aws

Migration strategy for relational databases

AWS Prescriptive Guidance

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Migration strategy for relational databases

AWS Prescriptive Guidance: Migration strategy for relational
databases

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Migration strategy for relational databases

Table of Contents

INEFOAUCEION cevveerrriiiiiiiiiiiiiiiiiiiiiieieieiiiieessesssans 1
OVEIVIBW .ttt ettt sttt e e st e st st et et s b e st e e st s b e et e e st e be st e s st s sesab e st esse s b esstassesatasstensesnsesseans 1
Phases of database Migrationcceeeeeecciiiiiiiiiiiiineeennnniiiiiieiiinieseesss 3
PRASE T: PrEPAre cuuueeeiiiiiiiiiiiineeennnniiiiiiecieinssnsssssssses 4
[dENtify AEPENUENCIES ...ttt s te st se s e st et et e st e s aessessesseennanaessensanes 4
QUALITY WOTKLOGAS ..ttt te st e et e e et et e st e st e s b e s e e e e e s e aa b e saasassassnenaennans 5
PRAS@ 2: PLan c.ccceeeeiiiiiiiiiiiiiiiiiiiiiiiiicsiss 7
Choose @ MIGration STrAtEQY ...cccccceeeeeeieeceeeeeee ettt e s e e e e e e e e e et e saesaesaesae e e ssaesnensaneans 8
PRASE 3: MiIgrate ..ccciieeeeeeeeeiiiiiiiiiiininnanesesesssssssseessans 10
CONVEIT the SCREIMA ..ttt sttt ettt s sa e e e e s a b et e e s beste e ssassassenaen 10
AWS SCT ettt st rte st e s te s st e st e s sae e s ae s saa e st e s aeassaessa e ssasssaasssesssaesssessseesssessseesssessstasssessssesseens 11
Migration PLAYDOOKS ...ttt re e e a et s a et s ae e e e nanes 12
MiIGrate the data ..ottt e st e st e st e e e e e s e e s et et e bessessessaeseennanean 12
AWS DIMS .ttt ettt st s st e st e s s ae s st e s ae e st e s b e s s e e s s e e s st e s b e e saasae e st esssa e saesse e st eeseessaessaenees 12
Offline MiIgration OPLIONSc.ecviieeeeeeee ettt e e e e sa et e st esae s s e e e e e snnennan 13
Update the aPPLICAtiON ...ttt e st st e st e saessesseesesss e s ennesaaaaneans 13
TESE the MUGIAtiON .ottt sttt e e et et e st e s besbesse e e e e e e et entanean 14
CUL OVET ettt ettt st st e a et b e st st s b st et s b e st e st s se et e e st e ssesabe st sssaentesntensesasansess 14
OFffliNg MUGIAatioN ..ottt e e e et st e st e st e st e s b e s e e se e e e e essesaetensansans 14
FLASR-CUL MIGIation ..cueeeeeeeeee ettt te st e st a e e et e st et e s aaeseesaesaesaenaanaan 15
Active/active database configuIration ... 15
INCremMeENtal MIGration ...ttt et a et et e st e st e s e s e sa e s e s e aenaanean 16
FOLLOW best Practice€s 0N AWS ... ettt ettt st aestesse e e s e et et e saesaessesse s e e sae s ensensensan 16
Phase 4: Operate and OPtiMizZeiiiiiiiiiiiiiinnennnniiiiiiiiiiiiiiieessssssiiiiseetetsssssssssssssssssssssssssssssssse 17
USING AWS Partiersccciciiiiieeeeeneeniiiiiicciiess 19
[NV L= S =T o L3 20
RESOUFICES .ceeeeiiirrnennciinnnnnenisnnssssncsssessssssssesssssssssasse 21
DOCUMENT NISTOIY auuuiiiiiiiiiiiiiieeennniiiiiiieiiiieeeeeessssessssssesesss 22
GLOSSAIY wuuiiiiieiiiiiinenennnnnsssssseceeneesssnne 23
B ettt ettt e et e e et e e st e s e a e e e e bt e e e b e e e e bt e e a e e e e e e et e e e Rt e e e Rt e s e Rt e s e et e e e b e e e e b e e e et e e s aeeeeraeee st aessaaesnaasen 23

A ettt e s e st e e e e b s e a e e e s e e e s Rt e s e Rt e e et e s e Rt e s e Rt e e e bt e e e b e e e e b e e e er s e e e st e e e s aeeesaeessreeesrsaasnne 24

B et e et e e s bt e e s b e e s a e e e Rt e s e st e s e Rt e s b e e e e b e e e e b e e e e e e e e s b e e e s e e e raeesneesernaeennes 27

£ ettt ettt ettt ettt e a et e e a et et b et et e R e A et e R e A et e Rt e R Ae e e Rt e R et e Rt e R e s et e Rt e ae b e Rt e e be e e st esensenteseeee 29

AWS Prescriptive Guidance Migration strategy for relational databases

bbb bbb bRt b e e e b s b e bt e b e b e ne 36
B bbb bbb s b s a e Rt e b e e b e bt s b s b e as 38
TSROSO 39
T 40
L s bbb bR e b e s b e R e R e s b e s R s e b e b e b e e bt s b e ns 41
L bbb R e s b e s R e bR E e R s b e s b e R e b e e b e bt s b s b b e as 43
TN 44
O e bbb bbb Rttt e st et e b e b e b e s Rt et e Rt st et e e 48
TN 51
Qe bbb b bbbt e Rt st e s et e b e b e b e s Rt et e Rt st et e 53
PN 54
S e bbb E bbb R e Rt e e s e b e b e b e b e b e bt s Rt et st et et et e e 56
OO RPR 60
U bbb s a s R RS eEe R s b s b e Rt e a e e b e b e s b s b e as 61
T 62
PR 62
L oS RS EeR SRS RS e RS e R SR e R e RS R e s R e e R e e R e e b e e e e b e e b e b e e ns 63

AWS Prescriptive Guidance Migration strategy for relational databases

Migration strategy for relational databases

Yaser Raja, Amazon Web Services (AWS)

June 2024 (document history)

In your enterprise portfolio, you are likely to have multiple types of databases. When you migrate
to Amazon Web Services (AWS), you can choose to do a “lift and shift” of your databases (rehost) or
modernize your applications by switching to AWS managed database services (replatform).

If you choose to rehost your database, AWS provides a number of services and tools that can

help you securely move, store and analyze your data. If you choose to switch to an AWS managed
database service, AWS offers a multitude of options so you never have to trade off functionality,
performance, or scale. For more information about the AWS family of databases, see Databases on
AWS on the AWS website.

This document focuses on strategies for migrating relational databases to the AWS Cloud, for
IT and business executives, program or project managers, product owners, and operations/
infrastructure managers who are planning to migrate their on-premises databases to AWS.

Overview

The best database migration strategy enables you to take full advantage of the AWS Cloud. This
involves migrating your applications to use purpose-built, cloud-native databases. You shouldn’t
limit yourself to the same old-guard database that you have been using on premises. Instead,
consider modernizing your applications and choose the databases that best suit your applications’
workflow requirements.

Many enterprises have adopted this approach. For example, Airbnb needed to quickly process and
analyze 50 GB of data daily. They needed a key-value database to store user search history for
quick lookups that enabled personalized search, an in-memory data store to store session state

for faster (sub-millisecond) site rendering, and a relational database as their primary transactional
database. They chose Amazon DynamoDB as their key-value database, Amazon ElastiCache as their

in-memory store, and Amazon Relational Database Service (Amazon RDS) for their transactional

database. For more information about how Airbnb is using AWS database services, see the Airbnb
case study.

Database migration strategy is tied closely to your organization’s overarching cloud strategy. For
example, if you choose to first transition your applications and then transform them, you might

Overview 1

https://aws.amazon.com/products/databases/
https://aws.amazon.com/products/databases/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/
https://aws.amazon.com/solutions/case-studies/airbnb-case-study/
https://aws.amazon.com/solutions/case-studies/airbnb-case-study/

AWS Prescriptive Guidance Migration strategy for relational databases

decide to lift and shift your database first. When you are fully in the AWS Cloud, you start working
to modernize your application. This strategy can help you exit out of your current data centers
quickly, and then focus on modernization.

Your database migration is tightly coupled with your application migration. All database migration
strategies involve some level of changes to the applications that use those databases. These
changes range from pointing to the new location of the database in the AWS Cloud to a total
rewrite of the application, if it can't be changed because the source code isn't available, or it's a
closed-source, third-party application.

Overview 2

AWS Prescriptive Guidance Migration strategy for relational databases

Phases of database migration

When you've identified a database for migration, you go through the phases of preparation,
planning, migration, and optimization of the database.

Prepare Plan Migrate Operate &
Optimize

The following sections discuss each phase in detail:

Phase 1: Prepare
Phase 2: Plan

Phase 3: Migrate

Phase 4: Operate and optimize

AWS Prescriptive Guidance Migration strategy for relational databases

Phase 1: Prepare

The first phase of the database migration process is preparation. During preparation, you identify
the interdependencies between your applications and databases. You also analyze the database
workloads to determine the migration categories: from simple rehost (homogeneous) migration
to re-architect (heterogeneous) migration. Without completing this phase, you risk running into
delayed migration timelines.

These tasks are discussed in the following sections:

« Identifying dependencies

» Qualifying workloads

Identify dependencies

You start by identifying application and database dependencies, by asking questions such as the
following:

« Is this database directly accessed by any other application?

If so, you should determine how migrating the database affects that application. If you're
rehosting the database, you need to make sure that the application can still access the database
with acceptable performance.

» Does the application directly access any other database?

If so, determine the migration plan for the other database. If it's also migrating, you need
to update the application accordingly. If it isn't migrating, you need to make sure that the
application can continue to connect to it with acceptable latency.

« Is the database using database links to fetch data from other databases?

As in the previous point, determine the migration plan for the other database and handle the
links accordingly.

« Is the application dependent on any on-premises software?

If so, you should determine the migration plan for that software. If it's migrating, you need to
update your application accordingly. If it isn't, make sure that the application can continue to
connect to the software and the latency is acceptable.

Identify dependencies 4

AWS Prescriptive Guidance Migration strategy for relational databases

» Are there any hardware dependencies?

If so, come up with a plan to address those.

 Are there any strict bandwidth or networking requirements?

If so, choose the AWS services that can help you meet these requirements.

» Does the application use any special database engine options or features?

If you're migrating to a different database engine, you need to update the application
accordingly.

If the answers to these questions are complex, a better option is to decouple the database from the
application by using microservices. This way, an application can get data by calling the microservice
instead of directly connecting to the database.

Qualify workloads

To determine the best migration strategy for your database, it's important to understand the
current database workload. You need to analyze your database to determine which features you
are currently using and what's involved in migrating to another cloud-native database engine such
as Amazon Aurora PostgreSQL.

AWS provides a workload qualification tool called AWS Workload Qualification Framework (AWS
WQF). This tool can help identify the complexity of your Oracle and Microsoft SQL Server database
migration by analyzing database schemas and code objects, application code, dependencies,
performance characteristics, and similar inputs. WQF provides recommendations on the target
database engine. It also estimates the type of work involved and the level of effort required.

WQF evaluates your migration workload and places it in one of five workload categories,
summarized in the following table.

- Category 1 ODBC/IBDC workloads < 50 manual changes, easy to refactor
- Category 2 Light, proprietary feature workloads < 200 manual changes, medium complexity
- Category 3 Heawy, proprietary feature workloads = 200 manual changes, high complexity
- Category 4 Engine-specific workloads Mot recommended for refactoring
- Category 5 COTS or other non-portable workloads Mot recommended for refactoring

Qualify workloads 5

https://aws.amazon.com/rds/aurora/

AWS Prescriptive Guidance Migration strategy for relational databases

Category 1: Workloads that use Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC) instead of proprietary drivers to connect to the database. This category
typically has simple stored procedures that are used for access controls. The conversion requires
fewer than 50 manual changes.

Category 2: Workloads with light use of proprietary features and that don't use advanced SQL
language features. This type of workload requires fewer than 200 manual changes.

Category 3: Workloads with heavy use of proprietary features. Workloads in this category are
completely driven by advanced stored procedure logic or proprietary features. This type of
workload requires more than 200 manual changes that involve database-resident code and
features.

Category 4: Engine-specific workloads. Workloads in this category use frameworks that can
work only with a specific commercial database engine. For example, these frameworks might
include Oracle Forms, Oracle Reports, Oracle Application Development Framework (ADF), Oracle
Application Express (APEX), or applications that use .NET ActiveRecord extensively.

Category 5: Nonportable, unacceptable risk, or "lift and shift" workloads. Workloads in this
category might be implemented on database engines that have no cloud-based equivalent. In
some cases, you might not have the source code for these programs.

This categorization can help you determine the migration path for your application, as we’ll discuss

in the section Phase 2: Plan.

AWS doesn't currently provide AWS WQF for downloading. If you need help assessing a migration
to AWS with AWS WQF, we recommend opening a support ticket. AWS will engage with you
directly to help make the process work for you.

Qualify workloads 6

AWS Prescriptive Guidance Migration strategy for relational databases

Phase 2: Plan

In this phase, you use the information gathered during the preparation phase and come up with
the migration strategy. A critical aspect of migration planning is rationalizing the information you
collected against the 7 Rs of migration: rehost, replatform, relocate, repurchase, refactor, retire,
and retain.

Choosing your migration strategy depends on your business drivers for cloud adoption, as well as
time considerations, business and financial constraints, and resource requirements. If you want to
sustain your current workload in the cloud, choose rehosting. However, if you want to optimize and
scale your workloads, consider one of the other options.

Here's an overview of the 7 Rs of database migration. These are illustrated in the following
diagram.

' Lift and shift
— >
JU Host on Amazon EC2

. Rehost
- Sustain oS
VN
/ ?f\\ \ N) Hypervisor-level lift and shift
\ Y_\/F" Y, N\ Move infrastructure to the cloud
. ,___,/’ Determine Relocate
-
e Lift and reshape
> » Move and optimize to take advantage of
=2 some cloud capabilities
Replatform
B —E3
............................... vt
Retain Optimi Drop and shop
ptimize > » Switch to a new (generally Saas)
Repurchase product in the cloud
Retire - Re-architect
| e— |
, & W J , Make truly cloud-native by using
L] L purpose-built databases such as
Refactor Amazon Aurora and Amazon DynamoDB
Grow

» Rehost (lift and shift) — Move an application to the cloud without making any changes. For
example, migrate your on-premises Oracle database to Oracle on an Amazon Elastic Compute
Cloud (Amazon EC2) instance in the AWS Cloud.

» Relocate (hypervisor-level lift and shift) — Move infrastructure to the cloud without purchasing
new hardware, rewriting applications, or modifying your existing operations. You migrate servers

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

AWS Prescriptive Guidance Migration strategy for relational databases

from an on-premises platform to a cloud service for the same platform. For example, migrate a
Microsoft Hyper-V application to AWS.

« Replatform (lift and reshape) — Move an application to the cloud, and introduce some level of
optimization to take advantage of cloud capabilities. For example, migrate your on-premises
Oracle database to Amazon RDS for Oracle in the AWS Cloud.

« Repurchase (drop and shop) — Change to a different product, typically by moving from a
traditional application to a software as a service (SaaS) product, and migrate data from your on-
premises application to the new product. For example, migrate your customer data from your
on-premises customer relationship management (CRM) system to Salesforce.com.

» Refactor (re-architect) — Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. For example,
migrate your on-premises Oracle database to Aurora PostgreSQL. This strategy can also include

rewriting your application to use the purpose-built databases that AWS offers for different
workflows. Or, you can choose to modernize your monolithic application by breaking it down
into smaller microservices that access their own database schemas.

 Retain (revisit) — Keep applications in your source environment. These might include applications
that require major refactoring, and you want to postpone that work until a later time, and legacy
applications that you want to retain because there's no business justification for migrating them.

» Retire - Decommission or remove applications that are no longer needed in your source
environment.

Choose a migration strategy

In the majority of the database migrations, you can choose to rehost, replatform, or refactor.

Any of these strategies can work for you. The guiding principle should be how you can get the
maximum benefit out of your migration. Choosing to refactor your application and migrate to

a cloud-native database such as Aurora can enable you to enhance your database application.
However, depending on your workload complexity, refactoring a database can be time-consuming
and resource-intensive.

The WQF categorization helps you decide when you should consider a particular migration
strategy. A higher WQF category means that the migration effort required is significant; therefore,
you might want to choose another option, such as rehost or replatform, to complete the migration
within an acceptable timeframe. The following table shows the suggested strategies based on the
WQF category.

Choose a migration strategy 8

https://aws.amazon.com/rds/oracle/
https://aws.amazon.com/rds/aurora/

AWS Prescriptive Guidance

Migration strategy for relational databases

Category

Workload complexit

I |

Workload

ODBC/JBDC
workloads

Light, proprietary
feature workloads

Heavy, proprietary
feature workloads

Engine-specific
workloads

Non-portable, high-
risk, or lift-and-shift
workloads

Migration strategy

Candidate for
refactor

Candidate for
refactor

Candidate for
refactor or replatfor
m

Candidate for
replatform or rehost

Candidate for
replatform or rehost

The rehost and replatform options are suitable when the complexity involved in refactoring is

high. In these scenarios, based on your modernization needs, you might consider refactoring your
database after you have completed the migration to the AWS Cloud.

Choose a migration strategy

AWS Prescriptive Guidance Migration strategy for relational databases

Phase 3: Migrate

After you complete migration planning and identify a migration strategy, the actual migration
takes place. In this phase, the target database is designed, the source data is migrated to the
target, and the data is validated.

Schema Data
conversion migration

Planning @

Testing

Cutover
Application
changes

This is an iterative process that includes multiple cycles of conversion, migration, and testing. After
the functional and performance testing is complete, you can cut over to the new database.

The migration phase consists of the following key steps, which are discussed in the following
sections:

Converting the schema

Migrating the data

Updating the application

Testing the migration

Cutting over to the new database

Convert the schema

One of the key tasks during the database migration is to migrate your schema from the source
database engine to the target database engine. If you rehost or replatform, your database engine
won't change. This is referred to as a homogeneous database migration, and you can use your native
database tools to migrate the schema.

However, if you are rearchitecting your application, schema conversion might require more effort.
In this case, you will be doing a heterogeneous database migration, where your source and target
database engines will be different. Your current database schema may be using packages and
features that cannot be directly converted to the target database engine. Some features might be
available under a different name. Therefore, converting the schema requires a good understanding

Convert the schema 10

AWS Prescriptive Guidance Migration strategy for relational databases

of your source and target database engines. This task can be challenging, depending on the
complexity of your current schema.

AWS provides two resources to help you with schema conversion: AWS Schema Conversion Tool
(AWS SCT) and migration playbooks.

AWS SCT

AWS SCT is a free tool that can help you convert your existing database from one engine to
another. AWS SCT supports a number of source databases, including Oracle, Microsoft SQL Server,
MySQL, Sybase, and IBM Db2 LUW. You can choose from target databases such as Aurora MySQL
and Aurora PostgreSQL.

AWS SCT provides a graphical user interface that directly connects to the source and target
databases to fetch the current schema objects. When connected, you can generate a database
migration assessment report to get a high-level summary of the conversion effort and action
items. The following screen illustration shows a sample database migration assessment report.

& Save 1 CFW = w1 PO

Database Migration Assessment Report amazon
weDservices

Baxsece [atabass
ool SO0 Sarens 2014 - 12 08432 0 [(KE4)

Jull IT 15 165615

Copryragit (1) Wist vl Conpend e

Evpenas Edion [54-bat) on Wirdows T 6.9 <XEL> (Bl TR Sarvas Patk 1) [Hyparsan)

Executive Summary

Ve Comphaied ot analy b of st SOL Saros Moutne Saiabane 3 elmaie thar B8% o P danaDae FOIE0R O0RCT £ [COMepned Suttemane ally or with ranemal (hanges i yis) Seded W SEL 38 o maraton g Databate
prmge chcty include Bhemas, tabies, cokames, COnEanis, NGRORN, BCUETGES, FyTompms, e delne fipes and fypes. Databane gode ohwls. mnghade ang tons, procecunes, packages, ropey, wews, madsrakned vy, geents, 50U
fic alar fncborm, SOL imling func bors, SO0, Esbie fancBons, afibulien, wanabie, cormbans, Eable types, poblic Bypes, privale Bypss, Cumon, sacepons, parsmstens and offer cbch. Haned on cur snafysm of S0L synisx sisments of your
ficnree databass sclwrm, we bt ot S4% of your entine databan schima can ba comesnied sultrmate sty 1o MySOL. The syston anclis Eabes i scoount Bhe s, complanty and mportarcs of the datsbuse shisch Bat can ba
Ao iy £orriviied ko poar sobecied datahane Lieget T ornpliots D fragepban o ros rrvreded B ¢ ovmobrias Be bor'h | gy borm devyie s b i et ormpleaoly B boerh b gy el £ oo aon it

Database Objects with Conversion Actions for MySQL

W B otad 17 databane niorage chci{s) in Ba nosre daiabase, we wins atie b chanidly 105 (RI%] datatans wormge cbysciis] thal can be oo sviomatn ally o wih meremal changees o My S0
3) datatiane wiorage o) regured S medaum and 10 wgraiic.ant user actondy] ko complels B comemn

Igure: Comerulon wisthvilos for dabsbons sioiage objects

AWS SCT 11

AWS Prescriptive Guidance Migration strategy for relational databases

With AWS SCT you can convert the schema and deploy it into the target database directly, or you
can get SQL files for the converted schema. For more information, see Using the AWS Schema

Conversion Tool User Interface in the AWS documentation.

Migration playbooks

Although AWS SCT converts many of your source objects, some aspects of conversion require
manual intervention and adjustments. To help with this task, AWS provides migration playbooks
that detail incompatibilities and similarities between two databases. For more information about
these playbooks, see AWS Database Migration Service resources on the AWS website.

Migrate the data

When the schema migration is complete, you can move your data from the source database to the
target database. Depending on your application availability requirements, you can run a simple
extraction job that performs a one-time copy of the source data into the new database. Or, you can
use a tool that copies the current data and continues to replicate all changes until you are ready to
cut over to the new database. For rehost and replatform migrations, we recommend that you use
native database-specific tools to migrate your data.

Tools that can help you with the data transfer include AWS Database Migration Service (AWS DMS)
and offline migration tools. These are described in the following sections.

AWS DMS

After you use AWS SCT to convert your schema objects from the source database engine to the
target engine, you can use AWS DMS to migrate the data. With AWS DMS you can keep the source
database up and running while the data is being replicated. You can perform a one-time copy of
your data or copy with continuous replication. When the source and target databases are in sync,
you can take your database offline and move your operations to the target database. AWS DMS can
be used for homogeneous database migrations (for example, from an on-premises Oracle database
to an Amazon RDS for Oracle database) as well as heterogeneous migrations (for example, from an
on-premises Oracle database to an Amazon RDS for PostgreSQL database). For more information
about working with AWS DMS, see the AWS DMS documentation.

Migration playbooks 12

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_UserInterface.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_UserInterface.html
https://aws.amazon.com/dms/resources/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_GettingStarted.html

AWS Prescriptive Guidance Migration strategy for relational databases

Offline migration options

You can use other options in addition to AWS DMS to extract your data from the source database
and load it to the target database. These options are mostly suitable when application downtime is
allowed during the data migration activity. Examples of these methods include:

« A comma-separate values (CSV) extract from the source database loaded to the target database
« For Oracle source databases, the ora2pg utility to copy the data to PostgreSQL

« Custom extract, transform, load (ETL) jobs to copy the data from source to target

Update the application

A database migration is hardly ever a database-only migration. You have to look at the application
that's using the database to make sure that it works as expected with the new database. The
changes are minimal if you are simply rehosting or replatforming the same database engine, but
can be more significant if you decide to move to a new database engine.

If your application relies on an object-relational mapping (ORM) to interact with the database,

it won't require as many changes when you migrate to a new database engine. However, if your
application has custom database interactions or dynamically built SQL queries, the changes can be
sizable. There might be differences in the query formats that need to be corrected to make sure
that the application works as expected.

For example, in Oracle, concatenating a string with NULL returns the original string. However,

in PostgreSQL, concatenating a string with NULL returns NULL. Another example is how NULL

and empty strings are treated. In PostgreSQL, NULL and empty strings are two different things,
whereas databases like Oracle treat them in the same way. In Oracle, if you insert a row with the
column value set to NULL or empty string, you can fetch both types of values by using the where
clause: where <mycolumn> is NULL. In PostgreSQL, this where clause will return only one row
where the column value is actually NULL; it won't return the row that has an empty string value.
For more information about these differences, see the migration playbooks listed on the AWS
Database Migration Service resources webpage.

Offline migration options 13

https://aws.amazon.com/dms/resources/
https://aws.amazon.com/dms/resources/

AWS Prescriptive Guidance Migration strategy for relational databases

Test the migration

Functional and performance testing is an essential part of database migrations. Detailed functional
testing will make sure that your application is working with the new database without any issues.
You should invest time to develop unit tests to test out the application workflows.

Performance testing makes sure that your database response times are within an acceptable time
range. You can identify bottlenecks, optimize, and repeat the performance test. You repeat the
cycle as required to get the desired performance results.

Testing can be manual or automated. We recommend that you use an automated framework for
testing. During migration, you will need to run the test multiple times, so having an automated
testing framework helps speed up the bug fixing and optimization cycles.

This testing can reveal issues that were missed during development phases. For example, any
incorrectly converted queries will fail or return incorrect results, causing the functional testing to
fail. Performance testing can reveal issues such as missing indexes causing slow query response
time. They can also reveal performance issues that require database engine tuning, depending on
the workload, or modifying the query.

Cut over

The database cutover strategy is usually tightly coupled with the downtime requirements for
the application. Strategies that you can use for the database cutover include offline migration,
flash-cut migration, active/active database configuration, and incremental migration. These are
discussed in the following sections.

Offline migration

If you can take your application offline for an extended period during write operations, you can use
AWS DMS full-load task settings or one of the offline migration options for your data migration.
The read traffic can continue while this migration is in progress, but the write traffic must be
stopped. Because all the data needs to be copied from the source database, source database
resources such as I/0 and CPU are utilized.

At a high level, offline migration involves these steps:

1. Complete the schema conversion.

Test the migration 14

AWS Prescriptive Guidance Migration strategy for relational databases

2. Start downtime for write traffic.

3. Migrate the data using one of the offline migration options.
4. Verify your data.

5. Point your application to the new database.

6. End the application downtime.

Flash-cut migration

In flash-cut migration, the main objective is to keep the downtime to a minimum. This strategy
relies on continuous data replication (CDC) from the source database to the target database. All
read/write traffic will continue on the current database while the data is being migrated. Because
all the data needs to be copied from the source database, source server resources such as I/O and
CPU are utilized. You should test to make sure that this data migration activity doesn't impact your
application performance SLAs.

At a high level, flash-cut migration involves these steps:

. Complete the schema conversion.

. Set up AWS DMS in continuous data replication mode.

. When the source and target databases are in sync, verify the data.
. Start the application downtime.

. Roll out the new version of the application, which points to the new database.

o U1 A NN =2

. End the application downtime.

Active/active database configuration

Active/active database configuration involves setting up a mechanism to keep the source and
target databases in sync while both databases are being used for write traffic. This strategy
involves more work than offline or flash-cut migration, but it also provides more flexibility during
migration. For example, in addition to experiencing minimal downtime during migration, you

can move your production traffic to the new database in small, controlled batches instead of
performing a one-time cutover. You can either perform dual write operations so that changes are
made to both databases, or use a bi-directional replication tool like HVR to keep the databases in
sync. This strategy has a higher complexity in terms of setup and maintenance, so more testing is
required to avoid data consistency issues.

Flash-cut migration 15

https://www.hvr-software.com/product/

AWS Prescriptive Guidance Migration strategy for relational databases

At a high level, active/active database configuration involves these steps:

1. Complete the schema conversion.

2. Copy the existing data from the source database to the target database, and then keep the two
databases in sync by using a bi-directional replication tool or dual writes from the application.

3. When the source and target databases are in sync, verify the data.
4. Start moving a subset of your traffic to the new database.

5. Keep moving the traffic until all your database traffic has been moved to the new database.

Incremental migration

In incremental migration, you migrate your application in smaller parts instead of performing a
one-time, full cutover. This cutover strategy could have many variations, based on your current
application architecture or the refactoring you're willing to do in the application.

You can use a design pattern to add new independent microservices to replace parts of an existing,

monolithic legacy application. These independent microservices have their own tables that are not
shared or accessed by any other part of the application. You migrate these microservices to the
new database one by one, using any of the other cutover strategies. The migrated microservices
start using the new database for read/write traffic while all other parts of the application continue
to use the old database. When all microservices have been migrated, you decommission your
legacy application. This strategy breaks up the migration into smaller, manageable pieces and can,
therefore, reduce the risks that are associated with one big migration.

Follow best practices on AWS

In addition to the migration activities discussed in the previous sections, you should invest time to
make sure that you are following the best practices to host your database in the AWS Cloud. See
the AWS documentation for best practices for working with relational databases on AWS.

Incremental migration 16

https://samirbehara.com/2018/09/10/monolith-to-microservices-using-strangler-pattern/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html

AWS Prescriptive Guidance Migration strategy for relational databases

Phase 4: Operate and optimize

When your database is in AWS, you have to operate it in the cloud. You need to make sure that
you are following the best practices for areas such as monitoring, alerting, backups, and high
availability. The operation overhead of rehosted databases is higher than the databases that have
been replatformed or refactored to use a managed AWS database service:

» A rehosted database runs on an EC2 instance. You're responsible for all database management
tasks such as setting up backups, high availability, and disaster recovery solutions.

« If you replatform or refactor your database on Amazon RDS, these database management tasks
require only a few clicks to set up. This means that the database administrator will spend less
time managing a database in Amazon RDS, compared with managing a rehosted database on
an EC2 instance. Amazon RDS also provides a performance monitoring tool called Amazon RDS
Performance Insights, which enables even non-experts to detect performance problems by using
an easy-to-understand dashboard that visualizes database load.

No matter which migration option you choose, Amazon CloudWatch plays a very important role in
collecting key metrics such as CPU, memory, and 1/0O utilization. It also provides the capability to
set thresholds on metrics and to initiate actions when the given threshold is crossed. For example,
you can create alarms on Aurora PostgreSQL cluster metrics, set notifications, and take actions

to detect and shut down unused or underutilized reader instances. Setting real-time alarms on
metrics and events enables you to minimize downtime and potential business impact.

In the operate and optimize phase, you can maximize the benefits derived from hosting
applications on AWS. The optimizing activities can address cost, performance, security, or resiliency
concerns for your application stack. For example, you can use automatic scaling features to add
more read replicas during peak hours, and remove them during off-peak hours to lower costs. You
can also use a number of AWS services that integrate seamlessly with Amazon RDS databases. For
example, you can easily direct database engine logs to Amazon CloudWatch Logs for analysis.

Once you are in the AWS Cloud, you can start optimizing your application by taking advantage

of a large number of services and features that you can spin up with few clicks. You can innovate
faster, because you can focus your highly valuable IT resources on developing applications that
differentiate your business and transform your users’ experiences, instead of focusing on the
undifferentiated heavy lifting of managing infrastructure and data centers. The following diagram
shows some of the options provided by AWS services.

17

AWS Prescriptive Guidance

Migration strategy for relational databases

Intelligence & Machine Learning

7] auidsiont @ SageMaker
Analytics Databases Blockchain
— % Aurora @ DynamoDB @ DocumentDB B
Redshift EMR @) Anena MysQL PostoresaL Keyvalue Document -
Data warehousing Hadoop + 2 Interactive snalytics : EEey
o igd Ros S0 Elasticache e auoe
= MySQL PostgresQL. 537 Reds, Memcached —' Ledger Database
ﬂ@ Elasticsearch Service S Kinesis Data e e eSS . Blockchain
Operational Analytics 77 Analytics Real time Ko7 Neptune e BMe] Templates
8 o™ G o
Data Lake
5 %2 Lake Formation ? Glue
I ssrotie B s e
Data Movement
Database Migration Service | Snowball | ile | Kinesis | Kinesis

In addition, you have the ability to deploy globally in minutes. For example, with a few clicks you

can create an Amazon Aurora Global Database that lets you easily scale database read operations

across the world and place your applications close to your users.

Similarly, you can use integrations to get more value out of your data. For example, you can use

machine learning (ML) capabilities in your Aurora database applications with a few simple steps.

18

https://aws.amazon.com/rds/aurora/global-database/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html

AWS Prescriptive Guidance Migration strategy for relational databases

Using AWS Partners

Database migration can be a challenging project that requires expertise and tools. You can
accelerate your migration and time to results through partnership. AWS Database Migration

Service Partners have the required expertise to help customers migrate to the cloud easily and

securely. These partners have the expertise for both homogeneous migrations such as Oracle to
Oracle, and heterogeneous migrations between different database platforms, such as Oracle to
Amazon Aurora or Microsoft SQL Server to MySQL.

Based on your requirements and preferences, you can use the partner to handle the complete
migration or to help with only some aspects of the migration. In addition, you can use tools and
solutions provided by AWS Partners to help with the migration.

19

https://aws.amazon.com/dms/partners/
https://aws.amazon.com/dms/partners/

AWS Prescriptive Guidance Migration strategy for relational databases

Next steps

For more information about migrating your Oracle Database and SQL Server workloads, see the
following guides on the AWS Prescriptive Guidance website:

« Migrating Oracle databases to the AWS Cloud
« Migrating SQL Server databases to the AWS Cloud

For step-by-step instructions for migrating specific relational databases, see the database
migration patterns. You can use the filters on that page to view patterns by AWS service (for
example, migrations to Aurora), by workload (for example, Oracle database migrations), by planned

use (production or pilot), or by migration strategy (re-architect, rehost, relocate, or replatform).

20

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-oracle-database/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-sql-server/
https://aws.amazon.com/prescriptive-guidance/?awsf.apg-category-filter=categories%23databases&apg-all-cards.sort-by=item.additionalFields.updateDate&apg-all-cards.sort-order=desc&awsf.apg-content-type-filter=contentsubtype%23pattern&awsf.apg-product-filter=*all&awsf.apg-isv-filter=*all&wsf.apg-env-filter=*all&awsf.apg-rtype-filter=*all
https://aws.amazon.com/prescriptive-guidance/?awsf.apg-category-filter=categories%23databases&apg-all-cards.sort-by=item.additionalFields.updateDate&apg-all-cards.sort-order=desc&awsf.apg-content-type-filter=contentsubtype%23pattern&awsf.apg-product-filter=*all&awsf.apg-isv-filter=*all&wsf.apg-env-filter=*all&awsf.apg-rtype-filter=*all

AWS Prescriptive Guidance Migration strategy for relational databases

Resources

« Migrating Oracle databases to the AWS Cloud

« Migrating SQL Server databases to the AWS Cloud
« AWS DMS documentation

« AWS SCT documentation

« Migration playbooks

« AWS database options

» General information about AWS managed database services:
« Amazon RDS
 Amazon Aurora

« Amazon RDS for MySQL

« Amazon RDS for Oracle
o Amazon RDS for PostgreSQL
« Amazon RDS for SQL Server

+« Amazon RDS