
Developer Guide

Amazon MemoryDB for Redis

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon MemoryDB for Redis Developer Guide

Amazon MemoryDB for Redis: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon MemoryDB for Redis Developer Guide

Table of Contents

What is MemoryDB for Redis? .. 1
Features of MemoryDB ... 1
MemoryDB core components ... 2

Clusters .. 3
Nodes ... 4
Shards .. 4
Parameter groups .. 5
Subnet groups .. 5
Access control lists .. 5
Users ... 5

Related services .. 6
Choosing Regions and Availability Zones .. 6

Locating your nodes ... 8
Supported Regions & endpoints .. 9

Accessing MemoryDB .. 12
MemoryDB security .. 12

Getting started with MemoryDB .. 14
Setting up .. 14

Create your AWS account ... 15
Grant programmatic access .. 16
Set up your permissions (new MemoryDB users only) .. 18
Downloading and Configuring the AWS CLI ... 19

Step 1: Create a cluster .. 20
Creating a MemoryDB cluster .. 20
Setting up authentication ... 30

Step 2: Authorize access to the cluster ... 31
Step 3: Connect to the cluster .. 33

Find your cluster endpoint ... 33
Connect to a MemoryDB cluster (Linux) .. 33

Step 4: Deleting a cluster ... 35
Where do I go from here? .. 37

Managing nodes .. 38
MemoryDB nodes and shards .. 38
Supported node types .. 40

iii

Amazon MemoryDB for Redis Developer Guide

Reserved nodes ... 42
Overview of reserved nodes ... 42

Replacing nodes ... 53
Managing clusters .. 56

Data tiering .. 57
Best practices ... 58
Limitations .. 58
Data tiering pricing .. 58
Monitoring .. 59
Using data tiering ... 59
Restoring data from a snapshot into clusters with data tiering enabled 60

Preparing a cluster ... 62
Determining your requirements .. 62

Creating a cluster ... 65
Viewing a cluster's details .. 66
Modifying a cluster .. 71
Adding / Removing nodes from a cluster ... 74
Accessing your cluster .. 76

Grant access to your cluster ... 76
Accessing MemoryDB from outside AWS ... 78

Finding connection endpoints ... 84
Shards ... 87

Finding a shard's name .. 88
Managing your MemoryDB implementation .. 92

Engine versions ... 92
Redis 7.0 (enhanced) .. 92
Redis 7.0 (enhanced) .. 93
Redis 6.2 (enhanced) .. 94
Upgrading engine versions ... 94

Getting started with JSON ... 97
Redis JSON Datatype overview ... 98
Supported commands ... 109

Tagging your MemoryDB resources ... 151
Monitoring costs with tags ... 156
Managing tags using the AWS CLI .. 157
Managing tags using the MemoryDB API .. 160

iv

Amazon MemoryDB for Redis Developer Guide

Managing maintenance .. 163
Best practices .. 164

Restricted Redis Commands ... 166
Resilience .. 167
Best practices: Pub/Sub and Enhanced I/O Multiplexing ... 169
Best practices: Online cluster resizing ... 169

Understanding MemoryDB replication .. 170
Consistency .. 170
Replication in a cluster .. 171
Minimizing downtime with Multi-AZ .. 172
Changing the number of replicas ... 180

Snapshot and restore .. 190
Constraints ... 191
Costs .. 191
Scheduling automatic snapshots .. 192
Making manual snapshots .. 193
Creating a final snapshot .. 196
Describing snapshots ... 198
Copying a snapshot .. 201
Exporting a snapshot ... 204
Restoring from a snapshot ... 213
Seeding a cluster with a snapshot .. 218
Tagging snapshots .. 224
Deleting a snapshot ... 225

Scaling .. 226
Scaling MemoryDB clusters .. 228

Configuring engine parameters using parameter groups .. 250
Parameter management ... 251
Parameter group tiers ... 252
Creating a parameter group ... 253
Listing parameter groups by name .. 257
Listing a parameter group's values ... 262
Modifying a parameter group ... 263
Deleting a parameter group .. 265
Redis specific parameters ... 267

Tutorial: Configuring a Lambda function to access MemoryDB in an Amazon VPC 284

v

Amazon MemoryDB for Redis Developer Guide

Step 1: Create a cluster .. 284
Step 2: Create a Lambda function .. 287
Step 3: Test the Lambda function .. 291
Step 4: Clean up (Optional) ... 291

Vector search ... 293
Vector search overview ... 293

Indexes and keyspaces .. 294
Index field types ... 295
Vector index algorithms .. 296
Vector search query expression ... 297
INFO command ... 299
Vector search security ... 301

Vector search features and limits ... 302
Vector search availability .. 302
Parametric restrictions ... 302
Scaling limits ... 303
Operational restrictions ... 303
Snapshot import/export and Live Migration .. 304
Memory consumption .. 304
Out of Memory during backfill ... 304
Transactions ... 304

Use cases ... 304
Retrieval Augmented Generation (RAG) .. 305
Foundation Model (FM) Buffer Memory .. 305
Fraud detection ... 306
Other use cases ... 307

Using the AWS Management Console ... 307
Using the AWS Command Line Interface ... 308
Vector search commands ... 308

FT.CREATE ... 309
FT.SEARCH .. 313
FT.AGGREGATE .. 316
FT.DROPINDEX ... 317
FT.INFO .. 317
FT._LIST ... 320
FT.ALIASADD .. 320

vi

Amazon MemoryDB for Redis Developer Guide

FT.ALIASDEL ... 321
FT.ALIASUPDATE ... 321
FT._ALIASLIST .. 321
FT.CONFIG GET .. 322
FT.CONFIG HELP ... 322
FT.CONFIG SET .. 322
FT.PROFILE ... 323
FT.EXPLAIN ... 323
FT.EXPLAINCLI ... 323

Security .. 325
Data protection .. 326

Data security in MemoryDB for Redis .. 326
At-Rest Encryption ... 328
In-transit encryption (TLS) ... 330
Authenticating users with ACLs ... 331
Authenticating with IAM ... 346

Identity and access management ... 354
Audience ... 354
Authenticating with identities ... 355
Managing access using policies ... 358
How MemoryDB for Redis works with IAM ... 360
Identity-based policy examples ... 370
Troubleshooting .. 373
Access control .. 375
Overview of managing access ... 376

Logging and monitoring .. 404
Monitoring with CloudWatch ... 405
Monitoring events .. 425
Logging MemoryDB for Redis API calls with AWS CloudTrail ... 438

Compliance validation .. 444
Infrastructure security ... 445
Internetwork traffic privacy ... 446

MemoryDB and Amazon VPC .. 446
Subnets and subnet groups ... 459
MemoryDB for Redis API and interface VPC endpoints (AWS PrivateLink) 472

Service updates .. 475

vii

Amazon MemoryDB for Redis Developer Guide

Managing the service updates ... 475
Reference .. 479

Using the MemoryDB API .. 480
Using the query API ... 480
Available libraries ... 483
Troubleshooting applications ... 484

Quotas .. 486
Document history .. 487

viii

Amazon MemoryDB for Redis Developer Guide

What is MemoryDB for Redis?

MemoryDB for Redis is a durable, in-memory database service that delivers ultra-fast performance.
It is purpose-built for modern applications with microservices architectures.

MemoryDB is compatible with Redis, a popular open source data store, enabling you to quickly
build applications using the same flexible and friendly Redis data structures, APIs, and commands
that they already use today. With MemoryDB, all of your data is stored in memory, which enables
you to achieve microsecond read and single-digit millisecond write latency and high throughput.
MemoryDB also stores data durably across multiple Availability Zones (AZs) using a Multi-AZ
transactional log to enable fast failover, database recovery, and node restarts.

Delivering both in-memory performance and Multi-AZ durability, MemoryDB can be used as a
high-performance primary database for your microservices applications, eliminating the need to
separately manage both a cache and durable database.

Topics

• Features of MemoryDB

• MemoryDB core components

• Related services

• Choosing Regions and Availability Zones

• Accessing MemoryDB

• MemoryDB security

Features of MemoryDB

MemoryDB for Redis is a durable, in-memory database service that delivers ultra-fast performance.
Features of MemoryDB include:

• Strong consistency for primary nodes and guaranteed eventual consistency for replica nodes. For
more information, see Consistency.

• Microsecond read and single-digit millisecond write latencies with up to 160 million TPS per
cluster.

• Flexible and friendly Redis data structures and APIs. Easily build new applications or migrate
existing Redis applications with almost no modification.

Features of MemoryDB 1

Amazon MemoryDB for Redis Developer Guide

• Data durability using a Multi-AZ transactional log providing fast database recovery and restart.

• Multi-AZ availability with automatic failover, and detection of and recovery from node failures.

• Easily scale horizontally by adding and removing nodes or vertically by moving to larger or
smaller node types. You can scale write throughput by adding shards and scale read throughput
by adding replicas.

• Read-after-write consistency for primary nodes and guaranteed eventual consistency for replica
nodes.

• MemoryDB supports encryption in transit, encryption at rest and authentication of users via
Authenticating users with Access Control Lists (ACLs).

• Automatic snapshots in Amazon S3 with retention for up to 35 days.

• Support for up to 500 nodes and more than 100 TB of storage per cluster (with 1 replica per
shard).

• Encryption in-transit with TLS and encryption at-rest with AWS KMS keys.

• User authentication and authorization with Redis Authenticating users with Access Control Lists
(ACLs).

• Support for AWS Graviton2 instance types.

• Integration with other AWS services such as CloudWatch, Amazon VPC, CloudTrail, and Amazon
SNS for monitoring, security, and notifications.

• Fully-managed software patching and upgrades.

• AWS Identity and Access Management (IAM) integration and tag-based access control for
management APIs.

MemoryDB core components

Following, you can find an overview of the major components of a MemoryDB deployment.

Topics

• Clusters

• Nodes

• Shards

• Parameter groups

• Subnet Groups

• Access Control Lists

MemoryDB core components 2

Amazon MemoryDB for Redis Developer Guide

• Users

Clusters

A cluster is a collection of one or more nodes serving a single dataset. A MemoryDB dataset is
partitioned into shards, and each shard has a primary node and up to 5 optional replica nodes. A
primary node serves read and write requests, while a replica only serves read requests. A primary
node can failover to a replica node, promoting that replica to the new primary node for that shard.
MemoryDB runs Redis as its database engine, and when you create a cluster, you specify the Redis
version for your cluster. You can create and modify a cluster using the AWS CLI, the MemoryDB API,
or the AWS Management Console.

Each MemoryDB cluster runs a Redis engine version. Each Redis engine version has its own
supported features. Additionally, each Redis engine version has a set of parameters in a parameter
group that control the behavior of the clusters that it manages.

The computation and memory capacity of a cluster is determined by its node type. You can select
the node type that best meets your needs. If your needs change over time, you can change node
types. For information, see Supported node types.

Note

For pricing information on MemoryDB node types, see MemoryDB pricing.

You run a cluster on a virtual private cloud (VPC) using the Amazon Virtual Private Cloud (Amazon
VPC) service. When you use a VPC, you have control over your virtual networking environment. You
can choose your own IP address range, create subnets, and configure routing and access control
lists. MemoryDB manages snapshots, software patching, automatic failure detection, and recovery.
There's no additional cost to run your cluster in a VPC. For more information on using Amazon VPC
with MemoryDB, see MemoryDB and Amazon VPC.

Many MemoryDB operations are targeted at clusters:

• Creating a cluster

• Modifying a cluster

• Taking snapshots of a cluster

• Deleting a cluster

Clusters 3

https://aws.amazon.com/memorydb/pricing/

Amazon MemoryDB for Redis Developer Guide

• Viewing the elements in a cluster

• Adding or removing cost allocation tags to and from a cluster

For more detailed information, see the following related topics:

• Managing clusters and Managing nodes

Information about clusters, nodes, and related operations.

• Resilience in MemoryDB for Redis

Information about improving the fault tolerance of your clusters.

Nodes

A node is the smallest building block of a MemoryDB deployment and runs using an Amazon EC2
instance. Each node runs the Redis version that was chosen when you created your cluster. A node
belongs to a shard which belongs to a cluster.

Each node runs an instance of the engine at the version chosen when you created your cluster.
If necessary, you can scale the nodes in a cluster up or down to a different type. For more
information, see Scaling .

Every node within a cluster is the same node type. Multiple types of nodes are supported, each
with varying amounts of memory. For a list of supported node types, see Supported node types.

For more information on nodes, see Managing nodes.

Shards

A shard is a grouping of one to 6 nodes, with one serving as the primary write node and the other 5
serving as read replicas. A MemoryDB cluster always has at least one shard.

MemoryDB clusters can have up to 500 shards, with your data partitioned across the shards. For
example, you can choose to configure a 500 node cluster that ranges between 83 shards (one
primary and 5 replicas per shard) and 500 shards (single primary and no replicas). Make sure there
are enough available IP addresses to accommodate the increase. Common pitfalls include the
subnets in the subnet group have too small a CIDR range or the subnets are shared and heavily
used by other clusters.

Nodes 4

Amazon MemoryDB for Redis Developer Guide

A multiple node shard implements replication by having one read/write primary node and 1–5
replica nodes. For more information, see Understanding MemoryDB replication.

For more information on shards, see Working with shards.

Parameter groups

Parameter groups are an easy way to manage runtime settings for Redis on your cluster.
Parameters are used to control memory usage, item sizes, and more. A MemoryDB parameter
group is a named collection of engine-specific parameters that you can apply to a cluster, and all of
the nodes in that cluster are configured in exactly the same way.

For more detailed information on MemoryDB parameter groups, see Configuring engine
parameters using parameter groups.

Subnet Groups

A subnet group is a collection of subnets (typically private) that you can designate for your clusters
running in an Amazon Virtual Private Cloud (VPC) environment.

When you create a cluster in an Amazon VPC, you can specify a subnet group or use the default
one provided. MemoryDB uses that subnet group to choose a subnet and IP addresses within that
subnet to associate with your nodes.

For more detailed information on MemoryDB subnet groups, see Subnets and subnet groups.

Access Control Lists

An Access control list is a collection of one or more users. Access strings follow the Redis ACL rules
to authorize user access to Redis commands and data.

For more detailed information on MemoryDB Access Control Lists, see Authenticating users with
Access Control Lists (ACLs).

Users

A user has a user name and password, and is used to access data and issue commands on
your MemoryDB cluster. A user is a member of an Access Control List (ACL), which you can
use to determine permissions for that user on MemoryDB clusters. For more information, see
Authenticating users with Access Control Lists (ACLs)

Parameter groups 5

https://redis.io/topics/acl

Amazon MemoryDB for Redis Developer Guide

Related services

ElastiCache for Redis

When deciding whether to use MemoryDB for Redis or ElastiCache for Redis consider the following
comparisons:

• MemoryDB for Redis is a durable, in-memory database for workloads that require an ultra-fast,
primary database. You should consider using MemoryDB if your workload requires a durable
database that provides ultra-fast performance (microsecond read and single-digit millisecond
write latency). MemoryDB may also be a good fit for your use case if you want to build an
application using Redis data structures and APIs with a primary, durable database. Finally, you
should consider using MemoryDB to simplify your application architecture and lower costs by
replacing usage of a database with a cache for durability and performance.

• ElastiCache for Redis is a service that is commonly used to cache data from other databases
and data stores using Redis. You should consider ElastiCache for Redis for caching workloads
where you want to accelerate data access with your existing primary database or data store
(microsecond read and write performance). You should also consider ElastiCache for Redis for
use cases where you want to use the Redis data structures and APIs to access data stored in a
primary database or data store.

Choosing Regions and Availability Zones

AWS Cloud computing resources are housed in highly available data center facilities. To provide
additional scalability and reliability, these data center facilities are located in different physical
locations. These locations are categorized by regions and Availability Zones.

AWS Regions are large and widely dispersed into separate geographic locations. Availability Zones
are distinct locations within an AWS Region that are engineered to be isolated from failures in
other Availability Zones. They provide inexpensive, low-latency network connectivity to other
Availability Zones in the same AWS Region.

Important

Each region is completely independent. Any MemoryDB activity you initiate (for example,
creating clusters) runs only in your current default region.

Related services 6

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/whatis.html

Amazon MemoryDB for Redis Developer Guide

To create or work with a cluster in a specific region, use the corresponding regional service
endpoint. For service endpoints, see Supported Regions & endpoints.

Choosing Regions and Availability Zones 7

Amazon MemoryDB for Redis Developer Guide

Locating your nodes

Any cluster that has at least one replica must be spread across AZs. The only way you can locate
everything within a single AZ is with a cluster comprised of single-node shards.

By locating the nodes in different AZs, MemoryDB eliminates the chance that a failure, such as a
power outage, in one AZ will cause loss of availability.

• Creating a MemoryDB cluster

• Modifying a MemoryDB cluster

Locating your nodes 8

Amazon MemoryDB for Redis Developer Guide

Supported Regions & endpoints

MemoryDB for Redis is available in multiple AWS Regions. This means that you can launch
MemoryDB clusters in locations that meet your requirements. For example, you can launch in the
AWS Region closest to your customers, or launch in a particular AWS Region to meet certain legal
requirements. In addition, as MemoryDB expands availability to a new AWS Region, MemoryDB
supports the two most recent MAJOR.MINOR versions at that time for the new Region. For more
information on MemoryDB versions, see Redis engine versions.

By default, the AWS SDKs, AWS CLI, MemoryDB API, and MemoryDB console reference the US-East
(N. Virginia) Region. As MemoryDB expands availability to new regions, new endpoints for these
regions are also available to use in your HTTP requests, the AWS SDKs, AWS CLI, and the console.

Each Region is designed to be completely isolated from the other Regions. Within each region are
multiple Availability Zones (AZ). By launching your nodes in different AZs you achieve the greatest
possible fault tolerance. For more information on regions and Availability Zones, see Choosing
Regions and Availability Zones at the beginning of this topic.

Regions where MemoryDB is supported

Region Name/Regi
on

Endpoint Protocol

US East (Ohio) Region

us-east-2

memory-db.us-
east-2.amazona
ws.com

HTTPS

US East (N. Virginia)
Region

us-east-1

memory-db.us-
east-1.amazona
ws.com

HTTPS

US West (N. Californi
a) Region

us-west-1

memory-db.us-
west-1.amazona
ws.com

HTTPS

US West (Oregon)
Region

memory-db.us-
west-2.amazona
ws.com

HTTPS

Supported Regions & endpoints 9

Amazon MemoryDB for Redis Developer Guide

Region Name/Regi
on

Endpoint Protocol

us-west-2

Canada (Central)
Region

ca-central-1

memory-db.ca-
central-1.amaz
onaws.com

HTTPS

Asia Pacific (Hong
Kong) Region

ap-east-1

memory-db.ap-
eastl-1.amazon
aws.com

HTTPS

Asia Pacific (Mumbai)
Region

ap-south-1

memory-db.ap-
south-1.amazon
aws.com

HTTPS

Asia Pacific (Tokyo)
Region

ap-northeast-1

memory-db.ap-
northeast-1.am
azonaws.com

HTTPS

Asia Pacific (Seoul)
Region

ap-northeast-2

memory-db.ap-
northeast-2.am
azonaws.com

HTTPS

Asia Pacific (Singapor
e) Region

ap-southeast-1

memory-db.ap-
southeast-1.am
azonaws.com

HTTPS

Asia Pacific (Sydney)
Region

ap-southeast-2

memory-db.ap-
southeast-2.am
azonaws.com

HTTPS

Supported Regions & endpoints 10

Amazon MemoryDB for Redis Developer Guide

Region Name/Regi
on

Endpoint Protocol

Europe (Frankfurt)
Region

eu-central-1

memory-db.eu-
central-1.amaz
onaws.com

HTTPS

Europe (Ireland)
Region

eu-west-1

memory-db.eu-
west-1.amazona
ws.com

HTTPS

Europe (London)
Region

eu-west-2

memory-db.eu-
west-2.amazona
ws.com

HTTPS

EU (Paris) Region

eu-west-3

memory-db.eu-
west-3.amazona
ws.com

HTTPS

Europe (Stockholm)
Region

eu-north-1

memory-db.eu-
north-1.amazon
aws.com

HTTPS

Europe (Milan)
Region

eu-south-1

memory-db.eu-
south-1.amazon
aws.com

HTTPS

South America (São
Paulo) Region

sa-east-1

memory-db.sa-
east-1.amazona
ws.com

HTTPS

China (Beijing) Region

cn-north-1

memory-db.cn-
north-1.amazon
aws.com.cn

HTTPS

Supported Regions & endpoints 11

Amazon MemoryDB for Redis Developer Guide

Region Name/Regi
on

Endpoint Protocol

China (Ningxia)
Region

cn-northwest-1

memory-db.cn-
northwest-1.am
azonaws.com.cn

HTTPS

For a table of AWS products and services by region, see Products and services by Region.

For a table of supported Availability Zones within Regions, see Subnets and subnet groups.

Accessing MemoryDB

Each MemoryDB cluster endpoint contains an address and a port. This cluster endpoint supports
the Redis Cluster protocol to allow clients to discover the specific roles, ip addresses and slots for
each node in the cluster. When a primary node fails and a replica is promoted in its place, you can
connect to cluster endpoint to discover the new primary using Redis Cluster protocol.

You need to connect to the cluster endpoint to discover node endpoints using cluster nodes or
cluster slots command. After discovering the right node for a key, you can connect directly to the
node for read/write requests. A Redis client can use the cluster endpoint to automatically connect
to the correct node.

To troubleshoot specific nodes in a cluster, you can also use node-specific endpoints, but these are
not necessary for normal usage.

To find a cluster's endpoint, see the following:

• Finding the Endpoint for a MemoryDB Cluster (AWS CLI)

• Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

For connecting to nodes or clusters, see Connecting to MemoryDB nodes using redis-cli.

MemoryDB security

Security for MemoryDB is managed at three levels:

Accessing MemoryDB 12

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon MemoryDB for Redis Developer Guide

• To control who can perform management actions on MemoryDB clusters and nodes, you use
AWS Identity and Access Management (IAM). When you connect to AWS using IAM credentials,
your AWS account must have IAM policies that grant the permissions required to perform
operations. For more information, see Identity and access management in MemoryDB for Redis

• To control access levels to clusters, you create users with specified permissions and assign them
to the Access Control Lists (ACL). The ACL, in turn, is then associated with one or more clusters.
For more information, see Authenticating users with Access Control Lists (ACLs).

• MemoryDB clusters must be created in a virtual private cloud (VPC) based on the Amazon
VPC service. To control which devices and Amazon EC2 instances can open connections to the
endpoint and port of the node for MemoryDB clusters in a VPC, you use a VPC security group.
You can make these endpoint and port connections using Transport Layer Security (TLS)/Secure
Sockets Layer (SSL). In addition, firewall rules at your company can control whether devices
running at your company can open connections to a MemoryDB cluster. For more information on
VPCs, see MemoryDB and Amazon VPC.

For information about configuring security, see Security in MemoryDB for Redis.

MemoryDB security 13

Amazon MemoryDB for Redis Developer Guide

Getting started with MemoryDB

This exercise leads you through the steps to create, grant access to, connect to, and finally delete a
MemoryDB cluster using the MemoryDB Management Console.

Note

For the purposes of this exercise, we recommend you use the Easy create option when
creating a cluster and return to the other two options once you have further explored
MemoryDB's features.

Topics

• Setting up

• Step 1: Create a cluster

• Step 2: Authorize access to the cluster

• Step 3: Connect to the cluster

• Step 4: Deleting a cluster

• Where do I go from here?

Setting up

Following, you can find topics that describe the one-time actions you must take to start using
MemoryDB.

Topics

• Create your AWS account

• Grant programmatic access

• Set up your permissions (new MemoryDB users only)

• Downloading and Configuring the AWS CLI

Setting up 14

Amazon MemoryDB for Redis Developer Guide

Create your AWS account

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create your AWS account 15

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Amazon MemoryDB for Redis Developer Guide

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Grant programmatic access 16

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon MemoryDB for Redis Developer Guide

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in

Grant programmatic access 17

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html

Amazon MemoryDB for Redis Developer Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Related topics:

• What is IAM in the IAM User Guide.

• AWS Security Credentials in AWS General Reference.

Set up your permissions (new MemoryDB users only)

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

MemoryDB for Redis creates and uses service-linked roles to provision resources and access
other AWS resources and services on your behalf. For MemoryDB to create a service-linked role
for you, use the AWS-managed policy named AmazonMemoryDBFullAccess. This role comes

Set up your permissions (new MemoryDB users only) 18

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon MemoryDB for Redis Developer Guide

preprovisioned with permission that the service requires to create a service-linked role on your
behalf.

You might decide not to use the default policy and instead to use a custom-managed policy. In this
case, make sure that you have either permissions to call iam:createServiceLinkedRole or that
you have created the MemoryDB service-linked role.

For more information, see the following:

• Creating a New Policy (IAM)

• AWS-managed (predefined) policies for MemoryDB for Redis

• Using Service-Linked Roles for Amazon MemoryDB for Redis

Downloading and Configuring the AWS CLI

The AWS CLI is available at http://aws.amazon.com/cli. It runs on Windows, MacOS and Linux.
After you download the AWS CLI, follow these steps to install and configure it:

1. Go to the AWS Command Line Interface User Guide.

2. Follow the instructions for Installing the AWS CLI and Configuring the AWS CLI.

Downloading and Configuring the AWS CLI 19

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
http://aws.amazon.com/cli
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon MemoryDB for Redis Developer Guide

Step 1: Create a cluster

Before creating a cluster for production use, you obviously need to consider how you will configure
the cluster to meet your business needs. Those issues are addressed in the Preparing a cluster
section. For the purposes of this Getting Started exercise, you can accept the default configuration
values where they apply.

The cluster you create will be live, and not running in a sandbox. You will incur the standard
MemoryDB usage fees for the instance until you delete it. The total charges will be minimal
(typically less than a dollar) if you complete the exercise described here in one sitting and delete
your cluster when you are finished. For more information about MemoryDB usage rates, see
MemoryDB.

Your cluster is launched in a virtual private cloud (VPC) based on the Amazon VPC service.

Creating a MemoryDB cluster

The following examples show how to create a cluster using the AWS Management Console, AWS
CLI and MemoryDB API.

Creating a cluster (Console)

To create a cluster using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. Choose Clusters In the left navigation pane and then choose Create.

Easy create

1. Complete the Configuration section. This configures the node type and default
configuration of your cluster. Select the appropriate memory size and network
performance you require from the following options:

• Production

• Dev/Test

• Demo

2. Complete the Cluster info section.

Step 1: Create a cluster 20

https://aws.amazon.com/memorydb/
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

a. In Name, enter a name for your cluster.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

b. In the Description box, enter a description for this cluster.

3. Complete the Subnet groups section:

• For Subnet groups, create a new subnet group or choose an existing one from the
available list that you want to apply to this cluster. If you are creating a new one:

• Enter a Name

• Enter a Description

• If you enabled Multi-AZ, the subnet group must contain at least two subnets that
reside in different availability zones. For more information, see Subnets and subnet
groups.

• If you are creating a new subnet group and do not have an existing VPC, you will
be asked to create a VPC. For more information, see What is Amazon VPC? in the
Amazon VPC User Guide.

4. For Vector search, you can Enable Vector search capability to store vector embeddings
and perform vector searches. Note that this will fix the values for Redis version
compatibility, Parameter groups and Shards. For more information, see Vector search.

5. View default settings:

When using Easy create, the remaining cluster settings are set by default. Note that some
of these settings can be changed after creation, as indicated by Editable after creation.

6. For Tags, you can optionally apply tags to search and filter your clusters or track your AWS
costs.

7. Review all your entries and choices, then make any needed corrections. When you're ready,
choose Create to launch your cluster, or Cancel to cancel the operation.

Creating a MemoryDB cluster 21

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon MemoryDB for Redis Developer Guide

As soon as your cluster's status is available, you can grant EC2 access to it, connect to it, and
begin using it. For more information, see Step 2: Authorize access to the cluster

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour
that the cluster is active, even if you're not actively using it. To stop incurring charges for
this cluster, you must delete it. See Step 4: Deleting a cluster.

Create new cluster

1. Complete the Cluster info section.

a. In Name, enter a name for your cluster.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

b. In the Description box, enter a description for this cluster.

2. Complete the Subnet groups section:

• For Subnet groups, create a new subnet group or choose an existing one from the
available list that you want to apply to this cluster. If you are creating a new one:

• Enter a Name

• Enter a Description

• If you enabled Multi-AZ, the subnet group must contain at least two subnets that
reside in different availability zones. For more information, see Subnets and subnet
groups.

• If you are creating a new subnet group and do not have an existing VPC, you will
be asked to create a VPC. For more information, see What is Amazon VPC? in the
Amazon VPC User Guide.

3. Complete the Cluster settings section:
Creating a MemoryDB cluster 22

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon MemoryDB for Redis Developer Guide

a. For Enable Vector search capability, you can enable this to store vector embeddings
and perform vector searches. Note that this will fix the values for Redis version
compatibility, Parameter groups and Shards. For more information, see Vector
search.

b. For Redis version compatibility, accept the default 6.2.

c. For Port, accept the default Redis port of 6379 or, if you have a reason to use a
different port, enter the port number..

d. For Parameter group, if you have enabled vector search, use default.memorydb-
redis7.search.preview. Otherwise, accept the default.memorydb-redis7
parameter group.

Parameter groups control the runtime parameters of your cluster. For more
information on parameter groups, see Redis specific parameters.

e. For Node type, choose a value for the node type (along with its associated memory
size) that you want.

If you choose a node type from the r6gd family, you will automatically enable data-
tiering, which splits data storage between memory and SSD. For more information, see
Data tiering.

f. For Number of shards, choose the number of shards that you want for this cluster. For
higher availability of your clusters, we recommend that you add at least 2 shards.

You can change the number of shards in your cluster dynamically. For more
information, see Scaling MemoryDB clusters.

g. For Replicas per shard, choose the number of read replica nodes that you want in each
shard.

The following restrictions exist:

• If you have Multi-AZ enabled, make sure that you have at least one replica per shard.

• The number of replicas is the same for each shard when creating the cluster using
the console.

h. Choose Next

i. Complete the Advanced settings section:

Creating a MemoryDB cluster 23

Amazon MemoryDB for Redis Developer Guide

i. For Security groups, choose the security groups that you want for this cluster. A
security group acts as a firewall to control network access to your cluster. You can
use the default security group for your VPC or create a new one.

For more information on security groups, see Security groups for your VPC in the
Amazon VPC User Guide.

ii. To encrypt your data, you have the following options:

• Encryption at rest – Enables encryption of data stored on disk. For more
information, see Encryption at Rest.

Note

You have the option to supply an encryption key other than default by
choosing Customer Managed AWS-owned KMS key and choosing the
key.

• Encryption in-transit – Enables encryption of data on the wire. If you select no
encryption, then an open Access control list called “open access” will be created
with a default user. For more information, see Authenticating users with Access
Control Lists (ACLs).

iii. For Snapshot, optionally specify a snapshot retention period and a snapshot
window. By default, Enable automatic snapshots is pre-selected.

iv. For Maintenance window optionally specify a maintenance window. The
maintenance window is the time, generally an hour in length, each week when
MemoryDB schedules system maintenance for your cluster. You can allow
MemoryDB to choose the day and time for your maintenance window (No
preference), or you can choose the day, time, and duration yourself (Specify
maintenance window). If you choose Specify maintenance window from the lists,
choose the Start day, Start time, and Duration (in hours) for your maintenance
window. All times are UCT times.

For more information, see Managing maintenance.

v. For Notifications, choose an existing Amazon Simple Notification Service (Amazon
SNS) topic, or choose Manual ARN input and enter the topic's Amazon Resource
Name (ARN). Amazon SNS allows you to push notifications to Internet-connected

Creating a MemoryDB cluster 24

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/memorydb/latest/devguide/at-rest-encryption.html

Amazon MemoryDB for Redis Developer Guide

smart devices. The default is to disable notifications. For more information, see
https://aws.amazon.com/sns/.

vi. For Tags, you can optionally apply tags to search and filter your clusters or track
your AWS costs.

j. Review all your entries and choices, then make any needed corrections. When you're
ready, choose Create to launch your cluster, or Cancel to cancel the operation.

As soon as your cluster's status is available, you can grant EC2 access to it, connect to it, and
begin using it. For more information, see Step 2: Authorize access to the cluster

Important

As soon as your cluster becomes available, you're billed for each hour or partial
hour that the cluster is active, even if you're not actively using it. To stop incurring
charges for this cluster, you must delete it. See Step 4: Deleting a cluster.

Restore from snapshots

Under Snapshot source, choose the source snapshot from which to migrate data. For more
information, see Snapshot and restore .

Note

If you want your new cluster to have vector search enabled, the source snapshot must
also have vector search enabled.

The target cluster defaults to the settings of the source cluster. Optionally, you can change the
following settings on the target cluster:

1. Cluster info

a. In Name, enter a name for your cluster.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

Creating a MemoryDB cluster 25

https://aws.amazon.com/sns/

Amazon MemoryDB for Redis Developer Guide

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

b. In the Description box, enter a description for this cluster.

2. Subnet groups

• For Subnet groups, create a new subnet group or choose an existing one from the
available list that you want to apply to this cluster. If you are creating a new one:

• Enter a Name

• Enter a Description

• If you enabled Multi-AZ, the subnet group must contain at least two subnets that
reside in different availability zones. For more information, see Subnets and subnet
groups.

• If you are creating a new subnet group and do not have an existing VPC, you will
be asked to create a VPC. For more information, see What is Amazon VPC? in the
Amazon VPC User Guide.

3. Cluster settings

a. For Enable Vector search capability, you can enable this to store vector embeddings
and perform vector searches. Note that this will fix the values for Redis version
compatibility, Parameter groups and Shards. For more information, see Vector
search.

b. For Redis version compatibility, accept the default 6.2.

c. For Port, accept the default Redis port of 6379 or, if you have a reason to use a
different port, enter the port number..

d. For Parameter group, if you have enabled vector search, use default.memorydb-
redis7.search.preview. Otherwise, accept the default.memorydb-redis7
parameter group.

Parameter groups control the runtime parameters of your cluster. For more
information on parameter groups, see Redis specific parameters.

e. For Node type, choose a value for the node type (along with its associated memory
size) that you want.

Creating a MemoryDB cluster 26

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon MemoryDB for Redis Developer Guide

If you choose a node type from the r6gd family, you will automatically enable data-
tiering, which splits data storage between memory and SSD. For more information, see
Data tiering.

f. For Number of shards, choose the number of shards that you want for this cluster. For
higher availability of your clusters, we recommend that you add at least 2 shards.

You can change the number of shards in your cluster dynamically. For more
information, see Scaling MemoryDB clusters.

g. For Replicas per shard, choose the number of read replica nodes that you want in each
shard.

The following restrictions exist:

• If you have Multi-AZ enabled, make sure that you have at least one replica per shard.

• The number of replicas is the same for each shard when creating the cluster using
the console.

h. Choose Next

i. Advanced settings

i. For Security groups, choose the security groups that you want for this cluster. A
security group acts as a firewall to control network access to your cluster. You can
use the default security group for your VPC or create a new one.

For more information on security groups, see Security groups for your VPC in the
Amazon VPC User Guide.

ii. To encrypt your data, you have the following options:

• Encryption at rest – Enables encryption of data stored on disk. For more
information, see Encryption at Rest.

Note

You have the option to supply an encryption key other than default by
choosing Customer Managed AWS-owned KMS key and choosing the
key.

Creating a MemoryDB cluster 27

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/memorydb/latest/devguide/at-rest-encryption.html

Amazon MemoryDB for Redis Developer Guide

• Encryption in-transit – Enables encryption of data on the wire. If you select no
encryption, then an open Access control list called “open access” will be created
with a default user. For more information, see Authenticating users with Access
Control Lists (ACLs).

iii. For Snapshot, optionally specify a snapshot retention period and a snapshot
window. By default, Enable automatic snapshots is pre-selected.

iv. For Maintenance window optionally specify a maintenance window. The
maintenance window is the time, generally an hour in length, each week when
MemoryDB schedules system maintenance for your cluster. You can allow
MemoryDB to choose the day and time for your maintenance window (No
preference), or you can choose the day, time, and duration yourself (Specify
maintenance window). If you choose Specify maintenance window from the lists,
choose the Start day, Start time, and Duration (in hours) for your maintenance
window. All times are UCT times.

For more information, see Managing maintenance.

v. For Notifications, choose an existing Amazon Simple Notification Service (Amazon
SNS) topic, or choose Manual ARN input and enter the topic's Amazon Resource
Name (ARN). Amazon SNS allows you to push notifications to Internet-connected
smart devices. The default is to disable notifications. For more information, see
https://aws.amazon.com/sns/.

vi. For Tags, you can optionally apply tags to search and filter your clusters or track
your AWS costs.

j. Review all your entries and choices, then make any needed corrections. When you're
ready, choose Create to launch your cluster, or Cancel to cancel the operation.

As soon as your cluster's status is available, you can grant EC2 access to it, connect to it, and
begin using it. For more information, see Step 2: Authorize access to the cluster

Important

As soon as your cluster becomes available, you're billed for each hour or partial
hour that the cluster is active, even if you're not actively using it. To stop incurring
charges for this cluster, you must delete it. See Step 4: Deleting a cluster.

Creating a MemoryDB cluster 28

https://aws.amazon.com/sns/

Amazon MemoryDB for Redis Developer Guide

Creating a cluster (AWS CLI)

To create a cluster using the AWS CLI, see create-cluster. The following is an example:

For Linux, macOS, or Unix:

aws memorydb create-cluster \
 --cluster-name my-cluster \
 --node-type db.r6g.large \
 --acl-name my-acl \
 --subnet-group my-sg

For Windows:

aws memorydb create-cluster ^
 --cluster-name my-cluster ^
 --node-type db.r6g.large ^
 --acl-name my-acl ^
 --subnet-group my-sg

You should get the following JSON response:

{
 "Cluster": {
 "Name": "my-cluster",
 "Status": "creating",
 "NumberOfShards": 1,
 "AvailabilityMode": "MultiAZ",
 "ClusterEndpoint": {
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxxxxxxxxx:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",

Creating a MemoryDB cluster 29

https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-cluster.html

Amazon MemoryDB for Redis Developer Guide

 "ACLName": "my-acl",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
}

You can begin using the cluster once its status changes to available.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour that
the cluster is active, even if you're not actively using it. To stop incurring charges for this
cluster, you must delete it. See Step 4: Deleting a cluster.

Creating a cluster (MemoryDB API)

To create a cluster using the MemoryDB API, use the CreateCluster action.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour that
the cluster is active, even if you're not using it. To stop incurring charges for this cluster, you
must delete it. See Step 4: Deleting a cluster.

Setting up authentication

For information about setting up authentication for your cluster, see Authenticating with IAM and
Authenticating users with Access Control Lists (ACLs).

Setting up authentication 30

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CreateCluster.html

Amazon MemoryDB for Redis Developer Guide

Step 2: Authorize access to the cluster

This section assumes that you are familiar with launching and connecting to Amazon EC2 instances.
For more information, see the Amazon EC2 Getting Started Guide.

MemoryDB clusters are designed to be accessed from an Amazon EC2 instance. They can also be
accessed by containerized or serverless applications running in Amazon Elastic Container Service
or AWS Lambda. The most common scenario is to access a MemoryDB cluster from an Amazon EC2
instance in the same Amazon Virtual Private Cloud (Amazon VPC), which will be the case for this
exercise.

Before you can connect to a cluster from an EC2 instance, you must authorize the EC2 instance to
access the cluster.

The most common use case is when an application deployed on an EC2 instance needs to connect
to a cluster in the same VPC. The simplest way to manage access between EC2 instances and
clusters in the same VPC is to do the following:

1. Create a VPC security group for your cluster. This security group can be used to restrict access
to the clusters. For example, you can create a custom rule for this security group that allows
TCP access using the port you assigned to the cluster when you created it and an IP address
you will use to access the cluster.

The default port for MemoryDB clusters is 6379.

2. Create a VPC security group for your EC2 instances (web and application servers). This security
group can, if needed, allow access to the EC2 instance from the Internet via the VPC's routing
table. For example, you can set rules on this security group to allow TCP access to the EC2
instance over port 22.

3. Create custom rules in the security group for your cluster that allow connections from the
security group you created for your EC2 instances. This would allow any member of the
security group to access the clusters.

To create a rule in a VPC security group that allows connections from another security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the left navigation pane, choose Security Groups.

Step 2: Authorize access to the cluster 31

https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon MemoryDB for Redis Developer Guide

3. Select or create a security group that you will use for your clusters. Under Inbound Rules,
select Edit Inbound Rules and then select Add Rule. This security group will allow access to
members of another security group.

4. From Type choose Custom TCP Rule.

a. For Port Range, specify the port you used when you created your cluster.

The default port for MemoryDB clusters is 6379.

b. In the Source box, start typing the ID of the security group. From the list select the
security group you will use for your Amazon EC2 instances.

5. Choose Save when you finish.

Once you have enabled access, you are now ready to connect to the cluster, as discussed in the next
section.

For information on accessing your MemoryDB cluster from a different Amazon VPC, a different
AWS Region, or even your corporate network, see the following:

• Access Patterns for Accessing a MemoryDB Cluster in an Amazon VPC

• Accessing MemoryDB resources from outside AWS

Step 2: Authorize access to the cluster 32

Amazon MemoryDB for Redis Developer Guide

Step 3: Connect to the cluster

Before you continue, complete Step 2: Authorize access to the cluster.

This section assumes that you've created an Amazon EC2 instance and can connect to it. For
instructions on how to do this, see the Amazon EC2 Getting Started Guide.

An Amazon EC2 instance can connect to a cluster only if you have authorized it to do so.

Find your cluster endpoint

When your cluster is in the available state and you've authorized access to it, you can log in to an
Amazon EC2 instance and connect to the cluster. To do so, you must first determine the endpoint.

To further explore how to find your endpoints, see the following:

• Finding the Endpoint for a MemoryDB Cluster (AWS Management Console)

• Finding the Endpoint for a MemoryDB Cluster (AWS CLI)

• Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

Connect to a MemoryDB cluster (Linux)

Now that you have the endpoint you need, you can log in to an EC2 instance and connect to the
cluster. In the following example, you use the cli utility to connect to a cluster using Ubuntu 22.
The latest version of cli also supports SSL/TLS for connecting encryption/authentication enabled
clusters.

Connecting to MemoryDB nodes using redis-cli

To access data from MemoryDB nodes, you use clients that work with Secure Socket Layer (SSL).
You can also use redis-cli with TLS/SSL on Amazon Linux and Amazon Linux 2.

To use redis-cli to connect to a MemoryDB cluster on Amazon Linux 2 or Amazon Linux

1. Download and compile the redis-cli utility. This utility is included in the Redis software
distribution.

2. At the command prompt of your EC2 instance, type the appropriate commands for the version
of Linux you are using.

Step 3: Connect to the cluster 33

https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/

Amazon MemoryDB for Redis Developer Guide

Amazon Linux 2023

If using Amazon Linux 2023, enter this:

sudo yum install redis6 -y

Then type the following command, substituting the endpoint of your cluster and port for what
is shown in this example.

redis-cli -h Primary or Configuration Endpoint --tls -p 6379

For more information on finding the endpoint, see Find your Node Endpoints.

Amazon Linux 2

If using Amazon Linux 2, enter this:

sudo yum -y install openssl-devel gcc
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make distclean
make redis-cli BUILD_TLS=yes
sudo install -m 755 src/redis-cli /usr/local/bin/

Amazon Linux

If using Amazon Linux, enter this:

sudo yum install gcc jemalloc-devel openssl-devel tcl tcl-devel clang wget
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make redis-cli CC=clang BUILD_TLS=yes
sudo install -m 755 src/redis-cli /usr/local/bin/

On Amazon Linux, you may also need to run the following additional steps:

sudo yum install clang

Connect to a MemoryDB cluster (Linux) 34

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.ConnectToCacheNode.html#GettingStarted.FindEndpoints

Amazon MemoryDB for Redis Developer Guide

CC=clang make
sudo make install

3. After you have downloaded and installed the redis-cli utility, it is recommended that you run
the optional make-test command.

4. To connect to a cluster with encryption and authentication enabled, enter this command:

redis-cli -h Primary or Configuration Endpoint --tls -a 'your-password' -p 6379

Note

If you install redis6 on Amazon Linux 2023, you can now use the command redis6-
cli instead of redis-cli:

redis6-cli -h Primary or Configuration Endpoint --tls -p 6379

Step 4: Deleting a cluster

As long as a cluster is in the available state, you are being charged for it, whether or not you are
actively using it. To stop incurring charges, delete the cluster.

Warning

When you delete a MemoryDB cluster, your manual snapshots are retained. You can also
create a final snapshot before the cluster is deleted. Automatic snapshots are not retained.
For more information, see Snapshot and restore .

Using the AWS Management Console

The following procedure deletes a single cluster from your deployment. To delete multiple clusters,
repeat the procedure for each cluster that you want to delete. You do not need to wait for one
cluster to finish deleting before starting the procedure to delete another cluster.

Step 4: Deleting a cluster 35

Amazon MemoryDB for Redis Developer Guide

To delete a cluster

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To choose the cluster to delete, choose the radio button next to the cluster's name from the
list of clusters. In this case, the name of the cluster you created at Step 1: Create a cluster.

3. For Actions, choose Delete.

4. First choose whether to create a snapshot of the cluster before deleting it and then enter
delete in the confirmation box and Delete to delete the cluster, or choose Cancel to keep the
cluster.

If you chose Delete, the status of the cluster changes to deleting.

As soon as your cluster is no longer listed in the list of clusters, you stop incurring charges for it.

Using the AWS CLI

The following code deletes the cluster my-cluster. In this case, substitute my-cluster with the
name of the cluster you created at Step 1: Create a cluster.

aws memorydb delete-cluster --cluster-name my-cluster

The delete-cluster CLI operation only deletes one cluster. To delete multiple clusters, call
delete-cluster for each cluster that you want to delete. You do not need to wait for one cluster
to finish deleting before deleting another.

For Linux, macOS, or Unix:

aws memorydb delete-cluster \
 --cluster-name my-cluster \
 --region us-east-1

For Windows:

aws memorydb delete-cluster ^
 --cluster-name my-cluster ^
 --region us-east-1

Step 4: Deleting a cluster 36

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For more information, see delete-cluster.

Using the MemoryDB API

The following code deletes the cluster my-cluster. In this case, substitute my-cluster with the
name of the cluster you created at Step 1: Create a cluster.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DeleteCluster
 &ClusterName=my-cluster
 &Region=us-east-1
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T220302Z
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210802T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210802T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

The DeleteCluster API operation only deletes one cluster. To delete multiple clusters, call
DeleteCluster for each cluster that you want to delete. You do not need to wait for one cluster
to finish deleting before deleting another.

For more information, see DeleteCluster.

Where do I go from here?

Now that you have tried the Getting Started exercise, you can explore the following sections to
learn more about MemoryDB and available tools:

• Getting started with AWS

• Tools for Amazon Web Services

• AWS Command Line Interface

• MemoryDB for Redis API Reference.

Where do I go from here? 37

https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-cluster.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DeleteCluster.html
https://aws.amazon.com/getting-started/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/memorydb/latest/APIReference/Welcome.html

Amazon MemoryDB for Redis Developer Guide

Managing nodes

A node is the smallest building block of a MemoryDB for Redis deployment. A node belongs to
a shard which belongs to a cluster. Each node runs the engine version that was chosen when the
cluster was created or last modified. Each node has its own Domain Name Service (DNS) name and
port. Multiple types of MemoryDB nodes are supported, each with varying amounts of associated
memory and computational power.

Topics

• MemoryDB nodes and shards

• Supported node types

• MemoryDB reserved nodes

• Replacing nodes

Some important operations involving nodes are the following:

• Adding / Removing nodes from a cluster

• Scaling

• Finding connection endpoints

MemoryDB nodes and shards

A shard is a hierarchical arrangement of nodes, each wrapped in a cluster. Shards support
replication. Within a shard, one node functions as the read/write primary node. All the other nodes
in a shard function as read-only replicas of the primary node. MemoryDB supports multiple shards
within a cluster. This support enables partitioning of your data in a MemoryDB cluster.

MemoryDB supports replication via shards. The API operation DescribeClusters lists the shards with
the member nodes, the node names, endpoints and also other information.

After a MemoryDB cluster is created, it can be altered (scaled in or out). For more information, see
Scaling and Replacing nodes.

When you create a new cluster, you can seed it with data from the old cluster so it doesn't start
out empty. Doing this can be helpful if you need change your node type, engine version or migrate

MemoryDB nodes and shards 38

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeClusters.html

Amazon MemoryDB for Redis Developer Guide

from Amazon ElastiCache for Redis. For more information, see Making manual snapshots and
Restoring from a snapshot.

MemoryDB nodes and shards 39

Amazon MemoryDB for Redis Developer Guide

Supported node types

MemoryDB supports the following node types.

Memory optimized

Instance type Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

Enhanced I/
O Multiplexing
(Redis 7.0.4+)

Minimum
engine version

db.r7g.large 0.937 12.5 No 6.2

db.r7g.xlarge 1.876 12.5 No 6.2

db.r7g.2xlarge 3.75 15 Yes 6.2

db.r7g.4xlarge 7.5 15 Yes 6.2

db.r7g.8xlarge 15 N/A Yes 6.2

db.r7g.12xlarge 22.5 N/A Yes 6.2

db.r7g.16xlarge 30 N/A Yes 6.2

db.r6g.large 0.75 10.0 No 6.2

db.r6g.xlarge 1.25 10.0 No 6.2

db.r6g.2xlarge 2.5 10.0 Yes 6.2

db.r6g.4xlarge 5.0 10.0 Yes 6.2

db.r6g.8xlarge 12 N/A Yes 6.2

db.r6g.12xlarge 20 N/A Yes 6.2

db.r6g.16xlarge 25 N/A Yes 6.2

Memory optimized with data tiering

Supported node types 40

Amazon MemoryDB for Redis Developer Guide

Instance type Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

Enhanced I/
O Multiplexing
(Redis 7.0.4+)

Minimum
engine version

db.r6gd.xlarge 1.25 10 No 6.2

db.r6gd.2xlarge 2.5 10 No 6.2

db.r6gd.4xlarge 5.0 10 No 6.2

db.r6gd.8xlarge 12 N/A No 6.2

General purpose nodes

Instance type Baseline
bandwidth

(Gbps)

Burst
bandwidth

(Gbps)

Enhanced I/
O Multiplexing
(Redis 7.0.4+)

Minimum
engine version

db.t4g.small 0.128 5.0 No 6.2

db.t4g.medium 0.256 5.0 No 6.2

For AWS Region availability, see MemoryDB for Redis Pricing

All node types are created in a virtual private cloud (VPC).

Supported node types 41

https://aws.amazon.com/memorydb/pricing/

Amazon MemoryDB for Redis Developer Guide

MemoryDB reserved nodes

Reserved nodes provide you with a significant discount compared to on-demand node pricing.
Reserved nodes are not physical nodes, but rather a billing discount applied to the use of on-
demand nodes in your account. Discounts for reserved nodes are tied to node type and AWS
Region.

The general process for working with reserved nodes is as follows:

• Review information about available reserved node offerings

• Purchase a reserved node offering using the AWS Management Console, AWS Command Line
Interface or SDK

• Review information about your existing reserved nodes

Topics

• Overview of reserved nodes

Overview of reserved nodes

When you purchase a MemoryDB reserved node, you purchase a commitment to getting a
discounted rate, on a specific node type, for the duration of the reserved node. To use a MemoryDB
reserved node, you create a new node just like you do for an on-demand node. The new node
that you create must match the specifications of the reserved node. If the specifications of the
new node match an existing reserved node for your account, you are billed at the discounted rate
offered for the reserved node. Otherwise, the node is billed at an on-demand rate. You can use
the AWS Management Console, the AWS CLI, or the MemoryDB API to list and purchase available
reserved node offerings.

MemoryDB offers reserved nodes for the memory optimized R7g, R6g, and R6gd (with data tiering)
nodes. For pricing information, see MemoryDB for Redis Pricing.

Offering types

Reserved nodes are available in three varieties – No Upfront, Partial Upfront, and All Upfront – that
let you optimize your MemoryDB for Redis costs based on your expected usage.

Reserved nodes 42

https://aws.amazon.com/memorydb/pricing/

Amazon MemoryDB for Redis Developer Guide

No Upfront – This option provides access to a reserved node without requiring an upfront
payment. Your No Upfront reserved node bills a discounted hourly rate for every hour within the
term, regardless of usage, and no upfront payment is required.

Partial Upfront – This option requires a part of the reserved node to be paid upfront. The
remaining hours in the term are billed at a discounted hourly rate, regardless of usage.

All Upfront – Full payment is made at the start of the term, with no other costs incurred for the
remainder of the term regardless of the number of hours used.

All three offering types are available in one-year and three-year terms.

Size flexible reserved nodes

When you purchase a reserved node, one thing that you specify is the node type, for example
db.r6g.xlarge. For more information, about node types, see MemoryDB for Redis Pricing.

If you have a node, and you need to scale it to larger capacity, your reserved node is automatically
applied to your scaled node. That is, your reserved nodes are automatically applied to usage of
any size in the same node family. Size-flexible reserved nodes are available for nodes with the
same AWS Region. Size-flexible reserved nodes can only scale in their node families. For example, a
reserved node for a db.r6g.xlarge can apply to a db.r6g.2xlarge, but not to a db.r6gd.large, because
db.r6g and db.r6gd are different node families.

Size flexibility means that you can move freely between configurations within the same node
family. For example, you can move from a r6g.xlarge reserved node (8 normalized units) to two
r6g.large reserved nodes (8 normalized units) (2*4 = 8 normalized units) in the same AWS Region at
no extra cost.

You can compare usage for different reserved node sizes by using normalized units. For example,
one unit of usage on two db.r6g.4xlarge nodes is equivalent to 16 normalized units of usage on
one db.r6g.large. The following table shows the number of normalized units for each node size:

Node size Normalized units

small 1

medium 2

large 4

Overview of reserved nodes 43

https://aws.amazon.com/memorydb/pricing/

Amazon MemoryDB for Redis Developer Guide

Node size Normalized units

xlarge 8

2xlarge 16

4xlarge 32

6xlarge 48

8xlarge 64

10xlarge 80

12xlarge 96

16xlarge 128

For example, you purchase a db.r6gd.xlarge reserved node, and you have two running
db.r6gd.large reserved nodes in your account in the same AWS Region. In this case, the billing
benefit is applied in full to both nodes.

Alternatively, if you have one db.r6gd.2xlarge instance running in your account in the same AWS
Region, the billing benefit is applied to 50 percent of the usage of the reserved node.

Overview of reserved nodes 44

Amazon MemoryDB for Redis Developer Guide

Deleting a reserved node

The terms for a reserved node involve a one-year or three-year commitment. You can't cancel a
reserved node. However, you can delete a node that is covered by a reserved node discount. The
process for deleting a node that is covered by a reserved node discount is the same as for any other
node.

If you delete a node that is covered by a reserved node discount, you can launch another node
with compatible specifications. In this case, you continue to get the discounted rate during the
reservation term (one or three years).

Working with reserved nodes

You can use the AWS Management Console, the AWS Command Line Interface, and MemoryDB API
to work with reserved nodes.

Console

To get pricing and information about available reserved node offerings

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the navigation pane, choose Reserved nodes.

3. Choose Purchase reserved nodes.

4. For Node type, choose the type of node you want to be deployed.

5. For Quantity, choose the number of nodes you want to deploy.

6. For Term, choose the length of time you want the database node reserved.

Overview of reserved nodes 45

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

7. For Offering type, choose the offering type.

After you make these selections, you can see the pricing information under Reservation summary.

Important

Choose Cancel to avoid purchasing these reserved nodes and incurring any charges.

After you have information about the available reserved node offerings, you can use the
information to purchase an offering as shown in the following procedure:

To purchase a reserved node

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the navigation pane, choose Reserved nodes.

3. Choose Purchase reserved nodes.

4. For Node type, choose the type of node you want to be deployed.

5. For Quantity, choose the number of nodes you want to deploy.

6. For Term, choose the length of time you want the database node reserved.

7. For Offering type, choose the offering type.

8. (Optional) You can assign your own identifier to the reserved nodes that you purchase to help
you track them. For Reservation ID, type an identifier for your reserved node.

After you make these selections, you can see the pricing information under Reservation
summary.

9. Choose Purchase reserved nodes.

10. Your reserved nodes are purchased, then displayed in the Reserved nodes list.

To get information about reserved nodes for your AWS account

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the navigation pane, choose Reserved nodes.

Overview of reserved nodes 46

https://console.aws.amazon.com/memorydb/
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

3. The reserved nodes for your account appear. To see detailed information about a particular
reserved node, choose that node in the list. You can then see detailed information about that
node in the detail.

AWS Command Line Interface

The following describe-reserved-nodes-offerings example returns details of reserved-
node offerings.

aws memorydb describe-reserved-nodes-offerings

This produces output similar to the following:

{
 "ReservedNodesOfferings": [
 {
 "ReservedNodesOfferingId": "0193cc9d-7037-4d49-b332-xxxxxxxxxxxx",
 "NodeType": "db.xxx.large",
 "Duration": 94608000,
 "FixedPrice": $xxx.xx,
 "OfferingType": "Partial Upfront",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": $xx.xx,
 "RecurringChargeFrequency": "Hourly"
 }
]
 }
]
}

You can also pass the following parameters to limit the scope of what is returned:

• --reserved-nodes-offering-id – The ID of the offering that you want to purchase.

• --node-type – The node type filter value. Use this parameter to show only those reservations
matching the specified node type.

• --duration – The duration filter value, specified in years or seconds. Use this parameter to
show only reservations for this duration.

Overview of reserved nodes 47

Amazon MemoryDB for Redis Developer Guide

• --offering-type – Use this parameter to show only the available offerings matching the
specified offering type.

After you have information about the available reserved node offerings, you can use the
information to purchase an offering.

The following purchase-reserved-nodes-offering example purchases new reserved nodes

For Linux, macOS, or Unix:

aws memorydb purchase-reserved-nodes-offering \

 --reserved-nodes-offering-id 0193cc9d-7037-4d49-b332-d5e984f1d8ca \
 --reservation-id reservation \
 --node-count 2

For Windows:

aws memorydb purchase-reserved-nodes-offering ^
 --reserved-nodes-offering-id 0193cc9d-7037-4d49-b332-d5e984f1d8ca ^
 --reservation-id MyReservation

• --reserved-nodes-offering-id represents the name of reserved nodes offering to
purchase.

• --reservation-id is a customer-specified identifier to track this reservation.

Note

The Reservation ID is a unique customer-specified identifier to track this reservation. If
this parameter is not specified, MemoryDB automatically generates an identifier for the
reservation.

• --node-count is the number of nodes to reserve. It defaults to 1.

This produces output similar to the following:

{
 "ReservedNode": {
 "ReservationId": "reservation",

Overview of reserved nodes 48

Amazon MemoryDB for Redis Developer Guide

 "ReservedNodesOfferingId": "0193cc9d-7037-4d49-b332-xxxxxxxxxxxx",
 "NodeType": "db.xxx.large",
 "StartTime": 1671173133.982,
 "Duration": 94608000,
 "FixedPrice": $xxx.xx,
 "NodeCount": 2,
 "OfferingType": "Partial Upfront",
 "State": "payment-pending",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": $xx.xx,
 "RecurringChargeFrequency": "Hourly"
 }
],
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxxx:reservednode/reservation"
 }
}

After you have purchased reserved nodes, you can get information about your reserved nodes.

The following describe-reserved-nodes example returns information about reserved nodes
for this account.

aws memorydb describe-reserved-nodes

This produces output similar to the following:

{
 "ReservedNodes": [
 {
 "ReservationId": "ri-2022-12-16-00-28-40-600",
 "ReservedNodesOfferingId": "0193cc9d-7037-4d49-b332-xxxxxxxxxxxx",
 "NodeType": "db.xxx.large",
 "StartTime": 1671150737.969,
 "Duration": 94608000,
 "FixedPrice": $xxx.xx,
 "NodeCount": 1,
 "OfferingType": "Partial Upfront",
 "State": "active",
 "RecurringCharges": [
 {

Overview of reserved nodes 49

Amazon MemoryDB for Redis Developer Guide

 "RecurringChargeAmount": $xx.xx,
 "RecurringChargeFrequency": "Hourly"
 }
],
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxxx:reservednode/
ri-2022-12-16-00-28-40-600"
 }
]
}

You can also pass the following parameters to limit the scope of what is returned:

• --reservation-id – You can assign your own identifier to the reserved nodes that you
purchase to help track them.

• --reserved-nodes-offering-id – The offering identifier filter value. Use this parameter to
show only purchased reservations matching the specified offering identifier.

• --node-type – The node type filter value. Use this parameter to show only those reservations
matching the specified node type.

• --duration – The duration filter value, specified in years or seconds. Use this parameter to
show only reservations for this duration.

• --offering-type – Use this parameter to show only the available offerings matching the
specified offering type.

MemoryDB API

The following examples demonstrate how to use the MemoryDB Query API for reserved nodes:

DescribeReservedNodesOfferings

Returns details of reserved-node offerings.

https://memorydb.us-west-2.amazonaws.com/
 ?Action=DescribeReservedNodesOfferings
 &ReservedNodesOfferingId=649fd0c8-xxxx-xxxx-xxxx-06xxxx75e95f
 &"Duration": 94608000,
 &NodeType="db.r6g.large"
 &OfferingType="Partial Upfront"
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256

Overview of reserved nodes 50

https://docs.aws.amazon.com/memorydb/latest/devguide/programmingguide.queryapi.html

Amazon MemoryDB for Redis Developer Guide

 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

The following parameters limit the scope of what is returned:

• ReservedNodesOfferingId represents the name of reserved nodes offering to purchase.

• Duration – The duration filter value, specified in years or seconds. Use this parameter to show
only reservations for this duration.

• NodeType – The node type filter value. Use this parameter to show only those offerings
matching the specified node type.

• OfferingType – Use this parameter to show only the available offerings matching the specified
offering type.

After you have information about the available reserved node offerings, you can use the
information to purchase an offering.

PurchaseReservedNodesOffering

Allows you to purchase a reserved node offering.

https://memorydb.us-west-2.amazonaws.com/
 ?Action=PurchaseReservedCacheNodesOffering
 &ReservedNodesOfferingId=649fd0c8-xxxx-xxxx-xxxx-06xxxx75e95f
 &ReservationID=myreservationID
 &NodeCount=1
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

• ReservedNodesOfferingId represents the name of reserved nodes offering to purchase.

Overview of reserved nodes 51

Amazon MemoryDB for Redis Developer Guide

• ReservationID is a customer-specified identifier to track this reservation.

Note

The Reservation ID is a unique customer-specified identifier to track this reservation. If
this parameter is not specified, MemoryDB automatically generates an identifier for the
reservation.

• NodeCount is the number of nodes to reserve. It defaults to 1.

After you have purchased reserved nodes, you can get information about your reserved nodes.

DescribeReservedNodes

Returns information about reserved nodes for this account.

https://memorydb.us-west-2.amazonaws.com/
 ?Action=DescribeReservedNodes
 &ReservedNodesOfferingId=649fd0c8-xxxx-xxxx-xxxx-06xxxx75e95f
 &ReservationID=myreservationID
 &NodeType="db.r6g.large"
 &Duration=94608000
 &OfferingType="Partial Upfront"
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20141201T220302Z
 &X-Amz-Algorithm
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

The following parameters limit the scope of what is returned:

• ReservedNodesOfferingId represents the name of reserved node.

• ReservationID – You can assign your own identifier to the reserved nodes that you purchase
to help track them.

• NodeType – The node type filter value. Use this parameter to show only those reservations
matching the specified node type.

Overview of reserved nodes 52

Amazon MemoryDB for Redis Developer Guide

• Duration – The duration filter value, specified in years or seconds. Use this parameter to show
only reservations for this duration.

• OfferingType – Use this parameter to show only the available offerings matching the specified
offering type.

Viewing the billing for your reserved nodes

You can view the billing for your reserved nodes in the Billing Dashboard in the AWS Management
Console.

To view reserved node billing

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the Search button on the top of the console, choose Billing.

3. Choose Bills from the left hand side of the dashboard.

4. Under AWS Service Charges, expand MemoryDB.

5. Expand the AWS Region where your reserved nodes are, for example US East (N. Virginia).

Your reserved nodes and their hourly charges for the current month are shown under Amazon
MemoryDB CreateCluster Reserved Instances.

Replacing nodes

MemoryDB frequently upgrades its fleet with patches and upgrades, usually seamlessly. However,
from time to time we need to relaunch your MemoryDB nodes to apply mandatory OS updates to
the underlying host. These replacements are required to apply upgrades that strengthen security,
reliability, and operational performance.

You have the option to manage these replacements yourself at any time before the scheduled node
replacement window. When you manage a replacement yourself, your instance receives the OS

Replacing nodes 53

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

update when you relaunch the node and your scheduled node replacement is canceled. You might
continue to receive alerts indicating that the node replacement is to take place. If you've already
manually mitigated the need for the maintenance, you can ignore these alerts.

Note

Replacement nodes automatically generated by MemoryDB for Redis may have different IP
addresses. You are responsible for reviewing your application configuration to ensure that
your nodes are associated with the appropriate IP addresses.

The following list identifies actions you can take when MemoryDB schedules one of your nodes for
replacement:

MemoryDB node replacement options

• Do nothing – If you do nothing, MemoryDB replaces the node as scheduled.

If the node is a member of a Multi-AZ cluster, MemoryDB provides improved availability during
patching, updates, and other maintenance-related node replacements.

Replacement completes while the cluster serves incoming write requests.

• Change your maintenance window – For scheduled maintenance events, you receive an email
or a notification event from MemoryDB. In these cases, if you change your maintenance window
before the scheduled replacement time, your node now is replaced at the new time. For more
information, see Modifying a MemoryDB cluster.

Note

The ability to change your replacement window by moving your maintenance window
is only available when the MemoryDB notification includes a maintenance window.
If the notification does not include a maintenance window, you cannot change your
replacement window.

For example, let's say it's Thursday, November 9, at 15:00 and the next maintenance window is
Friday, November 10, at 17:00. Following are three scenarios with their outcomes:

Replacing nodes 54

Amazon MemoryDB for Redis Developer Guide

• You change your maintenance window to Fridays at 16:00, after the current date and time and
before the next scheduled maintenance window. The node is replaced on Friday, November 10,
at 16:00.

• You change your maintenance window to Saturday at 16:00, after the current date and
time and after the next scheduled maintenance window. The node is replaced on Saturday,
November 11, at 16:00.

• You change your maintenance window to Wednesday at 16:00, earlier in the week than the
current date and time. The node is replaced next Wednesday, November 15, at 16:00.

For instructions, see Managing maintenance.

Replacing nodes 55

Amazon MemoryDB for Redis Developer Guide

Managing clusters

Most MemoryDB operations are performed at the cluster level. You can set up a cluster with a
specific number of nodes and a parameter group that controls the properties for each node. All
nodes within a cluster are designed to be of the same node type and have the same parameter and
security group settings.

Every cluster must have a cluster identifier. The cluster identifier is a customer-supplied name for
the cluster. This identifier specifies a particular cluster when interacting with the MemoryDB API
and AWS CLI commands. The cluster identifier must be unique for that customer in an AWS Region.

MemoryDB clusters are designed to be accessed using an Amazon EC2 instance. You can only
launch your MemoryDB cluster in a virtual private cloud (VPC) based on the Amazon VPC service,
but you can access it from outside AWS. For more information, see Accessing MemoryDB resources
from outside AWS.

56

Amazon MemoryDB for Redis Developer Guide

Data tiering

Clusters that use a node type from the r6gd family have their data tiered between memory and
local SSD (solid state drives) storage. Data tiering provides a new price-performance option for
Redis workloads by utilizing lower-cost solid state drives (SSDs) in each cluster node in addition
to storing data in memory. Similar to other node types, the data written to r6gd nodes is durably
stored in a multi-AZ transaction log. Data tiering is ideal for workloads that access up to 20 percent
of their overall dataset regularly, and for applications that can tolerate additional latency when
accessing data on SSD.

On clusters with data tiering, MemoryDB monitors the last access time of every item it stores.
When available memory (DRAM) is fully consumed, MemoryDB uses a least-recently used (LRU)
algorithm to automatically move infrequently accessed items from memory to SSD. When data
on SSD is subsequently accessed, MemoryDB automatically and asynchronously moves it back to
memory before processing the request. If you have a workload that accesses only a subset of its
data regularly, data tiering is an optimal way to scale your capacity cost-effectively.

Note that when using data tiering, keys themselves always remain in memory, while the LRU
governs the placement of values on memory vs. disk. In general, we recommend that your key sizes
are smaller than your value sizes when using data tiering.

Data tiering is designed to have minimal performance impact to application workloads.
For example, assuming 500-byte String values, you can typically expect an additional 450
microseconds of latency for read requests to data stored on SSD compared to read requests to data
in memory.

With the largest data tiering node size (db.r6gd.8xlarge), you can store up to ~500 TBs in a single
500-node cluster (250 TB when using 1 read replica). For Data tiering, MemoryDB reserves 19% of
(DRAM) memory per node for non-data use. Data tiering is compatible with all Redis commands
and data structures supported in MemoryDB. You don't need any client-side changes to use this
feature.

Topics

• Best practices

• Limitations

• Data tiering pricing

• Monitoring

• Using data tiering

Data tiering 57

Amazon MemoryDB for Redis Developer Guide

• Restoring data from a snapshot into clusters with data tiering enabled

Best practices

We recommend the following best practices:

• Data tiering is ideal for workloads that access up to 20 percent of their overall dataset regularly,
and for applications that can tolerate additional latency when accessing data on SSD.

• When using SSD capacity available on data-tiered nodes, we recommend that value size be larger
than the key size. Value size cannot be greater than 128MB; else it will not be moved to disk.
When items are moved between DRAM and SSD, keys will always remain in memory and only the
values are moved to the SSD tier.

Limitations

Data tiering has the following limitations:

• The node type you use must be from the r6gd family, which is available in the following regions:
us-east-2, us-east-1, us-west-2, us-west-1, eu-west-1, eu-west-3, eu-central-1,
ap-northeast-1, ap-southeast-1, ap-southeast-2, ap-south-1, ca-central-1 and
sa-east-1.

• You cannot restore a snapshot of an r6gd cluster into another cluster unless it also uses r6gd.

• You cannot export a snapshot to Amazon S3 for data-tiering clusters.

• Forkless save is not supported.

• Scaling is not supported from a data tiering cluster (for example, a cluster using an r6gd node
type) to a cluster that does not use data tiering (for example, a cluster using an r6g node type).

• Data tiering only supports volatile-lru, allkeys-lru and noeviction maxmemory
policies.

• Items larger than 128 MiB are not moved to SSD.

Data tiering pricing

R6gd nodes have 5x more total capacity (memory + SSD) and can help you achieve over 60 percent
storage cost savings when running at maximum utilization compared to R6g nodes (memory only).
For more information, see MemoryDB pricing.

Best practices 58

https://aws.amazon.com/memorydb/pricing/

Amazon MemoryDB for Redis Developer Guide

Monitoring

MemoryDB offers metrics designed specifically to monitor the performance clusters that use data
tiering. To monitor the ratio of items in DRAM compared to SSD, you can use the CurrItems
metric at Metrics for MemoryDB.. You can calculate the percentage as: (CurrItems with
Dimension: Tier = Memory * 100) / (CurrItems with no dimension filter).
When the percentage of items in memory decreases below 5 percent, we recommend that you
consider Scaling MemoryDB clusters.

For more information, see Metrics for MemoryDB clusters that use data tiering at Metrics for
MemoryDB.

Using data tiering

Using data tiering using the AWS Management Console

When creating a cluster, you use data tiering by selecting a node type from the r6gd family, such as
db.r6gd.xlarge. Selecting that node type automatically enables data tiering.

For more information on creating a cluster, see Step 1: Create a cluster.

Enabling data tiering using the AWS CLI

When creating a cluster using the AWS CLI, you use data tiering by selecting a node type from the
r6gd family, such as db.r6gd.xlarge and setting the --data-tiering parameter.

You cannot opt out of data tiering when selecting a node type from the r6gd family. If you set the
--no-data-tiering parameter, the operation will fail.

For Linux, macOS, or Unix:

aws memorydb create-cluster \
 --cluster-name my-cluster \
 --node-type db.r6gd.xlarge \
 --acl-name my-acl \
 --subnet-group my-sg \
 --data-tiering

For Windows:

Monitoring 59

Amazon MemoryDB for Redis Developer Guide

aws memorydb create-cluster ^
 --cluster-name my-cluster ^
 --node-type db.r6gd.xlarge ^
 --acl-name my-acl ^
 --subnet-group my-sg
 --data-tiering

After running this operation, you will see a response similar to the following:

{
 "Cluster": {
 "Name": "my-cluster",
 "Status": "creating",
 "NumberOfShards": 1,
 "AvailabilityMode": "MultiAZ",
 "ClusterEndpoint": {
 "Port": 6379
 },
 "NodeType": "db.r6gd.xlarge",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxxxxxxxxx:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering":"true",
 "AutoMinorVersionUpgrade": true
 }
}

Restoring data from a snapshot into clusters with data tiering enabled

You can restore a snapshot to a new cluster with data tiering enabled using the (Console), (AWS
CLI) or (MemoryDB API). When you create a cluster using node types in the r6gd family, data tiering
is enabled.

Restoring data from a snapshot into clusters with data tiering enabled 60

Amazon MemoryDB for Redis Developer Guide

Restoring data from a snapshot into clusters with data tiering enabled (console)

To restore a snapshot to a new cluster with data tiering enabled (console), follow the steps at
Restoring from a snapshot (Console)

Note that to enable data-tiering, you need to select a node type from the r6gd family.

Restoring data from a snapshot into clusters with data tiering enabled (AWS CLI)

When creating a cluster using the AWS CLI, data tiering is by default used by selecting a node type
from the r6gd family, such as db.r6gd.xlarge and setting the --data-tiering parameter.

You cannot opt out of data tiering when selecting a node type from the r6gd family. If you set the
--no-data-tiering parameter, the operation will fail.

For Linux, macOS, or Unix:

aws memorydb create-cluster \
 --cluster-name my-cluster \
 --node-type db.r6gd.xlarge \
 --acl-name my-acl \
 --subnet-group my-sg \
 --data-tiering \
 --snapshot-name my-snapshot

For Linux, macOS, or Unix:

aws memorydb create-cluster ^
 --cluster-name my-cluster ^
 --node-type db.r6gd.xlarge ^
 --acl-name my-acl ^
 --subnet-group my-sg ^
 --data-tiering ^
 --snapshot-name my-snapshot

After running this operation, you will see a response similar to the following:

{
 "Cluster": {
 "Name": "my-cluster",
 "Status": "creating",

Restoring data from a snapshot into clusters with data tiering enabled 61

Amazon MemoryDB for Redis Developer Guide

 "NumberOfShards": 1,
 "AvailabilityMode": "MultiAZ",
 "ClusterEndpoint": {
 "Port": 6379
 },
 "NodeType": "db.r6gd.xlarge",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxxxxxxxxx:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering": "true"
}

Preparing a cluster

Following, you can find instructions on creating a cluster using the MemoryDB console, the AWS
CLI, or the MemoryDB API.

Whenever you create a cluster, it is a good idea to do some preparatory work so you won't need to
upgrade or make changes right away.

Topics

• Determining your requirements

Determining your requirements

Preparation

Knowing the answers to the following questions helps make creating your cluster go smoother:

• Make sure to create a subnet group in the same VPC before you start creating a cluster.
Alternatively, you can use the default subnet group provided. For more information, see Subnets
and subnet groups.

Preparing a cluster 62

Amazon MemoryDB for Redis Developer Guide

MemoryDB is designed to be accessed from within AWS using Amazon EC2. However, if you
launch in a VPC based on Amazon VPC, you can provide access from outside AWS. For more
information, see Accessing MemoryDB resources from outside AWS.

• Do you need to customize any parameter values?

If you do, create a custom parameter group. For more information, see Creating a parameter
group.

• Do you need to create a VPC security group?

For more information, see Security in Your VPC.

• How do you intend to implement fault tolerance?

For more information, see Mitigating Failures.

Topics

• Memory and processor requirements

• MemoryDB cluster configuration

• Enhanced I/O Multiplexing

• Scaling requirements

• Access requirements

• Region and Availability Zones

Memory and processor requirements

The basic building block of MemoryDB for Redis is the node. Nodes are configured in shards to
form clusters. When determining the node type to use for your cluster, take the cluster’s node
configuration and the amount of data you have to store into consideration.

MemoryDB cluster configuration

MemoryDB clusters are comprised of from 1 to 500 shards. The data in a MemoryDB cluster is
partitioned across the shards in the cluster. Your application connects with a MemoryDB cluster
using a network address called an Endpoint. In addition to the node endpoints, the MemoryDB
cluster itself has an endpoint called the cluster endpoint. Your application can use this endpoint to

Determining your requirements 63

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html

Amazon MemoryDB for Redis Developer Guide

read from or write to the cluster, leaving the determination of which node to read from or write to
up to MemoryDB.

Enhanced I/O Multiplexing

If you are running Redis version 7.0 or higher, you will get additional acceleration with enhanced
I/O multiplexing, where each dedicated network IO thread pipelines commands from multiple
clients into the Redis engine, taking advantage of Redis' ability to efficiently process commands in
batches. For more information, see Ultra-fast performance and the section called “Supported node
types”.

Scaling requirements

All clusters can be scaled up a larger node type. When you scale up a MemoryDB cluster, you can
do it online so the cluster remains available or you can seed a new cluster from a snapshot and
avoid having the new cluster start out empty.

For more information, see Scaling in this guide.

Access requirements

By design, MemoryDB clusters are accessed from Amazon EC2 instances. Network access to a
MemoryDB cluster is limited to the account that created the cluster. Therefore, before you can
access a cluster from an Amazon EC2 instance, you must authorize ingress to the cluster. For
detailed instructions, see Step 2: Authorize access to the cluster in this guide.

Region and Availability Zones

By locating your MemoryDB clusters in an AWS Region close to your application you can reduce
latency. If your cluster has multiple nodes, locating your nodes in different Availability Zones can
reduce the impact of failures on your cluster.

For more information, see the following:

• Choosing Regions and Availability Zones

• Mitigating Failures

Determining your requirements 64

https://aws.amazon.com/memorydb/features/#Ultra-fast_performance

Amazon MemoryDB for Redis Developer Guide

Creating a cluster

MemoryDB for Redis offers three ways to create a cluster. For more information, see Step 1: Create
a cluster.

Creating a cluster 65

Amazon MemoryDB for Redis Developer Guide

Viewing a cluster's details

You can view detail information about one or more clusters using the MemoryDB console, AWS CLI,
or MemoryDB API.

Viewing details for a MemoryDB cluster (Console)

The following procedure details how to view the details of a MemoryDB cluster using the
MemoryDB console.

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see details of a cluster, choose the radio button to the left of the cluster's name and then
choose View details. You can also click directly on the cluster to view the cluster details page.

The Cluster details page displays details about the cluster, including the cluster endpoint. You
can view more details using the multiple tabs available in the Cluster details page.

3. Choose the Shards and nodes tab to see a listing of the cluster's shards and the number of
nodes in each shard.

4. To view specific information on a node, expand the shard in the table below. Alternatively you
can also search for the shard using the search box.

Doing this displays information about each node, including its Availability Zone, slots/
keyspaces and status.

5. Choose the Metrics tab to monitor their respective processes, such as CPU Utilization and
Engine CPU Utilization. For more information, see Metrics for MemoryDB.

6. Choose the Network and security tab to see details of the subnet group and security groups.

a. In Subnet group, you can see the subnet group's name, a link to the VPC that subnet
belongs to and the subnet group's Amazon Resource Name (ARN).

b. In Security groups, you can see the security group ID, name and description.

7. Choose the Maintenace and snapshot tab to see details of the snapshot settings.

a. In Snapshot, you can see whether Automated Snapshots are enabled, the snapshot
retention period and the snapshot window.

b. In Snapshots, you will see a list of any snapshots to this cluster, including the snapshot
name, size, number of shards and status.

Viewing a cluster's details 66

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For more information, see Snapshot and restore .

8. Choose the Maintenace and snapshot tab to see details of the Maintenance Window, along
with any pending ACL, Resharding or Service updates. For more information, see Managing
maintenance.

9. Choose the Service Updates tab to see details of the any service updates that are applicable to
this cluster. For more information, see Service updates in MemoryDB for Redis.

10. Choose the Tags tab to see details of any resource or cost-allocation tags that are associated
with this cluster. For more information, see Tagging snapshots.

Viewing a cluster's details (AWS CLI)

You can view the details for a cluster using the AWS CLI describe-clusters command. If the
--cluster-name parameter is omitted, details for multiple clusters, up to --max-results,
are returned. If the --cluster-name parameter is included, details for the specified cluster are
returned. You can limit the number of records returned with the --max-results parameter.

The following code lists the details for my-cluster.

aws memorydb describe-clusters --cluster-name my-cluster

The following code list the details for up to 25 clusters.

aws memorydb describe-clusters --max-results 25

Example

For Linux, macOS, or Unix:

aws memorydb describe-clusters \
 --cluster-name my-cluster \
 --show-shard-details

For Windows:

aws memorydb describe-clusters ^
 --cluster-name my-cluster ^
 --show-shard-details

Viewing a cluster's details 67

Amazon MemoryDB for Redis Developer Guide

The following JSON output shows the response:

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Description": "my cluster",
 "Status": "available",
 "NumberOfShards": 1,
 "Shards": [
 {
 "Name": "0001",
 "Status": "available",
 "Slots": "0-16383",
 "Nodes": [
 {
 "Name": "my-cluster-0001-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": 1629230643.961,
 "Endpoint": {
 "Address": "my-cluster-0001-001.my-
cluster.abcdef.memorydb.us-east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-002",
 "Status": "available",
 "CreateTime": 1629230644.025,
 "Endpoint": {
 "Address": "my-cluster-0001-002.my-
cluster.abcdef.memorydb.us-east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2
 }
],
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.abcdef.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379

Viewing a cluster's details 68

Amazon MemoryDB for Redis Developer Guide

 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "default",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:000000000:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "sat:06:30-sat:07:30",
 "SnapshotWindow": "04:00-05:00",
 "ACLName": "open-access",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true,
 }

For more information, see the AWS CLI for MemoryDB topic describe-clusters.

Viewing a cluster's details (MemoryDB API)

You can view the details for a cluster using the MemoryDB API DescribeClusters action. If
the ClusterName parameter is included, details for the specified cluster are returned. If the
ClusterName parameter is omitted, details for up to MaxResults (default 100) clusters are
returned. The value for MaxResults cannot be less than 20 or greater than 100.

The following code lists the details for my-cluster.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeClusters
 &ClusterName=my-cluster
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

The following code list the details for up to 25 clusters.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeClusters

Viewing a cluster's details 69

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-clusters.html

Amazon MemoryDB for Redis Developer Guide

 &MaxResults=25
 &Version=2021-02-02
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

For more information, see the MemoryDB API reference topic DescribeClusters.

Viewing a cluster's details 70

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeClusters.html

Amazon MemoryDB for Redis Developer Guide

Modifying a MemoryDB cluster

In addition to adding or removing nodes from a cluster, there can be times where you need
to make other changes to an existing cluster, such as adding a security group, changing the
maintenance window or a parameter group.

We recommend that you have your maintenance window fall at the time of lowest usage. Thus it
might need modification from time to time.

When you change a cluster's parameters, the change is applied to the cluster immediately. This
is true whether you change the cluster's parameter group itself or a parameter value within the
cluster's parameter group.

You can also update your clusters' engine version. For example, you can select a new engine minor
version and MemoryDB will start updating your cluster immediately.

Using the AWS Management Console

To modify a cluster

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the list in the upper-right corner, choose the AWS Region where the cluster that you
want to modify is located.

3. From the left navigation, go to Clusters. From Clusters detail, select the cluster using the
radio button and go to Actions and then Modify.

4. The Modify page appears.

5. In the Modify window, make the modifications that you want. Options include:

• Description

• Subnet groups

• VPC Security Group(s)

• Node type

Note

If the cluster is using a node type from the r6gd family, you can only choose a
different node size from within that family. If you choose a node type from the r6gd

Modifying a cluster 71

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

family, data tiering will automatically be enabled. For more information, see Data
tiering.

• Redis version compatibility

• Enable Automatic snapshots

• Snapshot Retention Period

• Snapshot Window

• Maintenance window

• Topic for SNS Notification

6. Choose Save changes.

You can also go to the Cluster details page and click on modify to make modifications to the
cluster. If you want to modify specific sections of the cluster, you can go to the respective tab in the
Cluster details page and click Modify.

Using the AWS CLI

You can modify an existing cluster using the AWS CLI update-cluster operation. To modify a
cluster's configuration value, specify the cluster's ID, the parameter to change and the parameter's
new value. The following example changes the maintenance window for a cluster named my-
cluster and applies the change immediately.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --preferred-maintenance-window sun:23:00-mon:02:00

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --preferred-maintenance-window sun:23:00-mon:02:00

For more information, see update-cluster in the AWS CLI Command Reference.

Modifying a cluster 72

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html

Amazon MemoryDB for Redis Developer Guide

Using the MemoryDB API

You can modify an existing cluster using the MemoryDB API UpdateCluster operation. To modify a
cluster's configuration value, specify the cluster's ID, the parameter to change and the parameter's
new value. The following example changes the maintenance window for a cluster named my-
cluster and applies the change immediately.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateCluster
 &ClusterName=my-cluster
 &PreferredMaintenanceWindow=sun:23:00-mon:02:00
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T220302Z
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210802T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Modifying a cluster 73

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Adding / Removing nodes from a cluster

You can add or remove nodes from a cluster using the AWS Management Console, the AWS CLI, or
the MemoryDB API.

Using the AWS Management Console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the list of clusters, choose the cluster name from which you want to add or remove a
node.

3. Under the Shards and nodes tab, choose Add/Delete nodes

4. In New number of nodes, enter the the number of nodes you want.

5. Choose Confirm.

Important

If you set the number of nodes to 1, you will no longer be Multi-AZ enabled. You can
also to choose to enable Auto failover.

Using the AWS CLI

1. Identify the names of the nodes that you want to remove. For more information, see Viewing a
cluster's details.

2. Use the update-cluster CLI operation with a list of the nodes to remove, as in the following
example.

To remove nodes from a cluster using the command-line interface, use the command update-
cluster with the following parameters:

• --cluster-name The ID of the cluster that you want to remove nodes from.

• --replica-configuration – Allows you to set the number of replicas:

• ReplicaCount – Set this property to specify the number of replica nodes you want.

• --region Specifies the AWS Region of the cluster that you want to remove nodes from.

Adding / Removing nodes from a cluster 74

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --replica-configuration \
 ReplicaCount=1 \
 --region us-east-1

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --replica-configuration ^
 ReplicaCount=1 ^
 --region us-east-1

For more information, see the AWS CLI topics update-cluster.

Using the MemoryDB API

To remove nodes using the MemoryDB API, call the UpdateCluster API operation with the cluster
name and a list of nodes to remove, as shown:

• ClusterName The ID of the cluster that you want to remove nodes from.

• ReplicaConfiguration – Allows you to set the number of replicas:

• ReplicaCount – Set this property to specify the number of replica nodes you want.

• Region Specifies the AWS Region of the cluster that you want to remove a node from.

For more information, see UpdateCluster.

Adding / Removing nodes from a cluster 75

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Accessing your cluster

Your MemoryDB for Redis instances are designed to be accessed through an Amazon EC2 instance.

You can access your MemoryDB node from an Amazon EC2 instance in the same Amazon VPC. Or,
by using VPC peering, you can access your MemoryDB node from an Amazon EC2 in a different
Amazon VPC.

Topics

• Grant access to your cluster

• Accessing MemoryDB resources from outside AWS

Grant access to your cluster

You can connect to your MemoryDB cluster only from an Amazon EC2 instance that is running in
the same Amazon VPC. In this case, you will need to grant network ingress to the cluster.

To grant network ingress from an Amazon VPC security group to a cluster

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the left navigation pane, under Network & Security, choose Security Groups.

3. From the list of security groups, choose the security group for your Amazon VPC. Unless you
created a security group for MemoryDB use, this security group will be named default.

4. Choose the Inbound tab, and then do the following:

a. Choose Edit.

b. Choose Add rule.

c. In the Type column, choose Custom TCP rule.

d. In the Port range box, type the port number for your cluster node. This number must be
the same one that you specified when you launched the cluster. The default port for Redis
is 6379.

e. In the Source box, choose Anywhere which has the port range (0.0.0.0/0) so that any
Amazon EC2 instance that you launch within your Amazon VPC can connect to your
MemoryDB nodes.

Accessing your cluster 76

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon MemoryDB for Redis Developer Guide

Important

Opening up the MemoryDB cluster to 0.0.0.0/0 does not expose the cluster to the
Internet because it has no public IP address and therefore cannot be accessed from
outside the VPC. However, the default security group may be applied to other
Amazon EC2 instances in the customer’s account, and those instances may have
a public IP address. If they happen to be running something on the default port,
then that service could be exposed unintentionally. Therefore, we recommend
creating a VPC Security Group that will be used exclusively by MemoryDB. For
more information, see Custom Security Groups.

f. Choose Save.

When you launch an Amazon EC2 instance into your Amazon VPC, that instance will be able to
connect to your MemoryDB cluster.

Grant access to your cluster 77

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#creating-your-own-security-groups

Amazon MemoryDB for Redis Developer Guide

Accessing MemoryDB resources from outside AWS

MemoryDB is a service designed to be used internally to your VPC. External access is discouraged
due to the latency of Internet traffic and security concerns. However, if external access to
MemoryDB is required for test or development purposes, it can be done through a VPN.

Using the AWS Client VPN, you allow external access to your MemoryDB nodes with the following
benefits:

• Restricted access to approved users or authentication keys;

• Encrypted traffic between the VPN Client and the AWS VPN endpoint;

• Limited access to specific subnets or nodes;

• Easy revocation of access from users or authentication keys;

• Audit connections;

The following procedures demonstrate how to:

Topics

• Create a certificate authority

• Configuring AWS client VPN components

• Configure the VPN client

Create a certificate authority

It is possible to create a Certificate Authority (CA) using different techniques or tools. We suggest
the easy-rsa utility, provided by the OpenVPN project. Regardless of the option you choose, make
sure to keep the keys secure. The following procedure downloads the easy-rsa scripts, creates the
Certificate Authority and the keys to authenticate the first VPN client:

• To create the initial certificates, open a terminal and do the following:

• git clone https://github.com/OpenVPN/easy-rsa

• cd easy-rsa

• ./easyrsa3/easyrsa init-pki

• ./easyrsa3/easyrsa build-ca nopass

• ./easyrsa3/easyrsa build-server-full server nopass

Accessing MemoryDB from outside AWS 78

https://openvpn.net/community-resources/openvpn-project/
https://github.com/OpenVPN/easy-rsa

Amazon MemoryDB for Redis Developer Guide

• ./easyrsa3/easyrsa build-client-full client1.domain.tld nopass

A pki subdirectory containing the certificates will be created under easy-rsa.

• Submit the server certificate to the AWS Certificate manager (ACM):

• On the ACM console, select Certificate Manager.

• Select Import Certificate.

• Enter the public key certificate available in the easy-rsa/pki/issued/server.crt file in
the Certificate body field.

• Paste the private key available in the easy-rsa/pki/private/server.key in the
Certificate private key field. Make sure to select all the lines between BEGIN AND END
PRIVATE KEY (including the BEGIN and END lines).

• Paste the CA public key available on the easy-rsa/pki/ca.crt file in the Certificate chain
field.

• Select Review and import.

• Select Import.

To submit the server's certificates to ACM using the AWS CLI, run the following command:
aws acm import-certificate --certificate fileb://easy-rsa/pki/issued/
server.crt --private-key file://easy-rsa/pki/private/server.key --
certificate-chain file://easy-rsa/pki/ca.crt --region region

Note the Certificate ARN for future use.

Configuring AWS client VPN components

Using the AWS Console

On the AWS console, select Services and then VPC.

Under Virtual Private Network, select Client VPN Endpoints and do the following:

Configuring AWS Client VPN components

• Select Create Client VPN Endpoint.

• Specify the following options:

• Client IPv4 CIDR: use a private network with a netmask of at least /22 range. Make sure that
the selected subnet does not conflict with the VPC networks' addresses. Example: 10.0.0.0/22.

Accessing MemoryDB from outside AWS 79

Amazon MemoryDB for Redis Developer Guide

• In Server certificate ARN, select the ARN of the certificate previously imported.

• Select Use mutual authentication.

• In Client certificate ARN, select the ARN of the certificate previously imported.

• Select Create Client VPN Endpoint.

Using the AWS CLI

Run the following command:

aws ec2 create-client-vpn-endpoint --client-cidr-block
"10.0.0.0/22" --server-certificate-arn arn:aws:acm:us-
east-1:012345678912:certificate/0123abcd-ab12-01a0-123a-123456abcdef --
authentication-options Type=certificate-
authentication,,MutualAuthentication={ClientRootCertificateChainArn=arn:aws:acm:us-
east-1:012345678912:certificate/123abcd-ab12-01a0-123a-123456abcdef} --
connection-log-options Enabled=false

Example output:

"ClientVpnEndpointId": "cvpn-endpoint-0123456789abcdefg",
"Status": { "Code": "pending-associate" }, "DnsName": "cvpn-
endpoint-0123456789abcdefg.prod.clientvpn.us-east-1.amazonaws.com" }

Associate the target networks to the VPN endpoint

• Select the new VPN endpoint, and then select the Associations tab.

• Select Associate and specify the following options.

• VPC: Select the MemoryDB Cluster's VPC.

• Select one of the MemoryDB cluster's networks. If in doubt, review the networks in the Subnet
Groups on the MemoryDB dashboard.

• Select Associate. If necessary, repeat the steps for the remaining networks.

Using the AWS CLI

Run the following command:

aws ec2 associate-client-vpn-target-network --client-vpn-endpoint-id cvpn-
endpoint-0123456789abcdefg --subnet-id subnet-0123456789abdcdef

Accessing MemoryDB from outside AWS 80

Amazon MemoryDB for Redis Developer Guide

Example output:

"Status": { "Code": "associating" }, "AssociationId": "cvpn-
assoc-0123456789abdcdef" }

Review the VPN security group

The VPN Enpoint will automatically adopt the VPC's default security group. Check the inbound and
outbound rules and confirm if the security group allows the traffic from the VPN network (defined
on the VPN Endpoint settings) to the MemoryDB networks on the service ports (by default, 6379
for Redis).

If you need to change the security group assigned to the VPN Endpoint, proceed as follows:

• Select the current security group.

• Select Apply Security Group.

• Select the new Security Group.

Using the AWS CLI

Run the following command:

aws ec2 apply-security-groups-to-client-vpn-target-network --
client-vpn-endpoint-id cvpn-endpoint-0123456789abcdefga --vpc-id
vpc-0123456789abdcdef --security-group-ids sg-0123456789abdcdef

Example output:

"SecurityGroupIds": ["sg-0123456789abdcdef"] }

Note

The MemoryDB security group also needs to allow traffic coming from the VPN clients.
The clients' addresses will be masked with the VPN Endpoint address, according to the
VPC Network. Therefore, consider the VPC network (not the VPN Clients' network) when
creating the inbound rule on the MemoryDB security group.

Authorize the VPN access to the destination networks

Accessing MemoryDB from outside AWS 81

Amazon MemoryDB for Redis Developer Guide

On the Authorization tab, select Authorize Ingress and specify the following:

• Destination network to enable access: Either use 0.0.0.0/0 to allow access to any network
(including the Internet) or restrict the the MemoryDB networks/hosts.

• Under Grant access to:, select Allow access to all users.

• Select Add Authorization Rules.

Using the AWS CLI

Run the following command:

aws ec2 authorize-client-vpn-ingress --client-vpn-endpoint-id cvpn-
endpoint-0123456789abcdefg --target-network-cidr 0.0.0.0/0 --authorize-all-
groups

Example output:

{ "Status": { "Code": "authorizing" } }

Allowing access to the Internet from the VPN clients

If you need to browse the Internet through the VPN, you need to create an additional route. Select
the Route Table tab and then select Create Route:

• Route destination: 0.0.0.0/0

• Target VPC Subnet ID: Select one of the associated subnets with access to the Internet.

• Select Create Route.

Using the AWS CLI

Run the following command:

aws ec2 create-client-vpn-route --client-vpn-endpoint-id cvpn-
endpoint-0123456789abcdefg --destination-cidr-block 0.0.0.0/0 --target-vpc-
subnet-id subnet-0123456789abdcdef

Example output:

{ "Status": { "Code": "creating" } }

Accessing MemoryDB from outside AWS 82

Amazon MemoryDB for Redis Developer Guide

Configure the VPN client

On the AWS Client VPN Dashboard, select the VPN endpoint recently created and select Download
Client Configuration. Copy the configuration file, and the files easy-rsa/pki/issued/
client1.domain.tld.crt and easy-rsa/pki/private/client1.domain.tld.key. Edit
the configuration file and change or add the following parameters:

• cert: add a new line with the parameter cert pointing to the client1.domain.tld.crt file.
Use the full path to the file. Example: cert /home/user/.cert/client1.domain.tld.crt

• cert: key: add a new line with the parameter key pointing to the client1.domain.tld.key
file. Use the full path to the file. Example: key /home/user/.cert/
client1.domain.tld.key

Establish the VPN connection with the command: sudo openvpn --config downloaded-
client-config.ovpn

Revoking access

If you need to invalidate the access from a particular client key, the key needs to be revoked in the
CA. Then submit the revocation list to AWS Client VPN.

Revoking the key with easy-rsa:

• cd easy-rsa

• ./easyrsa3/easyrsa revoke client1.domain.tld

• Enter "yes" to continue, or any other input to abort.

Continue with revocation: `yes` ... * `./easyrsa3/easyrsa gen-crl

• An updated CRL has been created. CRL file: /home/user/easy-rsa/pki/crl.pem

Importing the revocation list to the AWS Client VPN:

• On the AWS Management Console, select Services and then VPC.

• Select Client VPN Endpoints.

• Select the Client VPN Endpoint and then select Actions -> Import Client Certificate CRL.

• Paste the contents of the crl.pem file.

Accessing MemoryDB from outside AWS 83

Amazon MemoryDB for Redis Developer Guide

Using the AWS CLI

Run the following command:

aws ec2 import-client-vpn-client-certificate-revocation-list --certificate-
revocation-list file://./easy-rsa/pki/crl.pem --client-vpn-endpoint-id
cvpn-endpoint-0123456789abcdefg

Example output:

Example output: { "Return": true }

Finding connection endpoints

Your application connects to your cluster using the endpoint. An endpoint is a cluster's unique
address. Use the cluster's Cluster Endpoint for all operations.

The following sections guide you through discovering the endpoint you'll need.

Finding connection endpoints 84

Amazon MemoryDB for Redis Developer Guide

Finding the Endpoint for a MemoryDB Cluster (AWS Management Console)

To find a MemoryDB cluster's endpoint

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the navigation pane, choose Clusters.

The clusters screen will appear with a list of clusters. Choose the cluster you wish to connect
to.

3. To find the cluster's endpoint, choose the cluster's name (not the radio button).

4. The Cluster endpoint is displayed under Cluster details. To copy it, choose the copy icon to the
left of the endpoint.

Finding the Endpoint for a MemoryDB Cluster (AWS CLI)

You can use the describe-clusters command to discover the endpoint for a cluster. The
command returns the cluster's endpoint.

The following operation retrieves the endpoint, which in this example is represented as a sample,
for the cluster mycluster.

It returns the following JSON response:

aws memorydb describe-clusters \
 --cluster-name mycluster

For Windows:

aws memorydb describe-clusters ^
 --cluster-name mycluster

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Status": "available",
 "NumberOfShards": 1,

Finding connection endpoints 85

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.4",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:zzzexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "AutoMinorVersionUpgrade": true
 }
]
}

For more information, see describe-clusters.

Finding connection endpoints 86

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-clusters.html

Amazon MemoryDB for Redis Developer Guide

Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

You can use the MemoryDB for Redis API to discover the endpoint of a cluster.

Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

You can use the MemoryDB API to discover the endpoint for a cluster with the
DescribeClusters action. The action returns the cluster's endpoint.

The following operation retrieves the cluster endpoint for the cluster mycluster.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeClusters
 &ClusterName=mycluster
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

For more information, see DescribeClusters.

Working with shards

A shard is a collection of one to 6 nodes. You can create a cluster with higher number of shards
and lower number of replicas totaling up to 500 nodes per cluster. This cluster configuration can
range from 500 shards and 0 replicas to 100 shards and 4 replicas, which is the maximum number
of replicas allowed. The cluster's data is partitioned across the cluster's shards. If there is more than
one node in a shard, the shard implements replication with one node being the read/write primary
node and the other nodes read-only replica nodes.

When you create a MemoryDB cluster using the AWS Management Console, you specify the
number of shards in the cluster and the number of nodes in the shards. For more information, see
Creating a MemoryDB cluster.

Each node in a shard has the same compute, storage and memory specifications. The MemoryDB
API lets you control cluster-wide attributes, such as the number of nodes, security settings, and
system maintenance windows.

For more information, see Offline resharding and shard rebalancing for MemoryDB and Online
resharding and shard rebalancing for MemoryDB.

Shards 87

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeClusters.html

Amazon MemoryDB for Redis Developer Guide

Finding a shard's name

You can find a shard's name using the AWS Management Console, the AWS CLI or the MemoryDB
API.

Using the AWS Management Console

The following procedure uses the AWS Management Console to find a MemoryDB's cluster's shard
names.

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the left navigation pane, choose Clusters.

3. Choose the cluster under Name whose shard names you want to find.

4. Under the Shards and nodes tab, view the list of shards under Name. You can also expand
each one to view details of their nodes.

Using the AWS CLI

To find shard (shard) names for MemoryDB clusters use the AWS CLI operation describe-
clusters with the following optional parameter.

• --cluster-name—An optional parameter which when used limits the output to the details of
the specified cluster. If this parameter is omitted, the details of up to 100 clusters is returned.

• --show-shard-details—Returns details of the shards, including their names.

This command returns the details for my-cluster.

For Linux, macOS, or Unix:

aws memorydb describe-clusters \
 --cluster-name my-cluster
 --show-shard-details

For Windows:

aws memorydb describe-clusters ^

Finding a shard's name 88

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

 --cluster-name my-cluster
 --show-shard-details

It returns the following JSON response:

Line breaks are added for ease of reading.

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Status": "available",
 "NumberOfShards": 1,
 "Shards": [
 {
 "Name": "0001",
 "Status": "available",
 "Slots": "0-16383",
 "Nodes": [
 {
 "Name": "my-cluster-0001-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2

Finding a shard's name 89

Amazon MemoryDB for Redis Developer Guide

 }
],
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
]
}

Using the MemoryDB API

To find shard ids for MemoryDB clusters use the API operation DescribeClusters with the
following optional parameter.

• ClusterName—An optional parameter which when used limits the output to the details of the
specified cluster. If this parameter is omitted, the details of up to 100 clusters is returned.

• ShowShardDetails—Returns details of the shards, including their names.

Example

This command returns the details for my-cluster.

For Linux, macOS, or Unix:

Finding a shard's name 90

Amazon MemoryDB for Redis Developer Guide

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeClusters
 &ClusterName=sample-cluster
 &ShowShardDetails=true
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

Finding a shard's name 91

Amazon MemoryDB for Redis Developer Guide

Managing your MemoryDB implementation

In this section, you can find details about how to manage the various components of your
MemoryDB implementation.

Topics

• Redis engine versions

• Getting started with JSON

• Tagging your MemoryDB resources

• Managing maintenance

• Best practices

• Understanding MemoryDB replication

• Snapshot and restore

• Scaling

• Configuring engine parameters using parameter groups

• Tutorial: Configuring a Lambda function to access MemoryDB in an Amazon VPC

Redis engine versions

This section covers the supported Redis engine versions.

Topics

• MemoryDB for Redis version 7.1 (enhanced)

• MemoryDB for Redis version 7.0 (enhanced)

• MemoryDB for Redis version 6.2 (enhanced)

• Upgrading engine versions

MemoryDB for Redis version 7.1 (enhanced)

MemoryDB for Redis version 7.1 adds support for vector search capabilities in preview for select
regions, as well as critical bug fixes and performance enhancements.

Engine versions 92

Amazon MemoryDB for Redis Developer Guide

• Vector Search Feature: Vector search can be used with existing MemoryDB functionality.
Applications which don't use vector search won't be affected by its presence. Vector search
preview is available in MemoryDB for Redis version 7.1 onward in the following regions: US East
(N. Virginia and Ohio), US West (Oregon), EU (Ireland), and Asia Pacific (Tokyo). Please refer
to the documentation here for how to enable the vector search preview and related feature
capabilities.

Note

MemoryDB for Redis version 7.1 is compatible with OSS Redis v7.0. For more information
on the Redis 7.0 release, see Redis 7.0 Release Notes at Redis on GitHub.

MemoryDB for Redis version 7.0 (enhanced)

MemoryDB for Redis 7.0 adds a number of improvements and support for new functionality:

• Redis Functions: MemoryDB for Redis 7 adds support for Redis Functions, and provides a
managed experience enabling developers to execute LUA scripts with application logic stored on
the MemoryDB cluster, without requiring clients to re-send the scripts to the server with every
connection.

• ACL improvements: MemoryDB for Redis 7 adds support for the next version of Redis Access
Control Lists (ACLs). With MemoryDB for Redis 7, clients can now specify multiple sets of
permissions on specific keys or keyspaces in Redis.

• Sharded Pub/Sub: MemoryDB for Redis 7 adds support to run Redis Pub/Sub functionality
in a sharded way when running MemoryDB in Cluster Mode Enabled (CME). Redis Pub/Sub
capabilities enable publishers to issue messages to any number of subscribers on a channel.
With Amazon MemoryDB for Redis 7, channels are bound to a shard in the MemoryDB cluster,
eliminating the need to propagate channel information across shards. This results in improved
scalability.

• Enhanced I/O multiplexing: MemoryDB for Redis version 7 introduces enhanced I/O
multiplexing, which delivers increased throughput and reduced latency for high-throughput
workloads that have many concurrent client connections to an MemoryDB cluster. For example,
when using a cluster of r6g.4xlarge nodes and running 5200 concurrent clients, you can
achieve up to 46% increased throughput (read and write operations per second) and up to 21%
decreased P99 latency, compared with MemoryDB for Redis version 6.

Redis 7.0 (enhanced) 93

https://raw.githubusercontent.com/antirez/redis/7.0/00-RELEASENOTES
https://redis.io/docs/manual/programmability/functions-intro/
https://redis.io/docs/manual/programmability/eval-intro/
https://redis.io/docs/management/security/acl/
https://redis.io/docs/manual/pubsub/#sharded-pubsub

Amazon MemoryDB for Redis Developer Guide

For more information on the Redis 7.0 release, see Redis 7.0 Release Notes at Redis on GitHub.

MemoryDB for Redis version 6.2 (enhanced)

MemoryDB introduces the next version of the Redis engine, which includes Authenticating users
with Access Control Lists (ACLs), automatic version upgrade support, client-side caching and
significant operational improvements.

Redis engine version 6.2.6 also introduces support for native JavaScript Object Notation (JSON)
format, a simple, schemaless way to encode complex datasets inside Redis clusters. With JSON
support, you can leverage the performance and Redis APIs for applications that operate over
JSON. For more information, see Getting started with JSON. Also included is JSON-related metric
JsonBasedCmds that is incorporated into CloudWatch to monitor the usage of this datatype. For
more information, see Metrics for MemoryDB.

With Redis 6, MemoryDB will offer a single version for each Redis OSS minor release, rather than
offering multiple patch versions. This is designed to minimize confusion and ambiguity on having
to choose from multiple minor versions. MemoryDB will also automatically manage the minor and
patch version of your running clusters, ensuring improved performance and enhanced security. This
will be handled through standard customer-notification channels via a service update campaign.
For more information, see Service updates in MemoryDB for Redis.

If you do not specify the engine version during creation, MemoryDB will automatically select the
preferred Redis version for you. On the other hand, if you specify the engine version by using 6.2,
MemoryDB will automatically invoke the preferred patch version of Redis 6.2 that is available.

For example, when you create a cluster, you set the --engine-version parameter to 6.2. The
cluster will be launched with the current available preferred patch version at the creation time.
Any request with a full engine version value will be rejected, an exception will be thrown and the
process will fail.

When calling the DescribeEngineVersions API, the EngineVersion parameter value will be
set to 6.2 and the actual full engine version will be returned in the EnginePatchVersion field.

For more information on the Redis 6.2 release, see Redis 6.2 Release Notes at Redis on GitHub.

Upgrading engine versions

MemoryDB by default automatically manages the patch version of your running clusters through
service updates. You can additionally opt out from auto minor version upgrade if you set the

Redis 6.2 (enhanced) 94

https://raw.githubusercontent.com/antirez/redis/7.0/00-RELEASENOTES
https://raw.githubusercontent.com/redis/redis/6.2/00-RELEASENOTES

Amazon MemoryDB for Redis Developer Guide

AutoMinorVersionUpgrade property of your clusters to false. However, you can not opt out
from auto patch version upgrade.

You can control if and when the protocol-compliant software powering your cluster is upgraded
to new versions that are supported by MemoryDB before auto upgrade starts. This level of
control enables you to maintain compatibility with specific versions, test new versions with your
application before deploying in production, and perform version upgrades on your own terms and
timelines.

You can initiate engine version upgrades to your cluster in the following ways:

• By updating it and specifying a new engine version. For more information, see Modifying a
MemoryDB cluster.

• Applying the service update for the corresponding engine version. For more information, see
Service updates in MemoryDB for Redis.

Note the following:

• You can upgrade to a newer engine version, but you can't downgrade to an older engine version.
If you want to use an older engine version, you must delete the existing cluster and create it
anew with the older engine version.

• We recommend periodically upgrading to the latest major version, since most major
improvements are not back ported to older versions. As MemoryDB expands availability to a
new AWS Region, MemoryDB supports the two most recent MAJOR.MINOR versions at that time
for the new Region. For example, if a new AWS region launches and the latest MAJOR.MINOR
MemoryDB for Redis versions are 7.0 and 6.2, MemoryDB for Redis will support versions 7.0
and 6.2 in the new AWS Region. As newer MAJOR.MINOR versions of MemoryDB for Redis are
released, MemoryDB will continue to add support for the newly released MemoryDB for Redis
Versions. To learn more about choosing Regions for MemoryDB, see Supported Regions &
endpoints.

• Engine version management is designed so that you can have as much control as possible over
how patching occurs. However, MemoryDB reserves the right to patch your cluster on your behalf
in the unlikely event of a critical security vulnerability in the system or software.

• MemoryDB will offer a single version for each Redis OSS minor release, rather than offering
multiple patch versions. This is designed to minimize confusion and ambiguity on having to
choose from multiple versions. MemoryDB will also automatically manage the minor and patch
version of your running clusters, ensuring improved performance and enhanced security. This will

Upgrading engine versions 95

Amazon MemoryDB for Redis Developer Guide

be handled through standard customer-notification channels via a service update campaign. For
more information, see Service updates in MemoryDB for Redis.

• You can upgrade your cluster version with minimal downtime. The cluster is available for reads
during the entire upgrade and is available for writes for most of the upgrade duration, except
during the failover operation which lasts a few seconds.

• We recommend that you perform engine upgrades during periods of low incoming write traffic.

Clusters with multiple shards are processed and patched as follows:

• Only one upgrade operation is performed per shard at any time.

• In each shard, all replicas are processed before the primary is processed. If there are fewer
replicas in a shard, the primary in that shard might be processed before the replicas in other
shards are finished processing.

• Across all the shards, primary nodes are processed in series. Only one primary node is
upgraded at a time.

Topics

• How to upgrade engine versions

• Resolving blocked Redis engine upgrades

How to upgrade engine versions

You initiate version upgrades to your cluster by modifying it using the MemoryDB console, the AWS
CLI, or the MemoryDB API and specifying a newer engine version. For more information, see the
following topics.

• Using the AWS Management Console

• Using the AWS CLI

• Using the MemoryDB API

Resolving blocked Redis engine upgrades

As shown in the following table, your Redis engine upgrade operation is blocked if you have a
pending scale up operation.

Upgrading engine versions 96

Amazon MemoryDB for Redis Developer Guide

Pending operations Blocked operations

Scale up Immediate engine upgrade

Engine upgrade Immediate scale up

Immediate scale up
Scale up and engine upgrade

Immediate engine upgrade

Getting started with JSON

MemoryDB supports the native JavaScript Object Notation (JSON) format, a simple, schemaless
way to encode complex datasets inside Redis clusters. You can natively store and access data using
the JavaScript Object Notation (JSON) format inside Redis clusters and update JSON data stored in
those clusters, without needing to manage custom code to serialize and deserialize it.

In addition to leveraging Redis APIs for applications that operate over JSON, you can now
efficiently retrieve and update specific portions of a JSON document without needing to
manipulate the entire object, which can improve performance and reduce cost. You can also search
your JSON document contents using the Goessner-style JSONPath query.

After creating a cluster with a supported engine version, the JSON data type and associated
commands are automatically available. This is API-compatible and RDB-compatible with version 2
of the RedisJSON module, so you can easily migrate existing JSON-based Redis applications into
MemoryDB. For more information on the supported Redis commands, see Supported commands.

JSON-related metric JsonBasedCmds is incorporated into CloudWatch to monitor the usage of
this datatype. For more information, see Metrics for MemoryDB.

Note

To use JSON, you must be running Redis engine version 6.2.6 or later.

Topics

• Redis JSON Datatype overview

Getting started with JSON 97

https://goessner.net/articles/JsonPath/
https://docs.aws.amazon.com/memorydb/latest/devguide/metrics.memorydb.html

Amazon MemoryDB for Redis Developer Guide

• Supported commands

Redis JSON Datatype overview

MemoryDB supports a number of Redis commands for working with the JSON datatype. Following
is an overview of the JSON datatype and a detailed list of Redis commands that are supported.

Terminology

Term Description

JSON document refers to the value of a Redis JSON key

JSON value refers to a subset of a JSON Document,
including the root that represents the entire
document. A value could be a container or an
entry within a container

JSON element equivalent to JSON value

Supported JSON standard

JSON format is compliant with RFC 7159 and ECMA-404 JSON data interchange standard. UTF-8
Unicode in JSON text is supported.

Root element

The root element can be of any JSON data type. Note that in earlier RFC 4627, only objects or
arrays were allowed as root values. Since the update to RFC 7159, the root of a JSON document
can be of any JSON data type.

Document size limit

JSON documents are stored internally in a format optimized for rapid access and modification. This
format typically results in consuming somewhat more memory than does the equivalent serialized
representation of the same document. The consumption of memory by a single JSON document
is limited to 64MB, which is the size of the in-memory data structure, not the JSON string. The

Redis JSON Datatype overview 98

https://www.ietf.org/rfc/rfc7159.txt
https://www.ietf.org/rfc/rfc7159.txt
https://www.unicode.org/standard/WhatIsUnicode.html

Amazon MemoryDB for Redis Developer Guide

amount of memory consumed by a JSON document can be inspected by using the JSON.DEBUG
MEMORY command.

JSON ACLs

• JSON datatype is fully integrated into the Redis Access Control Lists (ACL) capability. Similar
to the existing per-datatype categories (@string, @hash, etc.) a new category @json is added
to simplify managing access to JSON commands and data. No other existing Redis commands
are members of the @json category. All JSON commands enforce any keyspace or command
restrictions and permissions.

• There are five existing Redis ACL categories that are updated to include the new JSON
commands: @read, @write, @fast, @slow and @admin. The table below indicates the mapping
of JSON commands to the appropriate categories.

ACL

JSON
Command

@read @write @fast @slow @admin

JSON.ARRA
PPEND

y y

JSON.ARRI
NDEX

y y

JSON.ARRI
NSERT

y y

JSON.ARRL
EN

y y

JSON.ARRP
OP

y y

JSON.ARRT
RIM

y y

JSON.CLEAR y y

Redis JSON Datatype overview 99

https://redis.io/docs/manual/security/acl/

Amazon MemoryDB for Redis Developer Guide

JSON
Command

@read @write @fast @slow @admin

JSON.DEBUG y y y

JSON.DEL y y

JSON.FORG
ET

y y

JSON.GET y y

JSON.MGET y y

JSON.NUMI
NCRBY

y y

JSON.NUMM
ULTBY

y y

JSON.OBJK
EYS

y y

JSON.OBJL
EN

y y

JSON.RESP y y

JSON.SET y y

JSON.STRA
PPEND

y y

JSON.STRL
EN

y y

JSON.STRL
EN

y y

Redis JSON Datatype overview 100

Amazon MemoryDB for Redis Developer Guide

JSON
Command

@read @write @fast @slow @admin

JSON.TOGG
LE

y y

JSON.TYPE y y

JSON.NUMI
NCRBY

y y

Nesting depth limit

When a JSON object or array has an element that is itself another JSON object or array, that inner
object or array is said to “nest” within the outer object or array. The maximum nesting depth limit
is 128. Any attempt to create a document that contains a nesting depth greater than 128 will be
rejected with an error.

Command syntax

Most commands require a Redis key name as the first argument. Some commands also have a path
argument. The path argument defaults to the root if it is optional and not provided.

Notation:

• Required arguments are enclosed in angle brackets, e.g. <key>

• Optional arguments are enclosed in square brackets, e.g. [path]

• Additional optional arguments are indicated by ..., e.g. [json ...]

Path syntax

JSON-Redis supports two kinds of path syntaxes:

• Enhanced syntax – Follows the JSONPath syntax described by Goessner, as shown in the table
below. We've reordered and modified the descriptions in the table for clarity.

• Restricted syntax – Has limited query capabilities.

Redis JSON Datatype overview 101

https://goessner.net/articles/JsonPath/

Amazon MemoryDB for Redis Developer Guide

Note

Results of some commands are sensitive which type of path syntax is used.

If a query path starts with '$', it uses the enhanced syntax. Otherwise, the restricted syntax is used.

Enhanced Syntax

Symbol/Expression Description

$ the root element

. or [] child operator

.. recursive descent

* wildcard. All elements in an object or array.

[] array subscript operator. Index is 0-based.

[,] union operator

[start:end:step] array slice operator

?() applies a filter (script) expression to the
current array or object

() filter expression

@ used in filter expressions referring to the
current node being processed

== equal to, used in filter expressions.

!= not equal to, used in filter expressions.

> greater than, used in filter expressions.

>= greater than or equal to, used in filter
expressions.

Redis JSON Datatype overview 102

Amazon MemoryDB for Redis Developer Guide

Symbol/Expression Description

< less than, used in filter expressions.

<= less than or equal to, used in filter expressions.

&& logical AND, used to combine multiple filter
expressions.

|| logical OR, used to combine multiple filter
expressions.

Examples

The below examples are built on Goessner's example XML data, which we have modified by adding
additional fields.

{ "store": {
 "book": [
 { "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95,
 "in-stock": true,
 "sold": true
 },
 { "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99,
 "in-stock": false,
 "sold": true
 },
 { "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99,
 "in-stock": true,
 "sold": false
 },

Redis JSON Datatype overview 103

https://goessner.net/articles/JsonPath/

Amazon MemoryDB for Redis Developer Guide

 { "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99,
 "in-stock": false,
 "sold": false
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95,
 "in-stock": true,
 "sold": false
 }
 }
}

Path Description

$.store.book[*].author the authors of all books in the store

$..author all authors

$.store.* all members of the store

$["store"].* all members of the store

$.store..price the price of everything in the store

$..* all recursive members of the JSON structure

$..book[*] all books

$..book[0] the first book

$..book[-1] the last book

$..book[0:2] the first two books

$..book[0,1] the first two books

Redis JSON Datatype overview 104

Amazon MemoryDB for Redis Developer Guide

Path Description

$..book[0:4] books from index 0 to 3 (ending index is not
inclusive)

$..book[0:4:2] books at index 0, 2

$..book[?(@.isbn)] all books with isbn number

$..book[?(@.price<10)] all books cheaper than $10

'$..book[?(@.price < 10)]' all books cheaper than $10. (The path must be
quoted if it contains whitespaces)

'$..book[?(@["price"] < 10)]' all books cheaper than $10

'$..book[?(@.["price"] < 10)]' all books cheaper than $10

$..book[?(@.price>=10&&@.price<=100)] all books in the price range of $10 to $100,
inclusive

'$..book[?(@.price>=10 && @.price<=100)]' all books in the price range of $10 to $100,
inclusive. (The path must be quoted if it
contains whitespaces)

$..book[?(@.sold==true||@.in-stock==false)] all books sold or out of stock

'$..book[?(@.sold == true || @.in-stock ==
false)]'

all books sold or out of stock. (The path must
be quoted if it contains whitespaces)

'$.store.book[?(@.["category"] == "fiction")]' all books in the fiction category

'$.store.book[?(@.["category"] != "fiction")]' all books in non-fiction categories

More filter expression examples:

127.0.0.1:6379> JSON.SET k1 . '{"books": [{"price":5,"sold":true,"in-
stock":true,"title":"foo"}, {"price":15,"sold":false,"title":"abc"}]}'
OK
127.0.0.1:6379> JSON.GET k1 $.books[?(@.price>1&&@.price<20&&@.in-stock)]

Redis JSON Datatype overview 105

Amazon MemoryDB for Redis Developer Guide

"[{\"price\":5,\"sold\":true,\"in-stock\":true,\"title\":\"foo\"}]"
127.0.0.1:6379> JSON.GET k1 '$.books[?(@.price>1 && @.price<20 && @.in-stock)]'
"[{\"price\":5,\"sold\":true,\"in-stock\":true,\"title\":\"foo\"}]"
127.0.0.1:6379> JSON.GET k1 '$.books[?((@.price>1 && @.price<20) && (@.sold==false))]'
"[{\"price\":15,\"sold\":false,\"title\":\"abc\"}]"
127.0.0.1:6379> JSON.GET k1 '$.books[?(@.title == "abc")]'
[{"price":15,"sold":false,"title":"abc"}]

127.0.0.1:6379> JSON.SET k2 . '[1,2,3,4,5]'
127.0.0.1:6379> JSON.GET k2 $.*.[?(@>2)]
"[3,4,5]"
127.0.0.1:6379> JSON.GET k2 '$.*.[?(@ > 2)]'
"[3,4,5]"

127.0.0.1:6379> JSON.SET k3 . '[true,false,true,false,null,1,2,3,4]'
OK
127.0.0.1:6379> JSON.GET k3 $.*.[?(@==true)]
"[true,true]"
127.0.0.1:6379> JSON.GET k3 '$.*.[?(@ == true)]'
"[true,true]"
127.0.0.1:6379> JSON.GET k3 $.*.[?(@>1)]
"[2,3,4]"
127.0.0.1:6379> JSON.GET k3 '$.*.[?(@ > 1)]'
"[2,3,4]"

Restricted syntax

Symbol/Expression Description

. or [] child operator

[] array subscript operator. Index is 0-based.

Examples

Path Description

.store.book[0].author the author of the first book

.store.book[-1].author the author of the last book

Redis JSON Datatype overview 106

Amazon MemoryDB for Redis Developer Guide

Path Description

.address.city city name

["store"]["book"][0]["title"] the title of the first book

["store"]["book"][-1]["title"] the title of the last book

Note

All Goessner content cited in this documentation is subject to the Creative Commons
License.

Common error prefixes

Each error message has a prefix. The following is a list of common error prefixes:

Prefix Description

ERR a general error

LIMIT size limit exceeded error. e.g., the document
size limit or nesting depth limit exceeded

NONEXISTENT a key or path does not exist

OUTOFBOUNDARIES array index out of bounds

SYNTAXERR syntax error

WRONGTYPE wrong value type

JSON related metrics

The following JSON info metrics are provided:

Redis JSON Datatype overview 107

https://goessner.net/articles/JsonPath/
https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/2.5/

Amazon MemoryDB for Redis Developer Guide

Info Description

json_total_memory_bytes total memory allocated to JSON objects

json_num_documents total number of documents in Redis

To query core metrics, run Redis command:

info json_core_metrics

How MemoryDB interacts with JSON

The following illustrates how MemoryDB interacts with the JSON datatype.

Operator precedence

When evaluating conditional expressions for filtering, &&s take precedence first, and then ||s are
evaluated, as is common across most languages. Operations inside of parentheses will be executed
first.

Maximum path nesting limit behavior

MemoryDB's maximum path nesting limit is 128. So a value like $.a.b.c.d... can only reach 128
levels.

Handling numeric values

JSON does not have separate data types for integers and floating point numbers. They are all
called numbers.

When a JSON number is received, it is stored in one of two formats. If the number fits into a 64-
bit signed integer, then it is converted to that format; otherwise, it is stored as a string. Arithmetic
operations on two JSON numbers (e.g. JSON.NUMINCRBY and JSON.NUMMULTBY) attempt to
preserve as much precision as possible. If the two operands and the resulting value fit into a 64-bit
signed integer, then integer arithmetic is performed. Otherwise, the input operands are converted
into 64-bit IEEE double-precision floating point numbers, the arithmetic operation is performed,
and the result is converted back into a string.

Arithmetic commands NUMINCRBY and NUMMULTBY:

Redis JSON Datatype overview 108

Amazon MemoryDB for Redis Developer Guide

• If both numbers are integers, and the result is out of the range of int64, it will automatically
become a double precision floating point number.

• If at least one of the numbers is a floating point, the result will be a double precision floating
point number.

• If the result exceeds the range of double, the command will return an OVERFLOW error.

Note

Prior to Redis engine version 6.2.6.R2 when a JSON number is received on input, it is
converted into one of the two internal binary representations: a 64-bit signed integer or
a 64-bit IEEE double precision floating point. The original string and all of its formatting
are not retained. Thus, when a number is output as part of a JSON response, it is converted
from the internal binary representation to a printable string that uses generic formatting
rules. These rules might result in a different string being generated than was received.

• If both numbers are integers and the result is out of the range of int64, it automatically
becomes a 64-bit IEEE double precision floating point number.

• If at least one of the numbers is a floating point, the result is a 64-bit IEEE double
precision floating point number.

• If the result exceeds the range of 64-bit IEEE double, the command returns an OVERFLOW
error.

For a detailed list of available commands, see Supported commands.

Strict syntax evaluation

MemoryDB does not allow JSON paths with invalid syntax, even if a subset of the path contains a
valid path. This is to maintain correct behavior for our customers.

Supported commands

The following Redis JSON commands are supported:

Topics

• JSON.ARRAPPEND

• JSON.ARRINDEX

Supported commands 109

Amazon MemoryDB for Redis Developer Guide

• JSON.ARRINSERT

• JSON.ARRLEN

• JSON.ARRPOP

• JSON.ARRTRIM

• JSON.CLEAR

• JSON.DEBUG

• JSON.DEL

• JSON.FORGET

• JSON.GET

• JSON.MGET

• JSON.NUMINCRBY

• JSON.NUMMULTBY

• JSON.OBJLEN

• JSON.OBJKEYS

• JSON.RESP

• JSON.SET

• JSON.STRAPPEND

• JSON.STRLEN

• JSON.TOGGLE

• JSON.TYPE

JSON.ARRAPPEND

Append one or more values to the array values at the path.

Syntax

JSON.ARRAPPEND <key> <path> <json> [json ...]

• key (required) – Redis key of JSON document type

• path (required) – a JSON path

Supported commands 110

Amazon MemoryDB for Redis Developer Guide

• json (required) – JSON value to be appended to the array

Return

If the path is enhanced syntax:

• Array of integers, representing the new length of the array at each path.

• If a value is not an array, its corresponding return value is null.

• SYNTAXERR error if one of the input json arguments is not a valid JSON string.

• NONEXISTENT error if the path does not exist.

If the path is restricted syntax:

• Integer, the array's new length.

• If multiple array values are selected, the command returns the new length of the last updated
array.

• WRONGTYPE error if the value at the path is not an array.

• SYNTAXERR error if one of the input json arguments is not a valid JSON string.

• NONEXISTENT error if the path does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRAPPEND k1 $[*] '"c"'
1) (integer) 1
2) (integer) 2
3) (integer) 3
127.0.0.1:6379> JSON.GET k1
"[[\"c\"],[\"a\",\"c\"],[\"a\",\"b\",\"c\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'

Supported commands 111

Amazon MemoryDB for Redis Developer Guide

OK
127.0.0.1:6379> JSON.ARRAPPEND k1 [-1] '"c"'
(integer) 3
127.0.0.1:6379> JSON.GET k1
"[[],[\"a\"],[\"a\",\"b\",\"c\"]]"

JSON.ARRINDEX

Search for the first occurrence of a scalar JSON value in the arrays at the path.

• Out of range errors are treated by rounding the index to the array's start and end.

• If start > end, return -1 (not found).

Syntax

JSON.ARRINDEX <key> <path> <json-scalar> [start [end]]

• key (required) – Redis key of JSON document type

• path (required) – a JSON path

• json-scalar (required) – scalar value to search for; JSON scalar refers to values that are not
objects or arrays. i.e., String, number, boolean and null are scalar values.

• start (optional) – start index, inclusive. Defaults to 0 if not provided.

• end (optional) – end index, exclusive. Defaults to 0 if not provided, which means the last element
is included. 0 or -1 means the last element is included.

Return

If the path is enhanced syntax:

• Array of integers. Each value is the index of the matching element in the array at the path. The
value is -1 if not found.

• If a value is not an array, its corresponding return value is null.

If the path is restricted syntax:

• Integer, the index of matching element, or -1 if not found.

Supported commands 112

Amazon MemoryDB for Redis Developer Guide

• WRONGTYPE error if the value at the path is not an array.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRINDEX k1 $[*] '"b"'
1) (integer) -1
2) (integer) -1
3) (integer) 1
4) (integer) 1

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"children": ["John", "Jack", "Tom", "Bob", "Mike"]}'
OK
127.0.0.1:6379> JSON.ARRINDEX k1 .children '"Tom"'
(integer) 2

JSON.ARRINSERT

Insert one or more values into the array values at path before the index.

Syntax

JSON.ARRINSERT <key> <path> <index> <json> [json ...]

• key (required) – Redis key of JSON document type

• path (required) – a JSON path

• index (required) – array index before which values are inserted.

• json (required) – JSON value to be appended to the array

Return

If the path is enhanced syntax:

Supported commands 113

Amazon MemoryDB for Redis Developer Guide

• Array of integers, representing the new length of the array at each path.

• If a value is an empty array, its corresponding return value is null.

• If a value is not an array, its corresponding return value is null.

• OUTOFBOUNDARIES error if the index argument is out of bounds.

If the path is restricted syntax:

• Integer, the new length of the array.

• WRONGTYPE error if the value at the path is not an array.

• OUTOFBOUNDARIES error if the index argument is out of bounds.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRINSERT k1 $[*] 0 '"c"'
1) (integer) 1
2) (integer) 2
3) (integer) 3
127.0.0.1:6379> JSON.GET k1
"[[\"c\"],[\"c\",\"a\"],[\"c\",\"a\",\"b\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRINSERT k1 . 0 '"c"'
(integer) 4
127.0.0.1:6379> JSON.GET k1
"[\"c\",[],[\"a\"],[\"a\",\"b\"]]"

JSON.ARRLEN

Get length of the array values at the path.

Supported commands 114

Amazon MemoryDB for Redis Developer Guide

Syntax

JSON.ARRLEN <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

If the path is enhanced syntax:

• Array of integers, representing the array length at each path.

• If a value is not an array, its corresponding return value is null.

• Null if the document key does not exist.

If the path is restricted syntax:

• Array of bulk strings. Each element is a key name in the object.

• Integer, array length.

• If multiple objects are selected, the command returns the first array's length.

• WRONGTYPE error if the value at the path is not an array.

• WRONGTYPE error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], [\"a\"], [\"a\", \"b\"], [\"a\", \"b\", \"c\"]]'
(error) SYNTAXERR Failed to parse JSON string due to syntax error
127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRLEN k1 $[*]
1) (integer) 0
2) (integer) 1
3) (integer) 2
4) (integer) 3

Supported commands 115

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.SET k2 . '[[], "a", ["a", "b"], ["a", "b", "c"], 4]'
OK
127.0.0.1:6379> JSON.ARRLEN k2 $[*]
1) (integer) 0
2) (nil)
3) (integer) 2
4) (integer) 3
5) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRLEN k1 [*]
(integer) 0
127.0.0.1:6379> JSON.ARRLEN k1 $[3]
1) (integer) 3

127.0.0.1:6379> JSON.SET k2 . '[[], "a", ["a", "b"], ["a", "b", "c"], 4]'
OK
127.0.0.1:6379> JSON.ARRLEN k2 [*]
(integer) 0
127.0.0.1:6379> JSON.ARRLEN k2 $[1]
1) (nil)
127.0.0.1:6379> JSON.ARRLEN k2 $[2]
1) (integer) 2

JSON.ARRPOP

Remove and return element at the index from the array. Popping an empty array returns null.

Syntax

JSON.ARRPOP <key> [path [index]]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

• index (optional) – position in the array to start popping from.

Supported commands 116

Amazon MemoryDB for Redis Developer Guide

• Defaults to -1 if not provided, which means the last element.

• Negative value means position from the last element.

• Out of boundary indexes are rounded to their respective array boundaries.

Return

If the path is enhanced syntax:

• Array of bulk strings, representing popped values at each path.

• If a value is an empty array, its corresponding return value is null.

• If a value is not an array, its corresponding return value is null.

If the path is restricted syntax:

• Bulk string, representing the popped JSON value

• Null if the array is empty.

• WRONGTYPE error if the value at the path is not an array.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRPOP k1 $[*]
1) (nil)
2) "\"a\""
3) "\"b\""
127.0.0.1:6379> JSON.GET k1
"[[],[],[\"a\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRPOP k1
"[\"a\",\"b\"]"

Supported commands 117

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.GET k1
"[[],[\"a\"]]"

127.0.0.1:6379> JSON.SET k2 . '[[], ["a"], ["a", "b"]]'
OK
127.0.0.1:6379> JSON.ARRPOP k2 . 0
"[]"
127.0.0.1:6379> JSON.GET k2
"[[\"a\"],[\"a\",\"b\"]]"

JSON.ARRTRIM

Trim arrays at the path so that it becomes subarray [start, end], both inclusive.

• If the array is empty, do nothing, return 0.

• If start <0, treat it as 0.

• If end >= size (size of the array), treat it as size-1.

• If start >= size or start > end, empty the array and return 0.

Syntax

JSON.ARRINSERT <key> <path> <start> <end>

• key (required) – Redis key of JSON document type

• path (required) – a JSON path

• start (required) – start index, inclusive.

• end (required) – end index, inclusive.

Return

If the path is enhanced syntax:

• Array of integers, representing the new length of the array at each path.

• If a value is an empty array, its corresponding return value is null.

• If a value is not an array, its corresponding return value is null.

• OUTOFBOUNDARIES error if an index argument is out of bounds.

Supported commands 118

Amazon MemoryDB for Redis Developer Guide

If the path is restricted syntax:

• Integer, the new length of the array.

• Null if the array is empty.

• WRONGTYPE error if the value at the path is not an array.

• OUTOFBOUNDARIES error if an index argument is out of bounds.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[[], ["a"], ["a", "b"], ["a", "b", "c"]]'
OK
127.0.0.1:6379> JSON.ARRTRIM k1 $[*] 0 1
1) (integer) 0
2) (integer) 1
3) (integer) 2
4) (integer) 2
 127.0.0.1:6379> JSON.GET k1
 "[[],[\"a\"],[\"a\",\"b\"],[\"a\",\"b\"]]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"children": ["John", "Jack", "Tom", "Bob", "Mike"]}'
OK
127.0.0.1:6379> JSON.ARRTRIM k1 .children 0 1
(integer) 2
127.0.0.1:6379> JSON.GET k1 .children
"[\"John\",\"Jack\"]"

JSON.CLEAR

Clear the arrays or an objects at the path.

Syntax

JSON.CLEAR <key> [path]

Supported commands 119

Amazon MemoryDB for Redis Developer Guide

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

• Integer, the number of containers cleared.

• Clearing an empty array or object accounts for 0 container cleared.

Note

Piror to Redis version 6.2.6.R2, clearing an empty array or object accounts for 1 container
cleared.

• Clearing a non-container value returns 0.

• If no array or object value is located by the path, the command returns 0.

Examples

127.0.0.1:6379> JSON.SET k1 . '[[], [0], [0,1], [0,1,2], 1, true, null, "d"]'
OK
127.0.0.1:6379> JSON.CLEAR k1 $[*]
(integer) 6
127.0.0.1:6379> JSON.CLEAR k1 $[*]
(integer) 0
127.0.0.1:6379> JSON.SET k2 . '{"children": ["John", "Jack", "Tom", "Bob", "Mike"]}'
OK
127.0.0.1:6379> JSON.CLEAR k2 .children
(integer) 1
127.0.0.1:6379> JSON.GET k2 .children
"[]"

JSON.DEBUG

Report information. Supported subcommands are:

• MEMORY <key> [path] – report memory usage in bytes of a JSON value. Path defaults to the
root if not provided.

• DEPTH <key> [path] – Reports the maximum path depth of the JSON document.

Supported commands 120

Amazon MemoryDB for Redis Developer Guide

Note

This subcommand is only available using Redis engine version 6.2.6.R2 or later.

• FIELDS <key> [path] – report the number of fields at the specified document path. Path defaults
to the root if not provided. Each non-container JSON value counts as one field. Objects and
arrays recursively count one field for each of their containing JSON values. Each container value,
except the root container, counts as one additional field.

• HELP – print help messages of the command.

Syntax

JSON.DEBUG <subcommand & arguments>

Depends on the subcommand:

MEMORY

• If the path is enhanced syntax:

• returns an array of integers, representing memory size (in bytes) of JSON value at each path.

• returns an empty array if the Redis key does not exist.

• If the path is restricted syntax:

• returns an integer, memory size the JSON value in bytes.

• returns null if the Redis key does not exist.

DEPTH

• Returns an integer that represents the maximum path depth of the JSON document.

• Returns null if the Redis key does not exist.

FIELDS

• If the path is enhanced syntax:

• returns an array of integers, representing number of fields of JSON value at each path.

• returns an empty array if the Redis key does not exist.

Supported commands 121

Amazon MemoryDB for Redis Developer Guide

• If the path is restricted syntax:

• returns an integer, number of fields of the JSON value.

• returns null if the Redis key does not exist.

HELP – returns an array of help messages.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[1, 2.3, "foo", true, null, {}, [], {"a":1, "b":2},
 [1,2,3]]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY k1 $[*]
1) (integer) 16
2) (integer) 16
3) (integer) 19
4) (integer) 16
5) (integer) 16
6) (integer) 16
7) (integer) 16
8) (integer) 50
9) (integer) 64
127.0.0.1:6379> JSON.DEBUG FIELDS k1 $[*]
1) (integer) 1
2) (integer) 1
3) (integer) 1
4) (integer) 1
5) (integer) 1
6) (integer) 0
7) (integer) 0
8) (integer) 2
9) (integer) 3

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":

Supported commands 122

Amazon MemoryDB for Redis Developer Guide

[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY k1
(integer) 632
127.0.0.1:6379> JSON.DEBUG MEMORY k1 .phoneNumbers
(integer) 166

127.0.0.1:6379> JSON.DEBUG FIELDS k1
(integer) 19
127.0.0.1:6379> JSON.DEBUG FIELDS k1 .address
(integer) 4

127.0.0.1:6379> JSON.DEBUG HELP
1) JSON.DEBUG MEMORY <key> [path] - report memory size (bytes) of the JSON element.
 Path defaults to root if not provided.
2) JSON.DEBUG FIELDS <key> [path] - report number of fields in the JSON element. Path
 defaults to root if not provided.
3) JSON.DEBUG HELP - print help message.

JSON.DEL

Delete the JSON values at the path in a document key. If the path is the root, it is equivalent to
deleting the key from Redis.

Syntax

JSON.DEL <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

• Number of elements deleted.

• 0 if the Redis key does not exist.

• 0 if the JSON path is invalid or does not exist.

Supported commands 123

Amazon MemoryDB for Redis Developer Guide

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}, "e": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.DEL k1 $.d.*
(integer) 3
127.0.0.1:6379> JSOn.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[1,2,3,4,5]}"
127.0.0.1:6379> JSON.DEL k1 $.e[*]
(integer) 5
127.0.0.1:6379> JSOn.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[]}"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}, "e": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.DEL k1 .d.*
(integer) 3
127.0.0.1:6379> JSON.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[1,2,3,4,5]}"
127.0.0.1:6379> JSON.DEL k1 .e[*]
(integer) 5
127.0.0.1:6379> JSON.GET k1
"{\"a\":{},\"b\":{\"a\":1},\"c\":{\"a\":1,\"b\":2},\"d\":{},\"e\":[]}"

JSON.FORGET

An alias of JSON.DEL

JSON.GET

Return the serialized JSON at one or multiple paths.

Syntax

JSON.GET <key>

Supported commands 124

Amazon MemoryDB for Redis Developer Guide

[INDENT indentation-string]
[NEWLINE newline-string]
[SPACE space-string]
[NOESCAPE]
[path ...]

• key (required) – Redis key of JSON document type

• INDENT/NEWLINE/SPACE (optional) – controls the format of the returned JSON string, i.e.,
"pretty print". The default value of each one is empty string. They can be overidden in any
combination. They can be specified in any order.

• NOESCAPE - optional, allowed to be present for legacy compatibility and has no other effect.

• path (optional) – zero or more JSON paths, defaults to the root if none is given. The path
arguments must be placed at the end.

Return

Enhanced path syntax:

If one path is given:

• Return serialized string of an array of values.

• If no value is selected, the command returns an empty array.

If multiple paths are given:

• Return a stringified JSON object, in which each path is a key.

• If there are mixed enhanced and restricted path syntax, the result conforms to the enhanced
syntax.

• If a path does not exist, its corresponding value is an empty array.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":

Supported commands 125

Amazon MemoryDB for Redis Developer Guide

[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.GET k1 $.address.*
"[\"21 2nd Street\",\"New York\",\"NY\",\"10021-3100\"]"
127.0.0.1:6379> JSON.GET k1 indent "\t" space " " NEWLINE "\n" $.address.*
"[\n\t\"21 2nd Street\",\n\t\"New York\",\n\t\"NY\",\n\t\"10021-3100\"\n]"
127.0.0.1:6379> JSON.GET k1 $.firstName $.lastName $.age
"{\"$.firstName\":[\"John\"],\"$.lastName\":[\"Smith\"],\"$.age\":[27]}"
127.0.0.1:6379> JSON.SET k2 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}}'
OK
127.0.0.1:6379> json.get k2 $..*
"[{},{\"a\":1},{\"a\":1,\"b\":2},1,1,2]"

Restricted path syntax:

 127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.GET k1 .address
"{\"street\":\"21 2nd Street\",\"city\":\"New York\",\"state\":\"NY\",\"zipcode\":
\"10021-3100\"}"
127.0.0.1:6379> JSON.GET k1 indent "\t" space " " NEWLINE "\n" .address
"{\n\t\"street\": \"21 2nd Street\",\n\t\"city\": \"New York\",\n\t\"state\": \"NY\",\n
\t\"zipcode\": \"10021-3100\"\n}"
127.0.0.1:6379> JSON.GET k1 .firstName .lastName .age
"{\".firstName\":\"John\",\".lastName\":\"Smith\",\".age\":27}"

JSON.MGET

Get serialized JSONs at the path from multiple document keys. Return null for non-existent key or
JSON path.

Syntax

JSON.MGET <key> [key ...] <path>

Supported commands 126

Amazon MemoryDB for Redis Developer Guide

• key (required) – One or more Redis keys of document type.

• path (required) – a JSON path

Return

• Array of Bulk Strings. The size of the array is equal to the number of keys in the command. Each
element of the array is populated with either (a) the serialized JSON as located by the path or
(b) Null if the key does not exist or the path does not exist in the document or the path is invalid
(syntax error).

• If any of the specified keys exists and is not a JSON key, the command returns WRONGTYPE error.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"address":{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021"}}'
OK
127.0.0.1:6379> JSON.SET k2 . '{"address":{"street":"5 main
 Street","city":"Boston","state":"MA","zipcode":"02101"}}'
OK
127.0.0.1:6379> JSON.SET k3 . '{"address":{"street":"100 Park
 Ave","city":"Seattle","state":"WA","zipcode":"98102"}}'
OK
127.0.0.1:6379> JSON.MGET k1 k2 k3 $.address.city
1) "[\"New York\"]"
2) "[\"Boston\"]"
3) "[\"Seattle\"]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"address":{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021"}}'
OK
127.0.0.1:6379> JSON.SET k2 . '{"address":{"street":"5 main
 Street","city":"Boston","state":"MA","zipcode":"02101"}}'
OK
127.0.0.1:6379> JSON.SET k3 . '{"address":{"street":"100 Park
 Ave","city":"Seattle","state":"WA","zipcode":"98102"}}'

Supported commands 127

Amazon MemoryDB for Redis Developer Guide

OK

127.0.0.1:6379> JSON.MGET k1 k2 k3 .address.city
1) "\"New York\""
2) "\"Seattle\""
3) "\"Seattle\""

JSON.NUMINCRBY

Increment the number values at the path by a given number.

Syntax

JSON.NUMINCRBY <key> <path> <number>

• key (required) – Redis key of JSON document type

• path (required) – a JSON path

• number (required) – a number

Return

If the path is enhanced syntax:

• Array of bulk Strings representing the resulting value at each path.

• If a value is not a number, its corresponding return value is null.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of 64-bit IEEE double.

• NONEXISTENT if the document key does not exist.

If the path is restricted syntax:

• Bulk String representing the resulting value.

• If multiple values are selected, the command returns the result of the last updated value.

• WRONGTYPE error if the value at the path is not a number.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of 64-bit IEEE double.

Supported commands 128

Amazon MemoryDB for Redis Developer Guide

• NONEXISTENT if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 $.d[*] 10
"[11,12,13]"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[11,12,13]}"

127.0.0.1:6379> JSON.SET k1 $ '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 $.a[*] 1
"[]"
127.0.0.1:6379> JSON.NUMINCRBY k1 $.b[*] 1
"[2]"
127.0.0.1:6379> JSON.NUMINCRBY k1 $.c[*] 1
"[2,3]"
127.0.0.1:6379> JSON.NUMINCRBY k1 $.d[*] 1
"[2,3,4]"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,3],\"d\":[2,3,4]}"

127.0.0.1:6379> JSON.SET k2 $ '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k2 $.a.* 1
"[]"
127.0.0.1:6379> JSON.NUMINCRBY k2 $.b.* 1
"[2]"
127.0.0.1:6379> JSON.NUMINCRBY k2 $.c.* 1
"[2,3]"
127.0.0.1:6379> JSON.NUMINCRBY k2 $.d.* 1
"[2,3,4]"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":3},\"d\":{\"a\":2,\"b\":3,\"c\":4}}"

127.0.0.1:6379> JSON.SET k3 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK

Supported commands 129

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.NUMINCRBY k3 $.a.* 1
"[null]"
127.0.0.1:6379> JSON.NUMINCRBY k3 $.b.* 1
"[null,2]"
127.0.0.1:6379> JSON.NUMINCRBY k3 $.c.* 1
"[null,null]"
127.0.0.1:6379> JSON.NUMINCRBY k3 $.d.* 1
"[2,null,4]"
127.0.0.1:6379> JSON.GET k3
"{\"a\":{\"a\":\"a\"},\"b\":{\"a\":\"a\",\"b\":2},\"c\":{\"a\":\"a\",\"b\":\"b\"},\"d
\":{\"a\":2,\"b\":\"b\",\"c\":4}}"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 .d[1] 10
"12"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[1,12,3]}"

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k1 .a[*] 1
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMINCRBY k1 .b[*] 1
"2"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[1,2],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMINCRBY k1 .c[*] 1
"3"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,3],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMINCRBY k1 .d[*] 1
"4"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,3],\"d\":[2,3,4]}"

127.0.0.1:6379> JSON.SET k2 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k2 .a.* 1

Supported commands 130

Amazon MemoryDB for Redis Developer Guide

(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMINCRBY k2 .b.* 1
"2"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":1,\"b\":2},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMINCRBY k2 .c.* 1
"3"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":3},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMINCRBY k2 .d.* 1
"4"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":3},\"d\":{\"a\":2,\"b\":3,\"c\":4}}"

127.0.0.1:6379> JSON.SET k3 . '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.NUMINCRBY k3 .a.* 1
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMINCRBY k3 .b.* 1
"2"
127.0.0.1:6379> JSON.NUMINCRBY k3 .c.* 1
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMINCRBY k3 .d.* 1
"4"

JSON.NUMMULTBY

Multiply the number values at the path by a given number.

Syntax

JSON.NUMMULTBY <key> <path> <number>

• key (required) – Redis key of JSON document type

• path (required) – a JSON path

• number (required) – a number

Return

Supported commands 131

Amazon MemoryDB for Redis Developer Guide

If the path is enhanced syntax:

• Array of bulk Strings representing the resulting value at each path.

• If a value is not a number, its corresponding return value is null.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of 64-bit IEEE double.

• NONEXISTENT if the document key does not exist.

If the path is restricted syntax:

• Bulk String representing the resulting value.

• If multiple values are selected, the command returns the result of the last updated value.

• WRONGTYPE error if the value at the path is not a number.

• WRONGTYPE error if the number cannot be parsed.

• OVERFLOW error if the result is out of the range of 64-bit IEEE double.

• NONEXISTENT if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 $.d[*] 2
"[2,4,6]"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[2,4,6]}"

127.0.0.1:6379> JSON.SET k1 $ '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 $.a[*] 2
"[]"
127.0.0.1:6379> JSON.NUMMULTBY k1 $.b[*] 2
"[2]"
127.0.0.1:6379> JSON.NUMMULTBY k1 $.c[*] 2
"[2,4]"
127.0.0.1:6379> JSON.NUMMULTBY k1 $.d[*] 2
"[2,4,6]"

Supported commands 132

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.SET k2 $ '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k2 $.a.* 2
"[]"
127.0.0.1:6379> JSON.NUMMULTBY k2 $.b.* 2
"[2]"
127.0.0.1:6379> JSON.NUMMULTBY k2 $.c.* 2
"[2,4]"
127.0.0.1:6379> JSON.NUMMULTBY k2 $.d.* 2
"[2,4,6]"

127.0.0.1:6379> JSON.SET k3 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k3 $.a.* 2
"[null]"
127.0.0.1:6379> JSON.NUMMULTBY k3 $.b.* 2
"[null,2]"
127.0.0.1:6379> JSON.NUMMULTBY k3 $.c.* 2
"[null,null]"
127.0.0.1:6379> JSON.NUMMULTBY k3 $.d.* 2
"[2,null,6]"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 .d[1] 2
"4"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[1],\"c\":[1,2],\"d\":[1,4,3]}"

127.0.0.1:6379> JSON.SET k1 . '{"a":[], "b":[1], "c":[1,2], "d":[1,2,3]}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k1 .a[*] 2
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMMULTBY k1 .b[*] 2
"2"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[1,2],\"d\":[1,2,3]}"

Supported commands 133

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.NUMMULTBY k1 .c[*] 2
"4"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,4],\"d\":[1,2,3]}"
127.0.0.1:6379> JSON.NUMMULTBY k1 .d[*] 2
"6"
127.0.0.1:6379> JSON.GET k1
"{\"a\":[],\"b\":[2],\"c\":[2,4],\"d\":[2,4,6]}"

127.0.0.1:6379> JSON.SET k2 . '{"a":{}, "b":{"a":1}, "c":{"a":1, "b":2}, "d":{"a":1,
 "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k2 .a.* 2
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.NUMMULTBY k2 .b.* 2
"2"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":1,\"b\":2},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMMULTBY k2 .c.* 2
"4"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":4},\"d\":{\"a\":1,\"b\":2,\"c\":3}}"
127.0.0.1:6379> JSON.NUMMULTBY k2 .d.* 2
"6"
127.0.0.1:6379> JSON.GET k2
"{\"a\":{},\"b\":{\"a\":2},\"c\":{\"a\":2,\"b\":4},\"d\":{\"a\":2,\"b\":4,\"c\":6}}"

127.0.0.1:6379> JSON.SET k3 . '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"b"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.NUMMULTBY k3 .a.* 2
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMMULTBY k3 .b.* 2
"2"
127.0.0.1:6379> JSON.GET k3
"{\"a\":{\"a\":\"a\"},\"b\":{\"a\":\"a\",\"b\":2},\"c\":{\"a\":\"a\",\"b\":\"b\"},\"d
\":{\"a\":1,\"b\":\"b\",\"c\":3}}"
127.0.0.1:6379> JSON.NUMMULTBY k3 .c.* 2
(error) WRONGTYPE JSON element is not a number
127.0.0.1:6379> JSON.NUMMULTBY k3 .d.* 2
"6"
127.0.0.1:6379> JSON.GET k3
"{\"a\":{\"a\":\"a\"},\"b\":{\"a\":\"a\",\"b\":2},\"c\":{\"a\":\"a\",\"b\":\"b\"},\"d
\":{\"a\":2,\"b\":\"b\",\"c\":6}}"

Supported commands 134

Amazon MemoryDB for Redis Developer Guide

JSON.OBJLEN

Get number of keys in the object values at the path.

Syntax

JSON.OBJLEN <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

If the path is enhanced syntax:

• Array of integers, representing the object length at each path.

• If a value is not an object, its corresponding return value is null.

• Null if the document key does not exist.

If the path is restricted syntax:

• Integer, number of keys in the object.

• If multiple objects are selected, the command returns the first object's length.

• WRONGTYPE error if the value at the path is not an object.

• WRONGTYPE error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJLEN k1 $.a

Supported commands 135

Amazon MemoryDB for Redis Developer Guide

1) (integer) 0
127.0.0.1:6379> JSON.OBJLEN k1 $.a.*
(empty array)
127.0.0.1:6379> JSON.OBJLEN k1 $.b
1) (integer) 1
127.0.0.1:6379> JSON.OBJLEN k1 $.b.*
1) (nil)
127.0.0.1:6379> JSON.OBJLEN k1 $.c
1) (integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 $.c.*
1) (nil)
2) (nil)
127.0.0.1:6379> JSON.OBJLEN k1 $.d
1) (integer) 3
127.0.0.1:6379> JSON.OBJLEN k1 $.d.*
1) (nil)
2) (nil)
3) (integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 $.*
1) (integer) 0
2) (integer) 1
3) (integer) 2
4) (integer) 3
5) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJLEN k1 .a
(integer) 0
127.0.0.1:6379> JSON.OBJLEN k1 .a.*
(error) NONEXISTENT JSON path does not exist
127.0.0.1:6379> JSON.OBJLEN k1 .b
(integer) 1
127.0.0.1:6379> JSON.OBJLEN k1 .b.*
(error) WRONGTYPE JSON element is not an object
127.0.0.1:6379> JSON.OBJLEN k1 .c
(integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 .c.*
(error) WRONGTYPE JSON element is not an object

Supported commands 136

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.OBJLEN k1 .d
(integer) 3
127.0.0.1:6379> JSON.OBJLEN k1 .d.*
(integer) 2
127.0.0.1:6379> JSON.OBJLEN k1 .*
(integer) 0

JSON.OBJKEYS

Get key names in the object values at the path.

Syntax

JSON.OBJKEYS <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

If the path is enhanced syntax:

• Array of array of bulk strings. Each element is an array of keys in a matching object.

• If a value is not an object, its corresponding return value is empty value.

• Null if the document key does not exist.

If the path is restricted syntax:

• Array of bulk strings. Each element is a key name in the object.

• If multiple objects are selected, the command returns the keys of the first object.

• WRONGTYPE error if the value at the path is not an object.

• WRONGTYPE error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

Supported commands 137

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.SET k1 $ '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJKEYS k1 $.*
1) (empty array)
2) 1) "a"
3) 1) "a"
 2) "b"
4) 1) "a"
 2) "b"
 3) "c"
5) (empty array)
127.0.0.1:6379> JSON.OBJKEYS k1 $.d
1) 1) "a"
 2) "b"
 3) "c"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{}, "b":{"a":"a"}, "c":{"a":"a", "b":"bb"}, "d":
{"a":1, "b":"b", "c":{"a":3,"b":4}}, "e":1}'
OK
127.0.0.1:6379> JSON.OBJKEYS k1 .*
1) "a"
127.0.0.1:6379> JSON.OBJKEYS k1 .d
1) "a"
2) "b"
3) "c"

JSON.RESP

Return the JSON value at the given path in Redis Serialization Protocol (RESP). If the value is
container, the response is RESP array or nested array.

• JSON null is mapped to the RESP Null Bulk String.

• JSON boolean values are mapped to the respective RESP Simple Strings.

• Integer numbers are mapped to RESP Integers.

• 64-bit IEEE double floating point numbers are mapped to RESP Bulk Strings.

Supported commands 138

Amazon MemoryDB for Redis Developer Guide

• JSON Strings are mapped to RESP Bulk Strings.

• JSON Arrays are represented as RESP Arrays, where the first element is the simple string [,
followed by the array's elements.

• JSON Objects are represented as RESP Arrays, where the first element is the simple string {,
followed by key-value pairs, each of which is a RESP bulk string.

Syntax

JSON.RESP <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

If the path is enhanced syntax:

• Array of arrays. Each array element represents the RESP form of the value at one path.

• Empty array if the document key does not exist.

If the path is restricted syntax:

• Array, representing the RESP form of the value at the path.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK

Supported commands 139

Amazon MemoryDB for Redis Developer Guide

127.0.0.1:6379> JSON.RESP k1 $.address
1) 1) {
 2) 1) "street"
 2) "21 2nd Street"
 3) 1) "city"
 2) "New York"
 4) 1) "state"
 2) "NY"
 5) 1) "zipcode"
 2) "10021-3100"

127.0.0.1:6379> JSON.RESP k1 $.address.*
1) "21 2nd Street"
2) "New York"
3) "NY"
4) "10021-3100"

127.0.0.1:6379> JSON.RESP k1 $.phoneNumbers
1) 1) [
 2) 1) {
 2) 1) "type"
 2) "home"
 3) 1) "number"
 2) "555 555-1234"
 3) 1) {
 2) 1) "type"
 2) "office"
 3) 1) "number"
 2) "555 555-4567"

127.0.0.1:6379> JSON.RESP k1 $.phoneNumbers[*]
1) 1) {
 2) 1) "type"
 2) "home"
 3) 1) "number"
 2) "212 555-1234"
2) 1) {
 2) 1) "type"
 2) "office"
 3) 1) "number"
 2) "555 555-4567"

Supported commands 140

Amazon MemoryDB for Redis Developer Guide

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK

127.0.0.1:6379> JSON.RESP k1 .address
1) {
2) 1) "street"
 2) "21 2nd Street"
3) 1) "city"
 2) "New York"
4) 1) "state"
 2) "NY"
5) 1) "zipcode"
 2) "10021-3100"

127.0.0.1:6379> JSON.RESP k1
 1) {
 2) 1) "firstName"
 2) "John"
 3) 1) "lastName"
 2) "Smith"
 4) 1) "age"
 2) (integer) 27
 5) 1) "weight"
 2) "135.25"
 6) 1) "isAlive"
 2) true
 7) 1) "address"
 2) 1) {
 2) 1) "street"
 2) "21 2nd Street"
 3) 1) "city"
 2) "New York"
 4) 1) "state"
 2) "NY"
 5) 1) "zipcode"
 2) "10021-3100"
 8) 1) "phoneNumbers"

Supported commands 141

Amazon MemoryDB for Redis Developer Guide

 2) 1) [
 2) 1) {
 2) 1) "type"
 2) "home"
 3) 1) "number"
 2) "212 555-1234"
 3) 1) {
 2) 1) "type"
 2) "office"
 3) 1) "number"
 2) "555 555-4567"
 9) 1) "children"
 2) 1) [
10) 1) "spouse"
 2) (nil)

JSON.SET

Set JSON values at the path.

If the path calls for an object member:

• If the parent element does not exist, the command will return NONEXISTENT error.

• If the parent element exists but is not an object, the command will return ERROR.

• If the parent element exists and is an object:

• If the member does not exist, a new member will be appended to the parent object if and
only if the parent object is the last child in the path. Otherwise, the command will return
NONEXISTENT error.

• If the member exists, its value will be replaced by the JSON value.

If the path calls for an array index:

• If the parent element does not exist, the command will return a NONEXISTENT error.

• If the parent element exists but is not an array, the command will return ERROR.

• If the parent element exists but the index is out of bounds, the command will return
OUTOFBOUNDARIES error.

• If the parent element exists and the index is valid, the element will be replaced by the new JSON
value.

Supported commands 142

Amazon MemoryDB for Redis Developer Guide

If the path calls for an object or array, the value (object or array) will be replaced by the new JSON
value.

Syntax

JSON.SET <key> <path> <json> [NX | XX]

[NX | XX] Where you can have 0 or 1 of [NX | XX] identifiers

• key (required) – Redis key of JSON document type

• path (required) – JSON path. For a new Redis key, the JSON path must be the root ".".

• NX (optional) – If the path is the root, set the value only if the Redis key does not exist, i.e., insert
a new document. If the path is not the root, set the value only if the path does not exist, i.e.,
insert a value into the document.

• XX (optional) – If the path is the root, set the value only if the Redis key exists, i.e., replace the
existing document. If the path is not the root, set the value only if the path exists, i.e., update the
existing value.

Return

• Simple String 'OK' on success.

• Null if the NX or XX condition is not met.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{"a":1, "b":2, "c":3}}'
OK
127.0.0.1:6379> JSON.SET k1 $.a.* '0'
OK
127.0.0.1:6379> JSON.GET k1
"{\"a\":{\"a\":0,\"b\":0,\"c\":0}}"

127.0.0.1:6379> JSON.SET k2 . '{"a": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.SET k2 $.a[*] '0'
OK
127.0.0.1:6379> JSON.GET k2

Supported commands 143

Amazon MemoryDB for Redis Developer Guide

"{\"a\":[0,0,0,0,0]}"

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"c":{"a":1, "b":2}, "e": [1,2,3,4,5]}'
OK
127.0.0.1:6379> JSON.SET k1 .c.a '0'
OK
127.0.0.1:6379> JSON.GET k1
"{\"c\":{\"a\":0,\"b\":2},\"e\":[1,2,3,4,5]}"
127.0.0.1:6379> JSON.SET k1 .e[-1] '0'
OK
127.0.0.1:6379> JSON.GET k1
"{\"c\":{\"a\":0,\"b\":2},\"e\":[1,2,3,4,0]}"
127.0.0.1:6379> JSON.SET k1 .e[5] '0'
(error) OUTOFBOUNDARIES Array index is out of bounds

JSON.STRAPPEND

Append a string to the JSON strings at the path.

Syntax

JSON.STRAPPEND <key> [path] <json_string>

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

• json_string (required) – JSON representation of a string. Note that a JSON string must be quoted,
i.e., '"foo"'.

Return

If the path is enhanced syntax:

• Array of integers, representing the new length of the string at each path.

• If a value at the path is not a string, its corresponding return value is null.

• SYNTAXERR error if the input json argument is not a valid JSON string.

Supported commands 144

Amazon MemoryDB for Redis Developer Guide

• NONEXISTENT error if the path does not exist.

If the path is restricted syntax:

• Integer, the string's new length.

• If multiple string values are selected, the command returns the new length of the last updated
string.

• WRONGTYPE error if the value at the path is not a string.

• WRONGTYPE error if the input json argument is not a valid JSON string.

• NONEXISTENT error if the path does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.STRAPPEND k1 $.a.a '"a"'
1) (integer) 2
127.0.0.1:6379> JSON.STRAPPEND k1 $.a.* '"a"'
1) (integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 $.b.* '"a"'
1) (integer) 2
2) (nil)
127.0.0.1:6379> JSON.STRAPPEND k1 $.c.* '"a"'
1) (integer) 2
2) (integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 $.c.b '"a"'
1) (integer) 4
127.0.0.1:6379> JSON.STRAPPEND k1 $.d.* '"a"'
1) (nil)
2) (integer) 2
3) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'

Supported commands 145

Amazon MemoryDB for Redis Developer Guide

OK
127.0.0.1:6379> JSON.STRAPPEND k1 .a.a '"a"'
(integer) 2
127.0.0.1:6379> JSON.STRAPPEND k1 .a.* '"a"'
(integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 .b.* '"a"'
(integer) 2
127.0.0.1:6379> JSON.STRAPPEND k1 .c.* '"a"'
(integer) 3
127.0.0.1:6379> JSON.STRAPPEND k1 .c.b '"a"'
(integer) 4
127.0.0.1:6379> JSON.STRAPPEND k1 .d.* '"a"'
(integer) 2

JSON.STRLEN

Get lengths of the JSON string values at the path.

Syntax

JSON.STRLEN <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

If the path is enhanced syntax:

• Array of integers, representing the length of string value at each path.

• If a value is not a string, its corresponding return value is null.

• Null if the document key does not exist.

If the path is restricted syntax:

• Integer, the string's length.

• If multiple string values are selected, the command returns the first string's length.

• WRONGTYPE error if the value at the path is not a string.

Supported commands 146

Amazon MemoryDB for Redis Developer Guide

• NONEXISTENT error if the path does not exist.

• Null if the document key does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.STRLEN k1 $.a.a
1) (integer) 1
127.0.0.1:6379> JSON.STRLEN k1 $.a.*
1) (integer) 1
127.0.0.1:6379> JSON.STRLEN k1 $.c.*
1) (integer) 1
2) (integer) 2
127.0.0.1:6379> JSON.STRLEN k1 $.c.b
1) (integer) 2
127.0.0.1:6379> JSON.STRLEN k1 $.d.*
1) (nil)
2) (integer) 1
3) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 $ '{"a":{"a":"a"}, "b":{"a":"a", "b":1}, "c":{"a":"a",
 "b":"bb"}, "d":{"a":1, "b":"b", "c":3}}'
OK
127.0.0.1:6379> JSON.STRLEN k1 .a.a
(integer) 1
127.0.0.1:6379> JSON.STRLEN k1 .a.*
(integer) 1
127.0.0.1:6379> JSON.STRLEN k1 .c.*
(integer) 1
127.0.0.1:6379> JSON.STRLEN k1 .c.b
(integer) 2
127.0.0.1:6379> JSON.STRLEN k1 .d.*
(integer) 1

Supported commands 147

Amazon MemoryDB for Redis Developer Guide

JSON.TOGGLE

Toggle boolean values between true and false at the path.

Syntax

JSON.TOGGLE <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

If the path is enhanced syntax:

• Array of integers (0 - false, 1 - true) representing the resulting boolean value at each path.

• If a value is a not boolean, its corresponding return value is null.

• NONEXISTENT if the document key does not exist.

If the path is restricted syntax:

• String ("true"/"false") representing the resulting boolean value.

• NONEXISTENT if the document key does not exist.

• WRONGTYPE error if the value at the path is not a boolean.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '{"a":true, "b":false, "c":1, "d":null, "e":"foo", "f":
[], "g":{}}'
OK
127.0.0.1:6379> JSON.TOGGLE k1 $.*
1) (integer) 0
2) (integer) 1
3) (nil)
4) (nil)
5) (nil)

Supported commands 148

Amazon MemoryDB for Redis Developer Guide

6) (nil)
7) (nil)
127.0.0.1:6379> JSON.TOGGLE k1 $.*
1) (integer) 1
2) (integer) 0
3) (nil)
4) (nil)
5) (nil)
6) (nil)
7) (nil)

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 . true
OK
127.0.0.1:6379> JSON.TOGGLE k1
"false"
127.0.0.1:6379> JSON.TOGGLE k1
"true"

127.0.0.1:6379> JSON.SET k2 . '{"isAvailable": false}'
OK
127.0.0.1:6379> JSON.TOGGLE k2 .isAvailable
"true"
127.0.0.1:6379> JSON.TOGGLE k2 .isAvailable
"false"

JSON.TYPE

Report type of the values at the given path.

Syntax

JSON.TYPE <key> [path]

• key (required) – Redis key of JSON document type

• path (optional) – a JSON path. Defaults to the root if not provided

Return

Supported commands 149

Amazon MemoryDB for Redis Developer Guide

If the path is enhanced syntax:

• Array of strings, representing type of the value at each path. The type is one of {"null", "boolean",
"string", "number", "integer", "object" and "array"}.

• If a path does not exist, its corresponding return value is null.

• Empty array if the document key does not exist.

If the path is restricted syntax:

• String, type of the value

• Null if the document key does not exist.

• Null if the JSON path is invalid or does not exist.

Examples

Enhanced path syntax:

127.0.0.1:6379> JSON.SET k1 . '[1, 2.3, "foo", true, null, {}, []]'
OK
127.0.0.1:6379> JSON.TYPE k1 $[*]
1) integer
2) number
3) string
4) boolean
5) null
6) object
7) array

Restricted path syntax:

127.0.0.1:6379> JSON.SET k1 .
 '{"firstName":"John","lastName":"Smith","age":27,"weight":135.25,"isAlive":true,"address":
{"street":"21 2nd Street","city":"New
 York","state":"NY","zipcode":"10021-3100"},"phoneNumbers":
[{"type":"home","number":"212 555-1234"},{"type":"office","number":"646
 555-4567"}],"children":[],"spouse":null}'
OK
127.0.0.1:6379> JSON.TYPE k1

Supported commands 150

Amazon MemoryDB for Redis Developer Guide

object
127.0.0.1:6379> JSON.TYPE k1 .children
array
127.0.0.1:6379> JSON.TYPE k1 .firstName
string
127.0.0.1:6379> JSON.TYPE k1 .age
integer
127.0.0.1:6379> JSON.TYPE k1 .weight
number
127.0.0.1:6379> JSON.TYPE k1 .isAlive
boolean
127.0.0.1:6379> JSON.TYPE k1 .spouse
null

Tagging your MemoryDB resources

To help you manage your clusters and other MemoryDB resources, you can assign your own
metadata to each resource in the form of tags. Tags enable you to categorize your AWS resources
in different ways, for example, by purpose, owner, or environment. This is useful when you have
many resources of the same type—you can quickly identify a specific resource based on the tags
that you've assigned to it. This topic describes tags and shows you how to create them.

Warning

As a best practice, we recommend that you do not include sensitive data in your tags.

Tag basics

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional
value, both of which you define. Tags enable you to categorize your AWS resources in different
ways, for example, by purpose or owner. For example, you could define a set of tags for your
account's MemoryDB clusters that helps you track each cluster's owner and user group.

We recommend that you devise a set of tag keys that meets your needs for each resource type.
Using a consistent set of tag keys makes it easier for you to manage your resources. You can search
and filter the resources based on the tags you add. For more information about how to implement
an effective resource tagging strategy, see the AWS whitepaper Tagging Best Practices.

Tagging your MemoryDB resources 151

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

Amazon MemoryDB for Redis Developer Guide

Tags don't have any semantic meaning to MemoryDB and are interpreted strictly as a string of
characters. Also, tags are not automatically assigned to your resources. You can edit tag keys and
values, and you can remove tags from a resource at any time. You can set the value of a tag to
null. If you add a tag that has the same key as an existing tag on that resource, the new value
overwrites the old value. If you delete a resource, any tags for the resource are also deleted.

You can work with tags using the AWS Management Console, the AWS CLI, and the MemoryDB API.

If you're using IAM, you can control which users in your AWS account have permission to create,
edit, or delete tags. For more information, see Resource-level permissions.

Resources you can tag

You can tag most MemoryDB resources that already exist in your account. The table below lists
the resources that support tagging. If you're using the AWS Management Console, you can apply
tags to resources by using the Tag Editor. Some resource screens enable you to specify tags for a
resource when you create the resource; for example, a tag with a key of Name and a value that you
specify. In most cases, the console applies the tags immediately after the resource is created (rather
than during resource creation). The console may organize resources according to the Name tag, but
this tag doesn't have any semantic meaning to the MemoryDB service.

Additionally, some resource-creating actions enable you to specify tags for a resource when the
resource is created. If tags cannot be applied during resource creation, we roll back the resource
creation process. This ensures that resources are either created with tags or not created at all, and
that no resources are left untagged at any time. By tagging resources at the time of creation, you
can eliminate the need to run custom tagging scripts after resource creation.

If you're using the Amazon MemoryDB API, the AWS CLI, or an AWS SDK, you can use the Tags
parameter on the relevant MemoryDB API action to apply tags. They are:

• CreateCluster

• CopySnapshot

• CreateParameterGroup

• CreateSubnetGroup

• CreateSnapshot

• CreateACL

• CreateUser

Tagging your MemoryDB resources 152

https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon MemoryDB for Redis Developer Guide

The following table describes the MemoryDB resources that can be tagged, and the resources that
can be tagged on creation using the MemoryDB API, the AWS CLI, or an AWS SDK.

Tagging support for MemoryDB resources

ResourceSupports tags Supports tagging
on creation

parameter
group
Yes Yes

subnetgro
up
Yes Yes

clusterYes Yes

snapshotYes Yes

userYes Yes

aclYes Yes

You can apply tag-based resource-level permissions in your IAM policies to the MemoryDB API
actions that support tagging on creation to implement granular control over the users and groups
that can tag resources on creation. Your resources are properly secured from creation—tags that
are applied immediately to your resources. Therefore any tag-based resource-level permissions
controlling the use of resources are immediately effective. Your resources can be tracked and
reported on more accurately. You can enforce the use of tagging on new resources, and control
which tag keys and values are set on your resources.

For more information, see Tagging resources examples.

For more information about tagging your resources for billing, see Monitoring costs with cost
allocation tags.

Tagging clusters and snapshots

The following rules apply to tagging as part of request operations:

• CreateCluster :

Tagging your MemoryDB resources 153

Amazon MemoryDB for Redis Developer Guide

• If the --cluster-name is supplied:

If tags are included in the request, the cluster will be tagged.

• If the --snapshot-name is supplied:

If tags are included in the request, the cluster will be tagged only with those tags. If no tags
are included in the request, the snapshot tags will be added to the cluster.

• CreateSnapshot :

• If the --cluster-name is supplied:

If tags are included in the request, only the request tags will be added to the snapshot. If no
tags are included in the request, the cluster tags will be added to the snapshot.

• For automatic snapshots:

Tags will propagate from the cluster tags.

• CopySnapshot :

If tags are included in the request, only the request tags will be added to the snapshot. If no tags
are included in the request, the source snapshot tags will be added to the copied snapshot.

• TagResource and UntagResource :

Tags will be added/removed from the resource.

Tag restrictions

The following basic restrictions apply to tags:

• Maximum number of tags per resource – 50

• For each resource, each tag key must be unique, and each tag key can have only one value.

• Maximum key length – 128 Unicode characters in UTF-8.

• Maximum value length – 256 Unicode characters in UTF-8.

• Although MemoryDB allows for any character in its tags, other services can be restrictive. The
allowed characters across services are: letters, numbers, and spaces representable in UTF-8, and
the following characters: + - = . _ : / @

• Tag keys and values are case-sensitive.

Tagging your MemoryDB resources 154

Amazon MemoryDB for Redis Developer Guide

• The aws: prefix is reserved for AWS use. If a tag has a tag key with this prefix, then you can't
edit or delete the tag's key or value. Tags with the aws: prefix do not count against your tags per
resource limit.

You can't terminate, stop, or delete a resource based solely on its tags; you must specify the
resource identifier. For example, to delete snapshots that you tagged with a tag key called
DeleteMe, you must use the DeleteSnapshot action with the resource identifiers of the
snapshots, such as snap-1234567890abcdef0.

For more information on MemoryDB resources you can tag, see Resources you can tag.

Tagging resources examples

• Adding tags to a cluster.

aws memorydb tag-resource \
--resource-arn arn:aws:memorydb:us-east-1:111111222233:cluster/my-cluster \
--tags Key="project",Value="XYZ" Key="memorydb",Value="Service"

• Creating a cluster using tags.

aws memorydb create-cluster \
--cluster-name testing-tags \
--description cluster-test \
--subnet-group-name test \
--node-type db.r6g.large \
--acl-name open-access \
--tags Key="project",Value="XYZ" Key="memorydb",Value="Service"

• Creating a Snapshot with tags.

For this case, if you add tags on request, even if the cluster contains tags, the snapshot will
receive only the request tags.

aws memorydb create-snapshot \
--cluster-name testing-tags \
--snapshot-name bkp-testing-tags-mycluster \
--tags Key="work",Value="foo"

Tagging your MemoryDB resources 155

Amazon MemoryDB for Redis Developer Guide

Monitoring costs with cost allocation tags

When you add cost allocation tags to your resources in MemoryDB for Redis, you can track costs by
grouping expenses on your invoices by resource tag values.

A MemoryDB cost allocation tag is a key-value pair that you define and associate with a MemoryDB
resource. The key and value are case-sensitive. You can use a tag key to define a category, and the
tag value can be an item in that category. For example, you might define a tag key of CostCenter
and a tag value of 10010, indicating that the resource is assigned to the 10010 cost center. You
can also use tags to designate resources as being used for test or production by using a key such as
Environment and values such as test or production. We recommend that you use a consistent
set of tag keys to make it easier to track costs associated with your resources.

Use cost allocation tags to organize your AWS bill to reflect your own cost structure. To do
this, sign up to get your AWS account bill with tag key values included. Then, to see the cost of
combined resources, organize your billing information according to resources with the same tag
key values. For example, you can tag several resources with a specific application name, and then
organize your billing information to see the total cost of that application across several services.

You can also combine tags to track costs at a greater level of detail. For example, to track your
service costs by region you might use the tag keys Service and Region. On one resource you
might have the values MemoryDB and Asia Pacific (Singapore), and on another resource
the values MemoryDB and Europe (Frankfurt). You can then see your total MemoryDB costs
broken out by region. For more information, see Use Cost Allocation Tags in the AWS Billing User
Guide.

You can add MemoryDB cost allocation tags to MemoryDB clusters. When you add, list, modify,
copy, or remove a tag, the operation is applied only to the specified cluster.

Characteristics of MemoryDB cost allocation tags

• Cost allocation tags are applied to MemoryDB resources which are specified in CLI and API
operations as an ARN. The resource-type will be a "cluster".

ARN Format: arn:aws:memorydb:<region>:<customer-id>:<resource-
type>/<resource-name>

Sample ARN: arn:aws:memorydb:us-east-1:1234567890:cluster/my-cluster

• The tag key is the required name of the tag. The key's string value can be from 1 to 128 Unicode
characters long and cannot be prefixed with aws:. The string can contain only the set of Unicode

Monitoring costs with tags 156

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon MemoryDB for Redis Developer Guide

letters, digits, blank spaces, underscores (_), periods (.), colons (:), backslashes (\), equal signs
(=), plus signs (+), hyphens (-), or at signs (@).

• The tag value is the optional value of the tag. The value's string value can be from 1 to 256
Unicode characters in length and cannot be prefixed with aws:. The string can contain only the
set of Unicode letters, digits, blank spaces, underscores (_), periods (.), colons (:), backslashes
(\), equal signs (=), plus signs (+), hyphens (-), or at signs (@).

• A MemoryDB resource can have a maximum of 50 tags.

• Values do not have to be unique in a tag set. For example, you can have a tag set where the keys
Service and Application both have the value MemoryDB.

AWS does not apply any semantic meaning to your tags. Tags are interpreted strictly as character
strings. AWS does not automatically set any tags on any MemoryDB resource.

Managing your cost allocation tags using the AWS CLI

You can use the AWS CLI to add, modify, or remove cost allocation tags.

Sample arn: arn:aws:memorydb:us-east-1:1234567890:cluster/my-cluster

Topics

• Listing tags using the AWS CLI

• Adding tags using the AWS CLI

• Modifying tags using the AWS CLI

• Removing tags using the AWS CLI

Listing tags using the AWS CLI

You can use the AWS CLI to list tags on an existing MemoryDB resource by using the list-tags
operation.

The following code uses the AWS CLI to list the tags on the MemoryDB cluster my-cluster in
region us-east-1.

For Linux, macOS, or Unix:

aws memorydb list-tags \

Managing tags using the AWS CLI 157

https://docs.aws.amazon.com/cli/latest/reference/memorydb/list-tags.html

Amazon MemoryDB for Redis Developer Guide

 --resource-arn arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster

For Windows:

aws memorydb list-tags ^
 --resource-arn arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster

Output from this operation will look something like the following, a list of all the tags on the
resource.

{
 "TagList": [
 {
 "Value": "10110",
 "Key": "CostCenter"
 },
 {
 "Value": "EC2",
 "Key": "Service"
 }
]
}

If there are no tags on the resource, the output will be an empty TagList.

{
 "TagList": []
}

For more information, see the AWS CLI for MemoryDB list-tags.

Adding tags using the AWS CLI

You can use the AWS CLI to add tags to an existing MemoryDB resource by using the tag-resource
CLI operation. If the tag key does not exist on the resource, the key and value are added to the
resource. If the key already exists on the resource, the value associated with that key is updated to
the new value.

The following code uses the AWS CLI to add the keys Service and Region with the values
memorydb and us-east-1 respectively to the cluster my-cluster in region us-east-1.

Managing tags using the AWS CLI 158

https://docs.aws.amazon.com/cli/latest/reference/memorydb/list-tags.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/tag-resource.html

Amazon MemoryDB for Redis Developer Guide

For Linux, macOS, or Unix:

aws memorydb tag-resource \
 --resource-arn arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster \
 --tags Key=Service,Value=memorydb \
 Key=Region,Value=us-east-1

For Windows:

aws memorydb tag-resource ^
 --resource-arn arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster ^
 --tags Key=Service,Value=memorydb ^
 Key=Region,Value=us-east-1

Output from this operation will look something like the following, a list of all the tags on the
resource following the operation.

{
 "TagList": [
 {
 "Value": "memorydb",
 "Key": "Service"
 },
 {
 "Value": "us-east-1",
 "Key": "Region"
 }
]
}

For more information, see the AWS CLI for MemoryDB tag-resource.

You can also use the AWS CLI to add tags to a cluster when you create a new cluster by using the
operation create-cluster.

Modifying tags using the AWS CLI

You can use the AWS CLI to modify the tags on a MemoryDB cluster.

To modify tags:

Managing tags using the AWS CLI 159

https://docs.aws.amazon.com/cli/latest/reference/memorydb/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-cluster.html

Amazon MemoryDB for Redis Developer Guide

• Use tag-resource to either add a new tag and value or to change the value associated with an
existing tag.

• Use untag-resource to remove specified tags from the resource.

Output from either operation will be a list of tags and their values on the specified cluster.

Removing tags using the AWS CLI

You can use the AWS CLI to remove tags from an existing from a MemoryDB cluster by using the
untag-resource operation.

The following code uses the AWS CLI to remove the tags with the keys Service and Region from
the cluster my-cluster in the us-east-1 region.

For Linux, macOS, or Unix:

aws memorydb untag-resource \
 --resource-arn arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster \
 --tag-keys Region Service

For Windows:

aws memorydb untag-resource ^
 --resource-arn arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster ^
 --tag-keys Region Service

Output from this operation will look something like the following, a list of all the tags on the
resource following the operation.

{
 "TagList": []
}

For more information, see the AWS CLI for MemoryDB untag-resource.

Managing your cost allocation tags using the MemoryDB API

You can use the MemoryDB API to add, modify, or remove cost allocation tags.

Managing tags using the MemoryDB API 160

https://docs.aws.amazon.com/cli/latest/reference/memorydb/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/untag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/untag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/untag-resource.html

Amazon MemoryDB for Redis Developer Guide

Cost allocation tags are applied to MemoryDB for clusters. The cluster to be tagged is specified
using an ARN (Amazon Resource Name).

Sample arn: arn:aws:memorydb:us-east-1:1234567890:cluster/my-cluster

Topics

• Listing tags using the MemoryDB API

• Adding tags using the MemoryDB API

• Modifying tags using the MemoryDB API

• Removing tags using the MemoryDB API

Listing tags using the MemoryDB API

You can use the MemoryDB API to list tags on an existing resource by using the ListTags operation.

The following code uses the MemoryDB API to list the tags on the resource my-cluster in the us-
east-1 region.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=ListTags
 &ResourceArn=arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Version=2021-01-01
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

Adding tags using the MemoryDB API

You can use the MemoryDB API to add tags to an existing MemoryDB cluster by using the
TagResource operation. If the tag key does not exist on the resource, the key and value are added
to the resource. If the key already exists on the resource, the value associated with that key is
updated to the new value.

The following code uses the MemoryDB API to add the keys Service and Region with the values
memorydb and us-east-1 respectively to the resource my-cluster in the us-east-1 region.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=TagResource

Managing tags using the MemoryDB API 161

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_ListTags.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_TagResource.html

Amazon MemoryDB for Redis Developer Guide

 &ResourceArn=arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Tags.member.1.Key=Service
 &Tags.member.1.Value=memorydb
 &Tags.member.2.Key=Region
 &Tags.member.2.Value=us-east-1
 &Version=2021-01-01
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

For more information, see TagResource.

Modifying tags using the MemoryDB API

You can use the MemoryDB API to modify the tags on a MemoryDB cluster.

To modify the value of a tag:

• Use TagResource operation to either add a new tag and value or to change the value of an
existing tag.

• Use UntagResource to remove tags from the resource.

Output from either operation will be a list of tags and their values on the specified resource.

Removing tags using the MemoryDB API

You can use the MemoryDB API to remove tags from an existing MemoryDB cluster by using the
UntagResource operation.

The following code uses the MemoryDB API to remove the tags with the keys Service and
Region from the cluster my-cluster in region us-east-1.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UntagResource
 &ResourceArn=arn:aws:memorydb:us-east-1:0123456789:cluster/my-cluster
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &TagKeys.member.1=Service
 &TagKeys.member.2=Region
 &Version=2021-01-01

Managing tags using the MemoryDB API 162

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UntagResource.html

Amazon MemoryDB for Redis Developer Guide

 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

Managing maintenance

Every cluster has a weekly maintenance window during which any system changes are applied. If
you don't specify a preferred maintenance window when you create or modify a cluster, MemoryDB
assigns a 60-minute maintenance window within your region's maintenance window on a randomly
chosen day of the week.

The 60-minute maintenance window is chosen at random from an 8-hour block of time per region.
The following table lists the time blocks for each region from which the default maintenance
windows are assigned. You may choose a preferred maintenance window outside the region's
maintenance window block.

Region Code Region Name Region Maintenance Window

ap-northeast-1 Asia Pacific (Tokyo) Region 13:00–21:00 UTC

ap-northeast-2 Asia Pacific (Seoul) Region 12:00–20:00 UTC

ap-south-1 Asia Pacific (Mumbai) Region 17:30–1:30 UTC

ap-southeast-1 Asia Pacific (Singapore) Region 14:00–22:00 UTC

ap-east-1 Asia Pacific (Hong Kong) Region 13:00–21:00 UTC

ap-southeast-2 Asia Pacific (Sydney) Region 12:00–20:00 UTC

cn-north-1 China (Beijing) Region 14:00–22:00 UTC

cn-northwest-1 China (Ningxia) Region 14:00–22:00 UTC

eu-west-3 EU (Paris) Region 23:59–07:29 UTC

eu-central-1 Europe (Frankfurt) Region 23:00–07:00 UTC

eu-west-1 Europe (Ireland) Region 22:00–06:00 UTC

eu-west-2 Europe (London) Region 23:00–07:00 UTC

Managing maintenance 163

Amazon MemoryDB for Redis Developer Guide

Region Code Region Name Region Maintenance Window

sa-east-1 South America (São Paulo) Region 01:00–09:00 UTC

ca-central-1 Canada (Central) Region 03:00–11:00 UTC

us-east-1 US East (N. Virginia) Region 03:00–11:00 UTC

us-east-1 US East (Ohio) Region 04:00–12:00 UTC

us-west-1 US West (N. California) Region 06:00–14:00 UTC

us-west-2 US West (Oregon) Region 06:00–14:00 UTC

Changing your Cluster's Maintenance Window

The maintenance window should fall at the time of lowest usage and thus might need modification
from time to time. You can modify your cluster to specify a time range of up to 24 hours in
duration during which any maintenance activities you have requested should occur. Any deferred or
pending cluster modifications you requested occur during this time.

More information

For information on your maintenance window and node replacement, see the following:

• Replacing nodes—Managing node replacement

• Modifying a MemoryDB cluster—Changing a cluster's maintenance window

Best practices

Following, you can find recommended best practices for MemoryDB for Redis. Following these
improves your cluster's performance and reliability.

Topics

• Restricted Redis Commands

• Resilience in MemoryDB for Redis

• Best practices: Pub/Sub and Enhanced I/O Multiplexing

• Best practices: Online cluster resizing

Best practices 164

Amazon MemoryDB for Redis Developer Guide

Best practices 165

Amazon MemoryDB for Redis Developer Guide

Restricted Redis Commands

To deliver a managed service experience, MemoryDB restricts access to certain commands that
require advanced privileges. The following commands are unavailable:

• acl deluser

• acl load

• acl save

• acl setuser

• bgrewriteaof

• bgsave

• cluster addslot

• cluster delslot

• cluster setslot

• config

• debug

• migrate

• module

• psync

• replicaof

• save

• shutdown

• slaveof

• sync

Restricted Redis Commands 166

Amazon MemoryDB for Redis Developer Guide

Resilience in MemoryDB for Redis

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, MemoryDB for Redis offers several features to help
support your data resiliency and snapshot needs.

Topics

• Mitigating Failures

Mitigating Failures

When planning your MemoryDB for Redis implementation, you should plan so that failures have
a minimal impact upon your application and data. The topics in this section cover approaches you
can take to protect your application and data from failures.

Mitigating Failures: MemoryDB clusters

A MemoryDB cluster is comprised of a single primary node which your application can both read
from and write to, and from 0 to 5 read-only replica nodes. However, we highly recommend to use
at least 1 replica for high availability. Whenever data is written to the primary node it is persisted
to the transaction log and asynchronously updated on the replica nodes.

When a read replica fails

1. MemoryDB detects the failed replica.

2. MemoryDB takes the failed node offline.

3. MemoryDB launches and provisions a replacement node in the same AZ.

4. The new node synchronizes with the transaction log.

During this time your application can continue reading and writing using the other nodes.

Resilience 167

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon MemoryDB for Redis Developer Guide

MemoryDB Multi-AZ

If Multi-AZ is activated on your MemoryDB clusters, a failed primary will be detected and replaced
automatically.

1. MemoryDB detects the primary node failure.

2. MemoryDB fails over to a replica after ensuring it is consistent with the failed primary.

3. MemoryDB spins up a replica in the failed primary's AZ.

4. The new node syncs with the transaction log.

Failing over to a replica node is generally faster than creating and provisioning a new primary
node. This means your application can resume writing to your primary node sooner.

For more information, see Minimizing downtime in MemoryDB with Multi-AZ.

Resilience 168

Amazon MemoryDB for Redis Developer Guide

Best practices: Pub/Sub and Enhanced I/O Multiplexing

When using Redis version 7 or later, we recommend using sharded Pub/Sub. You also improve
throughput and latency using enhanced I/O multiplexing, which is automatically available when
using Redis version 7 or later and requires no client changes. It is ideal for pub/sub workloads,
which often are throughput-bound with multiple client connections.

Best practices: Online cluster resizing

Resharding involves adding and removing shards or nodes to your cluster and redistributing key
spaces. As a result, multiple things have an impact on the resharding operation, such as the load
on the cluster, memory utilization, and overall size of data. For the best experience, we recommend
that you follow overall cluster best practices for uniform workload pattern distribution. In addition,
we recommend taking the following steps.

Before initiating resharding, we recommend the following:

• Test your application – Test your application behavior during resharding in a staging
environment if possible.

• Get early notification for scaling issues – Resharding is a compute-intensive operation. Because
of this, we recommend keeping CPU utilization under 80 percent on multicore instances and
less than 50 percent on single core instances during resharding. Monitor MemoryDB metrics
and initiate resharding before your application starts observing scaling issues. Useful metrics
to track are CPUUtilization, NetworkBytesIn, NetworkBytesOut, CurrConnections,
NewConnections, FreeableMemory, SwapUsage, and BytesUsedForMemoryDB.

• Ensure sufficient free memory is available before scaling in – If you're scaling in, ensure that
free memory available on the shards to be retained is at least 1.5 times the memory used on the
shards you plan to remove.

• Initiate resharding during off-peak hours – This practice helps to reduce the latency and
throughput impact on the client during the resharding operation. It also helps to complete
resharding faster as more resources can be used for slot redistribution.

• Review client timeout behavior – Some clients might observe higher latency during online
cluster resizing. Configuring your client library with a higher timeout can help by giving the
system time to connect even under higher load conditions on server. In some cases, you might
open a large number of connections to the server. In these cases, consider adding exponential
backoff to reconnect logic. Doing this can help prevent a burst of new connections hitting the
server at the same time.

Best practices: Pub/Sub and Enhanced I/O Multiplexing 169

https://redis.io/docs/manual/pubsub/#sharded-pubsub
https://aws.amazon.com/memorydb/features/#Ultra-fast_performance

Amazon MemoryDB for Redis Developer Guide

During resharding, we recommend the following:

• Avoid expensive commands – Avoid running any computationally and I/O intensive operations,
such as the KEYS and SMEMBERS commands. We suggest this approach because these operations
increase the load on the cluster and have an impact on the performance of the cluster. Instead,
use the SCAN and SSCAN commands.

• Follow Lua best practices – Avoid long running Lua scripts, and always declare keys used in Lua
scripts up front. We recommend this approach to determine that the Lua script is not using cross
slot commands. Ensure that the keys used in Lua scripts belong to the same slot.

After resharding, note the following:

• Scale-in might be partially successful if insufficient memory is available on target shards. If such
a result occurs, review available memory and retry the operation, if necessary.

• Slots with large items are not migrated. In particular, slots with items larger than 256 MB post-
serialization are not migrated.

• FLUSHALL and FLUSHDB commands are not supported inside Lua scripts during a resharding
operation.

Understanding MemoryDB replication

MemoryDB implements replication with data partitioned across up to 500 shards.

Each shard in a cluster has a single read/write primary node and up to 5 read-only replica nodes.
Each primary node can sustain up to 100 MB/s. You can create a cluster with higher number of
shards and lower number of replicas totaling up to 500 nodes per cluster. This cluster configuration
can range from 500 shards and 0 replicas to 100 shards and 4 replicas, which is the maximum
number of replicas allowed.

Consistency

In MemoryDB, primary nodes are strongly consistent. Successful write operations are durably
stored in a distributed Multi-AZ transactional logs before returning to clients. Read operations on
primaries always return the most up-to-date data reflecting the effects from all prior successful
write operations. Such strong consistency is preserved across primary failovers.

Understanding MemoryDB replication 170

Amazon MemoryDB for Redis Developer Guide

In MemoryDB, replica nodes are eventually consistent. Read operations from replicas (using
READONLY command) might not always reflect the effects of the most recent successful write
operations, with lag metrics published to CloudWatch. However, read operations from a single
replica are sequentially consistent. Successful write operations take effect on each replica in the
same order they were executed on the primary.

Replication in a cluster

Each read replica in a shard maintains a copy of the data from the shard's primary node.
Asynchronous replication mechanisms using the transaction logs are used to keep the read replicas
synchronized with the primary. Applications can read from any node in the cluster. Applications can
write only to the primary nodes. Read replicas enhance read scalability. Since MemoryDB stores the
data in durable transaction logs, there is no risk that data will be lost. Data is partitioned across the
shards in a MemoryDB cluster.

Applications use the MemoryDB cluster's cluster endpoint to connect with the nodes in the cluster.
For more information, see Finding connection endpoints.

MemoryDB clusters are regional and can contain nodes only from one Region. To improve fault
tolerance, you must provision primaries and read replicas across multiple Availability Zones within
that region.

Using replication, which provides you with Multi-AZ, is strongly recommended for all MemoryDB
clusters. For more information, see Minimizing downtime in MemoryDB with Multi-AZ.

Replication in a cluster 171

Amazon MemoryDB for Redis Developer Guide

Minimizing downtime in MemoryDB with Multi-AZ

There are a number of instances where MemoryDB may need to replace a primary node; these
include certain types of planned maintenance and the unlikely event of a primary node or
Availability Zone failure.

The response to node failure depends on which node has failed. However, in all cases, MemoryDB
ensures that no data is lost during node replacements or failover. For example, if a replica fails,
the failed node is replaced and data is synced from the transaction log. If the primary node fails, a
failover is triggered to a consistent replica which ensures no data is lost during failover. The writes
are now served from the new primary node. The old primary node is then replaced and synced
from the transaction log.

If a primary node fails on a single node shard (no replicas), MemoryDB stops accepting writes until
the primary node is replaced and synced from the transaction log.

Node replacement may result in some downtime for the cluster, but if Multi-AZ is active, the
downtime is minimized. The role of primary node will automatically fail over to one of the replicas.
There is no need to create and provision a new primary node, because MemoryDB will handle this
transparently. This failover and replica promotion ensure that you can resume writing to the new
primary as soon as promotion is complete.

In case of planned node replacements initiated due to maintenance updates or service updates, be
aware the planned node replacements complete while the cluster serves incoming write requests.

Multi-AZ on your MemoryDB clusters improves your fault tolerance. This is true particularly in
cases where your cluster's primary nodes become unreachable or fail for any reason. Multi-AZ on
MemoryDB clusters requires each shard to have more than one node, and is automatically enabled.

Topics

• Failure scenarios with Multi-AZ responses

• Testing automatic failover

Failure scenarios with Multi-AZ responses

If Multi-AZ is active, a failed primary node fails over to an available replica. The replica is
automatically synchronized with the transaction log and becomes primary, which is much faster
than creating and reprovisioning a new primary node. This process usually takes just a few seconds
until you can write to the cluster again.

Minimizing downtime with Multi-AZ 172

Amazon MemoryDB for Redis Developer Guide

When Multi-AZ is active, MemoryDB continually monitors the state of the primary node. If the
primary node fails, one of the following actions is performed depending on the type of failure.

Topics

• Failure scenarios when only the primary node fails

• Failure scenarios when the primary node and some replicas fail

• Failure scenarios when the entire cluster fails

Failure scenarios when only the primary node fails

If only the primary node fails, a replica will automatically become primary. A replacement replica is
then created and provisioned in the same Availability Zone as the failed primary.

When only the primary node fails, MemoryDB Multi-AZ does the following:

1. The failed primary node is taken offline.

2. An up-to-date replica automatically become primary.

Writes can resume as soon as the failover process is complete, typically just a few seconds.

3. A replacement replica is launched and provisioned.

The replacement replica is launched in the Availability Zone that the failed primary node was in
so that the distribution of nodes is maintained.

4. The replica syncs with the transaction log.

For information about finding the endpoints of a cluster, see the following topics:

• Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

Failure scenarios when the primary node and some replicas fail

If the primary and at least one replica fails, an up-to-date replica is promoted to primary cluster.
New replicas are also created and provisioned in the same Availability Zones as the failed nodes.

When the primary node and some replicas fail, MemoryDB Multi-AZ does the following:

Minimizing downtime with Multi-AZ 173

Amazon MemoryDB for Redis Developer Guide

1. The failed primary node and failed replicas are taken offline.

2. An available replica will become the primary node.

Writes can resume as soon as the failover is complete, typically just a few seconds.

3. Replacement replicas are created and provisioned.

The replacement replicas are created in the Availability Zones of the failed nodes so that the
distribution of nodes is maintained.

4. All nodes sync with the transaction log.

For information about finding the endpoints of a cluster, see the following topics:

• Finding the Endpoint for a MemoryDB Cluster (AWS CLI)

• Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

Failure scenarios when the entire cluster fails

If everything fails, all the nodes are recreated and provisioned in the same Availability Zones as the
original nodes.

There is no data loss in this scenario as the data was persisted in the transaction log.

When the entire cluster fails, MemoryDB Multi-AZ does the following:

1. The failed primary node and replicas are taken offline.

2. A replacement primary node is created and provisioned, syncing with the transaction log.

3. Replacement replicas are created and provisioned, syncing with the transaction log.

The replacements are created in the Availability Zones of the failed nodes so that the
distribution of nodes is maintained.

For information about finding the endpoints of a cluster, see the following topics:

• Finding the Endpoint for a MemoryDB Cluster (AWS CLI)

• Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

Minimizing downtime with Multi-AZ 174

Amazon MemoryDB for Redis Developer Guide

Minimizing downtime with Multi-AZ 175

Amazon MemoryDB for Redis Developer Guide

Testing automatic failover

You can test automatic failover using the MemoryDB console, the AWS CLI, and the MemoryDB API.

When testing, note the following:

• You can use this operation up to five times in any 24-hour period.

• If you call this operation on shards in different clusters, you can make the calls concurrently.

• In some cases, you might call this operation multiple times on different shards in the same
MemoryDB cluster. In such cases, the first node replacement must complete before a subsequent
call can be made.

• To determine whether the node replacement is complete, check events using the MemoryDB
for Redis console, the AWS CLI, or the MemoryDB API. Look for the following events related to
FailoverShard, listed here in order of likely occurrence:

1. cluster message: FailoverShard API called for shard <shard-id>

2. cluster message: Failover from primary node <primary-node-id> to replica
node <node-id> completed

3. cluster message: Recovering nodes <node-id>

4. cluster message: Finished recovery for nodes <node-id>

For more information, see the following:

• DescribeEvents in the MemoryDB API Reference

• This API is designed for testing the behavior of your application in case of MemoryDB failover.
It is not designed to be an operational tool for initiating a failover to address an issue with the
cluster. Moreover, in certain conditions such as large-scale operational events, AWS may block
this API.

Topics

• Testing automatic failover using the AWS Management Console

• Testing automatic failover using the AWS CLI

• Testing automatic failover using the MemoryDB API

Testing automatic failover using the AWS Management Console

Use the following procedure to test automatic failover with the console.

Minimizing downtime with Multi-AZ 176

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeEvents.html

Amazon MemoryDB for Redis Developer Guide

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. Choose the radio button to the left of the cluster you want to test. This cluster must have at
least one replica node.

3. In the Details area, confirm that this cluster is Multi-AZ enabled. If the cluster isn't Multi-AZ
enabled, either choose a different cluster or modify this cluster to enable Multi-AZ. For more
information, see Modifying a MemoryDB cluster.

4. Choose the cluster's name.

5. On the Shards and nodes page, for the shard on which you want to test failover, choose the
shard's name.

6. For the node, choose Failover Primary.

7. Choose Continue to fail over the primary, or Cancel to cancel the operation and not fail over
the primary node.

During the failover process, the console continues to show the node's status as available. To
track the progress of your failover test, choose Events from the console navigation pane. On
the Events tab, watch for events that indicate your failover has started (FailoverShard API
called) and completed (Recovery completed).

Testing automatic failover using the AWS CLI

You can test automatic failover on any Multi-AZ enabled cluster using the AWS CLI operation
failover-shard.

Parameters

• --cluster-name – Required. The cluster that is to be tested.

• --shard-name – Required. The name of the shard you want to test automatic failover on. You
can test a maximum of five shards in a rolling 24-hour period.

The following example uses the AWS CLI to call failover-shard on the shard 0001 in the
MemoryDB cluster my-cluster.

For Linux, macOS, or Unix:

Minimizing downtime with Multi-AZ 177

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/failover-shard.html

Amazon MemoryDB for Redis Developer Guide

aws memorydb failover-shard \
 --cluster-name my-cluster \
 --shard-name 0001

For Windows:

aws memorydb failover-shard ^
 --cluster-name my-cluster ^
 --shard-name 0001

To track the progress of your failover, use the AWS CLI describe-events operation.

It will return the following JSON response:

{
 "Events": [
 {
 "SourceName": "my-cluster",
 "SourceType": "cluster",
 "Message": "Failover to replica node my-cluster-0001-002 completed",
 "Date": "2021-08-22T12:39:37.568000-07:00"
 },
 {
 "SourceName": "my-cluster",
 "SourceType": "cluster",
 "Message": "Starting failover for shard 0001",
 "Date": "2021-08-22T12:39:10.173000-07:00"
 }
]
}

For more information, see the following:

• failover-shard

• describe-events

Minimizing downtime with Multi-AZ 178

https://docs.aws.amazon.com/cli/latest/reference/memorydb/failover-shard.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-events.html

Amazon MemoryDB for Redis Developer Guide

Testing automatic failover using the MemoryDB API

The following example calls FailoverShard on the shard 0003 in the cluster memorydb00.

Example Testing automatic failover

https://memory-db.us-east-1.amazonaws.com/
 ?Action=FailoverShard
 &ShardName=0003
 &ClusterName=memorydb00
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T192317Z
 &X-Amz-Credential=<credential>

To track the progress of your failover, use the MemoryDB DescribeEvents API operation.

For more information, see the following:

• FailoverShard

• DescribeEvents

Minimizing downtime with Multi-AZ 179

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_FailoverShard.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeEvents.html

Amazon MemoryDB for Redis Developer Guide

Changing the number of replicas

You can dynamically increase or decrease the number of read replicas in your MemoryDB cluster
using the AWS Management Console, the AWS CLI, or the MemoryDB API. All shards must have the
same number of replicas.

Changing the number of replicas 180

Amazon MemoryDB for Redis Developer Guide

Increasing the number of replicas in a cluster

You can increase the number of replicas in a MemoryDB cluster up to a maximum of five per shard.
You can do so using the AWS Management Console, the AWS CLI, or the MemoryDB API.

Topics

• Using the AWS Management Console

• Using the AWS CLI

• Using the MemoryDB API

Using the AWS Management Console

To increase the number of replicas in a MemoryDB cluster (console), see Adding / Removing nodes
from a cluster.

Using the AWS CLI

To increase the number of replicas in a MemoryDB cluster, use the update-cluster command
with the following parameters:

• --cluster-name – Required. Identifies which cluster you want to increase the number of
replicas in.

• --replica-configuration – Required. Allows you to set the number of replicas. To increase
the replica count, set the ReplicaCount property to the number of replicas that you want in
this shard at the end of this operation.

Example

The following example increases the number of replicas in the cluster my-cluster to 2.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --replica-configuration \
 ReplicaCount=2

For Windows:

Changing the number of replicas 181

Amazon MemoryDB for Redis Developer Guide

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --replica-configuration ^
 ReplicaCount=2

It returns the following JSON response:

{
 "Cluster": {
 "Name": "my-cluster",
 "Status": "updating",
 "NumberOfShards": 1,
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxx.memorydb.us-east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
}

To view the details of the updated cluster once its status changes from updating to available, use
the following command:

For Linux, macOS, or Unix:

aws memorydb describe-clusters \
 --cluster-name my-cluster
 --show-shard-details

For Windows:

Changing the number of replicas 182

Amazon MemoryDB for Redis Developer Guide

aws memorydb describe-clusters ^
 --cluster-name my-cluster
 --show-shard-details

It will return the following JSON response:

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Status": "available",
 "NumberOfShards": 1,
 "Shards": [
 {
 "Name": "0001",
 "Status": "available",
 "Slots": "0-16383",
 "Nodes": [
 {
 "Name": "my-cluster-0001-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-003",

Changing the number of replicas 183

Amazon MemoryDB for Redis Developer Guide

 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-22T12:59:31.844000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 3
 }
],
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
]
}

For more information about increasing the number of replicas using the CLI, see update-cluster in
the AWS CLI Command Reference.

Changing the number of replicas 184

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Using the MemoryDB API

To increase the number of replicas in a MemoryDB shard, use the UpdateCluster action with the
following parameters:

• ClusterName – Required. Identifies which cluster you want to increase the number of replicas
in.

• ReplicaConfiguration – Required. Allows you to set the number of replicas. To increase the
replica count, set the ReplicaCount property to the number of replicas that you want in this
shard at the end of this operation.

Example

The following example increases the number of replicas in the cluster sample-cluster to three.
When the example is finished, there are three replicas in each shard. This number applies whether
this is a MemoryDB cluster with a single shard or a MemoryDB cluster with multiple shards.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateCluster
 &ReplicaConfiguration.ReplicaCount=3
 &ClusterName=sample-cluster
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

For more information about increasing the number of replicas using the API, see UpdateCluster.

Changing the number of replicas 185

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Decreasing the number of replicas in a cluster

You can decrease the number of replicas in a cluster for MemoryDB. You can decrease the number
of replicas to zero, but you can't failover to a replica if your primary node fails.

You can use the AWS Management Console, the AWS CLI or the MemoryDB API to decrease the
number of replicas in a cluster.

Topics

• Using the AWS Management Console

• Using the AWS CLI

• Using the MemoryDB API

Using the AWS Management Console

To decrease the number of replicas in a MemoryDB cluster (console), see Adding / Removing nodes
from a cluster.

Using the AWS CLI

To decrease the number of replicas in a MemoryDB cluster, use the update-cluster command
with the following parameters:

• --cluster-name – Required. Identifies which cluster you want to decrease the number of
replicas in.

• --replica-configuration – Required.

ReplicaCount – Set this property to specify the number of replica nodes you want.

Example

The following example uses --replica-configuration to decrease the number of replicas in
the cluster my-cluster to the value specified.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --replica-configuration \

Changing the number of replicas 186

Amazon MemoryDB for Redis Developer Guide

 ReplicaCount=1

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --replica-configuration ^
 ReplicaCount=1 ^

It will return the following JSON response:

{
 "Cluster": {
 "Name": "my-cluster",
 "Status": "updating",
 "NumberOfShards": 1,
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
}

To view the details of the updated cluster once its status changes from updating to available, use
the following command:

For Linux, macOS, or Unix:

aws memorydb describe-clusters \

Changing the number of replicas 187

Amazon MemoryDB for Redis Developer Guide

 --cluster-name my-cluster
 --show-shard-details

For Windows:

aws memorydb describe-clusters ^
 --cluster-name my-cluster
 --show-shard-details

It will return the following JSON response:

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Status": "available",
 "NumberOfShards": 1,
 "Shards": [
 {
 "Name": "0001",
 "Status": "available",
 "Slots": "0-16383",
 "Nodes": [
 {
 "Name": "my-cluster-0001-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",

Changing the number of replicas 188

Amazon MemoryDB for Redis Developer Guide

 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2
 }
],
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
]
}

For more information about decreasing the number of replicas using the CLI, see update-cluster in
the AWS CLI Command Reference.

Using the MemoryDB API

To decrease the number of replicas in a MemoryDB cluster, use the UpdateCluster action with
the following parameters:

• ClusterName – Required. Identifies which cluster you want to decrease the number of replicas
in.

• ReplicaConfiguration – Required. Allows you to set the number of replicas.

ReplicaCount – Set this property to specify the number of replica nodes you want.

Changing the number of replicas 189

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html

Amazon MemoryDB for Redis Developer Guide

Example

The following example uses ReplicaCount to decrease the number of replicas in the cluster
sample-cluster to one. When the example is finished, there is one replica in each shard. This
number applies whether this is a MemoryDB cluster with a single shard or a MemoryDB cluster with
multiple shards.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateCluster
 &ReplicaConfiguration.ReplicaCount=1
 &ClusterName=sample-cluster
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

For more information about decreasing the number of replicas using the API, see UpdateCluster.

Snapshot and restore

MemoryDB for Redis clusters automatically back up data to a Multi-AZ transactional log, but you
can choose to create point-in-time snapshots of a cluster either periodically or on-demand. These
snapshots can be used to recreate a cluster at a previous point or to seed a brand new cluster. The
snapshot consists of the cluster's metadata, along with all of the data in the cluster. All snapshots
are written to Amazon Simple Storage Service (Amazon S3), which provides durable storage. At
any time, you can restore your data by creating a new MemoryDB cluster and populating it with
data from a snapshot. With MemoryDB, you can manage snapshots using the AWS Management
Console, the AWS Command Line Interface (AWS CLI), and the MemoryDB API.

Topics

• Snapshot constraints

• Snapshot costs

• Scheduling automatic snapshots

• Making manual snapshots

• Creating a final snapshot

• Describing snapshots

Snapshot and restore 190

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

• Copying a snapshot

• Exporting a snapshot

• Restoring from a snapshot

• Seeding a new cluster with an externally created snapshot

• Tagging snapshots

• Deleting a snapshot

Snapshot constraints

Consider the following constraints when planning or making snapshots:

• For MemoryDB clusters, snapshot and restore are available for all supported node types.

• During any contiguous 24-hour period, you can create no more than 20 manual snapshots per
cluster.

• MemoryDB only supports taking snapshots on the cluster level. MemoryDB doesn't support
taking snapshots at the shard or node level.

• During the snapshot process, you can't run any other API or CLI operations on the cluster.

• If you delete a cluster and request a final snapshot, MemoryDB always takes the snapshot
from the primary nodes. This ensures that you capture the very latest data before the cluster is
deleted.

Snapshot costs

Using MemoryDB, you can store one snapshot for each active MemoryDB cluster free of charge.
Storage space for additional snapshots is charged at a rate of $0.085/GB per month for all AWS
Regions. There are no data transfer fees for creating a snapshot, or for restoring data from a
snapshot to a MemoryDB cluster.

Constraints 191

Amazon MemoryDB for Redis Developer Guide

Scheduling automatic snapshots

For any MemoryDB cluster, you can enable automatic snapshots. When automatic snapshots are
enabled, MemoryDB creates a snapshot of the cluster on a daily basis. There is no impact on the
cluster and the change is immediate. For more information, see Restoring from a snapshot.

When you schedule automatic snapshots, you should plan the following settings:

• Snapshot window – A period during each day when MemoryDB begins creating a snapshot. The
minimum length for the snapshot window is 60 minutes. You can set the snapshot window for
any time when it's most convenient for you, or for a time of day that avoids doing snapshots
during particularly high-utilization periods.

If you don't specify a snapshot window, MemoryDB assigns one automatically.

• Snapshot retention limit – The number of days the snapshot is retained in Amazon S3. For
example, if you set the retention limit to 5, then a snapshot taken today is retained for 5 days.
When the retention limit expires, the snapshot is automatically deleted.

The maximum snapshot retention limit is 35 days. If the snapshot retention limit is set to 0,
automatic snapshots are disabled for the cluster. MemoryDB data is still fully durable even with
automatic snapshotting disabled.

You can enable or disable automatic snapshots when creating a MemoryDB cluster using the
MemoryDB console, the AWS CLI, or the MemoryDB API. You can enable automatic snapshots when
you create a MemoryDB cluster by checking the Enable Automatic Backups box in the Snapshots
section. For more information, Creating a MemoryDB cluster.

Scheduling automatic snapshots 192

Amazon MemoryDB for Redis Developer Guide

Making manual snapshots

In addition to automatic snapshots, you can create a manual snapshot at any time. Unlike
automatic snapshots, which are automatically deleted after a specified retention period, manual
snapshots do not have a retention period after which they are automatically deleted. You must
manually delete any manual snapshot. Even if you delete a cluster or node, any manual snapshots
from that cluster or node are retained. If you no longer want to keep a manual snapshot, you must
explicitly delete it yourself.

Manual snapshots are useful for testing and archiving. For example, suppose that you've developed
a set of baseline data for testing purposes. You can create a manual snapshot of the data and
restore it whenever you want. After you test an application that modifies the data, you can reset
the data by creating a new cluster and restoring from your baseline snapshot. When the cluster is
ready, you can test your applications against the baseline data again—and repeat this process as
often as needed.

In addition to directly creating a manual snapshot, you can create a manual snapshot in one of the
following ways:

• Copying a snapshot – It does not matter whether the source snapshot was created automatically
or manually.

• Creating a final snapshot – Create a snapshot immediately before deleting a cluster.

Other topics of importance

• Snapshot constraints

• Snapshot costs

You can create a manual snapshot of a node using the AWS Management Console, the AWS CLI, or
the MemoryDB API.

Creating a manual snapshot (Console)

To create a snapshot of a cluster (console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

Making manual snapshots 193

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

2. from the left navigation pane, choose Clusters.

The MemoryDB clusters screen appears.

3. choose the radio button to the left of the name of the MemoryDB cluster you want to back up.

4. Choose Actions and then Take snapshot.

5. In the Snapshot window, type in a name for your snapshot in the Snapshot Name box. We
recommend that the name indicate which cluster was backed up and the date and time the
snapshot was made.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

6. Under Encryption, choose whether to use a default encryption key or a customer managed
key. For more information, see In-transit encryption (TLS) in MemoryDB.

7. Under Tags, optionally add tags to search and filter your snapshots or track your AWS costs.

8. Choose Take snapshot.

The status of the cluster changes to snapshotting. When the status returns to available the
snapshot is complete.

Creating a manual snapshot (AWS CLI)

To create a manual snapshot of a cluster using the AWS CLI, use the create-snapshot AWS CLI
operation with the following parameters:

• --cluster-name – Name of the MemoryDB cluster to use as the source for the snapshot. Use
this parameter when backing up a MemoryDB cluster.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

Making manual snapshots 194

Amazon MemoryDB for Redis Developer Guide

• --snapshot-name – Name of the snapshot to be created.

Related topics

For more information, see create-snapshot in the AWS CLI Command Reference.

Creating a manual snapshot (MemoryDB API)

To create a manual snapshot of a cluster using the MemoryDB API, use the CreateSnapshot
MemoryDB API operation with the following parameters:

• ClusterName – Name of the MemoryDB cluster to use as the source for the snapshot. Use this
parameter when backing up a MemoryDB cluster.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

• SnapshotName – Name of the snapshot to be created.

Related topics

For more information, see CreateSnapshot.

Making manual snapshots 195

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CreateSnapshot.html

Amazon MemoryDB for Redis Developer Guide

Creating a final snapshot

You can create a final snapshot using the MemoryDB console, the AWS CLI, or the MemoryDB API.

Creating a final snapshot (Console)

You can create a final snapshot when you delete a MemoryDB cluster using the MemoryDB console.

To create a final snapshot when deleting a MemoryDB cluster, on the delete page, choose Yes and
give the snapshot a name at Step 4: Deleting a cluster.

Creating a final snapshot (AWS CLI)

You can create a final snapshot when deleting a MemoryDB cluster using the AWS CLI.

When deleting a MemoryDB cluster

To create a final snapshot when deleting a cluster, use the delete-cluster AWS CLI operation,
with the following parameters:

• --cluster-name – Name of the cluster being deleted.

• --final-snapshot-name – Name of the final snapshot.

The following code takes the final snapshot bkup-20210515-final when deleting the cluster
myCluster.

For Linux, macOS, or Unix:

aws memorydb delete-cluster \
 --cluster-name myCluster \
 --final-snapshot-name bkup-20210515-final

For Windows:

aws memorydb delete-cluster ^
 --cluster-name myCluster ^
 --final-snapshot-name bkup-20210515-final

For more information, see delete-cluster in the AWS CLI Command Reference.

Creating a final snapshot 196

https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-cluster.html

Amazon MemoryDB for Redis Developer Guide

Creating a final snapshot (MemoryDB API)

You can create a final snapshot when deleting a MemoryDB cluster using the MemoryDB API.

When deleting a MemoryDB cluster

To create a final snapshot, use the DeleteCluster MemoryDB API operation with the following
parameters.

• ClusterName – Name of the cluster being deleted.

• FinalSnapshotName – Name of the snapshot.

The following MemoryDB API operation creates the snapshot bkup-20210515-final when
deleting the cluster myCluster.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DeleteCluster
 &ClusterName=myCluster
 &FinalSnapshotName=bkup-20210515-final
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210515T192317Z
 &X-Amz-Credential=<credential>

For more information, see DeleteCluster.

Creating a final snapshot 197

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DeleteCluster.html

Amazon MemoryDB for Redis Developer Guide

Describing snapshots

The following procedures show you how to display a list of your snapshots. If you desire, you can
also view the details of a particular snapshot.

Describing snapshots (Console)

To display snapshots using the AWS Management Console

1. Log into the console

2. from the left navigation pane, choose Snapshots.

3. Use the search to filter on manual, automatic, or all snapshots.

4. To see the details of a particular snapshot, choose the radio button to the left of the
snapshot's name. Choose Actions and then View details.

5. Optionally, in the View details page, you can perform additional snapshot actions like copy,
restore or delete. You can also add tags to the snapshot

Describing snapshots (AWS CLI)

To display a list of snapshots and optionally details about a specific snapshot, use the describe-
snapshots CLI operation.

Examples

The following operation uses the parameter --max-results to list up to 20 snapshots associated
with your account. Omitting the parameter --max-results lists up to 50 snapshots.

aws memorydb describe-snapshots --max-results 20

The following operation uses the parameter --cluster-name to list only the snapshots
associated with the cluster my-cluster.

aws memorydb describe-snapshots --cluster-name my-cluster

The following operation uses the parameter --snapshot-name to display the details of the
snapshot my-snapshot.

aws memorydb describe-snapshots --snapshot-name my-snapshot

Describing snapshots 198

Amazon MemoryDB for Redis Developer Guide

For more information, see describe-snapshots.

Describing snapshots (MemoryDB API)

To display a list of snapshots, use the DescribeSnapshots operation.

Examples

The following operation uses the parameter MaxResults to list up to 20 snapshots associated
with your account. Omitting the parameter MaxResults lists up to 50 snapshots.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeSnapshots
 &MaxResults=20
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

The following operation uses the parameter ClusterName to list all snapshots associated with the
cluster MyCluster.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeSnapshots
 &ClusterName=MyCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Describing snapshots 199

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-snapshots.html

Amazon MemoryDB for Redis Developer Guide

The following operation uses the parameter SnapshotName to display the details for the snapshot
MyBackup.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeSnapshots
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SnapshotName=MyBackup
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see DescribeSnapshots.

Describing snapshots 200

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeSnapshots.html

Amazon MemoryDB for Redis Developer Guide

Copying a snapshot

You can make a copy of any snapshot, whether it was created automatically or manually. When
copying a snapshot, the same KMS encryption key as the source is used for the target unless
specifically overridden. You can also export your snapshot so you can access it from outside
MemoryDB. For guidance on exporting your snapshot, see Exporting a snapshot.

The following procedures show you how to copy a snapshot.

Copying a snapshot (Console)

To copy a snapshot (console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of your snapshots, from the left navigation pane choose Snapshots.

3. From the list of snapshots, choose the radio button to the left of the name of the snapshot
you want to copy.

4. Choose Actions and then choose Copy.

5. In the Copy snapshot page, do the following:

a. In the New snapshot name box, type a name for your new snapshot.

b. Leave the optional Target S3 Bucket box blank. This field should only be used to export
your snapshot and requires special S3 permissions. For information on exporting a
snapshot, see Exporting a snapshot.

c. Choose whether to use the default AWS KMS encryption key or a use a custom key. For
more information, see In-transit encryption (TLS) in MemoryDB.

d. Optionally, you can also add tags to the snapshot copy.

e. Choose Copy.

Copying a snapshot (AWS CLI)

To copy a snapshot, use the copy-snapshot operation.

Parameters

• --source-snapshot-name – Name of the snapshot to be copied.

Copying a snapshot 201

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

• --target-snapshot-name – Name of the snapshot's copy.

• --target-bucket – Reserved for exporting a snapshot. Do not use this parameter when
making a copy of a snapshot. For more information, see Exporting a snapshot.

The following example makes a copy of an automatic snapshot.

For Linux, macOS, or Unix:

aws memorydb copy-snapshot \
 --source-snapshot-name automatic.my-primary-2021-03-27-03-15 \
 --target-snapshot-name my-snapshot-copy

For Windows:

aws memorydb copy-snapshot ^
 --source-snapshot-name automatic.my-primary-2021-03-27-03-15 ^
 --target-snapshot-name my-snapshot-copy

For more information, see copy-snapshot.

Copying a snapshot (MemoryDB API)

To copy a snapshot, use the copy-snapshot operation with the following parameters:

Parameters

• SourceSnapshotName – Name of the snapshot to be copied.

• TargetSnapshotName – Name of the snapshot's copy.

• TargetBucket – Reserved for exporting a snapshot. Do not use this parameter when making a
copy of a snapshot. For more information, see Exporting a snapshot.

The following example makes a copy of an automatic snapshot.

Example

https://memory-db.us-east-1.amazonaws.com/
 ?Action=CopySnapshot
 &SourceSnapshotName=automatic.my-primary-2021-03-27-03-15
 &TargetSnapshotName=my-snapshot-copy

Copying a snapshot 202

https://docs.aws.amazon.com/cli/latest/reference/memorydb/copy-snapshot.html

Amazon MemoryDB for Redis Developer Guide

 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see CopySnapshot.

Copying a snapshot 203

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CopySnapshot.html

Amazon MemoryDB for Redis Developer Guide

Exporting a snapshot

MemoryDB for Redis supports exporting your MemoryDB snapshot to an Amazon Simple Storage
Service (Amazon S3) bucket, which gives you access to it from outside MemoryDB. Exported
MemoryDB snapshots are fully-compliant with open-source Redis and can be loaded with the
appropriate Redis version or tooling. You can export a snapshot using the MemoryDB console, the
AWS CLI, or the MemoryDB API.

Exporting a snapshot can be helpful if you need to launch a cluster in another AWS Region. You
can export your data in one AWS Region, copy the .rdb file to the new AWS Region, and then use
that .rdb file to seed the new cluster instead of waiting for the new cluster to populate through
use. For information about seeding a new cluster, see Seeding a new cluster with an externally
created snapshot. Another reason you might want to export your cluster's data is to use the .rdb
file for offline processing.

Important

• The MemoryDB snapshot and the Amazon S3 bucket that you want to copy it to must be
in the same AWS Region.

Though snapshots copied to an Amazon S3 bucket are encrypted, we strongly
recommend that you do not grant others access to the Amazon S3 bucket where you
want to store your snapshots.

• Exporting a snapshot to Amazon S3 is not supported for clusters using data tiering. For
more information, see Data tiering.

Before you can export a snapshot to an Amazon S3 bucket, you must have an Amazon S3 bucket in
the same AWS Region as the snapshot. Grant MemoryDB access to the bucket. The first two steps
show you how to do this.

Warning

The following scenarios expose your data in ways that you might not want:

• When another person has access to the Amazon S3 bucket that you exported your
snapshot to.

Exporting a snapshot 204

Amazon MemoryDB for Redis Developer Guide

To control access to your snapshots, only allow access to the Amazon S3 bucket to those
whom you want to access your data. For information about managing access to an
Amazon S3 bucket, see Managing access in the Amazon S3 Developer Guide.

• When another person has permissions to use the CopySnapshot API operation.

Users or groups that have permissions to use the CopySnapshot API operation can
create their own Amazon S3 buckets and copy snapshots to them. To control access to
your snapshots, use an AWS Identity and Access Management (IAM) policy to control who
has the ability to use the CopySnapshot API. For more information about using IAM to
control the use of MemoryDB API operations, see Identity and access management in
MemoryDB for Redis in the MemoryDB User Guide.

Topics

• Step 1: Create an Amazon S3 bucket

• Step 2: Grant MemoryDB access to your Amazon S3 bucket

• Step 3: Export a MemoryDB snapshot

Step 1: Create an Amazon S3 bucket

The following procedure uses the Amazon S3 console to create an Amazon S3 bucket where you
export and store your MemoryDB snapshot.

To create an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose Create Bucket.

3. In Create a Bucket - Select a Bucket Name and Region, do the following:

a. In Bucket Name, type a name for your Amazon S3 bucket.

b. From the Region list, choose an AWS Region for your Amazon S3 bucket. This AWS Region
must be the same AWS Region as the MemoryDB snapshot you want to export.

c. Choose Create.

Exporting a snapshot 205

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon MemoryDB for Redis Developer Guide

For more information about creating an Amazon S3 bucket, see Creating a bucket in the Amazon
Simple Storage Service User Guide.

Step 2: Grant MemoryDB access to your Amazon S3 bucket

AWS Regions introduced before March 20, 2019, are enabled by default. You can begin working in
these AWS Regions immediately. Regions introduced after March 20, 2019 are disabled by default.
You must enable, or opt in, to these Regions before you can use them, as described in Managing
AWS regions.

Grant MemoryDB access to your S3 Bucket in an AWS Region

To create the proper permissions on an Amazon S3 bucket in an AWS Region, take the following
steps.

To grant MemoryDB access to an S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the Amazon S3 bucket that you want to copy the snapshot to. This should
be the S3 bucket that you created in Step 1: Create an Amazon S3 bucket.

3. Choose the Permissions tab and under Permissions, choose Bucket policy.

4. Update the policy to grant MemoryDB required permissions to perform operations:

• Add ["Service" : "region-full-name.memorydb-snapshot.amazonaws.com"]
to Principal.

• Add the following permissions required for exporting a snapshot to the Amazon S3 bucket.

• "s3:PutObject"

• "s3:GetObject"

• "s3:ListBucket"

• "s3:GetBucketAcl"

• "s3:ListMultipartUploadParts"

• "s3:ListBucketMultipartUploads"

The following is an example of what the updated policy might look like.

{

Exporting a snapshot 206

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon MemoryDB for Redis Developer Guide

 "Version": "2012-10-17",
 "Id": "Policy15397346",
 "Statement": [
 {
 "Sid": "Stmt15399483",
 "Effect": "Allow",
 "Principal": {
 "Service": "aws-region.memorydb-snapshot.amazonaws.com"
 },
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetBucketAcl",
 "s3:ListMultipartUploadParts",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::example-bucket",
 "arn:aws:s3:::example-bucket/*"
]
 }
]
}

Step 3: Export a MemoryDB snapshot

Now you've created your S3 bucket and granted MemoryDB permissions to access it. Change the
S3 Object Ownership to ACLs enabled - Bucket owner preferred. Next, you can use the MemoryDB
console, the AWS CLI, or the MemoryDB API to export your snapshot to it. The following assumes
that you have the following additional S3 specific IAM permissions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject",

Exporting a snapshot 207

Amazon MemoryDB for Redis Developer Guide

 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::*"
 }]
}

Exporting a MemoryDB snapshot (Console)

The following process uses the MemoryDB console to export a snapshot to an Amazon S3 bucket
so that you can access it from outside MemoryDB. The Amazon S3 bucket must be in the same AWS
Region as the MemoryDB snapshot.

To export a MemoryDB snapshot to an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of your snapshots, from the left navigation pane choose Snapshots.

3. From the list of snapshots, choose the radio button to the left of the name of the snapshot
you want to export.

4. Choose Copy.

5. In Create a Copy of the Backup?, do the following:

a. In New snapshot name box, type a name for your new snapshot.

The name must be between 1 and 1,000 characters and able to be UTF-8 encoded.

MemoryDB adds a shard identifier and .rdb to the value that you enter here. For
example, if you enter my-exported-snapshot, MemoryDB creates my-exported-
snapshot-0001.rdb.

b. From the Target S3 Location list, choose the name of the Amazon S3 bucket that you
want to copy your snapshot to (the bucket that you created in Step 1: Create an Amazon
S3 bucket).

The Target S3 Location must be an Amazon S3 bucket in the snapshot's AWS Region with
the following permissions for the export process to succeed.

• Object access – Read and Write.

• Permissions access – Read.

Exporting a snapshot 208

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For more information, see Step 2: Grant MemoryDB access to your Amazon S3 bucket.

c. Choose Copy.

Note

If your S3 bucket does not have the permissions needed for MemoryDB to export a
snapshot to it, you receive one of the following error messages. Return to Step 2: Grant
MemoryDB access to your Amazon S3 bucket to add the permissions specified and retry
exporting your snapshot.

• MemoryDB has not been granted READ permissions %s on the S3 Bucket.

Solution: Add Read permissions on the bucket.

• MemoryDB has not been granted WRITE permissions %s on the S3 Bucket.

Solution: Add Write permissions on the bucket.

• MemoryDB has not been granted READ_ACP permissions %s on the S3 Bucket.

Solution: Add Read for Permissions access on the bucket.

If you want to copy your snapshot to another AWS Region, use Amazon S3 to copy it. For more
information, see Copying objects in the Amazon Simple Storage Service User Guide.

Exporting a MemoryDB snapshot (AWS CLI)

Export the snapshot to an Amazon S3 bucket using the copy-snapshot CLI operation with the
following parameters:

Parameters

• --source-snapshot-name – Name of the snapshot to be copied.

• --target-snapshot-name – Name of the snapshot's copy.

The name must be between 1 and 1,000 characters and able to be UTF-8 encoded.

MemoryDB adds a shard identifier and .rdb to the value you enter here. For example, if you
enter my-exported-snapshot, MemoryDB creates my-exported-snapshot-0001.rdb.

Exporting a snapshot 209

https://docs.aws.amazon.com/AmazonS3/latest/userguide/copy-object.html

Amazon MemoryDB for Redis Developer Guide

• --target-bucket – Name of the Amazon S3 bucket where you want to export the snapshot. A
copy of the snapshot is made in the specified bucket.

The --target-bucket must be an Amazon S3 bucket in the snapshot's AWS Region with the
following permissions for the export process to succeed.

• Object access – Read and Write.

• Permissions access – Read.

For more information, see Step 2: Grant MemoryDB access to your Amazon S3 bucket.

The following operation copies a snapshot to my-s3-bucket.

For Linux, macOS, or Unix:

aws memorydb copy-snapshot \
 --source-snapshot-name automatic.my-primary-2021-06-27-03-15 \
 --target-snapshot-name my-exported-snapshot \
 --target-bucket my-s3-bucket

For Windows:

aws memorydb copy-snapshot ^
 --source-snapshot-name automatic.my-primary-2021-06-27-03-15 ^
 --target-snapshot-name my-exported-snapshot ^
 --target-bucket my-s3-bucket

Note

If your S3 bucket does not have the permissions needed for MemoryDB to export a
snapshot to it, you receive one of the following error messages. Return to Step 2: Grant
MemoryDB access to your Amazon S3 bucket to add the permissions specified and retry
exporting your snapshot.

• MemoryDB has not been granted READ permissions %s on the S3 Bucket.

Solution: Add Read permissions on the bucket.

• MemoryDB has not been granted WRITE permissions %s on the S3 Bucket.

Solution: Add Write permissions on the bucket.

Exporting a snapshot 210

Amazon MemoryDB for Redis Developer Guide

• MemoryDB has not been granted READ_ACP permissions %s on the S3 Bucket.

Solution: Add Read for Permissions access on the bucket.

For more information, see copy-snapshot in the AWS CLI Command Reference.

If you want to copy your snapshot to another AWS Region, use Amazon S3 copy. For more
information, see Copying objects in the Amazon Simple Storage Service User Guide.

Exporting a MemoryDB snapshot (MemoryDB API)

Export the snapshot to an Amazon S3 bucket using the CopySnapshot API operation with these
parameters.

Parameters

• SourceSnapshotName – Name of the snapshot to be copied.

• TargetSnapshotName – Name of the snapshot's copy.

The name must be between 1 and 1,000 characters and able to be UTF-8 encoded.

MemoryDB adds a shard identifier and .rdb to the value that you enter here. For example, if you
enter my-exported-snapshot, you get my-exported-snapshot-0001.rdb.

• TargetBucket – Name of the Amazon S3 bucket where you want to export the snapshot. A
copy of the snapshot is made in the specified bucket.

The TargetBucket must be an Amazon S3 bucket in the snapshot's AWS Region with the
following permissions for the export process to succeed.

• Object access – Read and Write.

• Permissions access – Read.

For more information, see Step 2: Grant MemoryDB access to your Amazon S3 bucket.

The following example makes a copy of an automatic snapshot to the Amazon S3 bucket my-s3-
bucket.

Example

https://memory-db.us-east-1.amazonaws.com/

Exporting a snapshot 211

https://docs.aws.amazon.com/AmazonS3/latest/userguide/copy-object.html

Amazon MemoryDB for Redis Developer Guide

 ?Action=CopySnapshot
 &SourceSnapshotName=automatic.my-primary-2021-06-27-03-15
 &TargetBucket=my-s3-bucket
 &TargetSnapshotName=my-snapshot-copy
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Note

If your S3 bucket does not have the permissions needed for MemoryDB to export a
snapshot to it, you receive one of the following error messages. Return to Step 2: Grant
MemoryDB access to your Amazon S3 bucket to add the permissions specified and retry
exporting your snapshot.

• MemoryDB has not been granted READ permissions %s on the S3 Bucket.

Solution: Add Read permissions on the bucket.

• MemoryDB has not been granted WRITE permissions %s on the S3 Bucket.

Solution: Add Write permissions on the bucket.

• MemoryDB has not been granted READ_ACP permissions %s on the S3 Bucket.

Solution: Add Read for Permissions access on the bucket.

For more information, see CopySnapshot.

If you want to copy your snapshot to another AWS Region, use Amazon S3 copy to copy the
exported snapshot to the Amazon S3 bucket in another AWS Region. For more information, see
Copying objects in the Amazon Simple Storage Service User Guide.

Exporting a snapshot 212

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CopySnapshot.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/copy-object.html

Amazon MemoryDB for Redis Developer Guide

Restoring from a snapshot

You can restore the data from a MemoryDB or ElastiCache for Redis .rdb snapshot file to a new
cluster at any time.

The MemoryDB for Redis restore process supports the following:

• Migrating from one or more .rdb snapshot files you created from ElastiCache for Redis to a
MemoryDB cluster.

The .rdb files must be put in S3 to perform the restore.

• Specifying a number of shards in the new cluster that is different from the number of shards in
the cluster that was used to create the snapshot file.

• Specifying a different node type for the new cluster—larger or smaller. If scaling to a smaller
node type, be sure that the new node type has sufficient memory for your data and Redis
overhead.

• Configuring the slots of the new MemoryDB cluster differently than in the cluster that was used
to create the snapshot file.

Important

• MemoryDB clusters do not support multiple databases. Therefore, when restoring to
MemoryDB your restore fails if the .rdb file references more than one database.

• You cannot restore a snapshot from a cluster that uses data tiering (for example, r6gd
node type) into a cluster that does not use data tiering (for example, r6g node type).

Whether you make any changes when restoring a cluster from a snapshot is governed by choices
that you make. You make these choices in the Restore Cluster page when using the MemoryDB
console to restore. You make these choices by setting parameter values when using the AWS CLI or
MemoryDB API to restore.

During the restore operation, MemoryDB creates the new cluster, and then populates it with data
from the snapshot file. When this process is complete, the cluster is warmed up and ready to accept
requests.

Restoring from a snapshot 213

Amazon MemoryDB for Redis Developer Guide

Important

Before you proceed, be sure you have created a snapshot of the cluster you want to restore
from. For more information, see Making manual snapshots.
If you want to restore from an externally created snapshot, see Seeding a new cluster with
an externally created snapshot.

The following procedures show you how to restore a snapshot to a new cluster using the
MemoryDB console, the AWS CLI, or the MemoryDB API.

Restoring from a snapshot (Console)

To restore a snapshot to a new cluster (console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the navigation pane, choose Snapshots.

3. In the list of snapshots, choose button next to the name of the snapshot name you want to
restore from.

4. Choose Actions and then choose Restore

5. Under Cluster configuration, enter the following:

a. Cluster name – Required. The name of the new cluster.

b. Description – Optional. The description of the new cluster.

6. Complete the Subnet groups section:

• For Subnet groups, create a new subnet group or choose an existing one from the
available list that you want to apply to this cluster. If you are creating a new one:

• Enter a Name

• Enter a Description

• If you enabled Multi-AZ, the subnet group must contain at least two subnets that reside
in different availability zones. For more information, see Subnets and subnet groups.

• If you are creating a new subnet group and do not have an existing VPC, you will be
asked to create a VPC. For more information, see What is Amazon VPC? in the Amazon
VPC User Guide.

Restoring from a snapshot 214

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon MemoryDB for Redis Developer Guide

7. Complete the Cluster settings section:

a. For Redis version compatibility, accept the default 6.0.

b. For Port, accept the default Redis port of 6379 or, if you have a reason to use a different
port, enter the port number..

c. For Parameter group, accept the default.memorydb-redis6 parameter group.

Parameter groups control the runtime parameters of your cluster. For more information
on parameter groups, see Redis specific parameters.

d. For Node type, choose a value for the node type (along with its associated memory size)
that you want.

If you choose a member of the r6gd node type family, you will automatically enable data-
tiering in your cluster. For more information, see Data tiering.

e. For Number of shards, choose the number of shards that you want for this cluster.

You can change the number of shards in your cluster dynamically. For more information,
see Scaling MemoryDB clusters.

f. For Replicas per shard, choose the number of read replica nodes that you want in each
shard.

The following restrictions exist;.

• If you have Multi-AZ enabled, make sure that you have at least one replica per shard.

• The number of replicas is the same for each shard when creating the cluster using the
console.

g. Choose Next

h. Complete the Advanced settings section:

i. For Security groups, choose the security groups that you want for this cluster. A
security group acts as a firewall to control network access to your cluster. You can use
the default security group for your VPC or create a new one.

For more information on security groups, see Security groups for your VPC in the
Amazon VPC User Guide.

ii. Data is encrypted in the following ways:

Restoring from a snapshot 215

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon MemoryDB for Redis Developer Guide

• Encryption at rest – Enables encryption of data stored on disk. For more
information, see Encryption at Rest.

Note

You have the option to supply a different encryption key by choosing
Customer Managed AWS KMS key and choosing the key.

• Encryption in-transit – Enables encryption of data on the wire. This is enabled by
default. For more information, see encryption in transit.

If you select no encryption, then an open Access control list called “open access” will
be created with a default user. For more information, see Authenticating users with
Access Control Lists (ACLs).

iii. For Snapshot optionally specify a snapshot retention period and a snapshot window.
By default, the Enable automatic snapshots is selected.

iv. For Maintenance window optionally specify a maintenance window. The maintenance
window is the time, generally an hour in length, each week when MemoryDB
schedules system maintenance for your cluster. You can allow MemoryDB to choose
the day and time for your maintenance window (No preference), or you can choose the
day, time, and duration yourself (Specify maintenance window). If you choose Specify
maintenance window from the lists, choose the Start day, Start time, and Duration (in
hours) for your maintenance window. All times are UCT times.

For more information, see Managing maintenance.

v. For Notifications, choose an existing Amazon Simple Notification Service (Amazon
SNS) topic, or choose Manual ARN input and enter the topic's Amazon Resource Name
(ARN). Amazon SNS allows you to push notifications to Internet-connected smart
devices. The default is to disable notifications. For more information, see https://
aws.amazon.com/sns/.

i. For Tags, you can optionally apply tags to search and filter your clusters or track your AWS
costs.

j. Review all your entries and choices, then make any needed corrections. When you're ready,
choose Create cluster to launch your cluster, or Cancel to cancel the operation.

Restoring from a snapshot 216

https://docs.aws.amazon.com/memorydb/latest/devguide/at-rest-encryption.html
https://docs.aws.amazon.com/memorydb/latest/devguide/in-transit-encryption.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

Amazon MemoryDB for Redis Developer Guide

As soon as your cluster's status is available, you can grant EC2 access to it, connect to it, and
begin using it. For more information, see Step 2: Authorize access to the cluster and Step 3:
Connect to the cluster.

Important

As soon as your cluster becomes available, you're billed for each hour or partial hour
that the cluster is active, even if you're not actively using it. To stop incurring charges
for this cluster, you must delete it. See Step 4: Deleting a cluster.

Restoring from a snapshot (AWS CLI)

When using either the create-cluster operation, be sure to include the parameter --
snapshot-name or --snapshot-arns to seed the new cluster with the data from the snapshot.

For more information, see the following:

• Creating a cluster (AWS CLI) in the MemoryDB User Guide.

• create-cluster in the AWS CLI Command Reference.

Restoring from a snapshot (MemoryDB API)

You can restore a MemoryDB snapshot using the MemoryDB API operation CreateCluster.

When using the CreateCluster operation, be sure to include the parameter SnapshotName or
SnapshotArns to seed the new cluster with the data from the snapshot.

For more information, see the following:

• Creating a cluster (MemoryDB API) in the MemoryDB User Guide.

• CreateCluster in the MemoryDB API Reference.

Restoring from a snapshot 217

https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-cluster.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CreateCluster.html

Amazon MemoryDB for Redis Developer Guide

Seeding a new cluster with an externally created snapshot

When you create a new MemoryDB cluster, you can seed it with data from a Redis .rdb snapshot
file.

To seed a new MemoryDB cluster from a MemoryDB snapshot or ElastiCache for Redis snapshot,
see Restoring from a snapshot.

When you use a Redis .rdb file to seed a new MemoryDB cluster, you can do the following:

• Specify a number of shards in the new cluster. This number can be different from the number of
shards in the cluster that was used to create the snapshot file.

• Specify a different node type for the new cluster—larger or smaller than that used in the cluster
that made the snapshot. If you scale to a smaller node type, be sure that the new node type has
sufficient memory for your data and Redis overhead.

Important

• You must ensure that your snapshot data doesn't exceed the resources of the node.

If the snapshot is too large, the resulting cluster has a status of restore-failed. If this
happens, you must delete the cluster and start over.

For a complete listing of node types and specifications, see MemoryDB node-type
specific parameters.

• You can encrypt a Redis .rdb file with Amazon S3 server-side encryption (SSE-S3) only.
For more information, see Protecting data using server-side encryption.

Step 1: Create redis snapshot on external cluster

To create the snapshot to seed your MemoryDB cluster

1. Connect to your existing Redis instance.

2. Run either the Redis BGSAVE or SAVE operation to create a snapshot. Note where your .rdb file
is located.

Seeding a cluster with a snapshot 218

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon MemoryDB for Redis Developer Guide

BGSAVE is asynchronous and does not block other clients while processing. For more
information, see BGSAVE at the Redis website.

SAVE is synchronous and blocks other processes until finished. For more information, see SAVE
at the Redis website.

For additional information on creating a snapshot, see Redis persistence at the Redis website.

Step 2: Create an Amazon S3 bucket and folder

When you have created the snapshot file, you need to upload it to a folder within an Amazon S3
bucket. To do that, you must first have an Amazon S3 bucket and folder within that bucket. If you
already have an Amazon S3 bucket and folder with the appropriate permissions, you can skip to
Step 3: Upload your snapshot to Amazon S3.

To create an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Follow the instructions for creating an Amazon S3 bucket in Creating a bucket in the Amazon
Simple Storage Service User Guide.

The name of your Amazon S3 bucket must be DNS-compliant. Otherwise, MemoryDB can't
access your backup file. The rules for DNS compliance are:

• Names must be at least 3 and no more than 63 characters long.

• Names must be a series of one or more labels separated by a period (.) where each label:

• Starts with a lowercase letter or a number.

• Ends with a lowercase letter or a number.

• Contains only lowercase letters, numbers, and dashes.

• Names can't be formatted as an IP address (for example, 192.0.2.0).

We strongly recommend that you create your Amazon S3 bucket in the same AWS Region as
your new MemoryDB cluster. This approach makes sure that the highest data transfer speed
when MemoryDB reads your .rdb file from Amazon S3.

Seeding a cluster with a snapshot 219

http://redis.io/commands/bgsave
http://redis.io/commands/save
http://redis.io/topics/persistence
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon MemoryDB for Redis Developer Guide

Note

To keep your data as secure as possible, make the permissions on your Amazon S3
bucket as restrictive as you can. At the same time, the permissions still need to allow
the bucket and its contents to be used to seed your new MemoryDB cluster.

To add a folder to an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the bucket to upload your .rdb file to.

3. Choose Create folder.

4. Enter a name for your new folder.

5. Choose Save.

Make note of both the bucket name and the folder name.

Step 3: Upload your snapshot to Amazon S3

Now, upload the .rdb file that you created in Step 1: Create redis snapshot on external cluster. You
upload it to the Amazon S3 bucket and folder that you created in Step 2: Create an Amazon S3
bucket and folder. For more information on this task, see Uploading objects. Between steps 2 and
3, choose the name of the folder you created .

To upload your .rdb file to an Amazon S3 folder

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the Amazon S3 bucket you created in Step 2.

3. Choose the name of the folder you created in Step 2.

4. Choose Upload.

5. Choose Add files.

6. Browse to find the file or files you want to upload, then choose the file or files. To choose
multiple files, hold down the Ctrl key while choosing each file name.

Seeding a cluster with a snapshot 220

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon MemoryDB for Redis Developer Guide

7. Choose Open.

8. Confirm the correct file or files are listed in the Upload page, and then choose Upload.

Note the path to your .rdb file. For example, if your bucket name is myBucket and the path is
myFolder/redis.rdb, enter myBucket/myFolder/redis.rdb. You need this path to seed the
new cluster with the data in this snapshot.

For additional information, see Bucket naming rules in the Amazon Simple Storage Service User
Guide.

Step 4: Grant MemoryDB read access to the .rdb file

AWS Regions introduced before March 20, 2019, are enabled by default. You can begin working in
these AWS Regions immediately. Regions introduced after March 20, 2019 are disabled by default.
You must enable, or opt in, to these Regions before you can use them, as described in Managing
AWS regions.

Grant MemoryDB read access to the .rdb file

To grant MemoryDB read access to the snapshot file

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose the name of the S3 bucket that contains your .rdb file.

3. Choose the name of the folder that contains your .rdb file.

4. Choose the name of your .rdb snapshot file. The name of the selected file appears above the
tabs at the top of the page.

5. Choose the Permissions tab.

6. Under Permissions, choose Bucket policy and then choose Edit.

7. Update the policy to grant MemoryDB required permissions to perform operations:

• Add ["Service" : "region-full-name.memorydb-snapshot.amazonaws.com"]
to Principal.

• Add the following permissions required for exporting a snapshot to the Amazon S3 bucket:

• "s3:GetObject"

• "s3:ListBucket"

Seeding a cluster with a snapshot 221

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon MemoryDB for Redis Developer Guide

• "s3:GetBucketAcl"

The following is an example of what the updated policy might look like.

{
 "Version": "2012-10-17",
 "Id": "Policy15397346",
 "Statement": [
 {
 "Sid": "Stmt15399483",
 "Effect": "Allow",
 "Principal": {
 "Service": "us-east-1.memorydb-snapshot.amazonaws.com"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetBucketAcl"
],
 "Resource": [
 "arn:aws:s3:::example-bucket",
 "arn:aws:s3:::example-bucket/snapshot1.rdb",
 "arn:aws:s3:::example-bucket/snapshot2.rdb"
]
 }
]
}

8. Choose Save.

Step 5: Seed the MemoryDB cluster with the .rdb file data

Now you are ready to create a MemoryDB cluster and seed it with the data from the .rdb file. To
create the cluster, follow the directions at Creating a MemoryDB cluster.

The method you use to tell MemoryDB where to find the Redis snapshot you uploaded to Amazon
S3 depends on the method you use to create the cluster:

Seed the MemoryDB cluster with the .rdb file data

• Using the MemoryDB console

Seeding a cluster with a snapshot 222

Amazon MemoryDB for Redis Developer Guide

After you choose the Redis engine, expand the Advanced Redis settings section and locate
Import data to cluster. In the Seed RDB file S3 location box, type in the Amazon S3 path for
the files(s). If you have multiple .rdb files, type in the path for each file in a comma separated list.
The Amazon S3 path looks something like myBucket/myFolder/myBackupFilename.rdb.

• Using the AWS CLI

If you use the create-cluster or the create-cluster operation, use the parameter
--snapshot-arns to specify a fully qualified ARN for each .rdb file. For example,
arn:aws:s3:::myBucket/myFolder/myBackupFilename.rdb. The ARN must resolve to
the snapshot files you stored in Amazon S3.

• Using the MemoryDB API

If you use the CreateCluster or the CreateCluster MemoryDB API operation, use the
parameter SnapshotArns to specify a fully qualified ARN for each .rdb file. For example,
arn:aws:s3:::myBucket/myFolder/myBackupFilename.rdb. The ARN must resolve to
the snapshot files you stored in Amazon S3.

During the process of creating your cluster, the data in your snapshot is written to the cluster.
You can monitor the progress by viewing the MemoryDB event messages. To do this, see the
MemoryDB console and choose Events. You can also use the AWS MemoryDB command line
interface or MemoryDB API to obtain event messages.

Seeding a cluster with a snapshot 223

Amazon MemoryDB for Redis Developer Guide

Tagging snapshots

You can assign your own metadata to each snapshot in the form of tags. Tags enable you to
categorize your snapshots in different ways, for example, by purpose, owner, or environment.
This is useful when you have many resources of the same type—you can quickly identify a specific
resource based on the tags that you've assigned to it. For more information, see Resources you can
tag.

Cost allocation tags are a means of tracking your costs across multiple AWS services by grouping
your expenses on invoices by tag values. To learn more about cost allocation tags, see Use cost
allocation tags.

Using the MemoryDB console, the AWS CLI, or MemoryDB API you can add, list, modify, remove, or
copy cost allocation tags on your snapshots. For more information, see Monitoring costs with cost
allocation tags.

Tagging snapshots 224

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon MemoryDB for Redis Developer Guide

Deleting a snapshot

An automatic snapshot is automatically deleted when its retention limit expires. If you delete a
cluster, all of its automatic snapshots are also deleted.

MemoryDB provides a deletion API operation that lets you delete a snapshot at any time,
regardless of whether the snapshot was created automatically or manually. Because manual
snapshots don't have a retention limit, manual deletion is the only way to remove them.

You can delete a snapshot using the MemoryDB console, the AWS CLI, or the MemoryDB API.

Deleting a snapshot (Console)

The following procedure deletes a snapshot using the MemoryDB console.

To delete a snapshot

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the left navigation pane, choose Snapshots.

The Snapshots screen appears with a list of your snapshots.

3. Choose the radio button to the left of the name of the snapshot you want to delete.

4. Choose Actions and then choose Delete.

5. If you want to delete this snapshot, enter delete in the text box and then choose Delete. To
cancel the delete, choose Cancel. The status changes to deleting.

Deleting a snapshot (AWS CLI)

Use the delete-snapshot AWS CLI operation with the following parameter to delete a snapshot.

• --snapshot-name – Name of the snapshot to be deleted.

The following code deletes the snapshot myBackup.

aws memorydb delete-snapshot --snapshot-name myBackup

For more information, see delete-snapshot in the AWS CLI Command Reference.

Deleting a snapshot 225

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-snapshot.html

Amazon MemoryDB for Redis Developer Guide

Deleting a snapshot (MemoryDB API)

Use the DeleteSnapshot API operation with the following parameter to delete a snapshot.

• SnapshotName – Name of the snapshot to be deleted.

The following code deletes the snapshot myBackup.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DeleteSnapshot
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &SnapshotName=myBackup
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

For more information, see DeleteSnapshot.

Scaling

The amount of data your application needs to process is seldom static. It increases and decreases
as your business grows or experiences normal fluctuations in demand. If you self-manage your
applications, you need to provision sufficient hardware for your demand peaks, which can be
expensive. By using MemoryDB for Redis you can scale to meet current demand, paying only for
what you use.

The following helps you find the correct topic for the scaling actions that you want to perform.

Scaling MemoryDB

Action MemoryDB

Scaling out Online resharding and shard
rebalancing for MemoryDB

Changing node types
Online vertical scaling by
modifying node type

Scaling 226

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DeleteSnapshot.html

Amazon MemoryDB for Redis Developer Guide

Action MemoryDB

Changing the number of
shards

Scaling MemoryDB clusters

Scaling 227

Amazon MemoryDB for Redis Developer Guide

Scaling MemoryDB clusters

As demand on your clusters changes, you might decide to improve performance or reduce costs by
changing the number of shards in your MemoryDB cluster. We recommend using online horizontal
scaling to do so, because it allows your cluster to continue serving requests during the scaling
process.

Conditions under which you might decide to rescale your cluster include the following:

• Memory pressure:

If the nodes in your cluster are under memory pressure, you might decide to scale out so that
you have more resources to better store data and serve requests.

You can determine whether your nodes are under memory pressure by monitoring the following
metrics: FreeableMemory, SwapUsage, and BytesUsedForMemoryDB.

• CPU or network bottleneck:

If latency/throughput issues are plaguing your cluster, you might need to scale out to resolve the
issues.

You can monitor your latency and throughput levels by monitoring the following metrics:
CPUUtilization, NetworkBytesIn, NetworkBytesOut, CurrConnections, and NewConnections.

• Your cluster is over-scaled:

Current demand on your cluster is such that scaling in doesn't hurt performance and reduces
your costs.

You can monitor your cluster's use to determine whether or not you can safely scale in using
the following metrics: FreeableMemory, SwapUsage, BytesUsedForMemoryDB, CPUUtilization,
NetworkBytesIn, NetworkBytesOut, CurrConnections, and NewConnections.

Performance Impact of Scaling

When you scale using the offline process, your cluster is offline for a significant portion of the
process and thus unable to serve requests. When you scale using the online method, because
scaling is a compute-intensive operation, there is some degradation in performance, nevertheless,
your cluster continues to serve requests throughout the scaling operation. How much degradation
you experience depends upon your normal CPU utilization and your data.

Scaling MemoryDB clusters 228

Amazon MemoryDB for Redis Developer Guide

There are two ways to scale your MemoryDB cluster; horizontal and vertical scaling.

• Horizontal scaling allows you to change the number of shards in the cluster by adding or
removing shards. The online resharding process allows scaling in/out while the cluster continues
serving incoming requests.

• Vertical Scaling - Change the node type to resize the cluster. The online vertical scaling allows
scaling up/down while the cluster continues serving incoming requests.

If you are reducing the size and memory capacity of the cluster, by either scaling in or scaling
down, ensure that the new configuration has sufficient memory for your data and Redis overhead.

Offline resharding and shard rebalancing for MemoryDB

The main advantage you get from offline shard reconfiguration is that you can do more than
merely add or remove shards from your cluster. When you reshard offline, in addition to changing
the number of shards in your cluster, you can do the following:

• Change the node type of your cluster.

• Upgrade to a newer engine version.

Note

Offline resharding is not supported on clusters with data tiering enabled. For more
information, see Data tiering..

The main disadvantage of offline shard reconfiguration is that your cluster is offline beginning
with the restore portion of the process and continuing until you update the endpoints in your
application. The length of time that your cluster is offline varies with the amount of data in your
cluster.

To reconfigure your shards MemoryDB cluster offline

1. Create a manual snapshot of your existing MemoryDB cluster. For more information, see
Making manual snapshots.

2. Create a new cluster by restoring from the snapshot. For more information, see Restoring from
a snapshot.

Scaling MemoryDB clusters 229

Amazon MemoryDB for Redis Developer Guide

3. Update the endpoints in your application to the new cluster's endpoints. For more information,
see Finding connection endpoints.

Online resharding and shard rebalancing for MemoryDB

By using online resharding and shard rebalancing with MemoryDB, you can scale your MemoryDB
dynamically with no downtime. This approach means that your cluster can continue to serve
requests even while scaling or rebalancing is in process.

You can do the following:

• Scale out – Increase read and write capacity by adding shards to your MemoryDB cluster.

If you add one or more shards to your cluster, the number of nodes in each new shard is the
same as the number of nodes in the smallest of the existing shards.

• Scale in – Reduce read and write capacity, and thereby costs, by removing shards from your
MemoryDB cluster.

Currently, the following limitations apply to MemoryDB online resharding:

• There are limitations with slots or keyspaces and large items:

If any of the keys in a shard contain a large item, that key isn't migrated to a new shard when
scaling out or rebalancing. This functionality can result in unbalanced shards.

If any of the keys in a shard contain a large item (items greater than 256 MB after serialization),
that shard isn't deleted when scaling in. This functionality can result in some shards not being
deleted.

• When scaling out, the number of nodes in any new shards equals the number of nodes in the
existing shards.

For more information, see Best practices: Online cluster resizing.

You can horizontally scale or rebalance your MemoryDB clusters using the AWS Management
Console, the AWS CLI, and the MemoryDB API.

Scaling MemoryDB clusters 230

Amazon MemoryDB for Redis Developer Guide

Adding shards with online resharding

You can add shards to your MemoryDB cluster using the AWS Management Console, AWS CLI, or
MemoryDB API.

Adding shards (Console)

You can use the AWS Management Console to add one or more shards to your MemoryDB cluster.
The following procedure describes the process.

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the list of clusters, choose the cluster name from which you want to add a shard.

3. Under the Shards and nodes tab, choose Add/Delete shards

4. In New number of shards, enter the the number of shards you want.

5. Choose Confirm to keep the changes or Cancel to discard.

Adding shards (AWS CLI)

The following process describes how to reconfigure the shards in your MemoryDB cluster by adding
shards using the AWS CLI.

Use the following parameters with update-cluster.

Parameters

• --cluster-name – Required. Specifies which cluster (cluster) the shard reconfiguration
operation is to be performed on.

• --shard-configuration – Required. Allows you to set the number of shards.

• ShardCount – Set this property to specify the number of shards you want.

Example

The following example modifies the number of shards in the cluster my-cluster to 2.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \

Scaling MemoryDB clusters 231

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

 --shard-configuration \
 ShardCount=2

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --shard-configuration ^
 ShardCount=2

It returns the following JSON response:

{
 "Cluster": {
 "Name": "my-cluster",
 "Status": "updating",
 "NumberOfShards": 2,
 "AvailabilityMode": "MultiAZ",
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
}

To view the details of the updated cluster once its status changes from updating to available, use
the following command:

For Linux, macOS, or Unix:

Scaling MemoryDB clusters 232

Amazon MemoryDB for Redis Developer Guide

aws memorydb describe-clusters \
 --cluster-name my-cluster
 --show-shard-details

For Windows:

aws memorydb describe-clusters ^
 --cluster-name my-cluster
 --show-shard-details

It will return the following JSON response:

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Status": "available",
 "NumberOfShards": 2,
 "Shards": [
 {
 "Name": "0001",
 "Status": "available",
 "Slots": "0-8191",
 "Nodes": [
 {
 "Name": "my-cluster-0001-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {

Scaling MemoryDB clusters 233

Amazon MemoryDB for Redis Developer Guide

 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2
 },
 {
 "Name": "0002",
 "Status": "available",
 "Slots": "8192-16383",
 "Nodes": [
 {
 "Name": "my-cluster-0002-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-22T14:26:18.693000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0002-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-22T14:26:18.765000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2
 }
],
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 },

Scaling MemoryDB clusters 234

Amazon MemoryDB for Redis Developer Guide

 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
]
}

For more information, see update-cluster in the AWS CLI Command Reference.

Adding shards (MemoryDB API)

You can use the MemoryDB API to reconfigure the shards in your MemoryDB cluster online by using
the UpdateCluster operation.

Use the following parameters with UpdateCluster.

Parameters

• ClusterName – Required. Specifies which cluster the shard reconfiguration operation is to be
performed on.

• ShardConfiguration – Required. Allows you to set the number of shards.

• ShardCount – Set this property to specify the number of shards you want.

For more information, see UpdateCluster.

Removing shards with online resharding

You can remove shards from your MemoryDB cluster using the AWS Management Console, AWS
CLI, or MemoryDB API.

Scaling MemoryDB clusters 235

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Removing shards (Console)

The following process describes how to reconfigure the shards in your MemoryDB cluster by
removing shards using the AWS Management Console.

Important

Before removing shards from your cluster, MemoryDB makes sure that all your data will
fit in the remaining shards. If the data will fit, shards are deleted from the cluster as
requested. If the data won't fit in the remaining shards, the process is terminated and the
cluster is left with the same shard configuration as before the request was made.

You can use the AWS Management Console to remove one or more shards from your MemoryDB
cluster. You cannot remove all the shards in a cluster. Instead, you must delete the cluster. For
more information, see Step 4: Deleting a cluster. The following procedure describes the process for
removing one or more shards.

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the list of clusters, choose the cluster name from which you want to remove a shard.

3. Under the Shards and nodes tab, choose Add/Delete shards

4. In New number of shards, enter the the number of shards you want (with a minimum of 1).

5. Choose Confirm to keep the changes or Cancel to discard.

Removing shards (AWS CLI)

The following process describes how to reconfigure the shards in your MemoryDB cluster by
removing shards using the AWS CLI.

Important

Before removing shards from your cluster, MemoryDB makes sure that all your data will
fit in the remaining shards. If the data will fit, shards are deleted from the cluster as
requested and their keyspaces mapped into the remaining shards. If the data will not fit in

Scaling MemoryDB clusters 236

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

the remaining shards, the process is terminated and the cluster is left with the same shard
configuration as before the request was made.

You can use the AWS CLI to remove one or more shards from your MemoryDB cluster. You cannot
remove all the shards in a cluster. Instead, you must delete the cluster. For more information, see
Step 4: Deleting a cluster.

Use the following parameters with update-cluster.

Parameters

• --cluster-name – Required. Specifies which cluster (cluster) the shard reconfiguration
operation is to be performed on.

• --shard-configuration – Required. Allows you to set the number of shards using the
ShardCount property:

ShardCount – Set this property to specify the number of shards you want.

Example

The following example modifies the number of shards in the cluster my-cluster to 2.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --shard-configuration \
 ShardCount=2

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --shard-configuration ^
 ShardCount=2

It returns the following JSON response:

{

Scaling MemoryDB clusters 237

Amazon MemoryDB for Redis Developer Guide

 "Cluster": {
 "Name": "my-cluster",
 "Status": "updating",
 "NumberOfShards": 2,
 "AvailabilityMode": "MultiAZ",
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true
 }
}

To view the details of the updated cluster once its status changes from updating to available, use
the following command:

For Linux, macOS, or Unix:

aws memorydb describe-clusters \
 --cluster-name my-cluster
 --show-shard-details

For Windows:

aws memorydb describe-clusters ^
 --cluster-name my-cluster
 --show-shard-details

It will return the following JSON response:

Scaling MemoryDB clusters 238

Amazon MemoryDB for Redis Developer Guide

{
 "Clusters": [
 {
 "Name": "my-cluster",
 "Status": "available",
 "NumberOfShards": 2,
 "Shards": [
 {
 "Name": "0001",
 "Status": "available",
 "Slots": "0-8191",
 "Nodes": [
 {
 "Name": "my-cluster-0001-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0001-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-21T20:22:12.405000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2
 },
 {
 "Name": "0002",
 "Status": "available",
 "Slots": "8192-16383",
 "Nodes": [
 {

Scaling MemoryDB clusters 239

Amazon MemoryDB for Redis Developer Guide

 "Name": "my-cluster-0002-001",
 "Status": "available",
 "AvailabilityZone": "us-east-1b",
 "CreateTime": "2021-08-22T14:26:18.693000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 },
 {
 "Name": "my-cluster-0002-002",
 "Status": "available",
 "AvailabilityZone": "us-east-1a",
 "CreateTime": "2021-08-22T14:26:18.765000-07:00",
 "Endpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 }
 }
],
 "NumberOfNodes": 2
 }
],
 "ClusterEndpoint": {
 "Address": "clustercfg.my-cluster.xxxxxx.memorydb.us-
east-1.amazonaws.com",
 "Port": 6379
 },
 "NodeType": "db.r6g.large",
 "EngineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "ParameterGroupName": "default.memorydb-redis6",
 "ParameterGroupStatus": "in-sync",
 "SubnetGroupName": "my-sg",
 "TLSEnabled": true,
 "ARN": "arn:aws:memorydb:us-east-1:xxxxxxexamplearn:cluster/my-cluster",
 "SnapshotRetentionLimit": 0,
 "MaintenanceWindow": "wed:03:00-wed:04:00",
 "SnapshotWindow": "04:30-05:30",
 "ACLName": "my-acl",
 "DataTiering": "false",
 "AutoMinorVersionUpgrade": true

Scaling MemoryDB clusters 240

Amazon MemoryDB for Redis Developer Guide

 }
]
}

For more information, see update-cluster in the AWS CLI Command Reference.

Removing shards (MemoryDB API)

You can use the MemoryDB API to reconfigure the shards in your MemoryDB cluster online by using
the UpdateCluster operation.

The following process describes how to reconfigure the shards in your MemoryDB cluster by
removing shards using the MemoryDB API.

Important

Before removing shards rom your cluster, MemoryDB makes sure that all your data will
fit in the remaining shards. If the data will fit, shards are deleted from the cluster as
requested and their keyspaces mapped into the remaining shards. If the data will not fit in
the remaining shards, the process is terminated and the cluster is left with the same shard
configuration as before the request was made.

You can use the MemoryDB API to remove one or more shards from your MemoryDB cluster.
You cannot remove all the shards in a cluster. Instead, you must delete the cluster. For more
information, see Step 4: Deleting a cluster.

Use the following parameters with UpdateCluster.

Parameters

• ClusterName – Required. Specifies which cluster (cluster) the shard reconfiguration operation is
to be performed on.

• ShardConfiguration – Required. Allows you to set the number of shards using the
ShardCount property:

ShardCount – Set this property to specify the number of shards you want.

Scaling MemoryDB clusters 241

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html

Amazon MemoryDB for Redis Developer Guide

Online vertical scaling by modifying node type

By using online vertical scaling with MemoryDB, you can scale your cluster dynamically with
minimal downtime. This allows your cluster to serve requests even while scaling.

Note

Scaling is not supported between a data tiering cluster (for example, a cluster using an
r6gd node type) and a cluster that does not use data tiering (for example, a cluster using an
r6g node type). For more information, see Data tiering.

You can do the following:

• Scale up – Increase read and write capacity by adjusting the node type of your MemoryDB cluster
to use a larger node type.

MemoryDB dynamically resizes your cluster while remaining online and serving requests.

• Scale down – Reduce read and write capacity by adjusting the node type down to use a smaller
node. Again, MemoryDB dynamically resizes your cluster while remaining online and serving
requests. In this case, you reduce costs by downsizing the node.

Note

The scale up and scale down processes rely on creating clusters with newly selected node
types and synchronizing the new nodes with the previous ones. To ensure a smooth scale
up/down flow, do the following:

• While the vertical scaling process is designed to remain fully online, it does rely on
synchronizing data between the old node and the new node. We recommend that you
initiate scale up/down during hours when you expect data traffic to be at its minimum.

• Test your application behavior during scaling in a staging environment, if possible.

Online scaling up

Topics

• Scaling up MemoryDB clusters (Console)

Scaling MemoryDB clusters 242

Amazon MemoryDB for Redis Developer Guide

• Scaling up MemoryDB clusters (AWS CLI)

• Scaling up MemoryDB clusters (MemoryDB API)

Scaling up MemoryDB clusters (Console)

The following procedure describes how to scale up a MemoryDB cluster using the AWS
Management Console. During this process, your MemoryDB cluster will continue to serve requests
with minimal downtime.

To scale up a cluster (console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the list of clusters, choose the cluster.

3. Choose Actions and then choose Modify.

4. In the Modify Cluster dialog:

• Choose the node type you want to scale to from the Node type list. To scale up, select a
node type larger than your existing node.

5. Choose Save changes.

The cluster's status changes to modifying. When the status changes to available, the
modification is complete and you can begin using the new cluster.

Scaling up MemoryDB clusters (AWS CLI)

The following procedure describes how to scale up a MemoryDB cluster using the AWS CLI. During
this process, your MemoryDB cluster will continue to serve requests with minimal downtime.

To scale up a MemoryDB cluster (AWS CLI)

1. Determine the node types you can scale up to by running the AWS CLI list-allowed-node-
type-updates command with the following parameter.

For Linux, macOS, or Unix:

aws memorydb list-allowed-node-type-updates \
 --cluster-name my-cluster-name

Scaling MemoryDB clusters 243

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For Windows:

aws memorydb list-allowed-node-type-updates ^
 --cluster-name my-cluster-name

Output from the above command looks something like this (JSON format).

{
 "ScaleUpNodeTypes": [
 "db.r6g.2xlarge",
 "db.r6g.large"
],
 "ScaleDownNodeTypes": [
 "db.r6g.large"
],
}

For more information, see list-allowed-node-type-updates in the AWS CLI Reference.

2. Modify your cluster to scale up to the new, larger node type, using the AWS CLI update-
cluster command and the following parameters.

• --cluster-name – The name of the cluster you are scaling up to.

• --node-type – The new node type you want to scale the cluster. This value must be one of
the node types returned by the list-allowed-node-type-updates command in step 1.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --node-type db.r6g.2xlarge

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --node-type db.r6g.2xlarge ^

Scaling MemoryDB clusters 244

https://docs.aws.amazon.com/cli/latest/reference/memorydb/list-allowed-node-type-updates.html

Amazon MemoryDB for Redis Developer Guide

For more information, see update-cluster.

Scaling up MemoryDB clusters (MemoryDB API)

The following process scales your cluster from its current node type to a new, larger node type
using the MemoryDB API. During this process, MemoryDB updates the DNS entries so they point
to the new nodes. You can scale auto-failover enabled clusters while the cluster continues to stay
online and serve incoming requests.

The amount of time it takes to scale up to a larger node type varies, depending upon your node
type and the amount of data in your current cluster.

To scale up a MemoryDB cluster (MemoryDB API)

1. Determine which node types you can scale up to using the MemoryDB API
ListAllowedNodeTypeUpdates action with the following parameter.

• ClusterName – the name of the cluster. Use this parameter to describe a specific cluster
rather than all clusters.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=ListAllowedNodeTypeUpdates
 &ClusterName=MyCluster
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

For more information, see ListAllowedNodeTypeUpdates in the MemoryDB for Redis API
Reference.

2. Scale your current cluster up to the new node type using the UpdateCluster MemoryDB API
action and with the following parameters.

• ClusterName – the name of the cluster.

• NodeType – the new, larger node type of the clusters in this cluster. This value must be one
of the instance types returned by the ListAllowedNodeTypeUpdates action in step 1.

Scaling MemoryDB clusters 245

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_ListAllowedNodeTypeUpdates.html

Amazon MemoryDB for Redis Developer Guide

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateCluster
 &NodeType=db.r6g.2xlarge
 &ClusterName=myCluster
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

For more information, see UpdateCluster.

Online scaling down

Topics

• Scaling down MemoryDB clusters (Console)

• Scaling down MemoryDB clusters (AWS CLI)

• Scaling down MemoryDB clusters (MemoryDB API)

Scaling down MemoryDB clusters (Console)

The following procedure describes how to scale down a MemoryDB cluster using the AWS
Management Console. During this process, your MemoryDB cluster will continue to serve requests
with minimal downtime.

To scale down a MemoryDB cluster (console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. From the list of clusters, choose your preferred cluster.

3. Choose Actions and then choose Modify.

Scaling MemoryDB clusters 246

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

4. In the Modify Cluster dialog:

• Choose the node type you want to scale to from the Node type list. To scale down, select
a node type smaller than your existing node. Note that not all node types are available to
scale down to.

5. Choose Save changes.

The cluster's status changes to modifying. When the status changes to available, the
modification is complete and you can begin using the new cluster.

Scaling down MemoryDB clusters (AWS CLI)

The following procedure describes how to scale down a MemoryDB cluster using the AWS
CLI. During this process, your MemoryDB cluster will continue to serve requests with minimal
downtime.

To scale down a MemoryDB cluster (AWS CLI)

1. Determine the node types you can scale down to by running the AWS CLI list-allowed-
node-type-updates command with the following parameter.

For Linux, macOS, or Unix:

aws memorydb list-allowed-node-type-updates \
 --cluster-name my-cluster-name

For Windows:

aws memorydb list-allowed-node-type-updates ^
 --cluster-name my-cluster-name

Output from the above command looks something like this (JSON format).

{
 "ScaleUpNodeTypes": [
 "db.r6g.2xlarge",
 "db.r6g.large"
],
 "ScaleDownNodeTypes": [
 "db.r6g.large"

Scaling MemoryDB clusters 247

Amazon MemoryDB for Redis Developer Guide

],
}

For more information, see list-allowed-node-type-updates.

2. Modify your cluster to scale down to the new, smaller node type, using the update-cluster
command and the following parameters.

• --cluster-name – The name of the cluster you are scaling down to.

• --node-type – The new node type you want to scale the cluster. This value must be one of
the node types returned by the list-allowed-node-type-updates command in step 1.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --node-type db.r6g.large

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --node-type db.r6g.large

For more information, see update-cluster.

Scaling down MemoryDB clusters (MemoryDB API)

The following process scales your cluster from its current node type to a new, smaller node type
using the MemoryDB API. During this process, your MemoryDB cluster will continue to serve
requests with minimal downtime.

The amount of time it takes to scale down to a smaller node type varies, depending upon your
node type and the amount of data in your current cluster.

Scaling down (MemoryDB API)

1. Determine which node types you can scale down to using the ListAllowedNodeTypeUpdates
API with the following parameter:

Scaling MemoryDB clusters 248

https://docs.aws.amazon.com/cli/latest/reference/memorydb/list-allowed-node-type-updates.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-cluster.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_ListAllowedNodeTypeUpdates.html

Amazon MemoryDB for Redis Developer Guide

• ClusterName – the name of the cluster. Use this parameter to describe a specific cluster
rather than all clusters.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=ListAllowedNodeTypeUpdates
 &ClusterName=MyCluster
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &X-Amz-Credential=<credential>

2. Scale your current cluster down to the new node type using the UpdateCluster API with the
following parameters.

• ClusterName – the name of the cluster.

• NodeType – the new, smaller node type of the clusters in this cluster. This value must be
one of the instance types returned by the ListAllowedNodeTypeUpdates action in step
1.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateCluster
 &NodeType=db.r6g.2xlarge
 &ClusterName=myReplGroup
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Scaling MemoryDB clusters 249

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Configuring engine parameters using parameter groups

MemoryDB for Redis uses parameters to control the runtime properties of your nodes and clusters.
Generally, newer engine versions include additional parameters to support the newer functionality.
For tables of parameters, see Redis specific parameters.

As you would expect, some parameter values, such as maxmemory, are determined by the engine
and node type. For a table of these parameter values by node type, see MemoryDB node-type
specific parameters.

Topics

• Parameter management

• Parameter group tiers

• Creating a parameter group

• Listing parameter groups by name

• Listing a parameter group's values

• Modifying a parameter group

• Deleting a parameter group

• Redis specific parameters

Configuring engine parameters using parameter groups 250

Amazon MemoryDB for Redis Developer Guide

Parameter management

Parameters are grouped together into named parameter groups for easier parameter management.
A parameter group represents a combination of specific values for the parameters that are passed
to the engine software during startup. These values determine how the engine processes on each
node behave at runtime. The parameter values on a specific parameter group apply to all nodes
that are associated with the group, regardless of which cluster they belong to.

To fine-tune your cluster's performance, you can modify some parameter values or change the
cluster's parameter group.

• You cannot modify or delete the default parameter groups. If you need custom parameter
values, you must create a custom parameter group.

• The parameter group family and the cluster you're assigning it to must be compatible. For
example, if your cluster is running Redis version 6, you can only use parameter groups, default or
custom, from the memorydb_redis6 family.

• When you change a cluster's parameters, the change is applied to the cluster immediately. This
is true whether you change the cluster's parameter group itself or a parameter value within the
cluster's parameter group.

Parameter management 251

Amazon MemoryDB for Redis Developer Guide

Parameter group tiers

MemoryDB for Redis parameter group tiers

Global Default

The top-level root parameter group for all MemoryDB for Redis customers in the region.

The global default parameter group:

• Is reserved for MemoryDB and not available to the customer.

Customer Default

A copy of the Global Default parameter group which is created for the customer's use.

The Customer Default parameter group:

• Is created and owned by MemoryDB.

• Is available to the customer for use as a parameter group for any clusters running an engine
version supported by this parameter group.

• Cannot be edited by the customer.

Customer Owned

A copy of the Customer Default parameter group. A Customer Owned parameter group is created
whenever the customer creates a parameter group.

The Customer Owned parameter group:

• Is created and owned by the customer.

• Can be assigned to any of the customer's compatible clusters.

• Can be modified by the customer to create a custom parameter group.

 Not all parameter values can be modified. For more information, see Redis specific parameters.

Parameter group tiers 252

Amazon MemoryDB for Redis Developer Guide

Creating a parameter group

You need to create a new parameter group if there is one or more parameter values that you want
changed from the default values. You can create a parameter group using the MemoryDB console,
the AWS CLI, or the MemoryDB API.

Creating a parameter group (Console)

The following procedure shows how to create a parameter group using the MemoryDB console.

To create a parameter group using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. To create a parameter group, choose Create parameter group.

The Create parameter group page appears.

4. In the Name box, type in a unique name for this parameter group.

When creating a cluster or modifying a cluster's parameter group, you will choose the
parameter group by its name. Therefore, we recommend that the name be informative and
somehow identify the parameter group's family.

Parameter group naming constraints are as follows:

• Must begin with an ASCII letter.

• Can only contain ASCII letters, digits, and hyphens.

• Must be 1–255 characters long.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

5. In the Description box, type in a description for the parameter group.

6. In the Redis version compatibility box, choose an engine version that this parameter group
corresponds to.

7. In the Tags, optionally add tags to search and filter your parameter groups or track your AWS
costs.

Creating a parameter group 253

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

8. To create the parameter group, choose Create.

To terminate the process without creating the parameter group, choose Cancel.

9. When the parameter group is created, it will have the family's default values. To change the
default values you must modify the parameter group. For more information, see Modifying a
parameter group.

Creating a parameter group (AWS CLI)

To create a parameter group using the AWS CLI, use the command create-parameter-group
with these parameters.

• --parameter-group-name — The name of the parameter group.

Parameter group naming constraints are as follows:

• Must begin with an ASCII letter.

• Can only contain ASCII letters, digits, and hyphens.

• Must be 1–255 characters long.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

• --family — The engine and version family for the parameter group.

• --description — A user supplied description for the parameter group.

Example

The following example creates a parameter group named myRedis6x using the memorydb_redis6
family as the template.

For Linux, macOS, or Unix:

aws memorydb create-parameter-group \
 --parameter-group-name myRedis6x \
 --family memorydb_redis6 \
 --description "My first parameter group"

For Windows:
Creating a parameter group 254

Amazon MemoryDB for Redis Developer Guide

aws memorydb create-parameter-group ^
 --parameter-group-name myRedis6x ^
 --family memorydb_redis6 ^
 --description "My first parameter group"

The output from this command should look something like this.

{
 "ParameterGroup": {
 "Name": "myRedis6x",
 "Family": "memorydb_redis6",
 "Description": "My first parameter group",
 "ARN": "arn:aws:memorydb:us-east-1:012345678912:parametergroup/myredis6x"
 }
}

When the parameter group is created, it will have the family's default values. To change the default
values you must modify the parameter group. For more information, see Modifying a parameter
group.

For more information, see create-parameter-group.

Creating a parameter group (MemoryDB API)

To create a parameter group using the MemoryDB API, use the CreateParameterGroup action
with these parameters.

• ParameterGroupName — The name of the parameter group.

Parameter group naming constraints are as follows:

• Must begin with an ASCII letter.

• Can only contain ASCII letters, digits, and hyphens.

• Must be 1–255 characters long.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

• Family — The engine and version family for the parameter group. For example,
memorydb_redis6.

• Description — A user supplied description for the parameter group.

Creating a parameter group 255

https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-parameter-group.html

Amazon MemoryDB for Redis Developer Guide

Example

The following example creates a parameter group named myRedis6x using the memorydb_redis6
family as the template.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=CreateParameterGroup
 &Family=memorydb_redis6
 &ParameterGroupName=myRedis6x
 &Description=My%20first%20parameter%20group
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

The response from this action should look something like this.

<CreateParameterGroupResponse xmlns="http://memory-db.us-east-1.amazonaws.com/
doc/2021-01-01/">
 <CreateParameterGroupResult>
 <ParameterGroup>
 <Name>myRedis6x</Name>
 <Family>memorydb_redis6</Family>
 <Description>My first parameter group</Description>
 <ARN>arn:aws:memorydb:us-east-1:012345678912:parametergroup/myredis6x</ARN>
 </ParameterGroup>
 </CreateParameterGroupResult>
 <ResponseMetadata>
 <RequestId>d8465952-af48-11e0-8d36-859edca6f4b8</RequestId>
 </ResponseMetadata>
</CreateParameterGroupResponse>

When the parameter group is created, it will have the family's default values. To change the default
values you must modify the parameter group. For more information, see Modifying a parameter
group.

For more information, see CreateParameterGroup.

Creating a parameter group 256

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CreateParameterGroup.html

Amazon MemoryDB for Redis Developer Guide

Listing parameter groups by name

You can list the parameter groups using the MemoryDB console, the AWS CLI, or the MemoryDB
API.

Listing parameter groups by name (Console)

The following procedure shows how to view a list of the parameter groups using the MemoryDB
console.

To list parameter groups using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

Listing parameter groups by name (AWS CLI)

To generate a list of parameter groups using the AWS CLI, use the command describe-
parameter-groups. If you provide a parameter group's name, only that parameter group will be
listed. If you do not provide a parameter group's name, up to --max-results parameter groups
will be listed. In either case, the parameter group's name, family, and description are listed.

Example

The following sample code lists the parameter group myRedis6x.

For Linux, macOS, or Unix:

aws memorydb describe-parameter-groups \
 --parameter-group-name myRedis6x

For Windows:

aws memorydb describe-parameter-groups ^
 --parameter-group-name myRedis6x

The output of this command will look something like this, listing the name, family, and description
for the parameter group.

Listing parameter groups by name 257

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

{
 "ParameterGroups": [
 {
 "Name": "myRedis6x",
 "Family": "memorydb_redis6",
 "Description": "My first parameter group",
 "ARN": "arn:aws:memorydb:us-east-1:012345678912:parametergroup/
myredis6x"
 }
]
}

Example

The following sample code lists the parameter group myRedis6x for parameter groups running on
Redis engine version 5.0.6 onwards.

For Linux, macOS, or Unix:

aws memorydb describe-parameter-groups \
 --parameter-group-name myRedis6x

For Windows:

aws memorydb describe-parameter-groups ^
 --parameter-group-name myRedis6x

The output of this command will look something like this, listing the name, family and description
for the parameter group.

{
 "ParameterGroups": [
 {
 "Name": "myRedis6x",
 "Family": "memorydb_redis6",
 "Description": "My first parameter group",
 "ARN": "arn:aws:memorydb:us-east-1:012345678912:parametergroup/
myredis6x"
 }
]
}

Listing parameter groups by name 258

Amazon MemoryDB for Redis Developer Guide

Example

The following sample code lists up to 20 parameter groups.

aws memorydb describe-parameter-groups --max-results 20

The JSON output of this command will look something like this, listing the name, family and
description for each parameter group.

{
 "ParameterGroups": [
 {
 "ParameterGroupName": "default.memorydb-redis6",
 "Family": "memorydb_redis6",
 "Description": "Default parameter group for memorydb_redis6",
 "ARN": "arn:aws:memorydb:us-east-1:012345678912:parametergroup/
default.memorydb-redis6"
 },
 ...
]
}

For more information, see describe-parameter-groups.

Listing parameter groups by name (MemoryDB API)

To generate a list of parameter groups using the MemoryDB API, use the
DescribeParameterGroups action. If you provide a parameter group's name, only that
parameter group will be listed. If you do not provide a parameter group's name, up to MaxResults
parameter groups will be listed. In either case, the parameter group's name, family, and description
are listed.

Example

The following sample code lists up to 20 parameter groups.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeParameterGroups
 &MaxResults=20
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z

Listing parameter groups by name 259

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-parameter-groups.html

Amazon MemoryDB for Redis Developer Guide

 &Version=2021-01-01
 &X-Amz-Credential=<credential>

The response from this action will look something like this, listing the name, family and description
in the case of memorydb_redis6, for each parameter group.

<DescribeParameterGroupsResponse xmlns="http://memory-db.us-east-1.amazonaws.com/
doc/2021-01-01/">
 <DescribeParameterGroupsResult>
 <ParameterGroups>
 <ParameterGroup>
 <Name>myRedis6x</Name>
 <Family>memorydb_redis6</Family>
 <Description>My custom Redis 6 parameter group</Description>
 <ARN>arn:aws:memorydb:us-east-1:012345678912:parametergroup/myredis6x</ARN>
 </ParameterGroup>
 <ParameterGroup>
 <Name>default.memorydb-redis6</Name>
 <Family>memorydb_redis6</Family>
 <Description>Default parameter group for memorydb_redis6</Description>
 <ARN>arn:aws:memorydb:us-east-1:012345678912:parametergroup/default.memorydb-
redis6</ARN>
 </ParameterGroup>
 </ParameterGroups>
 </DescribeParameterGroupsResult>
 <ResponseMetadata>
 <RequestId>3540cc3d-af48-11e0-97f9-279771c4477e</RequestId>
 </ResponseMetadata>
</DescribeParameterGroupsResponse>

Example

The following sample code lists the parameter group myRedis6x.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeParameterGroups
 &ParameterGroupName=myRedis6x
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

Listing parameter groups by name 260

Amazon MemoryDB for Redis Developer Guide

The response from this action will look something like this, listing the name, family, and
description.

<DescribeParameterGroupsResponse xmlns="http://memory-db.us-east-1.amazonaws.com/
doc/2021-01-01/">
 <DescribeParameterGroupsResult>
 <ParameterGroups>
 <ParameterGroup>
 <Name>myRedis6x</Name>
 <Family>memorydb_redis6</Family>
 <Description>My custom Redis 6 parameter group</Description>
 <ARN>arn:aws:memorydb:us-east-1:012345678912:parametergroup/myredis6x</ARN>
 </ParameterGroup>
 </ParameterGroups>
 </DescribeParameterGroupsResult>
 <ResponseMetadata>
 <RequestId>3540cc3d-af48-11e0-97f9-279771c4477e</RequestId>
 </ResponseMetadata>
</DescribeParameterGroupsResponse>

For more information, see DescribeParameterGroups.

Listing parameter groups by name 261

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeParameterGroups.html

Amazon MemoryDB for Redis Developer Guide

Listing a parameter group's values

You can list the parameters and their values for a parameter group using the MemoryDB console,
the AWS CLI, or the MemoryDB API.

Listing a parameter group's values (Console)

The following procedure shows how to list the parameters and their values for a parameter group
using the MemoryDB console.

To list a parameter group's parameters and their values using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. Choose the parameter group for which you want to list the parameters and values by choosing
name (not the box next to it) of the parameter group's name.

The parameters and their values will be listed at the bottom of the screen. Due to the number
of parameters, you may have to scroll up and down to find the parameter you're interested in.

Listing a parameter group's values (AWS CLI)

To list a parameter group's parameters and their values using the AWS CLI, use the command
describe-parameters.

Example

The following sample code list all the parameters and their values for the parameter group
myRedis6x.

For Linux, macOS, or Unix:

aws memorydb describe-parameters \
 --parameter-group-name myRedis6x

For Windows:

Listing a parameter group's values 262

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

aws memorydb describe-parameters ^
 --parameter-group-name myRedis6x

For more information, see describe-parameters.

Listing a parameter group's values (MemoryDB API)

To list a parameter group's parameters and their values using the MemoryDB API, use the
DescribeParameters action.

For more information, see DescribeParameters.

Modifying a parameter group

Important

You cannot modify any default parameter group.

You can modify some parameter values in a parameter group. These parameter values are applied
to clusters associated with the parameter group. For more information on when a parameter value
change is applied to a parameter group, see Redis specific parameters.

Modifying a parameter group (Console)

The following procedure shows how to change the parameter's value using the MemoryDB console.
You would use the same procedure to change the value of any parameter.

To change a parameter's value using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. Choose the parameter group you want to modify by choosing the radio button to the left of
the parameter group's name.

Choose Actions and then View details. Alternatively, you can also choose the parameter group
name to go to the details page.

Modifying a parameter group 263

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-parameters.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeParameters.html
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

4. To modify the parameter, choose Edit. All the editable parameters will be enabled to be
edited. You may have to move across pages to find the parameter you want to change.
Alternatively, you can search for the parameter by name, value or type in the search box.

5. Make any necessary parameter modifications.

6. To save your changes, choose Save changes.

7. If you modified parameter values across number of pages, you can review all the changes by
choosing Preview changes. To confirm the changes, choose Save changes. To make more
modifications, choose back.

8. The Parameter details page also gives you the option to reset to default values. To reset to
default values, choose Reset to defaults. Checkboxes will appear on the left side of all the
parameters. You can select the ones you want to reset and choose Proceed to reset to confirm.

Choose confirm to confirm the reset action on the dialogue box.

9. The parameter details page allows you to set the number of parameters you want to see on
each page. Use the cogwheel on the right side to make those changes. You can also enable/
disable the columns you want on the details page. These changes last through the session of
the console.

To find the name of the parameter you changed, see Redis specific parameters.

Modifying a parameter group (AWS CLI)

To change a parameter's value using the AWS CLI, use the command update-parameter-group.

To find the name and permitted values of the parameter you want to change, see Redis specific
parameters

For more information, see update-parameter-group.

Modifying a parameter group (MemoryDB API)

To change a parameter group's parameter values using the MemoryDB API, use the
UpdateParameterGroup action.

To find the name and permitted values of the parameter you want to change, see Redis specific
parameters

For more information, see UpdateParameterGroup.

Modifying a parameter group 264

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-parameter-group.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateParameterGroup.html

Amazon MemoryDB for Redis Developer Guide

Deleting a parameter group

You can delete a custom parameter group using the MemoryDB console, the AWS CLI, or the
MemoryDB API.

You cannot delete a parameter group if it is associated with any clusters. Nor can you delete any of
the default parameter groups.

Deleting a parameter group (Console)

The following procedure shows how to delete a parameter group using the MemoryDB console.

To delete a parameter group using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. To see a list of all available parameter groups, in the left hand navigation pane choose
Parameter Groups.

3. Choose the parameter groups you want to delete by choosing the radio button to the left of
the parameter group's name.

Choose Actions and then choose Delete.

4. The Delete Parameter Groups confirmation screen will appear.

5. To delete the parameter groups enter Delete in the confirmation text box.

To keep the parameter groups, choose Cancel.

Deleting a parameter group (AWS CLI)

To delete a parameter group using the AWS CLI, use the command delete-parameter-group.
For the parameter group to delete, the parameter group specified by --parameter-group-name
cannot have any clusters associated with it, nor can it be a default parameter group.

The following sample code deletes the myRedis6x parameter group.

Example

For Linux, macOS, or Unix:

aws memorydb delete-parameter-group \

Deleting a parameter group 265

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

 --parameter-group-name myRedis6x

For Windows:

aws memorydb delete-parameter-group ^
 --parameter-group-name myRedis6x

For more information, see delete-parameter-group.

Deleting a parameter group (MemoryDB API)

To delete a parameter group using the MemoryDB API, use the DeleteParameterGroup action.
For the parameter group to delete, the parameter group specified by ParameterGroupName
cannot have any clusters associated with it, nor can it be a default parameter group.

Example

The following sample code deletes the myRedis6x parameter group.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DeleteParameterGroup
 &ParameterGroupName=myRedis6x
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

For more information, see DeleteParameterGroup.

Deleting a parameter group 266

https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-parameter-group.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DeleteParameterGroup.html

Amazon MemoryDB for Redis Developer Guide

Redis specific parameters

If you do not specify a parameter group for your Redis cluster, then a default parameter group
appropriate to your engine version will be used. You can't change the values of any parameters in
the default parameter group. However, you can create a custom parameter group and assign it to
your cluster at any time as long as the values of conditionally modifiable parameters are the same
in both parameter groups. For more information, see Creating a parameter group.

Topics

• Redis 7 parameter changes

• Redis 6 parameters

• MemoryDB node-type specific parameters

Redis 7 parameter changes

Note

MemoryDB has introduced a preview release of Vector search that includes a new
immutable parameter group default.memorydb-redis7.search.preview. This
parameter group is available in the MemoryDB console and when creating a new vector-
search-enabled cluster using the create-cluster CLI command. The preview release is
available in the following AWS Regions: US East (N. Virginia), US East (Ohio), US West
(Oregon), Asia Pacific (Tokyo), and Europe (Ireland).

Parameter group family: memorydb_redis7

Parameters added in Redis 7 are as follows.

Name Details Description

latency-t
racking Permitted values: yes, no

Default: no

Type: string

When set to yes tracks the per command
latencies and enables exporting the percentil
e distribution via the INFO latency statistics
command, and cumulative latency distribut
ions (histograms) via the LATENCY command.

Redis specific parameters 267

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-cluster.html

Amazon MemoryDB for Redis Developer Guide

Name Details Description

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

hash-max-
listpack-
entries

Permitted values: 0+

Default: 512

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The maximum number of hash entries in order
for the dataset to be compressed.

hash-max-
listpack-
value

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The threshold of biggest hash entries in order
for the dataset to be compressed.

Redis specific parameters 268

Amazon MemoryDB for Redis Developer Guide

Name Details Description

zset-max-
listpack-
entries

Permitted values: 0+

Default: 128

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The maximum number of sorted set entries in
order for the dataset to be compressed.

zset-max-
listpack-
value

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

The threshold of biggest sorted set entries in
order for the dataset to be compressed.

Parameters changed in Redis 7 are as follows.

Name Details Description

activereh
ashing Modifiable: no. In Redis 7,

this parameter is hidden and
enabled by default. In order
to disable it, you need to
create a support case.

Modifiable was yes.

Redis specific parameters 269

https://console.aws.amazon.com/support/home

Amazon MemoryDB for Redis Developer Guide

Parameters removed in Redis 7 are as follows.

Name Details Description

hash-max-
ziplist-e
ntries

Permitted values: 0+

Default: 512

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding

hash-max-
ziplist-v
alue

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding

zset-max-
ziplist-e
ntries

Permitted values: 0+

Default: 128

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding.

Redis specific parameters 270

Amazon MemoryDB for Redis Developer Guide

Name Details Description

zset-max-
ziplist-v
alue

Permitted values: 0+

Default: 64

Type: integer

Modifiable: Yes

Changes take effect:
Immediately across all nodes
in the cluster.

Use listpack instead of ziplist for
representing small hash encoding.

Redis 6 parameters

Note

In Redis engine version 6.2, when the r6gd node family was introduced for use with Data
tiering, only noeviction, volatile-lru and allkeys-lru max-memory policies are
supported with r6gd node types.

Parameter group family: memorydb_redis6

Parameters added in Redis 6 are as follows.

Name Details Description

maxmemory
-policy Type: STRING

Permitted values: volatile-
lru,allkeys-lru,volatile-lf
u,allkeys-lfu,volatile-rand
om,allkeys-random,volatile-
ttl,noeviction

The eviction policy for keys when maximum
memory usage is reached.

For more information, see Using Redis as an
LRU cache Using Redis as an LRU cache.

Redis specific parameters 271

https://redis.io/topics/lru-cache

Amazon MemoryDB for Redis Developer Guide

Name Details Description

Default: noeviction

list-comp
ress-dept
h

Type: INTEGER

Permitted values: 0-

Default: 0

Compress depth is the number of quicklist
ziplist nodes from each side of the list to
exclude from compression. The head and tail
of the list are always uncompressed for fast
push and pop operations. Settings are:

• 0: Disable all compression.

• 1: Start compressing with the 1st node in
from the head and tail.

[head]->node->node->...->node->[tail]

All nodes except [head] and [tail] compress.

• 2: Start compressing with the 2nd node in
from the head and tail.

[head]->[next]->node->node->...->node-
>[prev]->[tail]

[head], [next], [prev], [tail] do not compress.
All other nodes compress.

• Etc.

Redis specific parameters 272

Amazon MemoryDB for Redis Developer Guide

Name Details Description

hll-spars
e-max-byt
es

Type: INTEGER

Permitted values: 1-16000

Default: 3000

HyperLogLog sparse representation bytes
limit. The limit includes the 16 byte header.
When a HyperLogLog using the sparse
representation crosses this limit, it is
converted into the dense representation.

A value greater than 16000 is not recommend
ed, because at that point the dense represent
ation is more memory efficient.

We recommend a value of about 3000 to have
the benefits of the space-efficient encoding
without slowing down PFADD too much,
which is O(N) with the sparse encoding. The
value can be raised to ~10000 when CPU is
not a concern, but space is, and the data set
is composed of many HyperLogLogs with
cardinality in the 0 - 15000 range.

lfu-log-f
actor Type: INTEGER

Permitted values: 1-

Default: 10

The log factor for incrementing key counter
for LFU eviction policy.

lfu-decay
-time Type: INTEGER

Permitted values: 0-

Default: 1

The amount of time in minutes to decrement
the key counter for LFU eviction policy.

Redis specific parameters 273

Amazon MemoryDB for Redis Developer Guide

Name Details Description

active-de
frag-max-
scan-fiel
ds

Type: INTEGER

Permitted values: 1-1000000

Default: 1000

Maximum number of set/hash/zset/list fields
that will be processed from the main dictionar
y scan during active defragmentation.

active-de
frag-thre
shold-upp
er

Type: INTEGER

Permitted values: 1-100

Default: 100

Maximum percentage of fragmentation at
which we use maximum effort.

client-ou
tput-buff
er-limit-
pubsub-ha
rd-limit

Type: INTEGER

Permitted values: 0-

Default: 33554432

For Redis publish/subscribe clients: If a client's
output buffer reaches the specified number of
bytes, the client will be disconnected.

client-ou
tput-buff
er-limit-
pubsub-so
ft-limit

Type: INTEGER

Permitted values: 0-

Default: 8388608

For Redis publish/subscribe clients: If a client's
output buffer reaches the specified number
of bytes, the client will be disconnected, but
only if this condition persists for client-ou
tput-buffer-limit-pubsub-soft-
seconds.

client-ou
tput-buff
er-limit-
pubsub-so
ft-second
s

Type: INTEGER

Permitted values: 0-

Default: 60

For Redis publish/subscribe clients: If a client's
output buffer remains at client-output-
buffer-limit-pubsub-soft-limit
bytes for longer than this number of seconds,
the client will be disconnected.

Redis specific parameters 274

Amazon MemoryDB for Redis Developer Guide

Name Details Description

timeout
Type: INTEGER

Permitted values: 0,20-

Default: 0

The number of seconds a node waits before
timing out. Values are:

• 0 – never disconnect an idle client.

• 1-19 – invalid values.

• >=20 – the number of seconds a node waits
before disconnecting an idle client.

notify-ke
yspace-ev
ents

Type: STRING

Permitted values: NULL

Default: NULL

The keyspace events for Redis to notify Pub/
Sub clients about. By default all notifications
are disabled.

maxmemory
-samples Type: INTEGER

Permitted values: 1-

Default: 3

For least-recently-used (LRU) and time-to-
live (TTL) calculations, this parameter
represents the sample size of keys to check. By
default, Redis chooses 3 keys and uses the one
that was used least recently.

slowlog-m
ax-len Type: INTEGER

Permitted values: 0-

Default: 128

The maximum length of the Redis Slow Log.
There is no limit to this length. Just be aware
that it will consume memory. You can reclaim
memory used by the slow log with SLOWLOG
RESET.

Redis specific parameters 275

Amazon MemoryDB for Redis Developer Guide

Name Details Description

activereh
ashing Type: STRING

Permitted values: yes,no

Default: yes

The main hash table is rehashed ten times per
second; each rehash operation consumes 1
millisecond of CPU time.

This value is set when you create the
parameter group. When assigning a new
parameter group to a cluster, this value
must be the same in both the old and new
parameter groups.

client-ou
tput-buff
er-limit-
normal-ha
rd-limit

Type: INTEGER

Permitted values: 0-

Default: 0

If a client's output buffer reaches the specified
number of bytes, the client will be disconnec
ted. The default is zero (no hard limit).

client-ou
tput-buff
er-limit-
normal-so
ft-limit

Type: INTEGER

Permitted values: 0-

Default: 0

If a client's output buffer reaches the specified
number of bytes, the client will be disconnec
ted, but only if this condition persists for
client-output-buffer-limit-
normal-soft-seconds . The default is
zero (no soft limit).

client-ou
tput-buff
er-limit-
normal-so
ft-second
s

Type: INTEGER

Permitted values: 0-

Default: 0

If a client's output buffer remains at client-
output-buffer-limit-normal-so
ft-limit bytes for longer than this number
of seconds, the client will be disconnected.
The default is zero (no time limit).

Redis specific parameters 276

Amazon MemoryDB for Redis Developer Guide

Name Details Description

tcp-keepa
live Type: INTEGER

Permitted values: 0-

Default: 300

If this is set to a nonzero value (N), node
clients are polled every N seconds to ensure
that they are still connected. With the default
setting of 0, no such polling occurs.

active-de
frag-cycl
e-min

Type: INTEGER

Permitted values: 1-75

Default: 5

Minimal effort for defrag in CPU percentage.

stream-no
de-max-by
tes

Type: INTEGER

Permitted values: 0-

Default: 4096

The stream data structure is a radix tree of
nodes that encode multiple items inside. Use
this configuration to specify the maximum size
of a single node in radix tree in Bytes. If set to
0, the size of the tree node is unlimited.

stream-no
de-max-en
tries

Type: INTEGER

Permitted values: 0-

Default: 100

The stream data structure is a radix tree of
nodes that encode multiple items inside. U
se this configuration to specify the maximum
number of items a single node can contain
before switching to a new node when
appending new stream entries. If set to 0, the
number of items in the tree node is unlimited.

lazyfree-
lazy-evic
tion

Type: STRING

Permitted values: yes,no

Default: no

Perform an asynchronous delete on evictions.

Redis specific parameters 277

Amazon MemoryDB for Redis Developer Guide

Name Details Description

active-de
frag-igno
re-bytes

Type: INTEGER

Permitted values: 1048576-

Default: 104857600

Minimum amount of fragmentation waste to
start active defrag.

lazyfree-
lazy-expi
re

Type: STRING

Permitted values: yes,no

Default: no

Perform an asynchronous delete on expired
keys.

active-de
frag-thre
shold-low
er

Type: INTEGER

Permitted values: 1-100

Default: 10

Minimum percentage of fragmentation to
start active defrag.

active-de
frag-cycl
e-max

Type: INTEGER

Permitted values: 1-75

Default: 75

Maximal effort for defrag in CPU percentage.

lazyfree-
lazy-serv
er-del

Type: STRING

Permitted values: yes,no

Default: no

Performs an asynchronous delete for
commands which update values.

Redis specific parameters 278

Amazon MemoryDB for Redis Developer Guide

Name Details Description

slowlog-l
og-slower
-than

Type: INTEGER

Permitted values: 0-

Default: 10000

The maximum execution time, in microseco
nds, to exceed in order for the command to
get logged by the Redis Slow Log feature.
Note that a negative number disables the slow
log, while a value of zero forces the logging of
every command.

hash-max-
ziplist-e
ntries

Type: INTEGER

Permitted values: 0-

Default: 512

Determines the amount of memory used for
hashes. Hashes with fewer than the specified
number of entries are stored using a special
encoding that saves space.

hash-max-
ziplist-v
alue

Type: INTEGER

Permitted values: 0-

Default: 64

Determines the amount of memory used for
hashes. Hashes with entries that are smaller
than the specified number of bytes are stored
using a special encoding that saves space.

set-max-i
ntset-ent
ries

Type: INTEGER

Permitted values: 0-

Default: 512

Determines the amount of memory used
for certain kinds of sets (strings that are
integers in radix 10 in the range of 64 bit
signed integers). Such sets with fewer than
the specified number of entries are stored
using a special encoding that saves space.

zset-max-
ziplist-e
ntries

Type: INTEGER

Permitted values: 0-

Default: 128

Determines the amount of memory used for
sorted sets. Sorted sets with fewer than the
specified number of elements are stored using
a special encoding that saves space.

Redis specific parameters 279

Amazon MemoryDB for Redis Developer Guide

Name Details Description

zset-max-
ziplist-v
alue

Type: INTEGER

Permitted values: 0-

Default: 64

Determines the amount of memory used for
sorted sets. Sorted sets with entries that are
smaller than the specified number of bytes
are stored using a special encoding that saves
space.

tracking-
table-max
-keys

Type: INTEGER

Permitted values: 1-1000000
00

Default: 1000000

To assist client-side caching, Redis supports
tracking which clients have accessed which
keys.

When the tracked key is modified, invalidation
messages are sent to all clients to notify them
their cached values are no longer valid. This
value enables you to specify the upper bound
of this table.

acllog-ma
x-len Type: INTEGER

Permitted values: 1-10000

Default: 128

The maximum number of entries in the ACL
Log.

Redis specific parameters 280

Amazon MemoryDB for Redis Developer Guide

Name Details Description

active-ex
pire-effo
rt

Type: INTEGER

Permitted values: 1-10

Default: 1

Redis deletes keys that have exceeded their
time to live by two mechanisms. In one, a key
is accessed and is found to be expired. In the
other, a periodic job samples keys and causes
those that have exceeded their time to live to
expire. This parameter defines the amount of
effort that Redis uses to expire items in the
periodic job.

The default value of 1 tries to avoid having
more than 10 percent of expired keys still
in memory. It also tries to avoid consuming
more than 25 percent of total memory and to
add latency to the system. You can increase
this value up to 10 to increase the amount
of effort spent on expiring keys. The tradeoff
is higher CPU and potentially higher latency.
We recommend a value of 1 unless you are
seeing high memory usage and can tolerate an
increase in CPU utilization.

lazyfree-
lazy-user
-del

Type: STRING

Permitted values: yes,no

Default: no

Specifies whether the default behavior of DEL
command acts the same as UNLINK.

activedef
rag Type: STRING

Permitted values: yes,no

Default: no

Enabled active memory defragmentation.

Redis specific parameters 281

Amazon MemoryDB for Redis Developer Guide

Name Details Description

maxclient
s Type: INTEGER

Permitted values: 65000

Default: 65000

The maximum number of clients that can be
connected at one time. Non modifiable.

client-qu
ery-buffe
r-limit

Type: INTEGER

Permitted values: 1048576-1
073741824

Default: 1073741824

Max size of a single client query buffer.
Change takes place immediately.

proto-max
-bulk-len Type: INTEGER

Permitted values: 1048576-5
36870912

Default: 536870912

Max size of a single element request. Change
takes place immediately.

MemoryDB node-type specific parameters

Although most parameters have a single value, some parameters have different values depending
on the node type used. The following table shows the default value for the maxmemory for each
node type. The value of maxmemory is the maximum number of bytes available to you for use, data
and other uses, on the node.

Node type Maxmemory

db.r7g.large 14037181030

db.r7g.xlarge 28261849702

db.r7g.2xlarge 56711183565

Redis specific parameters 282

Amazon MemoryDB for Redis Developer Guide

Node type Maxmemory

db.r7g.4xlarge 113609865216

db.r7g.8xlarge 225000375228

db.r7g.12xlarge 341206346547

db.r7g.16xlarge 450000750456

db.r6gd.xlarge 28261849702

db.r6gd.2xlarge 56711183565

db.r6gd.4xlarge 113609865216

db.r6gd.8xlarge 225000375228

db.r6g.large 14037181030

db.r6g.xlarge 28261849702

db.r6g.2xlarge 56711183565

db.r6g.4xlarge 113609865216

db.r6g.8xlarge 225000375228

db.r6g.12xlarge 341206346547

db.r6g.16xlarge 450000750456

db.t4g.small 1471026299

db.t4g.medium 3317862236

Note

All MemoryDB instance types must be created in an Amazon Virtual Private Cloud VPC.

Redis specific parameters 283

Amazon MemoryDB for Redis Developer Guide

Tutorial: Configuring a Lambda function to access MemoryDB
in an Amazon VPC

In this tutorial you can learn how to:

• Create a MemoryDB cluster in your default Amazon Virtual Private Cloud (Amazon VPC) in the
us-east-1 region.

• Create a Lambda function to access the cluster. When you create the Lambda function, you
provide subnet IDs in your Amazon VPC and a VPC security group to allow the Lambda function
to access resources in your VPC. For illustration in this tutorial, the Lambda function generates a
UUID, writes it to the cluster, and retrieves it from the cluster..

• Invoke the Lambda function manually and verify that it accessed the cluster in your VPC.

• Clean up Lambda function, cluster, and IAM role that were setup for this tutorial.

Topics

• Step 1: Create a cluster

• Step 2: Create a Lambda function

• Step 3: Test the Lambda function

• Step 4: Clean up (Optional)

Step 1: Create a cluster

To create a cluster, follow these steps.

Topics

• Step 1.1: Create a cluster

• Step 1.2: Copy the cluster endpoint

• Step 1.3: Create IAM Role

• Step 1.4: Create an Access Control List (ACL)

Tutorial: Configuring a Lambda function to access MemoryDB in an Amazon VPC 284

Amazon MemoryDB for Redis Developer Guide

Step 1.1: Create a cluster

In this step, you create a cluster in the default Amazon VPC in the us-east-1 region in your account
using the AWS Command Line Interface (CLI). For information on creating cluster using the
MemoryDB console or API, see see Step 1: Create a cluster.

aws memorydb create-cluster --cluster-name cluster-01 --engine-version 7.0 --acl-name
 open-access \
--description "MemoryDB IAM auth application" \
--node-type db.r6g.large

Note that the value of the Status field is set to CREATING. It can take a few minutes for MemoryDB
to finish creating your cluster.

Step 1.2: Copy the cluster endpoint

Verify that MemoryDB has finished creating the cluster with the describe-clusters command.

aws memorydb describe-clusters \
--cluster-name cluster-01

Copy the Cluster Endpoint Address shown in the output. You'll need this address when you create
the deployment package for your Lambda function.

Step 1.3: Create IAM Role

1. Create an IAM trust policy document, as shown below, for your role that allows your account
to assume the new role. Save the policy to a file named trust-policy.json. Be sure to replace
account_id 123456789012 in this policy with your account_id.

{
"Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"

Step 1: Create a cluster 285

Amazon MemoryDB for Redis Developer Guide

 },
 "Action": "sts:AssumeRole"
 }]
}

2. Create an IAM policy document, as shown below. Save the policy to a file named policy.json. Be
sure to replace account_id 123456789012 in this policy with your account_id.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Action" : [
 "memorydb:Connect"
],
 "Resource" : [
 "arn:aws:memorydb:us-east-1:123456789012:cluster/cluster-01",
 "arn:aws:memorydb:us-east-1:123456789012:user/iam-user-01"
]
 }
]
}

3. Create an IAM role.

aws iam create-role \
--role-name "memorydb-iam-auth-app" \
--assume-role-policy-document file://trust-policy.json

4. Create the IAM policy.

aws iam create-policy \
 --policy-name "memorydb-allow-all" \
 --policy-document file://policy.json

5. Attach the IAM policy to the role. Be sure to replace account_id 123456789012 in this policy-
arn with your account_id.

aws iam attach-role-policy \
 --role-name "memorydb-iam-auth-app" \
 --policy-arn "arn:aws:iam::123456789012:policy/memorydb-allow-all"

Step 1: Create a cluster 286

Amazon MemoryDB for Redis Developer Guide

Step 1.4: Create an Access Control List (ACL)

1. Create a new IAM-enabled user.

aws memorydb create-user \
 --user-name iam-user-01 \
--authentication-mode Type=iam \
--access-string "on ~* +@all"

2. Create an ACL and attach it to the cluster.

aws memorydb create-acl \
 --acl-name iam-acl-01 \
 --user-names iam-user-01

aws memorydb update-cluster \
 --cluster-name cluster-01 \
 --acl-name iam-acl-01

Step 2: Create a Lambda function

To create a Lambda function, take these steps.

Topics

• Step 2.1: Create the deployment package

• Step 2.2: Create the IAM role (execution role)

• Step 2.3: Upload the deployment package (create the Lambda function)

Step 2.1: Create the deployment package

In this tutorial, we provide example code in Python for your Lambda function.

Python

The following example Python code reads and writes an item to your MemoryDB cluster. Copy the
code and save it into a file named app.py. Be sure to replace the cluster_endpoint value in the
code with the endpoint address you copied in step 1.2.

from typing import Tuple, Union

Step 2: Create a Lambda function 287

Amazon MemoryDB for Redis Developer Guide

from urllib.parse import ParseResult, urlencode, urlunparse

import botocore.session
import redis
from botocore.model import ServiceId
from botocore.signers import RequestSigner
from cachetools import TTLCache, cached
import uuid

class MemoryDBIAMProvider(redis.CredentialProvider):
 def __init__(self, user, cluster_name, region="us-east-1"):
 self.user = user
 self.cluster_name = cluster_name
 self.region = region

 session = botocore.session.get_session()
 self.request_signer = RequestSigner(
 ServiceId("memorydb"),
 self.region,
 "memorydb",
 "v4",
 session.get_credentials(),
 session.get_component("event_emitter"),
)

 # Generated IAM tokens are valid for 15 minutes
 @cached(cache=TTLCache(maxsize=128, ttl=900))
 def get_credentials(self) -> Union[Tuple[str], Tuple[str, str]]:
 query_params = {"Action": "connect", "User": self.user}

 url = urlunparse(
 ParseResult(
 scheme="https",
 netloc=self.cluster_name,
 path="/",
 query=urlencode(query_params),
 params="",
 fragment="",
)
)
 signed_url = self.request_signer.generate_presigned_url(
 {"method": "GET", "url": url, "body": {}, "headers": {}, "context": {}},
 operation_name="connect",
 expires_in=900,

Step 2: Create a Lambda function 288

Amazon MemoryDB for Redis Developer Guide

 region_name=self.region,
)
 # RequestSigner only seems to work if the URL has a protocol, but
 # MemoryDB only accepts the URL without a protocol
 # So strip it off the signed URL before returning
 return (self.user, signed_url.removeprefix("https://"))

def lambda_handler(event, context):
 username = "iam-user-01" # replace with your user id
 cluster_name = "cluster-01" # replace with your cache name
 cluster_endpoint = "clustercfg.cluster-01.xxxxxx.memorydb.us-east-1.amazonaws.com"
 # replace with your cluster endpoint
 creds_provider = MemoryDBIAMProvider(user=username, cluster_name=cluster_name)
 redis_client = redis.Redis(host=cluster_endpoint, port=6379,
 credential_provider=creds_provider, ssl=True, ssl_cert_reqs="none")

 key='uuid'
 # create a random UUID - this will be the sample element we add to the cluster
 uuid_in = uuid.uuid4().hex
 redis_client.set(key, uuid_in)
 result = redis_client.get(key)
 decoded_result = result.decode("utf-8")
 # check the retrieved item matches the item added to the cluster and print
 # the results
 if decoded_result == uuid_in:
 print(f"Success: Inserted {uuid_in}. Fetched {decoded_result} from MemoryDB.")
 else:
 raise Exception(f"Bad value retrieved. Expected {uuid_in}, got
 {decoded_result}")

 return "Fetched value from MemoryDB"

This code uses the Python redis-py library to put items into your cluster and retrieve them. This
code uses cachetools to cache generated IAM Auth tokens for 15 mins. To create a deployment
package containing redis-py and cachetools, carry out the following steps.

In your project directory containing the app.py source code file, create a folder package to install
the redis-py and cachetools libraries into.

mkdir package

Install redis-py and cachetools using pip.

Step 2: Create a Lambda function 289

Amazon MemoryDB for Redis Developer Guide

pip install --target ./package redis
pip install --target ./package cachetools

Create a .zip file containing the redis-py and cachetools libraries. In Linux and MacOS, run the
following command. In Windows, use your preferred zip utility to create a .zip file with the redis-
py and cachetools libraries at the root.

cd package
zip -r ../my_deployment_package.zip

Add your function code to the .zip file. In Linux and macOS, run the following command. In
Windows, use your preferred zip utility to add app.py to the root of your .zip file.

cd ..
zip my_deployment_package.zip app.py

Step 2.2: Create the IAM role (execution role)

Attach the AWS managed policy named AWSLambdaVPCAccessExecutionRole to the role.

aws iam attach-role-policy \
 --role-name "memorydb-iam-auth-app" \
 --policy-arn "arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole"

Step 2.3: Upload the deployment package (create the Lambda function)

In this step, you create the Lambda function (AccessMemoryDB) using the create-function AWS CLI
command.

From the project directory that contains your deployment package .zip file, run the following
Lambda CLI create-function command.

For the role option, use the ARN of the execution role you created in step 2.2. For the vpc-config
enter comma separated lists of your default VPC's subnets and your default VPC's security group
ID. You can find these values in the Amazon VPC console. To find your default VPC's subnets,
choose Your VPCs, then choose your AWS account's default VPC. To find the security group for
this VPC, go to Security and choose Security groups. Ensure that you have the us-east-1 region
selected.

aws lambda create-function \

Step 2: Create a Lambda function 290

Amazon MemoryDB for Redis Developer Guide

--function-name AccessMemoryDB \
--region us-east-1 \
--zip-file fileb://my_deployment_package.zip \
--role arn:aws:iam::123456789012:role/memorydb-iam-auth-app \
--handler app.lambda_handler \
--runtime python3.12 \
--timeout 30 \
--vpc-config SubnetIds=comma-separated-vpc-subnet-ids,SecurityGroupIds=default-
security-group-id

Step 3: Test the Lambda function

In this step, you invoke the Lambda function manually using the invoke command. When the
Lambda function executes, it generates a UUID and writes it to the ElastiCache cache that you
specified in your Lambda code. The Lambda function then retrieves the item from the cache.

1. Invoke the Lambda function (AccessMemoryDB) using the AWS Lambda invoke command.

aws lambda invoke \
--function-name AccessMemoryDB \
--region us-east-1 \
output.txt

2. Verify that the Lambda function executed successfully as follows:

• Review the output.txt file.

• Verify the results in CloudWatch Logs by opening the CloudWatch console and choosing
the log group for your function (/aws/lambda/AccessRedis). The log stream should contain
output similar to the following:

Success: Inserted 826e70c5f4d2478c8c18027125a3e01e. Fetched
 826e70c5f4d2478c8c18027125a3e01e from MemoryDB.

• Review the results in the AWS Lambda console.

Step 4: Clean up (Optional)

To clean up, take these steps.

Topics

Step 3: Test the Lambda function 291

Amazon MemoryDB for Redis Developer Guide

• Step 4.1: Delete Lambda function

• Step 4.2: Delete MemoryDB cluster

• Step 4.3: Remove IAM Role and policies

Step 4.1: Delete Lambda function

aws lambda delete-function \
 --function-name AccessMemoryDB

Step 4.2: Delete MemoryDB cluster

Delete the cluster.

aws memorydb delete-cluster \
 --cluster-name cluster-01

Remove user and ACL.

aws memorydb delete-user \
 --user-id iam-user-01

aws memorydb delete-acl \
 --acl-name iam-acl-01

Step 4.3: Remove IAM Role and policies

aws iam detach-role-policy \
 --role-name "memorydb-iam-auth-app" \
 --policy-arn "arn:aws:iam::123456789012:policy/memorydb-allow-all"

aws iam detach-role-policy \
--role-name "memorydb-iam-auth-app" \
--policy-arn "arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole"

aws iam delete-role \
 --role-name "memorydb-iam-auth-app"

 aws iam delete-policy \
 --policy-arn "arn:aws:iam::123456789012:policy/memorydb-allow-all"

Step 4: Clean up (Optional) 292

Amazon MemoryDB for Redis Developer Guide

Vector search

This feature is in preview release for MemoryDB for Redis and is subject to change.

Vector search for MemoryDB extends the functionality of MemoryDB. Vector search can be used
in conjunction with existing MemoryDB functionality. Applications that do not use vector search
are unaffected by its presence. Vector search preview is available in MemoryDB 7.1 version onward
in the following regions: US East (N. Virginia and Ohio), US West (Oregon), EU (Ireland), and Asia
Pacific (Tokyo).

Vector search for Amazon MemoryDB for Redis simplifies your application architecture while
delivering high-speed vector search. Vector search for MemoryDB is ideal for use cases where
peak performance and scale are the most important selection criteria. You can use your existing
MemoryDB data, or Redis API, to build machine learning and generative AI use cases such
as retrieval-augmented generation, anomaly detection, document retrieval, and real-time
recommendations.

Topics

• Vector search overview

• Vector search features and limits

• Use cases

• Using the AWS Management Console

• Using the AWS Command Line Interface

• Vector search commands

Vector search overview

This feature is in preview release for MemoryDB for Redis and is subject to change.

Vector search is built on the creation, maintenance and use of indexes. Each vector search
operation specifies a single index and its operation is confined to that index, i.e., operations on
one index are unaffected by operations on any other index. Except for the operations to create

Vector search overview 293

Amazon MemoryDB for Redis Developer Guide

and destroy indexes, any number of operations may be issued against any index at any time,
meaning that at the cluster level, multiple operations against multiple indexes may be in progress
simultaneously.

Individual indexes are named objects that exist in a unique namespace, which is separate from the
other Redis namespaces: keys, functions, etc. Each index is conceptually similar to a conventional
database table in that it’s structured in two dimensions: column and rows. Each row in the table
corresponds to a Redis Key. Each column in the index corresponds to a member or portion of that
key. Within this document the terms key, row and record are identical and used interchangeably.
Similarly the terms column, field, path and member are essentially identical and are also used
interchangeably.

There are no special commands to add, delete or modify indexed data. Rather the existing HASH or
JSON commands that modify a key that is in an index also automatically update the index.

Topics

• Indexes and the Redis keyspace

• Index field types

• Vector index algorithms

• Vector search query expression

• INFO command

• Vector search security

Indexes and the Redis keyspace

Indexes are constructed and maintained over a subset of the Redis keyspace. Multiple indexes may
choose disjoint or overlapping subsets of the Redis keyspace without limitation. The keyspace for
each index is defined by a list of key prefixes that are provided when the index is created. The list
of prefixes is optional and if omitted, the entire Redis keyspace will be part of that index. Indexes
are also typed in that they only cover keys that have a matching type. Currently, only JSON and
HASH indexes are supported. A HASH index only indexes HASH keys covered by its prefix list and
similarly a JSON index only indexes JSON keys that are covered by its prefix list. Keys within an
index’s keyspace prefix list that do not have the designated type are ignored and do not affect
search operations.

When a HASH or JSON command modifies a key that is within a keyspace of an index that index is
updated. This process involves extracting the declared fields for each index and updating the index

Indexes and keyspaces 294

Amazon MemoryDB for Redis Developer Guide

with the new value. The update process is done in a background thread, meaning that the indexes
are only eventually consistent with their keyspace contents. Thus an insert or update of a key will
not be visible in search results for a short period of time. During periods of heavy system load and/
or heavy mutation of data, the visibility delay can become longer.

The creation of an index is multi-step process. The first step is to execute the FT.CREATE command
which defines the index. Successful execution of a create automatically initiates the second step –
backfilling. The backfill process runs in a background thread and scans the Redis key space looking
for keys that are within the new index’s prefix list. Each key that is found is added to the index.
Eventually the entire keyspace is scanned, completing the index creation process. Note that while
the backfill process is running, mutations of indexed keys is permitted, there is no restriction and
the index backfill process will not complete until all keys are properly indexed. Query operations
attempted while an index is undergoing backfill are not allowed and are terminated with an error.
The completion of the backfilling process can be determined from the output of the FT.INFO
command for that index ('backfill_status').

Index field types

Each field (column) of an index has a specific type that is declared when the index is created and
a location within a key. For HASH keys the location is the field name within the HASH. For JSON
keys the location is a JSON path description. When a key is modified the data associated with the
declared fields is extracted, converted to the declared type and stored in the index. If the data is
missing or cannot be successfully converted to the declared type, then that field is omitted from
the index. There are four types of fields, as explained following:

• Number fields contain a single number. For JSON fields, the numeric rules of JSON numbers
must be followed. For HASH, the field is expected to contain the ASCII text of a number written
in the standard format for fixed or floating point numbers. Regardless of the representation
within the key, this field is converted to a 64-bit floating point number for storage within
the index. Number fields can be used with the range search operator. Because the underlying
numbers are stored in floating point with it’s precision limitations, the usual rules about numeric
comparisons for floating point numbers apply.

• Tag fields contain zero or more tag values coded as a single UTF-8 string. The string is parsed
into tag values using a separator character (default is a comma but can be overridden) with
leading and trailing white space removed. Any number of tag values can be contained in a single
tag field. Tag fields can be used to filter queries for tag value equivalence with either case-
sensitive or case-insensitive comparison.

Index field types 295

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-commands-ft.create.html

Amazon MemoryDB for Redis Developer Guide

• Text fields contain a blob of bytes which need not be UTF-8 compliant. Text fields can be used to
decorate query results with application-meaningful values. For example a URL or the contents of
a document, etc.

• Vector fields contain a vector of numbers also known as an embedding. Vector fields support
K-nearest neighbor searching (KNN) of fixed sized vectors using a specified algorithm and
distance metric. For HASH indexes, the field should contain the entire vector encoded in binary
format (little-endian IEEE 754). For JSON keys the path should reference an array of the correct
size filled with numbers. Note that when a JSON array is used as a vector field, the internal
representation of the array within the JSON key is converted into the format required by the
selected algorithm, reducing memory consumption and precision. Subsequent read operations
using the JSON commands will yield the reduced precision value.

Vector index algorithms

Two vector index algorithms are provided:

• Flat – The Flat algorithm is a brute force linear processing of each vector in the index, yielding
exact answers within the bounds of the precision of the distance computations. Because of the
linear processing of the index, run times for this algorithm can be very high for large indexes.

• HNSW (Hierarchical Navigable Small Worlds) – The HNSW algorithm is an alternative that
provides an approximation of the correct answer in exchange for substantially lower execution
times. The algorithm is controlled by three parameters M, EF_CONSTRUCTION and EF_RUNTIME.
The first two parameters are specified at index creation time and cannot be changed. The
EF_RUNTIME parameter has a default value that is specified at index creation, but can be
overridden on any individual query operation afterward. These three parameters interact to
balance memory and CPU consumption during ingestion and query operations as well as control
the quality of the approximation of an exact KNN search (known as recall ratio).

Both vector search algorithms (Flat and HNSW) support an optional INITIAL_CAP parameter.
When specified, this parameter pre-allocates memory for the indexes, resulting in reduced memory
management overhead and increased vector ingestion rates.

Vector search algorithms like HNSW may not efficiently handle deleting or overwriting
of previously inserted vectors. Use of these operations can result in excess index memory
consumption and/or degraded recall quality. Reindexing is one method for restoring optimal
memory usage and/or recall.

Vector index algorithms 296

Amazon MemoryDB for Redis Developer Guide

Vector search query expression

The FT.SEARCH and FT.AGGREGATE commands require a query expression. This expression is a
single string parameter which is composed of one or more operators. Each operator uses one field
in the index to identify a subset of the keys in the index. Multiple operators may be combined using
boolean combiners as well as parentheses to further enhance or restrict the collected set of keys
(or resultset).

Wildcard

The wildcard operator, the asterisk (‘*’), matches all keys in the index.

Numeric range

The numeric range operator has the following syntax:

<range-search> ::= '@' <numeric-field-name> ':' '[' <bound> <bound> ']'
<bound> ::= <number> | '(' <number>
<number> ::= <integer> | <fixed-point> | <floating-point> | 'Inf' | '-Inf' | '+Inf'

The <numeric-field-name> must be a declared field of type NUMERIC. By default the bound is
inclusive but a leading open parenthesis [‘(’] can be used to make a bound exclusive. Range search
can be converted into a single relational comparison (<, <=, >, >=) by using Inf, +Inf or -Inf
as one of the bounds. Regardless of the numeric format specified (integer, fixed-point, floating-
point, infinity) the number is converted to 64-bit floating point to perform comparisons, reducing
precision accordingly.

Example Examples

@numeric-field:[0 10] // 0 <= <value> <= 10
@numeric-field:[(0 10] // 0 < <value> <= 10
@numeric-field:[0 (10] // 0 <= <value> < 10
@numeric-field:[(0 (10] // 0 < <value> < 10
@numeric-field:[1.5 (Inf] // 1.5 <= value

Tag compare

The tag compare operator has the following syntax:

Vector search query expression 297

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-commands-ft.search.html
https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-commands-ft.aggregate.html

Amazon MemoryDB for Redis Developer Guide

<tag-search> ::= '@' <tag-field-name> ':' '{' <tag> ['|' <tag>]* '}'

If any of the tags in the operator match any of the tags in the tag field of the record, then the
record is included in the resultset. The field designed by the <tag-field-name> must be a field
of the index declared with type TAG. Examples of a tag compare are:

@tag-field:{ atag }
@tag-field: { tag1 | tag2 }

Boolean combinations

The result sets of a numeric or tag operator can be combined using boolean logic: and/or.
Parentheses can be used to group operators and/or change the evaluation order. The syntax of
boolean logic operators is:

<expression> ::= <phrase> | <phrase> '|' <expression> | '(' <expression> ')'
<phrase> ::= <term> | <term> <phrase>
<term> ::= <range-search> | <tag-search> | '*'

Multiple terms combined into a phrase are "and"-ed. Multiple phrases combined with the pipe (‘|’)
are “or”-ed.

Vector search

The vector search operator performs a K-nearest neighbor search of a vector field index. The syntax
of a vector search is:

<vector-search> ::= <expression> '=>[KNN' <k> '@' <vector-field-name> '$' <parameter-
name> <modifiers> ']'
<modifiers> ::= ['EF_RUNTIME' <integer>] ['AS' <distance-field-name>]

Vector search is only applied to the vectors that satisfy the <expression> which can be any
combination of the operators defined above: wildcard, range search, tag search and/or boolean
combinations thereof.

• <k> is an integer specifying the number of nearest neighbor vectors to be returned.

• <vector-field-name> must specify a declared field of type VECTOR.

• <parameter-name> field specifies one of the entries for the PARAM table of the FT.SEARCH
or FT.AGGREGATE command. This parameter is the reference vector value for distance

Vector search query expression 298

Amazon MemoryDB for Redis Developer Guide

computations. The value of the vector is encoded into the PARAM value in little-endian IEEE 754
binary format (same encoded as for a HASH vector field)

• For vector indexes of type HNSW, the optional EF_RUNTIME clause can be used to override the
default value of the EF_RUNTIME parameter that was established when the index was created.

• The optional <distance-field-name> provides a field name for the resultset to contain the
computed distance between the reference vector and the located key.

INFO command

Vector search augments the Redis INFO command with several additional sections of statistics and
counters. A request to retrieve the section SEARCH will retrieve all of the following sections:

search_memory section

Name Description

search_used_memory_bytes Number of bytes of memory consumed in all
search data structures

search_used_memory_human Human readable version of above

search_index_stats section

Name Description

search_number_of_indexes Number of created indexes

search_num_fulltext_indexes Number of non-vector fields in all indexes

search_num_vector_indexes Number of vector fields in all indexes

search_num_hash_indexes Number of indexes on HASH type keys

search_num_json_indexes Number of indexes on JSON type keys

search_total_indexed_keys Total number of keys in all indexes

INFO command 299

https://redis.io/commands/info/

Amazon MemoryDB for Redis Developer Guide

Name Description

search_total_indexed_vectors Total number of vectors in all indexes

search_total_indexed_hash_keys Total number of keys of type HASH in all
indexes

search_total_indexed_json_keys Total number of keys of tytpe JSON in all
indexes

search_total_index_size Bytes used by all indexes

search_total_fulltext_index_size Bytes used by non-vector index structures

search_total_vector_index_size Bytes used by vector index structures

search_max_index_lag_ms Ingestion delay during last ingestion batch
update

search_ingestion section

Name Description

search_background_indexing_status Status of ingestion. NO_ACTIVITY means
idle. Other values indicate there are keys in
the process of being ingested.

search_ingestion_paused Except while restarting, this should always be
"no".

search_backfill section

Note

Some of the fields documented in this section are only visible when a backfill is currently in
progress.

INFO command 300

Amazon MemoryDB for Redis Developer Guide

Name Description

search_num_active_backfills Number of current backfill activities

search_backfills_paused Except when out of memory, this should
always be "no".

search_highest_backfill_progress_percentage % completion (0-100) of the most completed
backfill

search_lowest_backfill_progress_percentage % completiton (0-100) of the least completed
backfill

search_query section

Name Description

search_num_active_queries Number of FT.SEARCH and FT.AGGREGATE
commands currently in progress

Vector search security

Redis ACL (Access Control Lists) security mechanisms for both command and data access are
extended to control the search facility. ACL control of individual search commands is fully
supported. A new ACL category, @search, is provided and many of the existing categories (@fast,
@read, @write, etc.) are updated to include the new commands. Search commands do not modify
key data, meaning that the existing ACL machinery for write access is preserved. The access rules
for HASH and JSON operations are not modified by the presence of an index; normal key-level
access control is still applied to those commands.

Search commands with an index also have their access controlled through Redis ACL. Access checks
are performed at the whole-index level, not at the per-key level. This means that access to an index
is granted to a user only if that user has permission to access all possible keys within the keyspace
prefix list of that index. In other words, the actual contents of an index don’t control the access.
Rather, it is the theoretical contents of an index as defined by the prefix list which is used for the
security check. It can be easy to create a situation where a user has read and/or write access to a

Vector search security 301

https://redis.io/docs/management/security/acl/

Amazon MemoryDB for Redis Developer Guide

key but is unable to access an index containing that key. Note that only read access to the keyspace
is required to create or use an index – the presence or absence of write access is not considered.

For more information on using ACLs with MemoryDB see Authenticating users with Access Control
Lists (ACLs).

Vector search features and limits

This feature is in preview release for MemoryDB for Redis and is subject to change.

Vector search availability

Vector search-enabled MemoryDB configuration is supported on R6g, R7g, and T4g node types and
is available in the following AWS Regions: US East (N. Virginia), US East (Ohio), US West (Oregon),
Asia Pacific (Tokyo), and Europe (Ireland).

Parametric restrictions

The following table shows limits for various vector search items in the preview:

Item Maximum value

Number of dimensions in a vector 32768

Number of indexes that can be created 10

Number of fields in an index 50

Number of simultaneous index FT.CREATE
backfill operations

1

FT.SEARCH and FT.AGGREGATE TIMEOUT
clause (milliSeconds)

60000

Number of pipeline stages in FT.AGGREGATE
command

32

Vector search features and limits 302

https://docs.aws.amazon.com/memorydb/latest/devguide/clusters.acls.html
https://docs.aws.amazon.com/memorydb/latest/devguide/clusters.acls.html

Amazon MemoryDB for Redis Developer Guide

Item Maximum value

Number of fields in FT.AGGREGATE LOAD
clause

1024

Number of fields in FT.AGGREGATE GROUPBY
clause

16

Number of fields in FT.AGGREGATE SORTBY
clause

16

Number of parameters in FT.AGGREGATE
PARAM clause

32

HNSW M parameter 512

HNSW EF_CONSTRUCTION parameter 4096

HNSW EF_RUNTIME parameter 4096

Scaling limits

Vector search for MemoryDB is currently limited to a single shard and horizontal scaling is not
supported. Vector search supports vertical and replica scaling.

Operational restrictions

Index Persistence and Backfilling

The vector search preview persists the definition of indexes, but not their content. Thus any
operational request or event that causes a node to start or restart requires that all indexes be
rebuilt from their definition and source key data. The rebuild process is initiated automatically once
all data has been restored — no user action is required to initiate this. The rebuild is performed
as a backfill operation as soon as data is restored. This is functionally equivalent to the system
automatically executing an FT.CREATE command for each defined index. Note that the node
becomes available for application operations as soon as the data is restored but likely before
index backfill has completed, meaning that backfill(s) will again become visible to applications, for
example, search commands using backfilling indexes may be rejected. For more information on
backfilling, see Vector search overview.

Scaling limits 303

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-commands-ft.create.html

Amazon MemoryDB for Redis Developer Guide

The completion of index backfill is not synchronized between a primary and a replica. This lack
of synchronization can unexpectedly become visible to applications and thus it is recommended
that applications verify backfill completion on primaries and all replicas before initiating search
operations.

Snapshot import/export and Live Migration

The presence of search indexes in an RDB file limits the compatible transportability of that data.
The format of the indexes defined by the preview edition is only understood by another preview
edition cluster. Thus RDB files with search indexes can only be transferred between or utilized by
preview enabled MemoryDB clusters.

However, RDB files that do not contain indexes are not restricted in this fashion. Thus data within
a preview cluster can be exported to non-preview clusters by deleting the indexes prior to the
export.

Memory consumption

The current implementation of vector indexes consumes approximately twice the amount of
memory as will be consumed by the General Availability implementation.

Out of Memory during backfill

Similar to Redis write operations, an index backfill is subjected to out-of-memory limitations. If
Redis memory is filled up while a backfill is in progress, all backfills are paused. If memory becomes
available, the backfill process is resumed. It is also possible to delete and index when backfill is
paused due to out of memory.

Transactions

The commands FT.CREATE, FT.DROPINDEX, FT.ALIASADD, FT.ALIASDEL, and
FT.ALIASUPDATE cannot be executed in a transactional context, i.e., not within a MULTI/EXEC
block or within a LUA or FUNCTION script.

Use cases

This feature is in preview release for MemoryDB for Redis and is subject to change.

Snapshot import/export and Live Migration 304

Amazon MemoryDB for Redis Developer Guide

Following are use cases of vector search.

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) leverages vector search to retrieve relevant passages from a
large corpus of data to augment a large language model (LLM). Specifically, an encoder embeds the
input context and search query into vectors, then uses approximate nearest neighbor search to find
semantically similar passages. These retrieved passages are concatenated with the original context
to provide additional relevant information to the LLM to return a more accurate response to the
user.

Foundation Model (FM) Buffer Memory

Foundation model (FM) buffer memory is a process to reduce computational costs by storing
previous results from the FM. By reusing previous results from prior inferences instead of
recomputing them, FM buffer memory reduces the amount of computation required during
inference through the FMs. This FM buffer memory allows large language models to respond faster
with lower costs due to service charges from the FM.

Retrieval Augmented Generation (RAG) 305

Amazon MemoryDB for Redis Developer Guide

• Semantic search hit – If a customer’s query is semantically similar based on a defined similarity
score to a prior question, the FM buffer memory (MemoryDB) will return the answer to the prior
question in step 4 and will not call the FM through steps 3. This will avoid the foundation model
(FM) latency and costs incurred, providing for a faster experience for the customer.

• Semantic search miss – If a customer’s query is not semantically similar based on a defined
similarity score to a prior query, a customer will call the FM to deliver a response to customer in
step 3a. The response generated from the FM will then be stored as a vector into MemoryDB for
future queries (step 3b) to minimize FM costs on semantically similar questions. In this flow, step
4 would not be invoked as there was no semantically similar question for the original query.

Fraud detection

Fraud detection, a form of anomaly detection, represents valid transactions as vectors while
comparing the vector representations of net new transactions. Fraud is detected when these
net new transactions have a low similarity to the vectors representing the valid transactional
data. This allows fraud to be detected by modeling normal behavior, rather than trying to predict
every possible instance of fraud. MemoryDB allows for organizations to do this in periods of high
throughput, with minimal false positives and single-digit millisecond latency.

Fraud detection 306

Amazon MemoryDB for Redis Developer Guide

Other use cases

• Recommendation engines can find users similar products or content by representing items as
vectors. The vectors are created by analyzing attributes and patterns. Based on user patterns and
attributes, new unseen items can be recommended to users by finding the most similar vectors
already rated positively aligned to the user.

• Document search engines represent text documents as dense vectors of numbers, capturing
semantic meaning. At search time, the engine converts a search query to a vector and finds
documents with the most similar vectors to the query using approximate nearest neighbor
search. This vector similarity approach allows matching documents based on meaning rather
than just matching keywords.

Using the AWS Management Console

This feature is in preview release for MemoryDB for Redis and is subject to change.

To create a cluster enabled for vector search within the console, you need to enable vector search
under the Cluster settings. Vector search is available for MemoryDB for Redis version 7.1 and a
single shard configuration.

Other use cases 307

Amazon MemoryDB for Redis Developer Guide

For more information on using vector search with the AWS Management Console, see Creating a
cluster (Console).

Using the AWS Command Line Interface

This feature is in preview release for MemoryDB for Redis and is subject to change.

To create a vector search enabled MemoryDB cluster, you can use the MemoryDB create-
cluster command by passing an immutable parameter group default.memorydb-
redis7.search.preview to enable the preview mode for vector search capabilities.

aws memorydb create-cluster \
 --cluster-name <value> \
 --node-type <value> \
 --engine redis \
 --engine-version 7.1 \
 --num-shards 1 \
 --acl-name <value> \
 --parameter-group-name default.memorydb-redis7.search.preview

Vector search commands

Following are a list of supported commands for vector search.

Topics

• FT.CREATE

• FT.SEARCH

• FT.AGGREGATE

Using the AWS Command Line Interface 308

https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-cluster.html

Amazon MemoryDB for Redis Developer Guide

• FT.DROPINDEX

• FT.INFO

• FT._LIST

• FT.ALIASADD

• FT.ALIASDEL

• FT.ALIASUPDATE

• FT._ALIASLIST

• FT.CONFIG GET

• FT.CONFIG HELP

• FT.CONFIG SET

• FT.PROFILE

• FT.EXPLAIN

• FT.EXPLAINCLI

FT.CREATE

Creates an index and initiates a backfill of that index. For more information, see Vector search
overview for details on index construction.

Syntax

FT.CREATE <index-name>
ON HASH | JSON
[PREFIX <count> <prefix1> [<prefix2>...]]
SCHEMA
(<field-identifier> [AS <alias>]
 NUMERIC
| TAG [SEPARATOR <sep>] [CASESENSITIVE]
| TEXT
| VECTOR [HNSW|FLAT] <attr_count> [<attribute_name> <attribute_value>])

)+

Schema

• Field identifier:

FT.CREATE 309

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-overview.html
https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-overview.html

Amazon MemoryDB for Redis Developer Guide

• For hash keys, field identifier is A field name.

• For JSON keys, field identifier is A JSON path.

For more information, see Index field types.

• Field types:

• TAG: For more information, see Tags .

• NUMERIC: Field contains a number.

• TEXT: Field contains any blob of data.

• VECTOR: vector field that supports vector search.

• Algorithm – can be HNSW (Hierarchical Navigable Small World) or FLAT (brute force).

• attr_count – number of attributes that will be passed as algorithm configuration, this
includes both names and values.

• {attribute_name} {attribute_value} – algorithm-specific key/value pairs that
define index configuration.

For FLAT algorithm, attributes are:

Required:

• DIM – Number of dimensions in the vector.

• DISTANCE_METRIC – Can be one of [L2 | IP | COSINE].

• TYPE – Vector type. The only supported type is FLOAT32.

Optional:

• INITIAL_CAP – Initial vector capacity in the index affecting memory allocation size of the
index.

For HNSW algorithm, attributes are:

Required:

• TYPE – Vector type. The only supported type is FLOAT32.

• DIM – Vector dimension, specified as a positive integer. Maximum: 32768

• DISTANCE_METRIC – Can be one of [L2 | IP | COSINE].

Optional:FT.CREATE 310

https://redis.io/docs/interact/search-and-query/advanced-concepts/tags/

Amazon MemoryDB for Redis Developer Guide

• INITIAL_CAP – Initial vector capacity in the index affecting memory allocation size of the
index. Defaults to 1024.

• M – Number of maximum allowed outgoing edges for each node in the graph in each
layer. on layer zero the maximal number of outgoing edges will be 2M. Default is 16
Maximum is 512.

• EF_CONSTRUCTION – controls the number of vectors examined during index construction.
Higher values for this parameter will improve recall ratio at the expense of longer index
creation times. Default value is 200. Maximum value is 4096.

• EF_RUNTIME – controls the number of vectors examined during query operations. Higher
values for this parameter can yield improved recall at the expense of longer query times.
The value of this parameter can be overriden on a per-query basis. Default value is 10.
Maximum value is 4096.

Return

Returns a simple string OK message or error reply.

Examples

Note

The following example uses arguments native to redis-cli, such as de-quoting and de-
escaping of data, before sending it to Redis. To use other programming-language clients
(Python, Ruby, C#, etc.), follow those environments' handling rules for dealing with strings
and binary data. For more information on supported clients, see Tools to Build on AWS

Example 1: Create some indexes

Create an index for vectors of size 2

FT.CREATE hash_idx1 ON HASH PREFIX 1 hash: SCHEMA vec AS VEC VECTOR HNSW 6 DIM 2 TYPE
 FLOAT32 DISTANCE_METRIC L2
OK

Create a 6-dimensional JSON index using the HNSW algorithm:

FT.CREATE 311

https://redis.io/docs/connect/cli/
https://aws.amazon.com/developer/tools/

Amazon MemoryDB for Redis Developer Guide

FT.CREATE json_idx1 ON JSON PREFIX 1 json: SCHEMA $.vec AS VEC VECTOR HNSW 6 DIM 6 TYPE
 FLOAT32 DISTANCE_METRIC L2
OK

Example Example 2: Populate some data

The following commands are formatted so they can be executed as arguments to the redis-cli
terminal program. Developers using programming-language clients (such Python, Ruby, C#, etc.)
will need to follow their environment's handling rules for dealing with strings and binary data.

Creating some hash and json data:

HSET hash:0 vec "\x00\x00\x00\x00\x00\x00\x00\x00"
HSET hash:1 vec "\x00\x00\x00\x00\x00\x00\x80\xbf"
JSON.SET json:0 . '{"vec":[1,2,3,4,5,6]}'
JSON.SET json:1 . '{"vec":[10,20,30,40,50,60]}'
JSON.SET json:2 . '{"vec":[1.1,1.2,1.3,1.4,1.5,1.6]}'

Note the following:

• The keys of the hash and JSON data have the prefixes of their index definitions.

• The vectors are at the appropriate paths of the index definitions.

• The hash vectors are entered as hex data while the JSON data is entered as numbers.

• The vectors are the appropriate lengths, the two-dimensional hash vector entries have two floats
worth of hex data, the six-dimensional json vector entries have six numbers.

Example Example 3: Delete and re-create an index

FT.DROPINDEX json_idx1
OK

FT.CREATE json_idx1 ON JSON PREFIX 1 json: SCHEMA $.vec AS VEC VECTOR FLAT 6 DIM 6 TYPE
 FLOAT32 DISTANCE_METRIC L2
OK

Note the new JSON index uses the FLAT algorithm instead of the HNSW algorithm. Also note that it
will re-index the existing JSON data:

FT.CREATE 312

Amazon MemoryDB for Redis Developer Guide

FT.SEARCH json_idx1 "*=>[KNN 100 @VEC $query_vec]" PARAMS 2 query_vec
 "\x00"
 DIALECT 2
1) (integer) 3
2) "json:2"
3) 1) "__VEC_score"
 2) "11.11"
 3) "$"
 4) "[{\"vec\":[1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}]"
4) "json:0"
5) 1) "__VEC_score"
 2) "91"
 3) "$"
 4) "[{\"vec\":[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]}]"
6) "json:1"
7) 1) "__VEC_score"
 2) "9100"
 3) "$"
 4) "[{\"vec\":[10.0, 20.0, 30.0, 40.0, 50.0, 60.0]}]"

FT.SEARCH

Uses the provided query expression to locate keys within an index. Once located, the count and/
or content of indexed fields within those keys can be returned. For more information, see Vector
search query expression.

To create data for use in these examples, see the FT.CREATE command.

Syntax

FT.SEARCH <index-name> <query>
[RETURN <token_count> (<field-identifier> [AS <alias>])+]
[TIMEOUT timeout]
[PARAMS <count> <name> <value> [<name> <value>]]
[LIMIT <offset> <count>]
[COUNT]

• RETURN: This clause identifies which fields of a key are returned. The optional AS clause on each
field overrides the name of the field in the result. Only fields that have been declared for this
index can be specified.

FT.SEARCH 313

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-overview.html#vector-search-query-expression
https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-overview.html#vector-search-query-expression
https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-commands-ft.create.html

Amazon MemoryDB for Redis Developer Guide

• LIMIT: <offset> <count>: This clause provides pagination capability in that only the keys that
satisfy the offset and count values are returned. If this clause is omitted, it defaults to "LIMIT 0
10", i.e., only a maximum of 10 keys will be returned.

• PARAMS: Two times the number of key value pairs. Param key/value pairs can be referenced
from within the query expression. For more information, see Vector search query expression.

• COUNT: This clause suppresses returning the contents of keys, only the number of keys is
returned. This is an alias for "LIMIT 0 0".

Return

Returns an array or error reply.

• If the operation completes successfully, it returns an array. The first element is the total number
of keys matching the query. The remaining elements are pairs of key name and field list. Field list
is another array comprising pairs of field name and values.

• If the index is in progress of being back-filled, the command immediately returns an error reply.

• If timeout is reached, the command returns an error reply.

Example: Do some searches

Note

The following example uses arguments native to redis-cli, such as de-quoting and de-
escaping of data, before sending it to Redis. To use other programming-language clients
(Python, Ruby, C#, etc.), follow those environments' handling rules for dealing with strings
and binary data. For more information on supported clients, see Tools to Build on AWS

A hash search

FT.SEARCH hash_idx1 "*=>[KNN 2 @VEC $query_vec]" PARAMS 2 query_vec
 "\x00\x00\x00\x00\x00\x00\x00\x00" DIALECT 2
1) (integer) 2
2) "hash:0"
3) 1) "__VEC_score"
 2) "0"
 3) "vec"

FT.SEARCH 314

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-overview.html#vector-search-query-expression
https://redis.io/docs/connect/cli/
https://aws.amazon.com/developer/tools/

Amazon MemoryDB for Redis Developer Guide

 4) "\x00\x00\x00\x00\x00\x00\x00\x00"
4) "hash:1"
5) 1) "__VEC_score"
 2) "1"
 3) "vec"
 4) "\x00\x00\x00\x00\x00\x00\x80\xbf"

This produces two results, sorted by their score, which is the distance from the query vector
(entered as hex).

JSON searches

FT.SEARCH json_idx1 "*=>[KNN 2 @VEC $query_vec]" PARAMS 2 query_vec
 "\x00"
 DIALECT 2
1) (integer) 2
2) "json:2"
3) 1) "__VEC_score"
 2) "11.11"
 3) "$"
 4) "[{\"vec\":[1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}]"
4) "json:0"
5) 1) "__VEC_score"
 2) "91"
 3) "$"
 4) "[{\"vec\":[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]}]"

This produces the two closest results, sorted by their score, and note that the JSON vector values
are converted to floats and the query vector is still vector data. Note also that because the KNN
parameter is 2, there are only two results. A larger value will return more results:

FT.SEARCH json_idx1 "*=>[KNN 100 @VEC $query_vec]" PARAMS 2 query_vec
 "\x00"
 DIALECT 2
1) (integer) 3
2) "json:2"
3) 1) "__VEC_score"
 2) "11.11"
 3) "$"
 4) "[{\"vec\":[1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}]"
4) "json:0"
5) 1) "__VEC_score"

FT.SEARCH 315

Amazon MemoryDB for Redis Developer Guide

 2) "91"
 3) "$"
 4) "[{\"vec\":[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]}]"
6) "json:1"
7) 1) "__VEC_score"
 2) "9100"
 3) "$"
 4) "[{\"vec\":[10.0, 20.0, 30.0, 40.0, 50.0, 60.0]}]"

FT.AGGREGATE

A superset of the FT.SEARCH command, it allows substantial additional processing of the keys
selected by the query expression.

Syntax

FT.AGGREGATE index query
 [LOAD * | [count field [field ...]]]
 [TIMEOUT timeout]
 [PARAMS count name value [name value ...]]
 [FILTER expression]
 [LIMIT offset num]
 [GROUPBY count property [property ...] [REDUCE function count arg [arg ...] [AS name]
 [REDUCE function count arg [arg ...] [AS name] ...]] ...]]
 [SORTBY count [property ASC | DESC [property ASC | DESC ...]] [MAX num]]
 [APPLY expression AS name]

• FILTER, LIMIT, GROUPBY, SORTBY and APPLY clauses can be repeated multiple times in any order
and be freely intermixed. They are applied in the order specified with the output of one clause
feeding the input of the next clause.

• In the above syntax, a “property” is either a field declared in the FT.CREATE command for this
index OR the output of a previous APPLY clause or REDUCE function.

• The LOAD clause is restricted to loading fields that have been declared in the index. “LOAD *” will
load all fields declared in the index.

• The following reducer functions are supported: COUNT, COUNT_DISTINCTISH, SUM, MIN, MAX,
AVG, STDDEV, QUANTILE, TOLIST, FIRST_VALUE, and RANDOM_SAMPLE. For more information,
see Aggregations

• LIMIT <offset> <count>: Retains records starting at <offset> and continuing for up to <count>, all
other records are discarded.

FT.AGGREGATE 316

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-commands-ft.create.html
https://redis.io/docs/interact/search-and-query/search/aggregations/

Amazon MemoryDB for Redis Developer Guide

• PARAMS: Two times the number of key value pairs. Param key/value pairs can be referenced
from within the query expression. For more information, see Vector search query expression.

Return

Returns an array or error reply.

• If the operation completes successfully, it returns an array. The first element is an integer with
no particular meaning (should be ignored). The remaining elements are the results output by the
last stage. Each element is an array of field name and value pairs.

• If the index is in progress of being back-filled, the command immediately returns an error reply.

• If timeout is reached, the command returns an error reply.

FT.DROPINDEX

Drop an index. The index definition and associated content are deleted. Redis keys are unaffected.

Syntax

FT.DROPINDEX <index-name>

Return

Returns a simple string OK message or an error reply.

FT.INFO

Syntax

FT.INFO <index-name>

Output from the FT.INFO page is an array of key value pairs as described in the following table:

Key Value type Description

index_name string Name of the index

FT.DROPINDEX 317

https://docs.aws.amazon.com/memorydb/latest/devguide/vector-search-overview.html#vector-search-query-expression

Amazon MemoryDB for Redis Developer Guide

Key Value type Description

creation_timestamp integer Unix-style timestamp of
creation time

key_type string HASH or JSON

key_prefixes array of strings Key prefixes for this index

fields array of field information Fields of this index

space_usage integer Memory bytes used by this
index

fullext_space_usage integer Memory bytes used by non-
vector fields

vector_space_usage integer Memory bytes used by vector
fields

num_docs integer Number of keys currently
contained in the index

num_indexed_vectors integer Number of vectors currently
contained in the index

current_lag integer Recent delay of ingestion
(milliSeconds)

backfill_status string One of: Completed, InProgres
, Paused or Failed

The following table describes the information for each field:

Key Value type Description

identifier string name of field

FT.INFO 318

Amazon MemoryDB for Redis Developer Guide

Key Value type Description

field_name string Hash member name or JSON
Path

type string one of: Numeric, Tag, Text or
Vector

option string ignore

If the field is of type Vector, additional information will be present depending on the algorithm.

For the HNSW algorithm:

Key Value type Description

algorithm string HNSW

data_type string FLOAT32

distance_metric string one of: L2, IP or Cosine

initial_capacity integer Initial size of vector field
index

current_capacity integer Current size of vector field
index

maximum_edges integer M parameter at creation

ef_construction integer EF_CONSTRUCTION
parameter at creation

ef_runtime integer EF_RUNTIME parameter at
creation

For the FLAT algorithm:

FT.INFO 319

Amazon MemoryDB for Redis Developer Guide

Key Value type Description

algorithm string FLAT

data_type string FLOAT32

distance_metric string one of: L2, IP or Cosine

initial_capacity integer Initial size of vector field
index

current_capacity integer Current size of vector field
index

FT._LIST

List all indexes.

Syntax

FT._LIST

Return

Returns an array of index names

FT.ALIASADD

Add an alias for an index. The new alias name can be used anywhere that an index name is
required.

Syntax

FT.ALIASADD <alias> <index-name>

Return

Returns a simple string OK message or an error reply.

FT._LIST 320

Amazon MemoryDB for Redis Developer Guide

FT.ALIASDEL

Delete an existing alias for an index.

Syntax

FT.ALIASDEL <alias>

Return

Returns a simple string OK message or an error reply.

FT.ALIASUPDATE

Update an existing alias to point to a different physical index. This command only affects
future references to the alias. Currently in-progress operations (FT.SEARCH, FT.AGGREGATE) are
unaffected by this command.

Syntax

FT.ALIASUPDATE <alias> <index>

Return

Returns a simple string OK message or an error reply.

FT._ALIASLIST

List the index aliases.

Syntax

FT._ALIASLIST

Return

Returns an array the size of the number of current aliases. Each element of the array is the alias-
index pair.

FT.ALIASDEL 321

Amazon MemoryDB for Redis Developer Guide

FT.CONFIG GET

Returns the value of the TIMEOUT parameter.

Syntax

FT.CONFIG GET [* | <timeout>]

Return

Returns the value of the TIMEOUT parameter.

FT.CONFIG HELP

Retrieve information about the TIMEOUT parameter.

Syntax

FT.CONFIG HELP [* | <timeout>]

Return

Returns information on the TIMEOUT parameter

FT.CONFIG SET

Set the TIMEOUT parameter. The default value is 10,000 milliseconds.

Note

Configurable parameter names are not case sensitive.

Syntax

FT.CONFIG SET <timeout> <value>

FT.CONFIG GET 322

Amazon MemoryDB for Redis Developer Guide

Return

Returns the value of the TIMEOUT setting.

FT.PROFILE

Run a query and return profile information about that query.

Syntax

FT.PROFILE

<index>
SEARCH | AGGREGATE
[LIMITED]
QUERY <query>

Return

A two-element array. The first element is the result of the FT.SEARCH or FT.AGGREGATE
command that was profiled. The second element is an array of performance and profiling
information.

FT.EXPLAIN

Parse a query and return information about how that query was parsed.

Syntax

FT.EXPLAIN <index> <query>

Return

A string containing the parsed results.

FT.EXPLAINCLI

Same as the FT.EXPLAIN command except that the results are displayed in a different format more
useful with the redis-cli.

Syntax

FT.PROFILE 323

Amazon MemoryDB for Redis Developer Guide

FT.EXPLAINCLI <index> <query>

Return

A string containing the parsed results.

FT.EXPLAINCLI 324

Amazon MemoryDB for Redis Developer Guide

Security in MemoryDB for Redis

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to MemoryDB, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when
using MemoryDB for Redis. It shows you how to configure MemoryDB to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your MemoryDB resources.

Contents

• Data protection in MemoryDB for Redis

• Identity and access management in MemoryDB for Redis

• Logging and monitoring

• Compliance validation for MemoryDB for Redis

• Infrastructure security in Amazon MemoryDB for Redis

• Internetwork traffic privacy

• Service updates in MemoryDB for Redis

325

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon MemoryDB for Redis Developer Guide

Data protection in MemoryDB for Redis

The AWS shared responsibility model applies to data protection in . As described in this model,
AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud. You are
responsible for maintaining control over your content that is hosted on this infrastructure. You are
also responsible for the security configuration and management tasks for the AWS services that
you use. For more information about data privacy, see the Data Privacy FAQ. For information about
data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog post on the
AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any
data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Data security in MemoryDB for Redis

To help keep your data secure, MemoryDB for Redis and Amazon EC2 provide mechanisms to guard
against unauthorized access of your data on the server.

Data protection 326

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon MemoryDB for Redis Developer Guide

MemoryDB also provides encryption features for data on clusters:

• In-transit encryption encrypts your data whenever it is moving from one place to another, such
as between nodes in your cluster or between your cluster and your application.

• At-rest encryption encrypts the transaction log and your on-disk data during snapshot
operations.

You can also use Authenticating users with Access Control Lists (ACLs) to control user access to your
clusters.

Topics

• At-Rest Encryption in MemoryDB

• In-transit encryption (TLS) in MemoryDB

• Authenticating users with Access Control Lists (ACLs)

• Authenticating with IAM

Data security in MemoryDB for Redis 327

Amazon MemoryDB for Redis Developer Guide

At-Rest Encryption in MemoryDB

To help keep your data secure, MemoryDB for Redis and Amazon S3 provide different ways to
restrict access to data in your clusters. For more information, see MemoryDB and Amazon VPC and
Identity and access management in MemoryDB for Redis.

MemoryDB at-rest encryption is always enabled to increase data security by encrypting persistent
data. It encrypts the following aspects:

• Data in the transaction log

• Disk during sync, snapshot and swap operations

• Snapshots stored in Amazon S3

MemoryDB offers default (service managed) encryption at rest, as well as ability to use your own
symmetric customer managed customer root keys in AWS Key Management Service (KMS).

Data stored on SSDs (solid-state drives) in data-tiering enabled clusters is always encrypted by
default.

For information on encryption in transit, see In-transit encryption (TLS) in MemoryDB

Topics

• Using Customer Managed Keys from AWS KMS

• See Also

Using Customer Managed Keys from AWS KMS

MemoryDB supports symmetric customer managed root keys (KMS key) for encryption at rest.
Customer-managed KMS keys are encryption keys that you create, own and manage in your AWS
account. For more information, see Customer Root Keys in the AWS Key Management Service
Developer Guide. The keys must be created in AWS KMS before they can be used with MemoryDB.

To learn how to create AWS KMS root keys, see Creating Keys in the AWS Key Management Service
Developer Guide.

MemoryDB allows you to integrate with AWS KMS. For more information, see Using Grants in the
AWS Key Management Service Developer Guide. No customer action is needed to enable MemoryDB
integration with AWS KMS.

At-Rest Encryption 328

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#root_keys
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

Amazon MemoryDB for Redis Developer Guide

The kms:ViaService condition key limits use of an AWS KMS key to requests from specified
AWS services. To use kms:ViaService with MemoryDB, include both ViaService names in the
condition key value: memorydb.amazon_region.amazonaws.com. For more information, see
kms:ViaService.

You can use AWS CloudTrail to track the requests that MemoryDB for Redis sends to AWS Key
Management Service on your behalf. All API calls to AWS Key Management Service related to
customer managed keys have corresponding CloudTrail logs. You can also see the grants that
MemoryDB creates by calling the ListGrants KMS API call.

Once a cluster is encrypted using a customer managed key, all snapshots for the cluster are
encrypted as follows:

• Automatic daily snapshots are encrypted using the customer managed key associated with the
cluster.

• Final snapshot created when cluster is deleted, is also encrypted using the customer managed
key associated with the cluster.

• Manually created snapshots are encrypted by default to use the KMS key associated with the
cluster. You may override this by choosing another customer managed key.

• Copying a snapshot defaults to using customer managed key associated with the source
snapshot. You may override this by choosing another customer managed key.

Note

• Customer managed keys cannot be used when exporting snapshots to your selected
Amazon S3 bucket. However, all snapshots exported to Amazon S3 are encrypted using
Server side encryption. You may choose to copy the snapshot file to a new S3 object and
encrypt using a customer managed KMS key, copy the file to another S3 bucket that is
set up with default encryption using a KMS key or change an encryption option in the file
itself.

• You can also use customer managed keys to encrypt manually-created snapshots that do
not use customer managed keys for encryption. With this option, the snapshot file stored
in Amazon S3 is encrypted using a KMS key, even though the data is not encrypted on
the original cluster.

At-Rest Encryption 329

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon MemoryDB for Redis Developer Guide

Restoring from a snapshot allows you to choose from available encryption options, similar
to encryption choices available when creating a new cluster.

• If you delete the key or disable the key and revoke grants for the key that you used to encrypt
a cluster, the cluster becomes irrecoverable. In other words, it cannot be modified or recovered
after a hardware failure. AWS KMS deletes root keys only after a waiting period of at least
seven days. After the key is deleted, you can use a different customer managed key to create a
snapshot for archival purposes.

• Automatic key rotation preserves the properties of your AWS KMS root keys, so the rotation
has no effect on your ability to access your MemoryDB data. Encrypted MemoryDB clusters
don't support manual key rotation, which involves creating a new root key and updating any
references to the old key. To learn more, see Rotating Customer root Keys in the AWS Key
Management Service Developer Guide.

• Encrypting a MemoryDB cluster using KMS key requires one grant per cluster. This grant is
used throughout the lifespan of the cluster. Additionally, one grant per snapshot is used during
snapshot creation. This grant is retired once the snapshot is created.

• For more information on AWS KMS grants and limits, see Quotas in the AWS Key Management
Service Developer Guide.

See Also

• In-transit encryption (TLS) in MemoryDB

• MemoryDB and Amazon VPC

• Identity and access management in MemoryDB for Redis

In-transit encryption (TLS) in MemoryDB

To help keep your data secure, MemoryDB for Redis and Amazon EC2 provide mechanisms to
guard against unauthorized access of your data on the server. By providing in-transit encryption
capability, MemoryDB gives you a tool you can use to help protect your data when it is moving
from one location to another. For example, you might move data from a primary node to a read
replica node within a cluster, or between your cluster and your application.

In-transit encryption (TLS) 330

https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon MemoryDB for Redis Developer Guide

Topics

• In-transit encryption overview

• See also

In-transit encryption overview

MemoryDB for Redis in-transit encryption is a feature that increases the security of your data at its
most vulnerable points—when it is in transit from one location to another.

MemoryDB in-transit encryption implements the following features:

• Encrypted connections—both the server and client connections are Transport Layer Security
(TLS) encrypted.

• Encrypted replication—data moving between a primary node and replica nodes is encrypted.

• Server authentication—clients can authenticate that they are connecting to the right server.

From 07/20/2023, TLS 1.2 is the minimum supported version for new and existing clusters. Use
this link to learn more about TLS 1.2 at AWS.

For more information on connecting to MemoryDB clusters, see Connecting to MemoryDB nodes
using redis-cli.

See also

• At-Rest Encryption in MemoryDB

• Authenticating Users with Access Control Lists (ACLs)

• MemoryDB and Amazon VPC

• Identity and access management in MemoryDB for Redis

Authenticating users with Access Control Lists (ACLs)

You can authenticate users with Access control lists (ACLs).

ACLs enable you to control cluster access by grouping users. These Access control lists are designed
as a way to organize access to clusters.

Authenticating users with ACLs 331

https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/
https://docs.aws.amazon.com/memorydb/latest/devguide/clusters.acls.html

Amazon MemoryDB for Redis Developer Guide

With ACLs, you create users and assign them specific permissions by using an access string, as
described in the next section. You assign the users to Access control lists aligned with a specific role
(administrators, human resources) that are then deployed to one or more MemoryDB clusters. By
doing this, you can establish security boundaries between clients using the same MemoryDB cluster
or clusters and prevent clients from accessing each other’s data.

ACLs are designed to support the introduction of Redis ACL in Redis 6. When you use ACLs with
your MemoryDB cluster, there are some limitations:

• You can't specify passwords in an access string. You set passwords with CreateUser or
UpdateUser calls.

• For user rights, you pass on and off as a part of the access string. If neither is specified in the
access string, the user is assigned off and doesn't have access rights to the cluster.

• You can't use forbidden commands. If you specify a forbidden command, an exception will be
thrown. For a list of those commands, see Restricted Redis Commands.

• You can't use the reset command as a part of an access string. You specify passwords with API
parameters, and MemoryDB manages passwords. Thus, you can't use reset because it would
remove all passwords for a user.

• Redis 6 introduces the ACL LIST command. This command returns a list of users along with
the ACL rules applied to each user. MemoryDB supports the ACL LIST command, but does
not include support for password hashes as Redis does. With MemoryDB, you can use the
DescribeUsers operation to get similar information, including the rules contained within the
access string. However, DescribeUsers doesn't retrieve a user password.

Other read-only commands supported by MemoryDB include ACL WHOAMI, ACL USERS, and ACL
CAT. MemoryDB doesn't support any other write-based ACL commands.

Using ACLs with MemoryDB is described in more detail following.

Topics

• Specifying Permissions Using an Access String

• Vector search capabilities

• Applying ACLs to a cluster for MemoryDB

Authenticating users with ACLs 332

https://redis.io/docs/manual/security/acl/
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateUser.html
https://redis.io/commands/acl-list
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeUsers.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeUsers.html
https://redis.io/commands/acl-whoami
https://redis.io/commands/acl-users
https://redis.io/commands/acl-cat
https://redis.io/commands/acl-cat

Amazon MemoryDB for Redis Developer Guide

Specifying Permissions Using an Access String

To specify permissions to a MemoryDB cluster, you create an access string and assign it to a user,
using either the AWS CLI or AWS Management Console.

Access strings are defined as a list of space-delimited rules which are applied on the user. They
define which commands a user can execute and which keys a user can operate on. In order to
execute a command, a user must have access to the command being executed and all keys being
accessed by the command. Rules are applied from left to right cumulatively, and a simpler string
may be used instead of the one provided if there is redundancies in the string provided.

For information about the syntax of the ACL rules, see ACL.

In the following example, the access string represents an active user with access to all available
keys and commands.

on ~* &* +@all

The access string syntax is broken down as follows:

• on – The user is an active user.

• ~* – Access is given to all available keys.

• &* – Access is given to all pubsub channels.

• +@all – Access is given to all available commands.

The preceding settings are the least restrictive. You can modify these settings to make them more
secure.

In the following example, the access string represents a user with access restricted to read access
on keys that start with “app::” keyspace

on ~app::* -@all +@read

You can refine these permissions further by listing commands the user has access to:

+command1 – The user's access to commands is limited to command1.

+@category – The user's access is limited to a category of commands.

Authenticating users with ACLs 333

https://redis.io/topics/acl

Amazon MemoryDB for Redis Developer Guide

For information on assigning an access string to a user, see Creating Users and Access Control Lists
with the Console and CLI.

If you are migrating an existing workload to MemoryDB, you can retrieve the access string by
calling ACL LIST, excluding the user and any password hashes.

Vector search capabilities

Note

This feature is in preview release for MemoryDB for Redis and is subject to change.

For Vector search, all search commands belong to the @search category and existing categories
@read, @write, @fast and @slow are updated to include search commands. If a user does
not have access to a category, then the user does not have access to any commands within the
category. For example, if the user does not have access to @search, then the user cannot execute
any search related command.

The following table indicates the mapping of search commands to the appropriate categories.

VSS
Commands

@read @write @fast @slow

FT.CREATE Y Y

FT.DROPIN
DEX

 Y Y

FT.LIST Y Y

FT.INFO Y Y

FT.SEARCH Y Y

FT.AGGREG
ATE

Y Y

Authenticating users with ACLs 334

Amazon MemoryDB for Redis Developer Guide

VSS
Commands

@read @write @fast @slow

FT.PROFIL
E

Y Y

FT.ALIASA
DD

 Y Y

FT.ALIASD
EL

 Y Y

FT.ALIASU
PDATE

 Y Y

FT._ALIAS
LIST

Y Y

FT.EXPLAI
N

Y Y

FT.EXPLAI
NCLI

Y Y

FT.CONFIG Y Y

Applying ACLs to a cluster for MemoryDB

To use MemoryDB ACLs, you take the following steps:

1. Create one or more users.

2. Create an ACL and add users to the list.

3. Assign the ACL to a cluster.

These steps are described in detail following.

Topics

Authenticating users with ACLs 335

Amazon MemoryDB for Redis Developer Guide

• Creating Users and Access Control Lists with the Console and CLI

• Managing Access Control Lists with the Console and CLI

• Assigning Access control lists to clusters

Creating Users and Access Control Lists with the Console and CLI

The user information for ACLs users is a user name, and optionally a password and an access string.
The access string provides the permission level on keys and commands. The name is unique to the
user and is what is passed to the engine.

Make sure that the user permissions you provide make sense with the intended purpose of the ACL.
For example, if you create an ACL called Administrators, any user you add to that group should
have its access string set to full access to keys and commands. For users in an e-commerce ACL,
you might set their access strings to read-only access.

MemoryDB automatically configures a default user per account with a user name "default".
It will not be associated with any cluster unless explicity added to an ACL. You can't modify or
delete this user. This user is intended for compatibility with the default behavior of previous Redis
versions and has an access string that permits it to call all commands and access all keys.

An immutable “open-access” ACL will be created for every account which contains the default user.
This is the only ACL the default user can be a member of. When you create a cluster, you must
select an ACL to associate with the cluster. While you do have the option to apply the "open-access"
ACL with the default user, we highly recommend creating an ACL with users that have permissions
restricted to their business needs.

Clusters that do not have TLS enabled must use the "open-access" ACL to provide open
authentication.

ACLs can be created with no users. An empty ACL would have no access to a cluster and can only be
associated with TLS-enabled clusters.

When creating a user, you can set up to two passwords. When you modify a password, any existing
connections to clusters are maintained.

In particular, be aware of these user password constraints when using ACLs for MemoryDB:

• Passwords must be 16–128 printable characters.

Authenticating users with ACLs 336

Amazon MemoryDB for Redis Developer Guide

• The following nonalphanumeric characters are not allowed: , "" / @.

Managing Users with the Console and CLI

Creating a user (Console)

To create users on the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the left navigation pane, choose Users.

3. Choose Create user

4. On the Create user page, enter a Name.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

5. Under Passwords, you can enter up to two passwords.

6. Under Access string, enter an access string. The access string sets the permission level for what
keys and commands the user is allowed.

7. For Tags, you can optionally apply tags to search and filter your users or track your AWS costs.

8. Choose Create.

Creating a user using the AWS CLI

To create a user by using the CLI

• Use the create-user command to create a user.

For Linux, macOS, or Unix:

aws memorydb create-user \
 --user-name user-name-1 \
 --access-string "~objects:* ~items:* ~public:*" \

Authenticating users with ACLs 337

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-user.html

Amazon MemoryDB for Redis Developer Guide

 --authentication-mode \
 Passwords="abc",Type=password

For Windows:

aws memorydb create-user ^
 --user-name user-name-1 ^
 --access-string "~objects:* ~items:* ~public:*" ^
 --authentication-mode \
 Passwords="abc",Type=password

Modifying a user (Console)

To modify users on the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the left navigation pane, choose Users.

3. Choose the radio button next to the user you want to modify and then choose Actions-
>Modify

4. If you want to modify a password, choose the Modify passwords radio button. Note that if you
have two passwords, you must enter both when modifying one of them.

5. If you are updating the access string, enter the new one.

6. Choose Modify.

Modifying a user using AWS CLI

To modify a user by using the CLI

1. Use the update-user command to modify a user.

2. When a user is modified, the Access control lists associated with the user are updated, along
with any clusters associated with the ACL. All existing connections are maintained. The
following are examples.

For Linux, macOS, or Unix:

Authenticating users with ACLs 338

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-user.html

Amazon MemoryDB for Redis Developer Guide

aws memorydb update-user \
 --user-name user-name-1 \
 --access-string "~objects:* ~items:* ~public:*"

For Windows:

aws memorydb update-user ^
 --user-name user-name-1 ^
 --access-string "~objects:* ~items:* ~public:*"

Viewing user details (Console)

To view user details on the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the left navigation pane, choose Users.

3. Choose the user under User name or use the search box to find the user.

4. Under User settings you can review the user's access string, password count, status and
Amazon Resource Name (ARN).

5. Under Access control lists (ACL) you can review the ACL the user belongs to.

6. Under Tags you can review any tags associated with the user.

Viewing user details using the AWS CLI

Use the describe-users command to view details of a user.

aws memorydb describe-users \
 --user-name my-user-name

Authenticating users with ACLs 339

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-users.html

Amazon MemoryDB for Redis Developer Guide

Deleting a user (Console)

To delete users on the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the left navigation pane, choose Users.

3. Choose the radio button next to the user you want to modify and then choose Actions-
>Delete

4. To confirm, enter delete in the confirmation text box and then choose Delete.

5. To cancel, choose Cancel.

Deleting a user using the AWS CLI

To delete a user by using the CLI

• Use the delete-user command to delete a user.

The account is deleted and removed from any Access control lists to which it belongs. The
following is an example.

For Linux, macOS, or Unix:

aws memorydb delete-user \
 --user-name user-name-2

For Windows:

aws memorydb delete-user ^
 --user-name user-name-2

Managing Access Control Lists with the Console and CLI

You can create Access control lists to organize and control access of users to one or more clusters,
as shown following.

Use the following procedure to manage Access control lists using the console.

Authenticating users with ACLs 340

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-user.html

Amazon MemoryDB for Redis Developer Guide

Creating an Access Control List (ACL) (Console)

To create an Access control list using the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On left navigation pane, choose Access control lists (ACL).

3. Choose Create ACL.

4. On the Create access control list (ACL) page, enter an ACL name.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

5. Under Selected users do one of the following:

a. Create a new user by choosing Create user

b. Add users by choosing Manage and then selecting users from the Manage users dialog
and then selecting Choose.

6. For Tags, you can optionally apply tags to search and filter your ACLs or track your AWS costs.

7. Choose Create.

Creating an Access Control List (ACL) using the AWS CLI

Use the following procedures to create an Access control list using the CLI.

To create a new ACL and add a user by using the CLI

• Use the create-acl command to create an ACL.

For Linux, macOS, or Unix:

aws memorydb create-acl \
 --acl-name "new-acl-1" \
 --user-names "user-name-1" "user-name-2"

Authenticating users with ACLs 341

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-acl.html

Amazon MemoryDB for Redis Developer Guide

For Windows:

aws memorydb create-acl ^
 --acl-name "new-acl-1" ^
 --user-names "user-name-1" "user-name-2"

Modifying an Access Control List (ACL) (console)

To modify an Access control lists using the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On left navigation pane, choose Access control lists (ACL).

3. Choose the ACL you wish to modify and then choose Modify

4. On the Modify page, under Selected users do one of the following:

a. Create a new user by choosing Create user to add to the ACL.

b. Add or remove users by choosing Manage and then selecting or de-selecting users from
the Manage users dialog and then selecting Choose.

5. On the Create access control list (ACL) page, enter an ACL name.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

6. Under Selected users do one of the following:

a. Create a new user by choosing Create user

b. Add users by choosing Manage and then selecting users from the Manage users dialog
and then selecting Choose.

7. Choose Modify to save your changes or Cancel to discard them.

Authenticating users with ACLs 342

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

Modifying an Access Control List (ACL) using the AWS CLI

To modify a ACL by adding new users or removing current members by using the CLI

• Use the update-acl command to modfy an ACL.

For Linux, macOS, or Unix:

aws memorydb update-acl --acl-name new-acl-1 \
--user-names-to-add user-name-3 \
--user-names-to-remove user-name-2

For Windows:

aws memorydb update-acl --acl-name new-acl-1 ^
--user-names-to-add user-name-3 ^
--user-names-to-remove user-name-2

Note

Any open connections belonging to a user removed from an ACL are ended by this
command.

Viewing Access Control List (ACL) details (Console)

To view ACL details on the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the left navigation pane, choose Access control lists (ACL).

3. Choose the ACL under ACL name or use the search box to find the ACL.

4. Under Users you can review list of users associated with the ACL.

5. Under Associated clusters you can review the cluster the ACL belongs to.

6. Under Tags you can review any tags associated with the ACL.

Authenticating users with ACLs 343

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-acl.html
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

Viewing Access Control Lists (ACL) using the AWS CLI

Use the describe-acls command to view details of an ACL.

aws memorydb describe-acls \
 --acl-name test-group

Deleting an Access Control List (ACL) (console)

To delete Access control lists using the console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On left navigation pane, choose Access control lists (ACL).

3. Choose the ACL you wish to modify and then choose Delete

4. On the Delete page, enter delete in the confirmation box and choose Delete or Cancel to
avoid deleting the ACL.

The ACL itself, not the users belonging to the group, is deleted.

Deleting an Access Control List (ACL) using the AWS CLI

To delete an ACL by using the CLI

• Use the delete-acl command to delete an ACL.

For Linux, macOS, or Unix:

aws memorydb delete-acl /
 --acl-name

For Windows:

aws memorydb delete-acl ^
 --acl-name

The preceding examples return the following response.

aws memorydb delete-acl --acl-name "new-acl-1"

Authenticating users with ACLs 344

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-acls.html
https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-acl.html

Amazon MemoryDB for Redis Developer Guide

{
 "ACLName": "new-acl-1",
 "Status": "deleting",
 "EngineVersion": "6.2",
 "UserNames": [
 "user-name-1",
 "user-name-3"
],
 "clusters": [],
 "ARN":"arn:aws:memorydb:us-east-1:493071037918:acl/new-acl-1"
}

Assigning Access control lists to clusters

After you have created an ACL and added users, the final step in implementing ACLs is assigning
the ACL to a cluster.

Assigning Access control lists to clusters Using the Console

To add an ACL to a cluster using the AWS Management Console, see Creating a MemoryDB cluster.

Assigning Access control lists to clusters Using the AWS CLI

The following AWS CLI operation creates a cluster with encryption in transit (TLS) enabled and the
acl-name parameter with the value my-acl-name. Replace the subnet group subnet-group with
a subnet group that exists.

Key Parameters

• --engine-version – Must be 6.2.

• --tls-enabled – Used for authentication and for associating an ACL.

• --acl-name – This value provides Access control lists comprised of users with specified access
permissions for the cluster.

For Linux, macOS, or Unix:

aws memorydb create-cluster \
 --cluster-name "new-cluster" \
 --description "new-cluster" \

Authenticating users with ACLs 345

Amazon MemoryDB for Redis Developer Guide

 --engine-version "6.2" \
 --node-type db.r6g.large \
 --tls-enabled \
 --acl-name "new-acl-1" \
 --subnet-group-name "subnet-group"

For Windows:

aws memorydb create-cluster ^
 --cluster-name "new-cluster" ^
 --cluster-description "new-cluster" ^
 --engine-version "6.2" ^
 --node-type db.r6g.large ^
 --tls-enabled ^
 --acl-name "new-acl-1" ^
 --subnet-group-name "subnet-group"

The following AWS CLI operation modifies a cluster with encryption in transit (TLS) enabled and
the acl-name parameter with the value new-acl-2.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name cluster-1 \
 --acl-name "new-acl-2"

For Windows:

aws memorydb update-cluster ^
 --cluster-name cluster-1 ^
 --acl-name "new-acl-2"

Authenticating with IAM

Topics

• Overview

• Limitations

• Setup

Authenticating with IAM 346

Amazon MemoryDB for Redis Developer Guide

• Connecting

Overview

With IAM Authentication you can authenticate a connection to MemoryDB using AWS IAM
identities, when your cluster is configured to use Redis version 7 or above. This allows you to
strengthen your security model and simplify many administrative security tasks. With IAM
Authentication you can configure fine-grained access control for each individual MemoryDB cluster
and MemoryDB user and follow least-privilege permissions principles. IAM Authentication for
MemoryDB Redis works by providing a short-lived IAM authentication token instead of a long-lived
MemoryDB user password in the Redis AUTH or HELLO command. For more information about the
IAM authentication token, refer to the Signature Version 4 signing process in the the AWS General
Reference Guide and the code example below.

You can use IAM identities and their associated policies to further restrict Redis access. You can also
grant access to users from their federated Identity providers directly to MemoryDB clusters.

To use AWS IAM with MemoryDB, you first need to create a MemoryDB user with authentication
mode set to IAM, then you can create or reuse an IAM identity. The IAM identity needs an
associated policy to grant the memorydb:Connect action to the MemoryDB cluster and
MemoryDB user. Once configured, you can create an IAM authentication token using the AWS
credentials of the IAM user or role. Finally you need to provide the short-lived IAM authentication
token as a password in your Redis client when connecting to your MemoryDB cluster node. A
Redis client with support for credentials provider can auto-generate the temporary credentials
automatically for each new connection. MemoryDB will perform IAM authentication for connection
requests of IAM-enabled MemoryDB users and will validate the connection requests with IAM.

Limitations

When using IAM authentication, the following limitations apply:

• IAM authentication is available when using Redis engine version 7.0 or above.

• The IAM authentication token is valid for 15 minutes. For long-lived connections, we recommend
using a Redis client that supports a credentials provider interface.

• An IAM authenticated connection to MemoryDB will automatically be disconnected after 12
hours. The connection can be prolonged for 12 hours by sending an AUTH or HELLO command
with a new IAM authentication token.

Authenticating with IAM 347

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon MemoryDB for Redis Developer Guide

• IAM authentication is not supported in MULTI EXEC commands.

• Currently, IAM authentication doesn't support all global condition context keys. For more
information about global condition context keys, see AWS global condition context keys in the
IAM User Guide.

Setup

To setup IAM authentication:

1. Create a cluster

aws memorydb create-cluster \
 --cluster-name cluster-01 \
 --description "MemoryDB IAM auth application"
 --node-type db.r6g.large \
 --engine-version 7.0 \
 --acl-name open-access

2. Create an IAM trust policy document, as shown below, for your role that allows your account to
assume the new role. Save the policy to a file named trust-policy.json.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole"
 }
}

3. Create an IAM policy document, as shown below. Save the policy to a file named policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Action" : [
 "memorydb:connect"
],
 "Resource" : [

Authenticating with IAM 348

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon MemoryDB for Redis Developer Guide

 "arn:aws:memorydb:us-east-1:123456789012:cluster/cluster-01",
 "arn:aws:memorydb:us-east-1:123456789012:user/iam-user-01"
]
 }
]
}

4. Create an IAM role.

aws iam create-role \
 --role-name "memorydb-iam-auth-app" \
 --assume-role-policy-document file://trust-policy.json

5. Create the IAM policy.

aws iam create-policy \
 --policy-name "memorydb-allow-all" \
 --policy-document file://policy.json

6. Attach the IAM policy to the role.

aws iam attach-role-policy \
 --role-name "memorydb-iam-auth-app" \
 --policy-arn "arn:aws:iam::123456789012:policy/memorydb-allow-all"

7. Create a new IAM-enabled user.

aws memorydb create-user \
 --user-name iam-user-01 \
 --authentication-mode Type=iam \
 --access-string "on ~* +@all"

8. Create an ACL and attach the user.

aws memorydb create-acl \
 --acl-name iam-acl-01 \
 --user-names iam-user-01

aws memorydb update-cluster \
 --cluster-name cluster-01 \
 --acl-name iam-acl-01

Authenticating with IAM 349

Amazon MemoryDB for Redis Developer Guide

Connecting

Connect with token as password

You first need to generate the short-lived IAM authentication token using an AWS SigV4 pre-signed
request. After that you provide the IAM authentication token as a password when connecting to a
MemoryDB cluster, as shown in the example below.

String userName = "insert user name"
String clusterName = "insert cluster name"
String region = "insert region"

// Create a default AWS Credentials provider.
// This will look for AWS credentials defined in environment variables or system
 properties.
AWSCredentialsProvider awsCredentialsProvider = new
 DefaultAWSCredentialsProviderChain();

// Create an IAM authentication token request and signed it using the AWS credentials.
// The pre-signed request URL is used as an IAM authentication token for MemoryDB
 Redis.
IAMAuthTokenRequest iamAuthTokenRequest = new IAMAuthTokenRequest(userName,
 clusterName, region);
String iamAuthToken =
 iamAuthTokenRequest.toSignedRequestUri(awsCredentialsProvider.getCredentials());

// Construct Redis URL with IAM Auth credentials provider
RedisURI redisURI = RedisURI.builder()
 .withHost(host)
 .withPort(port)
 .withSsl(ssl)
 .withAuthentication(userName, iamAuthToken)
 .build();

// Create a new Lettuce Redis client
RedisClusterClient client = RedisClusterClient.create(redisURI);
client.connect();

Below is the definition for IAMAuthTokenRequest.

public class IAMAuthTokenRequest {
 private static final HttpMethodName REQUEST_METHOD = HttpMethodName.GET;
 private static final String REQUEST_PROTOCOL = "http://";

Authenticating with IAM 350

https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon MemoryDB for Redis Developer Guide

 private static final String PARAM_ACTION = "Action";
 private static final String PARAM_USER = "User";
 private static final String ACTION_NAME = "connect";
 private static final String SERVICE_NAME = "memorydb";
 private static final long TOKEN_EXPIRY_SECONDS = 900;

 private final String userName;
 private final String clusterName;
 private final String region;

 public IAMAuthTokenRequest(String userName, String clusterName, String region) {
 this.userName = userName;
 this.clusterName = clusterName;
 this.region = region;
 }

 public String toSignedRequestUri(AWSCredentials credentials) throws
 URISyntaxException {
 Request<Void> request = getSignableRequest();
 sign(request, credentials);
 return new URIBuilder(request.getEndpoint())
 .addParameters(toNamedValuePair(request.getParameters()))
 .build()
 .toString()
 .replace(REQUEST_PROTOCOL, "");
 }

 private <T> Request<T> getSignableRequest() {
 Request<T> request = new DefaultRequest<>(SERVICE_NAME);
 request.setHttpMethod(REQUEST_METHOD);
 request.setEndpoint(getRequestUri());
 request.addParameters(PARAM_ACTION, Collections.singletonList(ACTION_NAME));
 request.addParameters(PARAM_USER, Collections.singletonList(userName));
 return request;
 }

 private URI getRequestUri() {
 return URI.create(String.format("%s%s/", REQUEST_PROTOCOL, clusterName));
 }

 private <T> void sign(SignableRequest<T> request, AWSCredentials credentials) {
 AWS4Signer signer = new AWS4Signer();
 signer.setRegionName(region);
 signer.setServiceName(SERVICE_NAME);

Authenticating with IAM 351

Amazon MemoryDB for Redis Developer Guide

 DateTime dateTime = DateTime.now();
 dateTime = dateTime.plus(Duration.standardSeconds(TOKEN_EXPIRY_SECONDS));

 signer.presignRequest(request, credentials, dateTime.toDate());
 }

 private static List<NameValuePair> toNamedValuePair(Map<String, List<String>> in) {
 return in.entrySet().stream()
 .map(e -> new BasicNameValuePair(e.getKey(), e.getValue().get(0)))
 .collect(Collectors.toList());
 }
}

Connect with credentials provider

The code below shows how to authenticate with MemoryDB using the IAM authentication
credentials provider.

String userName = "insert user name"
String clusterName = "insert cluster name"
String region = "insert region"

// Create a default AWS Credentials provider.
// This will look for AWS credentials defined in environment variables or system
 properties.
AWSCredentialsProvider awsCredentialsProvider = new
 DefaultAWSCredentialsProviderChain();

// Create an IAM authentication token request. Once this request is signed it can be
 used as an
// IAM authentication token for MemoryDB Redis.
IAMAuthTokenRequest iamAuthTokenRequest = new IAMAuthTokenRequest(userName,
 clusterName, region);

// Create a Redis credentials provider using IAM credentials.
RedisCredentialsProvider redisCredentialsProvider = new
 RedisIAMAuthCredentialsProvider(
 userName, iamAuthTokenRequest, awsCredentialsProvider);

// Construct Redis URL with IAM Auth credentials provider
RedisURI redisURI = RedisURI.builder()
 .withHost(host)

Authenticating with IAM 352

Amazon MemoryDB for Redis Developer Guide

 .withPort(port)
 .withSsl(ssl)
 .withAuthentication(redisCredentialsProvider)
 .build();

// Create a new Lettuce Redis cluster client
RedisClusterClient client = RedisClusterClient.create(redisURI);
client.connect();

Below is an example of a Lettuce Redis cluster client that wraps the IAMAuthTokenRequest in a
credentials provider to auto-generate temporary credentials when needed.

public class RedisIAMAuthCredentialsProvider implements RedisCredentialsProvider {
 private static final long TOKEN_EXPIRY_SECONDS = 900;

 private final AWSCredentialsProvider awsCredentialsProvider;
 private final String userName;
 private final IAMAuthTokenRequest iamAuthTokenRequest;
 private final Supplier<String> iamAuthTokenSupplier;

 public RedisIAMAuthCredentialsProvider(String userName,
 IAMAuthTokenRequest iamAuthTokenRequest,
 AWSCredentialsProvider awsCredentialsProvider) {
 this.userName = userName;
 this.awsCredentialsProvider = awsCredentialsProvider;
 this.iamAuthTokenRequest = iamAuthTokenRequest;
 this.iamAuthTokenSupplier =
 Suppliers.memoizeWithExpiration(this::getIamAuthToken, TOKEN_EXPIRY_SECONDS,
 TimeUnit.SECONDS);
 }

 @Override
 public Mono<RedisCredentials> resolveCredentials() {
 return Mono.just(RedisCredentials.just(userName, iamAuthTokenSupplier.get()));
 }

 private String getIamAuthToken() {
 return
 iamAuthTokenRequest.toSignedRequestUri(awsCredentialsProvider.getCredentials());
 }

Authenticating with IAM 353

Amazon MemoryDB for Redis Developer Guide

Identity and access management in MemoryDB for Redis

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use MemoryDB resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How MemoryDB for Redis works with IAM

• Identity-based policy examples for MemoryDB for Redis

• Troubleshooting MemoryDB for Redis identity and access

• Access control

• Overview of managing access permissions to your MemoryDB resources

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in MemoryDB.

Service user – If you use the MemoryDB service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more MemoryDB features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
MemoryDB, see Troubleshooting MemoryDB for Redis identity and access.

Service administrator – If you're in charge of MemoryDB resources at your company, you probably
have full access to MemoryDB. It's your job to determine which MemoryDB features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with MemoryDB,
see How MemoryDB for Redis works with IAM.

Identity and access management 354

Amazon MemoryDB for Redis Developer Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to MemoryDB. To view example MemoryDB identity-based
policies that you can use in IAM, see Identity-based policy examples for MemoryDB for Redis.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For

Authenticating with identities 355

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon MemoryDB for Redis Developer Guide

the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating with identities 356

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

Amazon MemoryDB for Redis Developer Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

Authenticating with identities 357

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon MemoryDB for Redis Developer Guide

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A

Managing access using policies 358

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon MemoryDB for Redis Developer Guide

user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 359

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Amazon MemoryDB for Redis Developer Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How MemoryDB for Redis works with IAM

Before you use IAM to manage access to MemoryDB, learn what IAM features are available to use
with MemoryDB.

How MemoryDB for Redis works with IAM 360

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon MemoryDB for Redis Developer Guide

IAM features you can use with MemoryDB for Redis

IAM feature MemoryDB support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs Yes

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how MemoryDB and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for MemoryDB

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

How MemoryDB for Redis works with IAM 361

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon MemoryDB for Redis Developer Guide

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for MemoryDB

To view examples of MemoryDB identity-based policies, see Identity-based policy examples for
MemoryDB for Redis.

Resource-based policies within MemoryDB

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for MemoryDB

Supports policy actions Yes

How MemoryDB for Redis works with IAM 362

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon MemoryDB for Redis Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of MemoryDB actions, see Actions Defined by MemoryDB for Redis in the Service
Authorization Reference.

Policy actions in MemoryDB use the following prefix before the action:

MemoryDB

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "MemoryDB:action1",
 "MemoryDB:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "MemoryDB:Describe*"

To view examples of MemoryDB identity-based policies, see Identity-based policy examples for
MemoryDB for Redis.

Policy resources for MemoryDB

Supports policy resources Yes

How MemoryDB for Redis works with IAM 363

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions

Amazon MemoryDB for Redis Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of MemoryDB resource types and their ARNs, see Resources Defined by MemoryDB for
Redis in the Service Authorization Reference. To learn with which actions you can specify the ARN
of each resource, see Actions Defined by MemoryDB for Redis .

To view examples of MemoryDB identity-based policies, see Identity-based policy examples for
MemoryDB for Redis.

Policy condition keys for MemoryDB

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

How MemoryDB for Redis works with IAM 364

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon MemoryDB for Redis Developer Guide

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To view examples of MemoryDB identity-based policies, see Identity-based policy examples for
MemoryDB for Redis.

Using condition keys

You can specify conditions that determine how an IAM policy takes effect. In MemoryDB, you
can use the Condition element of a JSON policy to compare keys in the request context with
key values that you specify in your policy. For more information, see IAM JSON policy elements:
Condition.

To see a list of MemoryDB condition keys, see Condition Keys for MemoryDB for Redis in the
Service Authorization Reference.

For a list of global condition keys, see AWS global condition context keys.

Specifying Conditions: Using Condition Keys

To implement fine-grained control, you can write an IAM permissions policy that specifies
conditions to control a set of individual parameters on certain requests. You can then apply the
policy to IAM users, groups, or roles that you create using the IAM console.

To apply a condition, you add the condition information to the IAM policy statement. For example,
to disallow the creation of any MemoryDB cluster with TLS disabled, you can specify the following
condition in your policy statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "memorydb:CreateCluster"
],
 "Resource": [
 "*"
],

How MemoryDB for Redis works with IAM 365

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon MemoryDB for Redis Developer Guide

 "Condition": {
 "Bool": {
 "memorydb:TLSEnabled": "false"
 }
 }
 }
]
}

For more information on tagging, see Tagging your MemoryDB resources.

For more information on using policy condition operators, see MemoryDB API permissions: Actions,
resources, and conditions reference.

Example Policies: Using Conditions for Fine-Grained Parameter Control

This section shows example policies for implementing fine-grained access control on the previously
listed MemoryDB parameters.

1. memorydb:TLSEnabled — Specify that clusters will be created only with TLS enabled.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "memorydb:CreateCluster"
],
 "Resource": [
 "arn:aws:memorydb:*:*:parametergroup/*",
 "arn:aws:memorydb:*:*:subnetgroup/*",
 "arn:aws:memorydb:*:*:acl/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "memorydb:CreateCluster"
],
 "Resource": [
 "*"
],

How MemoryDB for Redis works with IAM 366

Amazon MemoryDB for Redis Developer Guide

 "Condition": {
 "Bool": {
 "memorydb:TLSEnabled": "true"
 }
 }
 }
]
}

2. memorydb:UserAuthenticationMode: — Specify that the users can be created with a specific
type authentication mode (IAM for example).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "memorydb:Createuser"
],
 "Resource": [
 "arn:aws:memorydb:*:*:user/*"
],
 "Condition": {
 "StringEquals": {
 "memorydb:UserAuthenticationMode": "iam"
 }
 }
 }
]
}

In cases where you are setting ‘Deny’ based policies, it is recommended to use the
StringEqualsIgnoreCase operator to avoid all calls with a specific user authentication mode type
irrespective of the case.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [

How MemoryDB for Redis works with IAM 367

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String

Amazon MemoryDB for Redis Developer Guide

 "memorydb:CreateUser"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "memorydb:UserAuthenticationMode": "password"
 }
 }
 }
]
}

Access control lists (ACLs) in MemoryDB

Supports ACLs Yes

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with MemoryDB

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

How MemoryDB for Redis works with IAM 368

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon MemoryDB for Redis Developer Guide

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using Temporary credentials with MemoryDB

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for MemoryDB

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to

How MemoryDB for Redis works with IAM 369

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon MemoryDB for Redis Developer Guide

complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for MemoryDB

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break MemoryDB functionality. Edit
service roles only when MemoryDB provides guidance to do so.

Service-linked roles for MemoryDB

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for MemoryDB for Redis

By default, users and roles don't have permission to create or modify MemoryDB resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they

Identity-based policy examples 370

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon MemoryDB for Redis Developer Guide

need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by MemoryDB, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for MemoryDB for
Redis in the Service Authorization Reference.

Topics

• Policy best practices

• Using the MemoryDB console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete MemoryDB
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

Identity-based policy examples 371

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon MemoryDB for Redis Developer Guide

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the MemoryDB console

To access the MemoryDB for Redis console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the MemoryDB resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the MemoryDB console, also attach the MemoryDB
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [

Identity-based policy examples 372

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon MemoryDB for Redis Developer Guide

 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting MemoryDB for Redis identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with MemoryDB and IAM.

Topics

• I am not authorized to perform an action in MemoryDB

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my MemoryDB resources

Troubleshooting 373

Amazon MemoryDB for Redis Developer Guide

I am not authorized to perform an action in MemoryDB

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
MemoryDB:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 MemoryDB:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the MemoryDB:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to MemoryDB.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in MemoryDB. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 374

Amazon MemoryDB for Redis Developer Guide

I want to allow people outside of my AWS account to access my MemoryDB
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether MemoryDB supports these features, see How MemoryDB for Redis works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Access control

You can have valid credentials to authenticate your requests, but unless you have permissions you
cannot create or access MemoryDB for Redis resources. For example, you must have permissions to
create a MemoryDB cluster.

The following sections describe how to manage permissions for MemoryDB for Redis. We
recommend that you read the overview first.

• Overview of managing access permissions to your MemoryDB resources

• Using identity-based policies (IAM policies) for MemoryDB for Redis

Access control 375

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon MemoryDB for Redis Developer Guide

Overview of managing access permissions to your MemoryDB resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies
to IAM identities (that is, users, groups, and roles). In addition, MemoryDB for Redis also supports
attaching permissions policies to resources.

Note

An account administrator (or administrator user) is a user with administrator privileges. For
more information, see IAM Best Practices in the IAM User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Topics

• MemoryDB for Redis resources and operations

• Understanding resource ownership

• Managing access to resources

• Using identity-based policies (IAM policies) for MemoryDB for Redis

• Resource-level permissions

• Using Service-Linked Roles for Amazon MemoryDB for Redis

Overview of managing access 376

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon MemoryDB for Redis Developer Guide

• AWS managed policies for MemoryDB for Redis

• MemoryDB API permissions: Actions, resources, and conditions reference

MemoryDB for Redis resources and operations

In MemoryDB for Redis, the primary resource is a cluster.

These resources have unique Amazon Resource Names (ARNs) associated with them as shown
following.

Note

For resource-level permissions to be effective, the resource name on the ARN string should
be lower case.

Resource type ARN format

User arn:aws:memorydb:us-east-1:12345678
9012 :user/user1

Access Control List (ACL) arn:aws:memorydb:us-east-1:12345678
9012 :acl/myacl

Cluster arn:aws:memorydb:us-east-1:12345678
9012 :cluster/my-cluster

Snapshot arn:aws:memorydb:us-east-1:12345678
9012 :snapshot/my-snapshot

Parameter group arn:aws:memorydb:us-east-1:12345678
9012 :parametergroup/my-parameter-group

Subnet group arn:aws:memorydb:us-east-1:12345678
9012 :subnetgroup/my-subnet-group

MemoryDB provides a set of operations to work with MemoryDB resources. For a list of available
operations, see MemoryDB for Redis Actions.

Overview of managing access 377

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_Operations.html

Amazon MemoryDB for Redis Developer Guide

Understanding resource ownership

A resource owner is the AWS account that created the resource. That is, the resource owner is
the AWS account of the principal entity that authenticates the request that creates the resource.
A principal entity can be the root account, an IAM user, or an IAM role. The following examples
illustrate how this works:

• Suppose that you use the root account credentials of your AWS account to create a cluster. In this
case, your AWS account is the owner of the resource. In MemoryDB, the resource is the cluster.

• Suppose that you create an IAM user in your AWS account and grant permissions to create a
cluster to that user. In this case, the user can create a cluster. However, your AWS account, to
which the user belongs, owns the cluster resource.

• Suppose that you create an IAM role in your AWS account with permissions to create a cluster. In
this case, anyone who can assume the role can create a cluster. Your AWS account, to which the
role belongs, owns the cluster resource.

Managing access to resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of MemoryDB for Redis. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What Is
IAM? in the IAM User Guide. For information about IAM policy syntax and descriptions, see
AWS IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies). Policies
attached to a resource are referred to as resource-based policies.

Topics

• Identity-based policies (IAM policies)

• Specifying policy elements: Actions, effects, resources, and principals

• Specifying conditions in a policy

Overview of managing access 378

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon MemoryDB for Redis Developer Guide

Identity-based policies (IAM policies)

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – An account administrator
can use a permissions policy that is associated with a particular user to grant permissions. In
this case, the permissions are for that user to create a MemoryDB resource, such as a cluster,
parameter group, or security group.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach
an identity-based permissions policy to an IAM role to grant cross-account permissions. For
example, the administrator in Account A can create a role to grant cross-account permissions to
another AWS account (for example, Account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in Account A.

2. Account A administrator attaches a trust policy to the role identifying Account B as the
principal who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
Account B. Doing this allows users in Account B to create or access resources in Account A.
In some cases, you might want to grant an AWS service permissions to assume the role. To
support this approach, the principal in the trust policy can also be an AWS service principal.

For more information about using IAM to delegate permissions, see Access Management in the
IAM User Guide.

The following is an example policy that allows a user to perform the DescribeClusters action
for your AWS account. MemoryDB also supports identifying specific resources using the resource
ARNs for API actions. (This approach is also referred to as resource-level permissions).

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "DescribeClusters",
 "Effect": "Allow",
 "Action": [
 "memorydb:DescribeClusters"],
 "Resource": resource-arn
 }
]

Overview of managing access 379

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon MemoryDB for Redis Developer Guide

}

For more information about using identity-based policies with MemoryDB, see Using identity-
based policies (IAM policies) for MemoryDB for Redis. For more information about users, groups,
roles, and permissions, see Identities (Users, Groups, and Roles in the IAM User Guide.

Specifying policy elements: Actions, effects, resources, and principals

For each MemoryDB for Redis resource (see MemoryDB for Redis resources and operations), the
service defines a set of API operations (see Actions). To grant permissions for these API operations,
MemoryDB defines a set of actions that you can specify in a policy. For example, for the MemoryDB
cluster resource, the following actions are defined: CreateCluster, DeleteCluster, and
DescribeClusters. Performing an API operation can require permissions for more than one
action.

The following are the most basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource
to which the policy applies. For more information, see MemoryDB for Redis resources and
operations.

• Action – You use action keywords to identify resource operations that you want to allow or deny.
For example, depending on the specified Effect, the memorydb:CreateCluster permission
allows or denies the user permissions to perform the MemoryDB for Redis CreateCluster
operation.

• Effect – You specify the effect when the user requests the specific action—this can be either
allow or deny. If you don't explicitly grant access to (allow) a resource, access is implicitly denied.
You can also explicitly deny access to a resource. For example, you might do this to make sure
that a user can't access a resource, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only).

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM
User Guide.

For a table showing all of the MemoryDB for Redis API actions, see MemoryDB API permissions:
Actions, resources, and conditions reference.

Overview of managing access 380

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon MemoryDB for Redis Developer Guide

Specifying conditions in a policy

When you grant permissions, you can use the IAM policy language to specify the conditions when
a policy should take effect. For example, you might want a policy to be applied only after a specific
date. For more information about specifying conditions in a policy language, see Condition in the
IAM User Guide.

Overview of managing access 381

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition

Amazon MemoryDB for Redis Developer Guide

Using identity-based policies (IAM policies) for MemoryDB for Redis

This topic provides examples of identity-based policies in which an account administrator can
attach permissions policies to IAM identities (that is, users, groups, and roles).

Important

We recommend that you first read the topics that explain the basic concepts and options
to manage access to MemoryDB for Redis resources. For more information, see Overview of
managing access permissions to your MemoryDB resources.

The sections in this topic cover the following:

• Permissions required to use the MemoryDB for Redis console

• AWS-managed (predefined) policies for MemoryDB for Redis

• Customer-managed policy examples

The following shows an example of a permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowClusterPermissions",
 "Effect": "Allow",
 "Action": [
 "memorydb:CreateCluster",
 "memorydb:DescribeClusters",
 "memorydb:UpdateCluster"],
 "Resource": "*"
 },
 {
 "Sid": "AllowUserToPassRole",
 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": "arn:aws:iam::123456789012:role/EC2-roles-for-cluster"
 }
]
}

Overview of managing access 382

Amazon MemoryDB for Redis Developer Guide

The policy has two statements:

• The first statement grants permissions for the MemoryDB for Redis actions
(memorydb:CreateCluster, memorydb:DescribeClusters, and
memorydb:UpdateCluster) on any cluster owned by the account.

• The second statement grants permissions for the IAM action (iam:PassRole) on the IAM role
name specified at the end of the Resource value.

The policy doesn't specify the Principal element because in an identity-based policy you don't
specify the principal who gets the permission. When you attach policy to a user, the user is the
implicit principal. When you attach a permissions policy to an IAM role, the principal identified in
the role's trust policy gets the permissions.

For a table showing all of the MemoryDB for Redis API actions and the resources that they apply to,
see MemoryDB API permissions: Actions, resources, and conditions reference.

Permissions required to use the MemoryDB for Redis console

The permissions reference table lists the MemoryDB for Redis API operations and shows the
required permissions for each operation. For more information about MemoryDB API operations,
see MemoryDB API permissions: Actions, resources, and conditions reference.

To use the MemoryDB for Redis console, first grant permissions for additional actions as shown in
the following permissions policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "MinPermsForMemDBConsole",
 "Effect": "Allow",
 "Action": [
 "memorydb:Describe*",
 "memorydb:List*",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeVpcs",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeSecurityGroups",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:DescribeAlarms",
 "s3:ListAllMyBuckets",
 "sns:ListTopics",

Overview of managing access 383

Amazon MemoryDB for Redis Developer Guide

 "sns:ListSubscriptions"],
 "Resource": "*"
 }
]
}

The MemoryDB console needs these additional permissions for the following reasons:

• Permissions for the MemoryDB actions enable the console to display MemoryDB resources in the
account.

• The console needs permissions for the ec2 actions to query Amazon EC2 so it can display
Availability Zones, VPCs, security groups, and account attributes.

• The permissions for cloudwatch actions enable the console to retrieve Amazon CloudWatch
metrics and alarms, and display them in the console.

• The permissions for sns actions enable the console to retrieve Amazon Simple Notification
Service (Amazon SNS) topics and subscriptions, and display them in the console.

Customer-managed policy examples

If you are not using a default policy and choose to use a custom-managed policy, ensure one of
two things. Either you should have permissions to call iam:createServiceLinkedRole (for
more information, see Example 4: Allow a user to call IAM CreateServiceLinkedRole API). Or you
should have created a MemoryDB service-linked role.

When combined with the minimum permissions needed to use the MemoryDB for Redis console,
the example policies in this section grant additional permissions. The examples are also relevant to
the AWS SDKs and the AWS CLI. For more information about what permissions are needed to use
the MemoryDB console, see Permissions required to use the MemoryDB for Redis console.

For instructions on setting up IAM users and groups, see Creating Your First IAM User and
Administrators Group in the IAM User Guide.

Important

Always test your IAM policies thoroughly before using them in production. Some
MemoryDB actions that appear simple can require other actions to support them when
you are using the MemoryDB console. For example, memorydb:CreateCluster grants
permissions to create MemoryDB clusters. However, to perform this operation, the

Overview of managing access 384

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon MemoryDB for Redis Developer Guide

MemoryDB console uses a number of Describe and List actions to populate console
lists.

Examples

• Example 1: Allow a user read-only access to MemoryDB resources

• Example 2: Allow a user to perform common MemoryDB system administrator tasks

• Example 3: Allow a user to access all MemoryDB API actions

• Example 4: Allow a user to call IAM CreateServiceLinkedRole API

Example 1: Allow a user read-only access to MemoryDB resources

The following policy grants permissions for MemoryDB actions that allow a user to list resources.
Typically, you attach this type of permissions policy to a managers group.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Sid": "MemDBUnrestricted",
 "Effect":"Allow",
 "Action": [
 "memorydb:Describe*",
 "memorydb:List*"],
 "Resource":"*"
 }
]
}

Example 2: Allow a user to perform common MemoryDB system administrator tasks

Common system administrator tasks include modifying clusters, parameters, and parameter
groups. A system administrator may also want to get information about the MemoryDB events.
The following policy grants a user permissions to perform MemoryDB actions for these common
system administrator tasks. Typically, you attach this type of permissions policy to the system
administrators group.

{
 "Version": "2012-10-17",
 "Statement":[{

Overview of managing access 385

Amazon MemoryDB for Redis Developer Guide

 "Sid": "MDBAllowSpecific",
 "Effect":"Allow",
 "Action":[
 "memorydb:UpdateCluster",
 "memorydb:DescribeClusters",
 "memorydb:DescribeEvents",
 "memorydb:UpdateParameterGroup",
 "memorydb:DescribeParameterGroups",
 "memorydb:DescribeParameters",
 "memorydb:ResetParameterGroup",],
 "Resource":"*"
 }
]
}

Example 3: Allow a user to access all MemoryDB API actions

The following policy allows a user to access all MemoryDB actions. We recommend that you grant
this type of permissions policy only to an administrator user.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Sid": "MDBAllowAll",
 "Effect":"Allow",
 "Action":[
 "memorydb:*"],
 "Resource":"*"
 }
]
}

Example 4: Allow a user to call IAM CreateServiceLinkedRole API

The following policy allows user to call the IAM CreateServiceLinkedRole API. We recommend
that you grant this type of permissions policy to the user who invokes mutative MemoryDB
operations.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"CreateSLRAllows",

Overview of managing access 386

Amazon MemoryDB for Redis Developer Guide

 "Effect":"Allow",
 "Action":[
 "iam:CreateServiceLinkedRole"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "iam:AWSServiceName":"memorydb.amazonaws.com"
 }
 }
 }
]
}

Resource-level permissions

You can restrict the scope of permissions by specifying resources in an IAM policy. Many AWS CLI
API actions support a resource type that varies depending on the behavior of the action. Every
IAM policy statement grants permission to an action that's performed on a resource. When the
action doesn't act on a named resource, or when you grant permission to perform the action on
all resources, the value of the resource in the policy is a wildcard (*). For many API actions, you can
restrict the resources that a user can modify by specifying the Amazon Resource Name (ARN) of a
resource, or an ARN pattern that matches multiple resources. To restrict permissions by resource,
specify the resource by ARN.

MemoryDB Resource ARN Format

Note

For resource-level permissions to be effective, the resource name on the ARN string should
be lower case.

• User – arn:aws:memorydb:us-east-1:123456789012:user/user1

• ACL – arn:aws:memorydb:us-east-1:123456789012:acl/my-acl

• Cluster – arn:aws:memorydb:us-east-1:123456789012:cluster/my-cluster

• Snapshot – arn:aws:memorydb:us-east-1:123456789012:snapshot/my-snapshot

• Parameter group – arn:aws:memorydb:us-east-1:123456789012:parametergroup/my-
parameter-group

Overview of managing access 387

Amazon MemoryDB for Redis Developer Guide

• Subnet group – arn:aws:memorydb:us-east-1:123456789012:subnetgroup/my-subnet-group

Examples

• Example 1: Allow a user full access to specific MemoryDB resource types

• Example 2: Deny a user access to a cluster.

Example 1: Allow a user full access to specific MemoryDB resource types

The following policy explicitly allows the specified account-id full access to all resources of type
subnet group, security group and cluster.

{
 "Sid": "Example1",
 "Effect": "Allow",
 "Action": "memorydb:*",
 "Resource": [
 "arn:aws:memorydb:us-east-1:account-id:subnetgroup/*",
 "arn:aws:memorydb:us-east-1:account-id:securitygroup/*",
 "arn:aws:memorydb:us-east-1:account-id:cluster/*"
]
}

Example 2: Deny a user access to a cluster.

The following example explicitly denies the specified account-id access to a particular cluster.

{
 "Sid": "Example2",
 "Effect": "Deny",
 "Action": "memorydb:*",
 "Resource": [
 "arn:aws:memorydb:us-east-1:account-id:cluster/name"
]
}

Using Service-Linked Roles for Amazon MemoryDB for Redis

Amazon MemoryDB for Redis uses AWS Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to an AWS service, such as

Overview of managing access 388

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon MemoryDB for Redis Developer Guide

Amazon MemoryDB for Redis. Amazon MemoryDB for Redis service-linked roles are predefined by
Amazon MemoryDB for Redis. They include all the permissions that the service requires to call AWS
services on behalf of your clusters.

A service-linked role makes setting up Amazon MemoryDB for Redis easier because you don’t
have to manually add the necessary permissions. The roles already exist within your AWS account
but are linked to Amazon MemoryDB for Redis use cases and have predefined permissions. Only
Amazon MemoryDB for Redis can assume these roles, and only these roles can use the predefined
permissions policy. You can delete the roles only after first deleting their related resources. This
protects your Amazon MemoryDB for Redis resources because you can't inadvertently remove
necessary permissions to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Contents

• Service-Linked Role Permissions for Amazon MemoryDB for Redis

• Creating a Service-Linked Role (IAM)

• Creating a Service-Linked Role (IAM Console)

• Creating a Service-Linked Role (IAM CLI)

• Creating a Service-Linked Role (IAM API)

• Editing the Description of a Service-Linked Role for Amazon MemoryDB for Redis

• Editing a Service-Linked Role Description (IAM Console)

• Editing a Service-Linked Role Description (IAM CLI)

• Editing a Service-Linked Role Description (IAM API)

• Deleting a Service-Linked Role for Amazon MemoryDB for Redis

• Cleaning Up a Service-Linked Role

• Deleting a Service-Linked Role (IAM Console)

• Deleting a Service-Linked Role (IAM CLI)

• Deleting a Service-Linked Role (IAM API)

Overview of managing access 389

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon MemoryDB for Redis Developer Guide

Service-Linked Role Permissions for Amazon MemoryDB for Redis

Amazon MemoryDB for Redis uses the service-linked role named AWSServiceRoleForMemoryDB –
This policy allows MemoryDB to manage AWS resources on your behalf as necessary for managing
your clusters.

The AWSServiceRoleForMemoryDB service-linked role permissions policy allows Amazon
MemoryDB for Redis to complete the following actions on the specified resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "AmazonMemoryDBManaged"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Overview of managing access 390

Amazon MemoryDB for Redis Developer Guide

 "ec2:DeleteNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/AmazonMemoryDBManaged": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "arn:aws:ec2:*:*:security-group/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "AWS/MemoryDB"
 }
 }
 }
]
 }

Overview of managing access 391

Amazon MemoryDB for Redis Developer Guide

For more information, see AWS managed policy: MemoryDBServiceRolePolicy.

To allow an IAM entity to create AWSServiceRoleForMemoryDB service-linked roles

Add the following policy statement to the permissions for that IAM entity:

{
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/memorydb.amazonaws.com/
AWSServiceRoleForMemoryDB*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "memorydb.amazonaws.com"}}
}

To allow an IAM entity to delete AWSServiceRoleForMemoryDB service-linked roles

Add the following policy statement to the permissions for that IAM entity:

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/memorydb.amazonaws.com/
AWSServiceRoleForMemoryDB*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "memorydb.amazonaws.com"}}
}

Alternatively, you can use an AWS managed policy to provide full access to Amazon MemoryDB for
Redis.

Creating a Service-Linked Role (IAM)

You can create a service-linked role using the IAM console, CLI, or API.

Creating a Service-Linked Role (IAM Console)

You can use the IAM console to create a service-linked role.

Overview of managing access 392

Amazon MemoryDB for Redis Developer Guide

To create a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane of the IAM console, choose Roles. Then choose Create new role.

3. Under Select type of trusted entity choose AWS Service.

4. Under Or select a service to view its use cases, choose MemoryDB.

5. Choose Next: Permissions.

6. Under Policy name, note that the MemoryDBServiceRolePolicy is required for this role.
Choose Next:Tags.

7. Note that tags are not supported for Service-Linked roles. Choose Next:Review.

8. (Optional) For Role description, edit the description for the new service-linked role.

9. Review the role and then choose Create role.

Creating a Service-Linked Role (IAM CLI)

You can use IAM operations from the AWS Command Line Interface to create a service-linked role.
This role can include the trust policy and inline policies that the service needs to assume the role.

To create a service-linked role (CLI)

Use the following operation:

$ aws iam create-service-linked-role --aws-service-name memorydb.amazonaws.com

Creating a Service-Linked Role (IAM API)

You can use the IAM API to create a service-linked role. This role can contain the trust policy and
inline policies that the service needs to assume the role.

To create a service-linked role (API)

Use the CreateServiceLinkedRole API call. In the request, specify a service name of
memorydb.amazonaws.com.

Editing the Description of a Service-Linked Role for Amazon MemoryDB for Redis

Amazon MemoryDB for Redis does not allow you to edit the AWSServiceRoleForMemoryDB service-
linked role. After you create a service-linked role, you cannot change the name of the role because

Overview of managing access 393

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

Amazon MemoryDB for Redis Developer Guide

various entities might reference the role. However, you can edit the description of the role using
IAM.

Editing a Service-Linked Role Description (IAM Console)

You can use the IAM console to edit a service-linked role description.

To edit the description of a service-linked role (console)

1. In the left navigation pane of the IAM console, choose Roles.

2. Choose the name of the role to modify.

3. To the far right of Role description, choose Edit.

4. Enter a new description in the box and choose Save.

Editing a Service-Linked Role Description (IAM CLI)

You can use IAM operations from the AWS Command Line Interface to edit a service-linked role
description.

To change the description of a service-linked role (CLI)

1. (Optional) To view the current description for a role, use the AWS CLI for IAM operation get-
role.

Example

$ aws iam get-role --role-name AWSServiceRoleForMemoryDB

Use the role name, not the ARN, to refer to roles with the CLI operations. For example, if a role
has the following ARN: arn:aws:iam::123456789012:role/myrole, refer to the role as
myrole.

2. To update a service-linked role's description, use the AWS CLI for IAM operation update-
role-description.

For Linux, macOS, or Unix:

$ aws iam update-role-description \
 --role-name AWSServiceRoleForMemoryDB \
 --description "new description"

Overview of managing access 394

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html

Amazon MemoryDB for Redis Developer Guide

For Windows:

$ aws iam update-role-description ^
 --role-name AWSServiceRoleForMemoryDB ^
 --description "new description"

Editing a Service-Linked Role Description (IAM API)

You can use the IAM API to edit a service-linked role description.

To change the description of a service-linked role (API)

1. (Optional) To view the current description for a role, use the IAM API operation GetRole.

Example

https://iam.amazonaws.com/
 ?Action=GetRole
 &RoleName=AWSServiceRoleForMemoryDB
 &Version=2010-05-08
 &AUTHPARAMS

2. To update a role's description, use the IAM API operation UpdateRoleDescription.

Example

https://iam.amazonaws.com/
 ?Action=UpdateRoleDescription
 &RoleName=AWSServiceRoleForMemoryDB
 &Version=2010-05-08
 &Description="New description"

Deleting a Service-Linked Role for Amazon MemoryDB for Redis

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can delete it.

Amazon MemoryDB for Redis does not delete the service-linked role for you.

Overview of managing access 395

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRoleDescription.html

Amazon MemoryDB for Redis Developer Guide

Cleaning Up a Service-Linked Role

Before you can use IAM to delete a service-linked role, first confirm that the role has no resources
(clusters) associated with it.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane of the IAM console, choose Roles. Then choose the name (not the
check box) of the AWSServiceRoleForMemoryDB role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

To delete Amazon MemoryDB for Redis resources that require AWSServiceRoleForMemoryDB
(console)

• To delete a cluster, see the following:

• Using the AWS Management Console

• Using the AWS CLI

• Using the MemoryDB API

Deleting a Service-Linked Role (IAM Console)

You can use the IAM console to delete a service-linked role.

To delete a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane of the IAM console, choose Roles. Then select the check box next to
the role name that you want to delete, not the name or row itself.

3. For Role actions at the top of the page, choose Delete role.

4. In the confirmation page, review the service last accessed data, which shows when each of
the selected roles last accessed an AWS service. This helps you to confirm whether the role is
currently active. If you want to proceed, choose Yes, Delete to submit the service-linked role
for deletion.

Overview of managing access 396

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon MemoryDB for Redis Developer Guide

5. Watch the IAM console notifications to monitor the progress of the service-linked role
deletion. Because the IAM service-linked role deletion is asynchronous, after you submit the
role for deletion, the deletion task can succeed or fail. If the task fails, you can choose View
details or View Resources from the notifications to learn why the deletion failed.

Deleting a Service-Linked Role (IAM CLI)

You can use IAM operations from the AWS Command Line Interface to delete a service-linked role.

To delete a service-linked role (CLI)

1. If you don't know the name of the service-linked role that you want to delete, enter the
following command. This command lists the roles and their Amazon Resource Names (ARNs) in
your account.

$ aws iam get-role --role-name role-name

Use the role name, not the ARN, to refer to roles with the CLI operations. For example, if a role
has the ARN arn:aws:iam::123456789012:role/myrole, you refer to the role as myrole.

2. Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the deletion-task-id from the response to check the status of the
deletion task. Enter the following to submit a service-linked role deletion request.

$ aws iam delete-service-linked-role --role-name role-name

3. Enter the following to check the status of the deletion task.

$ aws iam get-service-linked-role-deletion-status --deletion-task-id deletion-task-
id

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.

Deleting a Service-Linked Role (IAM API)

You can use the IAM API to delete a service-linked role.

Overview of managing access 397

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html

Amazon MemoryDB for Redis Developer Guide

To delete a service-linked role (API)

1. To submit a deletion request for a service-linked roll, call DeleteServiceLinkedRole. In the
request, specify a role name.

Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the DeletionTaskId from the response to check the status of the
deletion task.

2. To check the status of the deletion, call GetServiceLinkedRoleDeletionStatus. In the request,
specify the DeletionTaskId.

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.

AWS managed policies for MemoryDB for Redis

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Overview of managing access 398

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon MemoryDB for Redis Developer Guide

AWS managed policy: MemoryDBServiceRolePolicy

You cannot attach the MemoryDBServiceRolePolicy AWS managed policy to identities in your
account. This policy is part of the AWS MemoryDB service-linked role. This role allows the service
to manage network interfaces and security groups in your account.

MemoryDB uses the permissions in this policy to manage EC2 security groups and network
interfaces. This is required to manage MemoryDB clusters.

Permissions details

This policy includes the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "AmazonMemoryDBManaged"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],

Overview of managing access 399

Amazon MemoryDB for Redis Developer Guide

 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/AmazonMemoryDBManaged": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "arn:aws:ec2:*:*:security-group/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*",

Overview of managing access 400

Amazon MemoryDB for Redis Developer Guide

 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "AWS/MemoryDB"
 }
 }
 }
]
 }

AWS-managed (predefined) policies for MemoryDB for Redis

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. Managed policies grant necessary permissions for common use cases so
you can avoid having to investigate what permissions are needed. For more information, see AWS
Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
MemoryDB:

AmazonMemoryDBReadOnlyAccess

You can attach the AmazonMemoryDBReadOnlyAccess policy to your IAM identities. This policy
grants administrative permissions that allow read-only access to all MemoryDB resources.

AmazonMemoryDBReadOnlyAccess - Grants read-only access to MemoryDB for Redis resources.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "memorydb:Describe*",
 "memorydb:List*"
],
 "Resource": "*"
 }]
}

AmazonMemoryDBFullAccess

You can attach the AmazonMemoryDBFullAccess policy to your IAM identities. This policy grants
administrative permissions that allow full access to all MemoryDB resources.

Overview of managing access 401

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon MemoryDB for Redis Developer Guide

AmazonMemoryDBFullAccess - Grants full access to MemoryDB for Redis resources.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "memorydb:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/memorydb.amazonaws.com/
AWSServiceRoleForMemoryDB",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "memorydb.amazonaws.com"
 }
 }
 }
]
}

You can also create your own custom IAM policies to allow permissions for MemoryDB for Redis
API actions. You can attach these custom policies to the IAM users or groups that require those
permissions.

MemoryDB updates to AWS managed policies

View details about updates to AWS managed policies for MemoryDB since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the MemoryDB Document history page.

Change Description Date

AmazonMemoryDBFullAccess
– Adding policy

MemoryDB added new
permissions to describe and
list supported resources

10/07/2021

Overview of managing access 402

Amazon MemoryDB for Redis Developer Guide

Change Description Date

. These permissions are
required for MemoryDB to
query all of the supported
resources in an account.

AmazonMemoryDBRead
OnlyAccess – Adding policy

MemoryDB added new
permissions to describe and
list supported resources
. These permissions are
required for MemoryDB
to create account-based
applications by querying all of
the supported resources in an
account.

10/07/2021

MemoryDB started tracking
changes

Service launch 8/19/2021

Overview of managing access 403

Amazon MemoryDB for Redis Developer Guide

MemoryDB API permissions: Actions, resources, and conditions reference

When you set up access control and write permissions policies to attach to an IAM policy (either
identity-based or resource-based), use the following table as a reference. The table lists each
MemoryDB for Redis API operation and the corresponding actions for which you can grant
permissions to perform the action. You specify the actions in the policy's Action field, and you
specify a resource value in the policy's Resource field. Unless indicated otherwise, the resource
is required. Some fields include both a required resource and optional resources. When there is no
resource ARN, the resource in the policy is a wildcard (*).

Note

To specify an action, use the memorydb: prefix followed by the API operation name (for
example, memorydb:DescribeClusters).

Logging and monitoring

Monitoring is an important part of maintaining the reliability, availability, and performance of
MemoryDB for Redis and your other AWS solutions. AWS provides the following monitoring
tools to watch MemoryDB, report when something is wrong, and take automatic actions when
appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify
you or take actions when a specified metric reaches a threshold that you specify. For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Logging and monitoring 404

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon MemoryDB for Redis Developer Guide

Monitoring MemoryDB for Redis with Amazon CloudWatch

You can monitor MemoryDB for Redis using CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. These statistics are kept for 15 months, so that you can
access historical information and gain a better perspective on how your web application or service
is performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

The following sections list the metrics and dimensions for MemoryDB.

Topics

• Host-Level Metrics

• Metrics for MemoryDB

• Which Metrics Should I Monitor?

• Choosing Metric Statistics and Periods

• Monitoring CloudWatch metrics

Host-Level Metrics

The AWS/MemoryDB namespace includes the following host-level metrics for individual nodes.

See Also

• Metrics for MemoryDB

Metric Description Unit

CPUUtilization The percentage of CPU utilization for the
entire host. Because Redis is single-threaded,
and we recommend you monitor EngineCPU
Utilization metric for nodes with 4 or
more vCPUs.

Percent

Monitoring with CloudWatch 405

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

FreeableMemory The amount of free memory available on the
host. This is derived from the RAM, buffers,
and that the OS reports as freeable.

Bytes

NetworkBytesIn The number of bytes the host has read from
the network.

Bytes

NetworkBytesOut The number of bytes sent out on all network
interfaces by the instance.

Bytes

NetworkPacketsIn The number of packets received on all
network interfaces by the instance. This metric
identifies the volume of incoming traffic in
terms of the number of packets on a single
instance.

Count

NetworkPacketsOut The number of packets sent out on all network
interfaces by the instance. This metric identifie
s the volume of outgoing traffic in terms of
the number of packets on a single instance.

Count

NetworkBandwidthIn
AllowanceExceeded

The number of packets shaped because the
inbound aggregate bandwidth exceeded the
maximum for the instance.

Count

NetworkConntrackAl
lowanceExceeded

The number of packets shaped because
connection tracking exceeded the maximum
for the instance and new connections could
not be established. This can result in packet
loss for traffic to or from the instance.

Count

NetworkBandwidthOu
tAllowanceExceeded

The number of packets shaped because the
outbound aggregate bandwidth exceeded the
maximum for the instance.

Count

Monitoring with CloudWatch 406

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

NetworkPacketsPerS
econdAllowanceExce
eded

The number of packets shaped because the
bidirectional packets per second exceeded the
maximum for the instance.

Count

NetworkMaxBytesIn The maximum burst of received bytes within
each minute.

Bytes

NetworkMaxBytesOut The maximum burst of transmitted bytes
within each minute.

Bytes

NetworkMaxPacketsIn The maximum burst of received packets within
each minute.

Count

NetworkMaxPacketsOut The maximum burst of transmitted packets
within each minute.

Count

SwapUsage The amount of swap used on the host. Bytes

Metrics for MemoryDB

The AWS/MemoryDB namespace includes the following Redis metrics.

With the exception of ReplicationLag and EngineCPUUtilization, these metrics are derived
from the Redis info command. Each metric is calculated at the node level.

For complete documentation of the Redis info command, see http://redis.io/commands/info.

See Also

• Host-Level Metrics

Metric Description Unit

ActiveDefragHits The number of value reallocations per minute
performed by the active defragmentation

Number

Monitoring with CloudWatch 407

http://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

process. This is derived from active_de
frag_hits statistic at Redis INFO.

AuthenticationFail
ures

The total number of failed attempts to
authenticate to Redis using the AUTH
command. You can find more information
about individual authentication failures using
the ACL LOG command. We suggest setting an
alarm on this to detect unauthorized access
attempts.

Count

The total number of bytes allocated by
MemoryDB for all purposes, including the
dataset, buffers, and so on.

Bytes

Dimension: Tier=SSD for clusters using
Data tiering: The total number of bytes used
by SSD.

Bytes

BytesUsedForMemoryDB

Dimension: Tier=Memory for clusters
using Data tiering: The total number of
bytes used by memory. This is the value of
used_memory statistic at Redis INFO.

Bytes

BytesReadFromDisk The total number of bytes read from disk per
minute. Supported only for clusters using Data
tiering.

Bytes

BytesWrittenToDisk The total number of bytes written to disk per
minute. Supported only for clusters using Data
tiering.

Bytes

Monitoring with CloudWatch 408

http://redis.io/commands/info
https://redis.io/commands/acl-log
http://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

CommandAuthorizati
onFailures

The total number of failed attempts by users
to run commands they don’t have permission
to call. You can find more information about
individual authentication failures using the
ACL LOG command. We suggest setting an
alarm on this to detect unauthorized access
attempts.

Count

CurrConnections The number of client connections, excluding
connections from read replicas. MemoryDB
uses two to four of the connections to monitor
the cluster in each case. This is derived from
the connected_clients statistic at Redis
INFO.

Count

The number of items in the cache. This is
derived from the Redis keyspace statistic
, summing all of the keys in the entire keys
pace.

Count

Dimension: Tier=Memory for clusters
using Data tiering. The number of items in
memory.

Count
CurrItems

Dimension: Tier=SSD (solid state drives)
for clusters using Data tiering. The number of
items in SSD.

Count

DatabaseMemoryUsag
ePercentage

Percentage of the memory available for the
cluster that is in use. This is calculated using
used_memory/maxmemory from Redis
INFO.

Percent

Monitoring with CloudWatch 409

https://redis.io/commands/acl-log
http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

DatabaseCapacityUs
agePercentage

Percentage of the total data capacity for the
cluster that is in use.

On Data Tiered instances, the metric is
calculated as (used_memory - mem_not_c
ounted_for_evict + SSD used) /
(maxmemory + SSD total capacity) ,
where used_memory and maxmemory are
taken from Redis INFO.

In all other cases, the metric is calculated
using used_memory/maxmemory .

Percent

DB0AverageTTL Exposes avg_ttl of DBO from the keyspace
statistic of Redis INFO command.

Milliseconds

Monitoring with CloudWatch 410

https://redis.io/commands/info/
http://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

EngineCPUUtilization Provides CPU utilization of the Redis engine
thread. Because Redis is single-threaded,
you can use this metric to analyze the load
of the Redis process itself. The EngineCPU
Utilization metric provides a more
precise visibility of the Redis process. You can
use it in conjunction with the CPUUtiliz
ation metric. CPUUtilization exposes
CPU utilization for the server instance as a
whole, including other operating system and
management processes. For larger node types
with four vCPUs or more, use the EngineCPU
Utilization metric to monitor and set
 thresholds for scaling.

Note

On a MemoryDB host, background
processes monitor the host to provide
a managed database experience.
These background processes can take
up a significant portion of the CPU
workload. This is not significant on
larger hosts with more than two
vCPUs. But it can affect smaller hosts
 with 2vCPUs or fewer. If you only
monitor the EngineCPUUtilizati
on metric, you will be unaware of
situations where the host is overloade
d with both high CPU usage from
Redis and high CPU usage from the
background monitoring processes.
Therefore, we recommend monitorin

Percent

Monitoring with CloudWatch 411

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

g the CPUUtilization metric for
hosts with two vCPUs or less.

Evictions The number of keys that have been evicted
due to the maxmemory limit. This is derived
from the evicted_keys statistic at Redis
INFO.

Count

IsPrimary Indicates whether the node is primary node of
current shard. The metric can be either 0 (not
primary) or 1 (primary).

Count

KeyAuthorizationFa
ilures

The total number of failed attempts by users
to access keys they don’t have permission to
access. You can find more information about
individual authentication failures using the
ACL LOG command. We suggest setting an
alarm on this to detect unauthorized access
attempts.

Count

KeyspaceHits The number of successful read-only key
lookups in the main dictionary. This is derived
from keyspace_hits statistic at Redis
INFO.

Count

KeyspaceMisses The number of unsuccessful read-only key
lookups in the main dictionary. This is derived
from keyspace_misses statistic at Redis
INFO.

Count

Monitoring with CloudWatch 412

http://redis.io/commands/info
http://redis.io/commands/info
https://redis.io/commands/acl-log
http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

 KeysTracked The number of keys being tracked by Redis
key tracking as a percentage of tracking-
table-max-keys . Key tracking is used to
aid client-side caching and notifies clients
when keys are modified.

Count

MaxReplicationThro
ughput

The maximum observed replication throughpu
t during the last measurement cycle.

Bytes per
second

MemoryFragmentatio
nRatio

Indicates the efficiency in the allocation
of memory of the Redis engine. Certain
 thresholds signify different behaviors. The
recommended value is to have fragme
ntation above 1.0. This is calculated from the
mem_fragmentation_ratio statistic

 of Redis INFO.

Number

NewConnections The total number of connections that have
been accepted by the server during this
period. This is derived from the total_con
nections_received statistic at Redis
INFO.

Count

NumItemsReadFromDisk The total number of items retrieved from disk
per minute. Supported only for clusters using
Data tiering.

Count

NumItemsWrittenToD
isk

The total number of items written to disk per
minute. Supported only for clusters using Data
tiering.

Count

PrimaryLinkHealthS
tatus

This status has two values: 0 or 1. The value 0
indicates that data in the MemoryDB primary
node is not in sync with Redis on EC2. The
value of 1 indicates that the data is in sync.

Boolean

Monitoring with CloudWatch 413

http://redis.io/commands/info
http://redis.io/commands/info
http://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

Reclaimed The total number of key expiration events.
This is derived from the expired_keys
statistic at Redis INFO.

Count

ReplicationBytes For nodes in a replicated configuration,
ReplicationBytes reports the number
of bytes that the primary is sending to all of
its replicas. This metric is representative of
the write load on the cluster. This is derived
from the master_repl_offset statistic
at Redis INFO.

Bytes

ReplicationDelayed
WriteCommands

Number of write commands that were delayed
due to synchronous replication. Replicatio
n can be delayed due to various factors, for
example network congestion or exceeding
maximum replication throughput.

Count

ReplicationLag This metric is only applicable for a node
running as a read replica. It represents
how far behind, in seconds, the replica is in
 applying changes from the primary node.

Seconds

The following are aggregations of certain kinds of commands, derived from info commandstats.
The commandstats section provides statistics based on the command type, including the number
of calls.

For a full list of available commands, see redis commands in the Redis documentation.

Metric Description Unit

EvalBasedCmds The total number of commands for eval-base
d commands. This is derived from the Redis
 commandstats statistic. This is derived

Count

Monitoring with CloudWatch 414

http://redis.io/commands/info
http://redis.io/commands/info
https://docs.aws.amazon.com/memorydb/latest/devguide/metrics.whichshouldimonitor.html#metrics-replication
https://redis.io/commands

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

from the Redis commandstats statistic by
summing eval, evalsha.

GeoSpatialBasedCmds The total number of commands for geospatia
l-based commands. This is derived from the
 Redis commandstats statistic. It's derived
by summing all of the geo type of commands:
 geoadd, geodist, geohash, geopos,
georadius, and georadiusbymember.

Count

GetTypeCmds The total number of read-only type
commands. This is derived from the Redis
commandstats statistic by summing all of
the read-only type commands (get, hget,
scard, lrange, and so on.)

Count

HashBasedCmds The total number of commands that are
hash-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
hashes (hget, hkeys, hvals, hdel, and so on).

Count

HyperLogLogBasedCmds The total number of HyperLogLog -based
commands. This is derived from the Redis
commandstats statistic by summing all of
the pf type of commands (pfadd, pfcount,
pfmerge, and so on.).

Count

JsonBasedCmds The total number of commands that are
JSON-based. This is derived from the Redis
commandstats statistic by summing all of
the commands that act upon one or more
JSON document objects.

Count

Monitoring with CloudWatch 415

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

KeyBasedCmds The total number of commands that are
key-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
keys across multiple data structures (del,
expire, rename, and so on.).

Count

ListBasedCmds The total number of commands that are
list-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more lists
(lindex, lrange, lpush, ltrim, and so on).

Count

PubSubBasedCmds The total number of commands for pub/sub
functionality. This is derived from the Redis
commandstats statistics by summing all of
the commands used for pub/sub functionality:
psubscribe, publish, pubsub, punsubscribe,
subscribe, and unsubscribe.

Count

SearchBasedCmds The total number of secondary index and
search commands, including both read and
write commands. This is derived from the
Redis commandstats statistic by summing
all search commands that act upon secondary
indexes.

Count

SearchBasedGetCmds Total number of secondary index and search
read-only commands. This is derived from the
Redis commandstats statistic by summing
all secondary index and search get commands.

Count

SearchBasedSetCmds Total number of secondary index and search
write commands. This is derived from the
Redis commandstats statistic by summing
all secondary index and search set commands.

Count

Monitoring with CloudWatch 416

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

SearchNumberOfInde
xes

Total number of indexes. Count

SearchNumberOfInde
xedKeys

Total number of indexed Redis keys Count

SearchTotalIndexSize Memory (bytes) used by all the indexes. Bytes

SetBasedCmds The total number of commands that are
set-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more sets
(scard, sdiff, sadd, sunion, and so on).

Count

SetTypeCmds The total number of write types of
commands. This is derived from the Redis
commandstats statistic by summing all
of the mutative types of commands that
operate on data (set, hset, sadd, lpop, and
so on.)

Count

SortedSetBasedCmds The total number of commands that are
sorted set-based. This is derived from the
Redis commandstats statistic by summing
all of the commands that act upon one or
more sorted sets (zcount, zrange, zrank,
 zadd, and so on).

Count

StringBasedCmds The total number of commands that are
string-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
strings (strlen, setex, setrange, and so on).

Count

Monitoring with CloudWatch 417

Amazon MemoryDB for Redis Developer Guide

Metric Description Unit

StreamBasedCmds The total number of commands that are
stream-based. This is derived from the Redis
 commandstats statistic by summing all of
the commands that act upon one or more
streams data types (xrange, xlen, xadd, xdel,
and so on).

Count

Monitoring with CloudWatch 418

Amazon MemoryDB for Redis Developer Guide

Which Metrics Should I Monitor?

The following CloudWatch metrics offer good insight into MemoryDB performance. In most cases,
we recommend that you set CloudWatch alarms for these metrics so that you can take corrective
action before performance issues occur.

Metrics to Monitor

• CPUUtilization

• EngineCPUUtilization

• SwapUsage

• Evictions

• CurrConnections

• Memory

• Network

• Replication

CPUUtilization

This is a host-level metric reported as a percentage. For more information, see Host-Level Metrics.

For smaller node types with 2vCPUs or less, use the CPUUtilization metric to monitor your
workload.

Generally speaking, we suggest you set your threshold at 90% of your available CPU. Because
Redis is single-threaded, the actual threshold value should be calculated as a fraction of the node's
total capacity. For example, suppose you are using a node type that has two cores. In this case, the
threshold for CPUUtilization would be 90/2, or 45%. To find the number of cores (vCPUs) your
node type has, see MemoryDB Pricing.

You will need to determine your own threshold, based on the number of cores in the node that you
are using. If you exceed this threshold, and your main workload is from read requests, scale your
cluster out by adding read replicas. If the main workload is from write requests, we recommend
that you add more shards to distribute the write workload across more primary nodes.

Tip

Instead of using the Host-Level metric CPUUtilization, you might be able to use the
Redis metric EngineCPUUtilization, which reports the percentage of usage on the

Monitoring with CloudWatch 419

https://aws.amazon.com/memorydb/pricing/?p=ps

Amazon MemoryDB for Redis Developer Guide

Redis engine core. To see if this metric is available on your nodes and for more information,
see Metrics for MemoryDB.

For larger node types with 4vCPUs or more, you may want to use the EngineCPUUtilization
metric, which reports the percentage of usage on the Redis engine core. To see if this metric is
available on your nodes and for more information, see Metrics for MemoryDB.

EngineCPUUtilization

For larger node types with 4vCPUs or more, you may want to use the EngineCPUUtilization
metric, which reports the percentage of usage on the Redis engine core. To see if this metric is
available on your nodes and for more information, see Metrics for MemoryDB.

SwapUsage

This is a host-level metric reported in bytes. For more information, see Host-Level Metrics.

This metric should not exceed 50 MB.

Evictions

This is a engine metric. We recommend that you determine your own alarm threshold for this
metric based on your application needs.

CurrConnections

This is a engine metric. We recommend that you determine your own alarm threshold for this
metric based on your application needs.

An increasing number of CurrConnections might indicate a problem with your application; you will
need to investigate the application behavior to address this issue.

Memory

Memory is a core aspect of Redis. Understanding the memory utilization of your cluster is
necessary to avoid data loss and accommodate future growth of your dataset. Statistics about the
memory utilization of a node are available in the memory section of the Redis INFO command.

Monitoring with CloudWatch 420

https://docs.aws.amazon.com/memorydb/latest/devguide/metrics.memorydb.html
https://docs.aws.amazon.com/memorydb/latest/devguide/metrics.memorydb.html
https://docs.aws.amazon.com/memorydb/latest/devguide/metrics.memorydb.html
https://redis.io/commands/info

Amazon MemoryDB for Redis Developer Guide

Network

One of the determining factors for the network bandwidth capacity of your cluster is the node type
you have selected. For more information about the network capacity of your node, see Amazon
MemoryDB pricing.

Replication

The volume of data being replicated is visible via the ReplicationBytes metric. You can monitor
MaxReplicationThroughput against the replication capacity throughput. It is recommended to
add more shards when reaching the maximum replication capacity throughput.

ReplicationDelayedWriteCommands can also indicate if the workload is exceeding the
maximum replication capacity throughput. For more information about replication in MemoryDB,
see Understanding MemoryDB replication

Monitoring with CloudWatch 421

https://aws.amazon.com/memorydb/pricing/
https://aws.amazon.com/memorydb/pricing/
https://docs.aws.amazon.com/memorydb/latest/devguide/replication.html

Amazon MemoryDB for Redis Developer Guide

Choosing Metric Statistics and Periods

While CloudWatch will allow you to choose any statistic and period for each metric, not all
combinations will be useful. For example, the Average, Minimum, and Maximum statistics for
CPUUtilization are useful, but the Sum statistic is not.

All MemoryDB samples are published for a 60 second duration for each individual node. For any 60
second period, a node metric will only contain a single sample.

Monitoring CloudWatch metrics

MemoryDB and CloudWatch are integrated so you can gather a variety of metrics. You can monitor
these metrics using CloudWatch.

Note

The following examples require the CloudWatch command line tools. For more information
about CloudWatch and to download the developer tools, see the CloudWatch product
page.

The following procedures show you how to use CloudWatch to gather storage space statistics for
an cluster for the past hour.

Note

The StartTime and EndTime values supplied in the examples following are for illustrative
purposes. Make sure to substitute appropriate start and end time values for your nodes.

For information on MemoryDB limits, see AWS service limits for MemoryDB.

Monitoring CloudWatch metrics (Console)

To gather CPU utilization statistics for a cluster

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. Select the nodes you want to view metrics for.

Monitoring with CloudWatch 422

https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_memorydb
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

Note

Selecting more than 20 nodes disables viewing metrics on the console.

a. On the Clusters page of the AWS Management Console, click the name of one or more
clusters.

The detail page for the cluster appears.

b. Click the Nodes tab at the top of the window.

c. On the Nodes tab of the detail window, select the nodes that you want to view metrics
for.

A list of available CloudWatch Metrics appears at the bottom of the console window.

d. Click on the CPU Utilization metric.

The CloudWatch console will open, displaying your selected metrics. You can use the
Statistic and Period drop-down list boxes and Time Range tab to change the metrics
being displayed.

Monitoring CloudWatch metrics using the CloudWatch CLI

To gather CPU utilization statistics for a cluster

• Use the CloudWatch command aws cloudwatch get-metric-statistics with the following
parameters (note that the start and end times are shown as examples only; you will need to
substitute your own appropriate start and end times):

For Linux, macOS, or Unix:

aws cloudwatch get-metric-statistics CPUUtilization \
 --dimensions=ClusterName=mycluster,NodeId=0002" \
 --statistics=Average \
 --namespace="AWS/MemoryDB" \
 --start-time 2013-07-05T00:00:00 \
 --end-time 2013-07-06T00:00:00 \
 --period=60

Monitoring with CloudWatch 423

Amazon MemoryDB for Redis Developer Guide

For Windows:

mon-get-stats CPUUtilization ^
 --dimensions=ClusterName=mycluster,NodeId=0002" ^
 --statistics=Average ^
 --namespace="AWS/MemoryDB" ^
 --start-time 2013-07-05T00:00:00 ^
 --end-time 2013-07-06T00:00:00 ^
 --period=60

Monitoring CloudWatch metrics using the CloudWatch API

To gather CPU utilization statistics for a cluster

• Call the CloudWatch API GetMetricStatistics with the following parameters (note that
the start and end times are shown as examples only; you will need to substitute your own
appropriate start and end times):

• Statistics.member.1=Average

• Namespace=AWS/MemoryDB

• StartTime=2013-07-05T00:00:00

• EndTime=2013-07-06T00:00:00

• Period=60

• MeasureName=CPUUtilization

• Dimensions=ClusterName=mycluster,NodeId=0002

Example

http://monitoring.amazonaws.com/
 ?SignatureVersion=4
 &Action=GetMetricStatistics
 &Version=2014-12-01
 &StartTime=2013-07-16T00:00:00
 &EndTime=2013-07-16T00:02:00
 &Period=60
 &Statistics.member.1=Average

Monitoring with CloudWatch 424

Amazon MemoryDB for Redis Developer Guide

 &Dimensions.member.1="ClusterName=mycluster"
 &Dimensions.member.2="NodeId=0002"
 &Namespace=Amazon/memorydb
 &MeasureName=CPUUtilization
 &Timestamp=2013-07-07T17%3A48%3A21.746Z
 &AWS;AccessKeyId=<&AWS; Access Key ID>
 &Signature=<Signature>

Monitoring MemoryDB for Redis events

When significant events happen for a cluster, MemoryDB sends notification to a specific Amazon
SNS topic. Examples include a failure to add a node, success in adding a node, the modification of
a security group, and others. By monitoring for key events, you can know the current state of your
clusters and, depending upon the event, be able to take corrective action.

Topics

• Managing MemoryDB Amazon SNS notifications

• Viewing MemoryDB events

• Event Notifications and Amazon SNS

Managing MemoryDB Amazon SNS notifications

You can configure MemoryDB to send notifications for important cluster events using Amazon
Simple Notification Service (Amazon SNS). In these examples, you will configure a cluster with the
Amazon Resource Name (ARN) of an Amazon SNS topic to receive notifications.

Note

This topic assumes that you've signed up for Amazon SNS and have set up and subscribed
to an Amazon SNS topic. For information on how to do this, see the Amazon Simple
Notification Service Developer Guide.

Adding an Amazon SNS topic

The following sections show you how to add an Amazon SNS topic using the AWS Console, the
AWS CLI, or the MemoryDB API.

Monitoring events 425

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/sns/latest/dg/

Amazon MemoryDB for Redis Developer Guide

Adding an Amazon SNS topic (Console)

The following procedure shows you how to add an Amazon SNS topic for a cluster.

Note

This process can also be used to modify the Amazon SNS topic.

To add or modify an Amazon SNS topic for a cluster (Console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In Clusters, choose the cluster for which you want to add or modify an Amazon SNS topic
ARN.

3. Choose Modify.

4. In Modify Cluster under Topic for SNS Notification, choose the SNS topic you want to add, or
choose Manual ARN input and type the ARN of the Amazon SNS topic.

5. Choose Modify.

Adding an Amazon SNS topic (AWS CLI)

To add or modify an Amazon SNS topic for a cluster, use the AWS CLI command update-cluster.

The following code example adds an Amazon SNS topic arn to my-cluster.

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --sns-topic-arn arn:aws:sns:us-east-1:565419523791:memorydbNotifications

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --sns-topic-arn arn:aws:sns:us-east-1:565419523791:memorydbNotifications

For more information, see UpdateCluster .

Monitoring events 426

https://console.aws.amazon.com/memorydb/
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html

Amazon MemoryDB for Redis Developer Guide

Adding an Amazon SNS topic (MemoryDB API)

To add or update an Amazon SNS topic for a cluster, call the UpdateCluster action with the
following parameters:

• ClusterName=my-cluster

• SnsTopicArn=arn%3Aaws%3Asns%3Aus-
east-1%3A565419523791%3AmemorydbNotifications

To add or update an Amazon SNS topic for a cluster, call the UpdateCluster action.

For more information, see UpdateCluster.

Enabling and disabling Amazon SNS notifications

You can turn notifications on or off for a cluster. The following procedures show you how to disable
Amazon SNS notifications.

Enabling and disabling Amazon SNS notifications (Console)

To disable Amazon SNS notifications using the AWS Management Console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. Choose the radio button to the left of the cluster you want to modify notification for.

3. Choose Modify.

4. In Modify Cluster under Topic for SNS Notification, choose Disable Notifications.

5. Choose Modify.

Enabling and disabling Amazon SNS notifications (AWS CLI)

To disable Amazon SNS notifications, use the command update-cluster with the following
parameters:

For Linux, macOS, or Unix:

aws memorydb update-cluster \
 --cluster-name my-cluster \
 --sns-topic-status inactive

Monitoring events 427

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_UpdateCluster.html
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For Windows:

aws memorydb update-cluster ^
 --cluster-name my-cluster ^
 --sns-topic-status inactive

Enabling and disabling Amazon SNS notifications (MemoryDB API)

To disable Amazon SNS notifications, call the UpdateCluster action with the following
parameters:

• ClusterName=my-cluster

• SnsTopicStatus=inactive

This call returns output similar to the following:

Example

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateCluster
 &ClusterName=my-cluster
 &SnsTopicStatus=inactive
 &Version=2021-01-01
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &Timestamp=20210801T220302Z
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Date=20210801T220302Z
 &X-Amz-SignedHeaders=Host
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Credential=<credential>
 &X-Amz-Signature=<signature>

Monitoring events 428

Amazon MemoryDB for Redis Developer Guide

Viewing MemoryDB events

MemoryDB logs events that relate to your clusters, security groups, and parameter groups.
This information includes the date and time of the event, the source name and source type of
the event, and a description of the event. You can easily retrieve events from the log using the
MemoryDB console, the AWS CLI describe-events command, or the MemoryDB API action
DescribeEvents.

The following procedures show you how to view all MemoryDB events for the past 24 hours (1440
minutes).

Viewing MemoryDB events (Console)

The following procedure displays events using the MemoryDB console.

To view events using the MemoryDB console

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the left navigation pane, choose Events.

The Events screen appears listing all available events. Each row of the list represents one event
and displays the event source, the event type (such as cluster, parameter-group, acl, security-
group or subnet group), the GMT time of the event, and the description of the event.

Using the Filter you can specify whether you want to see all events, or just events of a specific
type in the event list.

Viewing MemoryDB events (AWS CLI)

To generate a list of MemoryDB events using the AWS CLI, use the command describe-events.
You can use optional parameters to control the type of events listed, the time frame of the events
listed, the maximum number of events to list, and more.

The following code lists up to 40 cluster events.

aws memorydb describe-events --source-type cluster --max-results 40

The following code lists all events for the past 24 hours (1440 minutes).

Monitoring events 429

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

aws memorydb describe-events --duration 1440

The output from the describe-events command looks something like this.

{
 "Events": [
 {
 "Date": "2021-03-29T22:17:37.781Z",
 "Message": "Added node 0001 in Availability Zone us-east-1a",
 "SourceName": "memorydb01",
 "SourceType": "cluster"
 },
 {
 "Date": "2021-03-29T22:17:37.769Z",
 "Message": "cluster created",
 "SourceName": "memorydb01",
 "SourceType": "cluster"
 }
]
}

For more information, such as available parameters and permitted parameter values, see
describe-events.

Viewing MemoryDB events (MemoryDB API)

To generate a list of MemoryDB events using the MemoryDB API, use the DescribeEvents action.
You can use optional parameters to control the type of events listed, the time frame of the events
listed, the maximum number of events to list, and more.

The following code lists the 40 most recent -cluster events.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeEvents
 &MaxResults=40
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &SourceType=cluster
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

Monitoring events 430

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-events.html

Amazon MemoryDB for Redis Developer Guide

The following code lists the cluster events for the past 24 hours (1440 minutes).

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeEvents
 &Duration=1440
 &SignatureVersion=4
 &SignatureMethod=HmacSHA256
 &SourceType=cluster
 &Timestamp=20210802T192317Z
 &Version=2021-01-01
 &X-Amz-Credential=<credential>

The above actions should produce output similar to the following.

<DescribeEventsResponse xmlns="http://memory-db.us-east-1.amazonaws.com/
doc/2021-01-01/">
 <DescribeEventsResult>
 <Events>
 <Event>
 <Message>cluster created</Message>
 <SourceType>cluster</SourceType>
 <Date>2021-08-02T18:22:18.202Z</Date>
 <SourceName>my-memorydb-primary</SourceName>
 </Event>

 (...output omitted...)

 </Events>
 </DescribeEventsResult>
 <ResponseMetadata>
 <RequestId>e21c81b4-b9cd-11e3-8a16-7978bb24ffdf</RequestId>
 </ResponseMetadata>
</DescribeEventsResponse>

For more information, such as available parameters and permitted parameter values, see
DescribeEvents.

Event Notifications and Amazon SNS

MemoryDB can publish messages using Amazon Simple Notification Service (SNS) when significant
events happen on a cluster. This feature can be used to refresh the server-lists on client machines
connected to individual node endpoints of a cluster.

Monitoring events 431

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeEvents.html

Amazon MemoryDB for Redis Developer Guide

Note

For more information on Amazon Simple Notification Service (SNS), including information
on pricing and links to the Amazon SNS documentation, see the Amazon SNS product page.

Notifications are published to a specified Amazon SNS topic. The following are requirements for
notifications:

• Only one topic can be configured for MemoryDB notifications.

• The AWS account that owns the Amazon SNS topic must be the same account that owns the
cluster on which notifications are enabled.

MemoryDB Events

The following MemoryDB events trigger Amazon SNS notifications:

Event Name Message Description

MemoryDB:AddNodeCo
mplete

"Modified number of
nodes from %d to %d"

A node has been added to the
cluster and is ready for use.

MemoryDB:AddNodeFailed
due to insufficient free IP
addresses

"Failed to modify
number of nodes
from %d to %d due to
insufficient free IP
addresses"

A node could not be added
because there are not enough
available IP addresses.

MemoryDB:ClusterPa
rametersChanged

"Updated parameter
group for the cluster"

In case of create, also send
 "Updated to use a
ParameterGroup %s"

One or more cluster
parameters have been
changed.

MemoryDB:ClusterProvisionin
gComplete

"Cluster created." The provisioning of a cluster
is completed, and the nodes
in the cluster are ready to use.

Monitoring events 432

https://aws.amazon.com/sns

Amazon MemoryDB for Redis Developer Guide

Event Name Message Description

MemoryDB:ClusterProvisionin
gFailed due to incompatible
network state

"Failed to create
cluster due to
incompatible network
state. %s"

An attempt was made to
launch a new cluster into a
nonexistent virtual private
 cloud (VPC).

MemoryDB:ClusterRestoreFail
ed

"Restore from %s
failed for node %s.
%s"

MemoryDB was unable to
populate the cluster with
Redis snapshot data. This
could be due to a nonexiste
nt snapshot file in Amazon
S3, or incorrect permissions
on that file. If you describe
the cluster, the status will be
restore-failed . You will
need to delete the cluster
and start over.

For more information, see
Seeding a new cluster with an
externally created snapshot.

MemoryDB:ClusterSc
alingComplete

"Succeeded applying
modification to node
type to %s."

Scale up for cluster
completed successfully.

MemoryDB:ClusterScalingFail
ed

"Failed applying
modification to node
type to %s."

Scale-up operation on cluster
failed.

Monitoring events 433

Amazon MemoryDB for Redis Developer Guide

Event Name Message Description

MemoryDB:ClusterSe
curityGroupModified

"Modified security
group for cluster."

One of the following events
has occurred:

•
The list of security groups
authorized for the cluster
has been modified.

•
One or more new EC2
security groups have been
authorized on any of the
security groups associated
with the cluster.

•
One or more EC2 security
groups have been revoked
from any of the security
groups associated with the
cluster.

Monitoring events 434

Amazon MemoryDB for Redis Developer Guide

Event Name Message Description

MemoryDB:NodeRepla
ceStarted

"Recovering node %s" MemoryDB has detected that
the host running a node is
degraded or unreachable and
 has started replacing the
node.

Note

The DNS entry for the
replaced node is not
changed.

In most instances, you do not
need to refresh the server-
list for your clients when
 this event occurs. However,
some client libraries may
stop using the node even
after MemoryDB has replaced
the node; in this case, the
application should refresh the
server-list when this event
occurs.

Monitoring events 435

Amazon MemoryDB for Redis Developer Guide

Event Name Message Description

MemoryDB:NodeRepla
ceComplete

"Finished recovery for
node %s"

MemoryDB has detected that
the host running a node is
degraded or unreachable and
 has completed replacing the
node.

Note

The DNS entry for the
replaced node is not
changed.

In most instances, you do not
need to refresh the server-
list for your clients when
 this event occurs. However,
some client libraries may
stop using the node even
after MemoryDB has replaced
the node; in this case, the
application should refresh the
server-list when this event
occurs.

MemoryDB:CreateClu
sterComplete

"Cluster created" The cluster was successfully
created.

MemoryDB:CreateClusterFaile
d

"Failed to create
cluster due to
unsuccessful creation
of its node(s)." and
"Deleting all nodes
belonging to this
cluster."

The cluster was not created.

Monitoring events 436

Amazon MemoryDB for Redis Developer Guide

Event Name Message Description

MemoryDB:DeleteClu
sterComplete

"Cluster deleted." The deletion of a cluster
and all associated nodes has
completed.

MemoryDB:FailoverComplete "Failover to replica
node %s completed"

Failover over to a replica node
was successful.

MemoryDB:NodeRepla
cementCanceled

"The replacement
of node %s which was
scheduled during the
maintenance window
from start time: %s,
end time: %s has been
canceled"

A node in your cluster that
was scheduled for replaceme
nt is no longer scheduled for
replacement.

MemoryDB:NodeRepla
cementRescheduled

"The replacement in
maintenance window
for node %s has been
re-scheduled from
previous start time:
%s, previous end time:
%s to new start time:
%s, new end time: %s"

A node in your cluster
previously scheduled for
replacement has been
rescheduled for replaceme
nt during the new window
described in the notification.

For information on what
actions you can take, see
Replacing nodes.

MemoryDB:NodeRepla
cementScheduled

"The node %s is
scheduled for
replacement during
the maintenance
window from start
time: %s to end time:
%s"

A node in your cluster is
scheduled for replacement
during the window described
in the notification.

For information on what
actions you can take, see
Replacing nodes.

Monitoring events 437

Amazon MemoryDB for Redis Developer Guide

Event Name Message Description

MemoryDB:RemoveNod
eComplete

"Removed node %s" A node has been removed
from the cluster.

MemoryDB:SnapshotC
omplete

"Snapshot %s succeeded
for node %s"

A snapshot has completed
successfully.

MemoryDB:SnapshotFailed "Snapshot %s failed
for node %s"

A snapshot has failed. See the
cluster’s events for more a
detailed cause.

If you describe the snapshot,
see DescribeSnapshots, the
status will be failed.

Logging MemoryDB for Redis API calls with AWS CloudTrail

MemoryDB for Redis is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in MemoryDB for Redis. CloudTrail captures all API calls
for MemoryDB for Redis as events, including calls from the MemoryDB for Redis console and
from code calls to the MemoryDB for Redis API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for MemoryDB
for Redis. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the
request that was made to MemoryDB for Redis, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

MemoryDB for Redis information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
MemoryDB for Redis, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

Logging MemoryDB for Redis API calls with AWS CloudTrail 438

https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DescribeSnapshots.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon MemoryDB for Redis Developer Guide

For an ongoing record of events in your AWS account, including events for MemoryDB for Redis,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all regions. The trail logs events from all
regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All MemoryDB for Redis actions are logged by CloudTrail. For example, calls to the
CreateCluster, DescribeClusters and UpdateCluster actions generate entries in the
CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding MemoryDB for Redis log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateCluster
action.

Logging MemoryDB for Redis API calls with AWS CloudTrail 439

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon MemoryDB for Redis Developer Guide

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EKIAUAXQT3SWDEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/john",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "john"
 },
 "eventTime": "2021-07-10T17:56:46Z",
 "eventSource": "memorydb.amazonaws.com",
 "eventName": "CreateCluster",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.01",
 "userAgent": "aws-cli/2.2.29 Python/3.9.6 Darwin/19.6.0 source/x86_64 prompt/off
 command/memorydb.create-cluster",
 "requestParameters": {
 "clusterName": "memorydb-cluster",
 "nodeType": "db.r6g.large",
 "subnetGroupName": "memorydb-subnet-group",
 "aCLName": "open-access"
 },
 "responseElements": {
 "cluster": {
 "name": "memorydb-cluster",
 "status": "creating",
 "numberOfShards": 1,
 "availabilityMode": "MultiAZ",
 "clusterEndpoint": {
 "port": 6379
 },
 "nodeType": "db.r6g.large",
 "engineVersion": "6.2",
 "enginePatchVersion": "6.2.6",
 "parameterGroupName": "default.memorydb-redis6",
 "parameterGroupStatus": "in-sync",
 "subnetGroupName": "memorydb-subnet-group",
 "tLSEnabled": true,
 "aRN": "arn:aws:memorydb:us-east-1:123456789012:cluster/memorydb-cluster",
 "snapshotRetentionLimit": 0,
 "maintenanceWindow": "tue:06:30-tue:07:30",
 "snapshotWindow": "09:00-10:00",

Logging MemoryDB for Redis API calls with AWS CloudTrail 440

Amazon MemoryDB for Redis Developer Guide

 "aCLName": "open-access",
 "dataTiering": "false",
 "autoMinorVersionUpgrade": true
 }
 },
 "requestID": "506fc951-9ae2-42bb-872c-98028dc8ed11",
 "eventID": "2ecf3dc3-c931-4df0-a2b3-be90b596697e",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

The following example shows a CloudTrail log entry that demonstrates the DescribeClusters
action. Note that for all MemoryDB for Redis Describe and List calls (Describe* and List*), the
responseElements section is removed and appears as null.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EKIAUAXQT3SWDEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/john",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "john"
 },
 "eventTime": "2021-07-10T18:39:51Z",
 "eventSource": "memorydb.amazonaws.com",
 "eventName": "DescribeClusters",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.01",
 "userAgent": "aws-cli/2.2.29 Python/3.9.6 Darwin/19.6.0 source/x86_64 prompt/off
 command/memorydb.describe-clusters",
 "requestParameters": {
 "maxResults": 50,
 "showShardDetails": true
 },
 "responseElements": null,
 "requestID": "5e831993-52bb-494d-9bba-338a117c2389",
 "eventID": "32a3dc0a-31c8-4218-b889-1a6310b7dd50",
 "readOnly": true,

Logging MemoryDB for Redis API calls with AWS CloudTrail 441

Amazon MemoryDB for Redis Developer Guide

 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

The following example shows a CloudTrail log entry that records an UpdateCluster action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EKIAUAXQT3SWDEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/john",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "john"
 },
 "eventTime": "2021-07-10T19:23:20Z",
 "eventSource": "memorydb.amazonaws.com",
 "eventName": "UpdateCluster",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.01",
 "userAgent": "aws-cli/2.2.29 Python/3.9.6 Darwin/19.6.0 source/x86_64 prompt/off
 command/memorydb.update-cluster",
 "requestParameters": {
 "clusterName": "memorydb-cluster",
 "snapshotWindow": "04:00-05:00",
 "shardConfiguration": {
 "shardCount": 2
 }
 },
 "responseElements": {
 "cluster": {
 "name": "memorydb-cluster",
 "status": "updating",
 "numberOfShards": 2,
 "availabilityMode": "MultiAZ",
 "clusterEndpoint": {
 "address": "clustercfg.memorydb-cluster.cde8da.memorydb.us-
east-1.amazonaws.com",
 "port": 6379
 },

Logging MemoryDB for Redis API calls with AWS CloudTrail 442

Amazon MemoryDB for Redis Developer Guide

 "nodeType": "db.r6g.large",
 "engineVersion": "6.2",
 "EnginePatchVersion": "6.2.6",
 "parameterGroupName": "default.memorydb-redis6",
 "parameterGroupStatus": "in-sync",
 "subnetGroupName": "memorydb-subnet-group",
 "tLSEnabled": true,
 "aRN": "arn:aws:memorydb:us-east-1:123456789012:cluster/memorydb-cluster",
 "snapshotRetentionLimit": 0,
 "maintenanceWindow": "tue:06:30-tue:07:30",
 "snapshotWindow": "04:00-05:00",
 "autoMinorVersionUpgrade": true,
 "DataTiering": "false"
 }
 },
 "requestID": "dad021ce-d161-4365-8085-574133afab54",
 "eventID": "e0120f85-ab7e-4ad4-ae78-43ba15dee3d8",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

The following example shows a CloudTrail log entry that demonstrates the CreateUser action.
Note that for MemoryDB for Redis calls that contain sensitive data, that data will be redacted in
the corresponding CloudTrail event as shown in the requestParameters section below.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EKIAUAXQT3SWDEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/john",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "john"
 },
 "eventTime": "2021-07-10T19:56:13Z",
 "eventSource": "memorydb.amazonaws.com",
 "eventName": "CreateUser",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.01",

Logging MemoryDB for Redis API calls with AWS CloudTrail 443

Amazon MemoryDB for Redis Developer Guide

 "userAgent": "aws-cli/2.2.29 Python/3.9.6 Darwin/19.6.0 source/x86_64 prompt/off
 command/memorydb.create-user",
 "requestParameters": {
 "userName": "memorydb-user",
 "authenticationMode": {
 "type": "password",
 "passwords": [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
]
 },
 "accessString": "~* &* -@all +@read"
 },
 "responseElements": {
 "user": {
 "name": "memorydb-user",
 "status": "active",
 "accessString": "off ~* &* -@all +@read",
 "aCLNames": [],
 "minimumEngineVersion": "6.2",
 "authentication": {
 "type": "password",
 "passwordCount": 1
 },
 "aRN": "arn:aws:memorydb:us-east-1:123456789012:user/memorydb-user"
 }
 },
 "requestID": "ae288b5e-80ab-4ff8-989a-5ee5c67cd193",
 "eventID": "ed096e3e-16f1-4a23-866c-0baa6ec769f6",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Compliance validation for MemoryDB for Redis

Third-party auditors assess the security and compliance of MemoryDB for Redis as part of multiple
AWS compliance programs. This includes:

• Payment Card Industry Data Security Standard (PCI DSS). For more information, see PCI DSS.

Compliance validation 444

https://aws.amazon.com/compliance/pci-dss-level-1-faqs/

Amazon MemoryDB for Redis Developer Guide

• Health Insurance Portability and Accountability Act Business Associate Agreement (HIPAA BAA).
For more information, see HIPAA Compliance.

• System and Organization Controls (SOC) 1, 2, and 3. For more information, see SOC.

• Federal Risk and Authorization Management Program (FedRAMP) Moderate. For more
information, see FedRAMP.

• ISO/IEC 27001:2013, 27017:2015, 27018:2019, and ISO/IEC 9001:2015. For more information,
see AWS ISO and CSA STAR certifications and services.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using MemoryDB is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – AWS Config assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Infrastructure security in Amazon MemoryDB for Redis

As a managed service, MemoryDB is protected by the AWS global network security procedures that
are described in the Amazon Web Services: Overview of Security Processes whitepaper.

Infrastructure security 445

https://aws.amazon.com/compliance/hipaa-compliance
https://aws.amazon.com/compliance/soc-faqs
https://aws.amazon.com/compliance/services-in-scope/FedRAMP/
https://aws.amazon.com/compliance/iso-certified/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon MemoryDB for Redis Developer Guide

You use AWS published API calls to access MemoryDB through the network. Clients must support
Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Internetwork traffic privacy

MemoryDB for Redis uses the following techniques to secure your data and protect it from
unauthorized access:

• MemoryDB and Amazon VPC explains the type of security group you need for your installation.

• MemoryDB for Redis API and interface VPC endpoints (AWS PrivateLink) allows you to
establish a private connection between your VPC and MemoryDB for Redis API endpoints.

• Identity and access management in MemoryDB for Redis for granting and limiting actions of
users, groups, and roles.

MemoryDB and Amazon VPC

The Amazon Virtual Private Cloud (Amazon VPC) service defines a virtual network that closely
resembles a traditional data center. When you configure a virtual private cloud (VPC) with Amazon
VPC, you can select its IP address range, create subnets, and configure route tables, network
gateways, and security settings. You can also add a cluster to the virtual network, and control
access to the cluster by using Amazon VPC security groups.

This section explains how to manually configure a MemoryDB cluster in a VPC. This information is
intended for users who want a deeper understanding of how MemoryDB and Amazon VPC work
together.

Topics

• Understanding MemoryDB and VPCs

• Access Patterns for Accessing a MemoryDB Cluster in an Amazon VPC

• Creating a Virtual Private Cloud (VPC)

Internetwork traffic privacy 446

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon MemoryDB for Redis Developer Guide

MemoryDB and Amazon VPC 447

Amazon MemoryDB for Redis Developer Guide

Understanding MemoryDB and VPCs

MemoryDB is fully integrated with Amazon VPC. For MemoryDB users, this means the following:

• MemoryDB always launches your cluster in a VPC.

• If you're new to AWS, a default VPC will be created for you automatically.

• If you have a default VPC and don't specify a subnet when you launch a cluster, the cluster
launches into your default Amazon VPC.

For more information, see Detecting Your Supported Platforms and Whether You Have a Default
VPC.

With Amazon VPC, you can create a virtual network in the AWS Cloud that closely resembles
a traditional data center. You can configure your VPC, including selecting its IP address range,
creating subnets, and configuring route tables, network gateways, and security settings.

MemoryDB manages software upgrades, patching, failure detection, and recovery.

Overview of MemoryDB in a VPC

A VPC is an isolated portion of the AWS Cloud that is assigned its own block of IP addres
ses.

An internet gateway connects your VPC directly to the internet and provides access to
 other AWS resources such as Amazon Simple Storage Service (Amazon S3) that are
running outside your VPC.

An Amazon VPC subnet is a segment of the IP address range of a VPC where you can
 isolate AWS resources according to your security and operational needs.

A routing table in your VPC directs network traffic between the subnet and the internet.
The Amazon VPC has an implied router.

An Amazon VPC security group controls inbound and outbound traffic for your
MemoryDB clusters and Amazon EC2 instances.

MemoryDB and Amazon VPC 448

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#detecting-platform
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#detecting-platform

Amazon MemoryDB for Redis Developer Guide

You can launch a MemoryDB cluster in the subnet. The nodes have private IP addresses
from the subnet's range of addresses.

You can also launch Amazon EC2 instances in the subnet. Each Amazon EC2 instance has
a private IP address from the subnet's range of addresses. The Amazon EC2 instance can
connect to any node in the same subnet.

For an Amazon EC2 instance in your VPC to be reachable from the internet, you need to
assign a static, public address called a Elastic IP address to the instance.

Prerequisites

To create a MemoryDB cluster within a VPC, your VPC must meet the following requirements:

• Your VPC must allow nondedicated Amazon EC2 instances. You cannot use MemoryDB in a VPC
that is configured for dedicated instance tenancy.

• A subnet group must be defined for your VPC. MemoryDB uses that subnet group to select a
subnet and IP addresses within that subnet to associate with your nodes.

• A security group must be defined for your VPC, or you can use the default provided.

• CIDR blocks for each subnet must be large enough to provide spare IP addresses for MemoryDB
to use during maintenance activities.

Routing and security

You can configure routing in your VPC to control where traffic flows (for example, to the internet
gateway or virtual private gateway). With an internet gateway, your VPC has direct access to
other AWS resources that are not running in your VPC. If you choose to have only a virtual private
gateway with a connection to your organization's local network, you can route your internet-bound
traffic over the VPN and use local security policies and firewall to control egress. In that case, you
incur additional bandwidth charges when you access AWS resources over the internet.

You can use Amazon VPC security groups to help secure the MemoryDB clusters and Amazon EC2
instances in your Amazon VPC. Security groups act like a firewall at the instance level, not the
subnet level.

MemoryDB and Amazon VPC 449

Amazon MemoryDB for Redis Developer Guide

Note

We strongly recommend that you use DNS names to connect to your nodes, as the
underlying IP address can change over time.

Amazon VPC documentation

Amazon VPC has its own set of documentation to describe how to create and use your Amazon
VPC. The following table shows where to find information in the Amazon VPC guides.

Description Documentation

How to get started using Amazon VPC Getting started with Amazon VPC

How to use Amazon VPC through the AWS
Management Console

Amazon VPC User Guide

Complete descriptions of all the Amazon VPC
commands

Amazon EC2 Command Line Reference (the
Amazon VPC commands are found in the
Amazon EC2 reference)

Complete descriptions of the Amazon VPC API
operations, data types, and errors

Amazon EC2 API Reference (the Amazon VPC
API operations are found in the Amazon EC2
reference)

Information for the network administrator
who needs to configure the gateway at your
end of an optional IPsec VPN connection

What is AWS Site-to-Site VPN?

For more detailed information about Amazon Virtual Private Cloud, see Amazon Virtual Private
Cloud.

MemoryDB and Amazon VPC 450

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/

Amazon MemoryDB for Redis Developer Guide

Access Patterns for Accessing a MemoryDB Cluster in an Amazon VPC

MemoryDB for Redis supports the following scenarios for accessing a cluster in an Amazon VPC:

Contents

• Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in the Same Amazon
VPC

• Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs

• Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs in the Same Region

• Using Transit Gateway

• Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs in Different Regions

• Using Transit VPC

• Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center

• Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using
VPN Connectivity

• Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using
Direct Connect

Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in the Same Amazon
VPC

The most common use case is when an application deployed on an EC2 instance needs to connect
to a cluster in the same VPC.

The simplest way to manage access between EC2 instances and clusters in the same VPC is to do
the following:

1. Create a VPC security group for your cluster. This security group can be used to restrict access
to the clusters. For example, you can create a custom rule for this security group that allows
TCP access using the port you assigned to the cluster when you created it and an IP address
you will use to access the cluster.

The default port for MemoryDB clusters is 6379.

MemoryDB and Amazon VPC 451

Amazon MemoryDB for Redis Developer Guide

2. Create a VPC security group for your EC2 instances (web and application servers). This security
group can, if needed, allow access to the EC2 instance from the Internet via the VPC's routing
table. For example, you can set rules on this security group to allow TCP access to the EC2
instance over port 22.

3. Create custom rules in the security group for your cluster that allow connections from the
security group you created for your EC2 instances. This would allow any member of the
security group to access the clusters.

To create a rule in a VPC security group that allows connections from another security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the left navigation pane, choose Security Groups.

3. Select or create a security group that you will use for your clusters. Under Inbound Rules,
select Edit Inbound Rules and then select Add Rule. This security group will allow access to
members of another security group.

4. From Type choose Custom TCP Rule.

a. For Port Range, specify the port you used when you created your cluster.

The default port for MemoryDB clusters is 6379.

b. In the Source box, start typing the ID of the security group. From the list select the
security group you will use for your Amazon EC2 instances.

5. Choose Save when you finish.

Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs

When your cluster is in a different VPC from the EC2 instance you are using to access it, there are
several ways to access the cluster. If the cluster and EC2 instance are in different VPCs but in the
same region, you can use VPC peering. If the cluster and the EC2 instance are in different regions,
you can create VPN connectivity between regions.

Topics

• Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs in the Same Region

MemoryDB and Amazon VPC 452

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon MemoryDB for Redis Developer Guide

• Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs in Different Regions

Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs in the Same Region

Cluster accessed by an Amazon EC2 instance in a different Amazon VPC within the same Region - VPC
Peering Connection

A VPC peering connection is a networking connection between two VPCs that enables you to
route traffic between them using private IP addresses. Instances in either VPC can communicate
with each other as if they are within the same network. You can create a VPC peering connection
between your own Amazon VPCs, or with an Amazon VPC in another AWS account within a single
region. To learn more about Amazon VPC peering, see the VPC documentation.

To access a cluster in a different Amazon VPC over peering

1. Make sure that the two VPCs do not have an overlapping IP range or you will not be able to
peer them.

2. Peer the two VPCs. For more information, see Creating and Accepting an Amazon VPC Peering
Connection.

3. Update your routing table. For more information, see Updating Your Route Tables for a VPC
Peering Connection

4. Modify the Security Group of your MemoryDB cluster to allow inbound connection from the
Application security group in the peered VPC. For more information, see Reference Peer VPC
Security Groups.

Accessing a cluster over a peering connection will incur additional data transfer costs.

Using Transit Gateway

A transit gateway enables you to attach VPCs and VPN connections in the same AWS Region and
route traffic between them. A transit gateway works across AWS accounts, and you can use AWS
Resource Access Manager to share your transit gateway with other accounts. After you share a

MemoryDB and Amazon VPC 453

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-peering.html
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/create-vpc-peering-connection.html
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/create-vpc-peering-connection.html
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-routing.html
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-routing.html
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-security-groups.html
http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-security-groups.html

Amazon MemoryDB for Redis Developer Guide

transit gateway with another AWS account, the account owner can attach their VPCs to your transit
gateway. A user from either account can delete the attachment at any time.

You can enable multicast on a transit gateway, and then create a transit gateway multicast domain
that allows multicast traffic to be sent from your multicast source to multicast group members
over VPC attachments that you associate with the domain.

You can also create a peering connection attachment between transit gateways in different AWS
Regions. This enables you to route traffic between the transit gateways' attachments across
different Regions.

For more information, see Transit gateways.

Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon
VPCs in Different Regions

Using Transit VPC

An alternative to using VPC peering, another common strategy for connecting multiple,
geographically disperse VPCs and remote networks is to create a transit VPC that serves as a global
network transit center. A transit VPC simplifies network management and minimizes the number
of connections required to connect multiple VPCs and remote networks. This design can save time
and effort and also reduce costs, as it is implemented virtually without the traditional expense of
establishing a physical presence in a colocation transit hub or deploying physical network gear.

Connecting across different VPCs in different regions

Once the Transit Amazon VPC is established, an application deployed in a “spoke” VPC in one
region can connect to a MemoryDB cluster in a “spoke” VPC within another region.

To access a cluster in a different VPC within a different AWS Region

1. Deploy a Transit VPC Solution. For more information, see, AWSTransit Gateway.

2. Update the VPC routing tables in the App and VPCs to route traffic through the VGW (Virtual
Private Gateway) and the VPN Appliance. In case of Dynamic Routing with Border Gateway
Protocol (BGP) your routes may be automatically propagated.

3. Modify the Security Group of your MemoryDB cluster to allow inbound connection from the
Application instances IP range. Note that you will not be able to reference the application
server Security Group in this scenario.

MemoryDB and Amazon VPC 454

https://docs.aws.amazon.com/vpc/latest/tgw/tgw-transit-gateways.html
https://aws.amazon.com/transit-gateway/

Amazon MemoryDB for Redis Developer Guide

Accessing a cluster across regions will introduce networking latencies and additional cross-region
data transfer costs.

Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center

Another possible scenario is a Hybrid architecture where clients or applications in the customer’s
data center may need to access a MemoryDB Cluster in the VPC. This scenario is also supported
providing there is connectivity between the customers’ VPC and the data center either through
VPN or Direct Connect.

Topics

• Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using
VPN Connectivity

• Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using
Direct Connect

Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using
VPN Connectivity

Connecting to MemoryDB from your data center via a VPN

To access a cluster in a VPC from on-prem application over VPN connection

1. Establish VPN Connectivity by adding a hardware Virtual Private Gateway to your VPC. For
more information, see Adding a Hardware Virtual Private Gateway to Your VPC.

2. Update the VPC routing table for the subnet where your MemoryDB cluster is deployed to
allow traffic from your on-premises application server. In case of Dynamic Routing with BGP
your routes may be automatically propagated.

3. Modify the Security Group of your MemoryDB cluster to allow inbound connection from the
on-premises application servers.

Accessing a cluster over a VPN connection will introduce networking latencies and additional data
transfer costs.

MemoryDB and Amazon VPC 455

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html

Amazon MemoryDB for Redis Developer Guide

Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using
Direct Connect

Connecting to MemoryDB from your data center via Direct Connect

To access a MemoryDB cluster from an application running in your network using Direct
Connect

1. Establish Direct Connect connectivity. For more information, see, Getting Started with AWS
Direct Connect.

2. Modify the Security Group of your MemoryDB cluster to allow inbound connection from the
on-premises application servers.

Accessing a cluster over DX connection may introduce networking latencies and additional data
transfer charges.

MemoryDB and Amazon VPC 456

http://docs.aws.amazon.com/directconnect/latest/UserGuide/getting_started.html
http://docs.aws.amazon.com/directconnect/latest/UserGuide/getting_started.html

Amazon MemoryDB for Redis Developer Guide

Creating a Virtual Private Cloud (VPC)

In this example, you create a virtual private cloud (VPC) based on the Amazon VPC service with a
private subnet for each Availability Zone.

Creating a VPC (Console)

To create a MemoryDB cluster inside an Amazon Virtual Private Cloud

1. Sign in to the AWS Management Console, and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the VPC dashboard, choose Create VPC.

3. Under Resources to create, choose VPC and more.

4. Under Number of Availability Zones (AZs), choose the number of Availability Zones you want
to launch your subnets in.

5. Under Number of public subnets, choose the number of public subnets you want to add to
your VPC.

6. Under Number of private subnets, choose the number of private subnets you want to add to
your VPC.

Tip

Make a note of your subnet identifiers, and which are public and private. You will need
this information later when you launch your clusters and add an Amazon EC2 instance
to your Amazon VPC.

7. Create an Amazon VPC security group. You will use this group for your cluster and your
Amazon EC2 instance.

a. In the left navigation pane of the AWS Management Console, choose Security Groups.

b. Choose Create Security Group.

c. Enter a name and a description for your security group in the corresponding boxes. For
VPC, choose the identifier for your VPC.

d. When the settings are as you want them, choose Yes, Create.

8. Define a network ingress rule for your security group. This rule will allow you to connect to
your Amazon EC2 instance using Secure Shell (SSH).

MemoryDB and Amazon VPC 457

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon MemoryDB for Redis Developer Guide

a. In the left navigation pane, choose Security Groups.

b. Find your security group in the list, and then choose it.

c. Under Security Group, choose the Inbound tab. In the Create a new rule box, choose
SSH, and then choose Add Rule.

Set the following values for your new inbound rule to allow HTTP access:

• Type: HTTP

• Source: 0.0.0.0/0

d. Set the following values for your new inbound rule to allow HTTP access:

• Type: HTTP

• Source: 0.0.0.0/0

Choose Apply Rule Changes.

Now you are ready to create a subnet group and create a cluster in your VPC.

MemoryDB and Amazon VPC 458

https://docs.aws.amazon.com/memorydb/latest/devguide/subnetgroups.html
https://docs.aws.amazon.com/memorydb/latest/devguide/getting-started.createcluster.html

Amazon MemoryDB for Redis Developer Guide

Subnets and subnet groups

A subnet group is a collection of subnets (typically private) that you can designate for your clusters
running in an Amazon Virtual Private Cloud (VPC) environment.

When you create a cluster in an Amazon VPC, you can specify a subnet group or use the default
one provided. MemoryDB uses that subnet group to choose a subnet and IP addresses within that
subnet to associate with your nodes.

This section covers how to create and leverage subnets and subnet groups to manage access to
your MemoryDB resources.

For more information about subnet group usage in an Amazon VPC environment, see Step 2:
Authorize access to the cluster.

Supported MemoryDB AZ IDs

Region Name/Regi
on

Supported AZ IDs

US East (Ohio) Region

us-east-2

use2-az1, use2-
az2, use2-az3

US East (N. Virginia)
Region

us-east-1

use1-az2, use1-
az4, use1-az6

US West (N. Californi
a) Region

us-west-1

usw1-az1, usw1-
az2, usw1-az3

US West (Oregon)
Region

us-west-2

usw2-az1, usw2-
az2, usw2-az3

Canada (Central)
Region

cac1-az1, cac1-
az2, cac1-az4

Subnets and subnet groups 459

Amazon MemoryDB for Redis Developer Guide

Region Name/Regi
on

Supported AZ IDs

ca-central-1

Asia Pacific (Hong
Kong) Region

ap-east-1

ape1-az1, ape1-
az2, ape1-az3

Asia Pacific (Mumbai)
Region

ap-south-1

aps1-az1, aps1-
az2, aps1-az3

Asia Pacific (Tokyo)
Region

ap-northeast-1

apne1-az1,
apne1-az2,
apne1-az4

Asia Pacific (Seoul)
Region

ap-northeast-2

apne2-az1,
apne2-az2,
apne2-az3

Asia Pacific (Singapor
e) Region

ap-southeast-1

apse1-az1,
apse1-az2,
apse1-az3

Asia Pacific (Sydney)
Region

ap-southeast-2

apse2-az1,
apse2-az2,
apse2-az3

Europe (Frankfurt)
Region

eu-central-1

euc1-az1, euc1-
az2, euc1-az3

Subnets and subnet groups 460

Amazon MemoryDB for Redis Developer Guide

Region Name/Regi
on

Supported AZ IDs

Europe (Ireland)
Region

eu-west-1

euw1-az1, euw1-
az2, euw1-az3

Europe (London)
Region

eu-west-2

euw2-az1, euw2-
az2, euw2-az3

EU (Paris) Region

eu-west-3

euw3-az1, euw3-
az2, euw3-az3

Europe (Stockholm)
Region

eu-north-1

eun1-az1, eun1-
az2, eun1-az3

Europe (Milan)
Region

eu-south-1

eus1-az1, eus1-
az2, eus1-az3

South America (São
Paulo) Region

sa-east-1

sae1-az1, sae1-
az2, sae1-az3

China (Beijing) Region

cn-north-1

cnn1-az1, cnn1-
az2

China (Ningxia)
Region

cn-northwest-1

cnw1-az1, cnw1-
az2, cnw1-az3

Subnets and subnet groups 461

Amazon MemoryDB for Redis Developer Guide

Topics

• Creating a subnet group

• Updating a subnet group

• Viewing subnet group details

• Deleting a subnet group

Subnets and subnet groups 462

Amazon MemoryDB for Redis Developer Guide

Creating a subnet group

When you create a new subnet group, note the number of available IP addresses. If the subnet has
very few free IP addresses, you might be constrained as to how many more nodes you can add to
the cluster. To resolve this issue, you can assign one or more subnets to a subnet group so that you
have a sufficient number of IP addresses in your cluster's Availability Zone. After that, you can add
more nodes to your cluster.

The following procedures show you how to create a subnet group called mysubnetgroup
(console), the AWS CLI, and the MemoryDB API.

Creating a subnet group (Console)

The following procedure shows how to create a subnet group (console).

To create a subnet group (Console)

1. Sign in to the AWS Management Console, and open the MemoryDB console at https://
console.aws.amazon.com/memorydb/.

2. In the left navigation pane, choose Subnet Groups.

3. Choose Create Subnet Group.

4. In the Create Subnet Group page, do the following:

a. In the Name box, type a name for your subnet group.

Cluster naming constraints are as follows:

• Must contain 1–40 alphanumeric characters or hyphens.

• Must begin with a letter.

• Can't contain two consecutive hyphens.

• Can't end with a hyphen.

b. In the Description box, type a description for your subnet group.

c. In the VPC ID box, choose the Amazon VPC that you created. If you have not created one,
choose the Create VPC button and follow the steps to create one.

d. In Selected subnets, choose the Availability Zone and ID of your private subnet, and then
choose Choose.

5. For Tags, you can optionally apply tags to search and filter your subnets or track your AWS
costs.

Subnets and subnet groups 463

https://console.aws.amazon.com/memorydb/
https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

6. When all the settings are as you want them, choose Create.

7. In the confirmation message that appears, choose Close.

Your new subnet group appears in the Subnet Groups list of the MemoryDB console. At the
bottom of the window you can choose the subnet group to see details, such as all of the subnets
associated with this group.

Creating a subnet group (AWS CLI)

At a command prompt, use the command create-subnet-group to create a subnet group.

For Linux, macOS, or Unix:

aws memorydb create-subnet-group \
 --subnet-group-name mysubnetgroup \
 --description "Testing" \
 --subnet-ids subnet-53df9c3a

For Windows:

aws memorydb create-subnet-group ^
 --subnet-group-name mysubnetgroup ^
 --description "Testing" ^
 --subnet-ids subnet-53df9c3a

This command should produce output similar to the following:

 {
 "SubnetGroup": {
 "Subnets": [
 {
 "Identifier": "subnet-53df9c3a",
 "AvailabilityZone": {
 "Name": "us-east-1a"
 }
 }
],
 "VpcId": "vpc-3cfaef47",
 "Name": "mysubnetgroup",
 "ARN": "arn:aws:memorydb:us-east-1:012345678912:subnetgroup/
mysubnetgroup",

Subnets and subnet groups 464

Amazon MemoryDB for Redis Developer Guide

 "Description": "Testing"
 }
 }

For more information, see the AWS CLI topic create-subnet-group.

Creating a subnet group (MemoryDB API)

Using the MemoryDB API, call CreateSubnetGroup with the following parameters:

• SubnetGroupName=mysubnetgroup

• Description=Testing

• SubnetIds.member.1=subnet-53df9c3a

Subnets and subnet groups 465

https://docs.aws.amazon.com/cli/latest/reference/memorydb/create-subnet-group.html

Amazon MemoryDB for Redis Developer Guide

Updating a subnet group

You can update a subnet group's description, or modify the list of subnet IDs associated with the
subnet group. You cannot delete a subnet ID from a subnet group if a cluster is currently using that
subnet.

The following procedures show you how to update a subnet group.

Updating subnet groups (Console)

To update a subnet group

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the left navigation pane, choose Subnet Groups.

3. In the list of subnet groups, choose the one you want to modify.

4. Name, VPCId and Description fields are not modifiable.

5. In the Selected subnets section click Manage to make any changes to the Availability Zones
you need for the subnets. To save your changes, choose Save.

Updating subnet groups (AWS CLI)

At a command prompt, use the command update-subnet-group to update a subnet group.

For Linux, macOS, or Unix:

aws memorydb update-subnet-group \
 --subnet-group-name mysubnetgroup \
 --description "New description" \
 --subnet-ids "subnet-42df9c3a" "subnet-48fc21a9"

For Windows:

aws memorydb update-subnet-group ^
 --subnet-group-name mysubnetgroup ^
 --description "New description" ^
 --subnet-ids "subnet-42df9c3a" "subnet-48fc21a9"

This command should produce output similar to the following:

Subnets and subnet groups 466

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

{
 "SubnetGroup": {
 "VpcId": "vpc-73cd3c17",
 "Description": "New description",
 "Subnets": [
 {
 "Identifier": "subnet-42dcf93a",
 "AvailabilityZone": {
 "Name": "us-east-1a"
 }
 },
 {
 "Identifier": "subnet-48fc12a9",
 "AvailabilityZone": {
 "Name": "us-east-1a"
 }
 }
],
 "Name": "mysubnetgroup",
 "ARN": "arn:aws:memorydb:us-east-1:012345678912:subnetgroup/mysubnetgroup",
 }
}

For more information, see the AWS CLI topic update-subnet-group.

Updating subnet groups (MemoryDB API)

Using the MemoryDB API, call UpdateSubnetGroup with the following parameters:

• SubnetGroupName=mysubnetgroup

• Any other parameters whose values you want to change. This example uses Description=New
%20description to change the description of the subnet group.

Example

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateSubnetGroup
 &Description=New%20description
 &SubnetGroupName=mysubnetgroup
 &SubnetIds.member.1=subnet-42df9c3a
 &SubnetIds.member.2=subnet-48fc21a9
 &SignatureMethod=HmacSHA256

Subnets and subnet groups 467

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-subnet-group.html

Amazon MemoryDB for Redis Developer Guide

 &SignatureVersion=4
 &Timestamp=20141201T220302Z
 &Version=2014-12-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Credential=<credential>
 &X-Amz-Date=20141201T220302Z
 &X-Amz-Expires=20141201T220302Z
 &X-Amz-Signature=<signature>
 &X-Amz-SignedHeaders=Host

Note

When you create a new subnet group, take note the number of available IP addresses. If
the subnet has very few free IP addresses, you might be constrained as to how many more
nodes you can add to the cluster. To resolve this issue, you can assign one or more subnets
to a subnet group so that you have a sufficient number of IP addresses in your cluster's
Availability Zone. After that, you can add more nodes to your cluster.

Viewing subnet group details

The following procedures show you how to view details a subnet group.

Viewing details of subnet groups (console)

To view details of a subnet group (Console)

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the left navigation pane, choose Subnet Groups.

3. On the Subnet groups page, choose the subnet group under Name or enter the subnet group's
name in the search bar.

4. On the Subnet groups page, choose the subnet group under Name or enter the subnet group's
name in the search bar.

5. Under Subnet group settings you can view the name,description, VPC ID and Amazon
Resource Name (ARN) of the subnet group.

6. Under Subnets you can view the Availability Zones, Subnet IDs and CIDR blocks of the subnet
group

Subnets and subnet groups 468

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

7. Under Tags you can view any tags associated with the subnet group.

Viewing subnet groups details (AWS CLI)

At a command prompt, use the command describe-subnet-groups to view a specified subnet
group's details.

For Linux, macOS, or Unix:

aws memorydb describe-subnet-groups \
 --subnet-group-name mysubnetgroup

For Windows:

aws memorydb describe-subnet-groups ^
 --subnet-group-name mysubnetgroup

This command should produce output similar to the following:

{
 "subnetgroups": [
 {
 "Subnets": [
 {
 "Identifier": "subnet-060cae3464095de6e",
 "AvailabilityZone": {
 "Name": "us-east-1a"
 }
 },
 {
 "Identifier": "subnet-049d11d4aa78700c3",
 "AvailabilityZone": {
 "Name": "us-east-1c"
 }
 },
 {
 "Identifier": "subnet-0389d4c4157c1edb4",
 "AvailabilityZone": {
 "Name": "us-east-1d"
 }
 }

Subnets and subnet groups 469

Amazon MemoryDB for Redis Developer Guide

],
 "VpcId": "vpc-036a8150d4300bcf2",
 "Name": "mysubnetgroup",
 "ARN": "arn:aws:memorydb:us-east-1:53791xzzz7620:subnetgroup/mysubnetgroup",
 "Description": "test"
 }
]
}

To view details on all subnet groups, use the same command but without specifying a subnet
group name.

aws memorydb describe-subnet-groups

For more information, see the AWS CLI topic describe-subnet-groups.

Viewing subnet groups (MemoryDB API)

Using the MemoryDB API, call DescribeSubnetGroups with the following parameters:

SubnetGroupName=mysubnetgroup

Example

https://memory-db.us-east-1.amazonaws.com/
 ?Action=UpdateSubnetGroup
 &Description=New%20description
 &SubnetGroupName=mysubnetgroup
 &SubnetIds.member.1=subnet-42df9c3a
 &SubnetIds.member.2=subnet-48fc21a9
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Timestamp=20211801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Credential=<credential>
 &X-Amz-Date=20210801T220302Z
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Signature=<signature>
 &X-Amz-SignedHeaders=Host

Subnets and subnet groups 470

https://docs.aws.amazon.com/cli/latest/reference/memorydb/update-subnet-group.html

Amazon MemoryDB for Redis Developer Guide

Deleting a subnet group

If you decide that you no longer need your subnet group, you can delete it. You cannot delete a
subnet group if it is currently in use by a cluster. You also cannot delete a subnet group on a cluster
with Multi-AZ enabled if doing so leaves that cluster with fewer than two subnets. You must first
uncheck Multi-AZ and then delete the subnet.

The following procedures show you how to delete a subnet group.

Deleting a subnet group (Console)

To delete a subnet group

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. In the left navigation pane, choose Subnet Groups.

3. In the list of subnet groups, choose the one you want to delete, choose Actions and then
choose Delete.

Note

You cannot delete a default subnet group or one that is associated with any clusters.

4. The Delete Subnet Groups confirmation screen will appear.

5. To delete the subnet group, enter delete in the confirmation text box. To keep the subnet
group, choose Cancel.

Deleting a subnet group (AWS CLI)

Using the AWS CLI, call the command delete-subnet-group with the following parameter:

• --subnet-group-name mysubnetgroup

For Linux, macOS, or Unix:

aws memorydb delete-subnet-group \
 --subnet-group-name mysubnetgroup

Subnets and subnet groups 471

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

For Windows:

aws memorydb delete-subnet-group ^
 --subnet-group-name mysubnetgroup

For more information, see the AWS CLI topic delete-subnet-group.

Deleting a subnet group (MemoryDB API)

Using the MemoryDB API, call DeleteSubnetGroup with the following parameter:

• SubnetGroupName=mysubnetgroup

Example

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DeleteSubnetGroup
 &SubnetGroupName=mysubnetgroup
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Timestamp=20210801T220302Z
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Credential=<credential>
 &X-Amz-Date=20210801T220302Z
 &X-Amz-Expires=20210801T220302Z
 &X-Amz-Signature=<signature>
 &X-Amz-SignedHeaders=Host

This command produces no output.

For more information, see the MemoryDB API topic DeleteSubnetGroup.

MemoryDB for Redis API and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and Amazon MemoryDB for Redis
API endpoints by creating an interface VPC endpoint. Interface endpoints are powered by AWS
PrivateLink. AWS PrivateLink allows you to privately access MemoryDB for Redis API operations
without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.

MemoryDB for Redis API and interface VPC endpoints (AWS PrivateLink) 472

https://docs.aws.amazon.com/cli/latest/reference/memorydb/delete-subnet-group.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_DeleteSubnetGroup.html
https://aws.amazon.com/privatelink
https://aws.amazon.com/privatelink

Amazon MemoryDB for Redis Developer Guide

Instances in your VPC don't need public IP addresses to communicate with MemoryDB for Redis
API endpoints. Your instances also don't need public IP addresses to use any of the available
MemoryDB API operations. Traffic between your VPC and MemoryDB for Redis doesn't leave the
Amazon network. Each interface endpoint is represented by one or more elastic network interfaces
in your subnets. For more information on elastic network interfaces, see Elastic network interfaces
in the Amazon EC2 User Guide.

• For more information about VPC endpoints, see Interface VPC endpoints (AWS PrivateLink) in the
Amazon VPC User Guide.

• For more information about MemoryDB API operations, see MemoryDB API operations.

After you create an interface VPC endpoint, if you enable private DNS hostnames for the endpoint,
the default MemoryDB endpoint (https://memorydb.Region.amazonaws.com) resolves to your
VPC endpoint. If you do not enable private DNS hostnames, Amazon VPC provides a DNS endpoint
name that you can use in the following format:

VPC_Endpoint_ID.memorydb.Region.vpce.amazonaws.com

For more information, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User
Guide. MemoryDB supports making calls to all of its API Actions inside your VPC.

Note

Private DNS hostnames can be enabled for only one VPC endpoint in the VPC. If you want
to create an additional VPC endpoint then private DNS hostname should be disabled for it.

Considerations for VPC endpoints

Before you set up an interface VPC endpoint for MemoryDB for Redis API endpoints, ensure
that you review Interface endpoint properties and limitations in the Amazon VPC User Guide.
All MemoryDB API operations that are relevant to managing MemoryDB for Redis resources
are available from your VPC using AWS PrivateLink. VPC endpoint policies are supported for
MemoryDB API endpoints. By default, full access to MemoryDB API operations is allowed through
the endpoint. For more information, see Controlling access to services with VPC endpoints in the
Amazon VPC User Guide.

MemoryDB for Redis API and interface VPC endpoints (AWS PrivateLink) 473

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-private-dns
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/memorydb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/vpc/latest/privatelink/endpoint-services-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon MemoryDB for Redis Developer Guide

Creating an interface VPC endpoint for the MemoryDB API

You can create a VPC endpoint for the MemoryDB for Redis API using either the Amazon VPC
console or the AWS CLI. For more information, see Creating an interface endpoint in the Amazon
VPC User Guide.

After you create an interface VPC endpoint, you can enable private DNS host names
for the endpoint. When you do, the default MemoryDB for Redis endpoint (https://
memorydb.Region.amazonaws.com) resolves to your VPC endpoint. For more information, see
Accessing a service through an interface endpoint in the Amazon VPC User Guide.

Creating a VPC endpoint policy for the Amazon MemoryDB API

You can attach an endpoint policy to your VPC endpoint that controls access to the MemoryDB API.
The policy specifies the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example VPC endpoint policy for MemoryDB API actions

The following is an example of an endpoint policy for the MemoryDB API. When attached to an
endpoint, this policy grants access to the listed MemoryDB API actions for all principals on all
resources.

{
 "Statement": [{
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "memorydb:CreateCluster",
 "memorydb:UpdateCluster",
 "memorydb:CreateSnapshot"
],
 "Resource": "*"
 }]

MemoryDB for Redis API and interface VPC endpoints (AWS PrivateLink) 474

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon MemoryDB for Redis Developer Guide

}

Example VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [{
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "123456789012"
]
 }
 }
]
}

Service updates in MemoryDB for Redis

MemoryDB for Redis automatically monitors your fleet of clusters and nodes to apply service
updates as they become available. Typically, you set up a predefined maintenance window so that
MemoryDB can apply these updates. However, in some cases you might find this approach too rigid
and likely to constrain your business flows.

With service updates, you control when and which updates are applied. You can also monitor the
progress of these updates to your selected MemoryDB cluster in real time.

Managing the service updates

MemoryDB service updates are released on a regular basis. If you have one or more qualifying
clusters for those service updates, you receive notifications through email, SNS, the Personal

Service updates 475

Amazon MemoryDB for Redis Developer Guide

Health Dashboard (PHD), and Amazon CloudWatch events when the updates are released. The
updates are also displayed on the Service Updates page on the MemoryDB console. By using this
dashboard, you can view all the service updates and their status for your MemoryDB fleet.

You control when to apply an update before an auto-update starts. We strongly recommend that
you apply any updates of type security-update as soon as possible to ensure that your MemoryDB
are always up-to-date with current security patches.

The following sections explore these options in detail.

Topics

• Applying the service updates

Applying the service updates

You can start applying the service updates to your fleet from the time that the updates have an
available status. Service updates are cumulative. In other words, any updates that you haven't
applied yet are included with your latest update.

If a service update has auto-update enabled, you can choose to not take any action when it
becomes available. MemoryDB will schedule to apply the update during your clusters' maintenance
window after the Auto-update start date. You will receive related notifications for each stage of
the update.

Note

You can apply only those service updates that have an available or scheduled status.

For more information about reviewing and applying any service-specific updates to applicable
MemoryDB clusters, see Applying the service updates using the console.

When a new service update is available for one or more of your MemoryDB clusters, you can use
the MemoryDB console, API, or AWS CLI to apply the update. The following sections explain the
options that you can use to apply updates.

Applying the service updates using the console

To view the list of available service updates, along with other information, go to the Service
Updates page in the console.

Managing the service updates 476

Amazon MemoryDB for Redis Developer Guide

1. Sign in to the AWS Management Console and open the MemoryDB for Redis console at
https://console.aws.amazon.com/memorydb/.

2. On the navigation pane, choose Service Updates.

Under Service update details you can view the following:

• Service update name: The unique name of the service update

• Update description: Detailed information about the service update

• Auto-update start date: If this attribute is set, MemoryDB will start scheduling your clusters
to be auto-updated in the appropriate maintenance windows after this date. You will receive
notifications in advance on the exact scheduled maintenance window, which might not be the
immediate one after the Auto-update start date. You can still apply the update to your clusters
any time you choose. If the attribute is not set, the service update is not auto-update enabled
and MemoryDB will not update your clusters automatically.

In the Cluster update status section, you can view a list of clusters where the service update has
not been applied or has just been applied recently. For each cluster, you can view the following:

• Cluster name: The name of the cluster

• Nodes updated: The ratio of individual nodes within a specific cluster that were updated or
remain available for the specific service update.

• Update Type: The type of the service update, which is one of security-update or engine-update

• Status: The status of the service update on the cluster, which is one of the following:

• available: The update is available for the requisite cluster.

• in-progres: The update is being applied to this cluster.

• scheduled: The update date has been scheduled.

• complete: The update has been successfully applied. Cluster with a complete status will be
displayed for 7 days after its completion.

If you chose any or all of the clusters with the available or scheduled status, and then chose
Apply now, the update will start being applied on those clusters.

Managing the service updates 477

https://console.aws.amazon.com/memorydb/

Amazon MemoryDB for Redis Developer Guide

Applying the service updates using the AWS CLI

After you receive notification that service updates are available, you can inspect and apply them
using the AWS CLI:

• To retrieve a description of the service updates that are available, run the following command:

aws memorydb describe-service-updates --status available

For more information, see describe-service-updates.

• To apply a service update on a list of clusters, run the following command:

aws memorydb batch-update-cluster --service-update
ServiceUpdateNameToApply=sample-service-update --cluster-names cluster-1
cluster2

For more information, see batch-update-cluster.

Managing the service updates 478

https://docs.aws.amazon.com/cli/latest/reference/memorydb/describe-service-updates.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/batch-update-cluster.html

Amazon MemoryDB for Redis Developer Guide

Reference

The topics in this section cover working with the MemoryDB API and the MemoryDB section of the
AWS CLI. Also included in this section are common error messages and service notifications.

• Using the MemoryDB API

• MemoryDB API Reference

• MemoryDB section of the AWS CLI Reference

479

https://docs.aws.amazon.com/memorydb/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/memorydb/index.html

Amazon MemoryDB for Redis Developer Guide

Using the MemoryDB API

This section provides task-oriented descriptions of how to use and implement MemoryDB
operations. For a complete description of these operations, see the MemoryDB API Reference.

Topics

• Using the query API

• Available libraries

• Troubleshooting applications

Using the query API

Query parameters

HTTP Query-based requests are HTTP requests that use the HTTP verb GET or POST and a Query
parameter named Action.

Each Query request must include some common parameters to handle authentication and
selection of an action.

Some operations take lists of parameters. These lists are specified using the param.n notation.
Values of n are integers starting from 1.

Query request authentication

You can only send Query requests over HTTPS and you must include a signature in every Query
request. This section describes how to create the signature. The method described in the following
procedure is known as signature version 4.

The following are the basic steps used to authenticate requests to AWS. This assumes you are
registered with AWS and have an Access Key ID and Secret Access Key.

Query authentication process

1. The sender constructs a request to AWS.

2. The sender calculates the request signature, a Keyed-Hashing for Hash-based Message
Authentication Code (HMAC) with a SHA-1 hash function, as defined in the next section of this
topic.

Using the MemoryDB API 480

https://docs.aws.amazon.com/memorydb/latest/APIReference/Welcome.html

Amazon MemoryDB for Redis Developer Guide

3. The sender of the request sends the request data, the signature, and Access Key ID (the key-
identifier of the Secret Access Key used) to AWS.

4. AWS uses the Access Key ID to look up the Secret Access Key.

5. AWS generates a signature from the request data and the Secret Access Key using the same
algorithm used to calculate the signature in the request.

6. If the signatures match, the request is considered to be authentic. If the comparison fails, the
request is discarded, and AWS returns an error response.

Note

If a request contains a Timestamp parameter, the signature calculated for the request
expires 15 minutes after its value.
If a request contains an Expires parameter, the signature expires at the time specified by
the Expires parameter.

To calculate the request signature

1. Create the canonicalized query string that you need later in this procedure:

a. Sort the UTF-8 query string components by parameter name with natural byte ordering.
The parameters can come from the GET URI or from the POST body (when Content-Type
is application/x-www-form-urlencoded).

b. URL encode the parameter name and values according to the following rules:

i. Do not URL encode any of the unreserved characters that RFC 3986 defines. These
unreserved characters are A-Z, a-z, 0-9, hyphen (-), underscore (_), period (.), and
tilde (~).

ii. Percent encode all other characters with %XY, where X and Y are hex characters 0-9
and uppercase A-F.

iii. Percent encode extended UTF-8 characters in the form %XY%ZA....

iv. Percent encode the space character as %20 (and not +, as common encoding schemes
do).

c. Separate the encoded parameter names from their encoded values with the equals sign
(=) (ASCII character 61), even if the parameter value is empty.

Using the query API 481

Amazon MemoryDB for Redis Developer Guide

d. Separate the name-value pairs with an ampersand (&) (ASCII code 38).

2. Create the string to sign according to the following pseudo-grammar (the "\n" represents an
ASCII newline).

StringToSign = HTTPVerb + "\n" +
ValueOfHostHeaderInLowercase + "\n" +
HTTPRequestURI + "\n" +
CanonicalizedQueryString <from the preceding step>

The HTTPRequestURI component is the HTTP absolute path component of the URI up to, but
not including, the query string. If the HTTPRequestURI is empty, use a forward slash (/).

3. Calculate an RFC 2104-compliant HMAC with the string you just created, your Secret Access
Key as the key, and SHA256 or SHA1 as the hash algorithm.

For more information, see https://www.ietf.org/rfc/rfc2104.txt.

4. Convert the resulting value to base64.

5. Include the value as the value of the Signature parameter in the request.

For example, the following is a sample request (linebreaks added for clarity).

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeClusters
 &ClusterName=myCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2021-01-01

For the preceding query string, you would calculate the HMAC signature over the following string.

GET\n
 memory-db.amazonaws.com\n
 Action=DescribeClusters
 &ClusterName=myCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2021-01-01

Using the query API 482

https://www.ietf.org/rfc/rfc2104.txt

Amazon MemoryDB for Redis Developer Guide

 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE%2F20140523%2Fus-east-1%2Fmemorydb%2Faws4_request
 &X-Amz-Date=20210801T223649Z
 &X-Amz-SignedHeaders=content-type%3Bhost%3Buser-agent%3Bx-amz-content-sha256%3Bx-
amz-date
 content-type:
 host:memory-db.us-east-1.amazonaws.com
 user-agent:ServicesAPICommand_Client
 x-amz-content-sha256:
 x-amz-date:

The result is the following signed request.

https://memory-db.us-east-1.amazonaws.com/
 ?Action=DescribeClusters
 &ClusterName=myCluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2021-01-01
 &X-Amz-Algorithm=Amazon4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20141201/us-east-1/memorydb/aws4_request
 &X-Amz-Date=20210801T223649Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=2877960fced9040b41b4feaca835fd5cfeb9264f768e6a0236c9143f915ffa56

For detailed information on the signing process and calculating the request signature, see the topic
Signature Version 4 signing process and its subtopics.

Available libraries

AWS provides software development kits (SDKs) for software developers who prefer to build
applications using language-specific APIs instead of the Query API. These SDKs provide basic
functions (not included in the APIs), such as request authentication, request retries, and error
handling so that it is easier to get started. SDKs and additional resources are available for the
following programming languages:

• Java

• Windows and .NET

• PHP

Available libraries 483

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/java
https://aws.amazon.com/net
https://aws.amazon.com/php

Amazon MemoryDB for Redis Developer Guide

• Python

• Ruby

For information about other languages, see Sample code & libraries.

Troubleshooting applications

MemoryDB provides specific and descriptive errors to help you troubleshoot problems while
interacting with the MemoryDB API.

Retrieving errors

Typically, you want your application to check whether a request generated an error before you
spend any time processing results. The easiest way to find out if an error occurred is to look for an
Error node in the response from the MemoryDB API.

XPath syntax provides a simple way to search for the presence of an Error node, as well as an
easy way to retrieve the error code and message. The following code snippet uses Perl and the
XML::XPath module to determine if an error occurred during a request. If an error occurred, the
code prints the first error code and message in the response.

use XML::XPath;
my $xp = XML::XPath->new(xml =>$response);
if ($xp->find("//Error"))
{print "There was an error processing your request:\n", " Error code: ",
$xp->findvalue("//Error[1]/Code"), "\n", " ",
$xp->findvalue("//Error[1]/Message"), "\n\n"; }

Troubleshooting tips

We recommend the following processes to diagnose and resolve problems with the MemoryDB API.

• Verify that MemoryDB is running correctly.

To do this, simply open a browser window and submit a query request to the MemoryDB service
(such as https://memory-db.us-east-1.amazonaws.com). A MissingAuthenticationTokenException
or UnknownOperationException confirms that the service is available and responding to
requests.

• Check the structure of your request.

Troubleshooting applications 484

https://aws.amazon.com/python
https://aws.amazon.com/ruby
https://aws.amazon.com/code

Amazon MemoryDB for Redis Developer Guide

Each MemoryDB operation has a reference page in the MemoryDB API Reference. Double-check
that you are using parameters correctly. To give you ideas regarding what might be wrong, look
at the sample requests or user scenarios to see if those examples are doing similar operations.

• Check the forum.

MemoryDB has a discussion forum where you can search for solutions to problems others have
experienced along the way. To view the forum, see

https://forums.aws.amazon.com/ .

Troubleshooting applications 485

https://forums.aws.amazon.com/

Amazon MemoryDB for Redis Developer Guide

Quotas for Amazon MemoryDB for Redis

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota is not yet available in Service Quotas, use the limit increase form.

Your AWS account has the following quotas related to MemoryDB.

Resource Default

Nodes per Region 300

Nodes per cluster per instance type 90

Nodes per shard 6

Parameter groups per Region 150

Subnet groups per Region 150

Subnets per subnet group 20

Users per user group 100

Total number of users 1000

Number of user groups 100

486

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon MemoryDB for Redis Developer Guide

Document history for the MemoryDB User Guide

The following table describes the documentation releases for MemoryDB.

Change Description Date

MemoryDB now supports
authenticating users using
IAM

IAM Authentication allows
you to authenticate a
connection to MemoryDB for
Redis using AWS Identity and
Access Management identitie
s. This allows you to strengthe
n your security model and
simplify many administr
ative security tasks. For more
information, see Authentic
ating with IAM.

May 10, 2023

MemoryDB now supports
Redis 7

This release brings several
new features to MemoryDB
for Redis: Redis functions,
ACL improvements, Sharded
Pub/Sub and enhanced I/
O multiplexing. For more
information, see Redis engine
versions.

May 9, 2023

MemoryDB now offers
reserved nodes

Reserved nodes provide you
with a significant discount
compared to on-demand
node pricing. Reserved nodes
are not physical nodes, but
rather a billing discount
applied to the use of on-
demand nodes in your
account. For more informati

December 27, 2022

487

https://docs.aws.amazon.com/memorydb/latest/devguide/auth-iam.html
https://docs.aws.amazon.com/memorydb/latest/devguide/auth-iam.html
https://docs.aws.amazon.com/memorydb/latest/devguide/engine-versions.html
https://docs.aws.amazon.com/memorydb/latest/devguide/engine-versions.html

Amazon MemoryDB for Redis Developer Guide

on, see MemoryDB reserved
nodes.

MemoryDB now supports
Data Tiering

MemoryDB for Redis data
tiering. You can use data
tiering as a lower-cost way
to scale your clusters to up
to hundreds of terabytes of
capacity. For more informati
on, see Data tiering.

November 3, 2022

MemoryDB now supports
the native JavaScript Object
Notation (JSON) format

The native JavaScript Object
Notation (JSON) format is a
simple, schemaless way to
encode complex datasets
inside Redis clusters. You can
natively store and access data
using the JavaScript Object
Notation (JSON) format inside
Redis clusters and update
JSON data stored in those
clusters, without needing
to manage custom code to
serialize and deserialize it. For
more information, see Getting
started with JSON.

May 25, 2022

MemoryDB now supports
AWS PrivateLink

AWS PrivateLink allows you
to privately access MemoryDB
API operations without an
internet gateway, NAT device,
VPN connection, or AWS
Direct Connect connection.
For more information, see
MemoryDB API and interface
VPC endpoints (AWS PrivateLi
nk).

January 24, 2022

488

https://docs.aws.amazon.com/memorydb/latest/devguide/nodes.reservednodes.html
https://docs.aws.amazon.com/memorydb/latest/devguide/nodes.reservednodes.html
https://docs.aws.amazon.com/memorydb/latest/devguide/data-tiering.html
https://docs.aws.amazon.com/memorydb/latest/devguide/json-gs.html
https://docs.aws.amazon.com/memorydb/latest/devguide/json-gs.html
https://docs.aws.amazon.com/memorydb/latest/devguide/memorydb-privatelink.html
https://docs.aws.amazon.com/memorydb/latest/devguide/memorydb-privatelink.html
https://docs.aws.amazon.com/memorydb/latest/devguide/memorydb-privatelink.html

Amazon MemoryDB for Redis Developer Guide

Initial release Initial release of the
MemoryDB User Guide. For
more information, see What is
MemoryDB?

August 19, 2021

489

https://docs.aws.amazon.com/memorydb/latest/devguide/what-is-memorydb-for-redis.html
https://docs.aws.amazon.com/memorydb/latest/devguide/what-is-memorydb-for-redis.html

	Amazon MemoryDB for Redis
	Table of Contents
	What is MemoryDB for Redis?
	Features of MemoryDB
	MemoryDB core components
	Clusters
	Nodes
	Shards
	Parameter groups
	Subnet Groups
	Access Control Lists
	Users

	Related services
	Choosing Regions and Availability Zones
	Locating your nodes
	Supported Regions & endpoints

	Accessing MemoryDB
	MemoryDB security

	Getting started with MemoryDB
	Setting up
	Create your AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Grant programmatic access
	Set up your permissions (new MemoryDB users only)
	Downloading and Configuring the AWS CLI

	Step 1: Create a cluster
	Creating a MemoryDB cluster
	Creating a cluster (Console)
	Creating a cluster (AWS CLI)
	Creating a cluster (MemoryDB API)

	Setting up authentication

	Step 2: Authorize access to the cluster
	Step 3: Connect to the cluster
	Find your cluster endpoint
	Connect to a MemoryDB cluster (Linux)
	Connecting to MemoryDB nodes using redis-cli

	Step 4: Deleting a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the MemoryDB API

	Where do I go from here?

	Managing nodes
	MemoryDB nodes and shards
	Supported node types
	MemoryDB reserved nodes
	Overview of reserved nodes
	Offering types
	Size flexible reserved nodes
	Deleting a reserved node
	Working with reserved nodes
	Console
	AWS Command Line Interface
	MemoryDB API
	Viewing the billing for your reserved nodes

	Replacing nodes

	Managing clusters
	Data tiering
	Best practices
	Limitations
	Data tiering pricing
	Monitoring
	Using data tiering
	Using data tiering using the AWS Management Console
	Enabling data tiering using the AWS CLI

	Restoring data from a snapshot into clusters with data tiering enabled
	Restoring data from a snapshot into clusters with data tiering enabled (console)
	Restoring data from a snapshot into clusters with data tiering enabled (AWS CLI)

	Preparing a cluster
	Determining your requirements
	Memory and processor requirements
	MemoryDB cluster configuration
	Enhanced I/O Multiplexing
	Scaling requirements
	Access requirements
	Region and Availability Zones

	Creating a cluster
	Viewing a cluster's details
	Viewing details for a MemoryDB cluster (Console)
	Viewing a cluster's details (AWS CLI)
	Viewing a cluster's details (MemoryDB API)

	Modifying a MemoryDB cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the MemoryDB API

	Adding / Removing nodes from a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the MemoryDB API

	Accessing your cluster
	Grant access to your cluster
	Accessing MemoryDB resources from outside AWS
	Create a certificate authority
	Configuring AWS client VPN components
	Configure the VPN client

	Finding connection endpoints
	Finding the Endpoint for a MemoryDB Cluster (AWS Management Console)
	Finding the Endpoint for a MemoryDB Cluster (AWS CLI)
	Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)
	Finding the Endpoint for a MemoryDB Cluster (MemoryDB API)

	Working with shards
	Finding a shard's name
	Using the AWS Management Console
	Using the AWS CLI
	Using the MemoryDB API

	Managing your MemoryDB implementation
	Redis engine versions
	MemoryDB for Redis version 7.1 (enhanced)
	MemoryDB for Redis version 7.0 (enhanced)
	MemoryDB for Redis version 6.2 (enhanced)
	Upgrading engine versions
	How to upgrade engine versions
	Resolving blocked Redis engine upgrades

	Getting started with JSON
	Redis JSON Datatype overview
	Terminology
	Supported JSON standard
	Root element
	Document size limit
	JSON ACLs
	Nesting depth limit
	Command syntax
	Path syntax
	Common error prefixes
	JSON related metrics
	How MemoryDB interacts with JSON
	Operator precedence
	Maximum path nesting limit behavior
	Handling numeric values
	Strict syntax evaluation

	Supported commands
	JSON.ARRAPPEND
	JSON.ARRINDEX
	JSON.ARRINSERT
	JSON.ARRLEN
	JSON.ARRPOP
	JSON.ARRTRIM
	JSON.CLEAR
	JSON.DEBUG
	JSON.DEL
	JSON.FORGET
	JSON.GET
	JSON.MGET
	JSON.NUMINCRBY
	JSON.NUMMULTBY
	JSON.OBJLEN
	JSON.OBJKEYS
	JSON.RESP
	JSON.SET
	JSON.STRAPPEND
	JSON.STRLEN
	JSON.TOGGLE
	JSON.TYPE

	Tagging your MemoryDB resources
	Tag basics
	Resources you can tag
	Tagging clusters and snapshots
	Tag restrictions
	Tagging resources examples
	Monitoring costs with cost allocation tags
	Managing your cost allocation tags using the AWS CLI
	Listing tags using the AWS CLI
	Adding tags using the AWS CLI
	Modifying tags using the AWS CLI
	Removing tags using the AWS CLI

	Managing your cost allocation tags using the MemoryDB API
	Listing tags using the MemoryDB API
	Adding tags using the MemoryDB API
	Modifying tags using the MemoryDB API
	Removing tags using the MemoryDB API

	Managing maintenance
	Best practices
	Restricted Redis Commands
	Resilience in MemoryDB for Redis
	Mitigating Failures
	Mitigating Failures: MemoryDB clusters

	Best practices: Pub/Sub and Enhanced I/O Multiplexing
	Best practices: Online cluster resizing

	Understanding MemoryDB replication
	Consistency
	Replication in a cluster
	Minimizing downtime in MemoryDB with Multi-AZ
	Failure scenarios with Multi-AZ responses
	Failure scenarios when only the primary node fails
	Failure scenarios when the primary node and some replicas fail
	Failure scenarios when the entire cluster fails

	Testing automatic failover
	Testing automatic failover using the AWS Management Console
	Testing automatic failover using the AWS CLI
	Testing automatic failover using the MemoryDB API

	Changing the number of replicas
	Increasing the number of replicas in a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the MemoryDB API

	Decreasing the number of replicas in a cluster
	Using the AWS Management Console
	Using the AWS CLI
	Using the MemoryDB API

	Snapshot and restore
	Snapshot constraints
	Snapshot costs
	Scheduling automatic snapshots
	Making manual snapshots
	Creating a manual snapshot (Console)
	Creating a manual snapshot (AWS CLI)
	Related topics

	Creating a manual snapshot (MemoryDB API)
	Related topics

	Creating a final snapshot
	Creating a final snapshot (Console)
	Creating a final snapshot (AWS CLI)
	When deleting a MemoryDB cluster

	Creating a final snapshot (MemoryDB API)
	When deleting a MemoryDB cluster

	Describing snapshots
	Describing snapshots (Console)
	Describing snapshots (AWS CLI)
	Describing snapshots (MemoryDB API)

	Copying a snapshot
	Copying a snapshot (Console)
	Copying a snapshot (AWS CLI)
	Copying a snapshot (MemoryDB API)

	Exporting a snapshot
	Step 1: Create an Amazon S3 bucket
	Step 2: Grant MemoryDB access to your Amazon S3 bucket
	Grant MemoryDB access to your S3 Bucket in an AWS Region

	Step 3: Export a MemoryDB snapshot
	Exporting a MemoryDB snapshot (Console)
	Exporting a MemoryDB snapshot (AWS CLI)
	Exporting a MemoryDB snapshot (MemoryDB API)

	Restoring from a snapshot
	Restoring from a snapshot (Console)
	Restoring from a snapshot (AWS CLI)
	Restoring from a snapshot (MemoryDB API)

	Seeding a new cluster with an externally created snapshot
	Step 1: Create redis snapshot on external cluster
	Step 2: Create an Amazon S3 bucket and folder
	Step 3: Upload your snapshot to Amazon S3
	Step 4: Grant MemoryDB read access to the .rdb file
	Grant MemoryDB read access to the .rdb file

	Step 5: Seed the MemoryDB cluster with the .rdb file data

	Tagging snapshots
	Deleting a snapshot
	Deleting a snapshot (Console)
	Deleting a snapshot (AWS CLI)
	Deleting a snapshot (MemoryDB API)

	Scaling
	Scaling MemoryDB clusters
	Offline resharding and shard rebalancing for MemoryDB
	Online resharding and shard rebalancing for MemoryDB
	Adding shards with online resharding
	Adding shards (Console)
	Adding shards (AWS CLI)
	Adding shards (MemoryDB API)

	Removing shards with online resharding
	Removing shards (Console)
	Removing shards (AWS CLI)
	Removing shards (MemoryDB API)

	Online vertical scaling by modifying node type
	Online scaling up
	Scaling up MemoryDB clusters (Console)
	Scaling up MemoryDB clusters (AWS CLI)
	Scaling up MemoryDB clusters (MemoryDB API)

	Online scaling down
	Scaling down MemoryDB clusters (Console)
	Scaling down MemoryDB clusters (AWS CLI)
	Scaling down MemoryDB clusters (MemoryDB API)

	Configuring engine parameters using parameter groups
	Parameter management
	Parameter group tiers
	Creating a parameter group
	Creating a parameter group (Console)
	Creating a parameter group (AWS CLI)
	Creating a parameter group (MemoryDB API)

	Listing parameter groups by name
	Listing parameter groups by name (Console)
	Listing parameter groups by name (AWS CLI)
	Listing parameter groups by name (MemoryDB API)

	Listing a parameter group's values
	Listing a parameter group's values (Console)
	Listing a parameter group's values (AWS CLI)
	Listing a parameter group's values (MemoryDB API)

	Modifying a parameter group
	Modifying a parameter group (Console)
	Modifying a parameter group (AWS CLI)
	Modifying a parameter group (MemoryDB API)

	Deleting a parameter group
	Deleting a parameter group (Console)
	Deleting a parameter group (AWS CLI)
	Deleting a parameter group (MemoryDB API)

	Redis specific parameters
	Redis 7 parameter changes
	Redis 6 parameters
	MemoryDB node-type specific parameters

	Tutorial: Configuring a Lambda function to access MemoryDB in an Amazon VPC
	Step 1: Create a cluster
	Step 1.1: Create a cluster
	Step 1.2: Copy the cluster endpoint
	Step 1.3: Create IAM Role
	Step 1.4: Create an Access Control List (ACL)

	Step 2: Create a Lambda function
	Step 2.1: Create the deployment package
	Step 2.2: Create the IAM role (execution role)
	Step 2.3: Upload the deployment package (create the Lambda function)

	Step 3: Test the Lambda function
	Step 4: Clean up (Optional)
	Step 4.1: Delete Lambda function
	Step 4.2: Delete MemoryDB cluster
	Step 4.3: Remove IAM Role and policies

	Vector search
	Vector search overview
	Indexes and the Redis keyspace
	Index field types
	Vector index algorithms
	Vector search query expression
	Wildcard
	Numeric range
	Tag compare
	Boolean combinations
	Vector search

	INFO command
	search_memory section
	search_index_stats section
	search_ingestion section
	search_backfill section
	search_query section

	Vector search security

	Vector search features and limits
	Vector search availability
	Parametric restrictions
	Scaling limits
	Operational restrictions
	Snapshot import/export and Live Migration
	Memory consumption
	Out of Memory during backfill
	Transactions

	Use cases
	Retrieval Augmented Generation (RAG)
	Foundation Model (FM) Buffer Memory
	Fraud detection
	Other use cases

	Using the AWS Management Console
	Using the AWS Command Line Interface
	Vector search commands
	FT.CREATE
	FT.SEARCH
	FT.AGGREGATE
	FT.DROPINDEX
	FT.INFO
	FT._LIST
	FT.ALIASADD
	FT.ALIASDEL
	FT.ALIASUPDATE
	FT._ALIASLIST
	FT.CONFIG GET
	FT.CONFIG HELP
	FT.CONFIG SET
	FT.PROFILE
	FT.EXPLAIN
	FT.EXPLAINCLI

	Security in MemoryDB for Redis
	Data protection in MemoryDB for Redis
	Data security in MemoryDB for Redis
	At-Rest Encryption in MemoryDB
	Using Customer Managed Keys from AWS KMS
	See Also

	In-transit encryption (TLS) in MemoryDB
	In-transit encryption overview
	See also

	Authenticating users with Access Control Lists (ACLs)
	Specifying Permissions Using an Access String
	Vector search capabilities
	Applying ACLs to a cluster for MemoryDB
	Creating Users and Access Control Lists with the Console and CLI
	Managing Users with the Console and CLI
	Creating a user (Console)
	Creating a user using the AWS CLI
	Modifying a user (Console)
	Modifying a user using AWS CLI
	Viewing user details (Console)
	Viewing user details using the AWS CLI
	Deleting a user (Console)
	Deleting a user using the AWS CLI

	Managing Access Control Lists with the Console and CLI
	Creating an Access Control List (ACL) (Console)
	Creating an Access Control List (ACL) using the AWS CLI
	Modifying an Access Control List (ACL) (console)
	Modifying an Access Control List (ACL) using the AWS CLI
	Viewing Access Control List (ACL) details (Console)
	Viewing Access Control Lists (ACL) using the AWS CLI
	Deleting an Access Control List (ACL) (console)
	Deleting an Access Control List (ACL) using the AWS CLI

	Assigning Access control lists to clusters
	Assigning Access control lists to clusters Using the Console
	Assigning Access control lists to clusters Using the AWS CLI

	Authenticating with IAM
	Overview
	Limitations
	Setup
	Connecting

	Identity and access management in MemoryDB for Redis
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How MemoryDB for Redis works with IAM
	Identity-based policies for MemoryDB
	Identity-based policy examples for MemoryDB

	Resource-based policies within MemoryDB
	Policy actions for MemoryDB
	Policy resources for MemoryDB
	Policy condition keys for MemoryDB
	Using condition keys
	Specifying Conditions: Using Condition Keys
	Example Policies: Using Conditions for Fine-Grained Parameter Control

	Access control lists (ACLs) in MemoryDB
	Attribute-based access control (ABAC) with MemoryDB
	Using Temporary credentials with MemoryDB
	Cross-service principal permissions for MemoryDB
	Service roles for MemoryDB
	Service-linked roles for MemoryDB

	Identity-based policy examples for MemoryDB for Redis
	Policy best practices
	Using the MemoryDB console
	Allow users to view their own permissions

	Troubleshooting MemoryDB for Redis identity and access
	I am not authorized to perform an action in MemoryDB
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my MemoryDB resources

	Access control
	Overview of managing access permissions to your MemoryDB resources
	MemoryDB for Redis resources and operations
	Understanding resource ownership
	Managing access to resources
	Identity-based policies (IAM policies)
	Specifying policy elements: Actions, effects, resources, and principals
	Specifying conditions in a policy

	Using identity-based policies (IAM policies) for MemoryDB for Redis
	Permissions required to use the MemoryDB for Redis console
	Customer-managed policy examples
	Example 1: Allow a user read-only access to MemoryDB resources
	Example 2: Allow a user to perform common MemoryDB system administrator tasks
	Example 3: Allow a user to access all MemoryDB API actions
	Example 4: Allow a user to call IAM CreateServiceLinkedRole API

	Resource-level permissions
	Example 1: Allow a user full access to specific MemoryDB resource types
	Example 2: Deny a user access to a cluster.

	Using Service-Linked Roles for Amazon MemoryDB for Redis
	Service-Linked Role Permissions for Amazon MemoryDB for Redis
	Creating a Service-Linked Role (IAM)
	Creating a Service-Linked Role (IAM Console)
	Creating a Service-Linked Role (IAM CLI)
	Creating a Service-Linked Role (IAM API)

	Editing the Description of a Service-Linked Role for Amazon MemoryDB for Redis
	Editing a Service-Linked Role Description (IAM Console)
	Editing a Service-Linked Role Description (IAM CLI)
	Editing a Service-Linked Role Description (IAM API)

	Deleting a Service-Linked Role for Amazon MemoryDB for Redis
	Cleaning Up a Service-Linked Role
	Deleting a Service-Linked Role (IAM Console)
	Deleting a Service-Linked Role (IAM CLI)
	Deleting a Service-Linked Role (IAM API)

	AWS managed policies for MemoryDB for Redis
	AWS managed policy: MemoryDBServiceRolePolicy
	AWS-managed (predefined) policies for MemoryDB for Redis
	AmazonMemoryDBReadOnlyAccess
	AmazonMemoryDBFullAccess

	MemoryDB updates to AWS managed policies

	MemoryDB API permissions: Actions, resources, and conditions reference

	Logging and monitoring
	Monitoring MemoryDB for Redis with Amazon CloudWatch
	Host-Level Metrics
	Metrics for MemoryDB
	Which Metrics Should I Monitor?
	CPUUtilization
	EngineCPUUtilization
	SwapUsage
	Evictions
	CurrConnections
	Memory
	Network
	Replication

	Choosing Metric Statistics and Periods
	Monitoring CloudWatch metrics
	Monitoring CloudWatch metrics (Console)
	Monitoring CloudWatch metrics using the CloudWatch CLI
	Monitoring CloudWatch metrics using the CloudWatch API

	Monitoring MemoryDB for Redis events
	Managing MemoryDB Amazon SNS notifications
	Adding an Amazon SNS topic
	Adding an Amazon SNS topic (Console)
	Adding an Amazon SNS topic (AWS CLI)
	Adding an Amazon SNS topic (MemoryDB API)

	Enabling and disabling Amazon SNS notifications
	Enabling and disabling Amazon SNS notifications (Console)
	Enabling and disabling Amazon SNS notifications (AWS CLI)
	Enabling and disabling Amazon SNS notifications (MemoryDB API)

	Viewing MemoryDB events
	Viewing MemoryDB events (Console)
	Viewing MemoryDB events (AWS CLI)
	Viewing MemoryDB events (MemoryDB API)

	Event Notifications and Amazon SNS
	MemoryDB Events

	Logging MemoryDB for Redis API calls with AWS CloudTrail
	MemoryDB for Redis information in CloudTrail
	Understanding MemoryDB for Redis log file entries

	Compliance validation for MemoryDB for Redis
	Infrastructure security in Amazon MemoryDB for Redis
	Internetwork traffic privacy
	MemoryDB and Amazon VPC
	Understanding MemoryDB and VPCs
	Overview of MemoryDB in a VPC
	Prerequisites
	Routing and security
	Amazon VPC documentation

	Access Patterns for Accessing a MemoryDB Cluster in an Amazon VPC
	Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in the Same Amazon VPC
	Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon VPCs
	Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon VPCs in the Same Region
	Using Transit Gateway

	Accessing a MemoryDB Cluster when it and the Amazon EC2 Instance are in Different Amazon VPCs in Different Regions
	Using Transit VPC

	Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center
	Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using VPN Connectivity
	Accessing a MemoryDB Cluster from an Application Running in a Customer's Data Center Using Direct Connect

	Creating a Virtual Private Cloud (VPC)
	Creating a VPC (Console)

	Subnets and subnet groups
	Creating a subnet group
	Creating a subnet group (Console)
	Creating a subnet group (AWS CLI)
	Creating a subnet group (MemoryDB API)

	Updating a subnet group
	Updating subnet groups (Console)
	Updating subnet groups (AWS CLI)
	Updating subnet groups (MemoryDB API)

	Viewing subnet group details
	Viewing details of subnet groups (console)
	Viewing subnet groups details (AWS CLI)
	Viewing subnet groups (MemoryDB API)

	Deleting a subnet group
	Deleting a subnet group (Console)
	Deleting a subnet group (AWS CLI)
	Deleting a subnet group (MemoryDB API)

	MemoryDB for Redis API and interface VPC endpoints (AWS PrivateLink)
	Considerations for VPC endpoints
	Creating an interface VPC endpoint for the MemoryDB API
	Creating a VPC endpoint policy for the Amazon MemoryDB API

	Service updates in MemoryDB for Redis
	Managing the service updates
	Applying the service updates
	Applying the service updates using the console
	Applying the service updates using the AWS CLI

	Reference
	Using the MemoryDB API
	Using the query API
	Query parameters
	Query request authentication

	Available libraries
	Troubleshooting applications
	Retrieving errors
	Troubleshooting tips

	Quotas for Amazon MemoryDB for Redis
	Document history for the MemoryDB User Guide

