
User Guide

AWS HealthOmics

Version latest

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS HealthOmics User Guide

AWS HealthOmics: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS HealthOmics User Guide

Table of Contents

What is AWS HealthOmics? .. 1
Important notice ... 1
Concepts ... 2

Storage .. 2
Analytics .. 2
Workflows ... 3

HealthOmics features .. 3
Related services .. 4
Regions and endpoints for AWS HealthOmics ... 5
How to access HealthOmics ... 5
Learn more ... 5

Setting up HealthOmics .. 7
Sign up for an AWS account .. 7
Create a user with administrative access .. 7

Getting started .. 9
Getting Started (API) ... 9

Creating a sequence store ... 9
Creating a variant store ... 10
Creating a workflow ... 11

Getting Started (Console) ... 15
HealthOmics Storage ... 15
HealthOmics Workflows .. 17

HealthOmics Storage .. 18
ETag calculation and data provenance .. 19

How ETags are calculated ... 20
Creating reference and sequence stores ... 21

Creating and managing reference stores ... 21
Creating and managing sequence stores ... 26
Deleting reference and sequence stores .. 28

Sequence store imports .. 28
Direct upload to a sequence store ... 39
Exporting read sets .. 45
Accessing and managing read sets with Amazon S3 URIs ... 47

Amazon S3 URI structure in HealthOmics storage .. 48

Version latest iii

AWS HealthOmics User Guide

Using Hosted or Local IGV to access read sets ... 49
Using Samtools or HTSlib in HealthOmics .. 49
Using Mountpoint HealthOmics .. 50
Using CloudFront with HealthOmics .. 50

Activating read sets ... 50
HealthOmics Analytics .. 54

Creating variant stores .. 54
Creating variant stores using the console ... 55
Creating variant stores using the API ... 55

Creating variant store import jobs ... 57
Creating annotation stores .. 61

Create an annotation store using the console ... 61
Create an annotation store using the API ... 62
Creating new versions of annotation stores ... 63

Creating annotation store import jobs .. 67
Create an annotation import job using the API ... 67
Additional parameters for TSV and VCF formats ... 69
Creating TSV formatted annotation stores ... 70
Starting VCF formatted import jobs ... 73

Deleting analytics stores .. 74
Querying analytics data .. 74

Setting up Lake Formation ... 75
Configuring Athena for queries ... 78
Runnning queries .. 78

Sharing analytics stores .. 80
Creating a store share ... 80

HealthOmics Workflows .. 82
Ready2Run workflows ... 82

Using Ready2Run workflows (console) .. 83
Using Ready2Run workflows (API) .. 84

Private workflows ... 85
Setting up Amazon ECR .. 86
Writing workflow definition files ... 89
Creating private workflows .. 104
Sharing workflows .. 114
Creating run groups ... 118

Version latest iv

AWS HealthOmics User Guide

Running workflows .. 120
Run storage types .. 121
Starting a workflow run .. 123
Deleting workflows and runs ... 129
Define custom IAM permissions for runs .. 129

Using the CloudWatch Logs for troubleshooting .. 131
Resource sharing .. 132

Create a share ... 132
Retrieve information about a share ... 133
View the shares that you own .. 134
View accepted shares from other accounts .. 134
Delete a share ... 134

Tagging resources in HealthOmics ... 135
Important notice .. 135
Tagging HealthOmics resources ... 135
Best practices .. 136
Tagging requirements ... 137
Adding a tag to an HealthOmics resource ... 137
Listing tags for a resource ... 138
Removing tags from a data store .. 139

Permissions .. 140
User policies .. 140
Service roles .. 142

Sample IAM policies ... 142
Sample CloudWatch templates ... 144

Resource permissions .. 146
Lake Formation permissions .. 146
Amazon ECR permissions .. 147

Amazon S3 URI Permissions .. 147
Security .. 149

Data protection .. 149
Encryption at rest ... 150

Identity and access management ... 159
Audience ... 159
Authenticating with identities ... 160
Managing access using policies ... 163

Version latest v

AWS HealthOmics User Guide

How AWS HealthOmics works with IAM ... 166
Identity-based policy examples ... 175
AWS managed policies .. 177
Troubleshooting .. 181

Compliance validation .. 183
Resilience ... 184
VPC endpoints (AWS PrivateLink) .. 184

Considerations for HealthOmics VPC endpoints .. 184
Creating an interface VPC endpoint for HealthOmics .. 185
Creating a VPC endpoint policy for HealthOmics ... 185
Special considerations for accessing read sets using Amazon S3 URIs 186

Monitoring AWS HealthOmics .. 188
CloudWatch ... 189

Viewing AWS HealthOmics metrics .. 189
Creating an alarm ... 190

CloudTrail logs .. 190
HealthOmics information in CloudTrail ... 191
Understanding HealthOmics log file entries .. 192

EventBridge ... 193
EventBridge event message structure and examples ... 194

Troubleshooting ... 198
Why can't I run my workflow? .. 198
Why do I get a "not a currently supported operation" error when running Nextflow? 199
Why can't I create a reference store? .. 199
Why can't I create a sequence store? .. 199
Why can't I create a workflow? .. 199
Why did my task fail? ... 199
Why can't I import my BAM, CRAM or FASTQ files? ... 200
Why can't I import my VCF or gVCF files? .. 200
Why can't I see my annotation store or variant store in Athena? .. 200
Why can't I access my data store in Athena? ... 200
Why do I get a "Request Too Long" error message when I try to create a workflow? 200
Error and status messages for run failures .. 201

Quotas .. 204
Service quotas .. 204
File size quotas ... 209

Version latest vi

AWS HealthOmics User Guide

API quotas ... 213
Document history .. 216

Version latest vii

AWS HealthOmics User Guide

What is AWS HealthOmics?

AWS HealthOmics is an AWS service that helps users such as bioinformaticians, researchers, and
scientists to store, query, analyze, and generate insights from genomics and other biological data.
It simplifies and accelerates the process of storing and analyzing genomic information for research
and clinical organizations, and makes scientific discovery and insight generation faster.

HealthOmics has three primary components. HealthOmics Storage helps you store and
share petabytes of genomics data efficiently and at low cost per gigabase. HealthOmics
Analytics simplifies how you prepare genomics data for multiomics and multimodal analyses.
HealthOmics Workflows automatically provisions and scales the underlying infrastructure for your
bioinformatics computation.

Topics

• Important notice

• HealthOmics concepts

• HealthOmics features

• Related services

• Regions and endpoints for AWS HealthOmics

• How to access HealthOmics

• Learn more

Important notice

HealthOmics isn't a substitute for professional medical advice, diagnosis, or treatment, and isn't
intended to cure, treat, mitigate, prevent, or diagnose any disease or health condition. You are
responsible for instituting human review as part of any use of AWS HealthOmics, including in
association with any third-party product intended to inform clinical decision-making.

HealthOmics is intended only for the transferring, storing, formatting, or displaying of data,
and for the provision of infrastructure and configuration support for managing workflows.
AWS HealthOmics isn't intended to directly perform variant calling or genomic analysis and
interpretation. AWS HealthOmics isn't intended to interpret or analyze clinical laboratory tests or
other device data, results, and findings, and isn't a substitute for third-party tools intended for use
in genomic analyses.

Important notice Version latest 1

AWS HealthOmics User Guide

HealthOmics concepts

This topic covers definitions for key concepts and terms that are specific to HealthOmics, to help
you understand the terminology of HealthOmics used this guide.

Topics

• Storage

• Analytics

• Workflows

Storage

Data storage is separated into sequence stores, for your genomics sequences and related
information, and a reference store, for all of your reference genomes. The following terms describe
the implementations that are specific to HealthOmics.

• Sequence store – A data store for the storage of genomics files. You can have one or more
sequence stores within HealthOmics. Access permissions and AWS KMS encryption can be set on
a sequence store to control who has access to the data.

• Read set – A read set is an abstraction of genomics reads, which are stored in FASTQ, BAM, or
CRAM formats. Read sets can be imported into sequence stores and annotated with metadata.
You can apply permissions to read sets using attribute based access control (ABAC).

• Reference – A genome reference is used with reads to identify where in a genome a specific read,
or group of reads, is mapped to. These are in FASTA format and stored in the reference store.

• Reference store – A data store for the storage of reference genomes. You can have a single
reference store in each account and region.

Analytics

You can transform and analyze your genomics data with HealthOmics Analytics. Create a variant
store or annotation store to include additional information for your queries.

• Variant store – data store that stores variant data at a population scale. Variant stores support
both genomic Variant Call Format (gVCF) and VCF inputs.

Concepts Version latest 2

AWS HealthOmics User Guide

• Annotation store – A data store representing an annotation database, such as one from a TSV/
CSV, VCF, or General Feature Format (GFF3) file. Annotation Stores are mapped to the same
coordinate system as variant stores during an import.

Workflows

With HealthOmics Workflows, you can process and analyze your genomics data.

• Workflow – The overall definition of an end to end process including parameters and references
to tools. Workflow definitions can be expressed as WDL, Nextflow, or CWL. Each created
workflow has a unique identifier.

• Run/Workflow run – A single invocation of a workflow. An individual run uses your defined input
data and produces an output. Each created run has a unique identifier.

• Task – The individual processes within a run. HealthOmics Workflows use these defined compute
specifications to run your task. Each task has a unique identifier.

• Run group – A group of runs for which you can set the max vCPU, max duration, or max
concurrent runs to help limit the compute resources used per run. You can specify and configure
priorities for your workflow runs within a run group. For example, you can specify that a high
priority run will be performed before one that's lower priority, creating a priority queue. It is
optional to use a Run Group, and each Run Group has a unique identifier.

HealthOmics features

HealthOmics offers the following features.

• HealthOmics Storage — helps you store and share petabytes of raw genomics data efficiently
and at low cost per gigabase.

• HealthOmics Analytics — simplifies how you prepare genomics data for multiomics and
multimodal analyses.

• HealthOmics Workflows — automatically provisions and scales the underlying infrastructure for
your bioinformatics workflows.

You can use each component independently, or as part of an integrated end-to-end solution.

HealthOmics offers you the following benefits.

Workflows Version latest 3

AWS HealthOmics User Guide

• Securely store and combine genomic data — HealthOmics integrates with other AWS services
such as AWS Lake Formation and Amazon Athena. You can securely store your genomics data
and then query or combine it with medical history data for better diagnoses and personalized
treatment plans.

• Protect patient privacy — HealthOmics is HIPAA eligible. It also integrates with IAM and Amazon
CloudWatch so that you can control and log data access, and track how the data is used in
analyses.

• Built to scale — Support large population data analyses with simplified billing and new
collaboration tools.

• Maximize efficiency — Use automated workflows and integrated tools to streamline data
processing and analysis.

You can use HealthOmics for the following biomedical applications:

• Population sequencing — Query thousands of genomes at once to understand how genomic
variation maps to phenotypes across a population.

• Clinical genomics — Build reproducible genomics workflows from sequencer output to
reportable data. You can also optimize for high volume throughput and set the compute
requirements for high-priority clinical samples to reduce turnaround time.

• Clinical trials — Integrate genome analysis into clinical trials to better understand the efficacy of
new drug candidates. Simplify and accelerate clinical trials with long-term cost savings and data
provenance to meet regulations from governing bodies.

• Enhance research and innovation — Streamline and control storage, access, and analysis of
anonymized genomics data with built-in row and column-based access control.

Related services

The following services work with HealthOmics.

• Amazon Elastic Container Registry – Each private workflow uses an Amazon ECR image (in a
private Amazon ECR repository) to contain all executables, libraries, and scripts required to run
the workflow.

• Amazon Simple Storage Service – Amazon S3 provides file storage for Store and Workflow data.

• AWS Lake Formation – Lake Formation manages data access to your Analytics data stores.

• Amazon Athena – Use Athena to perform queries on your Variant stores.

Related services Version latest 4

AWS HealthOmics User Guide

• Amazon SageMaker – Use SageMaker to run HealthOmics tasks using Jupyter notebooks.

Regions and endpoints for AWS HealthOmics

For a full list of regions and endpoints, see the AWS General Reference.

In addition to the AWS regions that are active by default, there are also Opt-in Regions which need
to be activated. To learn more about how to activate or deactivate a Region, see Specify which AWS
Regions your account can use in the AWS Account Management guide.

How to access HealthOmics

You can access AWS HealthOmics features using the management console, CLI, SDKs or API.

• AWS Management Console – Provides a web interface that you can use to access HealthOmics.

• AWS Command Line Interface (AWS CLI) – Provides commands for a broad set of AWS services,
including AWS HealthOmics, and is supported on Windows, macOS, and Linux. For more
information about installing the AWS CLI, see AWS Command Line Interface.

• AWS SDKs – AWS provides SDKs (Software Development Kits) that consist of libraries and sample
code for various programming languages and platforms (including Java, Python, Ruby, .NET, iOS,
and Android). The SDKs provide a convenient way to use HealthOmics programmatically. For
more information, see the AWS SDK Developer Center.

• AWS API – You can use API operations to access and manage HealthOmics programmatically. For
more information, see the HealthOmics API Reference.

Learn more

Learn more about HealthOmics from these workshops and tutorials:

• HealthOmics workshop – HealthOmics end to end workshop

• AWS genomics resources – Public Amazon ECR repositories related to genomics

• Python tutorials – Jupyter notebook tutorials on Github, covering HealthOmics storage,
analytics, and workflows

Become familiar with additional HealthOmics tools that AWS provides:

Regions and endpoints for AWS HealthOmics Version latest 5

https://docs.aws.amazon.com/general/latest/gr/healthomics-quotas.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html#manage-acct-regions-enable-standalone
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html#manage-acct-regions-enable-standalone
https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/omics/latest/api/Welcome.html
https://catalog.workshops.aws/amazon-omics-end-to-end/en-US
https://gallery.ecr.aws/aws-genomics?page=1
https://github.com/aws-samples/amazon-omics-tutorials

AWS HealthOmics User Guide

• WDL linter – HealthOmics linter for WDL

• Nextflow linter – HealthOmics linter for Nextflow

• HealthOmics Amazon ECR helper tool – Amazon ECR helper tool for HealthOmics

• HealthOmics tools on Github – Tools for working with HealthOmics (Transfer manager, URI
parser, Omics rerun, Run analyzer).

Learn more Version latest 6

https://gallery.ecr.aws/aws-genomics/healthomics-linter
https://gallery.ecr.aws/aws-genomics/linter-rules-for-nextflow
https://github.com/aws-samples/amazon-ecr-helper-for-aws-healthomics
https://github.com/awslabs/amazon-omics-tools

AWS HealthOmics User Guide

Setting up HealthOmics

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

Sign up for an AWS account Version latest 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

AWS HealthOmics User Guide

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access Version latest 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS HealthOmics User Guide

Getting started with HealthOmics

The following topics help you learn the concepts of each component of HealthOmics. You can start
using the service by creating a data store or setting up a basic workflow.

Topics

• Getting Started (API)

• Getting Started (Console)

Getting Started (API)

The following examples are intended to help you start using the service by creating a data store or
setting up a basic workflow. As prerequisites, your data must be in an Amazon S3 bucket in same
region (for example, us-west-2) and the most recent version of the AWS CLI installed.

Topics

• Creating a sequence store

• Creating a variant store

• Creating a workflow

Creating a sequence store

The following example demonstrates using the CreateSequenceStore operation with the AWS
CLI. To run the example, you must install the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

HealthOmics Storage provides storage for genomic files in FASTQ, BAM, and CRAM formats. These
files are stored in Read Sets, which are an AWS resource. To store Read Sets, you need to first
create a sequence store, as shown in the following example.

aws omics create-sequence-store --name "MySequenceStore"

Getting Started (API) Version latest 9

AWS HealthOmics User Guide

You will receive the following response in JSON, which include the ID number for your newly
created sequence store.

{
 "id": "3936421177",
 "arn": "arn:aws:omics:us-west-2:(account):sequenceStore/3936421177",
 "name": "MySequenceStore",
 "creationTime": "2022-07-13T20:09:26.038Z"
}

Creating a variant store

The following example demonstrates using the CreateVariantStore operation with the AWS
CLI. To run the example, you must install the latest version of the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

To create a variant store, we will need a referenceName and name parameter. The variant store is
ready to ingest data when its status is shown as READY.

aws omics create-variant-store --name (storeName) --reference (referenceArn)

To confirm the creation of your variant store, you will receive the following response.

{
 "id": "b533f097bade",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:451654099157:referenceStore/5638433913/reference/5871590330"
 },
 "status": "CREATING",
 "name": "variantstore",
 "creationTime": "2022-11-08T01:29:36.594566+00:00"
}

Creating a variant store Version latest 10

AWS HealthOmics User Guide

Creating a workflow

You will need both input and output Amazon S3 buckets, as well as an IAM role with access
to those buckets. The following is an example IAM policy that grants permission to access the
contents of an Amazon S3 bucket, the Amazon ECR containers, and Cloud Watch logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::[[s3path]]/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::[[s3path]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::[[output_s3path]]/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams",
 "logs:CreateLogStream",
 "logs:PutLogEvents"

Creating a workflow Version latest 11

AWS HealthOmics User Guide

],
 "Resource": [
 "arn:aws:logs:{{region}}:{{accountId}}:log-group:/aws/omics/
WorkflowLog:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:{{region}}:{{accountId}}:log-group:/aws/omics/
WorkflowLog:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": [
 "arn:aws:ecr:{{region}}:{{accountId}}:repository/*"
]
 }
]
}

The role will need to authorize the service to assume it before it can be used in a workflow run.
This can be done by adding "trust relationships" similar to the following statement.

{
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
}

Creating a workflow Version latest 12

AWS HealthOmics User Guide

Workflow definitions must be written in the supported languages, either WDL or Nextflow. The
following is a basic example that demonstrates a workflow that reads the contents of an INPUT file
and writes them into a RESULT file.

 version 1.0

Simple demo workflow, copy input file into output file

workflow TestFlow {
 input {
 File input_txt_file
 }

 #copies input file data to output.
 call TxtFileCopyTask{
 input:
 input_txt_file = input_txt_file,
 }

 output {
 File output_txt_file = TxtFileCopyTask.output_txt_file
 }

}

#Task Definitions

task TxtFileCopyTask {
 input {
 File input_txt_file
 }

 command {
 cat ~{input_txt_file} > outfile.txt
 }

 output {
 File output_txt_file = "outfile.txt"
 }
}

Creating a workflow Version latest 13

AWS HealthOmics User Guide

The workflow definition files need to be zipped before calling the HealthOmics CreateWorkflow
API operation.

zip definition.zip main.wdl

Define your parameters with a parameter-template file like the following JSON file.

{
 "image": {
 "description": "Optional ECR image",
 "optional": true
 },
 "file": {
 "description": "Required input file"
 }
}

Once you've defined your workflow and the parameters, you can create a workflow using the API as
shown.

aws omics create-workflow --name Sample --description BasicExample --definition-zip
 fileb://definition.zip --parameter-template file://params_sample_description.json

Once you've created your workflow, you should receive the following response to confirm that the
workflow has been created.

{
 "arn": "arn:aws:omics:us-west-2:....",
 "id": "12345",
 "status": "CREATING",
 "tags": {
 "resourceArn": "arn:aws:omics:us-west-2:...."
 }
}

Creating a workflow Version latest 14

AWS HealthOmics User Guide

Getting Started (Console)

The Getting started page of the console covers the three main HealthOmics components:
Genomics data storage, Workflows, and Analytics. The following examples will help you start using
each component.

Topics

• HealthOmics Storage

• HealthOmics Workflows

HealthOmics Storage

With HealthOmics Storage, you can create a sequence or reference store, import a reference
genome, and import genomics files. After you create your stores and import your genomic data,
you can access and analyze your sequence data.

Topics

• Create a reference store

• Create a sequence store

• Import genomics files

Create a reference store

To create a reference store

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Get started with HealthOmics.

3. Choose Reference genomes from the Genomics data storage options.

4. You can either choose a previously imported reference genome or import a new one. If you
haven't imported a reference genome,choose Import reference genome in the top right.

5. On the Create reference genome import job page, choose either the Quick create or Manual
create option to create a reference store, and then provide the following information.

• Reference genome name - A unique name for this store.

• Description (optional) - A description of this reference store.

Getting Started (Console) Version latest 15

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• IAM Role - Select a role with access to your reference genome.

• Reference from Amazon S3 - Select your reference sequence file in an Amazon S3 bucket.

• Tags (optional) - Provide up to 50 tags for this reference store.

Create a sequence store

To create a sequence store

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Sequence stores.

3. On the Create sequence store page, provide the following information

• Sequence store name - A unique name for this store.

• Description (optional) - A description of this sequence store.

• Data Encryption - Select whether you want data encryption to be owned and managed by
AWS or to use a customer managed CMK.

• Tags (optional) - Provide up to 50 tags for this sequence store.

Import genomics files

To import a genomics file

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Sequence stores.

3. On the Sequence stores page, choose the sequence store that you want to import your files
into.

4. On the individual sequence store page, choose Import genomic files.

5. On the Specify import details page, provide the following information

• IAM role - The IAM role that can access the genomic files on Amazon S3.

• Reference genome - The reference genome for this genomics data.

6. On the Specify import manifest page, specify the following information Manifest file. The
manifest file is a JSON or YAML file that describes essential information of your genomics data.
For information about the manifest file, see Sequence store imports.

HealthOmics Storage Version latest 16

https://console.aws.amazon.com/omics/
https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

7. Click Create import job.

HealthOmics Workflows

The following exercise shows how to use a Ready2Run workflow. A Ready2Run workflow is
preconfigured with the parameters and tool references you need to run the workflow. The
workflow publisher provides sample data, so that you can try out the workflow without creating
your own data.

To use a Ready2Run workflow in the console

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Ready2Run workflows.

3. On the Ready2Run workflows page, choose the ESMFold for up to 800 residues workflow.
The console opens the details page for that workflow.

4. The details tab provides information about the workflow. To try out the workflow, choose
Create run.

5. In the Specify run details page, enter a run name.

6. Enter or select an Amazon S3 location for the workflow run output.

7. For Run meta data retention mode, choose whether to retain or remove run meta data.

8. In the Service role panel, choose Create and use a new service role.

9. Choose Next.

10. From the Add parameters page, choose Run workflow with Ready2Run test data.

11. Choose Next.

12. Review your inputs, then choose Start run.

HealthOmics Workflows Version latest 17

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

HealthOmics Storage

Use HealthOmics Storage to store, retrieve, organize, and share genomics data efficiently and at
low cost. HealthOmics Storage understands the relationships between different data objects, so
that you can define which read sets originated from the same source data. This provides you with
data provenance.

Data that's stored in ACTIVE state is retrievable immediately. Data that hasn't been accessed for 30
days or more is stored in ARCHIVE state. To access archived data, you can reactivate it through the
API operations or console.

With the HealthOmics Storage API operations, you can perform the following actions:

• Create, manage, and delete sequence and reference stores

• Create and manage read sets

• Import, export, and work with read sets

• Share and access read sets with collaborators through Amazon S3 URI access

• Create, manage, and import references

• Copy read sets to local file systems for analysis

• Tag AWS resources such as sequence stores, read sets, and references

• List and read files through Amazon S3 API operations by using the Amazon S3 URI

HealthOmics sequence stores are designed to preserve the content integrity of files. However,
bitwise equivalence of imported data files and exported files isn't preserved because of the
compression during active and archive tiering.

During ingestion, HealthOmics generates an entity tag, or HealthOmics ETag, to make it possible
to validate the content integrity of your data files. Sequencing portions are identified and captured
as an ETag at the source level of a read set. The ETag calculation doesn't alter the actual file or
genomic data. After a read set is created, the ETag shouldn't change throughout the lifecycle of
the read set source. This means that reimporting the same file results in the same ETag value being
calculated.

Version latest 18

AWS HealthOmics User Guide

ETag calculation and data provenance

An HealthOmics entity tag or HealthOmics ETag is a hash of the ingested content in a sequence
store. This simplifies data retrieval and processing while maintaining the content integrity of
the ingested data files. The ETag reflects changes to the semantic content of the object, not its
metadata. The specified read set type and algorithm determine how the ETag is calculated. The
ETag calculation doesn't alter the actual file or genomic data. When the file type schema of the
read set permits it, the sequence store updates fields that are linked to data provenance.

Files have a bitwise identity and a semantic identity. The bitwise identity means that the bits of a
file are identical, and a semantic identity means that the contents of a file are identical. Semantic
identity is resilient to metadata changes and compression changes as it captures the content
integrity of the file.

Read sets in HealthOmics sequence stores undergo compression/decompression cycles and data
provenance tracking throughout an object's lifecycle. During this processing, the bitwise identity
of an ingested file may change and is expected to change each time a file is activated; however,
the semantic identity of the file is maintained. The semantic identity is captured as a HealthOmics
entity tag, or ETag that's calculated during sequence store ingestion and available as read set
metadata.

An HealthOmics entity tag or HealthOmics ETag is a hash of the ingested content's semantic
identity in a sequence store. This simplifies data retrieval and processing, while maintaining the
content integrity of the ingested data files. The ETag reflects changes to the semantic content of
the object, not its metadata. The specified read set type and algorithm determine how the ETag is
calculated. The ETag calculation doesn't alter the actual file or genomic data.

When the file type schema of the read set permits it, the sequence store updates fields that are
linked to data provenance. For uBAM, BAM, and CRAM files, a new @CO or Comment tag is added to
the header. The comment contains the sequence store ID and ingestion timestamp.

When accessing a file using the Amazon S3 URI, Amazon S3 API operations may also return
Amazon S3 ETag and checksum values. The Amazon S3 ETag and checksum values differ from
the HealthOmics ETags because they represent the file's bitwise identity. To learn more about
descriptive metadata and Objects, see the Amazon S3 API Object documentation. Amazon S3 ETag
values can change with each activation cycle of a read set and you can use them to validate the
reading of a file. However, don't cache Amazon S3 ETag values to use for file identity validation
during the file's lifecycle because they don't remain consistent. In contrast, the HealthOmics ETag
remains consistent throughout the read set's lifecycle.

ETag calculation and data provenance Version latest 19

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Object.html

AWS HealthOmics User Guide

How ETags are calculated

The ETag is generated from a hash of the ingested file contents. The ETag algorithm family is set
to MD5up by default, but it can be configured differently during sequence store creation. When
the ETag is calculated, the algorithm and the calculated hashes are added to the read set. The
supported MD5 algorithms for file types are as follows.

• FASTQ_MD5up – Calculates the MD5 hash of an uncompressed, complete FASTQ read set source.

• BAM_MD5up – Calculates the MD5 hash of the alignment section of an uncompressed BAM
or uBAM read set source as represented in the SAM, based on the linked reference, if one is
available.

• CRAM_MD5up – Calculates the MD5 hash of the alignment section of the uncompressed CRAM
read set source as represented in the SAM, based on the linked reference.

Note

MD5 hashing is known to be vulnerable to collisions. Because of this, two different files
might have the same ETag if they were manufactured to exploit the known collision.

The following algorithms are supported for the SHA256 family. The algorithms are calculated as
follows:

• FASTQ_SHA256up – Calculates the SHA-256 hash of an uncompressed, complete FASTQ read set
source.

• BAM_SHA256up – Calculates the SHA-256 hash of the alignment section of an uncompressed
BAM or uBAM read set source as represented in the SAM, based on the linked reference, if one is
available.

• CRAM_SHA256up – Calculates the SHA-256 hash of the alignment section of an uncompressed
CRAM read set source as represented in the SAM, based on the linked reference.

The following algorithms are supported for the SHA512 family. The algorithms are calculated as
follows:

• FASTQ_SHA512up – Calculates the SHA-512 hash of an uncompressed, complete FASTQ read set
source.

How ETags are calculated Version latest 20

AWS HealthOmics User Guide

• BAM_SHA512up – Calculates the SHA-512 hash of the alignment section of an uncompressed
BAM or uBAM read set source as represented in the SAM, based on the linked reference, if one is
available.

• CRAM_SHA512up – Calculates the SHA-512 hash of the alignment section of an uncompressed
CRAM read set source as represented in the SAM, based on the linked reference.

Creating reference and sequence stores

Reference and sequence stores are AWS resources that you can use to manage your genomic data
through the API, AWS CLI, and console. The first step is for you to create a reference store to hold
reference genomes that are used to map your read sets.

Creating and managing reference stores

The following example shows you how to create a reference store by using the AWS CLI. You can
have one reference store per AWS Region. Reference stores support storage of FASTA files with
the extensions .fasta, .fa, .fas, .fsa, .faa, .fna, .ffn, .frn, .mpfa, .seq, .txt. The
bgzip version of these extensions is also supported. In the following example, replace reference
store name with the name you've chosen for your reference store.

aws omics create-reference-store --name "reference store name"

You receive a JSON response with the reference store ID and name, the ARN, and the timestamp of
when your reference store was created.

{
 "id": "3242349265",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/3242349265",
 "name": "MyReferenceStore",
 "creationTime": "2022-07-01T20:58:42.878Z"
}

You can use the reference store ID in additional AWS CLI commands. You can retrieve the list of
reference store IDs linked to your account by using the list-reference-stores command, as shown in
the following example.

aws omics list-reference-stores

Creating reference and sequence stores Version latest 21

AWS HealthOmics User Guide

In response, you receive the name of your newly created reference store.

{
 "referenceStores": [
 {
 "id": "3242349265",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/3242349265",
 "name": "MyReferenceStore",
 "creationTime": "2022-07-01T20:58:42.878Z"
 }
]
}

After you create a reference store, you can create import jobs to load genomic reference files into
it. To do so, you must use or create an IAM role to access the data. The following is an example
policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetBucketLocation"

],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/*"
]
 }
]
 }
}

You must also have a trust policy similar to the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Creating and managing reference stores Version latest 22

AWS HealthOmics User Guide

 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

You can now import a reference genome. This example uses Genome Reference Consortium Human
Build 38 (hg38), which is open access and available from the Registry of Open Data on AWS. The
bucket that hosts this data is based in US East (Ohio). To use buckets in other AWS Regions, you can
copy the data to an Amazon S3 bucket hosted in your Region. Use the following AWS CLI command
to copy the genome to your Amazon S3 bucket.

aws s3 cp s3://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta s3://DOC-EXAMPLE-
BUCKET

You can then begin your import job. Replace reference store ID, role ARN, and source
file path with your own input.

aws omics start-reference-import-job --reference-store-id reference store ID --role-
arn role ARN --sources source file path

After the data is imported, you receive the following response in JSON.

{
 "id": "7252016478",
 "referenceStoreId": "3242349265",
 "roleArn": "arn:aws:iam::111122223333:role/OmicsReferenceImport",
 "status": "CREATED",
 "creationTime": "2022-07-01T21:15:13.727Z"
}

You can monitor the status of a job by using the following command. In the following example,
replace reference store ID and job ID with your reference store ID and the job ID that you
want to learn more about.

Creating and managing reference stores Version latest 23

https://registry.opendata.aws/

AWS HealthOmics User Guide

aws omics get-reference-import-job --reference-store-id reference store ID --id job ID

In response, you receive a response with the details for that reference store and its status.

{
 "id": "7252016478",
 "referenceStoreId": "3242349265",
 "roleArn": "arn:aws:iam::555555555555:role/OmicsReferenceImport",
 "status": "RUNNING",
 "creationTime": "2022-07-01T21:15:13.727Z",
 "sources": [
 {
 "sourceFile": "s3://DOC-EXAMPLE-BUCKET/Homo_sapiens_assembly38.fasta",
 "status": "IN_PROGRESS",
 "name": "MyReference"
 }
]
}

You can also find the reference that was imported by listing your references and filtering them
based on the reference name. Replace reference store ID with your reference store ID, and
add an optional filter to narrow the list.

aws omics list-references --reference-store-id reference store ID --filter
 name=MyReference

In response, you receive the following information.

{
 "references": [
 {
 "id": "1234567890",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/1234567890/
reference/1234567890",
 "referenceStoreId": "12345678",
 "md5": "7ff134953dcca8c8997453bbb80b6b5e",
 "status": "ACTIVE",
 "name": "MyReference",
 "creationTime": "2022-07-02T00:15:19.787Z",
 "updateTime": "2022-07-02T00:15:19.787Z"

Creating and managing reference stores Version latest 24

AWS HealthOmics User Guide

 }
]
}

To learn more about the reference metadata, use the get-reference-metadata API operation.
In the following example, replace reference store ID with your reference store ID and
reference ID with the reference ID that you want to learn more about.

aws omics get-reference-metadata --reference-store-id reference store ID --id reference
 ID

You receive the following information in response.

{
 "id": "1234567890",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/referencestoreID/
reference/referenceID",
 "referenceStoreId": "1234567890",
 "md5": "7ff134953dcca8c8997453bbb80b6b5e",
 "status": "ACTIVE",
 "name": "MyReference",
 "creationTime": "2022-07-02T00:15:19.787Z",
 "updateTime": "2022-07-02T00:15:19.787Z",
 "files": {
 "source": {
 "totalParts": 31,
 "partSize": 104857600,
 "contentLength": 3249912778
 },
 "index": {
 "totalParts": 1,
 "partSize": 104857600,
 "contentLength": 160928
 }
 }
}

You can also download parts of the reference file by using get-reference. In the following example,
replace reference store ID with your reference store ID and reference ID with the
reference ID that you want to download from.

Creating and managing reference stores Version latest 25

AWS HealthOmics User Guide

aws omics get-reference --reference-store-id reference store ID --id reference ID --
part-number 1 outfile.fa

Creating and managing sequence stores

HealthOmics sequence stores support storage of genomic files in the unaligned formats of FASTQ
(gzip-only) and uBAM. It also supports the aligned formats of BAM and CRAM. Imported files are
stored as read sets, which are an AWS resource. This means that you can add tags and control
access through IAM. Aligned read sets require a reference genome to align genomic sequences, but
it's optional for unaligned read sets.

To store read sets, you first create a sequence store. When you create a sequence store, you can
specify an optional Amazon S3 bucket as a fallback location. The fallback location is used for
storing any files that fail to create a read set during a direct upload. Fallback locations are available
for sequence stores created after May 15, 2023. You specify the fallback location when you create
the sequence store. You can't add a fallback location after the sequence store is created.

In the following example, replace sequence store name with the name you chose for your
sequence store.

aws omics create-sequence-store --name sequence store name --fallback-location "s3://
DOC-EXAMPLE-BUCKET"

You receive the following response in JSON, which includes the ID number for your newly created
sequence store.

{
 "id": "3936421177",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/3936421177",
 "name": "sequence_store_example_name",
 "creationTime": "2022-07-13T20:09:26.038Z"
 "fallbackLocation" : "s3://DOC-EXAMPLE-BUCKET"
}

You can also view all sequence stores associated with your account by using the list-sequence-
stores command, as shown in the following.

aws omics list-sequence-stores

Creating and managing sequence stores Version latest 26

AWS HealthOmics User Guide

You receive the following response.

{
 "sequenceStores": [
 {
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/3936421177",
 "id": "3936421177",
 "name": "MySequenceStore",
 "creationTime": "2022-07-13T20:09:26.038Z"
 "fallbackLocation" : "s3://DOC-EXAMPLE-BUCKET"
 }
]
}

Additionally, you can use get-sequence-store to learn more about a sequence store by using its ID,
as shown in the following.

aws omics get-sequence-store --id sequence store ID

{
 "arn": "arn:aws:omics:us-west-2:123456789012:sequenceStore/sequencestoreID",
 "creationTime": "2024-01-12T04:45:29.857Z",
 "description": null,
 "fallbackLocation": null,
 "id": "2015356892",
 "name": "MySequenceStore",
 "s3Access": {
 "s3AccessPointArn": "arn:aws:s3:us-
west-2:123456789012:accesspoint/592761533288-2015356892",
 "s3Uri": "s3://592761533288-2015356892-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/"
 },
 "sseConfig": {
 "keyArn": "arn:aws:kms:us-west-2:123456789012:key/eb2b30f5-635d-4b6d-b0f9-
d3889fe0e648",
 "type": "KMS"
 }
}

Creating and managing sequence stores Version latest 27

AWS HealthOmics User Guide

Deleting reference and sequence stores

Both reference and sequence stores can be deleted. Sequence stores can only be deleted if they
don't contain read sets, and reference stores can only be deleted if they don't contain references.
Deleting a sequence or reference store also deletes any tags associated with that store.

The following example shows how to delete a reference store by using the AWS CLI. If the action is
successful, you won't receive a response. In the following example, replace reference store ID
with your reference store ID.

aws omics delete-reference-store --id reference store ID

The following example shows you how to delete a sequence store. You don't receive a response if
the action succeeds. In the following example, replace sequence store ID with your sequence
store ID.

aws omics delete-sequence-store --id sequence store ID

You can also delete a reference in a reference store as shown in the following example. References
can only be deleted if they aren't being used in a read set, variant store, or annotation store. In
the following example, replace reference store ID with your reference store ID, and replace
reference ID with the ID for the reference you want to delete.

aws omics delete-reference --id reference ID --reference-store-id reference store ID

Sequence store imports

After you create your sequence store, you can create import jobs to load files into the data store.
You can upload your files from an Amazon S3 bucket, or you can upload directly by using the
synchronous API operations. Your Amazon S3 bucket must be in the same Region as your sequence
store. You can use a command similar to the following to move files into your Amazon S3 bucket.

You can upload any combination of aligned and unaligned read sets into your sequence store,
however, if any of the read sets in your import are aligned, you must include a reference genome.

aws s3 cp s3://1000genomes/phase1/data/HG00100/alignment/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam s3://your-bucket

Deleting reference and sequence stores Version latest 28

AWS HealthOmics User Guide

aws s3 cp s3://1000genomes/phase3/data/HG00146/sequence_read/SRR233106_1.filt.fastq.gz
 s3://your-bucket
aws s3 cp s3://1000genomes/phase3/data/HG00146/sequence_read/SRR233106_2.filt.fastq.gz
 s3://your-bucket
aws s3 cp s3://1000genomes/data/HG00096/alignment/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram s3://your-bucket
aws s3 cp s3://gatk-test-data/wgs_ubam/NA12878_20k/NA12878_A.bam s3://your-bucket

The sample BAM and CRAM used in this example require different genome references, Hg19 and
Hg38. To learn more or to access these references, see The Broad Genome References in the
Registry of Open Data on AWS.

You can reuse the IAM access policy that you used to create the Reference store. You must also
create a manifest file in JSON to model the import job in import.json (see the following
example). If you are creating a sequence store in the console, you don't have to specify the
sequenceStoreId or roleARN, so your manifest file will start with the sources input.

API manifest

This example code is used to import three read sets by using the API: one FASTQ, one BAM, and
one CRAM.

{
 "sequenceStoreId": "3936421177",
 "roleArn": "arn:aws:iam::555555555555:role/OmicsImport",
 "sources":
 [
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam"
 },
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/0123456789/reference/0000000001",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "generatedFrom": "1000 Genomes"

Sequence store imports Version latest 29

https://registry.opendata.aws/broad-references/

AWS HealthOmics User Guide

 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/SRR233106_1.filt.fastq.gz",
 "source2": "s3://DOC-EXAMPLE-BUCKET/SRR233106_2.filt.fastq.gz"
 },
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 // NOTE: there is no reference arn required here
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram"
 },
 "sourceFileType": "CRAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/0123456789/reference/0000000001",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/NA12878_A.bam"
 },
 "sourceFileType": "UBAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 // NOTE: there is no reference arn required here
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "generatedFrom": "GATK Test Data"
 }
]

Sequence store imports Version latest 30

AWS HealthOmics User Guide

}

Console manifest

This example code is used to import a single read set by using the console.

[
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam"
 },
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/SRR233106_1.filt.fastq.gz",
 "source2": "s3://DOC-EXAMPLE-BUCKET/SRR233106_2.filt.fastq.gz"
 },
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://your-bucket/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram"
 },
 "sourceFileType": "CRAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00096",
 "description": "CRAM for HG00096",

Sequence store imports Version latest 31

AWS HealthOmics User Guide

 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/NA12878_A.bam"
 },
 "sourceFileType": "UBAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "generatedFrom": "GATK Test Data"
 }
]

Alternatively, you can upload the manifest file in YAML format.

To start the import job, use the following AWS CLI command.

aws omics start-read-set-import-job --cli-input-json file://import.json

You receive the following response, which indicates successful job creation.

{
 "id": "3660451514",
 "sequenceStoreId": "3936421177",
 "roleArn": "arn:aws:iam::111122223333:role/OmicsImport",
 "status": "CREATED",
 "creationTime": "2022-07-13T22:14:59.309Z"
}

After the import job starts, you can monitor its progress with the following command. In the
following example, replace sequence store id with your sequence store ID, and replace job
import ID with the import ID.

aws omics get-read-set-import-job --sequence-store-id sequence store id --id job import
 ID

The following shows the statuses for all import jobs associated with the specified sequence store
ID.

Sequence store imports Version latest 32

AWS HealthOmics User Guide

{
 "id": "1234567890",
 "sequenceStoreId": "1234567890",
 "roleArn": "arn:aws:iam::111122223333:role/OmicsImport",
 "status": "RUNNING",
 "statusMessage": "The job is currently in progress."
 "creationTime": "2022-07-13T22:14:59.309Z",
 "sources": [
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam"
 },
 "sourceFileType": "BAM",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/3242349265/reference/8625408453",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/SRR233106_1.filt.fastq.gz",
 "source2": "s3://DOC-EXAMPLE-BUCKET/SRR233106_2.filt.fastq.gz"
 },
 "sourceFileType": "FASTQ",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {

Sequence store imports Version latest 33

AWS HealthOmics User Guide

 "source1": "s3://DOC-EXAMPLE-BUCKET/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram"
 },
 "sourceFileType": "CRAM",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/3242349265/reference/1234568870",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://DOC-EXAMPLE-BUCKET/NA12878_A.bam"
 },
 "sourceFileType": "UBAM",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "generatedFrom": "GATK Test Data"
 }
]
}

After the job completes, you can use the list-read-sets API operation to find the imported
sequence files. In the following example, replace sequence store id with your sequence store
ID.

aws omics list-read-sets --sequence-store-id sequence store id

You receive the following response.

{
 "readSets": [
 {

Sequence store imports Version latest 34

AWS HealthOmics User Guide

 "id": "0000000001",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/01234567890/
readSet/0000000001",
 "sequenceStoreId": "1234567890",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/01234567890/reference/0000000001",
 "fileType": "BAM",
 "sequenceInformation": {
 "totalReadCount": 9194,
 "totalBaseCount": 928594,
 "generatedFrom": "1000 Genomes",
 "alignment": "ALIGNED"
 },
 "creationTime": "2022-07-13T23:25:20Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "BAM_MD5up",
 "source1": "d1d65429212d61d115bb19f510d4bd02"
 }
 },
 {
 "id": "0000000002",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/0123456789/
readSet/0000000002",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "fileType": "FASTQ",
 "sequenceInformation": {
 "totalReadCount": 8000000,
 "totalBaseCount": 1184000000,
 "generatedFrom": "1000 Genomes",
 "alignment": "UNALIGNED"
 },
 "creationTime": "2022-07-13T23:26:43Z"
 "creationType": "IMPORT",

Sequence store imports Version latest 35

AWS HealthOmics User Guide

 "etag": {
 "algorithm": "FASTQ_MD5up",
 "source1": "ca78f685c26e7cc2bf3e28e3ec4d49cd"
 }
 },
 {
 "id": "0000000003",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/0123456789/
readSet/0000000003",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/0123456789/reference/0000000001",
 "fileType": "CRAM",
 "sequenceInformation": {
 "totalReadCount": 85466534,
 "totalBaseCount": 24000004881,
 "generatedFrom": "1000 Genomes",
 "alignment": "ALIGNED"
 },
 "creationTime": "2022-07-13T23:30:41Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "CRAM_MD5up",
 "source1": "66817940f3025a760e6da4652f3e927e"
 }
 },
 {
 "id": "0000000004",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/0123456789/
readSet/0000000004",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "fileType": "UBAM",
 "sequenceInformation": {
 "totalReadCount": 20000,

Sequence store imports Version latest 36

AWS HealthOmics User Guide

 "totalBaseCount": 5000000,
 "generatedFrom": "GATK Test Data",
 "alignment": "ALIGNED"
 },
 "creationTime": "2022-07-13T23:30:41Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "BAM_MD5up",
 "source1": "640eb686263e9f63bcda12c35b84f5c7"
 }
 }
]
}

To view more details about a given read set, use the get-read-set-metadata API operation. In the
following example, replace sequence store id with your sequence store ID, and replace read
set id with your read set ID.

aws omics get-read-set-metadata --sequence-store-id sequence store id --id read set id

You receive the following response.

{
 "arn": "arn:aws:omics:us-west-2:123456789012:sequenceStore/2015356892/
readSet/9515444019",
 "creationTime": "2024-01-12T04:50:33.548Z",
 "creationType": "IMPORT",
 "description": null,
 "etag": {
 "algorithm": "FASTQ_MD5up",
 "source1": "00d0885ba3eeb211c8c84520d3fa26ec",
 "source2": "00d0885ba3eeb211c8c84520d3fa26ec"
 },
 "fileType": "FASTQ",
 "files": {
 "index": null,
 "source1": {
 "contentLength": 10818,
 "partSize": 104857600,
 "s3Access": {

Sequence store imports Version latest 37

AWS HealthOmics User Guide

 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
},
 "totalParts": 1
 },
 "source2": {
 "contentLength": 10818,
 "partSize": 104857600,
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
 },
 "totalParts": 1
 }
 },
 "id": "9515444019",
 "name": "paired-fastq-import",
 "sampleId": "sampleId-paired-fastq-import",
 "sequenceInformation": {
 "alignment": "UNALIGNED",
 "generatedFrom": null,
 "totalBaseCount": 30000,
 "totalReadCount": 200
 },
 "sequenceStoreId": "2015356892",
 "status": "ACTIVE",
 "statusMessage": null,
 "subjectId": "subjectId-paired-fastq-import"
}

You can use get-read-set to download in parallel by downloading individual parts. These parts
are similar to Amazon S3 parts. The following is an example of how to download part 1 from a
read set. In the following example, replace sequence store id with your sequence store ID, and
replace read set id with your read set ID.

aws omics get-read-set --sequence-store-id sequence store id --id read set id --part-
number 1 outfile.bam

Sequence store imports Version latest 38

AWS HealthOmics User Guide

You can also use the HealthOmics Transfer Manager to download files for a HealthOmics reference
or read set. You can download the HealthOmics Transfer Manager here. For more information
about using and setting up the Transfer Manager, see this GitHub Repository.

Direct upload to a sequence store

The HealthOmics Transfer Manager is recommended for adding files to your sequence store.
You can also upload your read sets directly to a sequence store through the direct upload API
operations.

Direct upload read sets exist first in PROCESSING_UPLOAD state. This means that the file parts are
currently being uploaded, and you can access the read set metadata. After the parts are uploaded
and the checksums are validated, the read set becomes ACTIVE and behaves the same as an
imported read set.

If the direct upload fails, the read set status is shown as UPLOAD_FAILED. You can configure an
Amazon S3 bucket as a fallback location for any files that fail to upload. The file parts for those
read sets are transferred to the fallback location. Fallback locations are available on sequence
stores created after May 15, 2023. You must also have an IAM policy that grants you read access to
that Amazon S3 location.

To begin, start a multipart upload. You can do this by using the AWS CLI, as shown in the following
example.

First, you create the parts by separating your data, as shown in the following example.

 split -b 100MiB SRR233106_1.filt.fastq.gz source1_part_

After your source files are in parts, you can then create a multipart read set upload, as shown in the
following. In the following example, replace sequence store ID and the other parameters with
your sequence store ID and other values.

aws omics create-multipart-read-set-upload \
 --sequence-store-id sequence store ID \
 --name upload name \
 --source-file-type FASTQ \
 --subject-id subject ID \
 --sample-id sample ID \
 --description "FASTQ for HG00146" "description of upload" \

Direct upload to a sequence store Version latest 39

https://pypi.org/project/amazon-omics-tools/
https://github.com/awslabs/amazon-omics-tools/

AWS HealthOmics User Guide

 --generated-from "1000 Genomes""source of imported files"

In the response, you will get the uploadID and other metadata. Use the uploadID for the next
step of the upload process.

{
 "sequenceStoreId": "1504776472",
 "uploadId": "7640892890",
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "creationTime": "2023-11-20T23:40:47.437522+00:00"
}

Next, add your read sets to the upload. If your file is small enough, you only have to perform this
step once. For larger files, you perform this step for each part of your file. If you upload a new part
by using a previously used part number, it overwrites the previously uploaded part.

In the following example, replace sequence store ID, upload ID, and the other parameters
with your values.

aws omics upload-read-set-part \
 --sequence-store-id sequence store ID \
 --upload-id upload ID \
 --part-source SOURCE1 \
 --part-number part number \
 --payload source1/source1_part_aa.fastq.gz

The response is an ID that you can use to verify that the uploaded file matches the file you
intended.

{
 "checksum": "984979b9928ae8d8622286c4a9cd8e99d964a22d59ed0f5722e1733eb280e635"
}

Continue uploading the parts of your file, if necessary. To verify that your read sets have been
uploaded, use the list-read-set-upload-parts API operation, as shown in the following. In the

Direct upload to a sequence store Version latest 40

AWS HealthOmics User Guide

following example, replace sequence store ID , upload ID, and the part source with your
own input.

aws omics list-read-set-upload-parts \
 --sequence-store-id sequence store ID \
 --upload-id upload ID \
 --part-source SOURCE1

The response returns the number of read sets, the size, and the timestamp for when it was most
recently updated.

{
 "parts": [
 {
 "partNumber": 1,
 "partSize": 104857600,
 "partSource": "SOURCE1",
 "checksum": "MVMQk+vB9C3Ge8ADHkbKq752n3BCUzyl41qEkqlOD5M=",
 "creationTime": "2023-11-20T23:58:03.500823+00:00",
 "lastUpdatedTime": "2023-11-20T23:58:03.500831+00:00"
 },
 {
 "partNumber": 2,
 "partSize": 104857600,
 "partSource": "SOURCE1",
 "checksum": "keZzVzJNChAqgOdZMvOmjBwrOPM0enPj1UAfs0nvRto=",
 "creationTime": "2023-11-21T00:02:03.813013+00:00",
 "lastUpdatedTime": "2023-11-21T00:02:03.813025+00:00"
 },
 {
 "partNumber": 3,
 "partSize": 100339539,
 "partSource": "SOURCE1",
 "checksum": "TBkNfMsaeDpXzEf3ldlbi0ipFDPaohKHyZ+LF1J4CHk=",
 "creationTime": "2023-11-21T00:09:11.705198+00:00",
 "lastUpdatedTime": "2023-11-21T00:09:11.705208+00:00"
 }
]
}

To view all active multipart read set uploads, use list-multipart-read-set-uploads, as shown in the
following. Replace sequence store ID with the ID for your own sequence store.

Direct upload to a sequence store Version latest 41

AWS HealthOmics User Guide

aws omics list-multipart-read-set-uploads --sequence-store-id sequence store ID

This API only returns multipart read set uploads that are in progress. After the ingested read sets
are ACTIVE, or if the upload has failed, the upload will not be returned in the response to the list-
multipart-read-set-uploads API. To view active read sets, use the list-read-sets API. An example
response for list-multipart-read-set-uploads is shown in the following.

{
 "uploads": [
 {
 "sequenceStoreId": "1234567890",
 "uploadId": "8749584421",
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "creationTime": "2023-11-29T19:22:51.349298+00:00"
 },
 {
 "sequenceStoreId": "1234567890",
 "uploadId": "5290538638",
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",
 "referenceArn": "arn:aws:omics:us-
west-2:123456789012:referenceStore/8168613728/reference/2190697383",
 "name": "HG00146",
 "description": "BAM for HG00146",
 "creationTime": "2023-11-29T19:23:33.116516+00:00"
 },
 {
 "sequenceStoreId": "1234567890",
 "uploadId": "4174220862",
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",

Direct upload to a sequence store Version latest 42

AWS HealthOmics User Guide

 "referenceArn": "arn:aws:omics:us-
west-2:123456789012:referenceStore/8168613728/reference/2190697383",
 "name": "HG00147",
 "description": "BAM for HG00147",
 "creationTime": "2023-11-29T19:23:47.007866+00:00"
 }
]
}

After you upload all parts of your file, use complete-multipart-read-set-upload to conclude the
upload process, as shown in the following. Replace sequence store ID, upload ID, and the
parameter for parts with your own values.

aws omics complete-multipart-read-set-upload \
 --sequence-store-id sequence store ID \
 --upload-id upload ID \
 --parts '[{"checksum":"gaCBQMe+rpCFZxLpoP6gydBoXaKKDA/
Vobh5zBDb4W4=","partNumber":1,"partSource":"SOURCE1"}]'

The response for complete-multipart-read-set-upload is the read set IDs for your imported read
sets.

{
 "readSetId": "0000000001"
}

To stop the upload, use abort-multipart-read-set-upload with the upload ID to end the upload
process. Replace sequence store ID and upload ID with your own parameter values.

aws omics abort-multipart-read-set-upload \
 --sequence-store-id sequence store ID \
 --upload-id upload ID

After the upload is complete, you can retrieve your data from the read set by using get-read-set, as
shown in the following. If the upload is still processing, get-read-set returns limited metadata, and
the generated index files are unavailable. Replace sequence store ID and the other parameters
with your own input.

aws omics get-read-set
 --sequence-store-id sequence store ID \

Direct upload to a sequence store Version latest 43

AWS HealthOmics User Guide

 --id read set ID \
 --file SOURCE1 \
 --part-number 1 myfile.fastq.gz

To check the metadata, including the status of your upload, use the get-read-set-metadata API
operation.

aws omics get-read-set-metadata --sequence-store-id sequence store ID --id read set ID

The response includes metadata details such as the file type, the reference ARN, the number
of files, and the length of the sequences. It also includes the status. Possible statuses are
PROCESSING_UPLOAD, ACTIVE, and UPLOAD_FAILED.

{
 "id": "0000000001",
 "arn": "arn:aws:omics:us-west-2:555555555555:sequenceStore/0123456789/
readSet/0000000001",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "PROCESSING_UPLOAD",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "fileType": "FASTQ",
 "creationTime": "2022-07-13T23:25:20Z",
 "files": {
 "source1": {
 "totalParts": 5,
 "partSize": 123456789012,
 "contentLength": 6836725,

 },
 "source2": {
 "totalParts": 5,
 "partSize": 123456789056,
 "contentLength": 6836726
 }
 },
 'creationType": "UPLOAD"
}

Direct upload to a sequence store Version latest 44

AWS HealthOmics User Guide

If a read set creation fails, the files can be moved to a fallback Amazon S3 location. This way,
you can keep the files in Amazon S3 to re-import after the files issues are resolved. The fallback
location can be configured for a sequence store from the console, the AWS CLI, or the API.

Exporting read sets

You can export read sets as a batch export job to an Amazon S3 bucket. To do so, first create an
IAM policy that has write access to the bucket, similar to the following IAM policy example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/*"
]
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Exporting read sets Version latest 45

AWS HealthOmics User Guide

After the IAM policy is in place, begin your read set export job. The following example shows you
how to do this by using the start-read-set-export-job API operation. In the following example,
replace all parameters, such as sequence store ID, destination , role ARN, and sources,
with your input.

aws omics start-read-set-export-job
 --sequence-store-id sequence store id \
 --destination valid s3 uri \
 --role-arn role ARN \
 --sources readSetId=read set id_1 readSetId=read set id_2

You receive the following response with information on the origin sequence store and the
destination Amazon S3 bucket.

{
 "id": <job-id>,
 "sequenceStoreId": <sequence-store-id>,
 "destination": <destination-s3-uri>,
 "status": "SUBMITTED",
 "creationTime": "2022-10-22T01:33:38.079000+00:00"
}

After the job starts, you can determine its status by using the get-read-set-export-job API
operation, as shown in the following. Replace the sequence store ID and job ID with your
sequence store ID and job ID, respectively.

aws omics get-read-set-export-job --id job-id --sequence-store-id sequence store ID

You can view all export jobs initialized for a sequence store by using the list-read-set-export-jobs
API operation, as shown in the following. Replace the sequence store ID with your sequence
store ID.

aws omics list-read-set-export-jobs --sequence-store-id sequence store ID.

{
 "exportJobs": [
 {
 "id": <job-id>,
 "sequenceStoreId": <sequence-store-id>,

Exporting read sets Version latest 46

AWS HealthOmics User Guide

 "destination": <destination-s3-uri>,
 "status": "COMPLETED",
 "creationTime": "2022-10-22T01:33:38.079000+00:00",
 "completionTime": "2022-10-22T01:34:28.941000+00:00"
 }
]
}

In addition to exporting your read sets, you can also share them by using the Amazon S3 access
URIs. To learn more, see Accessing and managing read sets with Amazon S3 URIs.

Accessing and managing read sets with Amazon S3 URIs

You can use Amazon S3 URI paths to access your active sequence store read sets. Use Amazon
S3 API operations to list, share, and download your read sets. This makes it possible for you to
collaborate and share your data because you can share access across users in the data owner's
account in the Region, or you can share through creating role users outside of the data owner's
account that you can assume. Archived read sets aren't accessible by using Amazon S3 URIs until
they have been activated. When a read set is activated, it's restored to the same URI path each
time.

With data loaded into HealthOmics stores, because the Amazon S3 URI is based on Amazon S3
access points, you can directly integrate with industry standard tools that read Amazon S3 URIs,
such as the following:

• Visual analysis applications such as Integrative Genomics Viewer (IGV) or UCSC Genome Browser.

• Common workflows with Amazon S3 extensions such as CWL, WDL, and NextFlow.

• Any tool that can authenticate and read from access point Amazon S3 URIs or read presigned
Amazon S3 URIs.

• Amazon S3 utilities such as Mountpoint or CloudFront.

Amazon S3 Mountpoint makes it possible for you to use an Amazon S3 bucket as a local file
system. To learn more about Mountpoint and to install it for use, see Mountpoint for Amazon S3.

Amazon CloudFront is a content delivery network (CDN) service built for high performance,
security, and developer convenience. To learn more about using Amazon CloudFront, seethe
Amazon CloudFront documentation. To set up CloudFront with a sequence store, contact the AWS
HealthOmics team.

Accessing and managing read sets with Amazon S3 URIs Version latest 47

https://github.com/awslabs/mountpoint-s3
https://docs.aws.amazon.com/cloudfront/
https://docs.aws.amazon.com/cloudfront/

AWS HealthOmics User Guide

The data owner root account is enabled for the actions S3:GetObject, S3:GetObjectTagging, and
S3:List Bucket on the sequence store prefix. For a user in the account to access the data, you create
an IAM policy and attach it to the user or role. For an example policy, see Permissions for data
access using Amazon S3 URIs.

You can use the following Amazon S3 API operations on the active read sets to list and retrieve
your data. You can access archived read sets through Amazon S3 URIs after they have been
activated.

• GetObject— Retrieves an object from Amazon S3.

• HeadObject— The HEAD operation retrieves metadata from an object without returning the
object itself. This operation is useful if you only want an object's metadata.

• ListObjects and ListObject v2— Returns some or all (up to 1,000) of the objects in a bucket.

• CopyObject— Creates a copy of an object that's already stored in Amazon S3. HealthOmics
supports copying to an Amazon S3 access point, but not writing to an access point.

HealthOmics sequence stores maintain the semantic identity of files through ETags. Throughout
a lifecycle of a file, the Amazon S3 ETag, which is based on bitwise identity, may change, however,
the HealthOmics ETag remains the same. To learn more, see ETag calculation and data provenance.

Amazon S3 URI structure in HealthOmics storage

All files with Amazon S3 URIs have omics:subjectId and omics:sampleId resource
tags. You can use these tags to share access by using IAM policies through a pattern such as
"s3:ExistingObjectTag/omics:subjectId": "pattern desired".

The file structure is as follows:

.../account_id/sequenceStore/seq_store_id/readSet/read_set_id/files.

For files imported into sequence stores from Amazon S3, the sequence store attempts to maintain
the original source name. When the names conflict, the system appends read set information
to ensure that the file names are unique. For instance, for fastq read sets, if both file names are
the same, to make the names unique, sourceX is inserted before .fastq.gz or .fq.gz. For a direct
upload, the file names follow the following patterns:

• For FASTQ— read_set_name_sourcex.fastq.gz

Amazon S3 URI structure in HealthOmics storage Version latest 48

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadObject.html.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CopyObject.html

AWS HealthOmics User Guide

• For uBAM/BAM/CRAM— read_set_name.file extension with extensions of .bam or .cram.
An example is NA193948.bam.

For read sets that are BAM or CRAM, index files are automatically generated during the ingestion
process. For the index files generated, the proper index extension at the end of the file name
is applied. It has the pattern <name of the Source the index is on>.<file index
extension>. The index extensions are .bai or .crai.

Using Hosted or Local IGV to access read sets

IGV is a genome browser used to analyze BAM and CRAM files. It requires both the file and the
index because it only displays a portion of the genome at a time. IGV can be downloaded and used
locally, and there are guides to creating an AWS hosted IGV. The public web version isn't supported
because it requires CORS.

Local IGV relies on the local AWS configuration to access files. Ensure that the role used in that
configuration has a policy attached that enables kms:Decrypt and s3:GetObject permissions to the
s3 URI of the read sets being accessed. After that, in IGV, you can use “File > load from URL” and
paste in the URI for the source and index. Alternatively, presigned URLs can be generated and used
in the same manner, which will bypass the AWS configuration. Note that CORS isn't supported with
Amazon S3 URI access, so requests relying on CORS aren't supported.

The example AWS Hosted IGV relies on AWS Cognito to create the correct configurations and
permissions inside the environment. Ensure that a policy is created that enableskms:Decrypt and
s3:GetObject permissions to the Amazon S3 URI of the read sets being accessed, and add this
policy to the role that's assigned to the Cognito user pool. After that, in IGV, you can use “File >
load from URL” and enter in the URI for the source and index. Alternatively, presigned URLs can be
generated and used in the same manner, which bypasses the AWS configuration.

Note that the sequence store will not appear under the “Amazon” tab because that only displays
buckets owned by you in the Region in which the AWS profile is configured.

Using Samtools or HTSlib in HealthOmics

HTSlib is the core library that's shared by several tools such as Samtools, rSamtools, PySam, and
others. Use HTSlib version 1.20 or later to get seamless support for Amazon S3 Access Points. For
older versions of the HTSlib library, you can use the following workarounds:

Using Hosted or Local IGV to access read sets Version latest 49

AWS HealthOmics User Guide

• Set the environment variable for the HTS Amazon S3 host with: export
HTS_S3_HOST="s3.region.amazonaws.com".

• Generate a presigned URL for the files that you want to use. If a BAM or CRAM is being used,
ensure that a presigned URL is generated for both the file and the index. After that, both files
can be used with the libraries.

• Use Mountpoint to mount the sequence store or read set prefix in the same environment where
you’re using HTSlib libraries. From here, the files can be accessed by using local file paths.

Using Mountpoint HealthOmics

Mountpoint for Amazon S3 is a simple, high-throughput file client for mounting an Amazon S3
bucket as a local file system. With Mountpoint for Amazon S3, your applications can access objects
stored in Amazon S3 through file operations such as open and read. Mountpoint for Amazon S3
automatically translates these operations into Amazon S3 object API calls, giving your applications
access to the elastic storage and throughput of Amazon S3 through a file interface.

Mountpoint can be installed by using the Mountpoint installation instructions. Mountpoint uses
the AWS Profile that's local to the installation and works at an Amazon S3 prefix level. Ensure
that the profile being used has a policy that enables s3:GetObject, s3:ListBucket, and kms:Decrypt
permissions to the Amazon S3 URI prefix of the read set(s) or sequence store being accessed. After
that, the bucket can be mounted by using the following path:

mount-s3 access point arn local path to mount --prefix prefix to sequence store or read
 set --region region

Using CloudFront with HealthOmics

Amazon CloudFront is a content delivery network (CDN) service that's built for high performance,
security, and developer convenience. Customers that want to use CloudFront must work with the
Service team to turn on the CloudFront distribution. Work with your account team to engage the
HealthOmics service team.

Activating read sets

You can activate read sets that are archived with the start-read-set-activation-job API operation,
or through the AWS CLI, as shown in the following example. Replace the sequence store ID
and read set id with your sequence store ID and read set IDs.

Using Mountpoint HealthOmics Version latest 50

https://aws.amazon.com/blogs/storage/the-inside-story-on-mountpoint-for-amazon-s3-a-high-performance-open-source-file-client/
https://aws.amazon.com/blogs/storage/the-inside-story-on-mountpoint-for-amazon-s3-a-high-performance-open-source-file-client/
https://github.com/awslabs/mountpoint-s3/blob/main/doc/INSTALL.md

AWS HealthOmics User Guide

aws omics start-read-set-activation-job
 --sequence-store-id sequence store ID \
 --sources readSetId=read set ID readSetId=read set id_1 read set id_2

You receive a response that contains the activation job information, as shown in the following.

{
 "id": "12345678",
 "sequenceStoreId": "1234567890",
 "status": "SUBMITTED",
 "creationTime": "2022-10-22T00:50:54.670000+00:00"
}

After the activation job starts, you can monitor its progress with the get-read-set-activation-job
API operation. The following is an example of how to use the AWS CLI to check your activation
job status. Replace job ID and sequence store ID with your sequence store ID and job IDs,
respectively.

aws omics get-read-set-activation-job --id job ID --sequence-store-id sequence store ID

The response summarizes the activation job, as shown in the following.

{
 "id": 123567890,
 "sequenceStoreId": 123467890,
 "status": "SUBMITTED",
 "statusUpdateReason": "The job is submitted and will start soon.",
 "creationTime": "2022-10-22T00:50:54.670000+00:00",
 "sources": [
 {
 "readSetId": <reads set id_1>,
 "status": "NOT_STARTED",
 "statusUpdateReason": "The source is queued for the job."
 },
 {
 "readSetId": <read set id_2>,
 "status": "NOT_STARTED",
 "statusUpdateReason": "The source is queued for the job."
 }
]

Activating read sets Version latest 51

AWS HealthOmics User Guide

}

You can check the status of an activation job with the get-read-set-metadata API operation.
Possible statuses are ACTIVE, ACTIVATING, and ARCHIVED. In the following example, replace
sequence store ID with your sequence store ID, and replace read set ID with your read set
ID.

aws omics get-read-set-metadata --sequence-store-id sequence store ID --id read set ID

The following response shows you that the read set is active.

{
 "id": "12345678",
 "arn": "arn:aws:omics:us-west-2:555555555555:sequenceStore/1234567890/
readSet/12345678",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00100",
 "description": "HG00100 aligned to HG38 BAM",
 "fileType": "BAM",
 "creationTime": "2022-07-13T23:25:20Z",
 "sequenceInformation": {
 "totalReadCount": 1513467,
 "totalBaseCount": 163454436,
 "generatedFrom": "Pulled from SRA",
 "alignment": "ALIGNED"
 },
 "referenceArn": "arn:aws:omics:us-west-2:555555555555:referenceStore/0123456789/
reference/0000000001",
 "files": {
 "source1": {
 "totalParts": 2,
 "partSize": 10485760,
 "contentLength": 17112283,
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
},
 },

Activating read sets Version latest 52

AWS HealthOmics User Guide

 "index": {
 "totalParts": 1,
 "partSize": 53216,
 "contentLength": 10485760
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
},
 }
 },
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "BAM_MD5up",
 "source1": "d1d65429212d61d115bb19f510d4bd02"
 }
}

You can view all read set activation jobs by using list-read-set-activation-jobs, as shown in the
following example. In the following example, replace sequence store ID with your sequence
store ID.

aws omics list-read-set-activation-jobs --sequence-store-id sequence store ID

You receive the following response.

{
 "activationJobs": [
 {
 "id": 1234657890,
 "sequenceStoreId": "1234567890",
 "status": "COMPLETED",
 "creationTime": "2022-10-22T01:33:38.079000+00:00",
 "completionTime": "2022-10-22T01:34:28.941000+00:00"
 }
]
}

Activating read sets Version latest 53

AWS HealthOmics User Guide

HealthOmics Analytics

HealthOmics Analytics supports the storage and analysis of genomic variants and annotations.
Analytics provides two types of storage resources - Variant stores and Annotation stores. You use
these resources to store, transform, and query genomic variant data and annotation data. After you
import data into a datastore, you can use Athena to peform advanced analytics on the data.

You can use the HealthOmics console or API to create and manage stores, import data, and share
analytic store data with collaborators.

Variant stores support data in VCF formats, and annotation stores support TSV/CSV and GFF3
formats. Genomic coordinates are represented as zero-based, half-closed half-open intervals.
When your data is in the HealthOmics Analytics data store, access to the VCF files is managed
through AWS Lake Formation. You can then query the VCF files by using Amazon Athena. Queries
must use Athena query engine version 3. To read more about Athena query engine versions, see
the Amazon Athena documentation.

Topics

• Creating variant stores

• Creating variant store import jobs

• Creating annotation stores

• Creating annotation store import jobs

• Deleting analytics stores

• Querying analytics data

• Sharing analytics stores

Creating variant stores

The following topis describe how to create variant stores using the console and the API.

Topics

• Creating variant stores using the console

• Creating variant stores using the API

Creating variant stores Version latest 54

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-changing.html

AWS HealthOmics User Guide

Creating variant stores using the console

You can create a variant store using the HealthOmics console.

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Variant stores.

3. On the Create variant store page, provide the following information

• Variant store name - A unique name for this store.

• Description (optional) - A description of this variant store.

• Reference genome - The reference genome for this variant store.

• Data Encryption - Choose whether you want data encryption to be owned and managed by
AWS or by yourself.

• Tags (optional) - Provide up to 50 tags for this variant store.

4. Choose Create variant store.

Creating variant stores using the API

You can HealthOmics API operations to create and manage variant stores. You can also perform
these operations with the AWS CLI.

The following example uses the AWS CLI to create a variant store.

aws omics create-variant-store --name myvariantstore \
 --reference referenceArn="arn:aws:omics:us-
west-2:555555555555:referenceStore/123456789/reference/5987565360"

To confirm the creation of your variant store, you will receive the following response.

{
 "creationTime": "2022-11-03T18:19:52.296368+00:00",
 "id": "45aeb91d5678",
 "name": "myvariantstore",
 "reference": {
 "referenceArn": "arn:aws:omics:us-west-2:555555555555:referenceStore/123456789/
reference/5987565360"
 },
 "status": "CREATING"

Creating variant stores using the console Version latest 55

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

}

To learn more about a variant store, use the get-variant-store API.

aws omics get-variant-store --name myvariantstore

You will receive the following response.

{
 "id": "45aeb91d5678",
 "reference": {
 "referenceArn": "arn:aws:omics:us-west-2:555555555555:referenceStore/123456789/
reference/5987565360"
 },
 "status": "ACTIVE",
 "storeArn": "arn:aws:omics:us-west-2:555555555555:variantStore/myvariantstore",
 "name": "myvariantstore",
 "creationTime": "2022-11-03T18:19:52.296368+00:00",
 "updateTime": "2022-11-03T18:30:56.272792+00:00",
 "tags": {},
 "storeSizeBytes": 0
}

To view all variant stores associated with an account, use the list-variant-stores API.

aws omics list-variant-stores

You will receive a response that lists all variant stores, along with their IDs, statuses, and other
details, as shown in the following example response.

{
 "variantStores": [
 {
 "id": "45aeb91d5678",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:55555555555:referenceStore/5506874698"
 },
 "status": "ACTIVE",
 "storeArn": "arn:aws:omics:us-west-2:55555555555:variantStore/
new_variant_store",

Creating variant stores using the API Version latest 56

AWS HealthOmics User Guide

 "name": "variantstore",
 "creationTime": "2022-11-03T18:19:52.296368+00:00",
 "updateTime": "2022-11-03T18:30:56.272792+00:00",
 "statusMessage": "",
 "storeSizeBytes": 141526
 }
]
}

You can also filter the responses for the list-variant-stores API based on statuses or other criteria.

VCF Files imported into analytic stores created on or after May 15, 2023 have defined schemas for
Variant Effect Predictor (VEP) annotations. This makes it easier to query and parse imported VCF
data. The change does not impact stores created before May 15, 2023, except if the annotation
fields parameter is included in the API or CLI call. For these stores, using the annotation
fields parameter will cause the request to fail.

Creating variant store import jobs

The following example shows how to use the AWS CLI to create an import job for a variant store.

aws omics start-variant-import-job \
 --destination-name myvariantstore \
 --runLeftNormalization false \
 --role-arn arn:aws:iam::55555555555:role/roleName \
 --items source=s3://my-omics-bucket/sample.vcf.gz source=s3://my-omics-bucket/
sample2.vcf.gz

{
 "destinationName": "store_a",
 "roleArn": "....",
 "runLeftNormalization": false,
 "items": [
 {"source": "s3://my-omics-bucket/sample.vcf.gz"},
 {"source": "s3://my-omics-bucket/sample2.vcf.gz"}
]
}

For stores created after May 15, 2023, the following example shows how to add the --
annotation-fields parameter. The annotation fields are defined with the import.

Creating variant store import jobs Version latest 57

AWS HealthOmics User Guide

aws omics start-variant-import-job \
 --destination-name annotationparsingvariantstore \
 --role-arn arn:aws:iam::123456789012:role/<role_name> \
 --items source=s3://pathToS3/sample.vcf
 --annotation-fields '{"VEP": "CSQ"}'

{
 "jobId": "981e2286-e954-4391-8a97-09aefc343861"
}

Use get-variant-import-job to check the status.

aws omics get-variant-import-job --job-id 08279950-a9e3-4cc3-9a3c-a574f9c9e229

You'll receive a JSON response that shows the status of your import job. VEP annotations in the
VCF are parsed for information stored in the INFO column as an ID/Value pair. The default ID
for Ensembl Variant Effect Predictor annotations INFO column is CSQ, but you can use the --
annotation-fields parameter to indicate a custom value used in the INFO column. Parsing is
currently supported for VEP annotations.

For a store created before May 15, 2023 or for VCF files that don't include VEP annotation, the
response doesn't include any annotation fields.

{
 "creationTime": "2023-04-11T17:52:37.241958+00:00",
 "destinationName": "annotationparsingvariantstore",
 "id": "7a1c67e3-b7f9-434d-817b-9c571fd63bea",
 "items": [

 {
 "jobStatus": "COMPLETED",
 "source": "s3://DOC-EXAMPLE-BUCKET/NA12878.2k.garvan.vcf"
 }
],
 "roleArn": "arn:aws:iam::555555555555:role/<role_name>",

 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T17:58:22.676043+00:00",
}

Creating variant store import jobs Version latest 58

https://useast.ensembl.org/info/docs/tools/vep/index.html/#vcf

AWS HealthOmics User Guide

The VEP annotations that are a part of VCF files are stored as predefined schema with the
following structure. The extras field can be used to store any additional VEP fields that aren't
included in the default schema.

annotations struct<
 vep: array<struct<
 allele:string,
 consequence: array<string>,
 impact:string,
 symbol:string,
 gene:string,
 `feature_type`: string,
 feature: string,
 biotype: string,
 exon: struct<rank:string, total:string>,
 intron: struct<rank:string, total:string>,
 hgvsc: string,
 hgvsp: string,
 `cdna_position`: string,
 `cds_position`: string,
 `protein_position`: string,
 `amino_acids`: struct<reference:string, variant: string>,
 codons: struct<reference:string, variant: string>,
 `existing_variation`: array<string>,
 distance: string,
 strand: string,
 flags: array<string>,
 symbol_source: string,
 hgnc_id: string,
 `extras`: map<string, string>
 >>
>

The parsing is performed with a best effort approach. If the VEP entry doesn't follow the VEP
standard specifications, it won't be parsed and the row in the array will be empty.

For a new variant store, the response for get-variant-import-job would include the annotation
fields, as shown.

aws omics get-variant-import-job --job-id 08279950-a9e3-4cc3-9a3c-a574f9c9e229

You'll receive a JSON response that shows the status of your import job.

Creating variant store import jobs Version latest 59

https://useast.ensembl.org/info/docs/tools/vep/vep_formats.html#vcf
https://useast.ensembl.org/info/docs/tools/vep/vep_formats.html#vcf

AWS HealthOmics User Guide

{
 "creationTime": "2023-04-11T17:52:37.241958+00:00",
 "destinationName": "annotationparsingvariantstore",
 "id": "7a1c67e3-b7f9-434d-817b-9c571fd63bea",
 "items": [

 {
 "jobStatus": "COMPLETED",
 "source": "s3://DOC-EXAMPLE-BUCKET/NA12878.2k.garvan.vcf"
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/<role_name>",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T17:58:22.676043+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }
}

You can use list-variant-import-jobs to see all import jobs and their statuses.

aws omics list-variant-import-jobs --ids 7a1c67e3-b7f9-434d-817b-9c571fd63bea

The response returned will have information as follows.

{
 "variantImportJobs": [
 {
 "creationTime": "2023-04-11T17:52:37.241958+00:00",
 "destinationName": "annotationparsingvariantstore",
 "id": "7a1c67e3-b7f9-434d-817b-9c571fd63bea",
 "roleArn": "arn:aws:iam::55555555555:role/roleName",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T17:58:22.676043+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }
]
 }
}

Creating variant store import jobs Version latest 60

AWS HealthOmics User Guide

If necessary, you can cancel an import job with the following command.

aws omics cancel-variant-import-job
 --job-id edd7b8ce-xmpl-47e2-bc99-258cac95a508

Creating annotation stores

An annotation store is a data store representing an annotation database, such as one from a TSV,
VCF, or GFF file. If the same reference genome is specified, annotation stores are mapped to the
same coordinate system as variant stores during an import. The following topics show how to use
the HealthOmics console and AWS CLI to create and manage annotation stores.

Topics

• Create an annotation store using the console

• Create an annotation store using the API

• Creating new versions of annotation stores

Create an annotation store using the console

The following procedure to create annotation stores using the HealthOmics console.

To create an annotation store

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Annotation stores.

3. On the Annotation stores page, choose Create annotation store.

4. On the Create annotation store page, provide the following information

• Annotation store name - A unique name for this store.

• Description (optional) - A description of this reference genome.

• Data format and schema details - Select data file format and upload the schema definition
for this store.

• Reference genome - The reference genome for this annotation.

• Data Encryption - Choose whether you want data encryption to be owned and managed by
AWS or by yourself.

Creating annotation stores Version latest 61

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• Tags (optional) - Provide up to 50 tags for this annotation store.

5. Choose Create annotation store.

Create an annotation store using the API

The following example shows how to create an annotation store using the AWS CLI. For all AWS CLI
and API operations, you must specify the format of your data.

aws omics create-annotation-store --name my_annotation_store \
 --store-format VCF \
 --reference referenceArn="arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/5987565360"
 --version-name new_version

You receive the following response to confirm the creation of your annotation store.

{
 "creationTime": "2022-08-24T20:34:19.229500Z",
 "id": "3b93cdef69d2",
 "name": "my_annotation_store",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/5987565360"
 },
 "status": "CREATING"
 "versionName": "my_version"
 }

To learn more about an annotation store, use the get-annotation-store API.

aws omics get-annotation-store --name my_annotation_store

You receive the following response.

{
 "id": "eeb019ac79c2",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/5638433913/reference/5871590330“
 },

Create an annotation store using the API Version latest 62

AWS HealthOmics User Guide

 "status": "ACTIVE",
 "storeArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/gffstore",
 "name": "my_annotation_store",
 "creationTime": "2022-11-05T00:05:19.136131+00:00",
 "updateTime": "2022-11-05T00:10:36.944839+00:00",
 "tags": {},
 "storeFormat": "GFF",
 "statusMessage": "",
 "storeSizeBytes": 0,
 "numVersions": 1
 }

To view all annotation stores associated with an account, use the list-annotation-stores API
operation.

aws omics list-annotation-stores

You receive a response that lists all annotation stores, along with their IDs, statuses, and other
details, as shown in the following example response.

{
 "annotationStores": [
 {
 "id": "4d8f3eada259",
 "reference":
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/5638433913/reference/5871590330"
 },
 "status": "CREATING",
 "name": "gffstore",
 "creationTime": "2022-09-27T17:30:52.182990+00:00",
 "updateTime": "2022-09-27T17:30:53.025362+00:00"
 }
]
 }

You can also filter responses based on status or other criteria.

Creating new versions of annotation stores

You can create new versions of annotation stores to collect different versions of your annotation
databases. This helps you organize your annotation data, which is updated regularly.

Creating new versions of annotation stores Version latest 63

AWS HealthOmics User Guide

To create a new version of an existing annotation store, use the create-annotation-store-version
API as shown in the following example.

aws omics create-annotation-store-version \
 --name my_annotation_store \
 --version-name my_version

You will get the following response with the annotation store version ID, confirming that a new
version of your annotation has been created.

{
 "creationTime": "2023-07-21T17:15:49.251040+00:00",
 "id": "3b93cdef69d2",
 "name": "my_annotation_store",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/5987565360"
 },
 "status": "CREATING",
 "versionName": "my_version"
}

To update the description of an annotation store version, you can use update-annotation-store-
version to add updates to an annotation store version.

aws omics update-annotation-store-version \
 --name my_annotation_store \
 --version-name my_version \
 --description "New Description"

You will receive the following response, confirming that the annotation store version has been
updated.

{
 "storeId": "4934045d1c6d",
 "id": "2a3f4a44aa7b",
 "description":"New Description",
 "status": "ACTIVE",
 "name": "my_annotation_store",
 "versionName": "my_version",
 "creation Time": "2023-07-21T17:20:59.380043+00:00",

Creating new versions of annotation stores Version latest 64

AWS HealthOmics User Guide

 "updateTime": "2023-07-21T17:26:17.892034+00:00"
}

To view the details of an annotation store version, use get-annotation-store-version.

aws omics get-annotation-store-version --name my_annotation_store --version-name
 my_version

You will receive a response with the version name, status, and other details.

{
 "storeId": "4934045d1c6d",
 "id": "2a3f4a44aa7b",
 "status": "ACTIVE",
 "versionArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/
my_annotation_store/version/my_version",
 "name": "my_annotation_store",
 "versionName": "my_version",
 "creationTime": "2023-07-21T17:15:49.251040+00:00",
 "updateTime": "2023-07-21T17:15:56.434223+00:00",
 "statusMessage": "",
 "versionSizeBytes": 0
 }

To view all versions of an annotation store, you can use list-annotation-store-versions, as shown
in the following example.

aws omics list-annotation-store-versions --name my_annotation_store

You will receive a response with the following information

{
 "annotationStoreVersions": [
 {
 "storeId": "4934045d1c6d",
 "id": "2a3f4a44aa7b",
 "status": "CREATING",
 "versionArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/
my_annotation_store/version/my_version_2",
 "name": "my_annotation_store",

Creating new versions of annotation stores Version latest 65

AWS HealthOmics User Guide

 "versionName": "my_version_2",
 "creation Time": "2023-07-21T17:20:59.380043+00:00",
 "versionSizeBytes": 0
 },
 {
 "storeId": "4934045d1c6d",
 "id": "4934045d1c6d",
 "status": "ACTIVE",
 "versionArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/
my_annotation_store/version/my_version_1",
 "name": "my_annotation_store",
 "versionName": "my_version_1",
 "creationTime": "2023-07-21T17:15:49.251040+00:00",
 "updateTime": "2023-07-21T17:15:56.434223+00:00",
 "statusMessage": "",
 "versionSizeBytes": 0
 }
}

If you no longer need an annotation store version, you can use delete-annotation-store-versions
to delete an annotation store version, as shown in the following example.

aws omics delete-annotation-store-versions --name my_annotation_store --versions
 my_version

If the store version is deleted without errors, you will receive the following response.

{
 "errors": []
}

If there are errors, you will receive a response with the details of the errors, as shown.

{
 "errors": [
 {
 "versionName": "my_version",
 "message": "Version with versionName: my_version was not found."
 }
]
}

Creating new versions of annotation stores Version latest 66

AWS HealthOmics User Guide

If you try to delete an annotation store version that has an active import job, you will receive a
response with an error, as shown.

{
 "errors": [
 {
 "versionName": "my_version",
 "message": "version has an inflight import running"
 }
]
}

In this case, you can force deletion of the annotation store version, as shown in the following
example.

aws omics delete-annotation-store-versions --name my_annotation_store --versions
 my_version --force

Creating annotation store import jobs

Topics

• Create an annotation import job using the API

• Additional parameters for TSV and VCF formats

• Creating TSV formatted annotation stores

• Starting VCF formatted import jobs

Create an annotation import job using the API

The following example shows how to use the AWS CLI to start an annotation import job.

aws omics start-annotation-import-job \
 --destination-name myannostore \
 --version-name myannostore \
 --role-arn arn:aws:iam::123456789012:role/roleName \
 --items source=s3://my-omics-bucket/sample.vcf.gz
 --annotation-fields '{"VEP": "CSQ"}'

Creating annotation store import jobs Version latest 67

AWS HealthOmics User Guide

Annotation stores created before May 15, 2023 return an error message if the annotation-fields
is included. They don't return output for any API operations involved with annotation store import
jobs.

You can then use the get-annotation-import-job API operation and the job ID parameter to
learn more details about the annotation import job.

aws omics get-annotation-import-job --job-id 9e4198fb-fa85-446c-9301-9b823a1a8ba8

You receive the following response, including the annotation fields.

{
 "creationTime": "2023-04-11T19:09:25.049767+00:00",
 "destinationName": "parsingannotationstore",
 "versionName": "parsingannotationstore",
 "id": "9e4198fb-fa85-446c-9301-9b823a1a8ba8",
 "items": [
 {
 "jobStatus": "COMPLETED",
 "source": "s3://my-omics-bucket/sample.vep.vcf"
 }
],
 "roleArn": "arn:aws:iam::55555555555:role/roleName",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T19:13:09.110130+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }

To view all annotation store import jobs, use list-annotation-import-jobs .

aws omics list-annotation-import-jobs --ids 9e4198fb-fa85-446c-9301-9b823a1a8ba8

The response includes the details and statuses of your annotation store import jobs.

{
 "annotationImportJobs": [
 {
 "creationTime": "2023-04-11T19:09:25.049767+00:00",

Create an annotation import job using the API Version latest 68

AWS HealthOmics User Guide

 "destinationName": "parsingannotationstore",
 "versionName": "parsingannotationstore",
 "id": "9e4198fb-fa85-446c-9301-9b823a1a8ba8",
 "roleArn": "arn:aws:iam::55555555555:role/roleName",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T19:13:09.110130+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }
]
 }

Additional parameters for TSV and VCF formats

For TSV and VCF formats, there are additional parameters that inform the API of how to parse your
input.

Important

CSV annotation data that's exported with query engines directly returns information from
the dataset import. If the imported data contains formulas or commands, the file might be
subject to CSV injection. Therefore, files exported with query engines can prompt security
warnings. To avoid malicious activity, turn off links and macros when reading export files.

The TSV parser also performs basic bioinformatics operations, like left normalization and
standardization of genomics coordinates, that are listed in the following table.

Format type Description

Generic Generic text file. No genomic information.

CHR_POS Start position - 1, Add end position, which is
the same as POS.

CHR_POS_REF_ALT Contains contig, 1-base position, ref and alt
allele information.

CHR_START_END_REF_ALT_ONE_BASE Contains contig, start, end, ref and alt allele
information. Coordinates are 1-based.

Additional parameters for TSV and VCF formats Version latest 69

AWS HealthOmics User Guide

Format type Description

CHR_START_END_ZERO_BASE Contains contig, start, and end positions.
Coordinates are 0-based.

CHR_START_END_ONE_BASE Contains contig, start, and end positions.
Coordinates are 1-based.

CHR_START_END_REF_ALT_ZERO_BASE Contains contig, start, end, ref and alt allele
information. Coordinates are 0-based.

A TSV import annotation store request looks like the following example.

aws omics start-annotation-import-job \
--destination-name tsv_anno_example \
--role-arn arn:aws:iam::555555555555:role/demoRole \
--items source=s3://demodata/genomic_data.bed.gz \
--format-options '{ "tsvOptions": {
 "readOptions": {
 "header": false,
 "sep": "\t"
 }
 }
}'

Creating TSV formatted annotation stores

The following example creates an annotation store using a tab limited file that contains a header,
rows, and comments. The coordinates are CHR_START_END_ONE_BASED, and it contains the HG19
gene map from the OMIM's Synopsis of the Human Gene Map.

aws omics create-annotation-store --name mimgenemap \
 --store-format TSV \
 --reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
 --store-options=tsvStoreOptions='{
 annotationType=CHR_START_END_ONE_BASE,
 formatToHeader={CHR=chromosome, START=genomic_position_start,
 END=genomic_position_end},

Creating TSV formatted annotation stores Version latest 70

https://www.omim.org/downloads

AWS HealthOmics User Guide

 schema=[
 {chromosome=STRING},
 {genomic_position_start=LONG},
 {genomic_position_end=LONG},
 {cyto_location=STRING},
 {computed_cyto_location=STRING},
 {mim_number=STRING},
 {gene_symbols=STRING},
 {gene_name=STRING},
 {approved_gene_name=STRING},
 {entrez_gene_id=STRING},
 {ensembl_gene_id=STRING},
 {comments=STRING},
 {phenotypes=STRING},
 {mouse_gene_symbol=STRING}]}'

You can import files with or without a header. To indicate this in a CLI request, use header=false,
as shown in the following import job example.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://DOC-EXAMPLE-BUCKET/annotation-examples/hg38_genemap2.txt \
 --destination-name output-bucket \
 --format-options=tsvOptions='{readOptions={sep="\t",header=false,comment="#"}}'

The following example creates an annotation store for a bed file. A bed file is a simple tab
delimited file. In this example, the columns are chromosome, start, end, and region name. The
coordinates are zero-based, and the data does not have a header.

aws omics create-annotation-store \
 --name cexbed --store-format TSV \
 --reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
 --store-options=tsvStoreOptions='{
 annotationType=CHR_START_END_ZERO_BASE,
 formatToHeader={CHR=chromosome, START=start, END=end},
 schema=[{chromosome=STRING}, {start=LONG}, {end=LONG}, {name=STRING}]}'

You can then import the bed file into the annotation store by using the following the CLI
command.

aws omics start-annotation-import-job \

Creating TSV formatted annotation stores Version latest 71

AWS HealthOmics User Guide

 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://DOC-EXAMPLE-BUCKET/TruSeq_Exome_TargetedRegions_v1.2.bed \
 --destination-name cexbed \
 --format-options=tsvOptions='{readOptions={sep="\t",header=false,comment="#"}}'

The following example creates an annotation store for a tab delimited file that contains the first
few columns of a VCF file, followed by columns with annotation information. It contains genome
positions with information on the chromosome, start, reference and alternate alleles, and it
contains a header.

aws omics create-annotation-store --name gnomadchrx --store-format TSV \
--reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
--store-options=tsvStoreOptions='{
 annotationType=CHR_POS_REF_ALT,
 formatToHeader={CHR=chromosome, POS=start, REF=ref, ALT=alt},
 schema=[
 {chromosome=STRING},
 {start=LONG},
 {ref=STRING},
 {alt=STRING},
 {filters=STRING},
 {ac_hom=STRING},
 {ac_het=STRING},
 {af_hom=STRING},
 {af_het=STRING},
 {an=STRING},
 {max_observed_heteroplasmy=STRING}]}'

You would then import the file into the annotation store using the following the CLI command.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://DOC-EXAMPLE-BUCKET/
gnomad.genomes.v3.1.sites.chrM.reduced_annotations.tsv \
 --destination-name gnomadchrx \
 --format-options=tsvOptions='{readOptions={sep="\t",header=true,comment="#"}}'

Creating TSV formatted annotation stores Version latest 72

AWS HealthOmics User Guide

The following example shows how a customer can create an annotation store for a mim2gene file.
A mim2gene file provides the links between the genes in OMIM and another gene identifier. It's tab
delimited and contains comments.

aws omics create-annotation-store \
 --name mim2gene \
 --store-format TSV \
 --reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
 --store-options=tsvStoreOptions='
 {annotationType=GENERIC,
 formatToHeader={},
 schema=[
 {mim_gene_id=STRING},
 {mim_type=STRING},
 {entrez_id=STRING},
 {hgnc=STRING},
 {ensembl=STRING}]}'

You can then import data into your store as follows.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://xquek-dev-aws/annotation-examples/mim2gene.txt \
 --destination-name mim2gene \
 --format-options=tsvOptions='{readOptions={sep="\t",header=false,comment="#"}}'

Starting VCF formatted import jobs

For VCF files, there are two additional inputs, ignoreQualField and ignoreFilterField, that
ignore or include those parameters as shown.

aws omics start-annotation-import-job --destination-name annotation_example\
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items source=s3://demodata/example.garvan.vcf \
 --format-options '{ "vcfOptions": {
 "ignoreQualField": false,
 "ignoreFilterField": false
 }
 }'

Starting VCF formatted import jobs Version latest 73

AWS HealthOmics User Guide

You can also cancel an annotation store import, as shown. If the cancellation succeeds, you don't
receive a response to this AWS CLI call. However, if the import job ID isn't found or the import job is
completed, you receive an error message.

aws omics cancel-annotation-import-job --job-id edd7b8ce-xmpl-47e2-bc99-258cac95a508

Note

Your metadata import job history for get-annotation-import-job, get-variant-import-
job, list-annotation-import-jobs, and list-variant-import-jobs is auto-deleted after two
years. The variant and annotation data that's imported isn't auto-deleted and remains in
your data stores.

Deleting analytics stores

When you delete a variant or annotation store, the system also deletes all imported data in that
store and any associated tags.

The following example shows how to delete a variant store using the AWS CLI. If the action is
successful, the variant store status transitions to DELETING.

aws omics delete-variant-store --id <variant-store-id>

The following example shows how to delete an annotation store. If the action is successful, the
annotation store status transitions to DELETING. Annotation stores can't be deleted if more than
one version exists.

aws omics delete-annotation-store --id <annotation-store-id>

Querying analytics data

You can perform queries on your variant stores using AWS Lake Formation and Amazon Athena
or Amazon EMR. Before you run any queries, complete the setup procedures (described in the
following sections) for Lake Formation and Amazon Athena.

For information about Amazon EMR, see Tutorial: Getting started with Amazon EMR

Deleting analytics stores Version latest 74

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html

AWS HealthOmics User Guide

Topics

• Setting up the Lake Formation console

• Configuring Athena for queries

• Running queries on variant stores

Setting up the Lake Formation console

Before you use Lake Formation to manage HealthOmics data stores, perform the following Lake
Formation setup procedures.

Topics

• Create or verify Lake Formation administrators

• Create resource links using the Lake Formation console

• Configure permissions for AWS RAM resource shares

Create or verify Lake Formation administrators

Before you can create a data lake in Lake Formation, you define one or more administrators.

Administrators are users and roles with permissions to create resource links. You set up data lake
administrators per account per region.

Create an admin user in the Lake Formation console

1. Open the AWS Lake Formation console: Lake Formation console

2. If the console displays the Welcome to Lake Formation panel, choose Get started.

Lake Formation adds you to the Data lake administrators table.

3. Otherwise, from the left menu, choose Administative roles and tasks.

4. Add any additional administrators as required.

Create resource links using the Lake Formation console

To make a shared resource that users can query, the default access controls must be disabled. To
learn more about disabling default access controls, see Changing the default security settings for

Setting up Lake Formation Version latest 75

https://console.aws.amazon.com/lakeformation
https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html

AWS HealthOmics User Guide

your data lake in the Lake Formation documentation. You can create resource links individually or
as a group, so that you can access data in Amazon Athena or other AWS services (such as Amazon
EMR).

Creating resource links in the AWS Lake Formation console and sharing them with HealthOmics
Analytics users

1. Open the AWS Lake Formation console: Lake Formation console

2. In the primary navigation bar, choose Databases.

3. In the Databases table, choose the desired database.

4. From the Actions menu, choose Create resource link.

5. Enter a Resource link name. If you plan to access the database from Athena, enter a name
using only lowercase letters (up to 256 characters).

6. Choose Create.

7. The new resource link is now listed under Databases.

Grant access to the shared resource using the Lake Formation console

A Lake Formation database administrator can grant access to the shared resource using the
following procedure.

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

2. In the primary navigation bar, choose Databases.

3. On the Databases page, select the resource link you previously created.

4. From the Actions menu, choose Grant on target.

5. On the Grant data permissions page under Principals, choose IAM users or roles.

6. From the IAM users or roles drop-down menu, find the user to which you want to grant access.

7. Next, under LF-Tags or catalog resources card, select the Named data catalog resources
option.

8. From the Tables-optional drop-down menu, select All Tables or the table that you previously
created.

9. In the Table permissions card, under Table permissions choose Describe and Select.

10. Next, choose Grant.

Setting up Lake Formation Version latest 76

https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html
https://console.aws.amazon.com/lakeformation
https://console.aws.amazon.com/lakeformation

AWS HealthOmics User Guide

To view the Lake Formation permissions, choose Data lake permissions from the primary
navigation pane. The table shows the available databases and resource links.

Configure permissions for AWS RAM resource shares

In the AWS Lake Formation console, view the permissions by choosing Data lake permissions in
the primary navigation bar. On the Data permissions page, you can view a table that shows the
Resource types, Databases, and ARN that's related to a shared resource under RAM Resource
Share. If you need to accept an AWS Resource Access Manager (AWS RAM) resource share, AWS
Lake Formation notifies you in the console.

HealthOmics can implicitly accept the AWS RAM resource shares during store creation. To accept
the AWS RAM resource share, the IAM user or role that calls the CreateVariantStore or
CreateAnnotationStore API operations must allow the following actions:

• ram:GetResourceShareInvitations - This action allows HealthOmics to find the invitations.

• ram:AcceptResourceShareInvitation - This action allows HealthOmics to accept the
invitation by using an FAS token.

Without these permissions, you see an authorization error during store creation.

Here is a sample policy that includes these actions. Add this policy to the IAM user or role that
accepts the AWS RAM resource share.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*",
 "ram:AcceptResourceShareInvitation",
 "ram:GetResourceShareInvitations"
],
 "Resource": "*"
 }
]
}

Setting up Lake Formation Version latest 77

AWS HealthOmics User Guide

Configuring Athena for queries

You can use Athena to query variants and annotations. Before you run any queries, perform the
following setup tasks:

Topics

• Configure a query results location using the Athena console

• Configure a workgroup with Athena engine v3

Configure a query results location using the Athena console

To configure a query results location, follow these steps.

1. Open the Athena console: Athena console

2. In the primary navigation bar, choose Query editor.

3. In the query editor, choose the Settings tab, then choose Manage.

4. Enter an S3 prefix of a location to save the query result.

Configure a workgroup with Athena engine v3

To configure a workgroup, follow these steps.

1. Open the Athena console: Athena console

2. In the primary navigation bar, choose Workgroups, then Create workgroup.

3. Enter a name for the workgroup.

4. Select Athena SQL as the type of engine.

5. Under Upgrade query engine, select Manual.

6. Under Query version engine, select Athena version 3.

7. Choose Create workgroup.

Running queries on variant stores

You can perform queries on your variant store using Amazon Athena. Note that genomic
coordinates in variant and annotation stores are represented as zero-based, half-closed half-open
intervals.

Configuring Athena for queries Version latest 78

https://console.aws.amazon.com/athena
https://console.aws.amazon.com/athena

AWS HealthOmics User Guide

Run a simple query using the Athena console

The following example shows how to run a simple query.

1. Open the Athena Query editor: Athena Query editor

2. Under Workgroup, select the workgroup that you created during setup.

3. Verify that Data source is AwsDataCatalog.

4. For Database, select the database resource link that you created during the Lake Formation
setup.

5. Copy the following query into the Query Editor under the Query 1 tab:

SELECT * from omicsvariants limit 10

6. Choose Run to run the query. The console populates the results table with the first 10 rows of
the omicsvariants table.

Run a complex query using the Athena console

The following example shows how to run a complex query. To run this query, import ClinVar into
the annotation store.

Run a complex query

1. Open the Athena Query editor: Athena Query editor

2. UnderWorkgroup, select the workgroup that you created during setup.

3. Verify that Data source is AwsDataCatalog.

4. For Database, select the database resource link that you created during the Lake Formation
setup.

5. Choose the + at the top right to create a new query tab named Query 2.

6. Copy the following query into the Query Editor under the Query 2 tab:

SELECT variants.sampleid,
 variants.contigname,
 variants.start,
 variants."end",
 variants.referenceallele,
 variants.alternatealleles,

Runnning queries Version latest 79

https://console.aws.amazon.com/athena
https://console.aws.amazon.com/athena

AWS HealthOmics User Guide

 variants.attributes AS variant_attributes,
 clinvar.attributes AS clinvar_attributes
FROM omicsvariants as variants
INNER JOIN omicsannotations as clinvar ON
 variants.contigname=CONCAT('chr',clinvar.contigname)
 AND variants.start=clinvar.start
 AND variants."end"=clinvar."end"
 AND variants.referenceallele=clinvar.referenceallele
 AND variants.alternatealleles=clinvar.alternatealleles
WHERE clinvar.attributes['CLNSIG']='Likely_pathogenic'

7. Choose Run to start running the query.

Sharing analytics stores

As the owner of a variant store or an annotation store, you can share the store with other AWS
accounts. The owner can revoke access to the shared resource by deleting the share.

As the subscriber to a shared store, you first accept the share. You can then define workflows that
use the shared store. The data shows up as a table in both AWS Glue and Lake Formation.

When you no longer need access to the store, you delete the share.

See Cross-account resource sharing in AWS HealthOmics for additional information about resource
sharing.

Creating a store share

To create a store share, use the create-share API operation. The principal subscriber is the AWS
account of the user who will subscribe to the share. The following example creates a share for a
variant store. To share a store with more than one account, you create multiple shares of the same
store.

aws omics create-share \
 --resource-arn "arn:aws:omics:us-west-2:555555555555:variantStore/
omics_dev_var_store" \
 --principal-subscriber "123456789012" \
 --name "my_Share-123"

If the create is successful, you receive a response with the share ID and status.

Sharing analytics stores Version latest 80

AWS HealthOmics User Guide

{
 "shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
 "name": "my_Share-123",
 "status": "PENDING"
 }

The share remains in pending state until the subscriber accepts it using the accept-share API
operation.

Creating a store share Version latest 81

AWS HealthOmics User Guide

HealthOmics Workflows

With HealthOmics Workflows, you can process and analyze your genomics data using either
Ready2Run workflows or private workflows.

Ready2Run workflows are created by third-party publishers. They're ready to run without further
definition or configuration.

Private workflows are workflows that you create. You define the workflow tasks using CWL, WDL, or
Nextflow. You add private workflows to a run group to control compute usage. You can share your
private workflows with other AWS accounts.

A run is a single invocation of a workflow, and a task is a single process within the run.

A run group is a collection of private workflow runs that share a set of resource limits, such as
maximum concurrent runs and maximum run duration. You set these limits to control the compute
resources that the run group consumes.

For full examples of how to use HealthOmics workflows, see HealthOmics Github tutorials or the
AWS workshop end to end tutorial for HealthOmics.

Topics

• Ready2Run workflows

• Private workflows

• Running workflows

• Using the CloudWatch Logs for troubleshooting

Ready2Run workflows

Ready2Run workflows are preconfigured workflows published by third-party publishers. Some
publishers, such as Sentieon Inc, offer subscription-based workflows. Other Ready2Run workflows
don't require a subscription, and some workflows are open source, such as the nf-core workflows.

Ready2Run workflows are well-suited to the following scenarios:

• You want to focus on the analysis of pipeline output and generating results, without the need to
set up the underlying infrastructure.

• You want to replicate your results using established workflows.

Ready2Run workflows Version latest 82

https://github.com/aws-samples/amazon-omics-tutorials
https://catalog.workshops.aws/amazon-omics-end-to-end
https://catalog.workshops.aws/amazon-omics-end-to-end

AWS HealthOmics User Guide

• As a software developer, you want to integrate your application directly with the HealthOmics
SDK.

When you use a Ready2Run workflow, your workflow is preconfigured and can't be edited. In
contrast to private workflows, Ready2Run workflows don't support the following:

• Changing the compute resources, run storage, or input file size limits.

• Changing the workflow definition or containers.

• Adding runs to run groups.

• Sharing the workflow.

All Ready2Run workflows provide logs, including CloudWatch logs, that you can use for
troubleshooting.

Topics

• Using Ready2Run workflows (console)

• Using Ready2Run workflows (API)

Using Ready2Run workflows (console)

Using Ready2Run workflows in the console is similar to using a private workflow. One key
difference is that the workflow publisher provides sample data, so that you can try out the
workflow without creating your own data.

To use a Ready2Run workflow in the console

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Ready2Run workflows.

3. On the Ready2Run workflows page, choose the workflow that you want to use. The console
opens the details page for that workflow.

4. The details tab lists information such as the name, list price per run, description, workflow
language type, run storage capacity, status, creation date, and parameters with descriptions.
The details tab also tells you whether the workflow requires a subscription.

5. To use the workflow, choose Create run

6. In the Specify run details page, enter a run name. You can also add run priority to your run.

Using Ready2Run workflows (console) Version latest 83

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

7. Enter or select an Amazon S3 location for the workflow run output.

8. For Run meta data retention mode, choose whether to retain or remove run meta data.

9. In the Service role panel, choose whether to use an existing service role or create a new one.

10. (Optional) Add tags to help identify and manage your run.

11. Choose Next.

12. From the Add parameters page, choose one of the options to add the run parameter values:

• Select a parameter file (in JSON format) from an Amazon S3 location.

• Select a parameter file (in JSON format) from your local drive.

• Manually enter the parameter values.

• Run workflow with Ready2Run sample data provided by the workflow publisher.

13. If you upload a JSON file, the console parses the file and performs inline validation. You can
then manually update the values of your parameters as needed.

14. Choose Next.

15. Review your inputs, then choose Start run.

Using Ready2Run workflows (API)

Most of the API operations for creating runs and workflows behave similarly for both Ready2Run
and private workflows.

To return a list of available Ready2Run workflows, use list-workflows with the type parameter set
to READY2RUN.

aws omics list-workflows --type READY2RUN

After you identify the workflow to run from the list-workflows response, you can use get-
workflow with the --id parameter to get more details.

aws omics get-workflow --type READY2RUN --id workflow id

To run a Ready2Run workflow, you can use start-run API operation with the workflow-type
parameter set to READY2RUN, as shown in the following example

aws-omics start-run \

Using Ready2Run workflows (API) Version latest 84

AWS HealthOmics User Guide

 --workflow-type READY2RUN \
 --workflow-id workflow id \
 --output-uri &example-s3-bucket; \
 --role-arn arn:aws:iam::1234567892012:role/service-role/OmicsWorkflow-20221004T164236
 \
 --parameters file:///path/to/parameters.json

To monitor your run, you can use the get-run API operation, as shown.

aws-omics get-run --id run id

Private workflows

Before you create and run a private workflow, you need the following resources:

• Genomics data stored in an Amazon S3 bucket or a HealthOmics sequence store.

• An Amazon S3 bucket for the workflow outputs.

• A workflow definition file (in WDL, Nextflow, or CWL).

• An Amazon ECR container image stored in a private Amazon ECR repository.

HealthOmics supports workflows written in WDL versions 1.0 and 1.1, Nextflow v22.04.0, or CWL
versions 1.0, 1.1, or 1.2. To learn more about workflow languages, see the specifications for WDL,
Nextflow, or CWL.

To use a private workflow, you containerize your workflow tools and create corresponding private
image repositories in Amazon Elastic Container Registry (Amazon ECR). We recommend that you
define your Amazon ECR container image URIs as parameters in your workflow so that access can
be verified before the run begins. It also makes it easier to run a workflow in a new Region by
changing the Region parameter.

Using the HealthOmics console or API operations, you can perform the following actions related to
private workflows:

• Create, retrieve, and manage workflows

• Create and manage run groups

• Share your private workflow with other AWS accounts in the same region, and accept private
workflow shares offered to you by other AWS accounts

Private workflows Version latest 85

https://github.com/openwdl/wdl/blob/main/versions/1.1/SPEC.md
https://www.nextflow.io/docs/latest/script.html
http://www.commonwl.org/user_guide/

AWS HealthOmics User Guide

• Tag AWS resources such as workflows, runs, and run groups

For full examples of how to use HealthOmics workflows, see HealthOmics Github tutorials or the
AWS workshop end to end tutorial for HealthOmics.

Topics

• Setting up Amazon ECR for private workflows

• Writing workflow definition files

• Creating private workflows

• Sharing workflows

• Creating and working with run groups

Setting up Amazon ECR for private workflows

Before you create a private workflow, you containerize your workflow tools and create
corresponding private image repositories in Amazon Elastic Container Registry (Amazon ECR).
When you run the workflow, the HealthOmics service accesses the containers that you provide.

Note

HealthOmics doesn't support ARM containers and doesn't support access to public
containers.

Topics

• Add task inputs to an ECR container image

• Configure Amazon ECR permissions

Add task inputs to an ECR container image

Add all executables, libraries, and scripts needed to run a workflow task into the Amazon ECR
image that's used to run the task.

It's best practice to avoid using scripts, binaries, and libraries that are external to a tasks container
image. This is especially important when using nf-core workflows that use a bin directory as part
of the workflow package. While this directory will be available to the workflow task, it's mounted

Setting up Amazon ECR Version latest 86

https://github.com/aws-samples/amazon-omics-tutorials
https://catalog.workshops.aws/amazon-omics-end-to-end
https://catalog.workshops.aws/amazon-omics-end-to-end

AWS HealthOmics User Guide

as a read-only directory. Required resources in this directory should be copied into the task image
and made available at runtime or when building the container image used for the task.

Configure Amazon ECR permissions

For the HealthOmics service to access your private repository, you create an IAM policy for the
HealthOmics service. You add this policy to each private repository referenced by a workflow. The
private repository and workflow must be in the same region.

You can set up cross-account support to allow multiple AWS accounts (in the same region as the
repository) access to the same repository.

If you share a workflow that references any Amazon ECR containers, configure cross-account
support for the shared workflow subscriber to access the containers.

To configure cross-account support, give permission to specific accounts by adding a policy
statement similar to OmicsAccessCrossAccount in the following example.

To grant HealthOmics permission to access Amazon ECR

1. Open the private repositories page in the Amazon ECR console and select the repository you
are granting access to.

2. From the side bar navigation, select Permissions.

3. Choose Edit JSON.

4. Choose Add Statement.

5. Add the following policy statement for Conditions and then select Save Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "omics workflow",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"

Setting up Amazon ECR Version latest 87

https://console.aws.amazon.com/ecr/repositories

AWS HealthOmics User Guide

]
 }
]
}

The resource-based policy on the registry grants HealthOmics permission to acquire a container
image in the repository.

To use a cross-account container in the same region, add a permission statement similar to
OmicsAccessCrossAccount in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "OmicsAccessPrincipal",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
]
 },
 {
 "Sid":"OmicsAccessCrossAccount",
 "Effect":"Allow",
 "Principal":{
 "AWS":"arn:aws:iam::{{AWS-account-ID}}:root"
 },
 "Action":[
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
]
 }
]
}
]
}

Setting up Amazon ECR Version latest 88

AWS HealthOmics User Guide

Writing workflow definition files

You can write your own workflow definition file for private workflows. Workflows written in WDL,
Nextflow, and CWL are supported.

Topics

• Writing workflows in WDL

• Writing workflows in Nextflow

• Writing workflows in CWL

• Workflow definition file examples

Writing workflows in WDL

The following tables show how inputs in WDL map to the matching primitive type or complex
JSON type. Type coercion is limited and whenever possible, types should be explicit.

Primitive types

WDL type JSON type Example WDL Example JSON
key and value

Notes

Boolean boolean Boolean b "b": true The value must
be lower case
and unquoted.

Int integer Int i "i": 7 Must be
unquoted.

Float number Float f "f": 42.2 Must be
unquoted.

String string String s "s":
"characte
rs"

JSON strings
that are a URI
must be mapped
to a WDL file to
be imported.

Writing workflow definition files Version latest 89

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

File string File f "f": "s3://
BUCKET-
NAME/path/
to/file"

Amazon S3 and
HealthOmics
storage URIs
are imported as
long as the IAM
role provided
for the workflow
has read access
to these objects.
No other URI
schemes are
supported (such
as file://,
https://,
and ftp://).
The URI must
specify an
object. It cannot
be a directory
meaning it can
not end with a /.

Writing workflow definition files Version latest 90

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

Directory string Directory d "d": "s3://
bucket/
path/"

The Directory
 type isn't

included in WDL
1.0 or 1.1, so
you will need to
add version
development
to the header
of the WDL file.
The URI must
be a Amazon S3
URI and with a
prefix that ends
with a '/'. All
contents of the
directory will
be recursively
copied to the
workflow as a
single download.
The Directory

 should only
contain files
related to the
workflow. It isn't
recommend
ed to include
a Directory

 with many
objects or
subdirectories
as it may add

Writing workflow definition files Version latest 91

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

delays while
downloading.

Complex types in WDL are data structures comprised of primitive types. Data structures such as
lists will be converted to arrays.

Complex types

WDL type JSON type Example WDL Example JSON
key and value

Notes

Array array Array[Int]
nums

“nums": [1,
2, 3]

The members
of the array
must follow the
format of the
WDL array type.

Pair object Pair[Stri
ng, Int]
str_to_i

“str_to_i
": {"left":
"a",
"right": 1}

Each value of
the pair must
use the JSON
format of its
matching WDL
type.

Map object Map[Int,
String]
int_to_st
ring

"int_to_s
tring":
{ 2:
"hello", 1:
"goodbye" }

Each entry in the
map must use
the JSON format
of its matching
WDL type.

Struct object struct
SampleBam
AndIndex
{ String
sample_na

"b_and_i":
{ sample_na
me:
"NA12878"
, bam:

The names
of the struct
members must
exactly match
the names of

Writing workflow definition files Version latest 92

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

me File
bam File
bam_index }
SampleBam
AndIndex
b_and_i

"s3://BUC
KET-NAME/
NA12878.b
am",
bam_index
: "s3://BUC
KET-NAME/
NA12878.b
am.bai" }

the JSON object
keys. Each value
must use the
JSON format of
the matching
WDL type.

Object N/A N/A N/A The WDL
Object type
is outdated
and should be
replaced by
Struct in all
cases.

The HealthOmics workflow engine does not support qualified or name-spaced input parameters.
Handling of qualified parameters and their mapping to WDL parameters isn't specified by the
WDL language and can be ambiguous. For these reasons, all input parameters should be declared
at the top level (main) workflow and passed down to subworkflow calls by using standard WDL
mechanisms.

In addition to standard cpu, memory, and container task runtime directives, HealthOmics also
supports acceleratorCount and acceleratorType. The acceleratorType is dependent
on the number of GPUs. It can be either a G5 instance, such as nvidia-tesla-a10g, or a G4
instance, such as nvidia-tesla-t4 or nvidia-tesla-t4-a10g. G4 instances are not supported
in the Israel (Tel Aviv) region.

A workflow definition file written in WDL that has the accelerator count and type defined in the
parameters would look like the following.

version 1.1

Writing workflow definition files Version latest 93

AWS HealthOmics User Guide

workflow hello_gpu {
 call hello {}
 call nvidia_smi {}
}

task hello {
 command {
 echo "hello"
 }
 runtime {
 }
 output {
 String out = read_string(stdout())
 }
}

task nvidia_smi {
 command {
 nvidia-smi
 }
 runtime {
 # Note: you will need to provision the following container image in your Amazon
 ECR Private registry
 container: "111122223333.dkr.ecr.us-west-2.amazonaws.com/nvidia/cuda:10.0-
devel-centos7"
 acceleratorCount: 1
 acceleratorType: "nvidia-tesla-t4-a10g"
 }
 output {
 String out = read_string(stdout ())
 }
}

Writing workflows in Nextflow

Nextflow DSL2 is based on the Groovy programming language, so parameters are dynamic and
type coercion is possible using the same rules as Groovy. Parameters and values supplied by the
input JSON are available in the parameters (params) map of the workflow.

When an Amazon S3 or HealthOmics URI is used to construct a Nextflow file or path object, it
makes the matching object available to the workflow, as long as read access is granted. The use

Writing workflow definition files Version latest 94

AWS HealthOmics User Guide

of prefixes or directories is allowed for Amazon S3 URIs. HealthOmics does not currently support
the use of glob patterns such as “s3://BUCKET-NAME/path/*.gz” in Amazon S3 URIs or
HealthOmics Storage URIs because POSIX glob pattern behavior is undefined. Glob patterns may
be used within the workflow definition in the creation of path or file channels.

HealthOmics supports Nextflow task directives accelerator and type. The acceleratorType
is dependent on the number of GPUs. It can be either a G5 instance, such as nvidia-tesla-a10g,
or a G4 instance, such as nvidia-tesla-t4 or nvidia-tesla-t4-a10g. G4 instances aren't
supported in the Israel (Tel Aviv) region.

A workflow definition file written in Nextflow that has the accelerator count and type defined in
the parameters would look like the following.

 nextflow.enable.dsl = 2

process hello {

 output:
 stdout emit: out

 script:
 """
 echo "hello"
 """

}

process nvidia_smi {
 // Note: you will need to provision the following container image in your Amazon
 ECR Private registry
 container "111122223333.dkr.ecr.<aws-region>.amazonaws.com/nvidia/cuda:10.0-devel-
centos7"
 accelerator 1, type: 'nvidia-tesla-t4-a10g'

 output:
 stdout emit: out

 script:
 """
 nvidia-smi
 """

Writing workflow definition files Version latest 95

AWS HealthOmics User Guide

}

workflow HELLO_GPU {
 hello()
 nvidia_smi()
}

workflow {
 HELLO_GPU()
}

Writing workflows in CWL

Workflows written in Common Workflow Language, or CWL, offer similar functionality to
workflows written in WDL and Nextflow. CWL versions 1.0, 1.1, and 1.2 are supported. You can use
Amazon S3 or HealthOmics storage URIs as input parameters. We recommend that you declare
Amazon ECR containers in the workflow as input parameters for validation of the Amazon ECR
permissions. The Amazon ECR containers must be hosted in the same Region as your workflow.

If input is defined in a secondaryFile in a sub workflow, the same definition must also be present in
the main workflow.

To run a workflow in CWL, the following changes are required.

• All Docker container URIs should be replaced with Amazon ECR URIs.

• All the workflow files are declared in the main workflow as input, and all variables are explicitly
defined.

• All JavaScript code is strict mode complaint.

CWL workflows should be defined for each container used. It isn't recommended to hardcode the
dockerPull entry with a fixed Amazon ECR URI.

HealthOmics workflows are not support operation processes. To learn more about operations
processes in CWL workflows, see the CWL documentation.

HealthOmics supports GPU acceleration in CWL using cwltool:CUDARequirement extension syntax.
The accelerator type is determined by cudaComputeCapability. It can be either a G5 instance, such
as nvidia-tesla-a10g, or a G4 instance, such as nvidia-tesla-t4. If either G4 or G5 can be used for a

Writing workflow definition files Version latest 96

https://www.commonwl.org/user_guide/topics/operations.html

AWS HealthOmics User Guide

task, nvidia-tesla-t4-a10g is recommended. G4 instances aren't supported in the Israel (Tel Aviv)
region.

It's recommended that you input your container URIs as parameters. This makes it possible to check
the permissions for access to the container or for you to use the workflow in multiple Regions
without having to recreate the workflow in each new Region.

The following is an example of a workflow written in CWL.

cwlVersion: v1.2
class: Workflow

inputs:
 in_file:
 type: File
 secondaryFiles: [.fai]

 out_filename: string
 docker_image: string

outputs:
 copied_file:
 type: File
 outputSource: copy_step/copied_file

steps:
 copy_step:
 in:
 in_file: in_file
 out_filename: out_filename
 docker_image: docker_image
 out: [copied_file]
 run: copy.cwl

The following file defines the copy.cwl task.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: cp

Writing workflow definition files Version latest 97

AWS HealthOmics User Guide

inputs:
 in_file:
 type: File
 secondaryFiles: [.fai]
 inputBinding:
 position: 1

 out_filename:
 type: string
 inputBinding:
 position: 2
 docker_image:
 type: string

outputs:
 copied_file:
 type: File
 outputBinding:
 glob: $(inputs.out_filename)

requirements:
 InlineJavascriptRequirement: {}
 DockerRequirement:
 dockerPull: "$(inputs.docker_image)"

The following is an example of a workflow written in CWL with a GPU requirement.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: ["/bin/bash", "docm_haplotypeCaller.sh"]
$namespaces:
 cwltool: http://commonwl.org/cwltool#
requirements:
 cwltool:CUDARequirement:
 cudaDeviceCountMin: 1
 cudaComputeCapability: "nvidia-tesla-t4"
 cudaVersionMin: "1.0"

inputs: []
outputs: []

requirements:

Writing workflow definition files Version latest 98

AWS HealthOmics User Guide

 - class: InlineJavascriptRequirement
 - class: InitialWorkDirRequirement
 listing:
 - entryname: 'docm_haplotypeCaller.sh'
 entry: |
 nvidia-smi --query-gpu=gpu_name,gpu_bus_id,vbios_version --format=csv

Workflow definition file examples

The following examples are private workflow definitions for converting from CRAM to BAM in WDL.
The CRAM to BAM workflow defines two tasks and uses tools from the genomes-in-the-cloud
container, which is shown in the example and is publicly available.

Note that HealthOmics workflows require Amazon ECR containers to be in the same Region as
the account calling the service. Amazon ECR containers should be included as parameters in your
workflow to validate access. Workflows written in WDL don't support output.

To allow HealthOmics to access the Amazon ECR container, add the following policy to your
account in the section that covers Amazon ECR repository permissions.

{

 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
]
 }
]
}

You can include the Amazon ECR container as a parameter by including it in your workflow as
shown. This is recommended so that the access permissions to your image are checked when you
start the run. The following file defines all parameters for your workflow.

Writing workflow definition files Version latest 99

AWS HealthOmics User Guide

{

 "input_cram": "s3://DOC-EXAMPLE-BUCKET1/inputs/NA12878.cram",
 "ref_dict": "s3://DOC-EXAMPLE-BUCKET1/inputs/Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://DOC-EXAMPLE-BUCKET1/inputs/Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://DOC-EXAMPLE-BUCKET1/inputs/
Homo_sapiens_assembly38.fasta.fai",
 "sample_name": "NA12878",

 "gotc_docker":"<account_id>.dkr.ecr.<region>.amazonaws.com/genomes-in-the-
cloud:2.4.7-1603303710"
}

Then specify which files to use in your run. The following example is for when your files are stored
in an Amazon S3 bucket.

{
 "input_cram": "s3://DOC-EXAMPLE-BUCKET1/inputs/NA12878.cram",
 "ref_dict": "s3://DOC-EXAMPLE-BUCKET1/inputs/Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://DOC-EXAMPLE-BUCKET1/inputs/Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://DOC-EXAMPLE-BUCKET1/inputs/
Homo_sapiens_assembly38.fasta.fai",
 "sample_name": "NA12878"
}

If you want to specify files from a sequence store, indicate that as shown in the following example,
using the URI for the sequence store.

{
 "input_cram": "omics://429915189008.storage.us-west-2.amazonaws.com/111122223333/
readSet/4500843795/source1",
 "ref_dict": "s3://DOC-EXAMPLE-BUCKET1/inputs/Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://DOC-EXAMPLE-BUCKET1/inputs/Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://DOC-EXAMPLE-BUCKET1/inputs/
Homo_sapiens_assembly38.fasta.fai",
 "sample_name": "NA12878"
}

You can then define your workflow in WDL as shown in the following.

 version 1.0

Writing workflow definition files Version latest 100

AWS HealthOmics User Guide

workflow CramToBamFlow {
 input {
 File ref_fasta
 File ref_fasta_index
 File ref_dict
 File input_cram
 String sample_name
 String gotc_docker = "<account>.dkr.ecr.us-west-2.amazonaws.com/genomes-in-the-
cloud:latest"
 }
 #Converts CRAM to SAM to BAM and makes BAI.
 call CramToBamTask{
 input:
 ref_fasta = ref_fasta,
 ref_fasta_index = ref_fasta_index,
 ref_dict = ref_dict,
 input_cram = input_cram,
 sample_name = sample_name,
 docker_image = gotc_docker,
 }
 #Validates Bam.
 call ValidateSamFile{
 input:
 input_bam = CramToBamTask.outputBam,
 docker_image = gotc_docker,
 }
 #Outputs Bam, Bai, and validation report to the FireCloud data model.
 output {
 File outputBam = CramToBamTask.outputBam
 File outputBai = CramToBamTask.outputBai
 File validation_report = ValidateSamFile.report
 }
}
#Task definitions.
task CramToBamTask {
 input {
 # Command parameters
 File ref_fasta
 File ref_fasta_index
 File ref_dict
 File input_cram
 String sample_name
 # Runtime parameters
 String docker_image

Writing workflow definition files Version latest 101

AWS HealthOmics User Guide

 }
 #Calls samtools view to do the conversion.
 command {
 set -eo pipefail

 samtools view -h -T ~{ref_fasta} ~{input_cram} |
 samtools view -b -o ~{sample_name}.bam -
 samtools index -b ~{sample_name}.bam
 mv ~{sample_name}.bam.bai ~{sample_name}.bai
 }

 #Runtime attributes:
 runtime {
 docker: docker_image
 }

 #Outputs a BAM and BAI with the same sample name
 output {
 File outputBam = "~{sample_name}.bam"
 File outputBai = "~{sample_name}.bai"
 }
}

#Validates BAM output to ensure it wasn't corrupted during the file conversion.
task ValidateSamFile {
 input {
 File input_bam
 Int machine_mem_size = 4
 String docker_image
 }
 String output_name = basename(input_bam, ".bam") + ".validation_report"
 Int command_mem_size = machine_mem_size - 1
 command {
 java -Xmx~{command_mem_size}G -jar /usr/gitc/picard.jar \
 ValidateSamFile \
 INPUT=~{input_bam} \
 OUTPUT=~{output_name} \
 MODE=SUMMARY \
 IS_BISULFITE_SEQUENCED=false
 }
 runtime {
 docker: docker_image
 }
 #A text file is generated that lists errors or warnings that apply.

Writing workflow definition files Version latest 102

AWS HealthOmics User Guide

 output {
 File report = "~{output_name}"
 }
}

For workflows written in Nextflow, you must define a publishDir directive to export task content to
your output Amazon S3 bucket. As shown in the following example, set the publishDir value to /
mnt/workflow/pubdir. To export files to Amazon S3, the files must be in this directory.

 nextflow.enable.dsl=2

workflow {
 CramToBamTask(params.ref_fasta, params.ref_fasta_index, params.ref_dict,
 params.input_cram, params.sample_name)
 ValidateSamFile(CramToBamTask.out.outputBam)
}

process CramToBamTask {
 container "<account>.dkr.ecr.us-west-2.amazonaws.com/genomes-in-the-cloud"

 publishDir "/mnt/workflow/pubdir"

 input:
 path ref_fasta
 path ref_fasta_index
 path ref_dict
 path input_cram
 val sample_name

 output:
 path "${sample_name}.bam", emit: outputBam
 path "${sample_name}.bai", emit: outputBai

 script:
 """
 set -eo pipefail

 samtools view -h -T $ref_fasta $input_cram |
 samtools view -b -o ${sample_name}.bam -
 samtools index -b ${sample_name}.bam
 mv ${sample_name}.bam.bai ${sample_name}.bai
 """
}

Writing workflow definition files Version latest 103

AWS HealthOmics User Guide

process ValidateSamFile {
 container "<account>.dkr.ecr.us-west-2.amazonaws.com/genomes-in-the-cloud"

 publishDir "/mnt/workflow/pubdir"

 input:
 file input_bam

 output:
 path "validation_report"

 script:
 """
 java -Xmx3G -jar /usr/gitc/picard.jar \
 ValidateSamFile \
 INPUT=${input_bam} \
 OUTPUT=validation_report \
 MODE=SUMMARY \
 IS_BISULFITE_SEQUENCED=false
 """
}

Creating private workflows

When you create a private workflow, you specify the following resources:

• Input data location: an Amazon S3 location or a HealthOmics storage URI.

• An Amazon S3 location for the workflow outputs.

• An Amazon ECR container image stored in a private Amazon ECR repository.

• An IAM policy that grants the workflow access to the preceding resources.

Topics

• IAM policy to give workflow access to resources

• Workflow definition files

• Parameter templates

• Create a private workflow

• Verify the status of your workflow

Creating private workflows Version latest 104

AWS HealthOmics User Guide

• Workflow tasks

IAM policy to give workflow access to resources

The following is a comprehensive example of an IAM role that grants permission to access those
resources. This policy also includes access to some Amazon CloudWatch logs that can help with
troubleshooting or tracking the use of AWS actions and resources. The CloudWatch permissions
aren't required to run a workflow.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET2/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Creating private workflows Version latest 105

AWS HealthOmics User Guide

 "logs:DescribeLogStreams",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/omics/
WorkflowLog:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:us-west-2:{{accountId}}:log-group:/aws/omics/
WorkflowLog:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": [
 "arn:aws:ecr:us-west-2:{{accountId}}:repository/*"
]
 }
]
 }

Authorize the service to use the role, by adding the following trust policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"sts:AssumeRole",
 "Principal":{
 "Service":"omics.amazonaws.com"

Creating private workflows Version latest 106

AWS HealthOmics User Guide

 }
 }
]
 }

Workflow definition files

The HealthOmics workflow definition files must meet the following requirements:

• HealthOmics supports workflow definitions written in WDL, Nextflow, or CWL.

• Declare all parameters in the workflow definition file. Parameters include input and output
locations, Amazon ECR container repositories, and runtime parameters such as allocated memory
or CPU.

Note

The storage requirements to perform runs may be more than expected due to internal
file system usage, so allow for more allocated memory than anticipated in your workflow
definition file.

• Declare the output files in the workflow definition file. If you want to copy intermediate run files
to the output location, declare them as workflow outputs.

The input and output locations must be in the same Region as the workflow run.

• HealthOmics storage workflow inputs must be in ACTIVE status. OM will not import inputs with
an ARCHIVED status, causing the workflow to fail.

The following is an example WDL workflow that reads the contents of an INPUT file and writes
them into a RESULT file.

version 1.0

workflow TestFlow {
 input {
 File input_txt_file
 }

 # Copies input file data to output.
 call TxtFileCopyTask{

Creating private workflows Version latest 107

AWS HealthOmics User Guide

 input:
 input_txt_file = input_txt_file,
 }

 output {
 File output_txt_file = TxtFileCopyTask.output_txt_file
 }

}

Task definitions.
task TxtFileCopyTask {
 input {
 File input_txt_file
 }

 command {
 cat ~{input_txt_file} > outfile.txt
 }

 output {
 File output_txt_file = "outfile.txt"
 }

 runtime {
 cpu: 2
 memory: "4 GiB"
 docker: "ACCOUNT-ID.dkr.ecr.us-west-2.amazonaws.com/ubuntu:latest"
 }
}

The input_txt_file.json file contains the following content:

{
 "input_txt_file": {
 "description": "Input file to be copied",
 "required": true
 }
}

You must zip the workflow definition file and any dependencies, such as subworkflows, before you
can use the file to create a workflow with the create-workflow API operation.

Creating private workflows Version latest 108

AWS HealthOmics User Guide

Parameter templates

When creating a workflow, create a parameter template JSON file if the workflow has required
inputs. Each input is a named object where the name must match the exac name of the workflow
input. Each object must have a description string which the service console displays in the Start
run page. Each object may declare a boolean optional value indicating if the value is optional
for all runs. If a parameter isn't marked as optional, the default value is true, as shown in the
following example parameter template in JSON.

{
"myRequiredParameter1": {
 "description": "this parameter is required",
},
"myRequiredParameter2": {
 "description": "this parameter is also required",
 "optional": false
},
"myOptionalParameter": {
 "description": "this parameter is optional",
 "optional": true
}
}

A workflow written in CWL does not require a parameter template. HealthOmics auto-detects all
the workflow inputs for CWL workflows.

After you define your workflow and the parameters, you can create a workflow using the CLI as
shown. If you are including multiple workflow definition files, use the --main parameter to specify
which file is the main definition file for your workflow. You can also specify an accelerator.

aws omics create-workflow
 --name Test --main multi_workflow/workflow2.wdl
 --definition-zip fileb://definition.zip
 --parameter-template file://params_sample_description.json
 --accelerators GPU

You receive the following response when the workflow is successfully created.

{
 "arn": "arn:aws:omics:us-west-2:....",

Creating private workflows Version latest 109

AWS HealthOmics User Guide

 "id": "1234567",
 "status": "CREATING",
 "tags": {
 "resourceArn": "arn:aws:omics:us-west-2:...."
 }
}

Larger zip files containing the workflow definition can be loaded from an Amazon S3 bucket using
the --definition-uri parameter.

Create a private workflow

When you create a workflow, you specify workflow definitions and parameters that the engine uses
to run the workflow.

Create a private workflow (console)

To create a private workflow

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose Create workflow.

4. On the Create workflow page, provide the following information

• Workflow name - A distinctive name for this workflow.

• Description (optional) - A description of this workflow.

• Default run storage capacity (optional) - The default amount of run storage required for
this workflow. The default value is 1.2 TB. You can override this default when you start a
workflow run.

• Under Workflow definition, choose Select definion folder from S3.

• For Workflow definion in S3, enter the Amazon S3 location that contains the workflow
definition.

• For Workflow language, select the specification language of the workflow.

• Tags (optional) - Provide up to 50 tags for this workflow.

5. Choose Next.

6. On the Add workflow parameters page, provide the workflow parameters. You can either
upload a JSON file that specifies the parameters or manually enter your workflow parameters.

Creating private workflows Version latest 110

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

7. Choose Next.

8. Review the workflow configuration, then choose Create workflow.

Create a private workflow (API)

You can create a workflow with the accelerators parameter defined, as shown.

aws omics create-workflow --name workflow name \
 --definition-uri s3://DOC-EXAMPLE-BUCKET1/GPUWorkflow.zip \
 --accelerators GPU

An HealthOmics reference store object can be referred to with a URI like the following. Use your
own account ID, reference store ID, and reference ID where indicated.

omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id

Some workflows will require both the SOURCE and INDEX files for the reference genome. The
previous URI is the default short form and will default to the SOURCE file. In order to specify either
file, you can use the long URI form, as follows.

omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id/
source
 omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id/
index

Using a sequence read set would have a similar pattern, as shown.

aws omics create-workflow \
 --name workflow name \
 --main sample workflow.wdl \
 --definition-uri omics://account ID.storage.us-
west-2.amazonaws.com/sequence_store_id/readSet/id \
 --parameter-template file://parameters_sample_description.json

Some read sets, such as those based on FASTQ, can contain paired reads. In the following
examples, they’re referred to as SOURCE1 and SOURCE2. Formats such as BAM and CRAM will
only have a SOURCE1 file. Some read sets will contain INDEX files such as bai or crai files. The

Creating private workflows Version latest 111

AWS HealthOmics User Guide

preceding URI is the default short form and will default to the SOURCE1 file. To specify the exact
file or index, you can use the long URI form, as follows.

omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/
source1
 omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/
<id>/source2
 omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/
<id>/index

The following is an example of an input JSON file that uses two Omics Storage URIs.

{
 "input_fasta": "omics://123456789012.storage.us-west-2.amazonaws.com/
<reference_store_id>/reference/<id>",
 "input_cram": "omics://123456789012.storage.us-west-2.amazonaws.com/
<sequence_store_id>/readSet/<id>"
 }

Reference the input JSON file in the AWS CLI by adding --inputs file://
<input_file.json> to your start-run request.

Verify the status of your workflow

After you create your workflow, you can verify the status and view other details of the workflow
using get-workflow, as shown.

aws omics get-workflow --id 1234567

The response gives you your workflow details, including the status, as shown.

{
 "arn": "arn:aws:omics:us-west-2:....",
 "id": "1234567",
 "status": "ACTIVE",
 "type": "PRIVATE",
 "name": "workflow_name"
 "creationTime": "2022-07-06T00:27:05.542459"
}

Before a run can be started, the status must be listed as ACTIVE.

Creating private workflows Version latest 112

AWS HealthOmics User Guide

Workflow tasks

Workflow tasks are the individual processes within a run. Each task has a unique identifier. For
a private workflow, HealthOmics workflows will use your defined compute specifications to run
your task. Input files to the workflow and workflow tasks are staged to a scratch volume that's
dedicated to the workflow run. They are read-only, which prevents tasks modifying potential inputs
to other tasks in a workflow. The directories included as input are also read-only. All inputs are
made available to the tasks' working directory as symbolic links. They're only accessible if they're
declared in the workflow definition file. Many genomics applications assume that index files will be
in the same location as a sequence file (such as a companion bai file for a bam file). To make sure
indexes are present, you must specify them as tasks inputs.

Because workflow tasks can't connect to the public internet, they can't download resources by
using http, https, or ftp. Required resources should be included as workflow inputs from
Amazon S3 or an HealthOmics sequence store. They also should be present in the container images
that are used to run workflow tasks. Workflow tasks may interact with Amazon S3 as long as the
IAM role used to run the workflow has been granted access.

Memory and computation considerations for tasks

Private workflow tasks are run on HealthOmics instances by using the smallest instance that
can accommodate the requested CPU and memory. We recommend choosing the most sensible
combination of CPU and memory for your needs. For example, if you need 64 GiB of RAM, then
the most cost-effective type is omics.r.2xlarge. This type allocates eight vCPUs. If your task
allocation only calls for one vCPU, the task container only gets one, even though eight are available
on the host machine. Unless this will adversely affect the workflow, you might want to set a larger
number of vCPUs. All tasks reserve a small amount of memory for management and logging
agents, so the full memory allocation might not always be available to the application in the task.

Container resource allocations are hard limits. Tasks that run out of memory or attempt to use
additional vCPUs can be immediately shut down by the host, potentially without warning.

Running Java applications in a private workflow task

When running Java applications in a workflow task, the image used to run the task must contain
Java 1.8–212 or later. Versions before this might attempt to allocate heap memory that's not
available to the container. By default, for versions after 1.8-212, the heap allocation of the JVM
will be 25% of the memory available to the container. If you use a -Xmx flag to request a larger
amount, be aware that not all memory consumed by Java is heap memory. Allocating 100% of the
available memory to the JVM heap causes the task to fail.

Creating private workflows Version latest 113

AWS HealthOmics User Guide

Including task inputs in Amazon ECR images

All executables, libraries, and scripts needed to run a workflow task should be provided by the
Amazon ECR image that's used to run the task.

It's best practice to avoid using scripts, binaries, and libraries that are external to a tasks container
image. This is especially important when using nf-core workflows that use a bin directory as part
of the workflow package. While this directory will be available to the workflow task, it's mounted
as a read-only directory. Required resources in this directory should be copied into the task image
and made available at runtime or when building the container image used for the task.

Debugging workflow tasks

The following are best practices and considerations for debugging your tasks and workflows.

• Task logs rely on STDOUT and STDERR being produced by the task. If the application used in the
task doesn’t produce either of these, then there won't be a task log. To assist with debugging,
use applications in verbose mode.

• To view the commands being run in a task along with their interpolated values, use the set -x
Bash command. This can help determine if the task is using the correct inputs and identify where
errors might have kept the task from running as intended.

• Use the echo command to output the values of variables to STDOUT or STDERR. This helps you
confirm that they're being set as expected.

• Use commands like ls -l <name_of_input_file> to confirm that inputs are present and are
of the expected size. If they aren't, this might reveal a problem with a prior task producing empty
outputs due to a bug.

• Use the command df -Ph . | awk 'NR==2 {print $4}' in a tasks script to determine the
space currently available to the task and help identify situations where you might need to run
the workflow with additional storage allocation.

Including any of the preceding commands in a task script assumes that the task container also
includes these commands and that they are on the path of the container environment.

Sharing workflows

As the owner of a private workflow, you can share the workflow with an AWS account in the same
region. To share a workflow with more than one AWS account, you create multiple shares of the
same workflow.

Sharing workflows Version latest 114

AWS HealthOmics User Guide

As the owner, you can revoke access to a shared workflow by deleting the share.

Note

To share the Amazon ECR containers associated with a shared workflow, you need to adjust
the container permissions to allow cross-account access. For more information, including an
example policy, see Amazon ECR permissions.

To subscribe to a shared workflow, you follow these steps to accept and use the workflow:

1. Use the console or API to accept the share. Set your current region to the same region as the
share request.

• To find the share request in the console, navigate to the All Resource shares page, then
choose the Shared with me tab.

2. Use the console or API to create a run for the shared workflow.

• To find the workflow details page in the console, navigate to Shared with me (see step 1),
then choose the Resource link for the shared workflow.

3. You provide your own input data for the workflow.

4. The shared workflow runs in your AWS account.

As the subscriber to a shared workflow, the system blocks you from performing the following
workflow actions:

• Exporting a shared workflow

• Re-running the shared workflow

• You create a new run for the shared workflow.

• Re-sharing the workflow.

• Assigning a tag to the workflow.

• Deleting the workflow.

• When you no longer need the workflow, you delete the workflow share.

See Cross-account resource sharing in AWS HealthOmics for additional information about resource
sharing.

Sharing workflows Version latest 115

AWS HealthOmics User Guide

Topics

• Share a private workflow (console)

• Share a private workflow (API)

• Accept a shared workflow (console)

• Run a shared workflow (console)

• Run a shared workflow (API)

Share a private workflow (console)

From the console, you can share a private workflow with an AWS account in the same region as the
workflow.

To share a private workflow

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Private workflows.

3. From the Workflows table on the Private workflows page, select the workflow to share, and
choose Share.

4. In the Share details panel of the Share workflow page, enter a descriptive name for the share
and enter the AWS account of the subscriber.

5. Choose Share resource. The console displays resource shares in the All resource shares page.

The initial state of the share is pending. After the subscriber accepts the share, the state changes to
active.

Share a private workflow (API)

Use the create-share API operation to create a workflow share. The principal subscriber is the AWS
account of the user who will get access to the workflow.

aws omics create-share \
 --resource-arn "arn:aws:omics:us-west-2:555555555555:workflow/123456" \
 --principal-subscriber "123456789012" \
 --name "my_Share-123"

If the create is successful, you receive a response with the share ID and status.

Sharing workflows Version latest 116

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

{
"shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
"name": "my_Share-123",
"status": "PENDING"
}

The share remains in pending state until the subscriber accepts it using the accept-share API
operation.

See Cross-account resource sharing in AWS HealthOmics for other API usage examples.

Accept a shared workflow (console)

You can use the console to accept an offered workflow share. Make sure to set the console to the
same Region as the workflow.

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose All Resource shares, then choose the Shared with me tab.

3. From the Resources shared with me table , select the workflow share and then choose Accept.

After you accept the workflow, choose the Resource link for the shared workflow to view its
details.

Run a shared workflow (console)

After you accept a workflow share, you can start a run on the workflow.

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose All Resource shares, then choose the Shared with me tab.

3. From the Resources shared with me table, choose the Resource link for the shared workflow.

4. In the Workflow details page, choose Create run.

The console opens the Create run page, with the workflow type (shared) and Workflow ID
pre-populated.

5. Configure the remaining fields in the Create run form. For additional information, see Starting
runs (console).

Sharing workflows Version latest 117

https://console.aws.amazon.com/omics/
https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Run a shared workflow (API)

Use get-workflow to retrieve the ARN of the shared workflow.

aws omics get-workflow --id 1234567 \
--workflow-owner-id 55555555555

When you run the workflow, provide the workflow owner’s AWS account ID and the ARN of the
shared workflow.

aws omics start-run --id 1234567 --workflow-owner-id 55555555555 \
--role-arn arn:aws:iam::1234567892012:role/service-role/OmicsWorkflow-20221004T164236 \
--name ArchiveTest --retention-mode REMOVE

Creating and working with run groups

You can optionally create a run group to limit the compute resources for the runs that you add to
the group. Run groups can help you:

• Queue your runs so that you don’t exceed service limits.

• Catch run-away tasks by setting a maximum run duration limit.

• Manage the priority of each run so that the most important runs complete first

If you set the maximum concurrent vCPU, GPU, or runs, run tasks will queue when the limit is
reached. If you set a maximum run duration, the run fails if it exceeds the maximum duration.

Use the run priority setting to establish priority within a run group.

Service limits take precedence over run group limits. For instance, if a run group limit is set higher
than your service limit, the service limit will apply first.

Run priority

You can use run priority to establish the priority of runs in a run group.

If multiple runs have the same priority, the run that started first has the higher priority.

Creating run groups Version latest 118

AWS HealthOmics User Guide

You can also set a priority for a run that isn't in a run group. The priority is compared with the
priorities of all other runs that aren't in a run group

You set run priority when you start the workflow run. For more information, see Starting a
workflow run.

Create a run group (console)

To create a run group

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Run groups.

3. On the Run groups page, choose Create run group.

4. On the Create run group details page, provide the following information

• Run group name - A unique name for this run group.

• Max vCPU for concurrent runs - The maximum number of vCPUs that can run concurrently
across all active runs in the run group.

• Max GPUs - The maximum number of GPUs that can run concurrently across all active runs
in the run group.

• Max run time (mins) per run - The maximum time for each run (in minutes). If a run exceeds
the maximum run time, the run fails automatically.

• Max concurrent runs - The maximum number of runs that can be running at the same time.

5. (optional) You can add up to 50 tags to the run group.

6. Choose Create run group.

Create a run group (API)

To create a run group, use the create-run-group API operation to create a run group named
TestRunGroup. The following example sets a maximum of 20 CPUs, 10 GPUs, 5 runs, and a
maximum run duration of 600 minutes.

aws omics create-run-group --name TestRunGroup \
--max-cpus 20 \
--max-gpus 10 \

Creating run groups Version latest 119

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

--max-duration 600 \
--max-runs 5

The response from this API operation includes the ID of the newly created RunGroup.

{
 "arn": "arn:aws:omics:us-west-2:12345678901:runGroup/2839621",
 "id": "2839621",
 "tags": {}
}

To get additional information about the run group, use this ID with the get-run-group API
operation, as shown in the following example.

aws omics get-run-group --id run group id

The response includes the limit settings for the run group and the assigned tags.

{
 "arn": "arn:aws:omics:us-west-2:776893852117:runGroup/2839621",
 "id": "2839621",
 "name": "TestRunGroup",
 "maxCpus": 20,
 "maxRuns": 5,
 "maxDuration": 600,
 "creationTime": "2024-06-12T15:35:39.191730+00:00",
 "tags": {},
 "maxGpus": 10
}

You can also use the list-run-group API operation to view all created run groups.

aws omics list-run-groups

Running workflows

After you create your workflow, you can perform runs either individually or as part of a run group.
The following topics show how to create an optional run group to limit computational resources

Running workflows Version latest 120

AWS HealthOmics User Guide

and reduce costs. You can also use a run group to queue runs to be processed.There are also
examples of how to start runs and get information on ongoing runs.

When you start a run, HealthOmics allocates temporary run storage, because workflow engines
expect to have access to scratch storage during the run. To ensure data isolation and security,
HealthOmics provisions and deprovisions the storage for each run.

Topics

• Run storage types

• Starting a workflow run

• Deleting workflows and runs

• Define custom IAM permissions for runs

Run storage types

For a given workflow or workflow run, you can choose static or dynamic run storage. By default,
HealthOmics provides static run storage. Consider the following factors when deciding which run
storage type to use:

• Static

• HealthOmics allocates a fixed amount of run storage.

• You can specify the storage size in the StartRun API request. The system rounds up the value
to the nearest multiple of 1200 GiB. If that storage size isn't available, it rounds up to the
nearest multiple of 2400 GiB.

• The default run storage is 1200 GiB, if you don't specify a value.

• If the specified storage size is too low, the run fails with an Out of storage for file system
error.

• Static run storage is suitable for large workflows. It provides higher file system throughput per
GiB and lower cost per GiB than dynamic run storage.

• Use static run storage for burst workloads that scale out wide and quickly (for example, a large
volume of RNASeq samples processed in parallel).

• Dynamic

• You don’t need to estimate the required storage for the run. HealthOmics allocates a starting
amount of run storage. The storage size dynamically scales up and down, based on file system
utilization during the run. A run never fails due to an Out of storage for file system error.

Run storage types Version latest 121

AWS HealthOmics User Guide

• Dynamic run storage provides faster provisioning/deprovisioning time than static run
storage. Faster setup is an advantage for smaller workflows that run frequently and is also an
advantage during development/test cycles.

• Dynamic run storage uses burst credits to control burst throughput, so don't use it for
workflows that require a peak burst throughput of 50MiBs or higher.

• When burst credits expire, dynamic run storage capacity increases can slow down. The system
creates a warning in the logs when a burst credit expires. If your workflow frequently runs out
of burst credits, consider using static run storage.

• After the run completes (success path or fail path), the getRun API operation returns the
maximum storage used by the run in the storageCapacity field. You can also find this
information in the run manifest logs located in the omics log group.

• For a dynamic storage run that completes within 2 hours, the maximum storage value may
not be available.

Note

Run storage usage incurs charges to your account. For pricing information about static and
dynamic run storage, see HealthOmics pricing.

Calculating required static run storage

A workflow requires additional capacity when it uses static run storage (compared with dynamic
run storage) because the base file system installation uses 7% of the static file system capacity.

If you run a dynamic run storage workflow to measure the maximum storage used by the run, use
the following calculation to determine the minimum amount of static storage required:

 static storage required =
 maximum storage in GiB used by the dynamic run storage
 + (total static file system size in GiB * 0.07)

For example:

 Maximum storage measured from a dynamic run storage workflow run: 500GiB
 File system size: 1200GiB
 7% of the file system size: 84GiB

Run storage types Version latest 122

https://aws.amazon.com/healthomics/pricing/

AWS HealthOmics User Guide

 500 + 84 = 584GiB of static run storage required for this run.

Therefore, 1200GiB (the minimum capacity for static run storage) is sufficient for this run.

Starting a workflow run

When you start a run, you can set the run storage type and storage amount (for static storage). For
additional information, see Run storage types.

You also set the run priority. How priority impacts the run depends on whether the run is
associated with a run group. For additional information, see Run priority.

Starting runs (console)

To start a workflow run

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. In the left navigation pane, choose Runs.

3. On the Runs page, choose Create run.

4. On the Create run page, provide the following information

• Workflow ID - The workflow ID associated with this run.

• Run name - A distinctive name for this run.

• Run priority - The priority of this run. Higher numbers specify a higher priority, and the
highest priority tasks are run first.

• Run storage capacity - The amount of temporary storage needed for the run. By default,
the run storage capacity that was set for the workflow will be selected. You can select a
different run storage capacity for your run.

• Select S3 output destination - The S3 location where the run outputs will be saved.

5. Under Service role, you can use an existing service role or create a new one.

6. (Optional) For Tags, you can assign up to 50 tags to the run.

7. Choose Next.

8. On the Add parameter values page, provide the workflow parameters. You can either upload a
JSON file that specifies the parameters or manually enter your workflow parameters.

9. Choose Next.

10. On the Add run groups page, provide the run group details.

Starting a workflow run Version latest 123

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

11. On the Run cache page, provide the run cache details.

12. Choose Review and start run.

13. On the Review and start run page, choose Start run.

Starting runs (API)

Use the start-run API operation with the IAM role and Amazon S3 bucket that you created.
Although the default retention mode is RETAIN, this example sets the retention mode to REMOVE.
If the quota for maximum runs has been met, the earliest runs with REMOVE retention mode are
deleted first. This makes room for new runs to start–even if the maximum runs limit is met–as long
as there are runs with REMOVE retention mode that can be removed.

When the parameter is set to REMOVE, the run metadata is removed after the run completes and
the metadata has been sent to Amazon CloudWatch.

aws omics start-run
 --workflow-id workflow id \
 --role-arn arn:aws:iam::1234567892012:role/service-role/
OmicsWorkflow-20221004T164236 \
 --name workflow name \
 --retention-mode REMOVE

In response, you get the following output. The uuid is unique to the run, and along with
runOutputUri can be used to track where output data is written.

{
 "arn": "arn:aws:omics:us-west-2:....:run/1234567",
 "id": "1234567",
 "uuid":"96c57683-74bf-9d6d-ae7e-f09b097db14a",
 "runOutputUri":"s3://bucket/folder/8405154/96c57683-74bf-9d6d-ae7e-f09b097db14a"
 "status": "PENDING"
}

If the parameter template for a workflow declares any required parameters, you can provide a local
JSON file of the inputs when you start a workflow run. The JSON file contains the exact name of
each input parameter and a value for the parameter.

Reference the input JSON file in the AWS CLI by adding --inputs file://
<input_file.json> to your start-run request.

Starting a workflow run Version latest 124

AWS HealthOmics User Guide

You can also use the start-run API with a GPU workflow ID, as shown.

aws omics start-run --workflow-id workflow id \
 --role-arn arn:aws:iam::1234567892012:role/service-role/
OmicsWorkflow-20221004T164236 \
 --name GPUTestRunModel \
 --output-uri s3://DOC-EXAMPLE-BUCKET1

Get information about a workflow run

You can use the ID in the response with the get-run API to check the status of a run, as shown.

aws omics get-run --id run id

The response from this API operation tells you the status of the workflow run. Possible statuses
are PENDING, STARTING, RUNNING, and COMPLETED. When a run is COMPLETED, you can find an
output file called outfile.txt in your output Amazon S3 bucket, in a folder named after the run
ID.

The get-run API operation also returns other details, such as whether the workflow is Ready2Run
or PRIVATE, the workflow engine, and accelerator details. The following example shows the
response for get-run for a run of a private workflow, described in WDL with a GPU accelerator and
no tags assigned to the run.

{
 "arn": "arn:aws:omics:us-west-2:123456789012:run/7830534",
 "id": "7830534",
 "uuid":"96c57683-74bf-9d6d-ae7e-f09b097db14a",
 "runOutputUri":"s3://bucket/folder/8405154/96c57683-74bf-9d6d-ae7e-f09b097db14a"
 "status": "COMPLETED",
 "workflowId": "4074992",
 "workflowType": "PRIVATE",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/
OmicsWorkflow-20221004T164236",
 "name": "RunGroupMaxGpuTest",
 "runGroupId": "9938959",
 "digest":
 "sha256:a23a6fc54040d36784206234c02147302ab8658bed89860a86976048f6cad5ac",
 "accelerators": "GPU",
 "outputUri": "s3://DOC-EXAMPLE-BUCKET1",
 "startedBy": "arn:aws:sts::123456789012:assumed-role/Admin/<role_name>",

Starting a workflow run Version latest 125

AWS HealthOmics User Guide

 "creationTime": "2023-04-07T16:44:22.262471+00:00",
 "startTime": "2023-04-07T16:56:12.504000+00:00",
 "stopTime": "2023-04-07T17:22:29.908813+00:00",
 "tags": {}
}

You can see the status of all runs with the list-runs API operation, as shown.

 aws omics list-runs

To see all the tasks completed for a specific run, use the list-run-tasks API.

 aws omics list-run-tasks --id task ID

To get the details of any specific task, use the get-run-task API.

 aws omics get-run-task --id <run_id> --task-id task ID

After the run completes, the metadata is sent to CloudWatch under the stream manifest/run/
<run ID>/<run UUID>.

The following is an example of the manifest.

{
 "arn": "arn:aws:omics:us-east-1:123456789012:run/1695324",
 "creationTime": "2022-08-24T19:53:55.284Z",
 "resourceDigests": {
 "s3://omics-data/broad-references/hg38/v0/Homo_sapiens_assembly38.dict":
 "etag:3884c62eb0e53fa92459ed9bff133ae6",
 "s3://omics-data/broad-references/hg38/v0/Homo_sapiens_assembly38.fasta":
 "etag:e307d81c605fb91b7720a08f00276842-388",
 "s3://omics-data/broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.fai":
 "etag:f76371b113734a56cde236bc0372de0a",
 "s3://omics-data/intervals/hg38-mjs-whole-chr.500M.intervals":
 "etag:27fdd1341246896721ec49a46a575334",
 "s3://omics-data/workflow-input-lists/dragen-gvcf-list.txt":
 "etag:e22f5aeed0b350a66696d8ffae453227"
 },
 "digest":
 "sha256:a5baaff84dd54085eb03f78766b0a367e93439486bc3f67de42bb38b93304964",
 "engine": "WDL",
 "main": "gatk4-basic-joint-genotyping-v2.wdl",

Starting a workflow run Version latest 126

AWS HealthOmics User Guide

 "name": "1044-gvcfs",
 "outputUri": "s3://omics-data/workflow-output",
 "parameters": {
 "callset_name": "cohort",
 "input_gvcf_uris": "s3://omics-data/workflow-input-lists/dragen-gvcf-list.txt",
 "interval_list": "s3://omics-data/intervals/hg38-mjs-whole-chr.500M.intervals",
 "ref_dict": "s3://omics-data/broad-references/hg38/v0/
Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://omics-data/broad-references/hg38/v0/
Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://omics-data/broad-references/hg38/v0/
Homo_sapiens_assembly38.fasta.fai"
 },
 "roleArn": "arn:aws:iam::123456789012:role/OmicsServiceRole",
 "startedBy": "arn:aws:sts::123456789012:assumed-role/admin/ahenroid-Isengard",
 "startTime": "2022-08-24T20:08:22.582Z",
 "status": "COMPLETED",
 "stopTime": "2022-08-24T20:08:22.582Z",
 "storageCapacity": 9600,
 "uuid": "a3b0ca7e-9597-4ecc-94a4-6ed45481aeab",
 "workflow": "arn:aws:omics:us-east-1:123456789012:workflow/1558364",
 "workflowType": "PRIVATE"
 },
 {
 "arn": "arn:aws:omics:us-east-1:123456789012:task/1245938",
 "cpus": 16,
 "creationTime": "2022-08-24T20:06:32.971290",
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/gatk",
 "imageDigest":
 "sha256:8051adab0ff725e7e9c2af5997680346f3c3799b2df3785dd51d4abdd3da747b",
 "memory": 32,
 "name": "geno-123",
 "run": "arn:aws:omics:us-east-1:123456789012:run/1695324",
 "startTime": "2022-08-24T20:08:22.278Z",
 "status": "SUCCESS",
 "stopTime": "2022-08-24T20:08:22.278Z",
 "uuid": "44c1a30a-4eee-426d-88ea-1af403858f76"
 },
 ...

Run metadata isn't deleted if it's not present in the CloudWatch logs. You can also use the run ID to
rerun workflow runs using the CLI tool. Learn more and download the tool from the HealthOmics
Tool Github repository.

Starting a workflow run Version latest 127

https://github.com/awslabs/amazon-omics-tools
https://github.com/awslabs/amazon-omics-tools

AWS HealthOmics User Guide

Re-running a workflow run

The following is an example of using the tool to rerun a workflow run, using the run ID. You can
retrieve an ID for a run the CloudWatch logs.

omics-rerun 9876543 --name workflow name --retention-mode REMOVE

If the run exists in CloudWatch, you receive a response similar to the following.

Original request:
{
 "workflowId": "9679729",
 "roleArn": "arn:aws:iam::123456789012:role/DemoRole",
 "name": "sample_rerun",
 "parameters": {
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/default:latest",
 "file1": "omics://123456789012.storage.us-west-2.amazonaws.com/8647780323/
readSet/6389608538"
 },
 "outputUri": "s3://workflow-output-bcf2fcb1"
}
StartRun request:
{
 "workflowId": "9679729",
 "roleArn": "arn:aws:iam::123456789012:role/DemoRole",
 "name": "new test",
 "parameters": {
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/default:latest",
 "file1": "omics://123456789012.storage.us-west-2.amazonaws.com/8647780323/
readSet/6389608538"
 },
 "outputUri": "s3://workflow-output-bcf2fcb1"
}
StartRun response:
{
 "arn": "arn:aws:omics:us-west-2:123456789012:run/9171779",
 "id": "9171779",
 "status": "PENDING",
 "tags": {}
}

If the workflow no longer exists, you receive an error message.

Starting a workflow run Version latest 128

AWS HealthOmics User Guide

Deleting workflows and runs

When you no longer need a workflow, run, or run group, you can delete it by using the AWS CLI,
API, or console. A workflow can only be deleted when it's listed in ACTIVE or FAILED status and
has no active shares. Deleting a workflow does not affect any ongoing runs that are using the
workflow.

The following example shows how you can use the AWS CLI command to delete a workflow.
You won't receive a response. To run the example, replace the workflow id with the ID of the
workflow you want to delete.

aws omics delete-workflow --id workflow id

In addition to deleting a run, you can also cancel a run. To cancel a run, its status must be PENDING,
STARTING, RUNNING, or STOPPING. The following AWS CLI command shows how you can cancel
a run. To run the example, replace the run id with the ID of the run you would like to cancel. If
successful, there is no response.

aws omics cancel-run --id run id

The following AWS CLI command deletes a run. Runs can only be deleted if they are complete or
canceled. To run the example, replace the run id with the ID of the run you want to delete. There
is no response if the run is successfully deleted.

aws omics delete-run --id run id

You can also delete run groups. Run groups can only be deleted if there are no runs associated with
that run group with the status of PENDING, STARTING, RUNNING, or STOPPING.

The following example shows how you can use the AWS CLI to delete a run group. You will not
receive a response. To run the example, replace the run group id with the ID of the run group
you want to delete.

aws omics delete-run-group --id run group id

Define custom IAM permissions for runs

You can include any workflow, run, or run group referenced by the StartRun request in an
authorization request. To do so, list the desired combination of workflows, runs, or run groups in

Deleting workflows and runs Version latest 129

AWS HealthOmics User Guide

the IAM policy. For example, you can limit the use of a workflow to a specific run or run group. You
can also specify that a workflow only be used with a run group.

The following is an example IAM policy that allows a single workflow with a single run group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:StartRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:workflow/1234567",
 "arn:aws:omics:us-west-2:123456789012:runGroup/2345678"
]
 },
 {
 # Optionally, allow user to rerun a failed run.
 "Effect": "Allow",
 "Action": [
 "omics:StartRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*",
 "arn:aws:omics:us-west-2:123456789012:runGroup/2345678"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "omics:GetRun",
 "omics:ListRunTasks",
 "omics:GetRunTask",
 "omics:CancelRun",
 "omics:DeleteRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*"
]
 },

]

Define custom IAM permissions for runs Version latest 130

AWS HealthOmics User Guide

}

Using the CloudWatch Logs for troubleshooting

The CloudWatch Logs include run, task, and engine logs, which can be used to get updates on
run progress or troubleshoot failed runs. The engine logs provide a detailed log of the data
processing steps and analyses, and can be used to identify and correct errors. They are also useful
for improving reproducibility and maintaining compliance with regulatory requirements.

To view the CloudWatch Logs for workflows using the console

1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

2. On the HealthOmics home page, choose

in the upper left corner of the screen to open the navigation pane. Select Runs.

3. Select the run from the runs list, which is organized by run ID.

4. When the run details page opens, choose View Cloudwatch logs to view the run logs. This
links you to the CloudWatch console.

5. From the tasks page, select View Logstream to be linked to the engine logs for a further
breakdown of errors.

Tasks logs can also be found in your AWS account log under the /aws/omics/WorkflowLog log
group. Engine logs are only generated for failed workflow runs, and are organized in the log stream
by run ID and engine, run/{run-id}/task/{task-id}.

Using the CloudWatch Logs for troubleshooting Version latest 131

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Cross-account resource sharing in AWS HealthOmics

Use cross-account sharing to share resources with collaborators without creating copies or
modifying IAM resource policies. The following resources support cross-account sharing:

• HealthOmics variant stores

• HealthOmics annotation stores

• Private workflows

Sharing a resource includes the following steps:

1. The resource owner creates a share, and specifies the ARN of the resource and the AWS account
of the intended subscriber. The resource share remains in pending state until the subscriber
accepts the share.

2. The subscriber accepts the resource share to get access to the resource. The resource share
transitions to activating state.

3. The HealthOmics service provides subscriber account with access to the resource.

4. The resource owner can delete the share, or the subscriber can revoke their access to the share.
The subscriber can't delete the share or the associated resource.

Topics

• Create a share

• Retrieve information about a share

• View the shares that you own

• View accepted shares from other accounts

• Delete a share

Create a share

You can use the create-share API operation to create a share. The principal subscriber is the AWS
account of the user who will subscribe to the shared resource. The following example creates a
share for a variant store.

aws omics create-share \

Create a share Version latest 132

AWS HealthOmics User Guide

 --resource-arn "arn:aws:omics:us-west-2:555555555555:variantStore/
omics_dev_var_store" \
 --principal-subscriber "123456789012" \
 --name "my_Share-123"

If the create is successful, you receive a response with the share ID and status.

{
"shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
 "name": "my_Share-123",
 "status": "PENDING"
}

The share remains in pending state until the subscriber accepts it using the accept-share API
operation.

 aws omics accept-share \
 --share-id "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a"

After the subscriber accepts the share, the share transitions to active state.

{
"status": "ACTIVATING"
}

Retrieve information about a share

Use the get-share API operation to retrieve information about the share.

aws omics get-share --share-id "495c21bedc889d07d0ab69d710a6841e-
dd75ab7a1a9c384fa848b5bd8e5a7e0a"

The API response includes metadata information about the share.

{
 "share":

Retrieve information about a share Version latest 133

AWS HealthOmics User Guide

 {
 "shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
 "name": "my_Share-123",
 "resourceArn": "arn:aws:omics:us-west-2:555555555555:variantStore/
omics_dev_var_store",
 "principalSubscriber": "123456789012",
 "ownerId": "555555555555",
 "status": "PENDING"
 }
}

View the shares that you own

Use the list-shares API to retrieve information about each of the shares that you own.

aws omics list-shares --resource-owner SELF

The API response includes the metadata for each share that you own.

View accepted shares from other accounts

Use the list-shares API to view all shares that you accepted from other accounts.

aws omics list-shares --resource-owner OTHER

The API response includes the metadata for each share that you accepted.

Delete a share

Use the delete-share API to delete a share after you no longer need it.

aws omics delete-share \
 --share-id "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a"

View the shares that you own Version latest 134

AWS HealthOmics User Guide

Tagging resources in HealthOmics

Important notice

HealthOmics protects customer data under the AWS Shared Responsibility Model policies.
This means that all customer data is encrypted both in transition and at-rest. However, not all
customer-inputed names for resources such as data stores or job-based operations are encrypted.
They should never contain Personally Identifiable Information or Protected Health Information. For
more information, see Security in AWS HealthOmics.

Tagging HealthOmics resources

You can assign metadata to your AWS resources using tags. Each tag is a label consisting of a
user-defined key and value. Tags can help you manage, identify, organize, search for, and filter
resources.

This topic describes commonly used tagging categories and strategies to help you implement a
consistent and effective tagging strategy. The following sections assume basic knowledge of AWS
resources, tagging, detailed billing, and AWS Identity and Access Management.

Each tag has two parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• A tag value (for example, 111122223333 or Production). Like tag keys, tag values are case
sensitive.

You can use tags to categorize resources by purpose, owner, environment, or other criteria. For
more information, see AWS Tagging Strategies.

You can add, change, or remove tags for a resource from the resource’s service console, service API,
or the AWS CLI.

To enable tagging, make sure TagResources is authorized. You can authorize TagResources by
attaching an IAM policy like the following example.

{

Important notice Version latest 135

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

AWS HealthOmics User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "omics:Create*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:Start*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:Tag*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:Untag*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:List*",
 "Resource": "*"
 }
]
}

Best practices

As you create a tagging strategy for AWS resources, follow best practices:

• Do not store Personally Identifiable Information (PII), Protected Health Information(PHI) or other
sensitive information in tags.

• Use a standardized, case-sensitive format for tags, and apply it consistently across all resource
types.

• Consider tag guidelines that support multiple purposes, like managing resource access control,
cost tracking, automation, and organization.

Best practices Version latest 136

AWS HealthOmics User Guide

• Use automated tools to help manage resource tags. AWS Resource Groups and the Resource
Groups Tagging API enable programmatic control of tags, making it possible to automatically
manage, search, and filter tags and resources.

• Tagging is more effective when you use more tags.

• Tags can be edited or modified as user needs change. However to update access control tags, you
must also update the policies that reference those tags to control access to your resources.

Tagging requirements

Tags have the following requirements:

• Keys can't be prefixed with aws:.

• Keys must be unique per tag set.

• A key must be between 1 and 128 allowed characters.

• A value must be between 0 and 256 allowed characters.

• Values don't need to be unique per tag set.

• Allowed characters for keys and values are Unicode letters, digits, white space, and any of the
following symbols: _ . : / = + - @.

• Keys and values are case sensitive.

Adding a tag to an HealthOmics resource

Adding tags to a resource can help you identify and organize your AWS resources and manage
access to them. First, you add one or more tags (key-value pairs) to a resource. You can use up to
50 tags per resource. There are also restrictions on the characters that you can use in the key and
value fields.

After you add tags, you can create IAM policies to manage access to the AWS resource based on
these tags. You can use the HealthOmics console or the AWS CLI to add tags to a resource. Adding
tags to a repository can impact access to that repository. Before you add a tag to a data store,
review any IAM policies that might use tags to control access to resources such as data stores.

Service tags are autogenerated for both a subject and a sample id for sequence stores.

Follow these steps to use the AWS CLI to add a tag to an HealthOmics resource. For example, to
add tags to a sequence store while it's being created, you would use the following command in the

Tagging requirements Version latest 137

https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html

AWS HealthOmics User Guide

AWS CLI. The name of the sequence store is MySequenceStore, and the two added tags with keys
are key1 and key2 with values as value1 and value2 respectively
:

aws omics create-sequence-store --name "MySequenceStore" --tags key1=value1,key2=value2

The output does not list the tags. It returns the following response.

{
 "id": "6860403586",
 "referenceStoreId": "4889894479",
 "roleArn": "arn:aws:iam::555555555555:role/ImportTest",
 "status": "CREATED",
 "creationTime": "2022-07-21T01:19:07.194Z"
}

To add tags to an existing resource, you would run the following example command:

aws omics tag-resource --resource-arn arn:aws:omics:us-
west-2:555555555555:sequenceStore/2275234794 --tags key1=value1,key2=value2

If successful, this command returns no response.

Listing tags for a resource

Follow these steps to use the AWS CLI to view a list of the AWS tags for an HealthOmics resource. If
no tags have been added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command as shown in the
following example.

aws omics list-tags-for-resource --resource-arn arn:aws:omics:us-
west-2:555555555555:sequenceStore/2275234794

You will receive a list of tags in response, in JSON format.

 {
 "tags": {

Listing tags for a resource Version latest 138

AWS HealthOmics User Guide

 "key1": "value1",
 "key2": "value2"
 }
}

Removing tags from a data store

You can remove one or more tags associated with a resource. Removing a tag does not delete the
tag from other AWS resources that are associated with that tag.

At the terminal or command line, run the untag-resource command, specifying the Amazon
Resource Name (ARN) of the resource where you want to remove tags and the tag key of the tag
you want to remove.

aws omics untag-resource --resource-arn arn:aws:omics:us-
west-2:555555555555:sequenceStore/2275234794 --tag-keys key1,key2

If successful, this command does not return a response. To verify the tags associated with the
resource, run the list-tags-for-resource command.

Removing tags from a data store Version latest 139

AWS HealthOmics User Guide

AWS HealthOmics permissions

You can use AWS Identity and Access Management (IAM) to manage access to the HealthOmics
API and resources such as stores and workflows. For users and applications in your account that
use HealthOmics, you manage permissions in a permissions policy that you can apply to IAM users,
groups, or roles.

To manage permissions for users and applications in your accounts, use the policies that
HealthOmics provides, or write your own. The HealthOmics console uses multiple services to get
information about your function's configuration and triggers. You can use the provided policies as-
is, or as a starting point for more restrictive policies.

HealthOmics uses IAM service roles to access other services on your behalf. For example, you would
create or choose a service role when you run a workflow that reads data from Amazon S3. For
some features, you also need to configure permissions on resources in other services. Review these
requirements before you start working with HealthOmics

For more information about IAM, see What is IAM? in the IAM User Guide.

Topics

• Identity-based IAM policies for HealthOmics

• Service roles for AWS HealthOmics

• Resource permissions

• Permissions for data access using Amazon S3 URIs

Identity-based IAM policies for HealthOmics

To grant users in your account access to HealthOmics, you use identity-based policies in AWS
Identity and Access Management (IAM). Identity-based policies can apply directly to IAM users, or
to IAM groups and roles that are associated with a user. You can also grant users in another account
permission to assume a role in your account and access your HealthOmics resources.

The following IAM policy allows a user to access all HealthOmics API actions, and to pass service
roles to HealthOmics.

Example User policy

{

User policies Version latest 140

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS HealthOmics User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "omics.amazonaws.com"
 }
 }
 }
]
}

When you use HealthOmics, you also interact with other AWS services. To access these services, use
the managed policies provided by each service. To restrict access to a subset of resources, you can
use the managed policies as a starting point to create your own more restrictive policies.

• AmazonS3FullAccess – Access to Amazon S3 buckets and objects used by jobs.

• AmazonEC2ContainerRegistryFullAccess – Access to Amazon ECR registries and repositories for
workflow container images.

• AWSLakeFormationDataAdmin – Access to Lake Formation databases and tables created by
analytics stores.

• ResourceGroupsandTagEditorFullAccess – Tag HealthOmics resources with HealthOmics tagging
API operations.

User policies Version latest 141

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSLakeFormationDataAdmin
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/ResourceGroupsandTagEditorFullAccess

AWS HealthOmics User Guide

The preceding policies isn't allow a user to create IAM roles. For a user with these permissions to
run a job, an administrator must create the service role that grants HealthOmics permission to
access data sources. For more information, see Service roles for AWS HealthOmics.

Service roles for AWS HealthOmics

You can use service roles to grant AWS HealthOmics permission to access data and upload logs
while processing a workflow or importing data to a Omics Storage or Omics Analytics data store. A
service role is an AWS Identity and Access Management (IAM) role that an AWS service can use to
access resources from other services in your account. You pass a service role to HealthOmics when
you start a job.

Service roles must have the following trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The trust policy allows HealthOmics to assume the role.

Sections

• Sample IAM policies

• Sample CloudWatch templates

Sample IAM policies

The GitHub repository for this guide provides sample IAM policies that you can use as reference for
developing service roles. You can use a single role that grants permission for both importing data
and sending alerts by combining the applicable policies.

Service roles Version latest 142

AWS HealthOmics User Guide

Example Service role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:referenceStore/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/omics/
WorkflowLog:log-stream:*"
]

Sample IAM policies Version latest 143

AWS HealthOmics User Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/omics/
WorkflowLog:*"
]
 }
]
}

Sample CloudWatch templates

The following sample template creates a service role that gives HealthOmics permission to access
Amazon S3 buckets that have names prefixed with omics-, and to upload workflow logs.

Example Reference store, Amazon S3 and CloudWatch Logs permissions

Parameters:
 bucketName:
 Description: Bucket name
 Type: String

Resources:
 serviceRole:
 Type: AWS::IAM::Role
 Properties:
 Policies:
 - PolicyName: read-reference
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - omics:*
 Resource: !Sub arn:${AWS::Partition}:omics:${AWS::Region}:
${AWS::AccountId}:referenceStore/*
 - PolicyName: read-s3
 PolicyDocument:
 Version: 2012-10-17

Sample CloudWatch templates Version latest 144

AWS HealthOmics User Guide

 Statement:
 - Effect: Allow
 Action:
 - s3:ListBucket
 Resource: !Sub arn:${AWS::Partition}:s3:::${bucketName}
 - Effect: Allow
 Action:
 - s3:GetObject
 - s3:PutObject
 Resource: !Sub arn:${AWS::Partition}:s3:::${bucketName}/*
 - PolicyName: upload-logs
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - logs:DescribeLogStreams
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource: !Sub arn:${AWS::Partition}:logs:${AWS::Region}:
${AWS::AccountId}:loggroup:/aws/omics/WorkflowLog:log-stream:*
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 Resource: !Sub arn:${AWS::Partition}:logs:${AWS::Region}:
${AWS::AccountId}:loggroup:/aws/omics/WorkflowLog:*
 AssumeRolePolicyDocument: |
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 }
 }
]
 }

Sample CloudWatch templates Version latest 145

AWS HealthOmics User Guide

Resource permissions

AWS HealthOmics creates and accesses resources in other services on your behalf when you run a
job or create a store. In some cases, you need to configure permissions in other services to access
resources or to allow HealthOmics to access them.

Sections

• Lake Formation permissions

• Amazon ECR permissions

Lake Formation permissions

Before you use analytics features in HealthOmics, configure default database settings in Lake
Formation.

To configure resource permissions in Lake Formation

1. Open the Data catalog settings page in the Lake Formation console.

2. Uncheck the IAM access control requirements for databases and tables under Default
permissions for newly created databases and tables.

3. Choose Save.

HealthOmics Analytics auto accepts data if your service policy has the correct RAM permissions,
such as the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Resource permissions Version latest 146

https://console.aws.amazon.com/lakeformation/home#default-permission-settings

AWS HealthOmics User Guide

 "ram:AcceptResourceShareInvitation",
 "ram:GetResourceShareInvitations"
],
 "Resource": "*"
 }
]
}

Amazon ECR permissions

When you run a workflow, the HealthOmics service accesses one or more containers that you
provide in a private Amazon Elastic Container Registry (Amazon ECR). HealthOmics does not
support access to public containers.

You create an IAM policy that grants HealthOmics access your private repository. You add this
policy to each private repository that's referenced by a workflow. The private repository and
workflow must be in the same region.

For additional details, see Configure Amazon ECR permissions.

Permissions for data access using Amazon S3 URIs

When you create a sequence store, HealthOmics adds permissions to the following methods in the
creator's root account: S3:GetObject, S3GetObjectTagging, and S3:ListBucket. If HealthOmics owns
the AWS KMS key on the sequence store, the root account also gets access to kms:Decrypt.

For a user in the account to access the data, you create a policy and attach it to the user or role to
allow access to the files using Amazon S3 API operations. To use HealthOmics API operations, you
must add HealthOmics permissions to your IAM policy. A policy allowing Amazon S3 API access can
be applied at the sequence store level or at a read set level. At the read set level, permission can be
restricted either through the prefix or using resource tag filters for sample or subject ID patterns.

The following example gives a user access to a sequence store. You can fine-tune the access with
additional conditions or resource-based filters.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3DirectAccess",

Amazon ECR permissions Version latest 147

AWS HealthOmics User Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetObjectTagging"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:DataAccessPointArn": "arn:aws:s3:us-
west-2:555555555555:accesspoint/592761533288-4891675750"
 }
 }
 },
 {
 "Sid": "DefaultSequenceStoreKMS",
 "Effect": "Allow",
 "Action": "kms.Decrypt",
 "Resource": "arn:aws:kms:us-west-2:555555555555:key/fa3b30f5-835d-4a6d-
b3f9-d3898fe0e648"
 }
]
}

To learn more about using IAM policies with HealthOmics, see Service roles for AWS HealthOmics.

There are three ways you can use Amazon S3 URIs to share your data. The options are as follows:

• For sharing with users and roles within your account — Write a user access policy that includes
access to the AWS KMS key and access to the access point. This makes the data accessible for use
with the Amazon S3 API operations.

• For sharing with users outside of your account — Create a role within the data owner's account
that has an access policy that allows the user to assume that role. Adding the user with direct
access isn't supported.

• Presigned URLs — You can also generate a shareable URL for a file in the sequence store.

To learn more about creating presigned URLs by using Amazon S3, see Using presigned URL in the
Amazon S3 documentation.

Amazon S3 URI Permissions Version latest 148

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-presigned-url.html

AWS HealthOmics User Guide

Security in AWS HealthOmics

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS HealthOmics,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS HealthOmics. The following topics show you how to configure AWS HealthOmics to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AWS HealthOmics resources.

Topics

• Data protection in AWS HealthOmics

• Identity and access management for HealthOmics

• Compliance validation for AWS HealthOmics

• Resilience in HealthOmics

• AWS HealthOmics and interface VPC endpoints (AWS PrivateLink)

Data protection in AWS HealthOmics

The AWS shared responsibility model applies to data protection in AWS HealthOmics. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this

Data protection Version latest 149

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS HealthOmics User Guide

infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS HealthOmics or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

AWS HealthOmics provides encryption by default to protect sensitive customer data at rest by
using a service owned AWS Key Management Service (AWS KMS) key. Customer-managed KMS
keys are also supported. To learn more about Customer-managed KMS Key, see Amazon Key
Management Service.

All HealthOmics data stores (Storage and Analytics) support the use of Customer-managed KMS
keys. The encryption configuration cannot be changed after a data store has been created. If a data

Encryption at rest Version latest 150

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/
https://docs.AWS.amazon.com/kms/latest/developerguide/overview.html
https://docs.AWS.amazon.com/kms/latest/developerguide/overview.html

AWS HealthOmics User Guide

store is using an AWS owned KMS Key, it will be denoted as AWS_OWNED_KMS_KEY and you will
not see the specific key used for encryption at rest.

For HealthOmics Workflows, customer-managed keys aren't supported by the temporary file
system; however, all data is encrypted at rest automatically using XTS-AES-256 block cipher
encryption algorithm to encrypt the file system. The IAM user and role used to start a workflow
run must also have access to the AWS KMS keys used for workflow input and output buckets.
Workflows does not use grants, and AWS KMS encryption is limited to input and output Amazon
S3 buckets. The IAM role used both for workflow APIs must also have access to the AWS KMS
keys used as well as the input and output Amazon S3 buckets. You can use either IAM roles and
permissions to control access or AWS KMS policies. To learn more, see Authentication and access
control for AWS KMS.

Additionally, when using AWS Lake Formation with HealthOmics Analytics, any decrypt permissions
associated with the Lake Formation are also given to the input and output Amazon S3 buckets.
More information about how AWS Lake Formation manages permissions can be found in the AWS
Lake Formation documentation.

HealthOmics Analytics grants Lake Formation kms:Decrypt permissions to read the encrypted
data in an Amazon S3 bucket. As long as you have permissions to query the data through Lake
Formation, you will be able to read the encrypted data. Access to the data is controlled through
data access control in Lake Formation, not through a KMS key policy. To learn more, see the AWS
Integrated AWS service requests in the Lake Formation documentation.

AWS owned KMS key

AWS HealthOmics uses these keys by default to automatically encrypt potentially sensitive
information such as personally identifiable or Protected Health Information (PHI) data at rest. AWS
owned KMS keys aren't stored in your account. They're part of a collection of KMS keys that AWS
owns and manages for use in multiple AWS accounts.

AWS services can use AWS owned KMS keys to protect your data. You can't view, manage, use
AWS owned KMS keys, or audit their use. However, you don't need to do any work or change any
programs to protect the keys that encrypt your data.

You're not charged a monthly fee or a usage fee if you use AWS owned KMS keys, and they don't
count against AWS KMS quotas for your account. For more information, see AWS owned keys.

Encryption at rest Version latest 151

https://docs.AWS.amazon.com/kms/latest/developerguide/control-access.html
https://docs.AWS.amazon.com/kms/latest/developerguide/control-access.html
https://docs.AWS.amazon.com/lake-formation/latest/dg/register-encrypted.html
https://docs.AWS.amazon.com/lake-formation/latest/dg/register-encrypted.html
https://docs.AWS.amazon.com/lake-formation/latest/dg/access-control-underlying-data.html
https://docs.AWS.amazon.com/lake-formation/latest/dg/access-control-underlying-data.html
https://docs.AWS.amazon.com/kms/latest/developerguide/concepts.html#AWS-owned-cmk

AWS HealthOmics User Guide

Customer managed KMS keys

AWS HealthOmics supports the use of a symmetric customer managed KMS key that you create,
own, and manage to add a second layer of encryption over the existing AWS owned encryption.
Because you have full control of this layer of encryption, you can perform such tasks as:

• Establishing and maintaining key policies, IAM policies, and grants

• Rotating key cryptographic material

• Enabling and disabling key policies

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

You can also use CloudTrail to track the requests that AWS HealthOmics sends to AWS KMS on your
behalf. Additional AWS KMS charges apply. For more information, see customer owned keys.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

Follow the steps for Creating symmetric customer managed key in the AWS Key Management
Service Developer Guide.

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Managing access to customer managed keys in the AWS Key Management
Service Developer Guide.

To use your customer managed key with your AWS HealthOmics resources, kms:CreateGrant
operations must be permitted in the key policy. This adds a grant to a customer managed key that
controls access to a specified KMS key. This key gives a user access to the kms:grant operations that
AWS HealthOmics requires. See Using grants for more information.

To use your customer managed KMS key with your AWS HealthOmics resources, the following API
operations must be permitted in the key policy:

Encryption at rest Version latest 152

https://docs.AWS.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.AWS.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.AWS.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.AWS.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.AWS.amazon.com/kms/latest/developerguide/grants.html#terms-grant-operations
https://docs.AWS.amazon.com/kms/latest/developerguide/grants.html

AWS HealthOmics User Guide

• kms:CreateGrant adds grants to a specific customer managed KMS key, which allows access to
grant operations in HealthOmics Analytics and HealthOmics Storage. HealthOmics Workflows
does not use grants.

• kms:DescribeKey provides the customer managed key details needed to validate the key. This is
required for all operations.

• kms:GenerateDataKey provides access to encrypt resources at rest for all write operations.

• kms:Decrypt provides access to read or search operations for encrypted resources.

The following is a policy statement example that allows a role to create and interact with a data
store in AWS HealthOmics which is encrypted by that key:

{
 "Statement": [
{
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:ReEncrypt*"
],
 "Resource": "*"
 }
]
}

The following policy would create permissions for a data store to decrypt data from an Amazon S3
bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:GetReference",

Encryption at rest Version latest 153

AWS HealthOmics User Guide

 "omics:GetReferenceMetadata"
],
 "Resource": [
 "arn:AWS:omics:{{region}}:{{accountId}}:referenceStore/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:AWS:s3:::[[s3path]]/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:AWS:kms:{{region}}:{{account_id}}:key/{{key_id}}"
]
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "s3.{{region}}.amazonAWS.com"
]
 }
 }
 }
]
}

Required IAM permissions for using a customer managed KMS key

When creating a resource such as a data store with AWS KMS encryption using a customer
managed KMS key, there are required permissions for both the key policy and the IAM policy for
the IAM user or role.

You can use the kms:ViaService condition key to limit use of the KMS key to only requests that
originate from AWS HealthOmics.

Encryption at rest Version latest 154

https://docs.AWS.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

AWS HealthOmics User Guide

For more information about key policies, see Enabling IAM policies in the AWS Key Management
Service Developer Guide.

The IAM user or role creating your repositories must have the kms:CreateGrant,
kms:GenerateDataKey, and kms:DescribeKey permissions plus the necessary AWS HealthOmics
permissions.

How AWS HealthOmics uses grants in AWS KMS

HealthOmics Analytics requires a grant to use your customer managed KMS key. Grants aren't
required or used for either HealthOmics Workflows or HealthOmics Storage. When you create a
data store encrypted with a customer managed KMS key, AWS HealthOmics creates a grant on your
behalf by sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give AWS
HealthOmics access to a KMS key in a customer account.

It isn't recommended to revoke or retire the grants that AWS HealthOmics creates on your behalf.
If you revoke or retire the grant that gives AWS HealthOmics permission to use the AWS KMS
keys in your account, AWS HealthOmics cannot access this data, encrypt new resources pushed to
the data store, or decrypt them when they are pulled. When you revoke or retire a grant for AWS
HealthOmics, the change occurs immediately. To revoke access rights, you should delete the data
store rather than revoking the grant. When a data store is deleted, AWS HealthOmics retires the
grants on your behalf.

Monitoring your encryption keys for AWS HealthOmics

You can use CloudTrail to track the requests that AWS HealthOmics sends to AWS KMS on your
behalf when using a customer managed KMS key. The log entries in the CloudTrail log show AWS
HealthOmics.amazonAWS.com in the userAgent field to clearly distinguish requests made by AWS
HealthOmics.

The following examples are CloudTrail events for CreateGrant, GenerateDataKey, Decrypt, and
DescribeKey to monitor AWS KMS operations called by AWS HealthOmics to access data encrypted
by your customer managed key.

The following also shows how to use CreateGrant to allow AWS HealthOmics to access a customer
provided KMS key, enabling AWS HealthOmics to use that KMS key to encrypt all customer data at
rest.

Encryption at rest Version latest 155

https://docs.AWS.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam
https://docs.AWS.amazon.com/kms/latest/developerguide/grants.html
https://docs.AWS.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS HealthOmics User Guide

You aren't required to create your own grants. AWS HealthOmics creates a grant on your behalf by
sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give AWS HealthOmics
access to a AWS KMS key in a customer account.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "xx:test",
 "arn": "arn:AWS:sts::555555555555:assumed-role/user-admin/test",
 "accountId": "xx",
 "accessKeyId": "xxx",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "xxxx",
 "arn": "arn:AWS:iam::555555555555:role/user-admin",
 "accountId": "555555555555",
 "userName": "user-admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-11-11T01:36:17Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "apigateway.amazonAWS.com"
 },
 "eventTime": "2022-11-11T02:34:41Z",
 "eventSource": "kms.amazonAWS.com",
 "eventName": "CreateGrant",
 "AWSRegion": "us-west-2",
 "sourceIPAddress": "apigateway.amazonAWS.com",
 "userAgent": "apigateway.amazonAWS.com",
 "requestParameters": {
 "granteePrincipal": "AWS Internal",
 "keyId": "arn:AWS:kms:us-west-2:555555555555:key/a6e87d77-cc3e-4a98-a354-
e4c275d775ef",
 "operations": [
 "CreateGrant",
 "RetireGrant",
 "Decrypt",
 "GenerateDataKey"

Encryption at rest Version latest 156

AWS HealthOmics User Guide

]
 },
 "responseElements": {
 "grantId": "4869b81e0e1db234342842af9f5531d692a76edaff03e94f4645d493f4620ed7",
 "keyId": "arn:AWS:kms:us-west-2:245126421963:key/xx-cc3e-4a98-a354-
e4c275d775ef"
 },
 "requestID": "d31d23d6-b6ce-41b3-bbca-6e0757f7c59a",
 "eventID": "3a746636-20ef-426b-861f-e77efc56e23c",
 "readOnly": false,
 "resources": [
 {
 "accountId": "245126421963",
 "type": "AWS::KMS::Key",
 "ARN": "arn:AWS:kms:us-west-2:245126421963:key/xx-cc3e-4a98-a354-
e4c275d775ef"
 }
],
 "eventType": "AWSApiCall",
 "managementEvent": true,
 "recipientAccountId": "245126421963",
 "eventCategory": "Management"
}

The following example shows how to use GenerateDataKey to ensure the user has the necessary
permissions to encrypt data before storing it.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:AWS:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:AWS:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"

Encryption at rest Version latest 157

AWS HealthOmics User Guide

 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T21:17:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "omics.amazonAWS.com"
 },
 "eventTime": "2021-06-30T21:17:37Z",
 "eventSource": "kms.amazonAWS.com",
 "eventName": "GenerateDataKey",
 "AWSRegion": "us-east-1",
 "sourceIPAddress": "omics.amazonAWS.com",
 "userAgent": "omics.amazonAWS.com",
 "requestParameters": {
 "keySpec": "AES_256",
 "keyId": "arn:AWS:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:AWS:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AWSApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Learn more

The following resources provide more information about data at rest encryption.

For more information about AWS Key Management Service basic concepts, see the AWS KMS
documentation.

Encryption at rest Version latest 158

https://docs.AWS.amazon.com/kms/latest/developerguide/concepts.html

AWS HealthOmics User Guide

For more information about Security best practices in the AWS KMS documentation.

Encryption in transit

AWS HealthOmics uses TLS 1.2+ to encrypt data in transit through the public endpoints and
through backend services.

Identity and access management for HealthOmics

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS HealthOmics resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS HealthOmics works with IAM

• Identity-based policy examples for AWS HealthOmics

• AWS managed policies for AWS HealthOmics

• Troubleshooting AWS HealthOmics identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS HealthOmics.

Service user – If you use the AWS HealthOmics service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS
HealthOmics features to do your work, you might need additional permissions. Understanding
how access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AWS HealthOmics, see Troubleshooting AWS HealthOmics identity and
access.

Service administrator – If you're in charge of AWS HealthOmics resources at your company, you
probably have full access to AWS HealthOmics. It's your job to determine which AWS HealthOmics

Identity and access management Version latest 159

https://docs.AWS.amazon.com/kms/latest/developerguide/best-practices.html

AWS HealthOmics User Guide

features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
AWS HealthOmics, see How AWS HealthOmics works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS HealthOmics. To view example AWS HealthOmics
identity-based policies that you can use in IAM, see Identity-based policy examples for AWS
HealthOmics.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

Authenticating with identities Version latest 160

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS HealthOmics User Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Authenticating with identities Version latest 161

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

AWS HealthOmics User Guide

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the

Authenticating with identities Version latest 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS HealthOmics User Guide

principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

Managing access using policies Version latest 163

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS HealthOmics User Guide

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Managing access using policies Version latest 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthOmics User Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies Version latest 165

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS HealthOmics User Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS HealthOmics works with IAM

Before you use IAM to manage access to AWS HealthOmics, learn what IAM features are available
to use with AWS HealthOmics.

IAM features you can use with AWS HealthOmics

IAM feature HealthOmics support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how HealthOmics and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How AWS HealthOmics works with IAM Version latest 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS HealthOmics User Guide

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission
to perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-
service impersonation can result in the confused deputy problem. Cross-service impersonation can
occur when one service (the calling service) calls another service (the called service). The calling
service can be manipulated to use its permissions to act on another customer's resources in a way
it shouldn't otherwise have permission to access. To prevent this, AWS provides tools that help you
protect your data for all services with service principals that have been given access to resources in
your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS HealthOmics gives another service to
the resource.

To prevent the confused deputy problem in roles assumed by HealthOmics, set the value of
aws:SourceArn to arn:aws:omics:region:accountNumber:* in the role's trust policy. The
wildcard (*) applies the condition for all HealthOmics resources.

The following trust relationship policy grants HealthOmics access to your resources and uses the
aws:SourceArn and aws:SourceAccount global condition context keys to prevent the confused
deputy problem. Use this policy when you create a role for HealthOmics.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountNumber"
 },
 "StringLike": {

How AWS HealthOmics works with IAM Version latest 167

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS HealthOmics User Guide

 "aws:SourceArn": "arn:aws:omics:region:accountNumber:*"
 }
 }
 }
]
}

Identity-based policies for HealthOmics

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for HealthOmics

To view examples of AWS HealthOmics identity-based policies, see Identity-based policy examples
for AWS HealthOmics.

Resource-based policies within HealthOmics

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal

How AWS HealthOmics works with IAM Version latest 168

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthOmics User Guide

in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for HealthOmics

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of HealthOmics actions, see Actions Defined by AWS HealthOmics in the Service
Authorization Reference.

Policy actions in HealthOmics use the following prefix before the action:

healthomics

To specify multiple actions in a single statement, separate them with commas.

"Action": [

How AWS HealthOmics works with IAM Version latest 169

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html#awshealthomics-actions-as-permissions

AWS HealthOmics User Guide

 "healthomics:action1",
 "healthomics:action2"
]

To view examples of AWS HealthOmics identity-based policies, see Identity-based policy examples
for AWS HealthOmics.

Policy resources for HealthOmics

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of HealthOmics resource types and their ARNs, see Resources Defined by AWS
HealthOmics in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions Defined by AWS HealthOmics .

To view examples of AWS HealthOmics identity-based policies, see Identity-based policy examples
for AWS HealthOmics.

Policy condition keys for HealthOmics

Policy condition keys aren't supported in HealthOmics.

How AWS HealthOmics works with IAM Version latest 170

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html.html#awshealthomics-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html.html#awshealthomics-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html#awshealthomics-actions-as-permissions

AWS HealthOmics User Guide

Access control lists (ACLs) in HealthOmics

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with HealthOmics

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging HealthOmics resources, see Tagging resources in HealthOmics.

The following example shows how you can write an IAM policy denying access to a resource
without a specific tag.

How AWS HealthOmics works with IAM Version latest 171

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

AWS HealthOmics User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "omics:*"
],
 "Resource": [
 "*"
],
 "Condition": {
 "Null": {
 "aws:RequestTag/MyCustomTag": "true"
 }
 }
 }
]
}

You can also limit access to a runs within a run group, as shown.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:StartRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*",
 "arn:aws:omics:us-west-2:123456789012:workflow/1234567",
 "arn:aws:omics:us-west-2:123456789012:runGroup/2345678"
],
 "Condition": {
 "StringLike": {
 "omics:Workflow": "arn:aws:omics:us-east-1:123456789012:workflow/*"
 },
 "StringLike": {

How AWS HealthOmics works with IAM Version latest 172

AWS HealthOmics User Guide

 "omics:RunGroup": "arn:aws:omics:us-east-1:123456789012:runGroup/*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "omics:GetRun",
 "omics:ListRunTasks",
 "omics:GetRunTask",
 "omics:CancelRun",
 "omics:DeleteRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*"
]
 },

]
}

Using Temporary credentials with HealthOmics

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

How AWS HealthOmics works with IAM Version latest 173

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS HealthOmics User Guide

Cross-service principal permissions for HealthOmics

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for HealthOmics

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break HealthOmics functionality. Edit
service roles only when HealthOmics provides guidance to do so.

Service-linked roles for HealthOmics

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

How AWS HealthOmics works with IAM Version latest 174

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS HealthOmics User Guide

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS HealthOmics

By default, users and roles don't have permission to create or modify AWS HealthOmics resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS HealthOmics, including the format
of the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for AWS
HealthOmics in the Service Authorization Reference.

Topics

• Policy best practices

• Using the HealthOmics console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS HealthOmics
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on

Identity-based policy examples Version latest 175

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS HealthOmics User Guide

specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the HealthOmics console

To access the AWS HealthOmics console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS HealthOmics resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policy examples Version latest 176

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS HealthOmics User Guide

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

AWS managed policies for AWS HealthOmics

AWS managed policies Version latest 177

AWS HealthOmics User Guide

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonOmicsFullAccess

You can attach the AmazonOmicsFullAccess policy to your IAM identities to give them full
access to HealthOmics.

This policy grants full access permissions to all HealthOmics actions. When you create an
annotation or variant store, Omics will also give you access to those stores through a Resource
Share Invitation in the Resource Access Manager (RAM) console. For more information on Resource
Share invitations through Lake Formation, see the Lake Formation documentation. For an Omics
admin policy, you will also need the following permissions to access your Amazon S3 bucket.

• PutObject

• GetObject

• ListBucket

• AbortMultipartUpload

AWS managed policies Version latest 178

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/en_us/lake-formation/latest/dg/accepting-ram-invite.html/

AWS HealthOmics User Guide

• ListMultipartUploadParts

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:AcceptResourceShareInvitation",
 "ram:GetResourceShareInvitations"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "omics.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "omics.amazonaws.com"
 }
 }
 }
]
}

AWS managed policy: AmazonOmicsReadOnlyAccess

AWS managed policies Version latest 179

AWS HealthOmics User Guide

You can attach the AWSOmicsReadOnlyAccess policy to your IAM identities when you wish to
limit the permissions for that identity to read-only access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:Get*"
 "omics:List*"
],
 "Resource": "*"
 }
]
}

HealthOmics updates to AWS managed policies

View details about updates to AWS managed policies for HealthOmics since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the HealthOmics Document history page.

Change Description Date

AmazonOmicsFullAccess -
New policy added

HealthOmics added a new
policy to grant a user full
access to all actions and
resources. To learn more, see
AmazonOmicsFullAccess.

February 23, 2023

HealthOmics started tracking
changes

HealthOmics started tracking
changes for its AWS managed
policies.

November 29, 2022

AWS managed policies Version latest 180

AWS HealthOmics User Guide

Change Description Date

AmazonOmicsReadOnl
yAccess - New policy added

HealthOmics added a new
policy that limits access to
read only. To learn more,
AmazonOmicsReadOnl
yAccess.

November 29, 2022

Troubleshooting AWS HealthOmics identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS HealthOmics and IAM.

Topics

• I am not authorized to perform an action in HealthOmics

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my HealthOmics resources

I am not authorized to perform an action in HealthOmics

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
healthomics:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 healthomics:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the healthomics:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting Version latest 181

AWS HealthOmics User Guide

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS HealthOmics.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS HealthOmics. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my HealthOmics
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS HealthOmics supports these features, see How AWS HealthOmics works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

Troubleshooting Version latest 182

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html

AWS HealthOmics User Guide

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for AWS HealthOmics

Third-party auditors assess the security and compliance of AWS HealthOmics as part of multiple
AWS compliance programs. This includes HIPAA, FedRAMP, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS HealthOmics is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. AWS
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – AWS Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Compliance validation Version latest 183

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS HealthOmics User Guide

Resilience in HealthOmics

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS HealthOmics offers several features to help
support your data resiliency and backup needs.

AWS HealthOmics and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and AWS HealthOmics by creating an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that you
can use to privately access HealthOmics API operations without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't require public
IP addresses to communicate with HealthOmics API operations. Traffic between your VPC and
HealthOmics doesn't go outside the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

VPC endpoint policies are supported for HealthOmics for all Regions except Israel (Tel Aviv). By
default, full access to HealthOmics is allowed through the endpoint.

Considerations for HealthOmics VPC endpoints

Before you set up an interface VPC endpoint for HealthOmics, make sure that you review Interface
endpoint properties and limitations in the Amazon VPC User Guide.

HealthOmics supports making calls to all HealthOmics Storage API actions from your VPC.

Resilience Version latest 184

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations

AWS HealthOmics User Guide

VPC endpoint policies aren't supported for HealthOmics by default, but you can create a
VPC endpoint for full HealthOmics access for the HealthOmics Storage operations. For more
information, see Controlling access to services with VPC endpoints in the Amazon VPC User Guide.

Creating an interface VPC endpoint for HealthOmics

You can create a VPC endpoint for the HealthOmics service by using the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for HealthOmics by using the following service names:

• com.amazonaws.region.storage-omics

• com.amazonaws.region.control-storage-omics

• com.amazonaws.region.analytics-omics

• com.amazonaws.region.workflows-omics

• com.amazonaws.region.tags-omics

If you turn on private DNS for the endpoint, you can make API requests to HealthOmics by using its
default DNS name for the Region, for example, omics.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for HealthOmics

You can attach an endpoint policy to your VPC endpoint that controls access to HealthOmics. The
policy specifies the following information:

• The principal that can perform actions

• The actions that can be performed

• The resources on which actions can be performed

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for HealthOmics actions.

Creating an interface VPC endpoint for HealthOmics Version latest 185

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS HealthOmics User Guide

The following is an example of an endpoint policy for HealthOmics. When attached to an endpoint,
this policy grants access to HealthOmics actions for all principals on all resources.

API

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "omics:List*"
],
 "Resource":"*"
 }
]
}

AWS CLI

aws ec2 modify-vpc-endpoint \
 --vpc-endpoint-id vpce-id \
 --region us-west-2 \
 --policy-document \
 "{\"Statement\":[{\"Principal\":\"*\",\"Effect\":\"Allow\",\"Action\":
[\"omics:List*\"],\"Resource\":\"*\"}]}"

Special considerations for accessing read sets using Amazon S3 URIs

To access read sets through Amazon S3 URIs when you're using a private connection, set up the
PrivateLink interface endpoints on the sequence store. After you set them up, the endpoints have
the following formats:

 com.amazonaws.region.storage-omics
 com.amazonaws.region.control-storage-omics

To use Gateway endpoints, follow the guide Gateway endpoints for Amazon S3 to configure your
gateway endpoints. HealthOmics owns the Amazon S3 bucket, so you don't have to create or adjust
the bucket policy. Gateway endpoints rely on the policy attached to the user or role that accesses

Special considerations for accessing read sets using Amazon S3 URIs Version latest 186

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html

AWS HealthOmics User Guide

the data, but you can also configure endpoints with more restrictive policies. These policies can
include restrictions on access based on the Amazon S3 Access Point ARN and Amazon S3 actions.

Special considerations for accessing read sets using Amazon S3 URIs Version latest 187

AWS HealthOmics User Guide

Monitoring AWS HealthOmics

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
HealthOmics and your other AWS solutions. AWS provides the following monitoring tools to watch
AWS HealthOmics, report when something is wrong, and take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify
you or take actions when a specified metric reaches a threshold that you specify. For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time data
from your own applications, Software-as-a-Service (SaaS) applications, and AWS services and
routes that data to targets such as Lambda. This enables you to monitor events that happen in
services, and build event-driven architectures. For more information, see the Amazon EventBridge
User Guide.

Topics

• Monitoring HealthOmics with Amazon CloudWatch

• Logging AWS HealthOmics API calls using AWS CloudTrail

• Using EventBridge with AWS HealthOmics

Version latest 188

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/

AWS HealthOmics User Guide

Monitoring HealthOmics with Amazon CloudWatch

You can monitor HealthOmics using CloudWatch, which collects raw data and processes it into
readable, near real-time metrics. These statistics are kept for 15 months, so that you can access
historical information and gain a better perspective on how your web application or service is
performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

The AWS HealthOmics service reports the following metrics in the AWS/Omics namespace.

API Call Count metrics are reported for the following AWS HealthOmics APIs. Only the API
Operation dimension is reported.

• Reference and reference store APIs —CreateReferenceStore, DeleteReferenceStore,
StartReferenceImportJob

• Sequence store and read set APIs —CreateSequenceStore, DeleteSequenceStore,
StartReadSetImportJob, StartReadSetActivationJob, StartReadSetExportJob

• Variant store APIs — CreateVariantStore, DeleteVariantStore, StartVariantImportJob,
CancelVariantImportJob

• Annotation store APIs — CreateAnnotationStore, DeleteAnotationStore,
StartAnnotationImportJob, CancelAnnotationImportJob

• Workflow, run, and run group APIs — CreateWorkflow, DeleteWorkflow, StartRun, CancelRun,
DeleteRun, CreateRunGroup, DeleteRunGroup

Viewing AWS HealthOmics metrics

CloudWatch metrics for AWS HealthOmics are viewable in the CloudWatch console.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Metrics, choose All Metrics, and then choose AWS/Usage.

3. Filter Service for AWS HealthOmics.

4. Choose the dimension, choose a metric name, then choose Add to graph.

5. Choose a value for the date range. The metric count for the selected date range is displayed in
the graph.

CloudWatch Version latest 189

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://console.aws.amazon.com/cloudwatch/home

AWS HealthOmics User Guide

Creating an alarm using CloudWatch

A CloudWatch alarm watches a single metric over a specified time period, and performs one or
more actions: sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic
or Auto Scaling policy. The action or actions are based on the value of the metric relative to a
given threshold over a number of time periods that you specify. CloudWatch can also send you an
Amazon SNS message when the alarm changes state.

CloudWatch alarms invoke actions only when the state changes and has persisted for the period
you specify.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Alarms, and then choose Create Alarm.

3. Choose AWS/Usage, and then choose an AWS HealthOmics metric using the Service
dimension.

4. For Time Range, choose a time range to monitor, and then choose Next.

5. Enter a Name and Description.

6. For Whenever, choose >=, and type a maximum value.

7. If you want CloudWatch to send an email when the alarm state is reached, in the Actions
section, for Whenever this alarm, choose State is ALARM. For Send notification to, choose a
mailing list or choose New list and create a new mailing list.

8. Preview the alarm in the Alarm Preview section. If you are satisfied with the alarm, choose
Create Alarm.

Logging AWS HealthOmics API calls using AWS CloudTrail

AWS HealthOmics is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in HealthOmics. CloudTrail captures all API calls for
HealthOmics as events. The calls captured include calls from the HealthOmics console and code
calls to the HealthOmics API operations. If you create a trail, you can enable continuous delivery
of CloudTrail events to an Amazon S3 bucket, including events for HealthOmics. If you don't
configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was

Creating an alarm Version latest 190

https://console.aws.amazon.com/cloudwatch/home

AWS HealthOmics User Guide

made to HealthOmics, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

HealthOmics information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
HealthOmics, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for HealthOmics, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All HealthOmics actions are logged by CloudTrail and are documented in the AWS HealthOmics API
Reference. For example, calls to the CreateReferenceeStore, StartVariantImportJob and
CreateWorkflow actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

HealthOmics information in CloudTrail Version latest 191

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/omics/latest/api/Welcome.html
https://docs.aws.amazon.com/omics/latest/api/Welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS HealthOmics User Guide

Understanding HealthOmics log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateWorkflow action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIU53LOGOMTOPXXNPG:username",
 "arn": "arn:aws:sts::account:assumed-role/admin/username",
 "accountId": "account-id",
 "accessKeyId": "accessKeyId",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIU53LOGOMTOPXXNPG",
 "arn": "arn:aws:iam::account:role/admin",
 "accountId": "account",
 "userName": "admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-07-23T18:26:09Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-07-23T18:46:42Z",
 "eventSource": "omics.amazonaws.com",
 "eventName": "CreateWorkflow",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.251.233.176",
 "userAgent": "aws-cli/1.22.45 Python/3.9.13 Darwin/20.6.0 botocore/1.23.45",
 "requestParameters": {
 "name": "parameter_name",
 "definitionZip": "czM6Ly93b3JrZmxvd2RlZi1oZWxsby9kZWZpbml0aW9uLnppcA==",
 "requestId": "d788a73c-b81b-45fb-a8a6-d8bb4449ec8a"

Understanding HealthOmics log file entries Version latest 192

AWS HealthOmics User Guide

 },
 "responseElements": {
 "id": "1002571",
 "arn": "arn:aws:omics:us-west-2:555555555555:instance/i-b188560f ",
 "status": "CREATING",
 "tags": {
 "resourceArn": "arn:aws:omics:us-west-2:083685709690:workflow/1002571"
 }
 },
 "requestID": "842d731d-f264-4b08-a2c9-2f7d45e1eaa3",
 "eventID": "76872ca2-f208-4193-807d-7dd7ea34e6b2",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "083685709690",
 "eventCategory": "Management"
}

Using EventBridge with AWS HealthOmics

HealthOmics generates and sends events to Amazon EventBridge as a best effort delivery to your
account's default bus. After EventBridge is enabled, all events are sent to EventBridge. You can use
EventBridge rules to route events to additional targets. The following table lists the events that are
sent to EventBridge.

Resource or event Possible status description

Variant or annotation store Creating, created, updating, updated, deleting,
deleted, or creation failed

Reference or sequence store Created or deleted

Read sets Processing upload, upload failed, active,
archived, activating, or deleted

Variant or annotation import job Submitted, in progress, cancelled, completed,
failed, or completed with failures

Reference import or export job, read set
import or export

Submitted, in progress, completed, failed, or
completed with failures

EventBridge Version latest 193

AWS HealthOmics User Guide

Resource or event Possible status description

Read set activation job Submitted, in progress, completed, failed, or
completed with failures

Workflow status Possible statuses are creation success, creation
failure, deletion success, or deletion failure

Run group status Active or deleted

Run or task Pending, starting, running, stopping,
completed, deleted, failed, or cancelled

Reference Active or deleted

EventBridge event message structure and examples

HealthOmics sends events to Amazon EventBridge whenever a resource is created, updated,
deleted, or changes state. You can use EventBridge and these events to write rules that take
actions, such as notifying you when a resource changes state. For more information, see What is
Amazon EventBridge?

HealthOmics provides best effort delivery of state changes to EventBridge. The event is an object
with JSON structure that also contains metadata details. You can use the metadata as input to
either recreate the event or learn more information. The following fields are included:

• version — Currently 0 (zero) for all events.

• id — A Version 4 UUID generated for every event.

• detail-type — The type of event that's being sent.

• account — The 12-digit AWS account ID of the bucket owner.

• source — Identifies the service that generated the event.

• time — The time the event occurred.

• region — Identifies the AWS Region of the bucket.

• resources — A JSON array that contains the Amazon Resource Name (ARN) of the bucket.

• detail — A JSON object that contains information about the event.

EventBridge event message structure and examples Version latest 194

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html

AWS HealthOmics User Guide

For run events, the following fields are included:

• uuid — The universally unique identifier for the run.

• runOutputUri — The URI for where the run will write its output data.

The following is an example of an event that's created when a read set status changes.

{
 "version": "0"
 "id": "64ca0eda-9751-dc55-c41a-1bd50b4fc9b7",
 "detail-type": "Read Set Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2023-04-04T17:53:06Z",
 "region": "us-west-2",
 "resources": ["arn:aws:omics:us-west-2:123456789012:sequenceStore/1234567890/
readSet/3456789012"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-west-2:123456789012:sequenceStore/1234567890/
readSet/3456789012",
 "sequenceStoreId" : "1234567890",
 "id": "3456789012",
 "status": "PROCESSING_UPLOAD"
 }
}

A similar event gets created for a variant store import job.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "Variant Store Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2015-12-22T18:43:48Z",
 "region": "us-east-1",
 "resources": ["arn:aws:omics:us-east-1:123456789012:bcvariantstore2"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-east-1:123456789012:bcvariantstore2",
 "status": "CREATED",

EventBridge event message structure and examples Version latest 195

AWS HealthOmics User Guide

 "storeId": "6710c5f02610",
 "storeName": "bcvariantstore2",
 }
}

The following is an event that would be created for a change in import job status.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "Variant Import Job Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2015-12-22T18:43:48Z",
 "region": "us-east-1",
 "resources": ["arn:aws:omics:us-
east-1:123456789012:vincent_load_test_variant_store/
b64ea9a3-459f-4b68-92c3-3ddb83209fe9"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-east-1:123456789012:vincent_load_test_variant_store/
b64ea9a3-459f-4b68-92c3-3ddb83209fe9",
 "status": "COMPLETED",
 "jobId": "b64ea9a3-459f-4b68-92c3-3ddb83209fe9",
 "storeId": "a74869f91e20",
 "storeName": "vincent_load_test_variant_store"
 }
}

For run events, two additional fields are included in the detail field. These are the uuid and
runOutputUri, as shown in the following example.

{
 "version":"0",
 "id":"c0e540f4-df38-b986-86c1-3e3730f971fe",
 "detail-type":"Run Status Change",
 "source":"aws.omics",
 "account":"123456789012",
 "time":"2022-10-20T22:07:35Z",
 "region":"us-west-2",
 "resources":[
 "arn:aws:omics:us-west-2:123456789012:run/2101313"

EventBridge event message structure and examples Version latest 196

AWS HealthOmics User Guide

],
 "detail":{
 "omicsVersion":"1.0.0",
 "arn":"arn:aws:omics:us-west-2:123456789012:run/2101313",
 "status":"COMPLETED",
 "uuid":"153893cd-097a-40ec-aec7-838a97cd2b21",
 "runOutputUri":"s3://integ-test-0ee27e7e/run-output/2101313"
 }
}

EventBridge event message structure and examples Version latest 197

AWS HealthOmics User Guide

Troubleshooting

The following documentation can help you troubleshoot problems you might have with your
HealthOmics data stores and workflows.

Topics

• Why can't I run my workflow?

• Why do I get a "not a currently supported operation" error when running Nextflow?

• Why can't I create a reference store?

• Why can't I create a sequence store?

• Why can't I create a workflow?

• Why did my task fail?

• Why can't I import my BAM, CRAM or FASTQ files?

• Why can't I import my VCF or gVCF files?

• Why can't I see my annotation store or variant store in Athena?

• Why can't I access my data store in Athena?

• Why do I get a "Request Too Long" error message when I try to create a workflow?

• Error and status messages for run failures

Why can't I run my workflow?

If you're getting an error to run your workflow while using the AWS CLI, check to make sure
you have the latest version installed. Also make sure you have the correct Amazon ECR and IAM
permissions to access your input data.

A full log of failed tasks can be found in your engine logs, which can be accessed either through
the console or your AWS account. Tasks logs can also be found in your AWS account log under the
/aws/omics/WorkflowLog log group. Engine logs are only generated for failed workflow runs,
and are organized in the log stream by Run ID and engine, run/{run-id}/task/{task-id}.

Why can't I run my workflow? Version latest 198

AWS HealthOmics User Guide

Why do I get a "not a currently supported operation" error
when running Nextflow?

If you receive the following error when running Nextflow:

java.lang.UnsupportedOperationException:
 BaseFileSystemProvider.createDirectory is not a currently supported operation

Check that your Nextflow definition file sets the publishDir value to /mnt/workflow/pubdir.
To export files to Amazon S3, the files must be in this directory. For more information, see the
Nextflow example in Workflow definition file examples .

Why can't I create a reference store?

If you receive an error that states "You don’t have permissions for this action with the credentials
you sent," check your IAM permissions. Confirm you have permission in your policy for the role you
are using to use theCreateReferenceStore action.

Why can't I create a sequence store?

If you receive an error that states "You don’t have permissions for this action with the credentials
you sent," check your IAM permissions. Confirm you have permission in your policy for the role you
are using to use the CreateSequenceStore action.

Why can't I create a workflow?

If the error states "Zip file contains multiple workflow definition files", you must specify the main/
master WDL or Nextflow file to use. You can do this by entering in the main path to the file as part
of the command --main folder_name/file_name through the AWS CLI. You can also do this using
the main workflow's definition file field for the console.

Why did my task fail?

Make sure that you have the appropriate service role. This role must be able to read from the
Amazon Simple Storage Service location(s) or sequence store where your data resides. It must

Why do I get a "not a currently supported operation" error when running Nextflow? Version latest 199

AWS HealthOmics User Guide

also have the appropriate trust policy for HealthOmics to assume the role. You can find more
information in the CloudWatch Logs.

Why can't I import my BAM, CRAM or FASTQ files?

Make sure that you have the appropriate service role. This role must be able to read from any
Amazon S3 location where your data resides. If you are using a customer managed key(CM-CMK),
you must also use the AWS KMS decrypt permissions. It must also have the appropriate trust policy
for HealthOmics to assume the role.

Why can't I import my VCF or gVCF files?

Make sure that you have the appropriate service role. This role must be able to read from any
Amazon S3 location where your data resides. If you are using a customer managed key(CM-CMK),
you must also use the AWS KMS decrypt permissions. It must also have the appropriate trust policy
for HealthOmics to assume the role.

Why can't I see my annotation store or variant store in Athena?

In Lake Formation, be sure to create a resource link based on the store that was shared with you.
Once you create a resource link that you have permission to access, the store should be visible in
Athena.

Why can't I access my data store in Athena?

If your annotation or variant store is visible but you are receiving an error message saying that
access is denied, check which query engine version you're using. Only queries run using engine
version 3 are supported. To read more about Athena query engine versions, see the Amazon
Athena documentation.

Why do I get a "Request Too Long" error message when I try to
create a workflow?

If you're creating a workflow with a definition zip embedded in the request, you may get a "Request
Too Long" error message. You can work around this issue by uploading the definition zip to an
Amazon S3 bucket.

Why can't I import my BAM, CRAM or FASTQ files? Version latest 200

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-changing.html
https://docs.aws.amazon.com/athena/latest/ug/engine-versions-changing.html

AWS HealthOmics User Guide

Error and status messages for run failures

To learn more about why a run a has failed, use the GetRun API operation.

To troubleshoot a run failure, refer to the following error codes and statuses. This table lists
failures and messages.

Service error messages

Failure reason Detailed error description

INSTANCE_RESERVATION_FAILED There isn't enough instance capacity to
complete the workflow run. Wait and try the
workflow run again.

IMPORT_FAILED The workflow run didn't finish because of a
transient error while importing uri. Try the
workflow run again.

EXPORT_FAILED The workflow run didn't finish because of a
transient error while exporting the run output.
Try the workflow run again.

INVALID_URI_INPUT The URI structure isn't a valid uri. Check the
URI structure and try again.

INVALID_S3_INPUT The URI does not exist: uri. Check that the
URI path exists and confirm that the role can
access the object.

INVALID_OMICS_STORAGE_INPUT The HealthOmics storage URI does not exist:
uri. Check that the read set path exists and
confirm that the role can access the read set.

INACTIVE_OMICS_STORAGE_RESOURCE The HealthOmics storage URI isn't in ACTIVE
state. Activate the read set and try again. To
learn more about activating read sets, see
Activating read sets.

Error and status messages for run failures Version latest 201

AWS HealthOmics User Guide

Failure reason Detailed error description

MODIFIED_INPUT_RESOURCE The input URI was modified after the run
started.

ECR_PERMISSION_ERROR HealthOmics doesn't have permission to
access the image URI.
Confirm that the Amazon ECR private
repository exists and has granted access to the
HealthOmics service principal.

INVALID_ECR_IMAGE_URI The Amazon ECR image URI structure isn't
valid. Check for a valid URI and try again.

INVALID_TASK_RESOURCE_VALUE The requested GPU, CPU, or memory is either
too high for available compute capacity, or is
less than the minimum value of 1 for task ID.

OUT_OF_MEMORY_ERROR The workflow task ID ran out of memory.
Increase the memory value in the workflow
definition and try the run again.

RUN_TASK_FAILED The workflow run failed because the
task failed. To debug task failure, use the
GetRunTask API operation and the Amazon
CloudWatch Logs stream.

IMPORT_FAILED The import failed. Check that the input file
exists and the run role can access input.

EXPORT_FAILED The export failed. Check that the output
bucket exists and the run role has write
permission to the bucket.

ASSUME_ROLE_FAILED HealthOmics doesn't have permission to
assume the role. Specify the HealthOmics
principal in the trust relationship for the role.

Error and status messages for run failures Version latest 202

AWS HealthOmics User Guide

Failure reason Detailed error description

UNSUPPORTED_INPUT_SIZE The total input size is too high. Decrease the
input size and try again.

SERVICE_ERROR The workflow run didn't finish because of a
transient service error. Try the workflow run
again.

Error and status messages for run failures Version latest 203

AWS HealthOmics User Guide

Quotas for AWS HealthOmics

AWS initially populates your account with default values for the HealthOmics service quotas.
Unless otherwise noted, each quota value is the per-Region maximum value. You can request
increases for some quotas, and other quotas have fixed values (not adjustable).

Topics

• HealthOmics service quotas

• HealthOmics file size quotas

• HealthOmics API quotas

HealthOmics service quotas

The table below lists the HealthOmics service quotas, along with their default values.

To view the current quotas for each Region, open the Service Quotas console. In the navigation
pane, choose AWS services and select HealthOmics.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota isn't yet available in Service Quotas, use the quota increase form.

Name Default Adjustabl
e

Description

Analytics - Maximum annotation stores Each supported
Region: 10

Yes The maximum number of
annotation stores in the
current AWS region

Analytics - Maximum concurrent
variant or annotation store import jobs

Each supported
Region: 5

Yes The maximum number of
concurrent import jobs in
the current AWS region

Analytics - Maximum files per
annotation store import job

Each supported
Region: 1

No The maximum number
of files per annotation
import job in the current
AWS region

Service quotas Version latest 204

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-01A419C5
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-876AD0A2

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Analytics - Maximum files per variant
store import job

Each supported
Region: 1,000

Yes The maximum number of
files per variant import
job in the current AWS
region

Analytics - Maximum shares per
annotation store

Each supported
Region: 10

Yes The maximum number
of shares per annotation
store in the current AWS
region

Analytics - Maximum shares per variant
store

Each supported
Region: 10

Yes The maximum number
of shares per variant
store in the current AWS
region

Analytics - Maximum size of each file in
a variant import job

Each supported
Region: 20
Gigabytes

Yes The maximum size of
one file in a variant
import job in the current
AWS region

Analytics - Maximum size of each file in
an annotation import job

Each supported
Region: 20
Gigabytes

Yes The maximum size of
one file in an annotation
import job in the current
AWS region

Analytics - Maximum variant stores Each supported
Region: 10

Yes The maximum number
of variant stores in the
current AWS region

Analytics - Maximum versions per
annotation store

Each supported
Region: 10

Yes The maximum number of
versions per annotation
store in the current AWS
region

Service quotas Version latest 205

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-22E12079
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-E787EB79
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-242998FB
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-13B00733
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-B94B38A2
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-899DA104
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-186D3DEB

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Storage - Maximum concurrent read set
activation jobs

Each supported
Region: 25

Yes The maximum number
of concurrent read set
activation jobs in the
current AWS region

Storage - Maximum concurrent
sequence and reference store export
jobs

Each supported
Region: 5

Yes The maximum number
of concurrent export
jobs from a sequence or
reference store in the
current AWS region

Storage - Maximum concurrent
sequence or reference store import jobs

Each supported
Region: 5

Yes The maximum number
of concurrent import
jobs for a sequence or
reference store in the
current AWS region

Storage - Maximum read sets per
activation job

Each supported
Region: 20

Yes The maximum number
of read sets per activatio
n job in the current AWS
region

Storage - Maximum read sets per
export job

Each supported
Region: 100

Yes The maximum number
of read sets per export
job in the current AWS
region

Storage - Maximum read sets per
import job

Each supported
Region: 100

Yes The maximum number
of read sets per import
job in the current AWS
region

Service quotas Version latest 206

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-911E26A1
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-473E274D
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-F57A8D18
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-18B646D8
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-5BDDEC28
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-89F31D1A

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Storage - Maximum read sets per
sequence store

Each supported
Region: 1,000,000

Yes The maximum number of
read sets in a sequence
store in the current AWS
region

Storage - Maximum reference stores Each supported
Region: 1

No The maximum number
of reference stores in the
current AWS region

Storage - Maximum references per
reference store

Each supported
Region: 50

Yes The maximum number of
references in a reference
store in the current AWS
region

Storage - Maximum sequence stores Each supported
Region: 20

Yes The maximum number
of sequence stores in the
current AWS region

Workflows - Maximum active GPUs Each supported
Region: 12

Yes The maximum number
of concurrent active
GPUs in the current AWS
region

Workflows - Maximum active vCPUs Each supported
Region: 3,000

Yes The maximum number
of concurrent active
vCPUs in the current
AWS region

Workflows - Maximum concurrent
active runs

Each supported
Region: 10

Yes The maximum number of
active runs in the current
AWS region

Service quotas Version latest 207

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-BE766427
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-F34A3FC2
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-BFFBB2FD
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-AFB19B96
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-7F5E4C03
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-A30FD31B

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Workflows - Maximum concurrent tasks
per run

Each supported
Region: 25

Yes The maximum number of
concurrent tasks in each
run in the current AWS
region

Workflows - Maximum run duration Each supported
Region: 604,800
Seconds

Yes The maximum workflow
run duration in the
current AWS region

Workflows - Maximum run groups Each supported
Region: 1,000

Yes The maximum number of
run groups in the current
AWS region

Workflows - Maximum runs (active or
inactive)

Each supported
Region: 5,000

Yes The maximum number of
runs (active or inactive)
in the current AWS
region

Workflows - Maximum shares per
workflow

Each supported
Region: 100

Yes The maximum number
of shares per workflow in
the current AWS region

Workflows - Maximum static run
storage capacity per run

Each supported
Region: 9,600

Yes The maximum static
run storage capacity in
gibibytes (GiB) for each
run in the current AWS
region

Workflows - Maximum workflows Each supported
Region: 1,000

Yes The maximum number of
workflows in the current
AWS region

Service quotas Version latest 208

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-25504C8C
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-7B9E5416
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-176A1BA9
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-C9679DBC
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-4E5B34A1
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-35CE76C9
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-7CAE62CF

AWS HealthOmics User Guide

HealthOmics file size quotas

The following table shows the maximum supported values for storage files. These values aren't
adjustable.

Name Description Maximum Adjustable Yes/No

Storage - Maximum
part size for a direct
upload

The maximum part
size for direct upload
to a sequence store.

100 MB No

Storage - Maximum
parts in file for direct
upload

The maximum
number of parts in a
file for direct upload
to a sequence store in
the current Region.

10,000 No

Storage - Maximum
reference size

The maximum size of
a reference file that
can be imported to a
reference store.

15 GB No

Storage - Maximum
read set source size

The maximum size
of a single source
file in a read set that
can be imported to a
sequence store.

976 GB No

The following table shows the maximum supported sizes for workflow files. These values aren't
adjustable.

Name Description Maximum size Adjustable Yes/No

Workflows - Run
parameter file

The maximum size of
a run parameter file.

50,000 bytes No

File size quotas Version latest 209

AWS HealthOmics User Guide

Each Ready2Run workflow has a maximum input file size. In the following table, the file size units
are listed in Gibibytes (GiB). These maximum file sizes aren't adjustable.

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

AlphaFold for 601-1200
residues

1 No

AlphaFold for up to 600
residues

1 No

Bases2Fastq for 2x150 1000 No

Bases2Fastq for 2x300 1000 No

Bases2Fastq for 2x75 500 No

ESMFold for up to 800
residues

1 No

GATK-BP fq2bam 64 No

GATK-BP Germline bam2vcf
for 30x genome

39 No

GATK-BP Germline fq2vcf for
30x genome

64 No

GATK-BP Somatic WES
bam2vcf

86 No

NVIDIA Parabricks
BAM2FQ2BAM WGS for up to
30X

80 No

NVIDIA Parabricks
BAM2FQ2BAM WGS for up to
50X

120 No

File size quotas Version latest 210

AWS HealthOmics User Guide

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

NVIDIA Parabricks
BAM2FQ2BAM WGS for up to
5X

20 No

NVIDIA Parabricks FQ2BAM
WGS for up to 30X

71 No

NVIDIA Parabricks FQ2BAM
WGS for up to 50X

137 No

NVIDIA Parabricks FQ2BAM
WGS for up to 5X

13 No

NVIDIA Parabricks Germline
DeepVariant WGS for up to
30X

71 No

NVIDIA Parabricks Germline
DeepVariant WGS for up to
50X

137 No

NVIDIA Parabricks Germline
DeepVariant WGS for up to
5X

12 No

NVIDIA Parabricks Germline
HaplotypeCaller WGS for up
to 30X

71 No

NVIDIA Parabricks Germline
HaplotypeCaller WGS for up
to 50X

137 No

NVIDIA Parabricks Germline
HaplotypeCaller WGS for up
to 5X

13 No

File size quotas Version latest 211

AWS HealthOmics User Guide

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

NVIDIA Parabricks Somatic
Mutect2 WGS for up to 50X

196 No

scRNAseq with KallistoB
UStools

119 No

scRNAseq with Salmon
Alevin-fry

119 No

scRNAseq with STARsolo 119 No

Sentieon Germline BAM WES
for up to 300x

9 No

Sentieon Germline BAM WGS
for up to 32x

18 No

Sentieon Germline FASTQ
WES for up to 100x

5 No

Sentieon Germline FASTQ
WES for up to 300x

26 No

Sentieon Germline FASTQ
WGS for up to 32x

51 No

Sentieon LongRead for ONT 25 No

Sentieon LongRead for PacBio
HiFi

58 No

Sentieon Somatic WES 50 No

Sentieon Somatic WGS 113 No

Ultima Genomics DeepVariant
for up to 40x

91 No

File size quotas Version latest 212

AWS HealthOmics User Guide

HealthOmics API quotas

HealthOmics has the following quotas related to API operations. Where indicated, the quota is
adjustable. To request an increase, use the quota increase form.

For each API operation listed, the quota is the maximum transactions per second (TPS) for that API
operation in each Region.

The following table lists the storage API operations.

Storage API operation Default maximum TPS Adjustable Yes/No

CreateSequenceStore,
CreateReferenceStore,
DeleteSequenceStore,
DeleteReferenceStore

1 TPS Yes

BatchDeleteReadSet,
DeleteReference

1 TPS Yes

CreateMultipartReadSetUploa
d, CompleteMultipartR
eadSetUpload, AbortMult
ipartReadSetUpload

1 TPS No

GetReference 10 TPS Yes

UploadReadSetPart 10 TPS Yes

GetReadSet 30 TPS Yes

GetSequenceStore, ListSeque
nceStores

5 TPS Yes

GetReadSetMetadata,
ListReadSets

5 TPS Yes

StartReadSetImportJob,
GetReadSetImportJob,
ListReadSetImportJobs

5 TPS Yes

API quotas Version latest 213

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

AWS HealthOmics User Guide

Storage API operation Default maximum TPS Adjustable Yes/No

StartReadSetExportJob,
GetReadSetExportJob,
ListReadSetExportJobs

5 TPS Yes

ListReferenceStores 5 TPS Yes

StartReferencetImportJob,
GetReferenceImportJob,
ListReferenceImportJobs

5 TPS Yes

ListReferences, GetRefere
nceMetadata

5 TPS Yes

StartReadsetActivationJob 5 TPS Yes

ListReadsetActivationJobs,
GetReadSetActivationJob

5 TPS Yes

ListMultipartReadSetUploads,
ListReadSetUploadParts

5 TPS Yes

TagResource, UntagResource,
ListTagsForResource

5 TPS Yes

The following table lists the workflow API operations.

Workflow API operation Default maximum TPS Adjustable Yes/No

StartRun 0.1 TPS Yes

CreateWorkflow 5 TPS Yes

CancelRun, DeleteRun
, GetRun, GetRunTask,
ListRunTasks, ListRuns

10 TPS Yes

API quotas Version latest 214

AWS HealthOmics User Guide

Workflow API operation Default maximum TPS Adjustable Yes/No

CreateRunGroup, DeleteRun
Group, GetRunGroup,
ListRunGroups, UpdateRun
Group

10 TPS Yes

DeleteWorkflow, GetWorkfl
ow, ListWorkflows,
UpdateWorkflow

10 TPS Yes

The following table lists the analytics API operations.

Analytics API operation Default maximum TPS Adjustable Yes/No

CreateVariantStore, DeleteVar
iantStore, GetVariantStore,
ListVariantStores, UpdateVar
iantStore

1 TPS No

StartVariantImportJob,
CancelVariantImportJob,
GetVariantImportJob,
ListVariantImportJobs

1 TPS No

CreateAnnotationStore,
DeleteAnnotationStore,
GetAnnotationStore,
ListAnnotationStores,
UpdateAnnotationStore

1 TPS No

StartAnnotationImportJob,
ListAnnotationImportJobs,
GetAnnotationImportJob,
CancelAnnotationImportJob

1 TPS No

API quotas Version latest 215

AWS HealthOmics User Guide

Document history for the HealthOmics User Guide

The following table describes the documentation releases for HealthOmics.

Change Description Date

New Features HealthOmics added support
for shared workflows and
dynamic run storage.

April 30, 2024

New Features HealthOmics added support
for Amazon S3 access to
reference and sequence
stores, and support for
SHA256 ETags.

April 15, 2024

New Features HealthOmics added entity
tags (ETags) for sequence
stores.

October 6, 2023

New Features HealthOmics added annotatio
n store versioning and
analytic store sharing.

August 15, 2023

New Features HealthOmics added Common
Workflow Language (CWL)
as a supported language for
HealthOmics workflows.

June 30, 2023

New Features HealthOmics added new
Ready2Run workflows, GPU
support for workflows, data
parsing for annotation stores,
direct upload into HealthOmi
cs storage, and integration
with EventBridge.

May 15, 2023

Version latest 216

AWS HealthOmics User Guide

New managed policy HealthOmics added a new
managed policy that provides
full access. To learn more, see
AWS managed policies.

February 23, 2023

New managed policy HealthOmics added a new
managed policy that limits
access to read only. To learn
more, see AWS managed
policies.

November 29, 2022

Initial release Initial release of the
HealthOmics User Guide

November 29, 2022

Version latest 217

https://docs.aws.amazon.com/omics/latest/dev/security-iam-awsmanpol.html?icmpid=docs_omics_rss
https://docs.aws.amazon.com/omics/latest/dev/security-iam-awsmanpol.html?icmpid=docs_omics_rss
https://docs.aws.amazon.com/omics/latest/dev/security-iam-awsmanpol.html?icmpid=docs_omics_rss

	AWS HealthOmics
	Table of Contents
	What is AWS HealthOmics?
	Important notice
	HealthOmics concepts
	Storage
	Analytics
	Workflows

	HealthOmics features
	Related services
	Regions and endpoints for AWS HealthOmics
	How to access HealthOmics
	Learn more

	Setting up HealthOmics
	Sign up for an AWS account
	Create a user with administrative access

	Getting started with HealthOmics
	Getting Started (API)
	Creating a sequence store
	Creating a variant store
	Creating a workflow

	Getting Started (Console)
	HealthOmics Storage
	Create a reference store
	Create a sequence store
	Import genomics files

	HealthOmics Workflows

	HealthOmics Storage
	ETag calculation and data provenance
	How ETags are calculated

	Creating reference and sequence stores
	Creating and managing reference stores
	Creating and managing sequence stores
	Deleting reference and sequence stores

	Sequence store imports
	Direct upload to a sequence store
	Exporting read sets
	Accessing and managing read sets with Amazon S3 URIs
	Amazon S3 URI structure in HealthOmics storage
	Using Hosted or Local IGV to access read sets
	Using Samtools or HTSlib in HealthOmics
	Using Mountpoint HealthOmics
	Using CloudFront with HealthOmics

	Activating read sets

	HealthOmics Analytics
	Creating variant stores
	Creating variant stores using the console
	Creating variant stores using the API

	Creating variant store import jobs
	Creating annotation stores
	Create an annotation store using the console
	Create an annotation store using the API
	Creating new versions of annotation stores

	Creating annotation store import jobs
	Create an annotation import job using the API
	Additional parameters for TSV and VCF formats
	Creating TSV formatted annotation stores
	Starting VCF formatted import jobs

	Deleting analytics stores
	Querying analytics data
	Setting up the Lake Formation console
	Create or verify Lake Formation administrators
	Create resource links using the Lake Formation console
	Grant access to the shared resource using the Lake Formation console

	Configure permissions for AWS RAM resource shares

	Configuring Athena for queries
	Configure a query results location using the Athena console
	Configure a workgroup with Athena engine v3

	Running queries on variant stores
	Run a simple query using the Athena console
	Run a complex query using the Athena console

	Sharing analytics stores
	Creating a store share

	HealthOmics Workflows
	Ready2Run workflows
	Using Ready2Run workflows (console)
	Using Ready2Run workflows (API)

	Private workflows
	Setting up Amazon ECR for private workflows
	Add task inputs to an ECR container image
	Configure Amazon ECR permissions

	Writing workflow definition files
	Writing workflows in WDL
	Writing workflows in Nextflow
	Writing workflows in CWL
	Workflow definition file examples

	Creating private workflows
	IAM policy to give workflow access to resources
	Workflow definition files
	Parameter templates
	Create a private workflow
	Create a private workflow (console)
	Create a private workflow (API)

	Verify the status of your workflow
	Workflow tasks
	Memory and computation considerations for tasks
	Running Java applications in a private workflow task
	Including task inputs in Amazon ECR images
	Debugging workflow tasks

	Sharing workflows
	Share a private workflow (console)
	Share a private workflow (API)
	Accept a shared workflow (console)
	Run a shared workflow (console)
	Run a shared workflow (API)

	Creating and working with run groups
	Run priority
	Create a run group (console)
	Create a run group (API)

	Running workflows
	Run storage types
	Calculating required static run storage

	Starting a workflow run
	Starting runs (console)
	Starting runs (API)
	Get information about a workflow run
	Re-running a workflow run

	Deleting workflows and runs
	Define custom IAM permissions for runs

	Using the CloudWatch Logs for troubleshooting

	Cross-account resource sharing in AWS HealthOmics
	Create a share
	Retrieve information about a share
	View the shares that you own
	View accepted shares from other accounts
	Delete a share

	Tagging resources in HealthOmics
	Important notice
	Tagging HealthOmics resources
	Best practices
	Tagging requirements
	Adding a tag to an HealthOmics resource
	Listing tags for a resource
	Removing tags from a data store

	AWS HealthOmics permissions
	Identity-based IAM policies for HealthOmics
	Service roles for AWS HealthOmics
	Sample IAM policies
	Sample CloudWatch templates

	Resource permissions
	Lake Formation permissions
	Amazon ECR permissions

	Permissions for data access using Amazon S3 URIs

	Security in AWS HealthOmics
	Data protection in AWS HealthOmics
	Encryption at rest
	AWS owned KMS key
	Customer managed KMS keys
	Create a customer managed key
	Required IAM permissions for using a customer managed KMS key
	How AWS HealthOmics uses grants in AWS KMS
	Monitoring your encryption keys for AWS HealthOmics
	Learn more

	Encryption in transit

	Identity and access management for HealthOmics
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS HealthOmics works with IAM
	Cross-service confused deputy prevention
	Identity-based policies for HealthOmics
	Identity-based policy examples for HealthOmics

	Resource-based policies within HealthOmics
	Policy actions for HealthOmics
	Policy resources for HealthOmics
	Policy condition keys for HealthOmics
	Access control lists (ACLs) in HealthOmics
	Attribute-based access control (ABAC) with HealthOmics
	Using Temporary credentials with HealthOmics
	Cross-service principal permissions for HealthOmics
	Service roles for HealthOmics
	Service-linked roles for HealthOmics

	Identity-based policy examples for AWS HealthOmics
	Policy best practices
	Using the HealthOmics console
	Allow users to view their own permissions

	AWS managed policies for AWS HealthOmics
	AWS managed policy: AmazonOmicsFullAccess
	AWS managed policy: AmazonOmicsReadOnlyAccess
	HealthOmics updates to AWS managed policies

	Troubleshooting AWS HealthOmics identity and access
	I am not authorized to perform an action in HealthOmics
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my HealthOmics resources

	Compliance validation for AWS HealthOmics
	Resilience in HealthOmics
	AWS HealthOmics and interface VPC endpoints (AWS PrivateLink)
	Considerations for HealthOmics VPC endpoints
	Creating an interface VPC endpoint for HealthOmics
	Creating a VPC endpoint policy for HealthOmics
	Special considerations for accessing read sets using Amazon S3 URIs

	Monitoring AWS HealthOmics
	Monitoring HealthOmics with Amazon CloudWatch
	Viewing AWS HealthOmics metrics
	Creating an alarm using CloudWatch

	Logging AWS HealthOmics API calls using AWS CloudTrail
	HealthOmics information in CloudTrail
	Understanding HealthOmics log file entries

	Using EventBridge with AWS HealthOmics
	EventBridge event message structure and examples

	Troubleshooting
	Why can't I run my workflow?
	Why do I get a "not a currently supported operation" error when running Nextflow?
	Why can't I create a reference store?
	Why can't I create a sequence store?
	Why can't I create a workflow?
	Why did my task fail?
	Why can't I import my BAM, CRAM or FASTQ files?
	Why can't I import my VCF or gVCF files?
	Why can't I see my annotation store or variant store in Athena?
	Why can't I access my data store in Athena?
	Why do I get a "Request Too Long" error message when I try to create a workflow?
	Error and status messages for run failures

	Quotas for AWS HealthOmics
	HealthOmics service quotas
	HealthOmics file size quotas
	HealthOmics API quotas

	Document history for the HealthOmics User Guide

