https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --body README.md --path /
folder_name/README.md --cache-control "max-age=6, public" --content-type binary/
octet-stream --region us-west-2

The following example shows the return value:

{
 "ContentSHA256":
 "74b5fdb517f423ed750ef214c44adfe2be36e37d861eafe9c842cbe1bf387a9d",
 "StorageClass": "TEMPORAL",
 "ETag": "af3e4731af032167a106015d1f2fe934e68b32ed1aa297a9e325f5c64979277b"
}

Viewing a list of objects

You can use the AWS Elemental MediaStore console to view items (objects and folders) stored in
the top-most level of a container or in a folder. Items stored in a subfolder of the current container
or folder will not be displayed. You can use the AWS CLI to view a list of objects and folders within
a container, regardless of how many folders or subfolders are within the container.

To view a list of objects in a specific container (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that has the folder that you want
to view.

3. Choose the name of the folder from the list.

A details page appears, showing all folders and objects that are stored in the folder.

Viewing a list 59

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

To view a list of objects in a specific folder (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that has the folder that you want
to view.

A details page appears, showing all folders and objects that are stored in the container.

To view a list of objects and folders in a specific container (AWS CLI)

• In the AWS CLI, use the list-items command:

aws mediastore-data list-items --endpoint https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --region us-west-2

The following example shows the return value:

{
 "Items": [
 {
 "ContentType": "image/jpeg",
 "LastModified": 1563571859.379,
 "Name": "filename.jpg",
 "Type": "OBJECT",
 "ETag":
 "543ab21abcd1a234ab123456a1a2b12345ab12abc12a1234abc1a2bc12345a12",
 "ContentLength": 3784
 },
 {
 "Type": "FOLDER",
 "Name": "ExampleLiveDemo"
 }
]
}

Note

Objects that are subject to a seconds_since_create rule are not included in a
list-items response.

Viewing a list 60

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

To view a list of objects and folders in a specific folder (AWS CLI)

• In the AWS CLI, use the list-items command, with the specified folder name at the end of
the request:

aws mediastore-data list-items --endpoint https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --path /folder_name --
region us-west-2

The following example shows the return value:

{
 "Items": [
 {
 "Type": "FOLDER",
 "Name": "folder_1"
 },
 {
 "LastModified": 1563571940.861,
 "ContentLength": 2307346,
 "Name": "file1234.jpg",
 "ETag":
 "111a1a22222a1a1a222abc333a444444b55ab1111ab2222222222ab333333a2b",
 "ContentType": "image/jpeg",
 "Type": "OBJECT"
 }
]
}

Note

Objects that are subject to a seconds_since_create rule are not included in a
list-items response.

Viewing the details of an object

After you upload an object, AWS Elemental MediaStore stores details such as the modification
date, content length, ETag (entity tag), and content type. To learn how an object's metadata is
used, see MediaStore's interaction with HTTP caches.

Viewing object details 61

AWS Elemental MediaStore User Guide

To view the details of an object (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of container that has the object that you want to
view.

3. If the object that you want to view is in a folder, continue choosing the folder names until you
see the object.

4. Choose the name of the object.

A details page appears, showing information about the object.

To view the details of an object (AWS CLI)

• In the AWS CLI, use the describe-object command:

aws mediastore-data describe-object --endpoint https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --path /folder_name/
file1234.jpg --region us-west-2

The following example shows the return value:

{
 "ContentType": "image/jpeg",
 "LastModified": "Fri, 19 Jul 2019 21:32:20 GMT",
 "ContentLength": "2307346",
 "ETag": "2aa333bbcc8d8d22d777e999c88d4aa9eeeeee4dd89ff7f555555555555da6d3"
}

Downloading an object

You can use the console to download an object. You can use the AWS CLI to download an object or
only part of an object.

To download an object (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of container that has the object that you want to
download.

Downloading an object 62

https://console.aws.amazon.com/mediastore/
https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

3. If the object that you want to download is in a folder, continue choosing the folder names until
you see the object.

4. Choose the name of the object.

5. On the Object details page, choose Download.

To download an object (AWS CLI)

• In the AWS CLI, use the get-object command:

aws mediastore-data get-object --endpoint https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --path=/folder_name/
README.md README.md --region us-west-2

The following example shows the return value:

{
 "ContentLength": "2307346",
 "ContentType": "image/jpeg",
 "LastModified": "Fri, 19 Jul 2019 21:32:20 GMT",
 "ETag": "2aa333bbcc8d8d22d777e999c88d4aa9eeeeee4dd89ff7f555555555555da6d3",
 "StatusCode": 200
}

To download part of an object (AWS CLI)

• In the AWS CLI, use the get-object command, and specify a range.

aws mediastore-data get-object --endpoint https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --path /folder_name/
README.md --range="bytes=0-100" README2.md --region us-west-2

The following example shows the return value:

{
 "StatusCode": 206,
 "ContentRange": "bytes 0-100/2307346",
 "ContentLength": "101",
 "LastModified": "Fri, 19 Jul 2019 21:32:20 GMT",

Downloading an object 63

AWS Elemental MediaStore User Guide

 "ContentType": "image/jpeg",
 "ETag": "2aa333bbcc8d8d22d777e999c88d4aa9eeeeee4dd89ff7f555555555555da6d3"
}

Deleting objects

AWS Elemental MediaStore offers different options for deleting objects from containers:

• Delete an individual object. No charges apply.

• Empty a container to delete all objects within a container at once. Because this process uses API
calls, normal API charges apply.

• Add an object lifecycle policy to delete objects when they reach a certain age. No charges apply.

Deleting an object

You can delete objects individually using the console or the AWS CLI. Alternatively, you can add an
object lifecycle policy to automatically delete objects after they reach a certain age in a container,
or you can empty a container to delete all objects within that container.

Note

When you delete the only object in a folder, AWS Elemental MediaStore automatically
deletes the folder and any empty folders above that folder. For example, suppose that
you have a folder named premium that doesn’t contain any files but does contain one
subfolder named canada. The canada subfolder contains one file named mlaw.ts. If you
delete the file mlaw.ts, the service deletes both the premium and canada folders.

To delete an object (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the name of the container that has the object that you want
to delete.

3. If the object that you want to delete is in a folder, continue choosing the folder names until
you see the object.

4. Choose the option to the left of the object name.

Deleting objects 64

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

5. Choose Delete.

To delete an object (AWS CLI)

• In the AWS CLI, use the delete-object command.

Example:

aws mediastore-data --region us-west-2 delete-object --endpoint=https://
aaabbbcccdddee.data.mediastore.us-west-2.amazonaws.com --path=/folder_name/
README.md

This command has no return value.

Emptying a container

You can empty a container to delete all objects that are stored within the container. Alternatively,
you can add an object lifecycle policy to automatically delete objects after they reach a certain age
in a container, or you can delete objects individually.

To empty a container (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the option for the container that you want to empty.

3. Choose Empty container. A confirmation message appears.

4. Confirm that you want to empty the container by entering the container name into the text
field, then choose Empty.

Emptying a container 65

https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Security in AWS Elemental MediaStore

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Elemental
MediaStore, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using MediaStore. The following topics show you how to configure MediaStore to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your MediaStore resources.

Topics

• Data protection in AWS Elemental MediaStore

• Identity and Access Management for AWS Elemental MediaStore

• Logging and monitoring in AWS Elemental MediaStore

• Compliance validation for AWS Elemental MediaStore

• Resilience in AWS Elemental MediaStore

• Infrastructure Security in AWS Elemental MediaStore

• Cross-service confused deputy prevention

66

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Elemental MediaStore User Guide

Data protection in AWS Elemental MediaStore

The AWS shared responsibility model applies to data protection in AWS Elemental MediaStore. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with MediaStore or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data encryption

MediaStore encrypts containers and objects at rest using the industry standard AES-256 algorithm.
We recommend that you use MediaStore to secure your data in the following ways:

Data protection 67

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Elemental MediaStore User Guide

• Create a container policy to control access rights to all folders and objects in that container. For
more information, see the section called “Container policies”.

• Create a cross-origin resource sharing (CORS) policy to allow cross-origin access selectively to
your MediaStore resources. With CORS, you can allow client web applications that are loaded
in one domain to interact with resources in a different domain. For more information, see the
section called “CORS policies”.

Identity and Access Management for AWS Elemental
MediaStore

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use MediaStore resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Elemental MediaStore works with IAM

• Identity-based policy examples for AWS Elemental MediaStore

• Troubleshooting AWS Elemental MediaStore identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in MediaStore.

Service user – If you use the MediaStore service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more MediaStore features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
MediaStore, see Troubleshooting AWS Elemental MediaStore identity and access.

Identity and Access Management 68

AWS Elemental MediaStore User Guide

Service administrator – If you're in charge of MediaStore resources at your company, you probably
have full access to MediaStore. It's your job to determine which MediaStore features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with MediaStore,
see How AWS Elemental MediaStore works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to MediaStore. To view example MediaStore identity-
based policies that you can use in IAM, see Identity-based policy examples for AWS Elemental
MediaStore.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

Authenticating with identities 69

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Elemental MediaStore User Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Authenticating with identities 70

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

AWS Elemental MediaStore User Guide

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the

Authenticating with identities 71

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Elemental MediaStore User Guide

principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

Managing access using policies 72

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS Elemental MediaStore User Guide

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Managing access using policies 73

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS Elemental MediaStore User Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 74

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Elemental MediaStore User Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Elemental MediaStore works with IAM

Before you use IAM to manage access to MediaStore, learn what IAM features are available to use
with MediaStore.

IAM features you can use with AWS Elemental MediaStore

IAM feature MediaStore support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how MediaStore and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How AWS Elemental MediaStore works with IAM 75

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Elemental MediaStore User Guide

Identity-based policies for MediaStore

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for MediaStore

To view examples of MediaStore identity-based policies, see Identity-based policy examples for
AWS Elemental MediaStore.

Resource-based policies within MediaStore

Supports resource-based policies Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How AWS Elemental MediaStore works with IAM 76

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS Elemental MediaStore User Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Note

MediaStore also supports container policies that define which principal entities (accounts,
users, roles, and federated users) can perform actions on the container. For more
information, see Container policies.

Policy actions for MediaStore

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of MediaStore actions, see Actions defined by AWS Elemental MediaStore in the Service
Authorization Reference.

Policy actions in MediaStore use the following prefix before the action:

mediastore

To specify multiple actions in a single statement, separate them with commas.

"Action": [

How AWS Elemental MediaStore works with IAM 77

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore#awselementalmediatailor-actions-as-permissions

AWS Elemental MediaStore User Guide

 "mediastore:action1",
 "mediastore:action2"
]

To view examples of MediaStore identity-based policies, see Identity-based policy examples for
AWS Elemental MediaStore.

Policy resources for MediaStore

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of MediaStore resource types and their ARNs, see Resources defined by AWS Elemental
MediaStore in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions defined by AWS Elemental MediaStore.

The MediaStore container resource has the following ARN:

arn:${Partition}:mediastore:${Region}:${Account}:container/${containerName}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

For example, to specify the AwardsShow container in your statement, use the following ARN:

How AWS Elemental MediaStore works with IAM 78

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore#awselementalmediatailor-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore#awselementalmediatailor-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore#awselementalmediatailor-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Elemental MediaStore User Guide

"Resource": "arn:aws:mediastore:us-east-1:111122223333:container/AwardsShow"

Policy condition keys for MediaStore

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of MediaStore condition keys, see Condition keys for AWS Elemental MediaStore in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions defined by AWS Elemental MediaStore.

To view examples of MediaStore identity-based policies, see Identity-based policy examples for
AWS Elemental MediaStore.

ACLs in MediaStore

Supports ACLs No

How AWS Elemental MediaStore works with IAM 79

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore#awselementalmediatailor-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore#awselementalmediatailor-actions-as-permissions

AWS Elemental MediaStore User Guide

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with MediaStore

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with MediaStore

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your

How AWS Elemental MediaStore works with IAM 80

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Elemental MediaStore User Guide

company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for MediaStore

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for MediaStore

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break MediaStore functionality. Edit
service roles only when MediaStore provides guidance to do so.

How AWS Elemental MediaStore works with IAM 81

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Elemental MediaStore User Guide

Service-linked roles for MediaStore

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS Elemental MediaStore

By default, users and roles don't have permission to create or modify MediaStore resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by MediaStore, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS Elemental
MediaStore in the Service Authorization Reference.

Topics

• Policy best practices

• Using the MediaStore console

• Allow users to view their own permissions

Identity-based policy examples 82

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awselementalmediastore

AWS Elemental MediaStore User Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete MediaStore
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Identity-based policy examples 83

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Elemental MediaStore User Guide

Using the MediaStore console

To access the AWS Elemental MediaStore console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the MediaStore resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the MediaStore console, also attach the MediaStore
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",

Identity-based policy examples 84

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Elemental MediaStore User Guide

 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting AWS Elemental MediaStore identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with MediaStore and IAM.

Topics

• I am not authorized to perform an action in MediaStore

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my MediaStore resources

I am not authorized to perform an action in MediaStore

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
mediastore:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 mediastore:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the mediastore:GetWidget action.

Troubleshooting 85

AWS Elemental MediaStore User Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to MediaStore.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in MediaStore. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my MediaStore
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether MediaStore supports these features, see How AWS Elemental MediaStore works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

Troubleshooting 86

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html

AWS Elemental MediaStore User Guide

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in AWS Elemental MediaStore

This section provides an overview of the options for logging and monitoring in AWS Elemental
MediaStore for security purposes. For more information about logging and monitoring in
MediaStore, see Monitoring and tagging in AWS Elemental MediaStore.

Monitoring is an important part of maintaining the reliability, availability, and performance of
AWS Elemental MediaStore and your AWS solutions. You should collect monitoring data from all
parts of your AWS solution so that you can more easily debug a multi-point failure if one occurs.
AWS provides several tools for monitoring your MediaStore resources and responding to potential
incidents.

Amazon CloudWatch alarms

Using CloudWatch alarms, you watch a single metric over a time period that you specify. If the
metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or AWS Auto
Scaling policy. CloudWatch alarms don't invoke actions because they are in a particular state.
Rather, the state must have changed and been maintained for a specified number of periods. For
more information, see Monitoring with CloudWatch.

AWS CloudTrail logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in AWS Elemental
MediaStore. Using the information collected by CloudTrail, you can determine the request that
was made to MediaStore, the IP address from which the request was made, who made the request,
when it was made, and additional details. For more information, see Logging API calls with
CloudTrail.

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations

Logging and monitoring 87

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Elemental MediaStore User Guide

when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers with a
Business or Enterprise support plan can view all Trusted Advisor checks.

For more information, see AWS Trusted Advisor.

Compliance validation for AWS Elemental MediaStore

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

Compliance validation 88

https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#trusted-advisor
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

AWS Elemental MediaStore User Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS Elemental MediaStore

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, MediaStore offers several features to help support
your data resiliency and backup needs.

Infrastructure Security in AWS Elemental MediaStore

As a managed service, AWS Elemental MediaStore is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access MediaStore through the network. Clients must support
the following:

Resilience 89

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS Elemental MediaStore User Guide

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS Elemental MediaStore gives another
service to the resource. Use aws:SourceArn if you want only one resource to be associated with
the cross-service access. Use aws:SourceAccount if you want to allow any resource in that
account to be associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both global condition context keys to limit permissions.

The value of aws:SourceArn must be the configuration that MediaStore publishes CloudWatch
logs for in your Region and account.

Cross-service confused deputy prevention 90

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS Elemental MediaStore User Guide

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in MediaStore to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "servicename.amazonaws.com"
 },
 "Action": "servicename:ActionName",
 "Resource": [
 "arn:aws:servicename:::ResourceName/*"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:servicename:*:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

Cross-service confused deputy prevention 91

AWS Elemental MediaStore User Guide

Monitoring and tagging in AWS Elemental MediaStore

Monitoring is an important part of maintaining the reliability, availability, and performance of
AWS Elemental MediaStore and your other AWS solutions. AWS provides the following monitoring
tools to watch MediaStore, report when something is wrong, and take automatic actions when
appropriate:

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

• Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Events delivers a stream of system events that describe changes in AWS
resources. Typically, AWS services deliver event notifications to CloudWatch Events in seconds
but can sometimes take a minute or longer. CloudWatch Events enables automated event-
driven computing, as you can write rules that watch for certain events and trigger automated
actions in other AWS services when these events happen. For more information, see the Amazon
CloudWatch Events User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

You can also assign metadata to your MediaStore containers in the form of tags. Each tag is a label
that consists of a key and value that you define. Tags can make it easier to manage, search for,
and filter resources. You can use tags to organize your AWS resources in the AWS Management
Console, create usage and billing reports across all of your AWS resources, and filter resources
during infrastructure automation activities.

Topics

92

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/

AWS Elemental MediaStore User Guide

• Logging AWS Elemental MediaStore API calls with AWS CloudTrail

• Monitoring AWS Elemental MediaStore with Amazon CloudWatch

• Tagging AWS Elemental MediaStore resources

Logging AWS Elemental MediaStore API calls with AWS
CloudTrail

AWS Elemental MediaStore is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in MediaStore. CloudTrail captures a subset of
API calls for MediaStore as events, including calls from the MediaStore console and from code
calls to the MediaStore API. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for MediaStore. If you don't configure a trail,
you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to MediaStore,
the IP address from which the request was made, who made the request, when it was made, and
more.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Topics

• AWS Elemental MediaStore information in CloudTrail

• Example: AWS Elemental MediaStore log file entries

AWS Elemental MediaStore information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in AWS Elemental MediaStore, that activity is recorded in a CloudTrail event along
with other AWS service events in Event history. You can view, search, and download recent events
in your AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for MediaStore, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.

Logging API calls with CloudTrail 93

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

AWS Elemental MediaStore User Guide

Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following topics:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

AWS Elemental MediaStore supports logging the following operations as events in CloudTrail log
files:

• CreateContainer

• DeleteContainer

• DeleteContainerPolicy

• DeleteCorsPolicy

• DescribeContainer

• GetContainerPolicy

• GetCorsPolicy

• ListContainers

• PutContainerPolicy

• PutCorsPolicy

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity Element.

MediaStore Information in CloudTrail 94

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_CreateContainer.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_DeleteContainer.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_DeleteContainerPolicy.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_API_DeleteCorsPolicy.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_DescribeContainer.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_GetContainerPolicy.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_GetCorsPolicy.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_ListContainers.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_PutContainerPolicy.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_PutCorsPolicy.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Elemental MediaStore User Guide

Example: AWS Elemental MediaStore log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateContainer
operation:

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "ABCDEFGHIJKL123456789",
 "arn": "arn:aws:iam::111122223333:user/testUser",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "testUser",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-07-09T12:55:42Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2018-07-09T12:56:54Z",
 "eventSource": "mediastore.amazonaws.com",
 "eventName": "CreateContainer",
 "awsRegion": "ap-northeast-1",
 "sourceIPAddress": "54.239.119.16",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "containerName": "TestContainer"
 },
 "responseElements": {
 "container": {
 "status": "CREATING",
 "creationTime": "Jul 9, 2018 12:56:54 PM",
 "name": " TestContainer ",

Example: Log file entries 95

AWS Elemental MediaStore User Guide

 "aRN": "arn:aws:mediastore:ap-northeast-1:111122223333:container/
TestContainer"
 }
 },
 "requestID":
 "MNCTGH4HRQJ27GRMBVDPIVHEP4LO2BN6MUVHBCPSHOAWNSOKSXCO24B2UEOBBND5DONRXTMFK3TOJ4G7AHWMESI",
 "eventID": "7085b140-fb2c-409b-a329-f567912d704c",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Monitoring AWS Elemental MediaStore with Amazon
CloudWatch

You can monitor AWS Elemental MediaStore using CloudWatch, which collects raw data and
processes it into readable metrics. CloudWatch keeps statistics for 15 months so that you can
access historical information and gain a better perspective on how your web application or service
is performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

AWS provides the following monitoring tools to watch MediaStore, report when something is
wrong, and take automatic actions when appropriate:

• Amazon CloudWatch Logs allows you to monitor, store, and access your log files from AWS
services such as AWS Elemental MediaStore. You can use CloudWatch Logs to monitor
applications and systems using log data. For example, CloudWatch Logs can track the number
of errors that occur in your application logs and send you a notification whenever the rate of
errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring,
so no code changes are required. For example, you can monitor application logs for specific
literal terms (such as "ValidationException") or count the number of PutObject requests
that were made during a certain time period. When the term that you are searching for is
found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Log data is
encrypted while in transit and while it is at rest.

• Amazon CloudWatch Events delivers system events that describe changes in AWS resources,
such as MediaStore objects. Typically, AWS services deliver event notifications to CloudWatch
Events in seconds but can sometimes take a minute or longer. You can set up rules to match
events (such as a DeleteObject request) and route them to one or more target functions or

Monitoring with CloudWatch 96

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS Elemental MediaStore User Guide

streams. CloudWatch Events becomes aware of operational changes as they occur. In addition,
CloudWatch Events responds to these operational changes and takes corrective action as
necessary, by sending messages to respond to the environment, activating functions, making
changes, and capturing state information.

CloudWatch Logs

Access logging provides detailed records for the requests that are made to objects in a container.
Access logs are useful for many applications, such as security and access audits. They can also help
you learn about your customer base and understand your MediaStore bill. CloudWatch Logs are
categorized as follows:

• A log stream is a sequence of log events that share the same source.

• A log group is a group of log streams that share the same retention, monitoring, and access
control settings. When you enable access logging on a container, MediaStore creates a log group
with a name such as /aws/mediastore/MyContainerName. You can define log groups and
specify which streams to put into each group. There is no quota on the number of log streams
that can belong to one log group.

By default, logs are kept indefinitely and never expire. You can adjust the retention policy for each
log group, keeping the indefinite retention, or choosing a retention period from one day to 10
years.

Setting up permissions for Amazon CloudWatch

Use AWS Identity and Access Management (IAM) to create a role that gives AWS Elemental
MediaStore access to Amazon CloudWatch. You must perform these steps for CloudWatch Logs to
be published for your account. CloudWatch automatically publishes metrics for your account.

To allow MediaStore access to CloudWatch

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Policies, and then choose Create policy.

3. Choose the JSON tab and paste the following policy:

{
 "Version": "2012-10-17",

CloudWatch Logs 97

https://console.aws.amazon.com/iam/

AWS Elemental MediaStore User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups",
 "logs:CreateLogGroup"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/mediastore/*"
 }
]
}

This policy allows MediaStore to create log groups and log streams for any containers in any
Region within your AWS account.

4. Choose Review policy.

5. On the Review policy page, for Name, enter MediaStoreAccessLogsPolicy, and then
choose Create policy.

6. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

7. Choose the Another AWS account role type.

8. For Account ID, enter your AWS account ID.

9. Choose Next: Permissions.

10. In the search box, enter MediaStoreAccessLogsPolicy.

11. Select the check box next to your new policy, and then choose Next: Tags.

12. Choose Next: Review to preview your new user.

13. For Role name, enter MediaStoreAccessLogs, and then choose Create role.

14. In the confirmation message, choose the name of the role that you just created
(MediaStoreAccessLogs).

15. On the role's Summary page, choose the Trust relationships tab.

CloudWatch Logs 98

AWS Elemental MediaStore User Guide

16. Choose Edit trust relationship.

17. In the policy document, change the principal to the MediaStore service. It should look like this:

"Principal": {
 "Service": "mediastore.amazonaws.com"
},

The entire policy should read as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "mediastore.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {}
 }
]
}

18. Choose Update Trust Policy.

Enabling access logging for a container

By default, AWS Elemental MediaStore doesn't collect access logs. When you enable access logging
on a container, MediaStore delivers access logs for objects stored in that container to Amazon
CloudWatch. The access logs provide detailed records for requests that are made to any object
stored in the container. This information can include the request type, the resources that are
specified in the request, and the time and date that the request was processed.

Important

There is no extra charge for enabling access logging on an MediaStore container. However,
any log files that the service delivers to you accrues the usual charges for storage. (You
can delete the log files at any time.) AWS doesn't assess data transfer charges for log file
delivery, but does charge the normal data transfer rate for accessing the log files.

CloudWatch Logs 99

AWS Elemental MediaStore User Guide

To enable access logging (AWS CLI)

• In the AWS CLI, use the start-access-logging command:

aws mediastore start-access-logging --container-name LiveEvents --region us-west-2

This command has no return value.

Disabling access logging for a container

When you disable access logging on a container, AWS Elemental MediaStore stops sending access
logs to Amazon CloudWatch. These access logs are not saved and are not retrievable.

To disable access logging (AWS CLI)

• In the AWS CLI, use the stop-access-logging command:

aws mediastore stop-access-logging --container-name LiveEvents --region us-west-2

This command has no return value.

Troubleshooting access logging in AWS Elemental MediaStore

When AWS Elemental MediaStore access logs do not appear in Amazon CloudWatch, refer to the
following table for potential causes and resolutions.

Note

Be sure to enable AWS CloudTrail Logs to assist with the troubleshooting process.

Symptom The Problem Might
Be...

Try This...

You don't see any CloudTrail events,
even though CloudTrail logs are
enabled.

The IAM role either
does not exist or it
has the incorrect

Create a role with the correct
name, permissions, and trust
policy. See the section called

CloudWatch Logs 100

AWS Elemental MediaStore User Guide

Symptom The Problem Might
Be...

Try This...

 name, permissions,
or trust policy.

“Setting up permissions for
CloudWatch”.

The IAM role either
does not exist or it
has the incorrect
 name, permissions,
or trust policy.

Create a role with the correct
name, permissions, and trust
policy. See the section called
“Setting up permissions for
CloudWatch”.

You submitted a DescribeC
ontainer API request, but the
response shows that the AccessLog
gingEnabled parameter has
a value of False. In addition, you
don't see any CloudTrail events
for the MediaStoreAccessLo
gs role making a successful
DescribeLogGroup , CreateLog
Group , DescribeLogStream , or
CreateLogStream call.

Access logging is
not enabled on the
container.

Enable access logs for the
container. See the section
called “Enabling access
logging”.

CloudWatch Logs 101

AWS Elemental MediaStore User Guide

Symptom The Problem Might
Be...

Try This...

On the CloudTrail console, you see
an event with an access denied
error related to the MediaStor
eAccessLogs role. The CloudTrail
event might include lines such as the
following:

"eventSource": "logs.ama
zonaws.com",

"errorCode": "AccessDe
nied",

"errorMessage": "User:
arn:aws:sts::11112
2223333:assumed-role/
MediaStoreAccessLogs/
MediaStoreAccessLogsS
ession is not authorize
d to perform: logs:Desc
ribeLogGroups on resource:
arn:aws:logs:us-west-2:1111
22223333:log-group::log-
stream:",

The IAM role doesn't
have the correct
permissions for AWS
Elemental MediaStor
e.

Update the IAM role to have
the correct permissions and
trust policy. See the section
called “Setting up permissio
ns for CloudWatch”.

You don't see any logs for an entire
container or containers.

Your account might
have exceeded the
CloudWatch quota
for log groups per
account per Region.
See the quotas for
log groups in the
Amazon CloudWatch
Logs User Guide.

On the CloudWatch console,
determine if your account has
met the CloudWatch quota
for log groups. If necessary,
request a quota increase.

CloudWatch Logs 102

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase%26limitType=service-code-cloudwatch-logs

AWS Elemental MediaStore User Guide

Symptom The Problem Might
Be...

Try This...

You see some logs in CloudWatch, but
not all logs that you expect to see.

Your account might
have exceeded the
CloudWatch quota
for transactions
per second per
account per Region.
See the quotas for
PutLogEvents
in the Amazon
CloudWatch Logs
User Guide.

Request a quota increase for
CloudWatch transactions
per second per account per
Region.

Access log format

The access log files consist of a sequence of JSON-formatted log records, where each log record
represents one request. The order of the fields within the log can vary. The following is an example
log that consists of two log records:

{
 "Path": "/FootballMatch/West",
 "Requester": "arn:aws:iam::111122223333:user/maria-garcia",
 "AWSAccountId": "111122223333",
 "RequestID":
 "aaaAAA111bbbBBB222cccCCC333dddDDD444eeeEEE555fffFFF666gggGGG777hhhHHH888iiiIII999jjjJJJ",
 "ContainerName": "LiveEvents",
 "TotalTime": 147,
 "BytesReceived": 1572864,
 "BytesSent": 184,
 "ReceivedTime": "2018-12-13T12:22:06.245Z",
 "Operation": "PutObject",
 "ErrorCode": null,
 "Source": "192.0.2.3",
 "HTTPStatus": 200,
 "TurnAroundTime': 7,
 "ExpiresAt": "2018-12-13T12:22:36Z"
}

CloudWatch Logs 103

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase%26limitType=service-code-cloudwatch-logs

AWS Elemental MediaStore User Guide

 {
 "Path": "/FootballMatch/West",
 "Requester": "arn:aws:iam::111122223333:user/maria-garcia",
 "AWSAccountId": "111122223333",
 "RequestID":
 "dddDDD444eeeEEE555fffFFF666gggGGG777hhhHHH888iiiIII999jjjJJJ000cccCCC333bbbBBB222aaaAAA",
 "ContainerName": "LiveEvents",
 "TotalTime": 3,
 "BytesReceived": 641354,
 "BytesSent": 163,
 "ReceivedTime": "2018-12-13T12:22:51.779Z",
 "Operation": "PutObject",
 "ErrorCode": "ValidationException",
 "Source": "198.51.100.15",
 "HTTPStatus": 400,
 "TurnAroundTime": 1,
 "ExpiresAt": null
}

The following list describes the log record fields:

AWSAccountId

The AWS account ID of the account that was used to make the request.

BytesReceived

The number of bytes in the request body that the MediaStore server receives.

BytesSent

The number of bytes in the response body that the MediaStore server sends. This value often is
the same as the value of the Content-Length header included with server responses.

ContainerName

The name of the container that received the request.

ErrorCode

The MediaStore error code (such as InternalServerError). If no error occurred, the -
character appears. An error code might appear even if the status code is 200 (indicating a closed
connection or an error after the server started streaming the response).

CloudWatch Logs 104

AWS Elemental MediaStore User Guide

ExpiresAt

The object's expiration date and time. This value is based on the expiration age set by a
transient data rule in the lifecycle policy that is applied to the container. The value is ISO-8601
date time and is based on the system clock of the host that served the request. If the lifecycle
policy doesn't have a transient data rule that applies to the object, or if there is no lifecylce
policy applied to the container, the value of this field is null. This field applies only to the
following operations: PutObject, GetObject, DescribeObject, and DeleteObject.

HTTPStatus

The numeric HTTP status code of the response.

Operation

The operation that was performed, such as PutObject or ListItems.

Path

The path within the container where the object is stored. If the operation does not take a path
parameter, the - character appears.

ReceivedTime

The time of day when the request was received. The value is ISO-8601 date time and is based
on the system clock of the host that served the request.

Requester

The user Amazon Resource Name (ARN) of the account that was used to make the request. For
unauthenticated requests, this value is anonymous. If the request fails before authentication
is complete, this field might be missing from the log. For such requests, the ErrorCode might
identify the authorization issue.

RequestID

A string that is generated by AWS Elemental MediaStore to uniquely identify each request.

Source

The apparent internet address of the requester or the service principal of the AWS service
making the call. If intermediate proxies and firewalls obscure the address of the machine
making the request, the value is set to null.

CloudWatch Logs 105

AWS Elemental MediaStore User Guide

TotalTime

The number of milliseconds (ms) that the request was in flight from the server's perspective.
This value is measured beginning with the time that your request is received by the service and
ending with the time that the last byte of the response is sent. This value is measured from the
server's perspective because measurements made from the client's perspective are affected by
network latency.

TurnAroundTime

The number of milliseconds that MediaStore spent processing your request. This value is
measured from the time the last byte of your request was received until the time the first byte
of the response was sent.

The order of the fields in the log can vary.

Logging status changes take effect over time

Changes to the logging status of a container take time to actually affect the delivery of log files.
For example, if you enable logging for container A, some requests made in the following hour
might be logged, while others might not. If you disable logging for container B, some logs for the
next hour might continue to be delivered to, while others might not. In all cases, the new settings
eventually take effect without any further action on your part.

Best effort server log delivery

Access log records are delivered on a best effort basis. Most requests for a container that is
properly configured for logging result in a delivered log record. Most log records are delivered
within a few hours of the time that they are recorded, but they can be delivered more frequently.

The completeness and timeliness of access logging is not guaranteed. The log record for a
particular request might be delivered long after the request was actually processed, or it might not
be delivered at all. The purpose of access logs is to give you an idea of the nature of traffic against
your container. It is rare to lose log records, but access logging is not meant to be a complete
accounting of all requests.

It follows from the best-effort nature of the access logging feature that the usage reports available
at the AWS portal (Billing and Cost Management reports on the AWS Management Console) might
include one or more access requests that do not appear in a delivered access log.

CloudWatch Logs 106

https://console.aws.amazon.com/

AWS Elemental MediaStore User Guide

Programming considerations for access log format

From time to time, we might extend the access log format by adding new fields. Code that parses
access logs must be written to handle additional fields that it does not understand.

CloudWatch Events

Amazon CloudWatch Events enables you to automate your AWS services and respond
automatically to system events such as application availability issues or resource changes. You can
write simple rules to indicate which events are of interest to you, and what automated actions to
take when an event matches a rule.

Important

Typically, AWS services deliver event notifications to CloudWatch Events in seconds but can
sometimes take a minute or longer.

When a file is uploaded to a container or removed from a container, two events are fired in
succession in the CloudWatch service:

1. the section called “Object state change event”

2. the section called “Container state change event”

For information about subscribing to these events, see Amazon CloudWatch.

The actions that can be automatically triggered include the following:

• Invoking an AWS Lambda function

• Invoking Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic or an AWS SMS queue

Some examples of using CloudWatch Events with AWS Elemental MediaStore include the
following:

• Activating a Lambda function whenever a container is created

CloudWatch Events 107

https://docs.aws.amazon.com/cloudwatch/

AWS Elemental MediaStore User Guide

• Notifying an Amazon SNS topic when an object is deleted

For more information, see the Amazon CloudWatch Events User Guide.

Topics

• AWS Elemental MediaStore object state change event

• AWS Elemental MediaStore container state change event

AWS Elemental MediaStore object state change event

This event is published when an object's state has changed (when the object has been uploaded or
deleted).

Note

Objects that expire because of a transient data rule do not emit a CloudWatch event when
they expire.

For information about subscribing to this event, see Amazon CloudWatch.

Object updated

{
 "version": "1",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "MediaStore Object State Change",
 "source": "aws.mediastore",
 "account": "111122223333",
 "time": "2017-02-22T18:43:48Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:mediastore:us-east-1:111122223333:MondayMornings/Episode1/
Introduction.avi"
],
 "detail": {
 "ContainerName": "Movies",
 "Operation": "UPDATE",
 "Path":"TVShow/Episode1/Pilot.avi",
 "ObjectSize":123456,

CloudWatch Events 108

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/cloudwatch/

AWS Elemental MediaStore User Guide

 "URL": "https://a832p1qeaznlp9.files.mediastore-us-west-2.com/Movies/
MondayMornings/Episode1/Introduction.avi"
 }
}

Object removed

{
 "version": "1",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "MediaStore Object State Change",
 "source": "aws.mediastore",
 "account": "111122223333",
 "time": "2017-02-22T18:43:48Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:mediastore:us-east-1:111122223333:Movies/MondayMornings/Episode1/
Introduction.avi"
],
 "detail": {
 "ContainerName": "Movies",
 "Operation": "REMOVE",
 "Path":"Movies/MondayMornings/Episode1/Introduction.avi",
 "URL": "https://a832p1qeaznlp9.files.mediastore-us-west-2.com/Movies/
MondayMornings/Episode1/Introduction.avi"
 }
}

AWS Elemental MediaStore container state change event

This event is published when a container’s state has changed (when a container has been added or
deleted). For information about subscribing to this event, see Amazon CloudWatch.

Container created

{
 "version": "1",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "MediaStore Container State Change",
 "source": "aws.mediastore",
 "account": "111122223333",
 "time": "2017-02-22T18:43:48Z",
 "region": "us-east-1",

CloudWatch Events 109

https://docs.aws.amazon.com/cloudwatch/

AWS Elemental MediaStore User Guide

 "resources": [
 "arn:aws:mediastore:us-east-1:111122223333:container/Movies"
],
 "detail": {
 "ContainerName": "Movies",
 "Operation": "CREATE"
 "Endpoint": "https://a832p1qeaznlp9.mediastore-us-west-2.amazonaws.com"
 }
}

Container removed

{
 "version": "1",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "MediaStore Container State Change",
 "source": "aws.mediastore",
 "account": "111122223333",
 "time": "2017-02-22T18:43:48Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:mediastore:us-east-1:111122223333:container/Movies"
],
 "detail": {
 "ContainerName": "Movies",
 "Operation": "REMOVE"
 }
}

Monitoring AWS Elemental MediaStore with Amazon CloudWatch
metrics

You can monitor AWS Elemental MediaStore using CloudWatch, which collects raw data and
processes it into readable metrics. CloudWatch keeps statistics are kept for 15 months so that
you can access historical information and gain a better perspective on how your web application
or service is performing. You can also set alarms that watch for certain thresholds, and send
notifications or take actions when those thresholds are met. For more information, see the Amazon
CloudWatch User Guide.

For AWS Elemental MediaStore, you might want to watch BytesDownloaded and send an email to
yourself when that metric reaches a certain threshold.

CloudWatch metrics 110

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS Elemental MediaStore User Guide

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. Under All metrics, choose the AWS/MediaStore namespace.

4. Choose the metric dimension to view the metrics. For example, choose Request metrics
by container to view metrics for the different types of requests that have been sent to the
container.

To view metrics using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/MediaStore"

AWS Elemental MediaStore metrics

The following table lists metrics that AWS Elemental MediaStore sends to CloudWatch.

Note

To view metrics, you must add a metric policy to the container to allow MediaStore to send
metrics to Amazon CloudWatch.

Metric Description

RequestCo
unt

The total number of HTTP requests made to a MediaStore container,
separated by operation type (Put, Get, Delete, Describe, List).

Units: Count

Valid dimensions:

CloudWatch metrics 111

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS Elemental MediaStore User Guide

Metric Description

• Container name

• Object group name

• Request type

Valid statistics: Sum

4xxErrorC
ount

The number of HTTP requests made to MediaStore that resulted in a 4xx
error.

Units: Count

Valid dimensions:

• Container name

• Object group name

• Request type

Valid statistics: Sum

5xxErrorC
ount

The number of HTTP requests made to MediaStore that resulted in a 5xx
error.

Units: Count

Valid dimensions:

• Container name

• Object group name

• Request type

Valid statistics: Sum

CloudWatch metrics 112

AWS Elemental MediaStore User Guide

Metric Description

BytesUplo
aded

The number of bytes uploaded for requests made to a MediaStore container,
where the request includes a body.

Units: Bytes

Valid dimensions:

• Container name

• Object group name

Valid statistics: Average (bytes per request), Sum (bytes per period), Sample
Count, Min (same as P0.0), Max (same as p100), any percentile between p0.0
and p99.9

BytesDown
loaded

The number of bytes downloaded for requests made to a MediaStore
container, where the response includes a body.

Units: Bytes

Valid dimensions:

• Container name

• Object group name

Valid statistics: Average (bytes per request), Sum (bytes per period), Sample
Count, Min (same as P0.0), Max (same as p100), any percentile between p0.0
and p99.9

CloudWatch metrics 113

AWS Elemental MediaStore User Guide

Metric Description

TotalTime The number of milliseconds that the request was in flight from the server's
perspective. This value is measured from the time that MediaStore receives
your request, to the time that it sends the last byte of the response. This
value is measured from the server's perspective because measurements
made from the client's perspective are affected by network latency.

Units: Milliseconds

Valid dimensions:

• Container name

• Object group name

• Request type

Valid statistics: Average, Min (same as P0.0), Max (same as p100), any
percentile between p0.0 and p100

Turnaroun
dTime

The number of milliseconds that MediaStore spent processing your request.
This value is measured from the time that MediaStore receives the last byte
of your request, to the time that it sends the first byte of the response.

Units: Milliseconds

Valid dimensions:

• Container name

• Object group name

• Request type

Valid statistics: Average, Min (same as P0.0), Max (same as p100), any
percentile between p0.0 and p100

CloudWatch metrics 114

AWS Elemental MediaStore User Guide

Metric Description

ThrottleC
ount

The number of HTTP requests made to MediaStore that were throttled.

Units: Count

Valid dimensions:

• Container name

• Object group name

• Request type

Valid statistics: Sum

Tagging AWS Elemental MediaStore resources

A tag is a custom attribute label that you assign or that AWS assigns to an AWS resource. Each tag
has two parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• An optional field known as a tag value (for example, 111122223333 or Production). Omitting
the tag value is the same as using an empty string. Like tag keys, tag values are case sensitive.

Tags help you do the following:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can assign
the same tag to resources from different services to indicate that the resources are related. For
example, you could assign the same tag to an AWS Elemental MediaStore container that you
assign to an AWS Elemental MediaLive input.

• Track your AWS costs. You activate these tags on the AWS Billing and Cost Management
dashboard. AWS uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Use Cost Allocation Tags in the AWS Billing User Guide.

The following sections provide more information about tags for AWS Elemental MediaStore.

Tagging 115

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/

AWS Elemental MediaStore User Guide

Supported resources in AWS Elemental MediaStore

The following resources in AWS Elemental MediaStore support tagging:

• container

For information about adding and managing tags, see Managing tags.

AWS Elemental MediaStore doesn't support the tag-based access control feature of AWS Identity
and Access Management (IAM).

Tag naming and usage conventions

The following basic naming and usage conventions apply to using tags with AWS Elemental
MediaStore resources:

• Each resource can have a maximum of 50 tags.

• For each resource, each tag key must be unique, and each tag key can have only one value.

• The maximum tag key length is 128 Unicode characters in UTF-8.

• The maximum tag value length is 256 Unicode characters in UTF-8.

• Allowed characters are letters, numbers, spaces representable in UTF-8, and the following
characters: . : + = @ _ / - (hyphen). Amazon EC2 resources allow any characters.

• Tag keys and values are case sensitive. As a best practice, decide on a strategy for capitalizing
tags, and consistently implement that strategy across all resource types. For example, decide
whether to use Costcenter, costcenter, or CostCenter, and use the same convention for all
tags. Avoid using similar tags with inconsistent case treatment.

• The aws: prefix is prohibited for tags; it's reserved for AWS use. You can't edit or delete tag keys
or values with this prefix. Tags with this prefix do not count against your tags per resource quota.

Managing tags

Tags are made up of the Key and Value properties on a resource. You can use the AWS CLI or
the MediaStore API to add, edit, or delete the values for these properties. For information about
working with tags, see the following sections in the AWS Elemental MediaStore API Reference:

• CreateContainer

Supported resources in AWS Elemental MediaStore 116

https://docs.aws.amazon.com/mediastore/latest/apireference/API_CreateContainer.html

AWS Elemental MediaStore User Guide

• ListTagsForResource

• Resources

• TagResource

• UntagResource

Managing tags 117

https://docs.aws.amazon.com/mediastore/latest/apireference/API_ListTagsForResource.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_Tag.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_UntagResource.html

AWS Elemental MediaStore User Guide

Working with content delivery networks (CDNs)

You can use a content delivery network (CDN) such as Amazon CloudFront to serve the content
that you store in AWS Elemental MediaStore. A CDN is a globally distributed set of servers that
caches content such as videos. When a user requests your content, the CDN routes the request to
the edge location that provides the lowest latency. If your content is already cached in that edge
location, the CDN delivers it immediately. If your content is not currently in that edge location, the
CDN retrieves it from your origin (such as your MediaStore container) and distributes it to the user.

Topics

• Allowing Amazon CloudFront to access your AWS Elemental MediaStore container

• AWS Elemental MediaStore's interaction with HTTP caches

Allowing Amazon CloudFront to access your AWS Elemental
MediaStore container

You can use Amazon CloudFront to serve the content that you store in a container in AWS
Elemental MediaStore. You can do so in one of the following ways:

• Using Origin Access Control (OAC) - (Recommended) Use this option if your AWS Region supports
the OAC feature of CloudFront.

• Using Shared Secrets - Use this option if your AWS Region does not support the OAC feature of
CloudFront.

Allowing CloudFront to access your container 118

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/

AWS Elemental MediaStore User Guide

Using Origin Access Control (OAC)

You can use the Origin Access Control (OAC) feature of Amazon CloudFront to secure AWS
Elemental MediaStore origins with improved security. You can enable AWS Signature Version 4
(SigV4) on CloudFront requests for MediaStore origins and set when and if CloudFront should sign
the requests. You can access the OAC feature of CloudFront through the console, APIs, SDK, or CLI,
and there are no additional fees for its use.

For more information about using the OAC feature with MediaStore, see Restricting access to a
MediaStore origin in the Amazon CloudFront Developer Guide.

Using Shared Secrets

If your AWS Region does not support the OAC feature of Amazon CloudFront, you can attach
a policy to your AWS Elemental MediaStore container that grants read access or greater to
CloudFront.

Note

We recommend using the OAC feature if your AWS Region supports it. The following
procedures require you to configure MediaStore and CloudFront with shared secrets in
order to restrict access to MediaStore containers. To follow best security practices, this
manual configuration requires periodic rotation of secrets. With OAC on MediaStore origins,
you can instruct CloudFront to sign requests using SigV4 and forward them to MediaStore
for signature matching, eliminating the need to use and rotate secrets. This ensures that
requests are automatically verified before media content is served, making the delivery of
media content through MediaStore and CloudFront simpler and more secure.

To allow CloudFront to access your container (console)

1. Open the MediaStore console at https://console.aws.amazon.com/mediastore/.

2. On the Containers page, choose the container name.

The container details page appears.

3. In the Container policy section, attach a policy that grants read access or greater to Amazon
CloudFront.

Using Origin Access Control (OAC) 119

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-mediastore
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-mediastore
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://console.aws.amazon.com/mediastore/

AWS Elemental MediaStore User Guide

Example

The following example policy, which is similar to the example policy for Public Read Access
over HTTPS, matches these requirements because it allows GetObject and DescribeObject
commands from anyone who submits requests to your domain through HTTPS. Furthermore,
the following example policy better secures your workflow because it allows CloudFront access
to MediaStore objects only when the request occurs over an HTTPS connection and contains
the correct Referer header.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudFrontRead",
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "mediastore:GetObject",
 "mediastore:DescribeObject"
],
 "Resource": "arn:aws:mediastore:<region>:<owner acct
 number>:container/<container name>/*",
 "Condition": {
 "StringEquals": {
 "aws:Referer": "<secretValue>"
 },
 "Bool": {
 "aws:SecureTransport": "true"
 }
 }
 }
]}

4. In the Container CORS policy section, assign a policy that allows the appropriate access level.

Note

A CORS policy is necessary only if you want to provide access to a browser-based
player.

5. Make note of the following details:

Using Shared Secrets 120

AWS Elemental MediaStore User Guide

• The data endpoint that is assigned to your container. You can find this information in the
Info section of the Containers page. In CloudFront, the data endpoint is referred to as the
origin domain name.

• The folder structure in the container where the objects are stored. In CloudFront, this is
referred to as the origin path. Note that this setting is optional. For more information about
origin paths, see the Amazon CloudFront Developer Guide.

6. In CloudFront, create a distribution that is configured to serve content from AWS Elemental
MediaStore. You will need the information that you collected in the preceding step.

After attaching the policy to your MediaStore containers, you must configure CloudFront to use
only HTTPS connections for origin requests, and also add a custom header with the correct secret
value.

To configure CloudFront to access your container via an HTTPS connection with a secret value
for the Referer header (console)

1. Open the CloudFront console.

2. On the Origins page, choose your MediaStore origin.

3. Choose Edit.

4. Choose HTTPS only for the protocol.

5. In the Add custom header section, choose Add header.

6. For the Name, choose Referer. For the value, use the same <secretValue> string that you
used in your container policy.

7. Choose Save and let the changes deploy.

AWS Elemental MediaStore's interaction with HTTP caches

AWS Elemental MediaStore stores objects so that they can be cached correctly and efficiently by
content delivery networks (CDNs) like Amazon CloudFront. When an end user or CDN retrieves
an object from MediaStore, the service returns HTTP headers that affect the caching behavior of
the object. (The standards for HTTP 1.1 caching behavior are found in RFC2616 section 13.) These
headers are:

MediaStore's interaction with HTTP caches 121

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesOriginPath
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/live-streaming.html#video-streaming-mediastore
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/live-streaming.html#video-streaming-mediastore
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

AWS Elemental MediaStore User Guide

• ETag (not customizable) – The entity tag header is a unique identifier for the response that
MediaStore sends. Standards-compliant CDNs and web browsers use this tag as a key to
cache the object with. MediaStore automatically generates an ETag for each object when it is
uploaded. You can view an object's details to determine its ETag value.

• Last-Modified (not customizable) – The value of this header indicates the date and time
that the object was modified. MediaStore automatically generates this value when the object is
uploaded.

• Cache-Control (customizable) – The value of this header controls how long an object should
be cached before the CDN checks to see if it has been modified. You can set this header to any
value when you upload an object to a MediaStore container using the CLI or API. The complete
set of valid values is described in HTTP/1.1 documentation. If you don't set this value when you
upload an object, MediaStore won't return this header when the object is retrieved.

A common use case for the Cache-Control header is to specify a duration to cache the object. For
example, suppose that you have a video manifest file that is being frequently overwritten by an
encoder. You could set the max-age to 10 to indicate that the object should be cached for only
10 seconds. Or suppose that you have a stored video segment that will never be overwritten. You
could set the max-age for this object to 31536000 to cache for approximately 1 year.

Conditional requests

Conditional requests to MediaStore

MediaStore responds identically to conditional requests (using request headers such as If-
Modified-Since and If-None-Match, as described in RFC7232) and unconditional requests.
This means that when MediaStore receives a valid GetObject request, the service always returns
the object even if the client already has the object.

Conditional requests to CDNs

CDNs that serve content on behalf of MediaStore can process conditional requests by returning
304 Not Modified, as described in RFC7232 section 4.1. This indicates that there is no need to
transfer the complete object contents, because the requester already has an object that matches
the conditional request.

CDNs (and other caches that are compliant with HTTP/1.1) base these decisions on the ETag
and Cache-Control headers that are forwarded by the origin servers. To control how often

Conditional requests 122

https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232#section-4.1

AWS Elemental MediaStore User Guide

CDNs query MediaStore origin servers for updates to repeatedly retrieved objects, set the Cache-
Control headers for those objects when you upload them to MediaStore.

Conditional requests 123

AWS Elemental MediaStore User Guide

Quotas in AWS Elemental MediaStore

The Service Quotas console provides information about AWS Elemental MediaStore quotas. Along
with viewing the default quotas, you can use the Service Quotas console to request quota increases
for adjustable quotas.

The following table describes quotas, formerly referred to as limits, in AWS Elemental MediaStore.
Quotas are the maximum number of service resources or operations for your AWS account.

Note

To assign quotas to individual containers within your account, contact AWS Support or your
account manager. This option can help you divide up the account-level limits among your
containers, to prevent one container from using up your entire quota.

Resource or
Operation

Default Quota Comments

Containers 100 The maximum number of containers that you can
create in this account.

Folder Levels 10 The maximum number of folder levels that you
can create in a container. You can create as many
folders as you want, as long as they are not
nested more than 10 levels within a container.

Folders Unlimited You can create as many folders as you want, as
long as they are not nested more than 10 levels
within a container.

Object Size 25 MB The maximum file size of a single object.

Objects Unlimited You can upload as many objects as you want to a
folder or container in your account.

124

https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas

AWS Elemental MediaStore User Guide

Resource or
Operation

Default Quota Comments

Rate of DeleteObj
ect API requests

100 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase.

Rate of DescribeO
bject API requests

1,000 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase.

Rate of GetObject
 API requests for
standard upload
availability

1,000 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase.

Rate of GetObject
 API requests for
streaming upload
availability

25 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase.

Rate of ListItems
 API requests

5 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase.

125

https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_DeleteObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_DeleteObject.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_DescribeObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_DescribeObject.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_GetObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_GetObject.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_GetObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_GetObject.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_ListItems.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_ListItems.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas

AWS Elemental MediaStore User Guide

Resource or
Operation

Default Quota Comments

Rate of PutObject
 API requests
for chunked
transfer encoding
(also known as
streaming upload
availability)

10 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase. In the request,
specify the requested TPS and average object size.

Rate of PutObject
 API requests for
standard upload
availability

100 The maximum number of operation requests that
you can make per second. Additional requests are
throttled.

You can request a quota increase. In the request,
specify the requested TPS and average object size.

Rules in a Metric
Policy

10 The maximum number of rules that you can
include in a metric policy.

Rules in an Object
Lifecycle Policy

10 The maximum number of rules that you can
include in an object lifecycle policy.

126

https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://docs.aws.amazon.com/mediastore/latest/apireference/API_objstore_PutObject.html
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/mediastore/quotas

AWS Elemental MediaStore User Guide

AWS Elemental MediaStore related information

The following table lists related resources that you'll find useful as you work with AWS Elemental
MediaStore.

• Classes & Workshops – Links to role-based and specialty courses, in addition to self-paced labs to
help sharpen your AWS skills and gain practical experience.

• AWS Developer Center – Explore tutorials, download tools, and learn about AWS developer
events.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• Getting Started Resource Center – Learn how to set up your AWS account, join the AWS
community, and launch your first application.

• Hands-On Tutorials – Follow step-by-step tutorials to launch your first application on AWS.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics
such as architecture, security, and economics and authored by AWS Solutions Architects or other
technical experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also
includes links to other helpful resources, such as forums, technical FAQs, service health status,
and AWS Trusted Advisor.

• AWS Support – The primary webpage for information about AWS Support, a one-on-one, fast-
response support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse,
and other issues.

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license,
and site access; and other topics.

127

https://aws.amazon.com/training/course-descriptions/
https://aws.amazon.com/developer/?ref=docs_id=res1
https://aws.amazon.com/developer/tools/?ref=docs_id=res1
https://aws.amazon.com/getting-started/?ref=docs_id=res1
https://aws.amazon.com/getting-started/hands-on/?ref=docs_id=res1
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/terms/

AWS Elemental MediaStore User Guide

Document history for user guide

The following table describes the documentation for this release of AWS Elemental MediaStore.
For notification about updates to this documentation, you can subscribe to an RSS feed.

Change Description Date

Origin Access Control (OAC)
Improvement

Added information about
how to use OAC with AWS
Elemental MediaStore.

April 17, 2023

Quotas updates Corrected quota value and
description for Rules in a
Metric Policy.

October 25, 2022

ExpiresAt field Access logs now include
an ExpiresAt field that
indicates the object's expiratio
n date and time based on
transient data rules in the
container's lifecycle policy.

July 16, 2020

Lifecycle transition rules You can now add a lifecycle
transition rule to your object
lifecycle policy that sets
objects to be moved to the
infrequent access (IA) storage
class after they reach a
certain age.

April 20, 2020

Empty container You can now delete all objects
within a container at once.

April 7, 2020

Support for Amazon
CloudWatch metrics

You can set a metric policy
to dictate which metrics
MediaStore sends to
CloudWatch.

March 30, 2020

128

AWS Elemental MediaStore User Guide

Wildcards in delete object
rules

In an object lifecycle policy,
you can now use a wildcard
in a delete object rule. This
allows you to specify files
based on their filename or
extension that you want
the service to delete after a
certain number of days.

December 20, 2019

Object lifecycle policies You can now add a rule to
your object lifecycle policy
that indicates an expiration by
age in seconds.

September 13, 2019

AWS CloudFormation support You can now use an AWS
CloudFormation template to
create a container automatic
ally. The AWS CloudForm
ation template manages data
for five API actions: creating
a container, setting access
logging, updating the default
container policy, adding a
cross-origin resource sharing
(CORS) policy, and adding an
object lifecycle policy.

May 17, 2019

Quotas for streaming upload
availability

For objects with streaming
upload availability (chunked
transfer of objects), the
PutObject operation
can't exceed 10 TPS and the
GetObject operation can't
exceed 25 TPS.

April 8, 2019

129

AWS Elemental MediaStore User Guide

Chunked transfer of objects Added support for chunked
transfer of objects. This
capability allows you to
specify that an object is
available for downloading
before the object is uploaded
completely.

April 5, 2019

Access logging AWS Elemental MediaStore
now supports access logging,
which provides detailed
records for the requests that
are made to objects in a
container.

February 25, 2019

Object lifecycle policies Added support for object
lifecycle policies, which
govern the expiration date
of objects within the current
container.

December 12, 2018

Increased object size quota The quota for an object's size
is now 25 MB.

October 10, 2018

Increased object size quota The quota for an object's size
is now 20 MB.

September 6, 2018

AWS CloudTrail integration The CloudTrail integration
content has been updated to
align with recent changes to
the CloudTrail service.

July 12, 2018

CDN collaboration Added information about
how to use AWS Elemental
MediaStore with a content
delivery network (CDN) such
as Amazon CloudFront.

April 14, 2018

130

AWS Elemental MediaStore User Guide

CORS configurations AWS Elemental MediaStor
e now supports cross-ori
gin resource sharing (CORS),
which allows client web
applications that are loaded
in one domain to interact
with resources in a different
domain.

February 7, 2018

New service and guide This is the initial release
of the video origination
and storage service, AWS
Elemental MediaStore, and
the AWS Elemental MediaStor
e User Guide.

November 27, 2017

Note

• The AWS Media Services are not designed or intended for use with applications or in
situations requiring fail‐safe performance, such as life safety operations, navigation
or communication systems, air traffic control, or life support machines in which the
unavailability, interruption or failure of the services could lead to death, personal injury,
property damage or environmental damage.

131

AWS Elemental MediaStore User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

132

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Elemental MediaStore
	Table of Contents
	What is AWS Elemental MediaStore?
	AWS Elemental MediaStore concepts and terminology
	Related services
	Accessing AWS Elemental MediaStore
	Pricing for AWS Elemental MediaStore
	Regions and endpoints for AWS Elemental MediaStore

	Setting Up AWS Elemental MediaStore
	Sign up for an AWS account
	Create a user with administrative access

	Getting started with AWS Elemental MediaStore
	Step 1: Access AWS Elemental MediaStore
	Step 2: Create a container
	Step 3: Upload an object
	Step 4: Access an object

	Containers in AWS Elemental MediaStore
	Rules for container names
	Creating a container
	Viewing the details for a container
	Viewing a list of containers
	Deleting a container

	Policies in AWS Elemental MediaStore
	Container policies in AWS Elemental MediaStore
	Viewing a container policy
	Editing a container policy
	Example container policies
	Example container policy: Default
	Example container policy: Public read access over HTTPS
	Example container policy: Public read access over HTTP or HTTPS
	Example container policy: Cross-account read access—HTTP enabled
	Example container policy: Cross-account read access over HTTPS
	Example container policy: Cross-account read access to a role
	Example container policy: Cross-account full access to a role
	Example container policy: Access restricted to specific IP addresses

	Cross-origin resource sharing (CORS) policies in AWS Elemental MediaStore
	CORS use-case scenarios
	Adding a CORS policy to a container
	Viewing a CORS policy
	Editing a CORS policy
	Deleting a CORS policy
	Troubleshooting CORS issues
	Example CORS policies
	Example CORS policy: Read access for any domain
	Example CORS policy: Read access for a specific domain

	Object lifecycle policies in AWS Elemental MediaStore
	Components of an object lifecycle policy
	Rules in an object lifecycle policy
	Transient data
	Delete object
	Lifecycle transition

	Example

	Adding an object lifecycle policy to a container
	Viewing an object lifecycle policy
	Editing an object lifecycle policy
	Deleting an object lifecycle policy
	Example object lifecycle policies
	Example object lifecycle policy: Expire within seconds
	Example object lifecycle policy: Expire within days
	Example object lifecycle policy: Transition to infrequent access storage class
	Example object lifecycle policy: Multiple rules
	Example object lifecycle policy: Empty container

	Metric policies in AWS Elemental MediaStore
	Adding a metric policy
	Viewing a metric policy
	Editing a metric policy
	Example metric policies
	Example metric policy: Container-level metrics
	Example metric policy: Path-level metrics
	Example metric policy: Container-level and path-level metrics
	Example metric policy: Path-level metrics using wildcards
	Example metric policy: Path-level metrics with overlapping rules

	Folders in AWS Elemental MediaStore
	Rules for folder names
	Creating a folder
	Deleting a folder

	Objects in AWS Elemental MediaStore
	Uploading an object
	Viewing a list of objects
	Viewing the details of an object
	Downloading an object
	Deleting objects
	Deleting an object
	Emptying a container

	Security in AWS Elemental MediaStore
	Data protection in AWS Elemental MediaStore
	Data encryption

	Identity and Access Management for AWS Elemental MediaStore
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Elemental MediaStore works with IAM
	Identity-based policies for MediaStore
	Identity-based policy examples for MediaStore

	Resource-based policies within MediaStore
	Policy actions for MediaStore
	Policy resources for MediaStore
	Policy condition keys for MediaStore
	ACLs in MediaStore
	ABAC with MediaStore
	Using temporary credentials with MediaStore
	Cross-service principal permissions for MediaStore
	Service roles for MediaStore
	Service-linked roles for MediaStore

	Identity-based policy examples for AWS Elemental MediaStore
	Policy best practices
	Using the MediaStore console
	Allow users to view their own permissions

	Troubleshooting AWS Elemental MediaStore identity and access
	I am not authorized to perform an action in MediaStore
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my MediaStore resources

	Logging and monitoring in AWS Elemental MediaStore
	Amazon CloudWatch alarms
	AWS CloudTrail logs
	AWS Trusted Advisor

	Compliance validation for AWS Elemental MediaStore
	Resilience in AWS Elemental MediaStore
	Infrastructure Security in AWS Elemental MediaStore
	Cross-service confused deputy prevention

	Monitoring and tagging in AWS Elemental MediaStore
	Logging AWS Elemental MediaStore API calls with AWS CloudTrail
	AWS Elemental MediaStore information in CloudTrail
	Example: AWS Elemental MediaStore log file entries

	Monitoring AWS Elemental MediaStore with Amazon CloudWatch
	CloudWatch Logs
	Setting up permissions for Amazon CloudWatch
	Enabling access logging for a container
	Disabling access logging for a container
	Troubleshooting access logging in AWS Elemental MediaStore
	Access log format
	Logging status changes take effect over time
	Best effort server log delivery
	Programming considerations for access log format

	CloudWatch Events
	AWS Elemental MediaStore object state change event
	AWS Elemental MediaStore container state change event

	Monitoring AWS Elemental MediaStore with Amazon CloudWatch metrics
	AWS Elemental MediaStore metrics

	Tagging AWS Elemental MediaStore resources
	Supported resources in AWS Elemental MediaStore
	Tag naming and usage conventions
	Managing tags

	Working with content delivery networks (CDNs)
	Allowing Amazon CloudFront to access your AWS Elemental MediaStore container
	Using Origin Access Control (OAC)
	Using Shared Secrets

	AWS Elemental MediaStore's interaction with HTTP caches
	Conditional requests
	Conditional requests to MediaStore
	Conditional requests to CDNs

	Quotas in AWS Elemental MediaStore
	AWS Elemental MediaStore related information
	Document history for user guide
	AWS Glossary

