
Resilience lifecycle framework

AWS Prescriptive Guidance

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Resilience lifecycle framework

AWS Prescriptive Guidance: Resilience lifecycle framework

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Resilience lifecycle framework

Table of Contents

Introduction ... 1
Terms and definitions .. 2
Continuous resilience ... 3

Stage 1: Set objectives .. 4
Mapping critical applications ... 4
Mapping user stories ... 5
Defining measurements .. 5
Creating additional measurements ... 6

Stage 2: Design and implement ... 8
AWS Well-Architected Framework .. 8
Understanding dependencies ... 9
Disaster recovery strategies ... 9
Defining CI/CD strategies ... 10
Conducting ORRs ... 11
Understanding AWS fault isolation boundaries ... 11
Selecting responses ... 12
Resilience modeling ... 13
Failing safely ... 13

Stage 3: Evaluate and test .. 14
Pre-deployment activities ... 14

Environment design .. 14
Integration testing .. 15
Automated deployment pipelines ... 15
Load testing ... 16

Post-deployment activities ... 16
Conducting resilience assessments ... 16
DR testing ... 17
Drift detection ... 17
Synthetic testing ... 17
Chaos engineering .. 18

Stage 4: Operate .. 19
Observability ... 19
Event management .. 19
Continuous resilience ... 20

iii

AWS Prescriptive Guidance Resilience lifecycle framework

Stage 5: Respond and learn .. 21
Creating incident analysis reports .. 21
Conducting operational reviews ... 22
Reviewing alarm performance .. 23

Alarm precision .. 23
False positives .. 23
False negatives .. 23
Duplicative alerts .. 24

Conducting metrics reviews ... 24
Providing training and enablement ... 24
Creating an incident knowledge base ... 24
Implementing resilience in depth ... 25

Conclusion and resources .. 26
Contributors ... 27
Document history .. 28
Glossary .. 29

... 29
A ... 30
B ... 33
C ... 35
D ... 38
E ... 42
F ... 44
G ... 45
H ... 46
I .. 47
L ... 49
M .. 50
O .. 54
P ... 57
Q .. 59
R ... 60
S ... 62
T ... 66
U ... 67
V ... 68

iv

AWS Prescriptive Guidance Resilience lifecycle framework

W .. 68
Z ... 69

v

AWS Prescriptive Guidance Resilience lifecycle framework

Resilience lifecycle framework: A continuous approach to
resilience improvement

Amazon Web Services (AWS)

October 2023 (document history)

Modern organizations today face an ever-growing number of resilience-related challenges,
especially as expectations from customers shift toward an always on, always available mindset.
Remote teams and complex, distributed applications are coupled with an increasing need for
frequent releases. As a result, an organization and its applications need to be more resilient than
ever.

AWS defines resilience as the ability of an application to resist or recover from disruptions,
including those related to infrastructure, dependent services, misconfigurations, and transient
network issues. (See Resiliency, and the components of reliability in the AWS Well-Architected
Framework Reliability Pillar documentation.) However, to achieve the desired level of resilience,
trade-offs are often required. Operational complexity, engineering complexity, and cost will need
to be assessed and adjusted accordingly.

Based on years of working with customers and internal teams, AWS has developed a resilience
lifecycle framework that captures resilience learnings and best practices. The framework outlines
five key stages that are illustrated in the following diagram. At each stage you can use strategies,
services, and mechanisms to improve your resilience posture.

1

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/resiliency-and-the-components-of-reliability.html

AWS Prescriptive Guidance Resilience lifecycle framework

These stages are discussed in the following sections of this guide:

• Stage 1: Set objectives

• Stage 2: Design and implement

• Stage 3: Evaluate and test

• Stage 4: Operate

• Stage 5: Respond and learn

Terms and definitions

The resilience concepts of each stage are applied at different levels, ranging from individual
components to entire systems. Implementing these concepts requires a clear definition of several
terms:

• A component is an element that performs a function, and consists of software and technology
resources. Examples of components include code configuration, infrastructure such as

Terms and definitions 2

AWS Prescriptive Guidance Resilience lifecycle framework

networking, or even servers, data stores, and external dependencies such as multi-factor
authentication (MFA) devices.

• An application is a collection of components that delivers business value, such as a customer-
facing web storefront or the backend process that improves machine learning models. An
application might consist of a subset of components in a single AWS account, or it might be a
collection of multiple components that span multiple AWS accounts and Regions.

• A system is a collection of applications, people, and processes that are required to manage a
given business function. It encompasses the application required to run a function; operational
processes such as continuous integration and continuous delivery (CI/CD), observability,
configuration management, incident response, and disaster recovery; and the operators who
manage such tasks.

• A disruption is an event that prevents your application from delivering its business function
properly.

• Impairment is the effect that a disruption has on an application if it isn't mitigated. Applications
can be impaired if they suffer a set of disruptions.

Continuous resilience

The resilience lifecycle is an ongoing process. Even within the same organization, your application
teams might perform at different levels of completeness within each stage, depending on the
requirements of your application. However, the more complete each stage is, the higher level of
resilience your application will have.

You should think of the resilience lifecycle as a standard process that your organization can
operationalize. AWS has intentionally modeled the resilience lifecycle to be similar to the software
development lifecycle (SDLC), with the goal of incorporating planning, testing, and learning
throughout the operating processes while you develop and operate your applications. As with
many agile development processes, the resilience lifecycle can be repeated with every iteration of
the development process. We recommend that you deepen the practices within each stage of the
lifecycle progressively over time.

Continuous resilience 3

AWS Prescriptive Guidance Resilience lifecycle framework

Stage 1: Set objectives

Understanding what level of resilience is needed and how you will measure it is the basis for the
set objectives stage. It's difficult to improve something if you don't have an objective and you can't
measure it.

Not all applications need the same level of resilience. When you set objectives, consider the
required level in order to make the correct investments and trade-offs. A good analogy for this is a
car: It has four tires but carries only one spare tire. The chance of getting multiple flat tires during a
ride is low, and having extra spares could take away from other features, such as cargo space or fuel
efficiency, so this is a reasonable trade-off.

After you define objectives, you implement observability controls in later stages (Stage 2: design
and implement and Stage 4: Operate) to understand if the objectives are being met.

Mapping critical applications

Defining resilience objectives shouldn't exclusively be a technical conversation. Instead, start
with a business-oriented focus to understand what the application should deliver and the
consequences of impairment. This understanding of business objectives then cascades to areas
such as architecture, engineering, and operations. Any resilience objectives you define might be
applied to all your applications, but the way the objectives are measured often vary depending on
the function of the application. You might be running an application that's critical to the business,
and if this application is impaired, your organization could lose significant revenue or suffer
reputational harm. Alternately, you might have another application that isn't as critical and can
tolerate some downtime without negatively impacting your organization's ability to do business.

As an example, think of an order management application for a retail company. If the components
of the order management application are impaired and don't run properly, new sales won't go
through. This retail company also has a coffee shop for its employees that's located in one of its
buildings. The coffee shop has an online menu that employees can access on a static webpage.
If this webpage becomes unavailable, some employees might complain, but it won't necessarily
cause financial harm to the company. Based on this example, the business would likely choose to
have more aggressive resilience goals for the order management application but won't make a
significant investment to ensure the resilience of the web application.

Identifying the most critical applications, where to apply the most effort, and where to make
trade-offs is as important as being able to measure an application's resilience in production. To

Mapping critical applications 4

AWS Prescriptive Guidance Resilience lifecycle framework

better understand the impact of impairment, you can perform a business impact analysis (BIA).
A BIA provides a structured and systematic approach to identify and prioritize critical business
applications, assess potential risks and impacts, and identify supporting dependencies. The BIA
helps quantify the cost of downtime for your organization's most important applications. This
metric helps outline how much it will cost if a specific application is impaired and unable to
complete its function. In the previous example, if the order management application is impaired,
the retail business could lose significant revenue.

Mapping user stories

During the BIA process, you might discover that an application is responsible for more than one
business function, or that a business function requires multiple applications. Using the previous
retail company example, the order management function might require separate applications for
checkout, promotion, and pricing. If one application fails, the impact could be felt by the business
and by users who interact with the company. For example, the company might not be able to add
new orders, provide access to promotions and discounts, or update the price of their products.
These different functions required by the order management function might rely on multiple
applications. These functions might also have multiple external dependencies, which makes the
process of achieving purely component-focused resilience too complex. A better way to handle this
scenario is to focus on user stories, which outline the experience that users expect when interacting
with one application or a set of applications.

Focusing on user stories helps you understand which pieces of the customer experience are
most important, so you can build mechanisms to protect against specific threats. In the previous
example, one user story could be checkout, which involves the checkout application and has a
dependency on the pricing application. Another user story could be viewing promotions, which
involves the promotion application. After you map the most critical applications and their user
stories, you can begin to define the metrics you will use to measure resilience for these user stories.
These metrics can be applied across an entire portfolio or to individual user stories.

Defining measurements

Recovery point objectives (RPOs), recovery time objectives (RTOs), and service-level objectives
(SLOs) are standard industry measurements that are used to assess the resilience of a given system.
RPO refers to how much data loss the business can tolerate in case of a failure, whereas RTO is a
measure of how quickly an application must be available again after an outage. These two metrics
are measured in time units: seconds, minutes, and hours. You can also measure the amount of time

Mapping user stories 5

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-of-on-premises-applications-to-aws/business-impact-analysis-and-risk-assessment.html
https://en.wikipedia.org/wiki/User_story
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-of-on-premises-applications-to-aws/recovery-objectives.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-of-on-premises-applications-to-aws/recovery-objectives.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/availability-with-dependencies.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/availability-with-dependencies.html

AWS Prescriptive Guidance Resilience lifecycle framework

during which the application is working properly; that is, it performs its functions as designed and
is accessible to its users. These SLOs detail the expected level of service customers will receive
and are measured by metrics such as the percentage (%) of requests that are serviced without
error within a response time that's less than one second (for example, 99.99% of requests will
receive a response each month). RPO and RTO are related to disaster recovery strategies, assuming
that there will be interruptions in application operation and recovery processes that range from
restoring backups to redirecting user traffic. SLOs are addressed by implementing high availability
controls, which tend to reduce the downtime for an application.

SLO metrics are commonly used in the definition of service-level agreements (SLAs), which are
contracts between service providers and end users. SLAs usually come with financial commitments
and outline penalties that need to be paid by the provider if these agreements aren't met.
However, an SLA isn't a measurement of your resilience posture, and increasing an SLA doesn't
make your application more resilient.

You can start to set your objectives based on SLOs, RPOs, and RTOs. After you define your
resilience objectives and gain a clear understanding of your RPO and RTO targets, you can use AWS
Resilience Hub to run an assessment of your architecture to uncover potential resilience-related
weaknesses. AWS Resilience Hub assesses an application architecture against AWS Well-Architected
Framework best practices and shares remediation guidance in the context of what specifically
needs to be improved to meet your defined RTO and RPO targets.

Creating additional measurements

RPO, RTO and SLOs are good indicators of resilience, but you can also think about goals from
a business perspective and define objectives around your application's functions. For example,
your objective could be: Successful orders per minute will remain above 98% if latency between
my frontend and backend increases by 40%. Or: Streams started per second will remain within a
standard deviation from average even if a specific component is lost. You can also create objectives
to achieve a reduction on the mean time to recover (MTTR) across known failure types; for
example: Recovery times will be reduced by x% if any of these known issues happen. Creating
objectives that align with a business need helps you anticipate the types of failures that your
application should tolerate. It also helps you identify approaches to reduce the likelihood of
impairment to your application.

If you think about the objective to continue operating if you lose 5% of the instances that power
your application, you might determine that your application should be prescaled or have the ability
to scale fast enough to support the additional traffic caused during that event. Or, you might

Creating additional measurements 6

https://aws.amazon.com/resilience-hub/
https://aws.amazon.com/resilience-hub/

AWS Prescriptive Guidance Resilience lifecycle framework

determine that you should leverage different architectural patterns, as described in the Stage 2:
Design and implement section.

You also should implement observability measures for your specific business objectives. For
example, you can track average order rate, average order price, average number of subscriptions, or
other metrics that can provide insights into the health of the business based on your application's
behavior. By implementing observability capabilities for your application, you can create alarms
and take action if these metrics exceed your defined boundaries. Observability is covered in more
detail in the Stage 4: Operate section.

Creating additional measurements 7

AWS Prescriptive Guidance Resilience lifecycle framework

Stage 2: Design and implement

In the previous stage, you set your resilience objectives. Now at the design and implement stage,
you try to anticipate failure modes and identify design choices, as guided by the objectives you set
in the previous stage. You also define strategies for change management and develop software
code and infrastructure configuration. The following sections highlight AWS best practices that you
should consider while taking trade-offs such as cost, complexity, and operational overhead into
account.

AWS Well-Architected Framework

When you architect your application based on your desired resilience objectives, you need to
evaluate multiple factors and make trade-offs on the most optimal architecture. To build a highly
resilient application you must consider aspects of design, building and deployment, security,
and operations. The AWS Well-Architected Framework provides a set of best practices, design
principles, and architectural patterns to help you design resilient applications on AWS. The six
pillars of the AWS Well-Architected Framework provide best practices for designing and operating
resilient, secure, efficient, cost-effective, and sustainable systems. The framework provides a way to
consistently measure your architectures against best practices and identify areas for improvement.

The following are examples of how the AWS Well-Architected Framework can help you design and
implement applications that meet your resilience objectives:

• The reliability pillar: The reliability pillar emphasizes the importance of building applications
that can operate correctly and consistently, even during failures or disruptions. For example,
the AWS Well-Architected Framework recommends that you use a microservices architecture to
make your applications smaller and simpler, so you can differentiate between the availability
needs of different components within your application. You can also find detailed descriptions of
best practices for building applications by using throttling, retry with exponential back off, fail
fast (load shedding), idempotency, constant work, circuit breakers, and static stability.

• Comprehensive review: The AWS Well-Architected Framework encourages a comprehensive
review of your architecture against best practices and design principles. It provides a way to
consistently measure your architectures and identify areas for improvement.

• Risk management: The AWS Well-Architected Framework helps you identify and manage risks
that might impact the reliability of your application. By addressing potential failure scenarios
proactively, you can reduce their likelihood or the resulting impairment.

AWS Well-Architected Framework 8

https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html

AWS Prescriptive Guidance Resilience lifecycle framework

• Continuous improvement: Resilience is an ongoing process, and the AWS Well-Architected
Framework emphasizes continuous improvement. By regularly reviewing and refining your
architecture and processes based on the AWS Well-Architected Framework's guidance, you can
ensure that your systems stay resilient in the face of evolving challenges and requirements.

Understanding dependencies

Understanding a system's dependencies is key for resilience. Dependencies include the connections
between components within an application, and connections to components outside the
application, such as third-party APIs and business-owned shared services. Understanding
these connections helps you isolate and manage disruptions, because an impairment in one
component can affect other components. This knowledge helps engineers assess the impact of
impairments and plan accordingly, and ensure that resources are used effectively. Understanding
dependencies helps you create alternate strategies and coordinating recovery processes. It also
helps you determine cases where you can replace a hard dependency with a soft dependency,
so your application can continue to serve its business function when there's a dependency
impairment. Dependencies also influence decisions on load balancing and application scaling.
Understanding dependencies is vital when you make changes to your application, because it
can help you determine potential risks and impacts. This knowledge helps you create stable,
resilient applications, assisting in fault management, impact assessment, impairment recovery, load
balancing, scaling, and change management. You can track dependencies manually or use tools
and services such as AWS X-Ray to understand the dependencies of your distributed applications.

Disaster recovery strategies

A disaster recovery (DR) strategy plays a pivotal role in building and operating resilient
applications, primarily by ensuring business continuity. It guarantees that crucial business
operations can persist with the least possible impairment, even during catastrophic events,
therefore minimizing downtime and potential loss of revenue. DR strategies are essential for
data protection because they often incorporate regular data backups and data replication across
multiple locations, which helps safeguard valuable business information and helps prevent
total loss during a disaster. Furthermore, many industries are regulated by policies that require
businesses to have a DR strategy in place to protect sensitive data and to ensure that services
remain available during a disaster. By assuring minimal service impairment, a DR strategy also
bolsters customer trust and satisfaction. A well-implemented and frequently practiced DR strategy
reduces the recovery time after a disaster, and helps ensure that applications are quickly brought

Understanding dependencies 9

https://aws.amazon.com/xray/

AWS Prescriptive Guidance Resilience lifecycle framework

back online. Moreover, disasters can incur substantial costs, not just from lost revenue due to
downtime, but also from the expense of restoring applications and data. A well-designed DR
strategy helps shield against these financial losses.

The strategy you choose depends on the specific needs of your application, your RTO and RPO, and
your budget. AWS Elastic Disaster Recovery is a purpose-built resilience service that you can use to
help implement your DR strategy for both on-premises and cloud-based applications.

For more information, see Disaster Recovery of Workloads on AWS and AWS Multi-Region
Fundamentals on the AWS website.

Defining CI/CD strategies

One of the common causes of application impairments is code or other changes that alter the
application from a previously known working state. If you don't address change management
carefully, it can cause frequent impairments. The frequency of changes increases the opportunity
for impact. However, making changes less frequently results in larger change sets, which are much
more likely to result in impairment due to their high complexity. Continuous integration and
continuous delivery (CI/CD) practices are designed to keep changes small and frequent (resulting
in increased productivity) while subjecting each change to a high level of inspection through
automation. Some of the foundational strategies are:

• Full automation: The fundamental concept of CI/CD is to automate the build and deployment
processes as much as possible. This includes building, testing, deployment, and even monitoring.
Automated pipelines help reduce the possibility of human error, ensure consistency, and make
the process more reliable and efficient.

• Test-driven development (TDD): Write tests before writing the application code. This practice
ensures that all code has associated tests, which improves the reliability of the code and the
quality of the automated inspection. These tests are run in the CI pipeline to validate changes.

• Frequent commits and integrations: Encourage developers to commit code frequently and
perform integrations often. Small, frequent changes are easier to test and debug, which reduces
the risk of significant problems. Automation reduces the cost of each commit and deployment,
making frequent integrations possible.

• Immutable infrastructure: Treat your servers and other infrastructure components like static,
immutable entities. Replace infrastructure instead of modifying it as much as possible, and build
new infrastructure through code that is tested, and deployed through your pipeline.

Defining CI/CD strategies 10

https://aws.amazon.com/disaster-recovery/
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/aws-multi-region-fundamentals.html
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/aws-multi-region-fundamentals.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html

AWS Prescriptive Guidance Resilience lifecycle framework

• Rollback mechanism: Always have an easy, reliable, and frequently tested way to roll back
changes if something goes wrong. Being able to quickly return to the previous known good state
quickly is essential to deployment safety. This can be a simple button to revert to the previous
state, or it can be fully automated and initiated by alarms.

• Version control: Maintain all application code, configuration, and even infrastructure as code in
a version-controlled repository. This practice helps ensure that you can easily track changes and
revert them if needed.

• Canary deployments and blue/green deployments: Deploying new versions of your application
to a subset of your infrastructure first, or maintaining two environments (blue/green), allows you
to verify a change's behavior in production and quickly roll back if necessary.

CI/CD is not just about the tools but also about the culture. Creating a culture that values
automation, testing, and learning from failures is just as important as implementing the right tools
and processes. Rollbacks, if done very quickly with minimal impact, should not be considered a
failure but a learning experience.

Conducting ORRs

An operational readiness review (ORR) helps identify operational and procedural gaps. At Amazon,
we created ORRs to distill the learnings from decades of operating high-scale services into curated
questions with best practice guidance. An ORR captures previous lessons learned and requires
new teams to ensure that they have accounted for these lessons in their applications. ORRs can
provide a list of failure modes or causes of failure that can be carried into the resilience modeling
activity described in the resilience modeling section below. For more information, see Operational
Readiness Reviews (ORRs) on the AWS Well-Architected Framework website.

Understanding AWS fault isolation boundaries

AWS provides multiple fault isolation boundaries to help you achieve your resilience objectives. You
can use these boundaries to take advantage of the predictable scope of impact containment they
provide. You should be familiar with how AWS services are designed by using these boundaries so
that you can make intentional choices about the dependencies you select for your application. To
understand how to use boundaries in your application, see AWS Fault Isolation Boundaries on the
AWS website.

Conducting ORRs 11

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html

AWS Prescriptive Guidance Resilience lifecycle framework

Selecting responses

A system can respond in a wide range of ways to an alarm. Some alarms might require a response
from the operations team whereas others might trigger self-healing mechanisms within the
application. You might decide to keep responses that could be automated as manual operations
to control the costs of automation or to manage engineering constraints. The type of response
to an alarm is likely to be selected as a function of the cost of implementing the response, the
anticipated frequency of the alarm, the accuracy of the alarm, and the potential business loss of
not responding to the alarm at all.

For example, when a server process crashes, the process might be restarted by the operating
system, or a new server might be provisioned and the old one terminated, or an operator might
be instructed to remotely connect to the server and restart it. These responses have the same
result—restarting the application server process—but have varying levels of implementation and
maintenance costs.

Note

You might select multiple responses in order to take an in-depth resilience approach. For
example, in the previous scenario the application team might choose to implement all
three responses with a time delay between each. If the Failed server process indicator is still
in an alarmed state after 30 seconds, the team can assume that the operating system has
failed to restart the application server. Therefore, they might create an auto scaling group
to create a new virtual server and restore the application server process. If the indicator is
still in an alarm state after 300 seconds, an alert might be sent to the operational staff to
connect to the original server and attempt to restore the process.

The response that the application team and business select should reflect the appetite of the
business to offset operational overhead with upfront investment in engineering time. You should
choose a response―an architecture pattern such as static stability, a software pattern such as
a circuit breaker, or an operational procedure―by carefully considering the constraints and the
anticipated maintenance of each response option. Some standard responses might exist to guide
application teams, so you can use the libraries and patterns that are managed by your centralized
architecture function as an input to this consideration.

Selecting responses 12

AWS Prescriptive Guidance Resilience lifecycle framework

Resilience modeling

Resilience modeling documents how an application will respond to different anticipated
disruptions. By anticipating disruptions, your team can implement observability, automated
controls, and recovery processes to mitigate or prevent impairment despite disruptions. AWS has
created guidance for developing a resilience model by using the resilience analysis framework.
 This framework can help you anticipate disruptions and their impact to your application. By
anticipating disruptions, you can identify the mitigations needed to build a resilient, reliable
application. We recommend that you use the resilience analysis framework to update your
resilience model with every iteration of your application's lifecycle. Using this framework with each
iteration helps reduce incidents by anticipating disruptions during the design phase and testing the
application before and after production deployment. Developing a resilience model by using this
framework helps you ensure that you meet your resilience objectives.

Failing safely

If you're unable to avoid disruptions, fail safely. Consider creating your application with a default
fail-safe mode of operation, where no significant business loss can be incurred. An example of
a fail-safe state for a database would be to default to read-only operations, where users aren't
allowed to create or mutate any data. Depending on the sensitivity of the data, you might even
want the application to default to a shutdown state and not even perform read-only queries.
Consider what the fail-safe state for your application should be, and default to this mode of
operation under extreme conditions.

Resilience modeling 13

https://docs.aws.amazon.com/prescriptive-guidance/latest/resilience-analysis-framework/introduction.html

AWS Prescriptive Guidance Resilience lifecycle framework

Stage 3: Evaluate and test

During the evaluate and test stage of the lifecycle, the application, or changes to an existing
application, have been designed but haven't yet been released to production. In this stage, you
implement activities to test the practices that have been performed in previous stages and
evaluate the results. The application might still be in active development, or primary development
might be complete and the application might be undergoing testing before it's released to
production. During this stage, you focus on developing and running tests that confirm or refute
expectations that the application will meet the defined objectives for resilience. Additionally, you
develop and test the system's operational procedures. The deployment procedures you developed
in the Stage 2: Design and implement stage are put into practice and the results are evaluated.
Although these testing and evaluation activities begin during this portion of the lifecycle, they do
not end here. Testing and evaluation continue as you move into the Stage 4: Operate stage.

The evaluate and test stage is divided into two phases: pre-deployment activities and post-
deployment activities. Pre-deployment activities consist of tasks that should be completed before
you deploy the application into any environment, including deploying new versions of the software
as well as the initial deployment into a testing environment. Post-deployment activities take place
after the software has been deployed into a testing or production environment. The following
sections discuss these phases in more detail.

Pre-deployment activities

Environment design

The environment in which you test and evaluate your application affects how thoroughly you
can test it, and how much confidence you have that those results accurately reflect what will
happen in production. You might be able to perform some integration testing locally on developer
machines by using services such as Amazon DynamoDB (see Setting up DynamoDB local in the
DynamoDB documentation). However, at some point you need to test in an environment that
replicates your production environment in order to achieve the highest confidence in your results.
This environment will incur cost, so we recommend that you take a staged, or pipelined, approach
to your environments, where production-like environments appear later in the pipeline.

Pre-deployment activities 14

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html

AWS Prescriptive Guidance Resilience lifecycle framework

Integration testing

Integration testing is the process of testing that a well-defined component of an application
performs its functions correctly when it operates with external dependencies. Those external
dependencies could be other custom-developed components, AWS services that you use for your
application, third-party dependencies, and on-premises dependencies. This guide focuses on
integration tests that demonstrate the resilience of your application. It assumes that unit and
integration tests already exist that demonstrate the functional accuracy of your software.

We recommend that you design integration tests that specifically test the resilience patterns you
have implemented, such as circuit breaker patterns or load shedding (see Stage 2: Design and
implement). Resilience-oriented integration tests often involve applying a specific load to the
application or intentionally introducing disruptions into the environment by using capabilities such
as AWS Fault Injection Service (AWS FIS). Ideally, you should run all integration tests as part of
your CI/CD pipeline and ensure that you run tests every time code is committed. This helps you
quickly detect and react to any changes to code or configurations that result in violations of your
resilience objectives. Large-scale distributed applications are complex, and even minor changes
can significantly impact the resilience of seemingly unrelated portions of your application. Try to
run your tests on every commit. AWS provides an excellent set of tools for operating your CI/CD
pipeline and other DevOps tools. For more information, see Introduction to DevOps on AWS on the
AWS website.

Automated deployment pipelines

Deployment to, and testing in, your pre-production environments is a repetitive and complex
task that is best left to automation. Automation of this process frees up human resources and
reduces the opportunity for error. The mechanism for automating this process is often referred
to as a pipeline. When you create your pipeline, we recommend that you set up a series of testing
environments that get increasingly closer to your production configuration. You use this series
of environments to repeatedly test your application. The first environment provides a more
limited set of capabilities than the production environment but incurs a significantly lower cost.
Subsequent environments should add services and scale to more closely mirror the production
environment.

Start by testing in the first environment. After your deployments pass all your tests in the
first test environment, let the application run under some amount of load for a period of time
to see whether any issues occur over time. Confirm that you have configured observability
correctly (see Alarm precision later in this guide) so that you can detect any issues that arise.

Integration testing 15

https://aws.amazon.com/fis/
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/introduction-to-devops.html

AWS Prescriptive Guidance Resilience lifecycle framework

When this observation period has completed successfully, deploy your application to your next
testing environment and repeat the process, adding additional tests or load as supported by
the environment. After you have sufficiently tested your application in this way, you can use the
deployment methods that you previously set up to deploy the application into production (see
Define CI/CD strategies earlier in this guide). The article Automating safe, hands-off deployments in
the Amazon Builders' Library is an excellent resource that describes how Amazon automates code
deployment. The number of environments that precede your production deployment will vary,
depending on the complexity of your application and the types of dependencies it has.

Load testing

On the surface, load testing resembles integration testing. You test a discrete function of your
application and its external dependencies to verify that it operates as expected. Load testing then
goes beyond integration testing to focus on how the application functions under well-defined
loads. Load testing requires verification of correct functionality, so it must occur after a successful
integration test. It is important to understand how well the application responds under expected
loads as well as how it behaves when the load exceeds expectations. This helps you verify that
you have implemented the necessary mechanisms to ensure that your application remains resilient
under extreme load. For a comprehensive guide to load testing on AWS, see Distributed Load
Testing on AWS in the AWS Solutions Library.

Post-deployment activities

Resilience is an ongoing process and the evaluation of your application's resilience must continue
after the application has been deployed. The results of your post-deployment activities, such
as ongoing resilience assessments, might require that you re-evaluate and update some of the
resilience activities you performed earlier in the resilience lifecycle.

Conducting resilience assessments

Assessing resilience doesn't stop after you deploy your application into production. Even if you
have well-defined and automated deployment pipelines, changes can sometimes occur directly
in a production environment. Additionally, there might be factors that you have not yet taken
into consideration in your pre-deployment resilience verification. AWS Resilience Hub provides a
central place where you can assess whether your deployed architecture meets your defined RPO
and RTO needs. You can use this service to run on-demand assessments of your application's
resilience, automate assessments, and even integrate them into your CI/CD tools, as discussed in

Load testing 16

https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://docs.aws.amazon.com/resilience-hub/latest/userguide/what-is.html

AWS Prescriptive Guidance Resilience lifecycle framework

the AWS blog post Continually assessing application resilience with AWS Resilience Hub and AWS
CodePipeline. Automating these assessments is a best practice because it helps ensure that you are
continuously evaluating your resilience posture in production.

DR testing

In Stage 2: Design and implement, you developed disaster recovery (DR) strategies as part of
your system. During Stage 4, you should test your DR procedures to ensure that your team is
fully prepared for an incident and your procedures work as expected. You should test all your
DR procedures, including failover and failback, on a regular basis and review the results of each
exercise to determine if and how your system's procedures should be updated for the best possible
outcome. When you initially develop your DR test, schedule the test well in advance and ensure
that the entire team understands what to expect, how the outcomes will be measured, and what
feedback mechanism will be used to update procedures based on the outcome. After you become
proficient in running scheduled DR tests, consider running unannounced DR tests. Real disasters
don't occur on a schedule, so you need to be prepared to exercise your plan at any time. However,
unannounced doesn't mean unplanned. Key stakeholders still need to plan the event to ensure
that proper monitoring is in place and that customers and critical applications are not adversely
impacted.

Drift detection

Unanticipated changes to configuration in production applications can occur even when
automation and well-defined procedures are in place. To detect changes to your application's
configuration, you should have mechanisms for detecting drift, which refers to deviations from
a baselined configuration. To learn how to detect drift in your AWS CloudFormation stacks, see
Detecting unmanaged configuration changes to stacks and resources in the AWS CloudFormation
documentation. To detect drift in your application's AWS environment, see Detect and resolve drift
in AWS Control Tower in the AWS Control Tower documentation.

Synthetic testing

Synthetic testing is the process of creating configurable software that runs in production, on a
scheduled basis, to test your application's APIs in a way that simulates the end-user experience.
These tests are sometimes referred to as canaries, in reference to the term's original use in coal
mining. Synthetic tests can often provide early warnings when an application suffers from a
disruption, even if the impairment is partial or intermittent, as is often the case with gray failures.

DR testing 17

https://aws.amazon.com/blogs/architecture/continually-assessing-application-resilience-with-aws-resilience-hub-and-aws-codepipeline/
https://aws.amazon.com/blogs/architecture/continually-assessing-application-resilience-with-aws-resilience-hub-and-aws-codepipeline/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/whitepapers/latest/advanced-multi-az-resilience-patterns/gray-failures.html

AWS Prescriptive Guidance Resilience lifecycle framework

Chaos engineering

Chaos engineering is a systematic process that involves deliberately subjecting an application
to disruptive events in a risk-mitigated way, closely monitoring its response, and implementing
necessary improvements. Its purpose is to validate or challenge assumptions about the
application's ability to handle such disruptions. Instead of leaving these events to chance, chaos
engineering empowers engineers to orchestrate experiments in a controlled environment, typically
during periods of low traffic and with readily available engineering support for effective mitigation.

Chaos engineering begins with understanding the normal operating conditions, known as the
steady state, of the application under consideration. From there, you formulate a hypothesis
that details the successful behavior of the application in the presence of disruption. You run
the experiment, which involves deliberate injection of disruptions, including, but not limited to,
network latency, server failures, hard drive errors, and impairment of external dependencies. You
then analyze the results of the experiment and enhance the application's resilience based on your
learnings. The experiment serves as a valuable tool for improving various facets of the application,
including its performance, and uncovers latent issues that might have remained hidden otherwise.
Additionally, chaos engineering helps reveal deficiencies in observability and alarming tools, and
helps you refine them. It also contributes to reducing recovery time and enhancing operational
skills. Chaos engineering accelerates the adoption of best practices and cultivates a mindset of
continuous improvement. Ultimately, it enables teams to build and hone their operational skills
through regular practice and repetition.

AWS recommends that you start your chaos engineering efforts in a non-production environment.
You can use AWS Fault Injection Service (AWS FIS) to run chaos engineering experiments with
general-purpose faults as well as faults that are unique to AWS. This fully managed service includes
stop-condition alarms and full permission controls so you can easily adopt chaos engineering with
safety and confidence.

Chaos engineering 18

https://aws.amazon.com/fis/

AWS Prescriptive Guidance Resilience lifecycle framework

Stage 4: Operate

After you've completed the Stage 3: Evaluate and test, you're ready to deploy the application to
production. In the Operate stage, you deploy your application to production and manage your
customers' experience. The design and implementation of your application determine many of
its resilience outcomes, but this stage focuses on the operational practices your system uses to
maintain and improve resilience. Building a culture of operational excellence helps create standards
and consistency in these practices.

Observability

The most important part of understanding the customer experience is through monitoring
and alarming. You need to instrument your application to understand its state, and you need
diverse perspectives, which means that you need to measure from both the server side and the
client side, typically with canaries. Your metrics should include data about your application's
interactions with its dependencies and dimensions that align to your fault isolation boundaries.
You should also produce logs that provide additional details about every unit of work performed
by your application. You might consider combining metrics and logs by using a solution such as
the Amazon CloudWatch embedded metric format. You'll likely find that you always want more
observability, so consider the cost, effort, and complexity trade-offs required to implement your
desired level of instrumentation.

The following links provide best practices for instrumenting your application and creating alarms:

• Monitoring production services at Amazon (AWS re:Invent 2020 presentation)

• Amazon Builders' Library: Operational Excellence at Amazon (AWS re:Invent 2021 presentation)

• Observability best practices at Amazon (AWS re:Invent 2022 presentation)

• Instrumenting distributed systems for operational visibility (Amazon Builders' Library article)

• Building dashboards for operational visibility (Amazon Builders' Library article)

Event management

You should have an event management process in place to handle impairments when your alarms
(or worse, your customers) tell you that something is going wrong. This process should include
engaging an on-call operator, escalating problems, and establishing runbooks for consistent
approaches to troubleshooting that help remove human errors. However, impairments typically

Observability 19

https://docs.aws.amazon.com/whitepapers/latest/advanced-multi-az-resilience-patterns/multi-az-observability.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format.html
https://youtu.be/hnPcf_Czbvw
https://youtu.be/7MrD4VSLC_w
https://youtu.be/zZPzXEBW4P8
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/
https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility/

AWS Prescriptive Guidance Resilience lifecycle framework

don't happen in isolation; a single application could impact multiple other applications that
depend on it. You can rapidly address issues by understanding all applications that are impacted
and bringing operators from multiple teams together on a single conference call. However,
depending on your organization's size and structure, this process might require a centralized
operations team.

In addition to setting up an event management process, you should regularly review your metrics
through dashboards. Regular reviews help you understand the customer experience and longer-
term trends in the performance of your application. This helps you identify issues and bottlenecks
before they cause significant production impact. Reviewing metrics in a consistent, standardized
way provides significant benefits but requires top-down buy-in and an investment of time.

The following links provide best practices on building dashboards and operational metrics reviews:

• Building dashboards for operational visibility (Amazon Builders' Library article)

• Amazon's approach to failing successfully (AWS re:Invent 2019 presentation)

Continuous resilience

During Stage 2: Design and implement and Stage 3: Evaluate and test, you initiated review and test
activities before deploying your application to production. During the operate stage, you should
continue iterating on those activities in production. You should periodically review the resilience
posture of your application through AWS Well-Architected Framework reviews, Operational
Readiness Reviews (ORRs), and the resilience analysis framework. This helps ensure that your
application hasn't drifted from established baselines and standards and keeps you up to date
with new or updated guidance. These continuous resilience activities help you discover previously
unanticipated disruptions and help you come up with new mitigations.

You might also want to consider running game days and chaos engineering experiments in
production after you've successfully run them in pre-production environments. Game days simulate
known events that you have built resilience mechanisms to mitigate. For example, a game day
might simulate an AWS Regional service impairment and implement a multi-Region failover.
Although implementing these activities can require a significant level of effort, both practices help
you build confidence that your system is resilient to the failure modes that you've designed it to
withstand.

By operating your applications, encountering operational events, reviewing metrics, and testing
your application, you'll encounter numerous opportunities to respond and learn.

Continuous resilience 20

https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility/
https://youtu.be/yQiRli2ZPxU
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/resilience-analysis-framework/introduction.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.gameday.en.html
https://aws.amazon.com/blogs/architecture/chaos-engineering-in-the-cloud/

AWS Prescriptive Guidance Resilience lifecycle framework

Stage 5: Respond and learn

How your application responds to disruptive events influences its reliability. Learning from
experience and how your application has responded to disruption in the past is also critical to
improving its reliability.

The Respond and learn stage focuses on practices that you can implement to better respond to
disruptive events in your applications. It also includes practices to help you distill the maximum
amount of learning from the experiences of your operations teams and engineers.

Creating incident analysis reports

When an incident occurs, the first action is to prevent further harm to customers and the business
as quickly as possible. After the application has recovered, the next step is to understand what
happened and to identify steps to prevent reoccurrence. This post-incident analysis is usually
captured as a report that documents the set of events that led to an impairment of the application,
and the effects of the disruption on the application, customers, and the business. Such reports
become valuable learning artifacts and should be shared widely across the business.

Note

It's critical to perform incident analysis without assigning any blame. Assume that all
operators took the best and most appropriate course of action given the information they
had. Do not use the names of operators or engineers in a report. Citing human error as
a reason for impairment might cause team members to be guarded in order to protect
themselves, resulting in the capture of incorrect or incomplete information.

A good incident analysis report, like that documented in the Amazon Correction of Error (COE)
process, follows a standardized format and tries to capture, in as much detail as possible, the
conditions that led to an impairment of the application. The report details a time-stamped
series of events and captures quantitative data (often metrics and screenshots from monitoring
dashboards) that describe the measurable state of the application over the timeline. The report
should capture the thought processes of operators and engineers who took action, and the
information that led them to their conclusions. The report should also detail the performance
of different indicators―for example, which alarms were raised, whether those alarms accurately
reflected the state of the application, the time lag between events and the resulting alarms, and

Creating incident analysis reports 21

https://wa.aws.amazon.com/wat.concept.coe.en.html
https://wa.aws.amazon.com/wat.concept.coe.en.html

AWS Prescriptive Guidance Resilience lifecycle framework

the time to resolve the incident. The timeline also captures the runbooks or automations that were
initiated and how they helped the application regain a useful state. These elements of the timeline
help your team understand the effectiveness of automated and operator responses, including how
quickly they addressed the problem and how effective they were in mitigating the disruption.

This detailed picture of a historical event is a powerful educational tool. Teams should store these
reports in a central repository that is available to the entire business so that others can review the
events and learn from them. This can improve your teams' intuition about what can go wrong in
production.

A repository of detailed incident reports also becomes a source of training material for operators.
Teams can use an incident report to inspire a table-top or live game day, where teams are given
information that plays back the timeline that's captured in the report. Operators can walk through
the scenario with partial information from the timeline and describe what actions they would take.
The moderator for the game day can then provide guidance on how the application responded
based on the operator's actions. This develops the troubleshooting skills of operators, so they can
more easily anticipate and troubleshoot issues.

A centralized team that's responsible for application reliability should maintain these reports in a
centralized library that the entire organization can access. This team should also be responsible
for maintaining the report template and training teams on how to complete the incident analysis
report. The reliability team should periodically review the reports to detect trends across the
business that can be addressed through software libraries, architecture patterns, or changes to
team processes.

Conducting operational reviews

As discussed in Stage 4: Operate, operational reviews are an opportunity to review recent feature
releases, incidents, and operational metrics. The operational review is also an opportunity to
share learnings from feature releases and incidents with the wider engineering community in your
organization. During the operational review, the teams review feature deployments that were
rolled back, incidents that occurred, and how they were handled. This gives engineers across the
organization an opportunity to learn from the experiences of others and to ask questions.

Open your operational reviews to the engineering community in your company so they can learn
more about the IT applications that run the business and the types of issues they can encounter.
They will carry this knowledge with them as they design, implement, and deploy other applications
for the business.

Conducting operational reviews 22

AWS Prescriptive Guidance Resilience lifecycle framework

Reviewing alarm performance

Alarms, as discussed in the operate stage, might result in dashboard alerts, tickets being created,
emails being sent, or operators being paged. An application will have numerous alarms configured
to monitor various aspects of its operation. Over time, the accuracy and effectiveness of these
alarms should be reviewed to increase alarm precision, reduce false positives, and consolidate
duplicate alerts.

Alarm precision

Alarms should be as specific as possible to reduce the amount of time that you have to spend
interpreting or diagnosing the specific disruption that caused the alarm. When an alarm is raised in
response to an application impairment, the operators who receive and respond to the alarm must
first interpret the information that the alarm conveys. The information might be a simple error
code that maps to a course of action such as a recovery procedure, or it might include lines from
application logs that you have to review to understand why the alarm was raised. As your team
learns to operate an application more effectively, they should refine these alarms to make them as
clear and concise as possible.

You can't anticipate all possible disruptions to an application, so there will always be general
alarms that require an operator to analyze and diagnose. Your team should work to reduce the
number of general alarms in order to improve response times and decrease the mean time to repair
(MTTR). Ideally, there should be a one-to-one relationship between an alarm and an automated or
human-performed response.

False positives

Alarms that require no action from operators but produce alerts as emails, pages, or tickets will
be ignored by operators over time. Periodically, or as part of an incident analysis, review alarms
to identify those that are often ignored or require no action from operators (false positives). You
should work to either remove the alarm, or improve the alarm so that it issues an actionable alert
to operators.

False negatives

During an incident, alarms that are configured to alert during the incident might fail, perhaps
because of an event that impacts the application in an unexpected way. As part of an incident
analysis, you should review the alarms that should have been raised but weren't. You should work
to improve these alarms so they better reflect the conditions that might arise from an event.

Reviewing alarm performance 23

AWS Prescriptive Guidance Resilience lifecycle framework

Alternatively, you might have to create additional alarms that map to the same disruption but are
raised by a different symptom of the disruption.

Duplicative alerts

A disruption that impairs your application is likely to cause multiple symptoms and might result
in multiple alarms. Periodically, or as part of an incident analysis, you should review the alarms
and alerts that were issued. If operators received duplicate alerts, create aggregate alarms to
consolidate them into a single alert message.

Conducting metrics reviews

Your team should collect operational metrics about your application, such as the number of
incidents by severity per month, the time to detect the incident, the time to identify the cause,
the time to remediate, and the number of tickets created, alerts sent, and pages raised. Review
these metrics at least monthly to understand the burden on operational staff, the signal-to-noise
ratio they deal with (for example, informational versus actionable alerts), and whether the team is
improving its ability to operate the applications under their control. Use this review to understand
trends in the measurable aspects of the operations team. Solicit ideas from the team on how to
improve these metrics.

Providing training and enablement

It's difficult to capture a detailed description of an application and its environment that led to
an incident or unexpected behavior. Furthermore, modeling the resilience of your application to
anticipate such scenarios isn't always straightforward. Your organization should invest in training
and enablement materials for your operations teams and developers to participate in activities
such as resilience modeling, incident analysis, game days, and chaos engineering experiments.
This will improve the fidelity of the reports that your teams produce and the knowledge that they
capture. The teams will also become better equipped to anticipate failures without relying on a
smaller, more experienced group of engineers who have to lend their insight through scheduled
reviews.

Creating an incident knowledge base

An incident report is a standard output from an incident analysis. You should use the same or
a similar report to document scenarios where you detected anomalous application behavior,

Duplicative alerts 24

AWS Prescriptive Guidance Resilience lifecycle framework

even if the application didn't become impaired. Use the same standardized report structure to
capture the outcome of chaos experiments and game days. The report represents a snapshot of
the application and its environment that led to an incident or otherwise unexpected behavior.
You should store these standardized reports in a central repository that all engineers within the
business can access.

Operations teams and developers can then search this knowledge base to understand what has
disrupted applications in the past, what types of scenarios could have caused disruption, and what
prevented application impairment. This knowledge base becomes an accelerator for improving the
skills of your operations teams and your developers, and enables them to share their knowledge
and experiences. Additionally, you can use the reports as training material or scenarios for game
days or chaos experiments to improve the operational team's intuition and ability to troubleshoot
disruptions.

Note

A standardized report format also provides readers with a sense of familiarity and helps
them find the information they are looking for more quickly.

Implementing resilience in depth

As discussed earlier, an advanced organization will implement multiple responses to an alarm.
There is no guarantee that a response will be effective, so by layering responses an application will
be better equipped to fail gracefully. We recommend that you implement at least two responses
for each indicator to ensure that an individual response doesn't become a single point of failure
that might lead to a DR scenario. These layers should be created in serial order, so that a successive
response is performed only if the previous response was ineffective. You shouldn't run multiple
layered responses to a single alarm. Instead, use an alarm that indicates whether a response has
been unsuccessful, and, if so, initiates the next layered response.

Implementing resilience in depth 25

AWS Prescriptive Guidance Resilience lifecycle framework

Conclusion and resources

This guide presents a lifecycle that helps you continuously improve the resilience of your
applications by implementing best practices across five stages: Set objectives, Design and
implement, Evaluate and test, Operate, and Respond and learn.

For more information about the services and concepts discussed in this guide, see the following
resources.

AWS services:

• AWS Backup

• AWS Elastic Disaster Recovery

• AWS Fault Injection Service (AWS FIS)

• AWS Resilience Hub

• Amazon Route 53 Application Recovery Controller

• AWS X-Ray

Blog posts and articles:

• Availability and Beyond: Understanding and Improving the Resilience of Distributed Systems on
AWS

• AWS Fault Isolation Boundaries

• AWS Multi-Region Fundamentals

• Chaos Engineering in the cloud

• Continually assessing application resilience with AWS Resilience Hub and AWS CodePipeline

• Disaster Recovery of On-Premises Applications to AWS

• Reliability Pillar – AWS Well-Architected Framework

• Resilience analysis framework

26

https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html
https://docs.aws.amazon.com/drs/latest/userguide/what-is-drs.html
https://docs.aws.amazon.com/fis/latest/userguide/what-is.html
https://docs.aws.amazon.com/resilience-hub/latest/userguide/what-is.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/availability-and-beyond-improving-resilience.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/availability-and-beyond-improving-resilience.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/aws-multi-region-fundamentals.html
https://aws.amazon.com/blogs/architecture/chaos-engineering-in-the-cloud/
https://aws.amazon.com/blogs/architecture/continually-assessing-application-resilience-with-aws-resilience-hub-and-aws-codepipeline/
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-of-on-premises-applications-to-aws/abstract-and-introduction.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/resilience-analysis-framework/

AWS Prescriptive Guidance Resilience lifecycle framework

Contributors

Contributors to this guide include:

• Bruno Emer, Principal Solutions Architect, Amazon Web Services

• Clark Richey, Principal Solutions Architect, Amazon Web Services

• Elaine Harvey, General Manager, Reliability Services, Amazon Web Services

• Jason Barto, Principal Solutions Architect, Amazon Web Services

• John Formento, Principal Solutions Architect, Amazon Web Services

• Lisi Lewis, Sr. Product Marketing Manager, Amazon Web Services

• Michael Haken, Principal Solutions Architect, Amazon Web Services

• Neeraj Kumar, Principal Solutions Architect, Amazon Web Services

• Wangechi Doble, Principal Solutions Architect, Amazon Web Services

27

AWS Prescriptive Guidance Resilience lifecycle framework

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Initial publication — October 6, 2023

28

https://docs.aws.amazon.com/prescriptive-guidance/latest/resilience-lifecycle-framework/resilience-lifecycle-framework.rss

AWS Prescriptive Guidance Resilience lifecycle framework

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

29

AWS Prescriptive Guidance Resilience lifecycle framework

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which in which the source and target databases are kept in
sync, but only the source database handles transactions from connecting applications while
data is replicated to the target database. The target database doesn’t accept any transactions
during migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 30

AWS Prescriptive Guidance Resilience lifecycle framework

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 31

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-portfolio-discovery/welcome.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Resilience lifecycle framework

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 32

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Resilience lifecycle framework

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 33

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Resilience lifecycle framework

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 34

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Resilience lifecycle framework

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 35

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Resilience lifecycle framework

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or AWS CodeCommit. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 36

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Resilience lifecycle framework

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual formats
such as digital images and videos. For example, AWS Panorama offers devices that add CV to
on-premises camera networks, and Amazon SageMaker provides image processing algorithms
for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 37

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Resilience lifecycle framework

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 38

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Resilience lifecycle framework

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 39

AWS Prescriptive Guidance Resilience lifecycle framework

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

D 40

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Resilience lifecycle framework

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

D 41

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

AWS Prescriptive Guidance Resilience lifecycle framework

E

EDA

See exploratory data analysis.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts
or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more
information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

E 42

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html

AWS Prescriptive Guidance Resilience lifecycle framework

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

ERP

See enterprise resource planning.

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

E 43

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

AWS Prescriptive Guidance Resilience lifecycle framework

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations
(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with :AWS.

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

FGAC

See fine-grained access control.

F 44

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS Prescriptive Guidance Resilience lifecycle framework

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

G

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.
Detective guardrails detect policy violations and compliance issues, and generate alerts

G 45

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Resilience lifecycle framework

for remediation. They are implemented by using AWS Config, AWS Security Hub, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

H 46

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Resilience lifecycle framework

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends

I 47

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Resilience lifecycle framework

setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

I 48

https://www.weforum.org/about/klaus-schwab/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Resilience lifecycle framework

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

L 49

https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS Prescriptive Guidance Resilience lifecycle framework

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

lower environments

See environment.

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

M 50

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/what-is/machine-learning/

AWS Prescriptive Guidance Resilience lifecycle framework

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include

M 51

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS Prescriptive Guidance Resilience lifecycle framework

microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,
migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

M 52

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html

AWS Prescriptive Guidance Resilience lifecycle framework

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

ML

See machine learning.

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and

M 53

https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/

AWS Prescriptive Guidance Resilience lifecycle framework

milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

O 54

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Resilience lifecycle framework

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

O 55

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html

AWS Prescriptive Guidance Resilience lifecycle framework

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends

O 56

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Resilience lifecycle framework

setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

P 57

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Resilience lifecycle framework

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

Privacy by Design

An approach in system engineering that takes privacy into account throughout the whole
engineering process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

P 58

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

AWS Prescriptive Guidance Resilience lifecycle framework

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

Q 59

https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Resilience lifecycle framework

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

R 60

AWS Prescriptive Guidance Resilience lifecycle framework

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the

R 61

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://aws.amazon.com/resilience/

AWS Prescriptive Guidance Resilience lifecycle framework

matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

retire

See 7 Rs.

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API

S 62

https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html

AWS Prescriptive Guidance Resilience lifecycle framework

operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.
The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

S 63

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html

AWS Prescriptive Guidance Resilience lifecycle framework

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

S 64

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Resilience lifecycle framework

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your
organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

S 65

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/

AWS Prescriptive Guidance Resilience lifecycle framework

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

T 66

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html

AWS Prescriptive Guidance Resilience lifecycle framework

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

U 67

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Resilience lifecycle framework

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

V 68

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Resilience lifecycle framework

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

Z 69

AWS Prescriptive Guidance Resilience lifecycle framework

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 70

	AWS Prescriptive Guidance
	Table of Contents
	Resilience lifecycle framework: A continuous approach to resilience improvement
	Terms and definitions
	Continuous resilience

	Stage 1: Set objectives
	Mapping critical applications
	Mapping user stories
	Defining measurements
	Creating additional measurements

	Stage 2: Design and implement
	AWS Well-Architected Framework
	Understanding dependencies
	Disaster recovery strategies
	Defining CI/CD strategies
	Conducting ORRs
	Understanding AWS fault isolation boundaries
	Selecting responses
	Resilience modeling
	Failing safely

	Stage 3: Evaluate and test
	Pre-deployment activities
	Environment design
	Integration testing
	Automated deployment pipelines
	Load testing

	Post-deployment activities
	Conducting resilience assessments
	DR testing
	Drift detection
	Synthetic testing
	Chaos engineering

	Stage 4: Operate
	Observability
	Event management
	Continuous resilience

	Stage 5: Respond and learn
	Creating incident analysis reports
	Conducting operational reviews
	Reviewing alarm performance
	Alarm precision
	False positives
	False negatives
	Duplicative alerts

	Conducting metrics reviews
	Providing training and enablement
	Creating an incident knowledge base
	Implementing resilience in depth

	Conclusion and resources
	Contributors
	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

