
Best practices for performance tuning AWS Glue for Apache Spark jobs

Best practices for performance tuning AWS Glue for Apache Spark
jobs

: Best practices for performance tuning AWS Glue for Apache Spark
jobs

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Table of Contents

Introduction ... 1
Key topics ... 2

Architecture .. 2
Resilient distributed dataset .. 3

Lazy evaluation .. 5
Terminology of Spark applications ... 6

Parallelism ... 7
Catalyst optimizer ... 8

Investigate performance issues .. 10
Identify bottlenecks by using the Spark UI .. 10

Strategies for tuning performance ... 12
Baseline strategy for performance tuning .. 12
Tuning practices for Spark job performance .. 13
Scale cluster capacity .. 13

CloudWatch metrics ... 14
Spark UI .. 14

Use the latest version ... 16
Reduce the amount of data scan ... 17

CloudWatch metrics ... 17
Spark UI .. 18

Parallelize tasks .. 26
CloudWatch metrics ... 27
Spark UI .. 27

Optimize shuffles ... 33
CloudWatch metrics ... 33
Spark UI .. 34

Minimize planning overhead .. 42
CloudWatch metrics ... 42
Spark UI .. 43

Optimize user-defined functions .. 44
Standard Python UDF .. 45
Vectorized UDF .. 46
Spark SQL ... 47
Using pandas for big data .. 47

iii

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Resources .. 48
Document history .. 49
Glossary .. 50

... 50
A ... 51
B ... 54
C ... 56
D ... 59
E ... 63
F ... 65
G ... 66
H ... 67
I .. 68
L ... 71
M .. 72
O .. 76
P ... 78
Q .. 81
R ... 81
S ... 84
T ... 88
U ... 89
V ... 90
W .. 90
Z ... 91

iv

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Best practices for performance tuning AWS Glue for
Apache Spark jobs

Roman Myers, Takashi Onikura, and Noritaka Sekiyama, Amazon Web Services (AWS)

December 2023 (document history)

AWS Glue provides different options for tuning performance. This guide defines key topics for
tuning AWS Glue for Apache Spark. It then provides a baseline strategy for you to follow when
tuning these AWS Glue for Apache Spark jobs. Use this guide to learn how to identify performance
problems by interpreting metrics available in AWS Glue. Then incorporate strategies to address
these problems, maximizing performance and minimizing costs.

This guide covers the following tuning practices:

• Scale cluster capacity

• Use the latest AWS Glue version

• Reduce the amount of data scan

• Parallelize tasks

• Minimize planning overhead

• Optimize shuffles

• Optimize user-defined functions

1

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Key topics in Apache Spark

This section explains Apache Spark basic concepts and key topics for tuning AWS Glue for Apache
Spark performance. It's important to understand these concepts and topics before discussing real-
world tuning strategies.

Architecture

The Spark driver is mainly responsible for splitting your Spark application up into tasks that can be
accomplished on individual workers. The Spark driver has the following responsibilities:

• Running main() in your code

• Generating execution plans

• Provisioning Spark executors in conjunction with cluster manager, which manages resources on
the cluster

• Scheduling tasks and requesting tasks for Spark executors

• Managing task progress and recovery

You use a SparkContext object to interact with the Spark driver for your job run.

A Spark executor is a worker for holding data and running tasks that are passed from the Spark
driver. The number of Spark executors will go up and down with the size of your cluster.

Architecture 2

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Note

A Spark executor has multiple slots so that multiple tasks to be processed in parallel. Spark
supports one task for each virtual CPU (vCPU) core by default. For example, if an executor
has four CPU cores, it can run four concurrent tasks.

Resilient distributed dataset

Spark does the complex job of storing and tracking large data sets across Spark executors. When
you write code for Spark jobs, you don't need to think about the details of storage. Spark provides
the resilient distributed dataset (RDD) abstraction, which is a collection of elements that can be
operated on in parallel and can be partitioned across the Spark executors of the cluster.

The following figure shows the difference in how to store data in memory when a Python script is
run in its typical environment and when it's run in the Spark framework (PySpark).

Resilient distributed dataset 3

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• Python – Writing val = [1,2,3...N] in a Python script keeps the data in memory on the
single machine where the code is running.

• PySpark – Spark provides the RDD data structure to load and process data distributed across
memory on multiple Spark executors. You can generate an RDD with code such as rdd =
sc.parallelize[1,2,3...N], and Spark can automatically distribute and hold data in
memory across multiple Spark executors.

In many AWS Glue jobs, you use RDDs through AWS Glue DynamicFrames and Spark DataFrames.
These are abstractions that allow you to define the schema of data in an RDD and perform
higher-level tasks with that additional information. Because they use RDDs internally, data is
transparently distributed and loaded to multiple nodes in the following code:

• DynamicFrame

dyf= glueContext.create_dynamic_frame.from_options(
 's3', {"paths": ["s3://<YourBucket>/<Prefix>/"]},
 format="parquet",
 transformation_ctx="dyf"
)

• DataFrame

Resilient distributed dataset 4

Best practices for performance tuning AWS Glue for Apache Spark
jobs

df = spark.read.format("parquet")
 .load("s3://<YourBucket>/<Prefix>")

An RDD has following features:

• RDDs consist of data divided into multiple parts called partitions. Each Spark executor stores one
or more partitions in memory, and the data is distributed across multiple executors.

• RDDs are immutable, meaning they can't be changed after they're created. To change a
DataFrame, you can use transformations, which are defined in the following section.

• RDDs replicate data across available nodes, so they can automatically recover from node failures.

Lazy evaluation

RDDs support two types of operations: transformations, which create a new dataset from an
existing one, and actions, which return a value to the driver program after running a computation
on the dataset.

• Transformations – Because RDDs are immutable, you can change them only by using a
transformation.

For example, map is a transformation that passes each dataset element through a function
and returns a new RDD representing the results. Notice that the map method doesn't return an
output. Spark stores the abstract transformation for the future, rather than letting you interact
with the result. Spark will not act on transformations until you call an action.

• Actions – Using transformations, you build up your logical transformation plan. To initiate the
computation, you run an action such as write, count, show, or collect.

All transformations in Spark are lazy, in that they don't compute their results right away.
Instead, Spark remembers a series of transformations applied to some base dataset, such
as Amazon Simple Storage Service (Amazon S3) objects. The transformations are computed
only when an action requires a result to be returned to the driver. This design enables Spark
to run more efficiently. For example, consider the situation where a dataset created through
the map transformation is consumed only by a transformation that substantially reduces the
number of rows, such as reduce. You can then pass the smaller dataset that has undergone both
transformations to the driver, instead of passing the larger mapped dataset.

Lazy evaluation 5

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Terminology of Spark applications

This section covers Spark application terminology. The Spark driver creates an execution plan and
controls the behavior of applications in several abstractions. The following terms are important for
development, debugging, and performance tuning with the Spark UI.

• Application – Based on a Spark session (Spark context). Identified by a unique ID such as
<application_XXX>.

• Jobs – Based on the actions created for an RDD. A job consists of one or more stages.

• Stages – Based on the shuffles created for an RDD. A stage consists of one or more tasks. The
shuffle is Spark's mechanism for redistributing data so that it's grouped differently across RDD
partitions. Certain transformations, such as join(), require a shuffle. Shuffle are discussed in
more detail in the Optimize shuffles tuning practice.

• Tasks – A task is the minimum unit of processing scheduled by Spark. Tasks are created for each
RDD partition, and the number of tasks is the maximum number of simultaneous executions in
the stage.

Terminology of Spark applications 6

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Note

Tasks are the most important thing to consider when optimizing parallelism. The number
of tasks scales with the number of RDD

Parallelism

Spark parallelizes tasks for loading and transforming data.

Consider an example where you perform distributed processing of access log files (named
accesslog1 ... accesslogN) on Amazon S3. The following diagram shows the distributed-
processing flow.

1. The Spark driver creates an execution plan for distributed processing across many Spark
executors.

2. The Spark driver assigns tasks each executor based on the execution plan. By default, the
Spark driver creates RDD partitions (each corresponding to a Spark task) for each S3 object
(Part1 ... N). Then the Spark driver assigns tasks to each executor.

3. Each Spark task downloads its assigned S3 object and stores it in memory in the RDD partition.
In this way, multiple Spark executors download and process their assigned task in parallel.

Parallelism 7

Best practices for performance tuning AWS Glue for Apache Spark
jobs

For more details about the initial number of partitions and optimization, see the Parallelize tasks
section.

Catalyst optimizer

Internally, Spark uses an engine called Catalyst optimizer to optimize execution plans. Catalyst
has a query optimizer that you can use when running high-level Spark APIs, such as Spark SQL,
DataFrame, and Datasets, as described in the following diagram.

Because the Catalyst optimizer doesn't work directly with the RDD API, the high-level APIs
are generally faster than the low-level RDD API. For complex joins, the Catalyst optimizer can
significantly improve performance by optimizing the job run plan. You can see the optimized plan
of your Spark job on the SQL tab of the Spark UI.

Adaptive Query Execution

The Catalyst optimizer performs runtime optimization through a process called Adaptive Query
Execution. Adaptive Query Execution uses runtime statistics to re-optimize the run plan of the
queries while your job is running. Adaptive Query Execution offers several solutions to performance

Catalyst optimizer 8

https://www.databricks.com/glossary/catalyst-optimizer
https://spark.apache.org/docs/latest/sql-programming-guide.html#sql
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes

Best practices for performance tuning AWS Glue for Apache Spark
jobs

challenges, including coalescing post-shuffle partitions, converting sort-merge join to broadcast
join, and skew join optimization, as described in the following sections.

Adaptive Query Execution is available in AWS Glue 3.0 and later, and it's enabled by default in
AWS Glue 4.0 (Spark 3.3.0) and later. Adaptive Query Execution can be turned on and off by using
spark.conf.set("spark.sql.adaptive.enabled", "true") in your code.

Coalescing post-shuffle partitions

This feature reduces RDD partitions (coalesce) after each shuffle based on the map output statistics.
It simplifies the tuning of the shuffle partition number when running queries. You don't need to set
a shuffle partition number to fit your dataset. Spark can pick the proper shuffle partition number
at runtime after you have a large enough initial number of shuffle partitions.

Coalescing post-shuffle partitions is enabled when both spark.sql.adaptive.enabled and
spark.sql.adaptive.coalescePartitions.enabled are set to true. For more information,
see the Apache Spark documentation.

Converting sort-merge join to broadcast join

This feature recognizes when you are joining two datasets of substantially different size, and it
adopts a more efficient join algorithm based on that information. For more details, see the Apache
Spark documentation. Join strategies are discussed in the Optimize shuffles section.

Skew join optimization

Data skew is one of the most common bottlenecks for Spark jobs. It describes a situation in which
data is skewed to specific RDD partitions (and consequently, specific tasks), which delays the overall
processing time of the application. This can often downgrade the performance of join operations.
The skew join optimization feature dynamically handles skew in sort-merge joins by splitting (and
replicating if needed) skewed tasks into roughly even-sized tasks.

This feature is enabled when spark.sql.adaptive.skewJoin.enabled is set to true. For
more details, see the Apache Spark documentation. Data skew is discussed further in the Optimize
shuffles section.

Catalyst optimizer 9

https://spark.apache.org/docs/latest/sql-performance-tuning.html#coalescing-post-shuffle-partitions
https://spark.apache.org/docs/latest/sql-performance-tuning.html#converting-sort-merge-join-to-broadcast-join
https://spark.apache.org/docs/latest/sql-performance-tuning.html#converting-sort-merge-join-to-broadcast-join
https://spark.apache.org/docs/latest/sql-performance-tuning.html#optimizing-skew-join

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Investigate performance issues by using the Spark UI

Before you apply any best practices to tune performance of your AWS Glue jobs, we highly
recommended that you profile the performance and identify the bottlenecks. This will help you
focus on the right things.

For quick analysis, Amazon CloudWatch metrics provide a basic view of your job metrics. The
Spark UI provides a deeper view for performance tuning. To use the Spark UI with AWS Glue, you
must enable Spark UI for your AWS Glue jobs. After you are familiar with the Spark UI, follow the
strategies for tuning Spark job performance to identify and reduce the impact of bottlenecks based
on your findings.

Identify bottlenecks by using the Spark UI

When you open the Spark UI, Spark applications are listed in a table. By default, an AWS Glue job's
App Name is nativespark-<Job Name>-<Job Run ID>. Choose the target Spark app based on
the job run ID to open the Jobs tab. Incomplete job runs, such as streaming job runs, are listed in
Show incomplete applications.

The Jobs tab shows a summary of all jobs in the Spark application. To determine any stage or task
failures, check the total number of tasks. To find the bottlenecks, sort by choosing Duration. Drill
down to the details of long-running jobs by choosing the link shown in the Description column.

The Details for Job page lists the stages. On this page, you can see overall insights such as
duration, the number of succeeded and total tasks, the number of inputs and outputs, and the
amount of shuffle read and shuffle write.

Identify bottlenecks by using the Spark UI 10

https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-jobs.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

The Executor tab shows the Spark cluster capacity in detail. You can check the total number of
cores. The cluster shown in the following screenshot contains 316 active cores and 512 cores in
total. By default, each core can process one Spark task at the same time.

Based on the value 5/5 shown on the Details for Job page, stage 5 is the longest stage, but
it uses only 5 cores out of 512. Because the parallelism for this stage is so low, but it takes a
significant amount of time, you can identify it as a bottleneck. To improve performance, you want
to understand why. To learn more about how to recognize and reduce the impact of common
performance bottlenecks, see Strategies for tuning Spark job performance.

Identify bottlenecks by using the Spark UI 11

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Strategies for tuning Spark job performance

When preparing to tune parameters, use the following best practices:

• Determine your performance goals before beginning to identify problems.

• Use metrics to identify problems before attempting to change tuning parameters.

For the most consistent results when tuning a job, develop a baseline strategy for your tuning
work.

Baseline strategy for performance tuning

Generally, performance tuning is performed in the following workflow:

1. Determine performance goals.

2. Measure metrics.

3. Identify bottlenecks.

4. Reduce the impact of the bottlenecks.

5. Repeat steps 2-4 until you achieve the intended target.

First, determine your performance goals. For example, one of your goals might be to complete
the run of an AWS Glue job within 3 hours. After you define your goals, measure job performance
metrics. Identify trends in metrics and bottlenecks to meet the goals. In particular, identifying
bottlenecks is most important for troubleshooting, debugging, and performance tuning. During
the run of a Spark application, Spark records the status and statistics of each task in the Spark
event log.

In AWS Glue, you can view Spark metrics through the Spark Web UI that's provided by the Spark
history server. AWS Glue for Spark jobs can send Spark event logs to a location that you specify in
Amazon S3. AWS Glue also provides an example AWS CloudFormation template and Dockerfile to
start the Spark history server on an Amazon EC2 instance or your local computer, so you can use
the Spark UI with event logs.

After you determine your performance goals and identify metrics to assess those goals, you can
begin to identify and remediate bottlenecks by using the strategies in following sections.

Baseline strategy for performance tuning 12

https://spark.apache.org/docs/latest/web-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-jobs.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-history.html#monitor-spark-ui-history-cfn
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui-history.html#monitor-spark-ui-history-local

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Tuning practices for Spark job performance

You can use the following strategies for performance tuning AWS Glue for Spark jobs:

• AWS Glue resources:

• Scale cluster capacity

• Use the latest AWS Glue version

• Spark applications:

• Reduce the amount of data scan

• Parallelize tasks

• Optimize shuffles

• Minimize planning overhead

• Optimize user-defined functions

Before you use these strategies, you must have access to metrics and configuration for your Spark
job. You can find this information in the AWS Glue documentation.

From the AWS Glue resource perspective, you can achieve performance improvements by adding
AWS Glue workers and using the latest AWS Glue version.

From an Apache Spark application perspective, you have access to several strategies that can
improve performance. If unnecessary data is loaded into the Spark cluster, you can remove it to
reduce the amount of loaded data. If you have underused Spark cluster resources and you have low
data I/O, you can identify tasks to parallelize. You might also want to optimize heavy data transfer
operations such as joins if they are taking substantial time. You can also optimize your job query
plan or reduce the computational complexity of individual Spark tasks.

To efficiently apply these strategies, you must identify when they are applicable by consulting your
metrics. For more details, see each of the following sections. These techniques work not only for
performance tuning but also for solving typical problems such as out-of-memory (OOM) errors.

Scale cluster capacity

If your job is taking too much time, but executors are consuming sufficient resources and Spark
is creating a large volume of tasks relative to available cores, consider scaling cluster capacity. To
assess if this is appropriate, use the following metrics.

Tuning practices for Spark job performance 13

https://docs.aws.amazon.com/glue/latest/dg/etl-jobs-section.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

CloudWatch metrics

• Check CPU Load and Memory Utilization to determine whether executors are consuming
sufficient resources.

• Check how long the job has run to assess whether the processing time is too long to meet your
performance goals.

In the following example, four executors are running at more than 97 percent CPU load, but
processing has not been completed after about three hours.

Note

If CPU load is low, you probably will not benefit from scaling cluster capacity.

Spark UI

On the Job tab or the Stage tab, you can see the number of tasks for each job or stage. In the
following example, Spark has created 58100 tasks.

CloudWatch metrics 14

Best practices for performance tuning AWS Glue for Apache Spark
jobs

On the Executor tab, you can see the total number of executors and tasks. In the following
screenshot, each Spark executor has four cores and can perform four tasks concurrently.

In this example, the number of Spark tasks (58100) is much larger than the 16 tasks that the
executors can process concurrently (4 executors × 4 cores).

If you observe these symptoms, consider scaling the cluster. You can scale cluster capacity by using
the following options:

• Enable AWS Glue Auto Scaling – Auto Scaling is available for your AWS Glue extract, transform,
and load (ETL) and streaming jobs in AWS Glue version 3.0 or later. AWS Glue automatically adds
and removes workers from the cluster depending on the number of partitions at each stage or
the rate at which microbatches are generated on the job run.

If you observe a situation where the number of workers does not increase even though Auto
Scaling is enabled, consider adding workers manually. However, note that scaling manually
for one stage might cause many workers to be idle during later stages, costing more for zero
performance gain.

After you enable Auto Scaling, you can see the number of executors in the CloudWatch executor
metrics. Use the following metrics to monitor the demand for executors in Spark applications:

• glue.driver.ExecutorAllocationManager.executors.numberAllExecutors

• glue.driver.ExecutorAllocationManager.executors.numberMaxNeededExecutors

For more information about metrics, see Monitoring AWS Glue using Amazon CloudWatch
metrics.

• Scale out: Increase the number of AWS Glue workers – You can manually increase the number
of AWS Glue workers. Add workers only until you observe idle workers. At that point, adding

Spark UI 15

https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

more workers will increase costs without improving results. For more information, see Parallelize
tasks.

• Scale up: Use a larger worker type – You can manually change the instance type of your AWS
Glue workers to use workers with more cores, memory, and storage. Larger worker types make
it possible for you to vertically scale and run intensive data integration jobs, such as memory-
intensive data transforms, skewed aggregations, and entity-detection checks involving petabytes
of data.

Scaling up also assists in cases where the Spark driver needs larger capacity—for instance,
because the job query plan is quite large. For more information about worker types and
performance, see the AWS Big Data Blog post Scale your AWS Glue for Apache Spark jobs with
new larger worker types G.4X and G.8X.

Using larger workers can also reduce the total number of workers needed, which increases
performance by reducing shuffle in intensive operations such as join.

Use the latest AWS Glue version

We recommend using the latest AWS Glue version. There are several optimizations and upgrades
built into each version that might automatically improve job performance. For example, AWS Glue
4.0 provides following new features:

• New optimized Apache Spark 3.3.0 runtime – AWS Glue 4.0 builds upon the Apache Spark 3.3.0
runtime, bringing comparable performance improvements to open source Spark. The Spark 3.3.0
runtime builds upon many of the innovations from Spark 2.x.

• Enhanced Amazon Redshift connector – AWS Glue 4.0 and later versions provide Amazon
Redshift integration for Apache Spark. The integration builds on an existing open source
connector and enhances it for performance and security. The integration helps applications
perform up to 10 times faster. For more information, see the blog post about Amazon Redshift
integration with Apache Spark.

• SIMD-based execution for vectorized reads with CSV and JSON data – AWS Glue version 3.0
and later versions add optimized readers that can significantly speed up overall job performance
compared with row-based readers. For more information about CSV data, see Optimize read
performance with vectorized SIMD CSV reader. For more information about JSON data, see Using
vectorized SIMD JSON reader with Apache Arrow columnar format.

Use the latest version 16

https://aws.amazon.com/blogs/big-data/scale-your-aws-glue-for-apache-spark-jobs-with-new-larger-worker-types-g-4x-and-g-8x/
https://aws.amazon.com/blogs/big-data/scale-your-aws-glue-for-apache-spark-jobs-with-new-larger-worker-types-g-4x-and-g-8x/
https://aws.amazon.com/blogs/aws/new-amazon-redshift-integration-with-apache-spark/
https://aws.amazon.com/blogs/aws/new-amazon-redshift-integration-with-apache-spark/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-csv-home.html#aws-glue-programming-etl-format-simd-csv-reader
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-csv-home.html#aws-glue-programming-etl-format-simd-csv-reader
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-json-home.html#aws-glue-programming-etl-format-simd-json-reader
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-json-home.html#aws-glue-programming-etl-format-simd-json-reader

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Each AWS Glue version will include upgrades of this sort, among many, including connectors, driver
and library updates. For more information, see AWS Glue versions and Migrating AWS Glue jobs to
AWS Glue version 4.0.

Reduce the amount of data scan

To begin, consider loading only the data that you need. You can improve performance just by
reducing the amount of data loaded into your Spark cluster for each data source. To assess whether
this approach is appropriate, use the following metrics.

You can check read bytes from Amazon S3 in CloudWatch metrics and more details in the Spark UI
as described in the Spark UI section.

CloudWatch metrics

You can see the approximate read size from Amazon S3 in ETL Data Movement (Bytes). This metric
shows the number of bytes read from Amazon S3 by all executors since the previous report.
You can use it to monitor ETL data movement from Amazon S3, and you can compare reads to
ingestion rates from external data sources.

If you observe a larger S3 Bytes Read data point than you expected, consider the following
solutions.

Reduce the amount of data scan 17

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-40.html
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-40.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Spark UI

On the Stage tab in the AWS Glue for Spark UI, you can see the Input and Output size. In the
following example, stage 2 reads 47.4 GiB input and 47.7 GiB output, while stage 5 reads 61.2 MiB
input and 56.6 MiB output.

When you use the Spark SQL or DataFrame approaches in your AWS Glue job, the SQL /D
ataFrame tab shows more statistics about these stages. In this case, stage 2 shows number of files
read: 430, size of files read: 47.4 GiB, and number of output rows: 160,796,570.

Spark UI 18

Best practices for performance tuning AWS Glue for Apache Spark
jobs

If you observe that there is a substantial difference in size between the data you are reading in and
the data you are using, try the following solutions.

Amazon S3

To reduce the amount of data loaded into your job when reading from Amazon S3, consider file
size, compression, file format, and file layout (partitions) for your dataset. AWS Glue for Spark jobs
are often used for ETL of raw data, but for efficient distributed processing, you need to inspect the
features of your data source format.

• File size – We recommend keeping the file size of inputs and outputs within a moderate range
(for example, 128 MB). Files that are too small and files that are too large can cause issues.

Spark UI 19

Best practices for performance tuning AWS Glue for Apache Spark
jobs

A large number of small files cause following issues:

• Heavy network I/O load on Amazon S3 because of the overhead required to make requests
(such as List, Get, or Head) for many objects (compared with a few objects that store the
same quantity of data).

• Heavy I/O and processing load on the Spark driver, which will generate many partitions and
tasks and lead to excessive parallelism.

On the other hand, if your file type is not splittable (such as gzip) and the files are too large, the
Spark application must wait until a single task has completed reading the entire file.

To reduce excessive parallelism incurred when an Apache Spark task is created for each small file,
use file grouping for DynamicFrames. This approach reduces the chances of an OOM exception
from the Spark driver. To configure file grouping, set the groupFiles and groupSize
parameters. The following code example uses the AWS Glue DynamicFrame API in an ETL script
with these parameters.

dyf = glueContext.create_dynamic_frame_from_options("s3",
 {'paths': ["s3://input-s3-path/"],
 'recurse':True,
 'groupFiles': 'inPartition',
 'groupSize': '1048576'},
 format="json")

• Compression – If your S3 objects are in the hundreds of megabytes, consider compressing them.
There are various compression formats, which can be broadly classified into two types:

• Unsplittable compression formats such as gzip require the entire file to be decompressed by
one worker.

• Splittable compression formats, such as bzip2 or LZO (indexed), allow partial decompression of
a file, which can be parallelized.

For Spark (and other common distributed-processing engines), you will split up your source
data file into chunks your engine can process in parallel. These units are often referred to as
splits. After your data is in a splittable format, the optimized AWS Glue readers can retrieve splits
from an S3 object by providing the Range option to the GetObject API to retrieve only specific
blocks. Consider the following diagram to see how this would work in practice.

Spark UI 20

https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Compressed data can speed up your application significantly, as long as the files are either of
an optimal size or the files are splittable. The smaller data sizes reduce the data scanned from
Amazon S3 and the network traffic from Amazon S3 to your Spark cluster. On the other hand,
more CPU is required to compress and decompress data. The amount of compute required
scales with the compression ratio of your compression algorithm. Consider this trade-off when
choosing your splittable compression format.

Note

While gzip files are not generally splittable, you can compress individual parquet blocks
with gzip, and those blocks can be parallelized.

• File format – Use a columnar format. Apache Parquet and Apache ORC are popular columnar
data formats. Parquet and ORC store data efficiently by employing column-based compression,
encoding and compressing each column based on its data type. For more information about
Parquet encodings, see Parquet encoding definitions. Parquet files are also splittable.

Columnar formats group values by column and store them together in blocks. When using
columnar formats, you can skip blocks of data that correspond to columns you don't plan to
use. Spark applications can retrieve only the columns you need. Generally, better compression

Spark UI 21

https://parquet.apache.org/
https://orc.apache.org/
https://github.com/apache/parquet-format/blob/master/Encodings.md

Best practices for performance tuning AWS Glue for Apache Spark
jobs

ratios or skipping blocks of data means reading fewer bytes from Amazon S3, leading to better
performance. Both formats also support the following pushdown approaches to reduce I/O:

• Projection pushdown – Projection pushdown is a technique for retrieving only the columns
specified in your application. You specify columns in your Spark application, as shown in the
following examples:

• DataFrame example: df.select("star_rating")

• Spark SQL example: spark.sql("select start_rating from <table>")

• Predicate pushdown – Predicate pushdown is a technique for efficiently processing WHERE and
GROUP BY clauses. Both formats have blocks of data that represent column values. Each block
holds statistics for the block, such as maximum and minimum values. Spark can use these
statistics to determine whether the block should be read or skipped depending on the filter
value used in the application. To use this feature, add more filters in the conditions, as shown
in the following examples as follows:

• DataFrame example: df.select("star_rating").filter("star_rating < 2")

• Spark SQL example: spark.sql("select * from <table> where star_rating <
2")

• File layout – By storing your S3 data to objects in different paths based on how the data will be
used, you can efficiently retrieve relevant data. For more information, see Organizing objects
using prefixes in the Amazon S3 documentation. AWS Glue supports storing keys and values to
Amazon S3 prefixes in the format key=value, partitioning your data by the Amazon S3 path.
By partitioning your data, you can restrict the amount of data scanned by each downstream
analytics application, improving performance and reducing cost. For more information, see
Managing partitions for ETL output in AWS Glue.

Partitioning divides your table into different parts and it keeps the related data in grouped files
based on column values such as year, month, and day, as shown in the following example.

Partitioning by /YYYY/MM/DD
s3://<YourBucket>/year=2023/month=03/day=31/0000.gz
s3://<YourBucket>/year=2023/month=03/day=01/0000.gz
s3://<YourBucket>/year=2023/month=03/day=02/0000.gz
s3://<YourBucket>/year=2023/month=03/day=03/0000.gz
...

You can define partitions for your dataset by modeling it with a table in the AWS Glue Data
Catalog. You can then restrict the amount of data scan by using partition pruning as follows:

Spark UI 22

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-pushdowns.

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• For AWS Glue DynamicFrame, set push_down_predicate (or
catalogPartitionPredicate).

dyf = Glue_context.create_dynamic_frame.from_catalog(
 database=src_database_name,
 table_name=src_table_name,
 push_down_predicate = "year='2023' and month ='03'",
)

• For Spark DataFrame, set a fixed path to prune partitions.

df = spark.read.format("json").load("s3://<YourBucket>/year=2023/month=03/*/*.gz")

• For Spark SQL, you can set the where clause to prune partitions from the Data Catalog.

df = spark.sql("SELECT * FROM <Table> WHERE year= '2023' and month = '03'")

• To partition by date when writing your data with AWS Glue, you set partitionKeys in
DynamicFrame or partitionBy() in DataFrame with the date information in your columns as
follows.

• DynamicFrame

glue_context.write_dynamic_frame_from_options(
 frame= dyf, connection_type='s3',format='parquet'
 connection_options= {
 'partitionKeys': ["year", "month", "day"],
 'path': 's3://<YourBucket>/<Prefix>/'
 }
)

• DataFrame

df.write.mode('append')\
 .partitionBy('year','month','day')\
 .parquet('s3://<YourBucket>/<Prefix>/')

This can improve the performance of the consumers of your output data.

If you don't have access to alter the pipeline that creates your input dataset, partitioning is not
an option. Instead, you can exclude unneeded S3 paths by using glob patterns. Set exclusions

Spark UI 23

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-writing
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.partitionBy.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-s3-home.html#aws-glue-programming-etl-connect-s3

Best practices for performance tuning AWS Glue for Apache Spark
jobs

when reading in DynamicFrame. For example, the following code excludes days in months 01
to 09, in year 2023.

dyf = glueContext.create_dynamic_frame.from_catalog(
 database=db,
 table_name=table,
 additional_options = { "exclusions":"[\"**year=2023/month=0[1-9]/**\"]" },
 transformation_ctx='dyf'
)

You can also set exclusions in the table properties in the Data Catalog:

• Key: exclusions

• Value: ["**year=2023/month=0[1-9]/**"]

• Too many Amazon S3 partitions – Avoid partitioning your Amazon S3 data on columns
that contain a wide range of values, such as an ID column with thousands of values. This can
substantially increase the number of partitions in your bucket, because the number of possible
partitions is the product of all of the fields you have partitioned by. Too many partitions might
cause the following:

• Increased latency for retrieving partition metadata from the Data Catalog

• Increased number of small files, which requires more Amazon S3 API requests (List, Get, and
Head)

For example, when you set a date type in partitionBy or partitionKeys, date-level
partitioning such as yyyy/mm/dd is good for many use cases. However, yyyy/mm/dd/<ID>
might generate so many partitions that it would negatively impact performance as a whole.

On the other hand, some use cases, such as real-time processing applications, require many
partitions such as yyyy/mm/dd/hh. If your use case requires substantial partitions, consider
using AWS Glue partition indexes to reduce latency for retrieving partition metadata from the
Data Catalog.

Databases and JDBC

To reduce data scan when retrieving information from a database, you can specify a where
predicate (or clause) in a SQL query. Databases that do not provide a SQL interface will provide
their own mechanism for querying or filtering.

Spark UI 24

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

When using Java Database Connectivity (JDBC) connections, provide a select query with the where
clause for the following parameters:

• For DynamicFrame, use the sampleQuery option. When using
create_dynamic_frame.from_catalog, configure the additional_options argument as
follows.

query = "SELECT * FROM <TableName> where id = 'XX' AND"
datasource0 = glueContext.create_dynamic_frame.from_catalog(
 database = db,
 table_name = table,
 additional_options={
 "sampleQuery": query,
 "hashexpression": key,
 "hashpartitions": 10,
 "enablePartitioningForSampleQuery": True
 },
 transformation_ctx = "datasource0"
)

When using create_dynamic_frame.from_options, configure the connection_options
argument as follows.

query = "SELECT * FROM <TableName> where id = 'XX' AND"
datasource0 = glueContext.create_dynamic_frame.from_options(
 connection_type = connection,
 connection_options={
 "url": url,
 "user": user,
 "password": password,
 "dbtable": table,
 "sampleQuery": query,
 "hashexpression": key,
 "hashpartitions": 10,
 "enablePartitioningForSampleQuery": True
 }
)

• For DataFrame, use the query option.

query = "SELECT * FROM <TableName> where id = 'XX'"

Spark UI 25

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect-jdbc-home.html#aws-glue-programming-etl-jdbc-samplequery
https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

jdbcDF = spark.read \
.format('jdbc') \
.option('url', url) \
.option('user', user) \
.option('password', pwd) \
.option('query', query) \
.load()

• For Amazon Redshift, use AWS Glue 4.0 or later to take advantage of pushdown support in the
Amazon Redshift Spark connector.

dyf = glueContext.create_dynamic_frame.from_catalog(
 database = "redshift-dc-database-name",
 table_name = "redshift-table-name",
 redshift_tmp_dir = args["temp-s3-dir"],
 additional_options = {"aws_iam_role": "arn:aws:iam::role-account-id:role/rs-role-
name"}
)

• For other databases, consult the documentation for that database.

AWS Glue options

• To avoid a full scan for all continuous job runs, and process only data that wasn't present during
the last job run, enable job bookmarks.

• To limit the quantity of input data to be processed, enable bounded execution with job
bookmarks. This helps to reduce the amount of scanned data for each job run.

Parallelize tasks

To optimize performance, it's important to parallelize tasks for data loads and transformations.
As we discussed in Key topics in Apache Spark, the number of resilient distributed dataset (RDD)
partitions is important, because it determines the degree of parallelism. Each task that Spark
creates corresponds to an RDD partition on a 1:1 basis. To achieve the best performance, you need
to understand how the number of RDD partitions is determined and how that number is optimized.

If you do not have enough parallelism, the following symptoms will be recorded in CloudWatch
metrics and the Spark UI.

Parallelize tasks 26

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://docs.aws.amazon.com/glue/latest/dg/bounded-execution.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html
https://docs.aws.amazon.com/glue/latest/dg/monitoring-awsglue-with-cloudwatch-metrics.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

CloudWatch metrics

Check the CPU Load and Memory Utilization. If some executors are not processing during a phase
of your job, it's appropriate to improve parallelism. In this case, during the visualized timeframe,
Executor 1 was performing a task, but the remaining executors (2, 3, and 4) were not. You can infer
that those executors were not assigned tasks by the Spark driver.

Spark UI

On the Stage tab in the Spark UI, you can see the number of tasks in a stage. In this case, Spark has
performed only one task.

Additionally, the event timeline shows Executor 1 processing one task. This means that the work in
this stage was performed entirely on one executor, while the others were idle.

If you observe these symptoms, try the following solutions for each data source.

CloudWatch metrics 27

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Parallelize data load from Amazon S3

To parallelize data loads from Amazon S3, first check the default number of partitions. You can
then manually determine a target number of partitions, but be sure to avoid having too many
partitions.

Determine the default number of partitions

For Amazon S3, the initial number of Spark RDD partitions (each of which corresponds to a Spark
task) is determined by features of your Amazon S3 dataset (for example, format, compression,
and size). When you create an AWS Glue DynamicFrame or a Spark DataFrame from CSV objects
stored in Amazon S3, the initial number of RDD partitions (NumPartitions) can be approximately
calculated as follows:

• Object size <= 64 MB: NumPartitions = Number of Objects

• Object size > 64 MB: NumPartitions = Total Object Size / 64 MB

• Unsplittable (gzip): NumPartitions = Number of Objects

As discussed in the Reduce the amount of data scan section, Spark divides large S3 objects into
splits that can be processed in parallel. When the object is larger than the split size, Spark splits the
object and creates an RDD partition (and task) for each split. Spark's split size is based on your data
format and runtime environment, but this is a reasonable starting approximation. Some objects are
compressed using unsplittable compression formats such as gzip, so Spark cannot split them.

The NumPartitions value might vary depending on your data format, compression, AWS Glue
version, number of AWS Glue workers, and Spark configuration.

For example, when you load a single 10 GB csv.gz object using a Spark DataFrame, the Spark
driver will create only one RDD Partition (NumPartitions=1) because gzip is unsplittable. This
results in a heavy load on one particular Spark executor and no tasks are assigned to the remaining
executors, as described in following figure.

Check the actual number of tasks (NumPartitions) for the stage on the Spark Web UI Stage tab,
or run df.rdd.getNumPartitions() in your code to check the parallelism.

When encountering a 10 GB gzip file, examine whether the system generating that file can
generate it in a splittable format. If this isn't an option, you might need to scale cluster capacity
to process the file. To run transforms efficiently on the data that you loaded, you will need to
rebalance your RDD across the workers in your cluster by using repartition.

Spark UI 28

https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Manually determine a target number of partitions

Depending on the properties of your data and Spark's implementation of certain functionalities,
you might end up with a low NumPartitions value even though the underlying work can still be
parallelized. If NumPartitions is too small, run df.repartition(N) to increase the number of
partitions so that the processing can be distributed across multiple Spark executors.

In this case, running df.repartition(100) will increase NumPartitions from 1 to 100,
creating 100 partitions of your data, each with a task that can be assigned to the other executors.

The operation repartition(N) divides the entire data equally (10 GB / 100 partitions = 100 MB/
partition), avoiding data skew to certain partitions.

Note

When a shuffle operation such as join is run, the number of partitions is dynamically
increased or decreased depending on the value of spark.sql.shuffle.partitions
or spark.default.parallelism. This facilitates a more efficient exchange of data
between Spark executors. For more information, see the Spark documentation.

Your goal when determining the target number of partitions is to maximize the use of the
provisioned AWS Glue workers. The number of AWS Glue workers and the number of Spark tasks
are related through the number of vCPUs. Spark supports one task for each vCPU core. In AWS
Glue version 3.0 or later, you can calculate a target number of partitions by using the following
formula.

Calculate NumPartitions by WorkerType
numExecutors = (NumberOfWorkers - 1)
numSlotsPerExecutor =
 4 if WorkerType is G.1X
 8 if WorkerType is G.2X
 16 if WorkerType is G.4X
 32 if WorkerType is G.8X
NumPartitions = numSlotsPerExecutor * numExecutors

Example: Glue 4.0 / G.1X / 10 Workers
numExecutors = (10 - 1) = 9 # 1 Worker reserved on Spark Driver
numSlotsPerExecutor = 4 # G.1X has 4 vCpu core (Glue 3.0 or later)
NumPartitions = 9 * 4 = 36

Spark UI 29

https://spark.apache.org/docs/latest/configuration.html#runtime-sql-configuration

Best practices for performance tuning AWS Glue for Apache Spark
jobs

In this example, each G.1X worker provides four vCPU cores to a Spark executor
(spark.executor.cores = 4). Spark supports one task for each vCPU Core, so G.1X Spark
executors can run four tasks simultaneously (numSlotPerExecutor). This number of partitions
makes full use of the cluster if tasks take an equal amount of time. However, some tasks will take
longer than others, creating idle cores. If this happens, consider multiplying numPartitions by 2
or 3 to break up and efficiently schedule the bottleneck tasks.

Too many partitions

An excessive number of partitions creates an excessive number of tasks. This causes a heavy load
on the Spark driver because of overhead related to distributed processing, such as management
tasks and data exchange between Spark executors.

If the number of partitions in your job is substantially larger than your target number of partitions,
consider reducing the number of partitions. You can reduce partitions by using the following
options:

• If your file sizes are very small, use AWS Glue groupFiles. You can reduce the excessive
parallelism resulting from the launch of an Apache Spark task to process each file.

• Use coalesce(N) to merge partitions together. This is a low-cost process. When reducing
the number of partitions, coalesce(N) is preferred over repartition(N), because
repartition(N) performs shuffle to distribute the amount of records in each partition equally.
That increases costs and management overhead.

• Use Spark 3.x Adaptive Query Execution. As discussed in the Key topics in Apache Spark
section, Adaptive Query Execution provides a function to automatically coalesce the number of
partitions. You can use this approach when you can't know the number of partitions until you
perform the execution.

Parallelize data load from JDBC

The number of Spark RDD partitions is determined by configuration. Note that by default only a
single task is run to scan an entire source dataset through a SELECT query.

Both AWS Glue DynamicFrames and Spark DataFrames support parallelized JDBC data load across
multiple tasks. This is done by using where predicates to split one SELECT query into multiple
queries. To parallelize reads from JDBC, configure the following options:

Spark UI 30

https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• For AWS Glue DynamicFrame, set hashfield (or hashexpression) and hashpartition. To
learn more, see Reading from JDBC tables in parallel.

connection_mysql8_options = {
 "url": "jdbc:mysql://XXXXXXXXXX.XXXXXXX.us-east-1.rds.amazonaws.com:3306/test",
 "dbtable": "medicare_tb",
 "user": "test",
 "password": "XXXXXXXXX",
 "hashexpression":"id",
 "hashpartitions":"10"
}
datasource0 = glueContext.create_dynamic_frame.from_options(
 'mysql',
 connection_options=connection_mysql8_options,
 transformation_ctx= "datasource0"
)

• For Spark DataFrame, set numPartitions, partitionColumn, lowerBound, and
upperBound. To learn more, see JDBC To Other Databases.

df = spark.read \
 .format("jdbc") \
 .option("url", "jdbc:mysql://XXXXXXXXXX.XXXXXXX.us-east-1.rds.amazonaws.com:3306/
test") \
 .option("dbtable", "medicare_tb") \
 .option("user", "test") \
 .option("password", "XXXXXXXXXX") \
 .option("partitionColumn", "id") \
 .option("numPartitions", "10") \
 .option("lowerBound", "0") \
 .option("upperBound", "1141455") \
 .load()

df.write.format("json").save("s3://bucket_name/Tests/sparkjdbc/with_parallel/")

Parallelize data load from DynamoDB when using the ETL connector

The number of Spark RDD partitions is determined by the dynamodb.splits parameter. To
parallelize reads from Amazon DynamoDB, configure the following options:

• Increase the value of dynamodb.splits.

Spark UI 31

https://docs.aws.amazon.com/glue/latest/dg/run-jdbc-parallel-read-job.html
https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• Optimize the parameter by following the formula explained in Connection types and options for
ETL in AWS Glue for Spark.

Parallelize data load from Kinesis Data Streams

The number of Spark RDD partitions is determined by the number of shards in the source Amazon
Kinesis Data Streams data stream. If you have only a few shards in your data stream, there will be
only a few Spark tasks. This can result in low parallelism in downstream processes. To parallelize
reads from Kinesis Data Streams, configure the following options:

• Increase the number of shards to obtain more parallelism when loading data from Kinesis Data
Streams.

• If your logic in the micro-batch is complex enough, consider repartitioning the data at the
beginning of the batch, after dropping unneeded columns.

For more information, see Best practices to optimize cost and performance for AWS Glue streaming
ETL jobs.

Parallelize tasks after data load

To parallelize tasks after data load, increase the number of RDD partitions by using the following
options:

• Repartition data to generate a greater number of partitions, especially right after initial load if
the load itself could not be parallelized.

Call repartition() either on DynamicFrame or DataFrame, specifying the number of
partitions. A good rule of thumb is two or three times the number of cores available.

However, when writing a partitioned table, this can lead to an explosion of files (each partition
can potentially generate a file into each table partition). To avoid this, you can repartition your
DataFrame by column. This uses the table partition columns so the data is organized before
writing. You can specify a higher number of partitions without getting small files on the table
partitions. However, be careful to avoid data skew, in which some partition values end up with
most of the data and delay the completion of the task.

• When there are shuffles, increase the spark.sql.shuffle.partitions value. This also can
help with any memory issues when shuffling.

Spark UI 32

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-dynamodb
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-dynamodb
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-cost-and-performance-for-aws-glue-streaming-etl-jobs/
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-cost-and-performance-for-aws-glue-streaming-etl-jobs/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

When you have more than 2,001 shuffle partitions, Spark uses a compressed memory format. If
you have a number close to that, you might want to set the spark.sql.shuffle.paritions
value over that limit to get the more efficient representation.

Optimize shuffles

Certain operations, such as join() and groupByKey(), require Spark to perform a shuffle. The
shuffle is Spark's mechanism for redistributing data so that it's grouped differently across RDD
partitions. Shuffling can help remediate performance bottlenecks. However, because shuffling
typically involves copying data between Spark executors, the shuffle is a complex and costly
operation. For example, shuffles generate the following costs:

• Disk I/O:

• Generates a large number of intermediate files on disk.

• Network I/O:

• Needs many network connections (Number of connections = Mapper × Reducer).

• Because records are aggregated to new RDD partitions that might be hosted on a different
Spark executor, a substantial fraction of your dataset might move between Spark executors
over the network.

• CPU and memory load:

• Sorts values and merges sets of data. These operations are planned on the executor, placing a
heavy load on the executor.

Shuffle is one of the most substantial factors in degraded performance of your Spark application.
While storing the intermediate data, it can exhaust space on the executor's local disk, which causes
the Spark job to fail.

You can assess your shuffle performance in CloudWatch metrics and in the Spark UI.

CloudWatch metrics

If the Shuffle Bytes Written value is high compared with Shuffle Bytes Read, your Spark job might
use shuffle operations such as join() or groupByKey().

Optimize shuffles 33

https://spark.apache.org/docs/latest/rdd-programming-guide.html#shuffle-operations

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Spark UI

On the Stage tab of the Spark UI, you can check the Shuffle Read Size / Records values. You can
also see it on the Executors tab.

In the following screenshot, each executor exchanges approximately 18.6GB/4020000 records with
the shuffle process, for a total shuffle read size of about 75 GB).

The Shuffle Spill (Disk) column shows a large amount of data spill memory to disk, which might
cause a full disk or a performance issue.

If you observe these symptoms and the stage takes too long when compared to your performance
goals, or it fails with Out Of Memory or No space left on device errors, consider the
following solutions.

Optimize the join

The join() operation, which joins tables, is the most commonly used shuffle operation, but it's
often a performance bottleneck. Because join is a costly operation, we recommend not using it

Spark UI 34

Best practices for performance tuning AWS Glue for Apache Spark
jobs

unless it's essential to your business requirements. Double-check that you are making efficient use
of your data pipeline by asking the following questions:

• Are you recomputing a join that is also performed in other jobs you can reuse?

• Are you joining to resolve foreign keys to values that aren't used by the consumers of your
output?

After you confirm that your join operations are essential to your business requirements, see the
following options for optimizing your join in a way that meets your requirements.

Use pushdown before join

Filter out unnecessary rows and columns in the DataFrame before performing a join. This has the
following advantages:

• Reduces the amount of data transfer during shuffle

• Reduces the amount of processing in the Spark executor

• Reduces the amount of data scan

Default
df_joined = df1.join(df2, ["product_id"])

Use Pushdown
df1_select =
 df1.select("product_id","product_title","star_rating").filter(col("star_rating")>=4.0)
df2_select = df2.select("product_id","category_id")
df_joined = df1_select.join(df2_select, ["product_id"])

Use DataFrame Join

Try using a Spark high-level API such as SparkSQL, DataFrame, and Datasets instead of the RDD
API or DynamicFrame join. You can convert DynamicFrame to DataFrame with a method call such
as dyf.toDF(). As discussed in the Key topics in Apache Spark section, these join operations
internally take advantage of query optimization by the Catalyst optimizer.

Shuffle and broadcast hash joins and hints

Spark supports two types of join: shuffle join and broadcast hash join. A broadcast hash join
doesn't require shuffling, and it can require less processing than a shuffle join. However, it's

Spark UI 35

https://archive.apache.org/dist/spark/docs/3.3.0/sql-programming-guide.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

applicable only when joining a small table to a large one. When joining a table that can fit in the
memory of a single Spark executor, consider using a broadcast hash join.

The following diagram shows the high-level structure and steps of a broadcast hash join and a
shuffle join.

The details of each join are as follows:

• Shuffle join:

• The shuffle hash join joins two tables without sorting and distributes the join between the two
tables. It's suitable for joins of small tables that can be stored in the Spark executor's memory.

• The sort-merge join distributes the two tables to be joined by key and sorts them before
joining. It's suitable for joins of large tables.

• Broadcast hash join:

• A broadcast hash join pushes the smaller RDD or table to each of the worker nodes. Then it
does a map-side combine with each partition of the larger RDD or table.

Spark UI 36

Best practices for performance tuning AWS Glue for Apache Spark
jobs

It's suitable for joins when one of your RDDs or tables can fit in memory or can be made to fit
in memory. It's beneficial to do a broadcast hash join when possible, because it doesn't require
a shuffle. You can use a join hint to request a broadcast join from Spark as follows.

DataFrame
from pySpark.sql.functions import broadcast
df_joined= df_big.join(broadcast(df_small), right_df[key] == left_df[key],
 how='inner')

-- SparkSQL
SELECT /*+ BROADCAST(t1) / FROM t1 INNER JOIN t2 ON t1.key = t2.key;

For more information about join hints, see Join hints.

In AWS Glue 3.0 and later, you can take advantage of broadcast hash joins automatically by
enabling Adaptive Query Execution and additional parameters. Adaptive Query Execution converts
a sort-merge join to a broadcast hash join when the runtime statistics of either join side is smaller
than the adaptive broadcast hash join threshold.

In AWS Glue 3.0, you can enable Adaptive Query Execution by setting
spark.sql.adaptive.enabled=true. Adaptive Query Execution is enabled by default in AWS
Glue 4.0.

You can set additional parameters related to shuffles and broadcast hash joins:

• spark.sql.adaptive.localShuffleReader.enabled

• spark.sql.adaptive.autoBroadcastJoinThreshold

For more information about related parameters, see Converting sort-merge join to broadcast join.

In AWS Glue 3.0 and or later, you can use other join hints for shuffle to tune your behavior.

-- Join Hints for shuffle sort merge join
SELECT /*+ SHUFFLE_MERGE(t1) / FROM t1 INNER JOIN t2 ON t1.key = t2.key;
SELECT /*+ MERGEJOIN(t2) / FROM t1 INNER JOIN t2 ON t1.key = t2.key;
SELECT /*+ MERGE(t1) / FROM t1 INNER JOIN t2 ON t1.key = t2.key;

-- Join Hints for shuffle hash join

Spark UI 37

https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-hints.html#join-hints
https://spark.apache.org/docs/latest/sql-performance-tuning.html#adaptive-query-execution
https://archive.apache.org/dist/spark/docs/3.3.0/sql-performance-tuning.html#converting-sort-merge-join-to-broadcast-join

Best practices for performance tuning AWS Glue for Apache Spark
jobs

SELECT /*+ SHUFFLE_HASH(t1) / FROM t1 INNER JOIN t2 ON t1.key = t2.key;

-- Join Hints for shuffle-and-replicate nested loop join
SELECT /*+ SHUFFLE_REPLICATE_NL(t1) / FROM t1 INNER JOIN t2 ON t1.key = t2.key;

Use bucketing

The sort-merge join requires two phases, shuffle and sort, and then merge. These two phases can
overload the Spark executor and cause OOM and performance issues when some of the executors
are merging and others are sorting simultaneously. In such cases, it might be possible to efficiently
join by using bucketing. Bucketing will pre-shuffle and pre-sort your input on join keys, and then
write that sorted data to an intermediary table. The cost of the shuffle and sort steps can be
reduced when joining large tables by defining the sorted intermediary tables in advance.

Bucketed tables are useful for the following:

• Data joined frequently over the same key, such as account_id

• Loading daily cumulative tables, such as base and delta tables that could be bucketed on a
common column

You can create a bucketed table by using the following code.

Spark UI 38

https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning

Best practices for performance tuning AWS Glue for Apache Spark
jobs

df.write.bucketBy(50, "account_id").sortBy("age").saveAsTable("bucketed_table")

Repartition DataFrames on join keys before the join

To repartition the two DataFrames on the join keys before the join, use the following statements.

df1_repartitioned = df1.repartition(N,"join_key")
df2_repartitioned = df2.repartition(N,"join_key")
df_joined = df1_repartitioned.join(df2_repartitioned,"product_id")

This will partition two (still separate) RDDs on the join key before initiating the join. If the two
RDDs are partitioned on the same key with the same partitioning code, RDD records that your plan
to join together will have a high likelihood of being co-located on the same worker before shuffling
for the join. This might improve performance by reducing network activity and data skew during
the join.

Overcome data skew

Data skew is one of the most common causes of a bottleneck for Spark jobs. It occurs when data
isn't uniformly distributed across RDD partitions. This causes tasks for that partition to take much
longer than others, delaying the overall processing time of the application.

To identify data skew, assess the following metrics in the Spark UI:

• On the Stage tab in the Spark UI, examine the Event Timeline page. You can see an uneven
distribution of tasks in the following screenshot. Tasks that are distributed unevenly or are taking
too long to run can indicate data skew.

Spark UI 39

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• Another important page is Summary Metrics, which shows statistics for Spark tasks. The
following screenshot shows metrics with percentiles for Duration, GC Time, Spill (memory),
Spill (disk), and so on.

When the tasks are evenly distributed, you will see similar numbers in all the percentiles. When
there is data skew, you will see very biased values in each percentile. In the example, task
duration is less than 13 seconds in Min, 25th percentile, Median, and 75th percentile. While the
Max task processed 100 times more data than the 75th percentile, its duration of 6.4 minutes is
about 30 times longer. It means that at least one task (or up to 25 percent of the tasks) took far
longer than the rest of the tasks.

If you see data skew, try the following:

• If you use AWS Glue 3.0, enable Adaptive Query Execution by setting
spark.sql.adaptive.enabled=true. Adaptive Query Execution is enabled by default in
AWS Glue 4.0.

You can also use Adaptive Query Execution for data skew introduced by joins by setting the
following related parameters:

• spark.sql.adaptive.skewJoin.skewedPartitionFactor

• spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes

• spark.sql.adaptive.advisoryPartitionSizeInBytes=128m (128 mebibytes or
larger should be good)

• spark.sql.adaptive.coalescePartitions.enabled=true (when you want to
coalesce partitions)

For more information, see the Apache Spark documentation.

• Use keys with a large range of values for the join keys. In a shuffle join, partitions are determined
for each hash value of a key. If a join key's cardinality is too low, the hash function is more likely

Spark UI 40

https://spark.apache.org/docs/latest/sql-performance-tuning.html#optimizing-skew-join

Best practices for performance tuning AWS Glue for Apache Spark
jobs

to do a bad job of distributing your data across partitions. Therefore, if your application and
business logic support it, consider using a higher cardinality key or a composite key.

Use Single Primary Key
df_joined = df1_select.join(df2_select, ["primary_key"])

Use Composite Key
df_joined = df1_select.join(df2_select, ["primary_key","secondary_key"])

Use cache

When you use repetitive DataFrames, avoid additional shuffle or computation by using
df.cache() or df.persist() to cache the calculation results in each Spark executor's memory
and on disk. Spark also supports persisting RDDs on disk or replicating across multiple nodes
(storage level).

For example, you can persist the DataFrames by adding df.persist(). When the cache is no
longer needed, you can use unpersist to discard the cached data.

df = spark.read.parquet("s3://<Bucket>/parquet/product_category=Books/")
df_high_rate = df.filter(col("star_rating")>=4.0)
df_high_rate.persist()

df_joined1 = df_high_rate.join(<Table1>, ["key"])
df_joined2 = df_high_rate.join(<Table2>, ["key"])
df_joined3 = df_high_rate.join(<Table3>, ["key"])
...
df_high_rate.unpersist()

Remove unneeded Spark actions

Avoid running unnecessary actions such as count, show , or collect. As discussed in the Key
topics in Apache Spark section, Spark is lazy. Each transformed RDD might be recomputed each
time you run an action on it. When you use many Spark actions, multiple source accesses, task
calculations, and shuffle runs for each action are being called.

If you don't need collect() or other actions in your commercial environment, consider removing
them.

Spark UI 41

https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Note

Avoid using Spark collect() in commercial environments as much as possible. The
collect() action returns all the results of a calculation in the Spark executor to the Spark
driver, which might cause the Spark driver to return an OOM error. To avoid an OOM error,
Spark sets spark.driver.maxResultSize = 1GB by default, which limits the maximum
data size returned to the Spark driver to 1 GB.

Minimize planning overhead

As discussed Key topics in Apache Spark, the Spark driver generates the execution plan. Based
on that plan, tasks are assigned to the Spark executor for distributed processing. However, the
Spark driver can become a bottleneck if there is a large number of small files or if the AWS Glue
Data Catalog contains a large number of partitions. To identify high planning overhead, assess the
following metrics.

CloudWatch metrics

Check CPU Load and Memory Utilization for the following situations:

• Spark driver CPU Load and Memory Utilization are recorded as high. Normally, the Spark driver
doesn't process your data, so CPU load and memory utilization don't spike. However, if the
Amazon S3 data source has too many small files, listing all the S3 objects and managing a large
number of tasks might cause resource utilization to be high.

• There is a long gap before processing starts in Spark executor. In the following example
screenshot, the Spark executor's CPU Load is too low until 10:57, even though the AWS Glue job
started at 10:00. This indicates that the Spark driver might be taking a long time to generate an
execution plan. In this example, retrieving the large number of partitions in the Data Catalog and
listing the large number of small files in the Spark driver is taking a long time.

Minimize planning overhead 42

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Spark UI

On the Job tab in the Spark UI, you can see the Submitted time. In the following example, the
Spark driver started job0 at 10:56:46, even though the AWS Glue job started at 10:00:00.

You can also see the Tasks (for all stages): Succeeded/Total time on the Job tab. In this case, the
number of tasks is recorded as 58100. As explained in the Amazon S3 section of the Parallelize
tasks page, the number of tasks approximately corresponds to the number of S3 objects. This
means that there are about 58,100 objects in Amazon S3.

For more details about this job and timeline, review the Stage tab. If you observe a bottleneck with
the Spark driver, consider the following solutions:

• When Amazon S3 has too many files, consider the guidance on excessive parallelism in the Too
many partitions section of the Parallelize tasks page.

• When Amazon S3 has too many partitions, consider the guidance on excessive partitioning in
the Too many Amazon S3 partitions section of the Reduce the amount of data scan page. Enable
AWS Glue partition indexes if there are many partitions to reduce latency for retrieving partition
metadata from the Data Catalog. For more information, see Improve query performance using
AWS Glue partition indexes.

Spark UI 43

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• When JDBC has too many partitions, lower the hashpartition value.

• When DynamoDB has too many partitions, lower the dynamodb.splits value.

• When streaming jobs have too many partitions, lower the number of shards.

Optimize user-defined functions

User-defined functions (UDFs) and RDD.map in PySpark often degrade performance significantly.
This is because of the overhead required to accurately represent your Python code in Spark's
underlying Scala implementation.

The following diagram shows the architecture of PySpark jobs. When you use PySpark, the
Spark driver uses the Py4j library to call Java methods from Python. When calling Spark SQL or
DataFrame built-in functions, there is little performance difference between Python and Scala
because the functions run on each executor's JVM using an optimized execution plan.

If you use your own Python logic, such as using map/ mapPartitions/ udf, the task will
run in a Python runtime environment. Managing two environments creates an overhead cost.
Additionally, your data in memory must be transformed for use by the JVM runtime environment's
built-in functions. Pickle is a serialization format used by default for the exchange between the
JVM and Python runtimes. However, the cost of this serialization and deserialization cost is very
high, so UDFs written in Java or Scala are faster than Python UDFs.

To avoid serialization and deserialization overhead in PySpark, consider the following:

Optimize user-defined functions 44

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• Use the built-in Spark SQL functions – Consider replacing your own UDF or map function with
Spark SQL or DataFrame built-in functions. When running Spark SQL or DataFrame built-in
functions, there is little performance difference between Python and Scala because the tasks are
handled on each executor's JVM .

• Implement UDFs in Scala or Java – Consider using a UDF which is written in Java or Scala,
because they run on the JVM.

• Use Apache Arrow-based UDFs for vectorized workloads – Consider using Arrow-based UDFs.
This feature is also known as Vectorized UDF (Pandas UDF). Apache Arrow is a language-agnostic
in-memory data format that AWS Glue can use to efficiently transfer data between JVM and
Python processes. This is currently most beneficial to Python users that work with Pandas or
NumPy data.

Arrow is a columnar (vectorized) format. Its usage is not automatic and might require some
minor changes to configuration or code to take full advantage and ensure compatibility. For
more detail and limitations see Apache Arrow in PySpark.

The following example compares a basic incremental UDF in standard Python, as a Vectorized
UDF, and in Spark SQL.

Standard Python UDF

Example time is 3.20 (sec).

Example code

DataSet
df = spark.range(10000000).selectExpr("id AS a","id AS b")

UDF Example
def plus(a,b):
 return a+b
spark.udf.register("plus",plus)

df.selectExpr("count(plus(a,b))").collect()

Execution plan

== Physical Plan ==

Standard Python UDF 45

https://spark.apache.org/docs/latest/api/python/user_guide/sql/arrow_pandas.html
https://spark.apache.org/docs/latest/api/python/user_guide/sql/arrow_pandas.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate(keys=[], functions=[count(pythonUDF0#124)])
+- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#580]
+- HashAggregate(keys=[], functions=[partial_count(pythonUDF0#124)])
+- Project [pythonUDF0#124]
+- BatchEvalPython [plus(a#116L, b#117L)], [pythonUDF0#124]
+- Project [id#114L AS a#116L, id#114L AS b#117L]
+- Range (0, 10000000, step=1, splits=16)

Vectorized UDF

Example time is 0.59 (sec).

The Vectorized UDF is 5 times faster than the previous UDF example. Checking Physical Plan,
you can see ArrowEvalPython, which shows this application is vectorized by Apache Arrow. To
enable Vectorized UDF, you must specify spark.sql.execution.arrow.pyspark.enabled =
true in your code.

Example code

Vectorized UDF
from pyspark.sql.types import LongType
from pyspark.sql.functions import count, pandas_udf

Enable Apache Arrow Support
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true")

DataSet
df = spark.range(10000000).selectExpr("id AS a","id AS b")

Annotate pandas_udf to use Vectorized UDF
@pandas_udf(LongType())
def pandas_plus(a,b):
 return a+b
spark.udf.register("pandas_plus",pandas_plus)

df.selectExpr("count(pandas_plus(a,b))").collect()

Execution plan

== Physical Plan ==

Vectorized UDF 46

Best practices for performance tuning AWS Glue for Apache Spark
jobs

AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate(keys=[], functions=[count(pythonUDF0#1082L)],
 output=[count(pandas_plus(a, b))#1080L])
+- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#5985]
+- HashAggregate(keys=[], functions=[partial_count(pythonUDF0#1082L)],
 output=[count#1084L])
+- Project [pythonUDF0#1082L]
+- ArrowEvalPython [pandas_plus(a#1074L, b#1075L)], [pythonUDF0#1082L], 200
+- Project [id#1072L AS a#1074L, id#1072L AS b#1075L]
+- Range (0, 10000000, step=1, splits=16)

Spark SQL

Example time is 0.087 (sec).

Spark SQL is much faster than Vectorized UDF, because the tasks are run on each executor's JVM
without a Python runtime . If you can replace your UDF with a built-in function, we recommend
doing so.

Example code

df.createOrReplaceTempView("test")
spark.sql("select count(a+b) from test").collect()

Using pandas for big data

If you are already familiar with pandas and want to use Spark for big data, you can use the pandas
API on Spark. AWS Glue 4.0 and later support it. To get started, you can use the official notebook
Quickstart: Pandas API on Spark. For more information, see the PySpark documentation.

Spark SQL 47

https://pandas.pydata.org/docs/
https://spark.apache.org/docs/latest/api/python/getting_started/quickstart_ps.html
https://spark.apache.org/docs/latest/api/python/getting_started/quickstart_ps.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Resources

• AWS Glue

• Performance Tuning (Spark SQL Guide)

• AWS Glue Optimization Workshop

48

https://aws.amazon.com/glue/
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://catalog.us-east-1.prod.workshops.aws/workshops/3cf2db69-b022-4471-805a-f10daff4676e/en-US/section05

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Initial publication — January 2, 2024

49

https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-aws-glue-for-apache-spark/tuning-aws-glue-for-apache-spark.rss

Best practices for performance tuning AWS Glue for Apache Spark
jobs

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

50

Best practices for performance tuning AWS Glue for Apache Spark
jobs

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which in which the source and target databases are kept in
sync, but only the source database handles transactions from connecting applications while
data is replicated to the target database. The target database doesn’t accept any transactions
during migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 51

Best practices for performance tuning AWS Glue for Apache Spark
jobs

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 52

https://docs.aws.amazon.com/prescriptive-guidance/latest/application-portfolio-assessment-guide/introduction.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 53

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

Best practices for performance tuning AWS Glue for Apache Spark
jobs

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 54

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 55

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 56

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or AWS CodeCommit. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 57

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual formats
such as digital images and videos. For example, AWS Panorama offers devices that add CV to
on-premises camera networks, and Amazon SageMaker provides image processing algorithms
for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 58

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 59

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 60

Best practices for performance tuning AWS Glue for Apache Spark
jobs

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

D 61

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

D 62

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

E

EDA

See exploratory data analysis.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts

E 63

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more
information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

E 64

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

ERP

See enterprise resource planning.

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations

F 65

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with :AWS.

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

FGAC

See fine-grained access control.

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

G

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

G 66

https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.
Detective guardrails detect policy violations and compliance issues, and generate alerts
for remediation. They are implemented by using AWS Config, AWS Security Hub, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

H 67

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

I 68

Best practices for performance tuning AWS Glue for Apache Spark
jobs

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

I 69

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://www.weforum.org/about/klaus-schwab/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

I 70

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

lower environments

See environment.

L 71

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Best practices for performance tuning AWS Glue for Apache Spark
jobs

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

M 72

https://aws.amazon.com/what-is/machine-learning/
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include
microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

M 73

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,
migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

M 74

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html
https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

ML

See machine learning.

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and
milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

M 75

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

O 76

Best practices for performance tuning AWS Glue for Apache Spark
jobs

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

O 77

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

P 78

https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

P 79

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

Privacy by Design

An approach in system engineering that takes privacy into account throughout the whole
engineering process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

P 80

https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

Q 81

Best practices for performance tuning AWS Glue for Apache Spark
jobs

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

R 82

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the
matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

R 83

https://aws.amazon.com/resilience/
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

retire

See 7 Rs.

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API
operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

S 84

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.
The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

S 85

https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

S 86

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

Best practices for performance tuning AWS Glue for Apache Spark
jobs

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your
organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

S 87

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

T 88

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

U 89

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

V 90

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

Best practices for performance tuning AWS Glue for Apache Spark
jobs

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 91

	
	Table of Contents
	Best practices for performance tuning AWS Glue for Apache Spark jobs
	Key topics in Apache Spark
	Architecture
	Resilient distributed dataset
	Lazy evaluation

	Terminology of Spark applications
	Parallelism
	Catalyst optimizer

	Investigate performance issues by using the Spark UI
	Identify bottlenecks by using the Spark UI

	Strategies for tuning Spark job performance
	Baseline strategy for performance tuning
	Tuning practices for Spark job performance
	Scale cluster capacity
	CloudWatch metrics
	Spark UI

	Use the latest AWS Glue version
	Reduce the amount of data scan
	CloudWatch metrics
	Spark UI
	Amazon S3
	Databases and JDBC
	AWS Glue options

	Parallelize tasks
	CloudWatch metrics
	Spark UI
	Parallelize data load from Amazon S3
	Parallelize data load from JDBC
	Parallelize data load from DynamoDB when using the ETL connector
	Parallelize data load from Kinesis Data Streams
	Parallelize tasks after data load

	Optimize shuffles
	CloudWatch metrics
	Spark UI
	Optimize the join
	Overcome data skew
	Use cache
	Remove unneeded Spark actions

	Minimize planning overhead
	CloudWatch metrics
	Spark UI

	Optimize user-defined functions
	Standard Python UDF
	Vectorized UDF
	Spark SQL
	Using pandas for big data

	Resources
	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

