aws

User Guide

AWS Proton

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Proton User Guide

AWS Proton: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Proton User Guide

Table of Contents

WHhat iS AWS ProtON?ccceccssssssensssnssaseesesnsssssssneessssstssess 1
PLATFOIM TEAIMS .ttt ettt s b et s bt et s et e st e s b e b e e ssesbe e esassassenassansan 1
DEVELOPELS ..ttt ettt e e e e et e st et e st e st e st e st e et e eseess et et e basasseeseeseesee st entantesensensaeseeseentenaentanes 2
WOTKFLOW .ttt sttt et et sb et st e s b et et e s b et e e sbe b et ssasaasaesassensesansn 2

SEELING UP ceeeiiiiiiiiiiiiiineeenniiiiiieiiiinesesssane 4
SELING UP WL TAM Lottt ettt te st e s r e et e e e et et e st e s tesba b esseeseeseensessantansansansans 4

SIGN UP FOI AWS .ottt sttt et e st e st e st e s e e s e e se e e et et et et e baesesseesaessessessensansansansan 5
CrEate AN TAM USEI ...ttt ettt s r e st et sa e st s st s b st e st esbe et e s st s enesabesatesesssenens 5
SEIVICE TOLES ...ttt ettt sttt et et b e st et e s b et e e s s et et e b et et e sa s s e bessssessassessesanseseesarsassesesen 6
Setting UP WIth AWS ProtOn ...ttt steste e e e s sa et e st e saessesse s e s e e s e s esnasaensansans 7
Setting up an AMAZON S3 DUCKEL ...ttt st e e s n s 7
Setting up an AWS CodeStar CONNECLIONccuevieiieeeeeeeeee et te e s e snens 8
Setting up account CI/CD pPipeling SEtEINGSccveoveeeeeeeeeeeeeeeeer et 8
SEttiNG UP ThE AWS CLI ..ottt ettt te e s e e e e s et s ae st e s b e s seesa e e s sa e s e tensasaanes 11

Getting StArtedccccciiiiiiieeeeeciiiiiiiiiiiiiieeenseeeiisisseeeettessasssssssssssssssss 12
PrEIEGQUISITES .ottt ettt et et e st e st e s sae e s ae s s ae e st e s ss e e st e s sse e s st esssessssassseessaesssessssessseesssesssesssaesnses 12
Getting Started WOIKTLOWc..ou ettt ettt re e e a e et et b e aa s ba e saennans 13
Getting started With the CONSOLE ...t 14

Step 1: Open the AWS Proton CONSOLEcuiiiciieeeeceeeeeetetestete et saesae e s re e ae s 15
Step 2: Prepare to use the example teMPLates ... 15
Step 3: Create an enviroNmMent teMPLAtEccocvieeeieeeecceeee et 15
Step 4: Create @ Service tEMPLAte ...t 16
Step 5: Create an @NVIFONMENT ...ttt st es e s st e s seessreessaessseessessssessesssnasssanane 17
Step 6: Optional - Create a service and deploy an applicationccccceeveeerereeveeieeceeceececeeene 18
SEEP 7: CLEAN UP. ottt ettt e s te s s e e e e e e st e st e st e st e s b e e se e e e seesae s et ensensassesasseeneensensanes 20
Getting started With the CLI ...ttt ste et s e e e a e sa et nes 21
1. Register an enviroNmMeNt tMPLALE ..ottt a e saeaas 21

2. Register @ Service tEMPLAte ...ttt reaens 22

3. Deploy an ENVIFONMENT ..ottt cteste e e e e et estestessessessse e e s eaestessassassassassnensanaans 23

4. DEPLOY @ SEIVICE ..veteeeeeteeieeeetetecteete e ste e e et et e e e rtesae st e stessassessassaeseessessessantensassassassessasnsensansensansansans 24

D CLBAN UP ettt ettt e e e et et e s te st e st e s s e e e e e et e b et et e sasassaesaese e st et etansansansasseeseenaennanaan 26
TEMPLALE LIDIAIY ettt et a e e st st e st e e ese e e e e e e e a et e taaenes 27
HOW AWS Proton WOFKKS ...ccccciiiiiiiiinninnsnssssscsssssssnsss 28

(@] o 1= ot £ OO T SRRSO ORISR 29

AWS Proton User Guide

ProviSioning METNOMS ...ttt te s e s e s e e e e s et esaesae st e s se s e esaesnenneneans 32
AWS-Managed ProViSIONING ...cccecieierieiieciectecteseseeee e eeesaestestesses e ssessesseeaessessessessassassassessesssensansens 34
CodeBUIL ProVISIONING ..occueciieeieeeecteteeteeee ettt e st e e e e e e e e e e st e stesbessessessaesa e e e e ensensansansan 36
Self-managed ProViSIONING ...ttt e e s e e s e saesaesaessesse s e s e e e e s esaesassassansas 38

AWS Proton termiNOLOGYcccceeeeieeeeeietetecteteses e e e e e e ree st e tesaessesse s e e e e s esessastessassassasssesssseensensansans 41

Template authoring and bundlesiiiiiiiiiiiieeniiiiiiieiiiiiiieeeesiiiiiiiiiittssssssssssssssssssssssssns 44

TEMPLATE DUNALES ...ttt ettt e e e e a et e be st e s s e s seesn e e e st e s etansanes 44

PAFAMELELS ...ttt sttt s e st b e st be st s st s b st et e s b e et e bt s se st e et e sseebenntans 46
PArQmMETEr TYPES ..ottt ettt s e e st st e st e s b e e s e e s e e s e e s b e e st e e b e s e sa e e ae e st e e reessaesneaas 46
USING PAFAMETELS ...eeeiiieertictert ettt es e s seeestessaeessaessseestesssesssaessssesssassssssssesssassssesssessssessseesssessseanns 47
Environment CloudFormation 1aC Parametersccceceeeeeeeneeeeeeeecee e ste e se e e e e saesaessensens 51
Service CloudFormation 1aC PArameELters ... ecieeeceeieeesecee ettt sae e e e e saesaa s 55
Component CloudFormation 1aC PAarameEtersccececeeiereneeeeeee ettt saesse e e ss s s s 58
CloudFormation parameter fIlLEIS ...ttt saesae b 61
CodeBuild provisioning PAramMELtErsccceeieceeciereeceseeee et e st e stesteste s e s e s e e s e s esessessessansansans 69
Terraform 1aC PAramMELEIS ...ttt ettt e te e e s et e st e st e st e s b e s seese e e esaenaasansanean 70

INFrastructure @s COAE fIlES ..ottt sttt ettt sa e nas 71
AWS CloudFormation 1aC filEScociiireriiirerieteectctrestete ettt ettt sse st e s e saesassasaens 72
COAEBUILA DUNALE ...ttt sttt st et ae sttt e st e e sba st e e s e saa st esanans 125
TErrafOrM 1AC FILES ettt sttt sttt e st ae st s e s b e s e e ssesaesaesens 131

SCREMA FILE ettt sttt et s st et e s b et et s e aa st e e esebeseennene 138
Environment sChema reqUIFEMENTSooviieiieieeeceeeeeeeecte et e e saestesaessesse s e e e e nennens 139
Service SChema rEQUITEIMENTSc.cciiieieieceeeeeee ettt e e re e e re e e s e testessessesseesaesnennesaanes 143

MaNIfEST AN WIAP UP oottt ste et et et st e s b e st e s s e e e e e e e et et e saasessassasseenaennan 146
Environment template bundle Wrap UP ..ottt ste e e e neeens 148
Service template bUNALE WIAP UP .ottt sa et st se e se e sa e e s st s aan 149

Template bundle coONSIAEratioNS ...ttt a et et ae e 150

TOMPLALES ..ciieeeiiiiiiiiiiiiiiiiinteennneiiiiieeeeettsssssssssssssssssesss 151

VIBISIONS ...ttt sttt et et st s b e st et e b e st et s b e st e e st e b e et e e st s se s et e e st e seesbeestesesasasatesesnsesseensess 152

PUDBLISI ettt ettt ettt ettt s b et e s b et et s sa b et e sesbe st e e ssensentens 154
Publish environment tEMPLAtEScc.eo ettt ste s ae e nnens 154
PUblish Service teMPLAtes ...ttt st st a et nes 161

VIEW tEIMPLALES ...ttt ettt et e s ae st e e e a et et et e st e sessesseesaeneeseensansansansanes 170

UPAte @ tEMIPLAtE oottt sttt et e e et et et et e st e e e e e e aeaetenaan 174

DELEE tEMPLALES ..ttt e st e e e e et et e b e et e s e e se e e e e et eaenaeneans 176

Template SYNC CONFIGQUIALIONS ...c..oueeieeeeeeee ettt ae s e a et saanan 180

AWS Proton User Guide

PUSRING @ COMIMUL .ottt sttt e et st e b e s s et e s be e e e sa e e e s esaeaesansans 180
SYNCING SErvice tEMPLALES ..ot e et et ae st s s e s se e e e e e e e e e aanes 180
Template SYNC CONSIAEIAtIONSc..couieuieeeeeeeee ettt e be st e e e nennan 181
AR <.ttt a e st e a e et a e st e st s bt et e e st e bt et e e st e ae et e eneesneentenns 182
VIBW ittt sttt ettt ettt s e st et st e st e e s b et e e s ae st e st e st e b et e st e s et et e seebe b e st e sente st enaesasaentenans 188
Bt ettt ettt st et e b et et e b e b e e e e e be st e st e aesse s enaesantenaenans 189
DBLETE ..ttt ettt st sttt et e a et et e e et s e b et et e R et et e s e eb et e e eaatentenans 191
Service SYNC CONFIGUIATIONSouiieeeeecee ettt et et sa e ste e se s e sn e e e e e naanes 191
AWS Proton OPS fIle ettt sttt ettt et s e st e st e s sa st s sb e st e e ssa st e s snanne 192
AR <.ttt a e st e a e et a e st e st s bt et e e st e bt et e e st e ae et e eneesneentenns 195
VIBW ittt sttt ettt ettt s e st et st e st e e s b et e e s ae st e st e st e b et e st e s et et e seebe b e st e sente st enaesasaentenans 197
Bt oottt ettt st et e b e b et e s e b et ebe st e st e s e se st eneesentenaenans 198
DBLETE ..ttt ettt st sttt et e a et et e e et s e b et et e R et et e s e eb et e e eaatentenans 199
ENVIFONIMENTES c.cuuueueeneneeenenneennnnnemneeeeeiiiiiiiiiiiiiiiiiiseiess 201
[AM ROLES ..ttt ettt ettt et st et sa ettt e s a b et e e s s et et esa b et e st ese b entesansetesessasenseneane 201
AWS Proton SEIVICE FOLEcviiiiieeeerietetrestetet ettt sttt e sttt ste e s e st e e ssasse s s e ssansenaen 201
CrEATE ettt st st b e et b e s b e Rt s b e st et e e be st e e st s ae et e et esse e aesneenes 202
Create and provision in the SAmMe aCCOUNT ...t 204
Create in one account and provision iN ANONEr ... 206
Self-managed ProViSIONING ...ttt e s e e e e tessessestesse s e s e s e e s eaesaessansans 211
VIBW ittt ettt st et et s s st et s st e st et s s et et e sa s b et et ese st e st esa s et et e saebe b eueebe e et eaeeae st esaeseteneesantn 214
(] o Yo I | <O OO U TSR TRSRRRR 215
Update an AWS managed provisioning enViroNMENtccccceeveevieceeceeneneneeeeeeeeeeseessessessens 216
Update a self-managed provisioning environmentcccceceeeeereeeereeceseesreceseeseseseeeenens 219
Cancel an environment deployment in Progress ... eeeeeieneereeceeeeceecesee e e ss s ssenns 223
DBLELE ..ttt ettt ettt ettt e e e b et et R e b et e R e e R et et e R e b et e e e se b et esesae e eneenn 225
ACCOUNT CONNECLIONS ..ttt ettt et s st e st et esb e st e s st s sbe st e s st s sbe s e essessesstesntessasnsesens 227
Create an environment with environment account conNNectionscccceveeevvieneniienenenennen. 229
Manage environment account CONNECLIONScciiiviieiieniieiniereerteee et e st e ssressreessre e s e essessnas 230
CUSEOMEr-MANAGEAceeiieeeeeteeeeee ettt te e re e e e e e et e e et e s tesbe s s e e s e esaessessessensassassassesssessensansansasansans 237
Using customer-managed enVIFONMENTSccceeiiieieiienecesesese e see e stessessesseeee e essesaessensens 237
CodeBuild provisioning role Creation ...t sae e e e e s e ae s s 239
SEIVICES .iiiiiiiiiensss 243
AR ..ttt st s b e et a e s e e Rt s b e et et e b e et e e st s ae et e e st e sse e aeentenes 243
WHRAL'S IN @ SEIVICE? ..ottt sttt ste st sttt et st st e e s s e st et ssa s b et e e sasse st e e ssassenasnessassenens 244
SEIVICE TEMPLALES ..ottt s e e et et e s ae st e s e s se e e e sa e e et e tesastassassnesnsnaans 244

AWS Proton User Guide

CrEATE @ SEIVICE ..ottt ettt ettt e st st st st e st e b e et e s st s be st e e st e be et e ssessesntensasnsanns 245
VIBW ettt ettt st e st e st et et s s st et s st et et s s e s be st e s e s b et e st s se st e st ese s et et e s e be b e seese b et e aeeaa st esaesetenaesantn 249
Bt oottt ettt e e b et e s et e e R e e be st e seeRebe e e aeeae st e e e senteneesatan 251

Edit SErvice deSCIIPLION ..c.eeeeeeeeeeee ettt et sa e st et e b e s e s se s e e e e e e aeaeneans 251

Add Or remMOVE SErViCE INSTANCESccvvcererieirenreteesestert et s e sseseesessestesessestessssassessesessessessesass 253
DBLELE ettt ettt sttt ettt e e e b et et s b et e e R et et e R e s et e e se e et esebe st eseean 260
VIBW TNSTANCES ..ttt ettt s a e st et a e st ae s be st e e st e sae st e et e ssesabesntensaane 261
UPALE INSTANCE ..ottt ettt st e st e e et et st e st e s b e s se s s e e se e e e s e testesassessaesaesaennenean 263
UPALE PIPELINE ettt st e st e st st e s e e e e e e et et e bessassaeseesaesaensansanes 269

COMPONENTS ucciireiiirneiiinneiiirmeisirssessissessesssessesssssssssss 276
CoMPONENLS VS. OLNEI FESOUICTESccveeeieieeieeteeeeeeeetete e stestessesse e e e s esesessestessessassassassasssensensensansan 278
AWS PrOtON CONSOLE ...uvouiiiieieieerteteesestet et ste st et e st st sse st e sae st et e e st et e e ssaste st esassestenassansensenanns 279
AWS Proton APl @nd AWS CLI ..ottt seseesteessestestesessestesessessessssessessesassessessesessessensene 280
COMPONENT FAQ ..ttt e st e s ste s st e s sae s st e s saesssae s saessaesssaessaessssasssesssesssesssaesssessseesssessseens 280
COMPONENT SEALES ..ttt st e st e s ae s s e e s sae e s saesssessseessbassseasssesssaesssessseasssasnns 282
COMPONENT JAC FILES .ttt ettt st e st e st e e e e e e et e st et e s aassesseesaeseseenaensansans 283

Using parameters With COMPONENTS ..ot nens 283

AUthOring robUSE 1aC fIlES ...eeeieeeeeeeeee ettt te st s e s e e e e aenan 283
Component AWS CloudFormation @XamPLeccoeceeeeieiecienicceces ettt saesse e e e s eaesaeaens 285

AdMINISTIAtOr SEEPS ..oeveiiieeceeeeeec ettt ste et e e e e e e e et et e st e stasbasseeseesaensansansensansansans 285

DEVELOPET STEPS .ttt e e et sa e st et et e s b e s se e e e s e e e e b et ebe st e beesaeaeeneentennanes 288

REPOSITONIES ...ceereenniiiiiiiiiiiiitenneenisiisicesieesssssssssssssssssssesss 291
Create @ rePOSItOrY LINK ..ottt e e e se ettt b e se s e e e e sa e aea e s e aanes 292
View linked repoSitory data ...ttt st ae s 294
Delete @ rePOSItOry LINK ...ttt st a et st st be s se s e nnens 296

MONIEOKFING ceveiiiiiiiiiiiiiiieennnniiiiiicceiiitesseasssssssssssssessans 298
Automate AWS Proton With EVENtBridge ...ttt 298

EVENT LY PES ettt ettt s st st st e s b s s e e s b e e sa e et e e b e e e b e e s st e e b e e s st e e aeesaaeenraans 298

AWS Proton event XaAmMPLES ...ttt s et saeste s se e s sa e e sa et aesaesaenas 301
EventBridgeTutorial: Send Amazon Simple Notification Service alerts for AWS Proton service
STATUS CRANGES ..ttt st et e st e st e st e e e e e e e e e et et e st e s be b e e saeseentensensansansansanes 302

PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 303

Step 1: Create and subscribe to an AmMazon SNS tOPIC ..cceveeieceeieciececeeree e 303

Step 2: REGISEEr @N @VENT FULE ..ottt s st aes 303

Step 3: TEST YOUI EVENT FULE ...ttt se e e st e st e saesae e s e e nnennens 305

SEEP 4: CLEAN UP ettt ettt teeteste s e e e e e e e st e st e st et e st e s sesse e e esaesae s essensessansassaessasaassansan 306

Vi

AWS Proton User Guide

AWS Proton dashboard ...ttt ettt sa s sesae s sens 307
AWS ProtOn CONSOLEoviiiiieiiricteerestet ettt se st et sae st et s e te st s e sse st e e ssa st e e e e sessesassassensenassansenaen 307
SECUNITY ceiiiiiiiieennniiiiiiiiniiiinnsesssssssssssessssssssssssssssssssssssess 310
Identity and Access ManNAgEMENTcceceeiieiieietetececte e e sa et e stestesaeste s e e s e e e s e aesaessensessanes 311
AUAIENCE ...ttt sttt sttt s b et e s b et et s st e st e e s b et et s se b e st esassa st estesassansasessensensenanes 311
Authenticating With identities ...t anens 312
Managing access USING POLICIES ...coeieiieiieieciececeeeeeete et ste st s e e e e e e e e e sae st e stesse s e sse e e esaenaennan 315
How AWS Proton WOrks With TAM ...ttt sttt sse s e es 317
POLICY EXAMPLES ..ottt ettt et e st e s ae st e st e e e e e e e e s et et e saesbassessaesasssenaansansanean 325
AWS MANAGEA POLICIES ..veeveeeieieteteteeteceeee ettt te et ste s e s e e e e e sa e st e stesaessesseese s e esaesaessesansansansas 338
USING SErVICE-LINKEA FOLES ...uoueeeeeeeeeeeeeteteteete ettt ettt s e e e e s e e st et e saesaesaassessnennannens 354
TrOUBLESNOOTING ..ttt e st st e st et e st e be s e e sa e e esae s esansanean 362
Configuration and vulnerability @analysis ... 363
DAta PrOTECLION ...ttt ae e st e s s e e s sae e s e e s aeessaessaaessnaessaasssasssaesssesseanns 364
Server Side eNCrYPLiON At FEST ...ttt e e e et et e st e s te s e s e e e e aennennan 365
ENCryPLion N traANSIT ..coeeieeeeeeee ettt sre et e s sre s s e e s ae e sae e s ae s sa e s sae e st e s saesssaassnaas 365
AWS Proton encryption key Managementccceieiecieiiecieneseceeeee et stesae e se e e aeaenens 365
AWS Proton encryption CONTEXTcooiiiiiiiiiiiecteerctcsre ettt sressreeseessaeessaesssaesssessneens 365
INFrasStrUCTUIE SECUNILY c.uviieeeeececeeee ettt ste st e s e e e e e se s e et e saesbesaa s s e s seesnesaesaensensansans 367
VPC endpoints (AWS PrivateLink)cccoceieeieeeieeeeeeetesecese et stesaesse e e s s saesae e s 367
LOgging and MONTLOIING ..ceccueeuieeeeieieteceeecectee e e et stestesteste e e e e e e e s e ssesaesaassessassaesaensensansansans 369
RESILIEICE .ottt ettt ettt s s b et et s s et et e e b et esa s s et e st esassastesasansensenn 370
AWS Proton DACKUPS «...eoeeeeeeeeeetetete ettt ste e e ss s sa e st e b e s e se e e e e e e e aeaanes 370
SECUNITY DEST PraCiCES ..ottt et e st esae s be st e e s e e e e e e et et estassessesnnenaannans 371
USE TAM 10 CONLIOL QCCESS ...vouviuiiiieiiirietcteestete sttt ste st ettt sae st e e sse st e s ssasae st e e ssassesaesansan 371
Do not embed credentials in your templates and template bundlesccccoeeeeeeeerrvenenens 371
Use encryption to protect sensitive data ... 372
Use AWS CloudTrail to view and log API Callsooeoveiecieeeeeeecteeeee e 372
Cross-service confused deputy Prevention ...ttt e e e nnas 372
Codebuild CUSTOM SUPPOIT ..ottt ettt steste s e s e s e e e e e e s e saeste st astassessassasnnennan 373
Updating the Environment TEMPLAte ...ttt nan 374
TAGGING ceerrniiiiiiiiiiiinnanennnsiissseeieesesss 378
AWS TQQGGING ..etirriiiiiiieicteerteeetessreestessress e e e st esstesssesssaeesseesstesssaesssessseasseessseesstessstesssessseessessstessensssesnees 378
AWS Proton tagGING ...ccocieeieeiiirieeeesteestesrteeseesstessseessaeesseesssessseesssessssesssessssesssessssasssessssesssassssesssessses 379
AWS Proton AWS mManaged tagsccceeeeriecierienieeecceieeetete e stessestesseessesesesaessessessessessssssensensensens 379
Tag propagation to ProviSioNEd FESOUICESccueceecierrerereeeeeeeeceectestessessesseeeseessessessesaessessens 380

vii

AWS Proton User Guide

CustomMeEr MANAGEA TAGS .ovevieieieieteteteer et ettt e steste st e st e s e e e e e et e aestesaessessassaesessnensansansansan 383
Create tags using the console and CLI ...ttt sre e 383
Create tags using the AWS Proton AWS CLI ...ttt e e e n e nns 385
TrouDBLESHOOTING ..ciiiiiiiieiiiiiiiiciiiiiiiieeneaeiiiiiieeeettttesssssssssssssseeessanes 386
Deployment errors that reference AWS CloudFormation dynamic parametersccccuuue.e. 386

PN VAT o4 o o 4 T 11T - TN 388
DOCUMENT NISTOIY auueuiiiiiiiiiiiiiiieennnniiiiiiiieeinieeasassssssssssssssseesssnse 389
AWS GLOSSANY .cceeernnneieseecennnssssess 394

viii

AWS Proton User Guide

What is AWS Proton?

AWS Proton is:

« Automated infrastructure as code provisioning and deployment of serverless and container-
based applications

The AWS Proton service is a two-pronged automation framework. As an administrator, you
create versioned service templates that define standardized infrastructure and deployment
tooling for serverless and container-based applications. As an application developer, you can
select from the available service templates to automate your application or service deployments.

AWS Proton identifies all existing service instances that are using an outdated template version
for you. As an administrator, you can request AWS Proton to upgrade them with one click.

« Standardized infrastructure

Platform teams can use AWS Proton and versioned infrastructure as code templates. They
can use these templates to define and manage standard application stacks that contain the
architecture, infrastructure resources, and the Cl/CD software deployment pipeline.

« Deployments integrated with CI/CD

When developers use the AWS Proton self-service interface to select a service template, they're
selecting a standardized application stack definition for their code deployments. AWS Proton
automatically provisions the resources, configures the CI/CD pipeline, and deploys the code into
the defined infrastructure.

AWS Proton for platform teams

As an administrator, you or members of your platform team, create environment templates and
service templates containing infrastructure as code. The environment template defines shared
infrastructure used by multiple applications or resources. The service template defines the type

of infrastructure that's needed to deploy and maintain a single application or microservice in

an environment. An AWS Proton service is an instantiation of a service template, which normally
includes several service instances and a pipeline. An AWS Proton service instance is an instantiation
of a service template in a specific environment. You or others in your team can specify which
environment templates are compatible with a given service template. For more information about
templates, see AWS Proton templates.

Platform teams 1

AWS Proton User Guide

You can use the following infrastructure as code providers with AWS Proton:

« AWS CloudFormation

o Terraform

AWS Proton for developers

As an application developer, you select a standardized service template that AWS Proton uses to
create a service that deploys and manages your application in a service instance. An AWS Proton
service is an instantiation of a service template, which normally includes several service instances
and a pipeline.

AWS Proton workflow

The following diagram is a visualization of the main AWS Proton concepts discussed in the
preceding paragraph. It also offers a high-level overview of what constitutes a simple AWS Proton
workflow.

P AWS Prot
. o e Service

N

0 o o @
N

e R i R
S

Environment m D S R @

templates
Environments Service instances
Q> —)
—
Administrators |
|

© — DA . 9 a9
> — " > . <f>| <---
——b
Service AWS Proton Service e Source Developers
template Management Console template Pipeline code

w

an Administrator, you create and register an Environment Template with AWS Proton, which
defines the shared resources.

As

Developers 2

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://www.terraform.io/

AWS Proton User Guide

(2]

Proton deploys one or more Environments, based on an Environment Template.

(3]

As an Administrator, you create and register a Service Template with AWS Proton, which defines
the related infrastructure, monitoring, and CI/CD resources as well as compatible Environment
Templates.

@

As a Developer, you select a registered Service Template and provide a link to your Source code
repository.

s

AWS Proton provisions the Service with a ClI/CD Pipeline for your Service instances.

6]

AWS Proton provisions and manages the Service and the Service Instances that are running

the Source code as was defined in the selected Service Template. A Service Instance is an
instantiation of the selected Service Template in an Environment for a single stage of a Pipeline
(for example Prod).

Workflow

AWS

AWS Proton User Guide

Setting up

Complete the tasks in this section so that you can create and register service and environment
templates. You need these to deploy environments and services with AWS Proton.

® Note

We're offering AWS Proton at no additional expense. You can create, register, and maintain
service and environment templates at no charge. You can also count on AWS Proton to self-
manage its own operations, such as storage, security, and deployment. The only expenses
that you incur while using AWS Proton are the following.

» Costs of deploying and using AWS Cloud resources that you instructed AWS Proton to
deploy and maintain for you.
o Costs of maintaining an AWS CodeStar connection to your code repository.

» Costs of maintaining an Amazon S3 bucket, if you use a bucket to provide inputs to AWS
Proton. You can avoid these costs if you switch to the section called “Template sync

configurations” using Git repositories for your the section called “Template bundles”.

Topics

» Setting up with IAM

» Setting up with AWS Proton

Setting up with IAM

When you sign up for AWS, your AWS account is automatically signed up for all services in AWS,
including AWS Proton. You're charged only for the services and resources that you use.

(® Note

You and your team, including administrators and developers, must all be under the same
account.

Setting up with IAM 4

AWS Proton

User Guide

Sign up for AWS

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code

on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign

administrative access to a user, and use only the root user to perform tasks that require root

user access.

Create an IAM user

To create an administrator user, choose one of the following options.

Choose To
one

way to
manage

your
administr
ator

In IAM Use short-term
Identity credentials to access
Center AWS.

(Recomme This aligns with the

ded) security best practices
. For information
about best practices

, see Security best

By

Following the instructions
in Getting started in the
AWS IAM Identity Center
User Guide.

You can also

Configure programmatic
access by Configuring the
AWS CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface User
Guide.

Sign up for AWS

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

AWS Proton User Guide

Choose To By You can also
one

way to

manage

your

administr

ator

practices in IAM in the
IAM User Guide.

In IAM Use long-term Following the instructions ~ Configure programmatic
credentials to access in Creating your first IAM access by Managing access
(Not AWS. admin user and user group keys for IAM users in the IAM
recommer . : :
) in the IAM User Guide. User Guide.
ed

Setting up AWS Proton service roles

There are a few |IAM roles that you might want to create for different parts of your AWS Proton
solution. You can create them in advance using the IAM console, or you can use the AWS Proton
console to create them for you.

Create AWS Proton environment roles to allow AWS Proton to make API calls to other AWS services,
like AWS CloudFormation, AWS CodeBuild, and various compute and storage services, on your
behalf to provision resources for you. A AWS-managed provisioning role is required when an
environment or any of the service instances running in it use AWS-managed provisioning. A

CodeBuild role is required when an environment or any of its service instances use CodeBuild
provisioning. To learn more about the AWS Proton environment roles, see the section called

“IAM Roles". When you create an environment, you can use the AWS Proton console to choose an

existing role for either of these two roles, or to create a role with administrative privileges for you.

Similarly, create AWS Proton pipeline roles to allow AWS Proton to make API calls to other services
on your behalf to provision a Cl/CD pipeline for you. To learn more about the AWS Proton pipeline
roles, see the section called “Pipeline service roles". For more information about configuring CI/CD

settings, see the section called “Setting up account Cl/CD pipeline settings".

Service roles 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Proton User Guide

® Note

Because we don't know which resources you will define in your AWS Proton templates,

the roles that you create using the console have broad permissions and can be used

as both the AWS Proton pipeline service roles and the AWS Proton service roles. For
production deployments, we recommend that you scope down the permissions to the
specific resources that will be deployed by creating customized policies for both the AWS
Proton pipeline service roles and the AWS Proton environment service roles. You can create
and customize these roles by using the AWS CLI or IAM. For more information, see Service
roles for AWS Proton and Create a service.

Setting up with AWS Proton

If you want to use the AWS CLI to run AWS Proton APIs, verify that you have installed it. If you
haven't installed it, see Setting up the AWS CLI.

AWS Proton specific configuration:

« To create and manage templates:

« If you're using template sync configurations, set up an AWS CodeStar connection.

o Otherwise, set up an Amazon S3 bucket.

« To provision infrastructure:

» For self-managed provisioning, you must set up an AWS CodeStar connection.

« (Optional) To provision pipelines:

« For AWS-managed provisioning and CodeBuild-based provisioning, set up pipeline roles.

» For self-managed provisioning, set up a pipeline repository.

For more information about provisioning methods, see the section called "AWS-managed
provisioning”.

Setting up an Amazon S3 bucket

To set up an S3 bucket, follow the instructions at Create your first S3 bucket to set up an S3
bucket. Place your inputs to AWS Proton in the bucket where AWS Proton can retrieve them. These

Setting up with AWS Proton 7

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html

AWS Proton User Guide

inputs are known as template bundles. You can learn more about them in other sections of this
guide.

Setting up an AWS CodeStar connection

To connect AWS Proton to a repository, you create an AWS CodeStar connection that activates a
pipeline when a new commit is made on a third-party source code repository.

AWS Proton uses the connection to:

« Activate a service pipeline when a new commit is made on your repository source code.
« Make a pull request on an infrastructure as code repository.

» Create a new template minor or major version whenever a commit is pushed to a template
repository that changes one of your templates, if the version doesn't already exist.

You can connect to Bitbucket, GitHub, GitHub Enterprise and GitHub Enterprise Server repositories
with CodeConnections. For more information, see CodeConnections in the AWS CodePipeline User
Guide.

To set up a CodeStar connection.

1. Open the AWS Proton console.

2. Inthe navigation pane, select Settings and then Repository connections to take you to the
Connections page in Developer Tools Settings. The page displays a list of connections.

3. Choose Create connection and follow the instructions.

Setting up account CI/CD pipeline settings

AWS Proton can provision CI/CD pipelines for deploying application code into your service
instances. The AWS Proton settings you need for pipeline provisioning depend on the provisioning
method you choose for your pipeline.

AWS-managed and CodeBuild-based provisioning—set up pipeline roles

With AWS-managed provisioning and CodeBuild provisioning, AWS Proton provisions pipelines

for you. Therefore, AWS Proton needs a service role that provides permissions for provisioning
pipelines. Each one of these two provisioning methods uses its own service role. These roles are

Setting up an AWS CodeStar connection 8

https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://console.aws.amazon.com/proton/

AWS Proton User Guide

shared across all AWS Proton service pipelines and you configure them once in your account
settings.

To create pipeline service roles using the console

—

Open the AWS Proton console.

2. In the navigation pane, choose Settings, and then choose Account settings.
3. Inthe Account CI/CD settings page, choose Configure.
4. Do one of the following:

« To have AWS Proton create a pipeline service role for you

[To enable AWS-managed provisioning of pipelines] In the Configure account settings
page, in the AWS-managed provisioning pipeline role section:

a. Select New service role.

b. Enter a name for the role, for example, myProtonPipelineServiceRole.

c. Check the check box to agree to create an AWS Proton role with administrative
privileges in your account.

[To enable CodeBuild-based provisioning of pipelines] In the Configure account settings
page, in the CodeBuild pipeline role section, choose Existing service role, and choose the
service role that you created in the CloudFormation pipeline role section. Or, if you did
not assign a CloudFormation pipeline role, repeat the previous three steps to create a new
service role.

« To choose existing pipeline service roles

[To enable AWS-managed provisioning of pipelines] In the Configure account settings
page, in the AWS-managed provisioning pipeline role section, choose Existing service
role, and choose a service role in your AWS account.

[To enable CodeBuild provisioning of pipelines] In the Configure account settings page,
in the CodeBuild pipeline provisioning role section, choose Existing service role, and
choose a service role in your AWS account.

5. Choose Save changes.

Your new pipeline service role is displayed on the Account settings page.

Setting up account Cl/CD pipeline settings 9

https://console.aws.amazon.com/proton/

AWS Proton User Guide

Self-managed provisioning—set up a pipeline repository

With self-managed provisioning, AWS Proton sends a pull request (PR) to a provisioning repository
that you have set up, and your automation code is responsible for provisioning pipelines. Therefore,
AWS Proton doesn't need a service role to provision pipelines. Instead, it needs a registered
provisioning repository. Your automation code in the repository has to assume an appropriate role
that provides permissions for provisioning pipelines.

To register a pipeline provisioning repository using the console

1. Create a CI/CD pipeline provisioning repository if you haven't yet created one. For more
information about pipelines in self-managed provisioning, see the section called “Self-
managed provisioning”.

2. In the navigation pane, choose Settings, and then choose Account settings.
3. Inthe Account CI/CD settings page, choose Configure.

4. In the Configure account settings page, in the ClI/CD pipeline repository section:

a. Select New repository, and then choose one of the repository providers.

b. For CodeStar connection, choose one of your connections.

(® Note

If you don't yet have a connection to the relevant repository provider account,
choose Add a new CodeStar connection, complete the connection creation
process, and then choose the refresh button next to the CodeStar connection
menu. You should now be able to choose your new connection in the menu.

c. For Repository name, choose your pipeline provisioning repository. The drop-down menu
shows the list of repositories in the provider account.

d. For Branch name, choose one of the repository branches.

5. Choose Save changes.

Your pipeline repository is displayed on the Account settings page.

Setting up account Cl/CD pipeline settings 10

AWS Proton User Guide

Setting up the AWS CLI

To use the AWS CLI to make AWS Proton API calls, verify that you have installed the latest version
of the AWS CLI. For more information, see Getting started with the AWS CLI in the AWS Command
Line Interface User Guide. Then, to get started using the AWS CLI with AWS Proton, see the section
called “Getting started with the CLI".

Setting up the AWS CLI 11

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Proton User Guide

Getting started with AWS Proton

Before getting started, get set up to use AWS Proton and verify you have met the Getting started
prerequisites.

Get started with AWS Proton by choosing one or more of the following paths:

 Follow a guided example console or CLI workflow through documentation links.

« Run through a guided example console workflow.

« Run through a guided example AWS CLI workflow.

Topics

Prerequisites
Getting started workflow

Getting started with the AWS Management Console
Getting started with the AWS CLI

The AWS Proton template library

Prerequisites

Before you start using AWS Proton, make sure that the following prerequisites are met. For more
information, see Setting up.

» You have an IAM account with administrator permissions. For more information, see Setting up
with IAM.

» You have the AWS Proton service role and the AWS Proton pipeline service role are attached to
your account. For more information, see Setting up AWS Proton service roles and Service roles
for AWS Proton.

» You have an AWS CodeStar connection. For more information, see Setting up an AWS CodeStar
connection.

» You're familiar with creating AWS CloudFormation templates and Jinja parameterization. For
more information, see What is AWS CloudFormation? in the AWS CloudFormation User Guide and

Jinja website.

Prerequisites 12

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://palletsprojects.com/p/jinja/

AWS Proton User Guide

» You have working knowledge of AWS infrastructure services.

» You're logged into your AWS account.

Getting started workflow

Learn to create template bundles, create and register templates, and create environments and
services by following the example steps and links.

Before starting, verify that you created an AWS Proton service role.

If your service template includes an AWS Proton service pipeline, verify that you created an AWS
CodeStar connection and a AWS Proton pipeline service role.

For more information, see The AWS Proton service APl Reference.

Example: Getting started workflow

1. Refer to the diagram in How AWS Proton works for a high-level view of AWS Proton inputs and

outputs.

2. Create an environment bundle and a service template bundle.

a. ldentify input parameters.

b. Create a schema file.

c. Create infrastructure as code (1aC) files.

d. To wrap up your template bundle, create a manifest file and organize your laC files,

manifest files, and schema file in directories.

e. Make your template bundle accessible to AWS Proton.

3. Create and register an environment template version with AWS Proton.

When you use the console to create and register a template, a template version is
automatically created.

When you use the AWS CLI to create and register a template:

a. Create an environment template.

b. Create an environment template version.

Getting started workflow 13

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html

AWS Proton User Guide

For more information, see CreateEnvironmentTemplate and
CreateEnvironmentTemplateVersion in the AWS Proton API reference.

4. Publish your environment template to make it available for use.

For more information, see UpdateEnvironmentTemplateVersion in the AWS Proton API

reference.

5. To create an environment, select a published environment template version and provide values

for required inputs.

For more information, see CreateEnvironment in the AWS Proton API reference.

6. Create and register a service template version with AWS Proton.

When you use the console to create and register a template, a template version is
automatically created.

When you use the AWS CLI to create and register a template:

a. Create a service template.

b. Create a service template version.

For more information, see CreateServiceTemplate and CreateServiceTemplateVersion in the
AWS Proton API reference.

7. Publish your service template to make it available for use.

For more information, see UpdateServiceTemplateVersion in the AWS Proton API reference.

8. To create a service, select a published service template version and provide values for required

inputs.

For more information, see CreateService in the AWS Proton API reference.

Getting started with the AWS Management Console

Get started with AWS Proton

» Create and view an environment template.

Getting started with the console 14

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironmentTemplate.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironmentTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateEnvironmentTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplate.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateService.html

AWS Proton User Guide

» Create, view, and publish a service template that uses the environment template that you just
created.

» Create an environment and service (optional).

» Delete the service template, environment template, environment and service, if created.

Step 1: Open the AWS Proton console

« Open the AWS Proton console

Step 2: Prepare to use the example templates

1. Create a Codestar Connection to Github and name the connection my-proton-connection.

2. Navigate to https://qgithub.com/aws-samples/aws-proton-cloudformation-sample-templates

3. Create a fork of the repository in your Github account.

Step 3: Create an environment template

In the navigation pane, choose Environment templates.

1. In the Environment templates page, choose Create Environment template.

2. In the Create environment template page, in the Template options section, choose Create a
template for provisioning new environments.

In the Template bundle source section, choose Sync a template bundle from Git.
In the Template definition repository section, select Choose a linked Git repository.
Select my-proton-connection from the Repository list.

Select main from the Branch list.

N o v & W

In the Proton environment template details section.

a. Enter the template name as fargate-env.
b. Enter the environment template display name as My Fargate Environment.
c. (Optional) Enter a description for the environment template.

8. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Step 1: Open the AWS Proton console 15

https://console.aws.amazon.com/proton/
https://github.com/aws-samples/aws-proton-cloudformation-sample-templates

AWS Proton User Guide

9. Choose Create Environment template.

You're now on a new page that displays the status and details for your new environment
template. These details include a list of AWS and customer managed tags. AWS Proton
automatically generates AWS managed tags for you when you create AWS Proton resources.
For more information, see AWS Proton resources and tagging.

10. The status of a new environment template status starts in the Draft state. You and others with
proton:CreateEnvironment permissions can view and access it. Follow the next step to
make the template available to others.

11. In the Template versions section, choose the radio button to the left of the minor version of
the template you just created (1.0). As an alternative, you can choose Publish in the info alert
banner and skip the next step.

12. In the Template versions section, choose Publish.

13. The template status changes to Published. Because it's the latest version of the template, it's
the Recommended version.

14. In the navigation pane, select Environment templates.

A new page displays a list of your environment templates along with template details.

Step 4: Create a service template

Create a service template.

1. In the navigation pane, choose Service templates.

2. Inthe Service templates page, choose Create Service template.

W

In the Create service template page, in the Template bundle source section, choose Sync a
template bundle from Git.

In the Template section, select Choose a linked Git repository.
Select my-proton-connection from the Repository list.

Select main from the Branch list.

N o v A

In the Proton service template details section.

a. Enter the service template name as backend-fargate-svc.
b. Enter the service template display name as My Fargate Service.

c. (Optional) Enter a description for the service template.

Step 4: Create a service template 16

AWS Proton User Guide

8.

10.

11.

12.

13.

14.
15.

16.

In the Compatible environment templates section.

o Check the check-box to the left of the environment template My Fargate Environment to
select the compatible environment template for the new service template.

For Encryption settings, keep the defaults.

In the Pipeline definition section.

» Keep the This template includes a CI/CD pipeline button selected.

Choose Create service template.

You're now on a new page that displays the status and details for your new service template,
including a list of AWS and customer managed tags.

The status of a new service template status starts in the Draft state. Only administrators can
view and access it. To make the service template available for use by developers, follow the
next step.

In the Template versions section, choose the radio button to the left of the minor version of
the template you just created (1.0). As an alternative, you can choose Publish in the info alert
banner and skip the next step.

In the Template versions section, choose Publish.

The template status changes to Published.

The first minor version of your service template is published and available for use by
developers. Because it's the latest version of the template, it's the Recommended version.

In the navigation pane, choose Service templates.

A new page displays a list of your service templates and details.

Step 5: Create an environment

In the navigation pane, choose Environments.

1.
2.

Choose Create environment.

In the Choose an environment template page, select the template that you just created. It's
named My Fargate Environment. Then, choose Configure.

In the Configure environment page, in the Provisioning section, choose Provision through
AWS Proton.

Step 5: Create an environment 17

AWS Proton User Guide

11.

In the Deployment account section, select This AWS account.
In Environment Settings, enter the environment name as my-fargate-environment.

In the Environment roles section, select New service role or, if you have already created an
AWS Proton service role, select Existing service role.

a. Select New service role to create a new role.

i. Enter the Environment role name as MyProtonServiceRole.

ii. Check the check box to agree to create an AWS Proton service role with administrative
privileges for your account.

b. Select Existing service role to use an existing role.

« Select your role in the Environment role name drop down field.
Choose Next.
On the Configure custom settings page, use the defaults.
Choose Next and review your inputs.

Choose Create.

View the environment details and status, as well as the AWS managed tags and customer
managed tags for your environment.

In the navigation pane, choose Environments.

A new page displays a list of your environments along with the status and other environment
details.

Step 6: Optional - Create a service and deploy an application

—

el A

o

Open the AWS Proton console.

In the navigation pane, choose Services.
In the Services page, choose Create service.

In the Choose a service template page, select the My Fargate Service template by choosing
the radio button at the top-right corner of the template card.

Choose Configure at the lower right corner of the page.

In the Configure service page, in the Service settings section, enter the service name my-
service.

Step 6: Optional - Create a service and deploy an application 18

https://console.aws.amazon.com/proton/

AWS Proton User Guide

10.

11.

12.

13.

14.

(Optional) Enter a description for the service.

In the Service repository settings section:

a. For CodeStar connection, choose your connection from the list.
b. For Repository name, choose the name of your source code repository from the list.
c. For Branch name, choose the name of your source code repository branch from the list.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag. Then choose Next.

In the Configure custom settings page, in the Service instances section, in the New instance
section, follow the next steps to provide custom values for your service instance parameters.
a. Enter the instance name my-app-service.

b. Choose the environment my-fargate-environment for your service instance.

c. Keep the defaults for the remaining instance parameters.

d. Keep the defaults for Pipeline inputs.

e. Choose Next and review your inputs.

f. Choose Create and view your service status and details.

In the service details page, view the status of your service instance and pipeline by choosing
the Overview and Pipeline tabs. On these pages you can also view AWS and customer
managed tags. AWS Proton automatically creates AWS managed tags for you. Choose Manage
tags to create and modify customer managed tags. For more information about tagging, see
AWS Proton resources and tagging.

After the service is Active, in the Overview tab, in the Service Instances section, choose the
name of your service instance, my-app-service.

You are now on the service instance detail page.

To view your application, in the Outputs section, copy the ServiceEndpoint link to your
browser.

You see an AWS Proton graphic in the web page.

After the service is created, in the navigation pane, choose Services to view a list of your
services.

Step 6: Optional - Create a service and deploy an application 19

AWS Proton User Guide

Step 7: Clean up.

1. Open the AWS Proton console.

2. Delete a service (if you created one)

a. Inthe navigation pane, choose Services.

b. Inthe Services page, choose the service name my-service.

You're now on the service detail page for my-service.
c. Inthe upper right-hand corner of the page, choose Actions and then Delete.
d. A modal prompts you to confirm the delete action.
e. Follow the instructions and choose Yes, delete.

3. Delete an environment

a. Inthe navigation pane, choose Environments.

b. Inthe Environments page, select the radio button the left of the environment that you
just created.

c. Choose Actions, then Delete.
d. A modal prompts you to confirm the delete action.
e. Follow the instructions and choose Yes, delete.

4. Delete a service template

a. Inthe navigation pane, choose Service templates.

b. Inthe Service templates page, select the radio button to the left of service template my-
svc-template.

Choose Actions, then Delete.
d. A modal prompts you to confirm the delete action.

e. Follow the instructions and choose Yes, delete. This deletes the service template and all
of its versions.

5. Delete an environment template

a. Inthe navigation pane, choose Environment templates.

b. In the Environment templates page, select the radio button to the left of my-env-
template.

c. Choose Actions, then Delete.

Step 7: Clean up. 20

https://console.aws.amazon.com/proton/

AWS Proton User Guide

d. A modal prompts you to confirm the delete action.

e. Follow the instructions and choose Yes, delete. This deletes the environment template
and all of its versions.

6. Delete your Codestar Connection

Getting started with the AWS CLI

To get started with AWS Proton using the AWS CLI, follow this tutorial. The tutorial demonstrates a
public facing load-balanced AWS Proton service based on AWS Fargate. The tutorial also provisions
a CI/CD pipeline that deploys a static website with a displayed image.

Before you start, be sure you are set up correctly. For details, see the section called “Prerequisites”.

Step 1: Register an environment template

In this step, as an administrator, you register an example environment template, which contains
an Amazon Elastic Container Service (Amazon ECS) cluster and an Amazon Virtual Private Cloud
(Amazon VPC) with two public/private subnets.

To register an environment template

1. Fork the AWS Proton Sample CloudFormation Templates repository into your GitHub account

or organization. This repository includes the environment and service templates that we use in
this tutorial.

Then, register your forked repository with AWS Proton. For more information, see the section
called “Create a repository link".

2. Create an environment template.

The environment template resource tracks environment template versions.

$ aws proton create-environment-template \
--name "fargate-env" \
--display-name "Public VPC Fargate" \
--description "VPC with public access and ECS cluster"

3. Create a template sync configuration.

Getting started with the CLI 21

https://github.com/aws-samples/aws-proton-cloudformation-sample-templates/

AWS Proton

User Guide

AWS Proton sets up a sync relationship between your repository and your environment
template. It then creates template version 1.0 in DRAFT status.

$ aws proton create-template-sync-config \
--template-name "fargate-env" \
--template-type "ENVIRONMENT" \
--repository-name "your-forked-repo" \
--repository-provider "GITHUB" \
--branch "your-branch" \

--subdirectory "environment-templates/fargate-env"

4. Wait for the environment template version to be successfully registered.

When this command returns with an exit status of @, version registration is complete. This is
useful in scripts to ensure you can successfully run the command in the next step.

$ aws proton wait
--template-name
--major-vexrsion
--minox-version

environment-template-version-registered \
"fargate-env" \

ll1ll \

no"

5. Publish the environment template version to make it available for environment creation.

$ aws proton update-environment-template-version \
--template-name "fargate-env" \
--major-version "1" \
--minor-vexrsion "0" \
--status "PUBLISHED"

Step 2: Register a service template

In this step, as an administrator, you register an example service template, which contains all the
resources required to provision an Amazon ECS Fargate service behind a load balancer and a CI/CD
pipeline that uses AWS CodePipeline.

To register a service template

1. Create a service template.

The service template resource tracks service template versions.

2. Register a service template

22

AWS Proton User Guide

$ aws proton create-service-template \
--name "load-balanced-fargate-svc" \
--display-name "Load balanced Fargate service" \
--description "Fargate service with an application load balancer"

2. Create a template sync configuration.

AWS Proton sets up a sync relationship between your repository and your service template. It
then creates template version 1.0 in DRAFT status.

$ aws proton create-template-sync-config \
--template-name "load-balanced-fargate-svc" \
--template-type "SERVICE" \
--repository-name "your-forked-repo" \
--repository-providexr "GITHUB" \
--branch "your-branch" \
--subdirectory "service-templates/load-balanced-fargate-svc"

3. Wait for the service template version to be successfully registered.

When this command returns with an exit status of @, version registration is complete. This is
useful in scripts to ensure you can successfully run the command in the next step.

$ aws proton wait service-template-version-registered \
--template-name "load-balanced-fargate-svc" \
--major-version "1" \
--minox-version "OQ"

4. Publish the service template version to make it available for service creation.

$ aws proton update-service-template-version \
--template-name "load-balanced-fargate-svc" \
--major-version "1" \
--minor-version "Q0" \
--status "PUBLISHED"

Step 3: Deploy an environment

In this step, as an administrator, you instantiate an AWS Proton environment from the environment
template.

3. Deploy an environment 23

AWS Proton User Guide

To deploy an environment

1. Get an example spec file for the environment template that you registered.

You can download the file environment-templates/fargate-env/spec/spec.yaml
from the template example repository. Alternatively, you can fetch the entire repository locally
and run the create-environment command from the environment-templates/fargate-
env directory.

2. Create an environment.

AWS Proton reads input values from your environment spec, combines them with your
environment template, and provisions environment resources in your AWS account using your
AWS Proton service role.

$ aws proton create-environment \
--name "fargate-env-prod" \
--template-name "fargate-env" \
--template-major-version 1 \
--proton-service-role-arn "arn:aws:iam::123456789012:xo0le/AWSProtonServiceRole" \
--spec "file://spec/spec.yaml"

3. Wait for the environment to successfully deploy.

$ aws proton wait environment-deployed --name "fargate-env-prod"

Step 4: Deploy a service [application developer]

In the previous steps, an administrator registered and published a service template and deployed
an environment. As an application developer, you can now create an AWS Proton service and
deploy it into the AWS Proton environment

To deploy a service

1. Get an example spec file for the service template that the administrator registered.

You can download the file service-templates/load-balanced-fargate-svc/spec/
spec.yaml from the template example repository. Alternatively, you can fetch the entire
repository locally and run the create-service command from the service-templates/
load-balanced-fargate-svc directory.

4. Deploy a service 24

AWS Proton User Guide

2.

Fork the AWS Proton Sample Services repository into your GitHub account or organization.

This repository includes the application source code that we use in this tutorial.

Create a service.

AWS Proton reads input values from your service spec, combines them with your service
template, and provisions service resources in your AWS account in the environment that is
specified in the spec. An AWS CodePipeline pipeline deploys your application code from the
repository that you specify in the command.

$ aws proton create-service \

--name "static-website" \

--repository-connection-arn \

"arn:aws:codestar-connections:us-east-1:123456789012:connection/your-codestar-

connection-id" \

--repository-id "your-GitHub-account/aws-proton-sample-services" \

--branch-name "main" \

--template-major-version 1 \

--template-name "load-balanced-fargate-svc" \

--spec "file://spec/spec.yaml"

Wait for the service to successfully deploy.
$ aws proton wait service-created --name "static-website"
Retrieve outputs and view your new website.

Run the following command:

$ aws proton list-service-instance-outputs \
--service-name "static-website" \
--service-instance-name load-balanced-fargate-svc-prod

The command's output should be similar to the following:

{
"outputs": [
{
"key": "ServiceURL",
"valueString": "http://your-service-endpoint.us-
east-1.elb.amazonaws.com"

}

4. Deploy a service 25

https://github.com/aws-samples/aws-proton-sample-services/

AWS Proton User Guide

The value of the ServiceURL instance output is the endpoint to your new service website.
Use your browser to navigate to it. You should see the following graphic on a static page:

AWS Proton Alive X - O X

£
I

= C)

Jus-east-1.elb.amazonaws.com

[25

AWS Proton

Step 5: Clean up (optional)

In this step, when you're done exploring the AWS resources that you created as part of this tutorial,
and to save on costs associated with these resources, you delete them.

To delete tutorial resources

1. To delete the service, run the following command:

$ aws proton delete-service --name "static-website"

5. Clean up 26

AWS Proton User Guide

2. To delete the environment, run the following command:

$ aws proton delete-environment --name "fargate-env-prod"

3. To delete the service template, run the following commands:

$ aws proton delete-template-sync-config \
--template-name "load-balanced-fargate-svc" \
--template-type "SERVICE"
$ aws proton delete-service-template --name "load-balanced-fargate-svc"

4. To delete the environment template, run the following commands:

$ aws proton delete-template-sync-config \
--template-name "fargate-env" \
--template-type "ENVIRONMENT"
$ aws proton delete-environment-template --name "fargate-env"

The AWS Proton template library

The AWS Proton team maintains a library of template examples on GitHub. The library includes
examples of infrastructure as code (laC) files for many common environment and application
infrastructure scenarios.

The template library is stored in two GitHub repositories:

» aws-proton-cloudformation-sample-templates — Examples of template bundles that use AWS
CloudFormation with Jinja as their laC language. You can use these examples for AWS-managed
provisioning environments.

» aws-proton-terraform-sample-templates — Examples of template bundles that use Terraform as
their 1aC language. You can use these examples for Self-managed provisioning environments.

Each one of these repositories has a README file with full information about the repository's
content and structure. Each example has information about the use case that the template covers,
the example's architecture, and the input parameters that the template takes.

You can use the templates in this library directly by forking one of the library's repositories into
your GitHub account. Alternatively, use these examples as a starting point for developing your
environment and service templates.

Template library 27

https://github.com/aws-samples/aws-proton-cloudformation-sample-templates/
https://github.com/aws-samples/aws-proton-terraform-sample-templates/

AWS Proton User Guide

How AWS Proton works

With AWS Proton, you provision environments, and then services running in those environments.
Environments and services are based on environment and service templates, respectively, that you
choose in your AWS Proton versioned template library.

Qe

AWS Proton
?) ! environment
& input parameter values template _ environment | |

Administrators

*
o .‘"
- o
.
s,

service o)2\

i & \ input parameter values template service | |

= | | >

Administrators
Developers

SELECT TEMPLATES TO CREATE SERVICES AND ENVIRONMENTS WITH AWS PROTON

i

When you, as an administrator, select an environment template with AWS Proton, you provide
values for required input parameters.

(2]

AWS Proton uses the environment template and parameter values to provision your environment.

28

AWS Proton User Guide

(3]

When you, as a developer or administrator, select a service template with AWS Proton, you provide

values for required input parameters. You also select an environment to deploy your application or
service to.

i

AWS Proton uses the service template, and both your service and selected environment parameter
values, to provision your service.

You provide values for the input parameters to customize your template for re-use and multiple
use cases, applications, or services.

To make this work, you create environment or service template bundles and upload them to
registered environment or service templates, respectively.

Template bundles contain everything AWS Proton needs to provision environments or services.

When you create an environment or service template, you upload a template bundle that contains
the parametrized infrastructure as code (laC) files that AWS Proton uses to provision environments
or services.

When you select an environment or service template to create or update an environment or
service, you provide values for the template bundle IaC file parameters.

Topics

« AWS Proton objects

« How AWS Proton provisions infrastructure

« AWS Proton terminology

AWS Proton objects

The following diagram shows the main AWS Proton objects and their relationship to other AWS
and third-party objects. The arrows represent the direction of data flow (the inverse direction of
dependency).

We follow the diagram with brief descriptions and reference links for these AWS Proton objects.

Objects 29

AWS Proton User Guide

Q git

Template repository Application repository
AWS account
Template bundle Template bundle

in 83 in 353

= |
B 9

Environment template Service template

s B & ® | A

Environment role b J N J N 1 E Pipeline role

offfj

|| @] & | o) e | $)-
S
— @
Service
Environment Environment I
B— Ny
Component Service Service N O A
instance instance | i
y I e N

« Environment template - A collection of environment template versions that can be used to
create AWS Proton environments.

For more information, see Template authoring and bundles and Templates.

« Environment template version — A specific version of an environment template. Takes a
template bundle as input, either from an S3 bucket or from a Git repository. The bundle specifies
Infrastructure as Code (laC) and related input parameters for an AWS Proton environment.

Objects 30

AWS Proton User Guide

For more information, see the section called “Versions”, the section called “Publish”, and the

section called “Template sync configurations”.

o Environment - The set of shared AWS infrastructure resources and access policies that AWS
Proton services are deployed into. AWS resources are provisioned by using an environment
template version invoked with specific parameter values. Access policies are provided in a service
role.

For more information, see Environments.

» Service template - A collection of service template versions that can be used to create AWS
Proton services.

For more information, see Template authoring and bundles and Templates.

« Service template version — A specific version of a service template. Takes a template bundle as
input, either from an S3 bucket or from a Git repository. The bundle specifies Infrastructure as
Code (IaC) and related input parameters for an AWS Proton service.

A service template version also specifies these constraints on service instances based on the
version:

« Compatible environment templates - Instances can only run in environments based on these
compatible environment templates.

» Supported component sources — The types of components that developers can associate with
instances.

For more information, see the section called “Versions”, the section called “Publish”, and the

section called “Template sync configurations”.

» Service - A collection of service instances that run an application using resources specified in a
service template, and optionally a CI/CD pipeline that deploys the application code into these
instances.

In the diagram, the dashed line from Service template means that the service passes the
template through to service instances and the pipeline.

For more information, see Services.

» Service instance — The set of AWS infrastructure resources that run an application in a specific
AWS Proton environment. AWS resources are provisioned by using a service template version
invoked with specific parameter values.

Objects 31

AWS Proton User Guide

For more information, see Services and the section called “Update instance”.

« Pipeline — An optional CI/CD pipeline that deploys an application into the instances of a service,
with access policies to provision this pipeline. Access policies are provided in a service role. A
service doesn't always have an associated AWS Proton pipeline—you can choose to manage your
app code deployments outside of AWS Proton.

In the diagram, the dashed line from Service and the dashed box around Pipeline mean that if
you choose to manage your ClI/CD deployments yourself, the AWS Proton pipeline may not be
created, and your own pipeline may not be within your AWS account.

For more information, see Services and the section called “Update pipeline”.

« Component - A developer-defined extension to a service instance. Specifies additional AWS
infrastructure resources that a particular application might need, in addition to the resources
provided by the environment and the service instance. Platform teams control the infrastructure
that a component can provision by attaching a component role to the environment.

For more information, see Components.

How AWS Proton provisions infrastructure

AWS Proton can provision infrastructure in one of several ways:

« AWS-managed provisioning — AWS Proton calls the provisioning engine on your behalf. This
method supports only AWS CloudFormation template bundles. For more information, see the
section called “AWS CloudFormation laC files".

» CodeBuild provisioning — AWS Proton uses AWS CodeBuild to run shell commands that you
provide. Your commands can read inputs that AWS Proton provides, and are responsible for
provisioning or deprovisioning infrastructure and generating output values. A template bundle
for this method includes your commands in a manifest file and any programs, scripts, or other
files that these commands may need.

As an example to using CodeBuild provisioning, you can include code that uses the AWS Cloud
Development Kit (AWS CDK) to provision AWS resources, and a manifest that installs the CDK
and runs your CDK code.

For more information, see the section called “CodeBuild bundle”.

Provisioning methods 32

AWS Proton User Guide

® Note

You can use CodeBuild provisioning with environments and services. At this time you
can't provision components this way.

« Self-managed provisioning — AWS Proton issues a pull request (PR) to a repository that you
provide, where your own infrastructure deployment system runs the provisioning process. This
method supports only Terraform template bundles. For more information, see the section called
“Terraform laC files".

AWS Proton determines and sets the provisioning method for each environment and service
separately. When you create or update an environment or a service, AWS Proton examines the
template bundle that you provide, and determines the provisioning method that the template
bundle indicates. At the environment level, you provide the parameters that the environment
and its potential services might need for their provisioning methods—AWS Identity and Access
Management (IAM) roles, an environment account connection, or an infrastructure repository.

Developers who use AWS Proton to provision a service have the same experience regardless

of provisioning method. Developers don't need to be aware of the provisioning method and
don't need to change anything in the service provisioning process. The service template sets the
provisioning method, and each environment that a developer deploys the service to provides the
necessary parameters for service instance provisioning.

The following diagram summarizes some major traits of the different provisioning methods. The
sections that follow the table provide details about each method.
Provisioning Templates Provisioned by Status tracked by

method

AWS-managed manifest, schema, laC AWS Proton (through AWS Proton (through

file (CloudFormation) CloudFormation) CloudFormation)

CodeBuild manifest (with AWS Proton (through AWS Proton (your
commands), schema, CodeBuild) commands return
command dependenc status through
ies (e.g. AWS CDK code) CodeBuild)

Provisioning methods 33

AWS Proton User Guide

Provisioning Templates Provisioned by Status tracked by

method

self-managed manifest, schema, 1aC Your code (through Git Your code (passed to
files (Terraform) actions) AWS through API call)

How AWS-managed provisioning works

When an environment or a service uses AWS-managed provisioning, infrastructure is provisioned as
follows:

1. An AWS Proton customer (an administrator or a developer) creates the AWS Proton resource
(an environment or a service). The customer selects a template for the resource and provides
the required parameters. For more information, see the following section, the section called

“Considerations for AWS-managed provisioning”.

. AWS Proton renders a complete AWS CloudFormation template for provisioning the resource.
. AWS Proton calls AWS CloudFormation to start provisioning using the rendered template.

. AWS Proton continuously monitors the AWS CloudFormation deployment.

v b W N

. When provisioning completes, AWS Proton reports back errors in case of failure, and captures
provisioning outputs, like Amazon VPC ID, in case of success.

The following diagram shows that AWS Proton takes care of most of these steps directly.

AWS Proton Customer

|'.
Service Pipeline

Considerations for AWS-managed provisioning

o Infrastructure provisioning role — When an environment or any of the service instances running in
it might use AWS-managed provisioning, an administrator needs to configure an IAM role (either
directly or as part of an AWS Proton environment account connection). AWS Proton uses this role
to provision the infrastructure of these AWS-managed provisioning resources. The role should

AWS-managed provisioning 34

AWS Proton User Guide

have permissions to use AWS CloudFormation to create all the resources that the templates of
these resources include.

For more information, see the section called “IAM Roles” and the section called “Service role

policy examples”.

« Service provisioning — When a developer deploys a service instance that uses AWS-managed
provisioning to the environment, AWS Proton uses the role provided to that environment to
provision infrastructure for the service instance. Developers don't see this role and can't change
it.

 Service with pipeline — A service template that uses AWS-managed provisioning may include a
pipeline definition written in the AWS CloudFormation YAML schema. AWS Proton also creates
the pipeline by calling AWS CloudFormation. The role that AWS Proton uses to create a pipeline
is separate from the role for each individual environment. This role is provided to AWS Proton
separately, only once at the AWS account level, and it's used to provision and manage all AWS-
managed pipelines. This role should have permissions to create pipelines and other resources
that your pipelines need.

The following procedures show how to provide the pipeline role to AWS Proton.

AWS Proton console
To provide the pipeline role

1. Inthe AWS Proton console, on the navigation pane, choose Settings > Account settings,
and then choose Configure.

2. Use the Pipeline AWS-managed role section to configure a new or existing pipeline role
for AWS-managed provisioning.
AWS Proton API
To provide the pipeline role

1. Use the UpdateAccountSettings APl action.

2. Provide the Amazon Resource Name (ARN) of your pipeline service role in the
pipelineServiceRoleArn parameter.

AWS-managed provisioning 35

https://console.aws.amazon.com/proton/
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html

AWS Proton User Guide

AWS CLI
To provide the pipeline role

Run the following command:

$ aws proton update-account-settings \
--pipeline-service-role-arn \
"arn:aws:iam::123456789012:role/my-pipeline-role"

How CodeBuild provisioning works

When an environment or a service uses CodeBuild provisioning, infrastructure is provisioned as
follows:

1. An AWS Proton customer (an administrator or a developer) creates the AWS Proton resource
(an environment or a service). The customer selects a template for the resource and provides
the required parameters. For more information, see the following section, the section called

“Considerations for CodeBuild provisioning".

2. AWS Proton renders an input file with input parameter values for provisioning the resource.

3. AWS Proton calls CodeBuild to start a job. The CodeBuild job runs the customer shell commands
specified in the template. These commands provision the desired infrastructure, while optionally
reading input values.

4. When provisioning completes, the final customer command returns the provisioning status to
CodeBuild and calls the NotifyResourceDeploymentStatusChange AWS Proton API action to
provide outputs, like Amazon VPC ID, if any exist.

/A Important

Be sure that your commands correctly return the provisioning status to CodeBuild and
provide the outputs. If they don't, AWS Proton can't properly track the provisioning
status and can't provide correct outputs to service instances.

The following diagram illustrates the steps that AWS Proton performs and the steps that your
commands perform within a CodeBuild job.

CodeBuild provisioning 36

https://docs.aws.amazon.com/proton/latest/APIReference/API_NotifyResourceDeploymentStatusChange.html

AWS Proton User Guide

0_ AWS Proton CodeBuild / customer commands
|".’
l Con e Adding inputs to Running commands to Running commands to

template bundle provision templates provision pipeline
|

Considerations for CodeBuild provisioning

« Infrastructure provisioning role — When an environment or any of the service instances running
in it might use CodeBuild-based provisioning, an administrator needs to configure an IAM role
(either directly or as part of an AWS Proton environment account connection). AWS Proton
uses this role to provision the infrastructure of these CodeBuild provisioning resources. The role
should have permissions to use CodeBuild to create all the resources that your commands in the
templates of these resources provision.

For more information, see the section called “IAM Roles” and the section called “Service role

policy examples”.

« Service provisioning — When a developer deploys a service instance that uses CodeBuild
provisioning to the environment, AWS Proton uses the role provided to that environment to
provision infrastructure for the service instance. Developers don't see this role and can't change
it.

« Service with pipeline — A service template that uses CodeBuild provisioning may include
commands to provision a pipeline. AWS Proton also creates the pipeline by calling CodeBuild.
The role that AWS Proton uses to create a pipeline is separate from the role for each individual
environment. This role is provided to AWS Proton separately, only once at the AWS account
level, and it's used to provision and manage all CodeBuild-based pipelines. This role should have
permissions to create pipelines and other resources that your pipelines need.

The following procedures show how to provide the pipeline role to AWS Proton.

AWS Proton console
To provide the pipeline role

1. Inthe AWS Proton console, on the navigation pane, choose Settings > Account settings,
and then choose Configure.

CodeBuild provisioning 37

https://console.aws.amazon.com/proton/

AWS Proton User Guide

2. Use the Codebuild pipeline provisioning role section to configure a new or existing
pipeline role for CodeBuild provisioning.

AWS Proton API
To provide the pipeline role

1. Use the UpdateAccountSettings APl action.

2. Provide the Amazon Resource Name (ARN) of your pipeline service role in the
pipelineCodebuildRoleArn parameter.

AWS CLI
To provide the pipeline role

Run the following command:

$ aws proton update-account-settings \
--pipeline-codebuild-role-arn \
"arn:aws:iam::123456789012:role/my-pipeline-role"

How self-managed provisioning works

When an environment is configured to use self-managed provisioning, infrastructure is provisioned
as follows:

1. An AWS Proton customer (an administrator or a developer) creates the AWS Proton resource
(an environment or a service). The customer selects a template for the resource and provides
the required parameters. For an environment, the customer also provides a linked infrastructure
repository. For more information, see the following section, the section called “Considerations

for self-managed provisioning".

2. AWS Proton renders a complete Terraform template. It consists of one or more Terraform files,
potentially in multiple folders, and a . tfvars variables file. AWS Proton writes parameter
values provided on the resource creation call into this variables file.

3. AWS Proton submits a PR to the infrastructure repository with the rendered Terraform template.

Self-managed provisioning 38

https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html

AWS Proton User Guide

4. When the customer (administrator or developer) merges the PR, the customer's automation
triggers the provisioning engine to start provisioning infrastructure using the merged template.

® Note

If the customer (administrator or developer) closes the PR, AWS Proton recognizes the
PR as closed and marks the deployment as cancelled.

5. When provisioning completes, the customer's automation calls the
NotifyResourceDeploymentStatusChange AWS Proton API action to indicate completion, provide
the status (success or failure), and provide outputs, like Amazon VPC ID, if any exist.

/A Important

Be sure that your automation code calls back into AWS Proton with the provisioning
status and outputs. If it doesn't, AWS Proton might consider the provisioning as pending
for longer than it should, and keep showing In progress status.

The following diagram illustrates the steps that AWS Proton performs and the steps that your own
provisioning system performs.

AWS Proton F C‘ : Customer
(

Merging inputs into templates Provisioning templates Service Pipeline

Considerations for self-managed provisioning

« Infrastructure repository — When an administrator configures an environment for self-managed
provisioning, they need to provide a linked infrastructure repository. AWS Proton submits PRs to
this repository to provision the infrastructure of the environment and all the service instances
that are deployed to it. The customer-owned automation action in the repository should assume
an IAM role with permissions to create all the resources that your environment and service
templates include, and an identity that reflects the destination AWS account. For an example

Self-managed provisioning 39

https://docs.aws.amazon.com/proton/latest/APIReference/API_NotifyResourceDeploymentStatusChange.html

AWS Proton User Guide

GitHub Action that assumes a role, see Assuming a Role in the "Configure AWS Credentials" Action
For GitHub Actions documentation.

» Permissions — Your provisioning code has to authenticate with an account as necessary (for
example, authenticate to an AWS account) and provide resource provisioning authorization (for
example, provide a role).

« Service provisioning — When a developer deploys a service instance that uses self-managed
provisioning to the environment, AWS Proton submits a PR to the repository that is associated
with the environment to provision infrastructure for the service instance. Developers don't see
the repository and can't change it.

® Note

Developers creating services use the same process regardless of provisioning method,
and the difference is abstracted from them. However, with self-managed provisioning
developers might experience slower response, because they need to wait until someone
(which might not be themselves) merges the PR in the infrastructure repository before
provisioning can start.

 Service with pipeline — A service template for an environment with self-managed provisioning
may include a pipeline definition (for example, an AWS CodePipeline pipeline), written in
Terraform HCL. To enable AWS Proton to provision these pipelines, an administrator provides
a linked pipeline repository to AWS Proton. When provisioning a pipeline, the customer-owned
automation action in the repository should assume an IAM role with permissions to provision
the pipeline, and an identity that reflects the destination AWS account. The pipeline repository
and role are separate from those used for each individual environment. The linked repository
is provided to AWS Proton separately, only once at the AWS account level, and it's used to
provision and manage all pipelines. The role should have permissions to create pipelines and
other resources that your pipelines need.

The following procedures show how to provide the pipeline repository and role to AWS Proton.

AWS Proton console
To provide the pipeline role

1. Inthe AWS Proton console, on the navigation pane, choose Settings > Account settings,
and then choose Configure.

2. Use the CI/CD pipeline repository section to configure a new or existing repository link.

Self-managed provisioning 40

https://github.com/aws-actions/configure-aws-credentials#assuming-a-role
https://console.aws.amazon.com/proton/

AWS Proton User Guide

AWS Proton API
To provide the pipeline role

1. Use the UpdateAccountSettings API action.

2. Provide the provider, name, and branch of your pipeline repository in the
pipelineProvisioningRepository parameter.

AWS CLI
To provide the pipeline role

Run the following command:

$ aws proton update-account-settings \
--pipeline-provisioning-repository \
"providexr=GITHUB,name=my-pipeline-repo-name,branch=my-branch"

 Deletion of self-managed provisioned resources — Terraform modules may include configuration
elements that are necessary for Terraform operation, in addition to resource definitions.
Therefore, AWS Proton can't delete all the Terraform files for an environment or service instance.
Instead, AWS Proton marks the files for deletion and updated a flag in the PR metadata. Your
automation can read that flag and use it to trigger a terraform destroy command.

AWS Proton terminology

Environment template

Defines shared infrastructure, such as a VPC or cluster, that is used by multiple applications or
resources.

Environment template bundle

A collection of files that you upload to create and register an environment template in AWS
Proton. An environment template bundle contains the following:

1. A schema file that defines infrastructure as code input parameters.

2. An infrastructure as code (laC) file that defines shared infrastructure, such as a VPC or cluster,
that is used by multiple applications or resources.

AWS Proton terminology 41

https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html

AWS Proton User Guide

3. A manifest file that lists the laC file.

Environment

Provisioned shared infrastructure, such as a VPC or cluster, that is used by multiple applications
or resources.

Service template

Defines the type of infrastructure that's needed to deploy and maintain an application or
microservice in an environment.

Service template bundle

A collection of files that you upload to create and register a service template in AWS Proton. A
service template bundle contains the following:

1. A schema file that defines infrastructure as code (laC) input parameters.

2. An laC file that defines the infrastructure that's needed to deploy and maintain an
application or microservice in an environment.

3. A manifest file that lists the IaC file.

4. Optional
a. An laC file that defines the service pipeline infrastructure.
b. A manifest file that lists the laC file.

Service

Provisioned infrastructure that's needed to deploy and maintain an application or microservice
in an environment.

Service instance

Provisioned infrastructure that supports an application or microservice in an environment.

Service pipeline

Provisioned infrastructure that supports a pipeline.

Template version

A major or minor version of a template. For more information, see Versioned templates.

Input parameters

Defined in a schema file and used in an infrastructure as code (laC) file so that the laC file can
be used repeatably and for a variety of use cases.

AWS Proton terminology 42

AWS Proton User Guide

Schema file

Defines infrastructure as code file input parameters.

Spec file

Specifies values for infrastructure as code file input parameters, as defined in a schema file.
Manifest file

Lists an infrastructure as code file.

AWS Proton terminology 43

AWS Proton User Guide

Authoring templates and creating bundles for AWS
Proton

AWS Proton provisions resources for you based on infrastructure as code (laC) files. You describe
infrastructure in reusable IaC files. To make the files reusable for different environments and
applications, you author them as templates, define input parameters, and use these parameters in
laC definitions. When you later create a provisioning resource (environment, service instance, or
component), AWS Proton uses a rendering engine, which combines input values with a template to
create an laC file that is ready to provision.

Administrators author most templates as template bundles, and then upload and register them into
AWS Proton. The remainder of this page discusses these AWS Proton template bundles. Directly
defined components are an exception—developers create them and provide laC template files
directly. For more information about components, see Components.

Topics

o Template bundles

o AWS Proton parameters

o AWS Proton infrastructure as code files

e Schema file

» Wrap up template files for AWS Proton

« Template bundle considerations

Template bundles

As an administrator, you create and register templates with AWS Proton. You use these templates

to create environments and services. When you create a service, AWS Proton provisions and
deploys service instances to selected environments. For more information, see AWS Proton for

platform teams.

To create and register a template in AWS Proton, you upload a template bundle that contains the
infrastructure as code (laC) files that AWS Proton needs to provision and environment or service.

A template bundle contains the following:

Template bundles 44

AWS Proton User Guide

o An Infrastructure as code (laC) file with a manifest YAML file that lists the /aC file.

» A schema YAML file for your 1aC file input parameter definitions.

A CloudFormation environment template bundle contains one laC file.

A CloudFormation service template bundle contains one laC file for service instance definitions and
another optional IaC file for a pipeline definition.

Terraform environment and service template bundles can contain multiple 1aC files each.

AWS Proton requires an input parameter schema file. When you use AWS CloudFormation to
create your laC files, you use Jinja syntax to reference your input parameters. AWS Proton provides
parameter namespaces that you can use to reference parameters in your laC files.

The following diagram shows an example of steps that you can take to create a template for AWS
Proton.

service

service parameter service
parameters schema file laC files
input
O—| parameters v — — service
0—| —— |V -] —> oo | ———> template
0— V — —I version
TEMPLATE

oufput
parameters
Administrators\ input :

O—| parameters |¥Y — pa— environment
009 template
—_ —> |V — >)
g_ . — | - version
— 'FMPlﬁT‘E

v

environment environment environment A
AWS Proton (}:'
parameters parameter laC files
schema file

CREATE TEMPLATES o o o o

@

Identify input parameters.

2]

Create a schema file to define your input parameters.

Template bundles 45

https://jinja.palletsprojects.com/en/2.11.x/

AWS Proton User Guide

(3]

Create laC files that reference your input parameters. You can reference environment laC file
outputs as inputs for your service laC files.

o

Register a template version with AWS Proton and upload your template bundle.

AWS Proton parameters

You can define and use parameters in your infrastructure as code (laC) files to make them flexible
and re-usable. You read a parameter value in your laC files by referring to the parameter's name
in the AWS Proton parameter namespace. AWS Proton injects parameter values into the rendered
laC files that it generates during resource provisioning. To process AWS CloudFormation laC
parameters, AWS Proton uses Jinja. To process Terraform laC parameters, AWS Proton generates a
Terraform parameter value file and relies on the parametrization ability built into HCL.

With CodeBuild provisioning, AWS Proton generates an input file that your code can import.

The file is a JSON or HCL file, depending on a property in your template's manifest. For more
information, see the section called “CodeBuild provisioning parameters”.

You can refer to parameters in your environment, service, and component laC files or provisioning
code with the following requirements:

« The length of each parameter name doesn't exceed 100 characters.

» The length of the parameter namespace and resource name combined doesn't exceed the
character limit for the resource name.

AWS Proton provisioning fails if these quotas are exceeded.

Parameter types
The following parameter types are available to you for reference in AWS Proton laC files:
Input parameter

Environments and service instances can take input parameters that you define in a schema file
that you associate with the environment or service template. You can refer to a resource's input

Parameters 46

https://jinja.palletsprojects.com/en/2.11.x/

AWS Proton

User Guide

parameters in the resource's IaC file. Component laC files can refer to input parameters of the
service instance that the component is attached to.

AWS Proton checks input parameter names against your schema file, and matches them with

the parameters that are referenced in your IaC files to inject the input values that you provide in

a spec file during resource provisioning.

Output parameter

You can define outputs in any of your laC files. An output can be, for example, a name, ID, or

ARN of one of the resources that the template provisions, or it can be a way to pass through

one of the template's inputs. You can refer to these outputs in laC files of other resources.

In CloudFormation laC files,define output parameters in the Outputs: block. In a Terraform laC

file, define each output parameter using an output statement.

Resource parameter

AWS Proton automatically creates AWS Proton resource parameters. These parameters
expose properties of the AWS Proton resource object. An example of a resource parameter is

environment.name.

Using AWS Proton parameters in your laC files

To read a parameter value in an laC file, you refer to the parameter's name in the AWS Proton
parameter namespace. For AWS CloudFormation laC files, you use Jinja syntax and surround the
parameter with pairs of curly braces and quotation marks.

The following table shows the reference syntax for each supported template language, with an

example.
Template Syntax
language
CloudForm "{{ parameter-name
ation "
Terraform var.parameter-name

Example: environment input named "VPC"

"{{ environment.inputs.VPC }}"

var.environment.inputs.VPC

Generated Terraform variable definitions

Using parameters

47

AWS Proton User Guide

® Note

If you use CloudFormation dynamic parameters in your laC file, you must escape them to

prevent Jinja misinterpretation errors. For more information, see Troubleshooting AWS
Proton

The following table lists namespace names for all AWS Proton resource parameters. Each template
file type can use a different subset of the parameter namespace.

Template Paramet¢« Parameter name Description
file type
Environme resource environment. name Environment name
nt
input environment.inputs. input-name Schema-defined

environment inputs
Service resource environment. name Environment name and
AWS account ID

environment. account_id

output environment.outputs. output-name Environment laC file

outputs
resource service.branch_name Service name and code
repository
service.name
service.repository_connect
ion_arn
service.repository_id
resource service_instance. name Service instance name
input service_instance.inputs. input- Schema-defined service
name instance inputs

Using parameters 48

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://jinja.palletsprojects.com/en/2.11.x/templates/#escaping

AWS Proton

User Guide

Template
file

Pipeline

Paramet¢ Parameter name

type

resource

output

resource

output

input

resource

input

collectio
n

service_instance.

.default. name

service_instance.
.default.outputs.

service_instance.
t. name

service_instance.
t. account_id

service_instance.
t.outputs.

components

components
output-name

environmen

environmen

environmen

output-name

pipeline.inputs. input-name

service.branch_na

service.name

me

service.repository_connect

ion_arn

service.repository_id

service_instance.
name

{% for service_in
service_instances

%}

inputs.

stance in

%}...{% endfor

input-

Description

Attached default
component name

Attached default
component laC file
outputs

Service instance
environment name and
AWS account ID

Service instance
environment laC file
outputs

Schema-defined
pipeline inputs

Service name and code
repository

Schema-defined service

instance inputs

A collection of service
instances that you can
loop through

Using parameters

49

AWS Proton User Guide

Template Paramet« Parameter name Description
file type
Component resource environment. name Environment name and

AWS account account
environment. account_id D

output environment.outputs. output-name Environment laC file

outputs
resource service.branch_name Service name and code
repository (attached
service.name components)
service.repository_connect
ion_arn
service.repository_id
resource service_instance. name Service instance name

(attached components)

input service_instance.inputs. input- Schema-defined
name service instance inputs
(attached components)

resource component. name Component name

For more information and examples, see the subtopics about parameters in 1aC template files for
different resource types and template languages.

Topics

Environment CloudFormation laC file parameter details and examples

Service CloudFormation laC file parameter details and examples

Component CloudFormation laC file parameter details and examples

Parameter filters for CloudFormation laC files

CodeBuild provisioning parameter details and examples

Using parameters 50

AWS Proton User Guide

» Terraform infrastructure as code (laC) file parameter details and examples

Environment CloudFormation laC file parameter details and examples

You can define and reference parameters in your environment infrastructure as code (laC) files. For
a detailed description of AWS Proton parameters, parameter types, the parameter namespace, and
how to use parameters in your laC files, see the section called “Parameters”.

Define environment parameters

You can define both input and output parameters for environment laC files.

« Input parameters — Define environment input parameters in your schema file.

The following list includes examples of environment input parameters for typical use cases.

VPC CIDR values

Load balancer settings

Database settings

A health check timeout

As an administrator, you can provide values for input parameters when you create an
environment:

« Use the console to fill out a schema-based form that AWS Proton provides.
» Use the CLI to provide a spec that includes the values.

o Output parameters — Define environment outputs in your environment laC files. You can then
refer to these outputs in laC files of other resources.

Read parameter values in environment laC files

You can read parameters related to the environment in environment laC files. You read a parameter
value by referencing the parameter's name in the AWS Proton parameter namespace.

« Input parameters — Read an environment input value by referencing
environment.inputs.input-name.

« Resource parameters — Read AWS Proton resource parameters by referencing names such as
environment.name.

Environment CloudFormation laC parameters 51

AWS Proton User Guide

® Note

No output parameters of other resources are available to environment laC files.

Example environment and service laC files with parameters

The following example demonstrates parameter definition and reference in an environment laC
file. The example then shows how environment output parameters defined in the environment laC
file can be referenced in a service laC file.

Example Environment CloudFormation laC file

Note the following in this example:

e The environment.inputs. namespace refers to environment input parameters.

« The Amazon EC2 Systems Manager (SSM) parameter StoreInputValue concatenates the
environment inputs.

« The MyEnvParameterValue output exposes the same input parameter concatenation as
an output parameter. Three additional output parameters also expose the input parameters
individually.

« Six additional output parameters expose resources that the environment provisions.

Resources:
StoreInputValue:
Type: AWS::SSM::Parameter
Properties:
Type: String
Value: "{{ environment.inputs.my_sample_input }}
{{ environment.inputs.my_other_sample_input}}
{{ environment.inputs.another_optional_input }}"
input parameter references

These output values are available to service infrastructure as code files as outputs,
when given the
the 'environment.outputs' namespace, for example,
service_instance.environment.outputs.ClusterName.
Outputs:
MyEnvParameterValue: # output definition
Value: !GetAtt StorelnputValue.Value

Environment CloudFormation laC parameters 52

AWS Proton

User Guide

MySampleInputValue:

Value: "{{ environment.inputs.my_sample_input }}"
reference
MyOtherSampleInputValue:

Value: "{{ environment.inputs.my_other_sample_input }}"
reference
AnotherOptionalInputValue:

Value: "{{ environment.inputs.another_optional_input }}"
reference
ClusterName:

Description: The name of the ECS cluster

Value: !Ref 'ECSCluster'
ECSTaskExecutionRole:

Description: The ARN of the ECS role

Value: !GetAtt 'ECSTaskExecutionRole.Arn'
Vpcld:

output definition
input parameter

output definition
input parameter

output definition
input parameter

output definition

provisioned resource
output definition

+*

provisioned resource
output definition

H

Description: The ID of the VPC that this stack is deployed in

Value: !Ref 'VPC'
PublicSubnetOne:

Description: Public subnet one

Value: !Ref 'PublicSubnetOne'
PublicSubnetTwo:

Description: Public subnet two

Value: !Ref 'PublicSubnetTwo'
ContainerSecurityGroup:

provisioned resource
output definition

provisioned resource
output definition

provisioned resource
output definition

Description: A security group used to allow Fargate containers to receive traffic

Value: !Ref 'ContainerSecurityGroup'

Example Service CloudFormation lacC file

provisioned resource

The environment.outputs. namespace refers to environment outputs from an environment

laC file. For example, the name environment.outputs.ClusterName reads the value of the

ClusterName environment output parameter.

AWSTemplateFormatVersion: '2010-09-09'

Description: Deploy a service on AWS Fargate, hosted in a public subnet, and accessible

via a public load balancer.
Mappings:
TaskSize:
x-small:
cpu: 256
memory: 512
small:

Environment CloudFormation laC parameters

53

AWS Proton User Guide

cpu: 512

memory: 1024
medium:

cpu: 1024

memory: 2048
large:

Cpu: 2048

memory: 4096
x-large:

cpu: 4096

memory: 8192

Resources:

A log group for storing the stdout logs from this service's containers
LogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName: '{{service_instance.name}}' # resource parameter

The task definition. This is a simple metadata description of what
container to run, and what resource requirements it has.
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
Family: '{{service_instance.namel}}' # resource parameter
Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, cpu] # input
parameter
Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory]
NetworkMode: awsvpc
RequiresCompatibilities:
- FARGATE
ExecutionRoleArn: '{{environment.outputs.ECSTaskExecutionRole}}' # output
reference to an environment infrastructure code file
TaskRoleArn: !Ref "AWS::NoValue"
ContainerDefinitions:
- Name: '{{service_instance.name}}' # resource parameter
Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_sizel}}, cpul
Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory]
Image: '{{service_instance.inputs.image}}'

PortMappings:

- ContainerPort: '{{service_instance.inputs.port}}' # input parameter
LogConfiguration:

LogDriver: 'awslogs'

Options:

awslogs-group: '{{service_instance.namel}}' # resource parameter

Environment CloudFormation laC parameters 54

AWS Proton User Guide

awslogs-region: !Ref 'AWS::Region'
awslogs-stream-prefix: '{{service_instance.namel}}' # resource parameter

The service_instance. The service is a resource which allows you to run multiple
copies of a type of task, and gather up their logs and metrics, as well
as monitor the number of running tasks and replace any that have crashed
Service:
Type: AWS::ECS::Service
DependsOn: LoadBalancerRule
Properties:
ServiceName: '{{service_instance.name}}' # resource parameter
Cluster: '{{environment.outputs.ClusterNamel}}' # output reference to an
environment infrastructure as code file
LaunchType: FARGATE
DeploymentConfiguration:
MaximumPercent: 200
MinimumHealthyPercent: 75
DesiredCount: '{{service_instance.inputs.desired_count}}'# input parameter
NetworkConfiguration:
AwsvpcConfiguration:
AssignPublicIp: ENABLED
SecurityGroups:
- '{{environment.outputs.ContainerSecurityGroup}}' # output reference to an
environment infrastructure as code file
Subnets:
- '{{environment.outputs.PublicSubnetOne}}' # output reference to an
environment infrastructure as code file
- '"{{environment.outputs.PublicSubnetTwo}}' # output reference to an
environment infrastructure as code file
TaskDefinition: !Ref 'TaskDefinition'
LoadBalancers:
- ContainerName: '{{service_instance.name}}' # resource parameter
ContainerPort: '{{service_instance.inputs.port}}' # input parameter
TargetGroupArn: !Ref 'TargetGroup'

Service CloudFormation laC file parameter details and examples

You can define and reference parameters in your service and pipeline infrastructure as code
(1aC) files. For a detailed description of AWS Proton parameters, parameter types, the parameter
namespace, and how to use parameters in your laC files, see the section called “Parameters”.

Service CloudFormation laC parameters 55

AWS Proton User Guide

Define service parameters

You can define both input and output parameters for service laC files.

 Input parameters — Define service instance input parameters in your schema file.

The following list includes examples of service input parameters for typical use cases.

Port

Task size

Image

Desired count

Docker file

Unit test command

You provide values for input parameters when you create a service:

« Use the console to fill out a schema-based form that AWS Proton provides.
» Use the CLI to provide a spec that includes the values.

o Output parameters — Define service instance outputs in your service laC files. You can then refer
to these outputs in laC files of other resources.

Read parameter values in service laC files

You can read parameters related to the service and to other resources in service laC files. You read
a parameter value by referencing the parameter's name in the AWS Proton parameter namespace.

« Input parameters — Read a service instance input value by referencing
service_instance.inputs.input-name.

» Resource parameters — Read AWS Proton resource parameters by referencing names such as
service.name, service_instance.name, and environment.name.

« Output parameters — Read outputs of other resources by referencing
environment.outputs.output-name or
service_instance.components.default.outputs.output-name.

Service CloudFormation laC parameters 56

AWS Proton User Guide

Example service laC file with parameters

The following example is a snippet from a service CloudFormation laC file. The
environment.outputs. namespace refers to outputs from the environment laC file. The
service_instance.inputs. namespace refers to service instance input parameters. The
service_instance.name property refers to an AWS Proton resource parameter.

Resources:
StoreServicelInstancelnputValue:
Type: AWS::SSM: :Parameter
Properties:
Type: String
Value: "{{ service.name }} {{ service_instance.name }}
{{ service_instance.inputs.my_sample_service_instance_required_input }}
{{ service_instance.inputs.my_sample_service_instance_optional_input }}
{{ environment.outputs.MySampleInputValue }}
{{ environment.outputs.MyOtherSampleInputValue }}"
resource parameter references # input parameter
references
output references to an environment
infrastructure as code file
Outputs:
MyServiceInstanceParameter: #
output definition
Value: !Ref StoreServiceInstanceInputValue
MyServiceInstanceRequiredInputValue: #
output definition
Value: "{{ service_instance.inputs.my_sample_service_instance_required_input }}" #
input parameter reference
MyServiceInstanceOptionalInputValue: #
output definition
Value: "{{ service_instance.inputs.my_sample_service_instance_optional_input }}" #
input parameter reference

MyServiceInstancesEnvironmentSampleQutputValue: #
output definition

Value: "{{ environment.outputs.MySampleInputValue }}" #
output reference to an environment IaC file
MyServiceInstancesEnvironmentOtherSampleOutputValue: #
output definition

Value: "{{ environment.outputs.MyOtherSampleInputValue }}" #

output reference to an environment IaC file

Service CloudFormation laC parameters 57

AWS Proton User Guide

Component CloudFormation laC file parameter details and examples

You can define and reference parameters in your component infrastructure as code (laC) files. For
a detailed description of AWS Proton parameters, parameter types, the parameter namespace, and
how to use parameters in your laC files, see the section called “Parameters”. For more information

about components, see Components.

Define component output parameters

You can define output parameters in your component laC files. You can then refer to these outputs
in service laC files.

(® Note

You can't define inputs for component laC files. Attached components can get inputs from
the service instance that they are attached to. Detached components don't have inputs.

Read parameter values in component laC files

You can read parameters related to the component and to other resources in component laC files.
You read a parameter value by referencing the parameter's name in the AWS Proton parameter
namespace.

 Input parameters — Read an attached service instance input value by referencing
service_instance.inputs.input-name.

» Resource parameters — Read AWS Proton resource parameters by referencing names such as
component.name, service.name, service_instance.name, and environment.name.

« Output parameters — Read environment outputs by referencing
environment.outputs.output-name.

Example component and service laC files with parameters

The following example shows a component that provisions an Amazon Simple Storage Service
(Amazon S3) bucket and related access policy and exposes the Amazon Resource Names (ARNs)
of both resources as component outputs. A service laC template adds the component outputs as
container environment variables of an Amazon Elastic Container Service (Amazon ECS) task to
make the outputs available to code running in the container, and adds the bucket access policy

Component CloudFormation laC parameters 58

AWS Proton User Guide

to the task's role. The bucket name is based on the names of the environment, service, service
instance, and component, meaning that the bucket is coupled with a specific instance of the
component template extending a specific service instance. Developers can create multiple custom
components based on this component template, to provision Amazon S3 buckets for different
service instances and functional needs.

The example shows how you use Jinja {{ ... }} syntax to refer to component and other resource
parameters in your service laC file. You can use {% if ... %]} statements to add blocks of
statements only when a component is attached to the service instance. The proton_cfn_*
keywords are filters that you can use to sanitize and format output parameter values. For more
information about filters, see the section called “CloudFormation parameter filters”.

As an administrator, you author the service IaC template file.

Example service CloudFormation laC file using a component

service/instance_infrastructure/cloudformation.yaml

Resources:
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
TaskRoleArn: !Ref TaskRole
ContainerDefinitions:
- Name: '{{service_instance.name}}'
...
% if service_instance.components.default.outputs | length > 0 %}
Environment:
{{ service_instance.components.default.outputs |
proton_cfn_ecs_task_definition_formatted_env_vars }}
{% endif %}

.
TaskRole:
Type: AWS::IAM::Role
Properties:
oo
ManagedPolicyAzrns:

- IRef BaseTaskRoleManagedPolicy
{{ service_instance.components.default.outputs
| proton_cfn_iam_policy_arns }}

Component CloudFormation laC parameters 59

AWS Proton User Guide

Basic permissions for the task
BaseTaskRoleManagedPolicy:
Type: AWS::IAM::ManagedPolicy
Properties:
coaa

As a developer, you author the component IaC template file.

Example component CloudFormation laC file

cloudformation.yaml

A component that defines an S3 bucket and a policy for accessing the bucket.
Resources:
S3Bucket:
Type: 'AWS::S3::Bucket'
Properties:
BucketName: '{{environment.name}}-{{sexrvice.name}}-{{service_instance.name}}-
{{component.name}}"’
S3BucketAccessPolicy:
Type: AWS::IAM::ManagedPolicy
Properties:
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Action:
- 's3:Get*'
's3:List*!
- 's3:PutObject’
Resource: !GetAtt S3Bucket.Arn
Outputs:
BucketName:
Description: "Bucket to access"
Value: !GetAtt S3Bucket.Axrn
BucketAccessPolicyArn:
Value: !Ref S3BucketAccessPolicy

When AWS Proton renders an AWS CloudFormation template for your service instance and replaces
all parameters with actual values, the template might look like the following file.

Component CloudFormation laC parameters 60

AWS Proton User Guide

Example service instance CloudFormation rendered IaC file

Resources:
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
TaskRoleArn: !Ref TaskRole
ContainerDefinitions:
- Name: '{{service_instance.name}}'
...
Environment:
- Name: BucketName
Value: arn:aws:s3:us-
east-1:123456789012:environment_name-service_name-service_instance_name-component_name
- Name: BucketAccessPolicyArn
Value: arn:aws:iam::123456789012:policy/cfn-generated-policy-name

.
TaskRole:
Type: AWS::IAM::Role
Properties:
oo
ManagedPolicyArns:

- IRef BaseTaskRoleManagedPolicy
- arn:aws:iam::123456789012:policy/cfn-generated-policy-name

Basic permissions for the task
BaseTaskRoleManagedPolicy:
Type: AWS::IAM::ManagedPolicy
Properties:
...

Parameter filters for CloudFormation lacC files

When you make references to AWS Proton parameters in your AWS CloudFormation laC files, you

can use Jinja modifiers known as filters to validate, filter, and format parameter values before they
get inserted into the rendered template. Filter validations are particularly useful when referring

to component output parameters, because component creation and attachment are done by
developers, and an administrator using component outputs in a service instance template might
want to verify their existence and validity. However, you can use filters in any Jinja laC file.

CloudFormation parameter filters 61

AWS Proton User Guide

The following sections describe and define the available parameter filters, and provide examples.
AWS Proton defines most of these filters. The default filter is a Jinja built-in filter.

Format environment properties for Amazon ECS tasks

Declaration

dict # proton_cfn_ecs_task_definition_formatted_env_vars (raw: boolean = True) # YAML
list of dicts

Description

This filter formats a list of outputs to be used in an Environment property in the
ContainerDefinition section of an Amazon Elastic Container Service (Amazon ECS) task
definition.

Set raw to False to also validate the parameter value. In this case, the value is required to match
the regular expression A"[a-zA-Z0-9_-]1*$. If the value fails this validation, template rendering
fails.

Example

With the following custom component template:

Resources:
...
Outputs:
Outputl:
Description: "Example component output 1"
Value: hello
Output2:
Description: "Example component output 2"
Value: world

And the following service template:

Resources:
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
...
ContainerDefinitions:

CloudFormation parameter filters 62

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-containerdefinitions.html#cfn-ecs-taskdefinition-containerdefinition-environment

AWS Proton User Guide

- Name: MyServiceName
...
Environment:
{{ service_instance.components.default.outputs
| proton_cfn_ecs_task_definition_formatted_env_vars }}

The rendered service template is as follows:

Resources:
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
...
ContainerDefinitions:
- Name: MyServiceName
...
Environment:
- Name: Outputl
Value: hello
- Name: Output2
Value: world

Format environment properties for Lambda functions

Declaration
dict # proton_cfn_lambda_function_formatted_env_vars (raw: boolean = True) # YAML dict

Description

This filter formats a list of outputs to be used in an Environment property in the Properties
section of an AWS Lambda function definition.

Set raw to False to also validate the parameter value. In this case, the value is required to match
the regular expression A"[a-zA-Z0-9_-]1*$. If the value fails this validation, template rendering
fails.

Example

With the following custom component template:

Resources:

CloudFormation parameter filters 63

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html#cfn-lambda-function-environment

AWS Proton User Guide

...
Outputs:

OQutputl:
Description: "Example component output 1"
Value: hello

Output2:
Description: "Example component output 2"
Value: world

And the following service template:

Resources:
Lambda:
Type: AWS::Lambda::Function
Properties:
Environment:
Variables:
{{ service_instance.components.default.outputs
| proton_cfn_lambda_function_formatted_env_vars }}

The rendered service template is as follows:

Resources:
Lambda:
Type: AWS::Lambda::Function
Properties:
Environment:
Variables:
Outputl: hello
Output2: world

Extract IAM policy ARNs to include in IAM roles
Declaration

dict # proton_cfn_iam_policy_arns # YAML list

Description

This filter formats a list of outputs to be used in a ManagedPolicyArns property in the Properties
section of an AWS Identity and Access Management (IAM) role definition. The filter uses the regular

CloudFormation parameter filters 64

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html#cfn-iam-role-managepolicyarns

AWS Proton User Guide

expression *arn:[a-zA-Z-]+:iam::\d{12}:policy/ to extract valid IAM policy ARNs from the
list of output parameters. You can use this filter to append policies in output parameter values to
an IAM role definition in a service template.

Example

With the following custom component template:

Resources:
...
ExamplePolicyl:
Type: AWS::IAM::ManagedPolicy
Properties:
...
ExamplePolicy2:
Type: AWS::IAM::ManagedPolicy
Properties:
...

Outputs:

Outputl:
Description: "Example component output 1"
Value: hello

Output2:
Description: "Example component output 2"
Value: world

PolicyArnl:
Description: "ARN of policy 1"
Value: !Ref ExamplePolicyl

PolicyArn2:
Description: "ARN of policy 2"
Value: !Ref ExamplePolicy2

And the following service template:

Resources:

TaskRole:
Type: AWS::IAM::Role

CloudFormation parameter filters 65

AWS Proton User Guide
Properties:
...
ManagedPolicyArns:
- IRef BaseTaskRoleManagedPolicy
{{ service_instance.components.default.outputs
| proton_cfn_iam_policy_arns }}
Basic permissions for the task
BaseTaskRoleManagedPolicy:
Type: AWS::IAM::ManagedPolicy
Properties:
...
The rendered service template is as follows:
Resources:
.
TaskRole:
Type: AWS::IAM::Role
Properties:
...
ManagedPolicyArns:
- IRef BaseTaskRoleManagedPolicy
- arn:aws:iam::123456789012:policy/cfn-generated-policy-name-1
- arn:aws:iam::123456789012:policy/cfn-generated-policy-name-2
Basic permissions for the task
BaseTaskRoleManagedPolicy:
Type: AWS::IAM::ManagedPolicy
Properties:
...
Sanitize property values
Declaration
string # proton_cfn_sanitize # string
Description
CloudFormation parameter filters 66

AWS Proton User Guide

This is a general purpose filter. Use it to validate the safety of a parameter value. The filter
validates that the value either matches the reqular expression ~[a-zA-Z0-9_-1*$ or is a valid
Amazon Resource Name (ARN). If the value fails this validation, template rendering fails.

Example

With the following custom component template:

Resources:
...
Outputs:
OQutputl:
Description: "Example of valid output"
Value: "This-is_valid_37"
Output2:
Description: "Example incorrect output"
Value: "this::is::incorrect"”
SomeArn:
Description: "Example ARN"
Value: arn:aws:some-service::123456789012:some-resource/resource-name

» The following reference in a service template:

{{ service_instance.components.default.outputs.Outputl
| proton_cfn_sanitize }}

Renders as follows:

...
This-is_valid_37

» The following reference in a service template:

{{ service_instance.components.default.outputs.Output2
| proton_cfn_sanitize }}

Results with the following rendering error:

CloudFormation parameter filters 67

AWS Proton User Guide

Illegal character(s) detected in "this::is::incorrect". Must match regex ~[a-zA-
Z0-9_-1*$ or be a valid ARN

« The following reference in a service template:

{{ service_instance.components.default.outputs.SomeAxrn
| proton_cfn_sanitize }}

Renders as follows:
arn:aws:some-service: :123456789012:some-resource/resource-name

Provide default values for nonexistent references

Description

The default filter provides a default value when a namespace reference doesn't exist. Use it to
write robust templates that can render without failure even when the parameter you refer to is
missing.

Example

The following reference in a service template causes template rendering to fail if the service
instance doesn't have an attached directly defined (default) component, or if the attached
component doesn't have an output named test.

{{ service_instance.components.default.outputs.test }}

To avoid this issue, add the default filter.

{{ service_instance.components.default.outputs.test | default("[optional-value]") }}

CloudFormation parameter filters 68

AWS Proton User Guide

CodeBuild provisioning parameter details and examples

You can define parameters in your templates for CodeBuild-based AWS Proton resources and
reference these parameters in your provisioning code. For a detailed description of AWS Proton
parameters, parameter types, the parameter namespace, and how to use parameters in your laC
files, see the section called “Parameters”.

(@ Note

You can use CodeBuild provisioning with environments and services. At this time you can't
provision components this way.

Input parameters

When you create an AWS Proton resource, like an environment or a service, you provide values
for input parameters that are defined in your template's schema file. When the resource that you
create uses CodeBuild provisioning, AWS Proton renders these input values into an input file. Your
provisioning code can import and get parameter values from this file.

For an example of a CodeBuild templates, see the section called “CodeBuild bundle”. For more
information about manifest files, see the section called “Manifest and wrap up”.

The following example is a JSON input file generated during CodeBuild-based provisioning of a
service instance.

Example: using the AWS CDK with CodeBuild provisioning

{

"service_instance": {
"name": "my-service-staging",
"inputs": {

"port": "8080",
"task_size": "medium"
}
I
"service": {
"name": "my-service"
},

"environment": {
"account_id": "123456789012",

CodeBuild provisioning parameters 69

AWS Proton User Guide

"name": "my-env-staging",
"outputs": {
"vpc-id": "hdh2323423"
}
}
}

Output parameters

To communicate resource provisioning outputs back to AWS Proton, your provisioning code can
generate a JSON file named proton-outputs. json with values for output parameters defined
in your template's schema file. For example, the cdk deploy command has the --outputs-file
argument that instructs the AWS CDK to generate a JSON file with provisioning outputs. If your
resource uses the AWS CDK, specify the following command in your CodeBuild template manifest:

aws proton notify-resource-deployment-status-change

AWS Proton looks for this JSON file. If the file exists after your provisioning code successfully
completes, AWS Proton reads output parameter values from it.

Terraform infrastructure as code (1aC) file parameter details and
examples

You can include Terraform input variables in variable. tf files in your template bundle. You can
also create a schema to create AWS Proton managed variables. AWS Proton creates variable . tf
files from your schema file. For more information, see the section called “Terraform laC files".

To reference your schema defined AWS Proton variables in your infrastructure .tf files, you use
the AWS Proton namespaces shown in the Parameters and namespaces for Terraform laC table. For
example, you can use var.environment.inputs.vpc_cidr. Inside quotation marks, surround
these variables with single brackets and add a dollar sign in front of the first brace (for example,
“${var.environment.inputs.vpc_cidr}”).

The following example shows how to use namespaces to include AWS Proton parameters in an
environment .tf file.

terraform {
required_providers {
aws = {

Terraform laC parameters 70

AWS Proton User Guide

source = "hashicorp/aws"
version = "~> 3.0"

}

// This tells terraform to store the state file in s3 at the location
// s3://terraform-state-bucket/tf-os-sample/terraform.tfstate

backend "s3" {

bucket = "terraform-state-bucket"
key = "tf-os-sample/terraform.tfstate"
region = "us-east-1"
}
}
// Configure the AWS Provider
provider "aws" {
region = "us-east-1"

default_tags {
tags = var.proton_tags

}

}

resource "aws_ssm_parameter" "my_ssm_parameter" {
name = "my_ssm_parameter"
type = "String"

// Use the Proton environment.inputs. namespace
value = var.environment.inputs.ssm_parameter_value

AWS Proton infrastructure as code files

The primary parts of the template bundle are infrastructure as code (laC) files that define the
infrastructure resources and properties that you want to provision. AWS CloudFormation and other
infrastructure as code engines use these types of files to provision infrastructure resources.

(@ Note

An laC file can also be used independently of template bundles, as a direct input to directly
defined components. For more information about components, see Components.

AWS Proton currently supports two types of laC files:

Infrastructure as code files 71

AWS Proton User Guide

o CloudFormation files — Used for AWS-managed provisioning. AWS Proton uses Jinja on top of the
CloudFormation template file format for parametrization.

o Terraform HCL files — Used for Self-managed provisioning. HCL natively supports parametrization.

You can't provision AWS Proton resources using a combination of provisioning methods. You must
use one or the other. You can't deploy an AWS-managed provisioning service to a self-managed
provisioning environment, or vice versa.

For more information, see the section called “Provisioning methods", Environments, Services, and
Components.

AWS CloudFormation lacC files

Learn how to use AWS CloudFormation infrastructure as code files with AWS Proton. AWS
CloudFormation is an infrastructure as code (IaC) service that helps you model and set up your
AWS resources. You define your infrastructure resources in templates, using Jinja on top of the
CloudFormation template file format for parametrization. AWS Proton expands parameters and
renders the full CloudFormation template. CloudFormation provisions the defined resources

as CloudFormation stack. For more information, see What is AWS CloudFormation in the AWS

CloudFormation User Guide.

AWS Proton supports AWS-managed provisioning for CloudFormation laC.

Start with your own existing infrastructure as code files
You can adapt your own existing infrastructure as code (laC) files for use with AWS Proton.

The following AWS CloudFormation examples, Example 1, and Example 2, represent your own

existing CloudFormation laC files. CloudFormation can use these files to create two different
CloudFormation stacks.

In Example 1, the CloudFormation laC file is configured to provision infrastructure to be shared
among container applications. In this example, input parameters are added so that you can use
the same laC file to create multiple sets of provisioned infrastructure. Each set can have different
names along with a different set of VPC and subnet CIDR values. As either an administrator

or a developer, you provide values for these parameters when you use an laC file to provision
infrastructure resources with CloudFormation. For your convenience, these input parameters are
marked with comments and referenced multiple times in the example. The outputs are defined at
the end of the template. They can be referenced in other CloudFormation laC files.

AWS CloudFormation laC files 72

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS Proton User Guide

In Example 2, the CloudFormation IaC file is configured to deploy an application to the

infrastructure that's provisioned from Example 1. The parameters are commented for your
convenience.

Example 1: CloudFormation laC file

AWSTemplateFormatVersion: '2010-09-09'
Description: AWS Fargate cluster running containers in a public subnet. Only supports

public facing load balancer, and public service discovery namespaces.
Parameters:

VpcCIDR: # input parameter
Description: CIDR for VPC
Type: String
Default: "10.0.0.0/16"
SubnetOneCIDR: # input parameter
Description: CIDR for SubnetOne
Type: String
Default: "10.0.0.0/24"
SubnetTwoCIDR: # input parameters
Description: CIDR for SubnetTwo
Type: String
Default: "10.0.1.0/24"
Resources:
VPC:
Type: AWS::EC2::VPC
Properties:
EnableDnsSupport: true
EnableDnsHostnames: true
CidrBlock:
Ref: 'VpcCIDR'

Two public subnets, where containers will have public IP addresses
PublicSubnetOne:

Type: AWS::EC2::Subnet
Properties:
AvailabilityZone:
Fn::Select:
-0
- Fn::GetAZs: {Ref: 'AWS::Region'}
VpcId: !Ref 'VPC'
CidrBlock:
Ref: 'SubnetOneCIDR'
MapPublicIpOnLaunch: true

AWS CloudFormation laC files 73

AWS Proton User Guide

PublicSubnetTwo:
Type: AWS::EC2::Subnet
Properties:
AvailabilityZone:
Fn::Select:
-1
- Fn::GetAZs: {Ref: 'AWS::Region'}
VpcId: !Ref 'VPC'
CidrBlock:
Ref: 'SubnetTwoCIDR'
MapPublicIpOnLaunch: true

Setup networking resources for the public subnets. Containers
in the public subnets have public IP addresses and the routing table
sends network traffic via the internet gateway.

InternetGateway:
Type: AWS::EC2::InternetGateway
GatewayAttachement:
Type: AWS::EC2::VPCGatewayAttachment
Properties:

VpcId: !Ref 'VPC'
InternetGatewayId: !Ref 'InternetGateway'

PublicRouteTable:
Type: AWS::EC2::RouteTable
Properties:
VpcId: !Ref 'VPC'
PublicRoute:

Type: AWS::EC2::Route
DependsOn: GatewayAttachement
Properties:
RouteTableId: !Ref 'PublicRouteTable'
DestinationCidrBlock: '0.0.0.0/0'
GatewayId: !Ref 'InternetGateway'
PublicSubnetOneRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !Ref PublicSubnetOne
RouteTableId: !Ref PublicRouteTable
PublicSubnetTwoRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !'Ref PublicSubnetTwo
RouteTableId: !Ref PublicRouteTable

AWS CloudFormation laC files 74

AWS Proton User Guide

ECS Resources
ECSCluster:
Type: AWS::ECS::Cluster

A security group for the containers we will run in Fargate.
Rules are added to this security group based on what ingress you
add for the cluster.
ContainerSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Access to the Fargate containers
VpcId: !Ref 'VPC'

This is a role which is used by the ECS tasks themselves.
ECSTaskExecutionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Effect: Allow
Principal:
Service: [ecs-tasks.amazonaws.com]
Action: ['sts:AssumeRole']
Path: /
ManagedPolicyArns:
- 'arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy'

These output values will be available to other templates to use.
Outputs:
ClusterName: # output
Description: The name of the ECS cluster
Value: !Ref 'ECSCluster'

Export:
Name:
Fn::Sub: "${AWS::StackName}-ECSCluster"
ECSTaskExecutionRole: # output

Description: The ARN of the ECS role
Value: !GetAtt 'ECSTaskExecutionRole.Arn'
Export:
Name:
Fn::Sub: "${AWS::StackName}-ECSTaskExecutionRole"
VpcId: # output
Description: The ID of the VPC that this stack is deployed in

AWS CloudFormation laC files 75

AWS Proton User Guide

Value: !Ref 'VPC'

Export:
Name:
Fn::Sub: "${AWS::StackName}-VPC"
PublicSubnetOne: # output

Description: Public subnet one
Value: !Ref 'PublicSubnetOne'

Export:
Name:
Fn::Sub: "${AWS::StackName}-PublicSubnetOne"
PublicSubnetTwo: # output

Description: Public subnet two
Value: !Ref 'PublicSubnetTwo'

Export:
Name:
Fn::Sub: "${AWS::StackName}-PublicSubnetTwo"
ContainerSecurityGroup: # output

Description: A security group used to allow Fargate containers to receive traffic
Value: !Ref 'ContainerSecurityGroup'
Export:
Name:
Fn::Sub: "${AWS::StackName}-ContainerSecurityGroup"

Example 2: CloudFormation laC file

AWSTemplateFormatVersion: '2010-09-09'
Description: Deploy a service on AWS Fargate, hosted in a public subnet, and accessible
via a public load balancer.
Parameters:
ContainerPortInput: # input parameter
Description: The port to route traffic to
Type: Number
Default: 80
TaskCountInput: # input parameter
Description: The default number of Fargate tasks you want running
Type: Number
Default: 1
TaskSizeInput: # input parameter
Description: The size of the task you want to run
Type: String
Default: x-small
ContainerImageInput: # input parameter
Description: The name/url of the container image

AWS CloudFormation laC files 76

AWS Proton User Guide

Type: String
Default: "public.ecr.aws/z9d2n7el/nginx:1.19.5"
TaskNameInput: # input parameter
Description: Name for your task
Type: String
Default: "my-fargate-instance"
StackName: # input parameter
Description: Name of the environment stack to deploy to
Type: String
Default: "my-fargate-environment"
Mappings:
TaskSizeMap:
x-small:
cpu: 256
memory: 512
small:
cpu: 512
memory: 1024
medium:
cpu: 1024
memory: 2048
large:
Cpu: 2048
memory: 4096
x-large:
cpu: 4096
memory: 8192
Resources:
A log group for storing the stdout logs from this service's containers
LogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName:
Ref: 'TaskNameInput' # input parameter

The task definition. This is a simple metadata description of what
container to run, and what resource requirements it has.
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
Family: !Ref 'TaskNameInput'
Cpu: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', cpul
Memory: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', memory]
NetworkMode: awsvpc

AWS CloudFormation laC files 77

AWS Proton User Guide

RequiresCompatibilities:
- FARGATE
ExecutionRoleArn:
Fn::ImportValue:
1Sub "${StackName}-ECSTaskExecutionRole" # output parameter from another
CloudFormation template
awslogs-region: !Ref 'AWS::Region'
awslogs-stream-prefix: !Ref 'TaskNameInput'

The service_instance. The service is a resource which allows you to run multiple
copies of a type of task, and gather up their logs and metrics, as well
as monitor the number of running tasks and replace any that have crashed
Service:
Type: AWS::ECS::Service
DependsOn: LoadBalancerRule
Properties:
ServiceName: !Ref 'TaskNameInput'
Cluster:
Fn::ImportValue:
1Sub "${StackName}-ECSCluster" # output parameter from another
CloudFormation template
LaunchType: FARGATE
DeploymentConfiguration:
MaximumPercent: 200
MinimumHealthyPercent: 75
DesiredCount: !Ref 'TaskCountInput'
NetworkConfiguration:
AwsvpcConfiguration:
AssignPublicIp: ENABLED
SecurityGroups:
- Fn::ImportValue:
1Sub "${StackName}-ContainerSecurityGroup" # output parameter from
another CloudFormation template
Subnets:
- Fn::ImportValue:r CloudFormation template
TaskRoleArn: !Ref "AWS::NoValue"
ContainerDefinitions:
- Name: !Ref 'TaskNameInput'
Cpu: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', cpul
Memory: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', memory]
Image: !Ref 'ContainerImageInput' # input parameter
PortMappings:
- ContainerPort: !Ref 'ContainerPortInput' # input parameter

AWS CloudFormation laC files 78

AWS Proton User Guide

LogConfiguration:
LogDriver: 'awslogs'
Options:
awslogs-group: !Ref 'TaskNameInput'
1Sub "${StackName}-PublicSubnetOne" # output parameter from another

CloudFormation template
- Fn::ImportValue:
1Sub "${StackName}-PublicSubnetTwo" # output parameter from another
CloudFormation template
TaskDefinition: !Ref 'TaskDefinition'
LoadBalancers:
- ContainerName: !Ref 'TaskNameInput'
ContainerPort: !Ref 'ContainerPortInput' # input parameter
TargetGroupArn: !Ref 'TargetGroup'

A target group. This is used for keeping track of all the tasks, and
what IP addresses / port numbers they have. You can query it yourself,
to use the addresses yourself, but most often this target group is just
connected to an application load balancer, or network load balancer, so
it can automatically distribute traffic across all the targets.
TargetGroup:
Type: AWS::ElasticlLoadBalancingV2::TargetGroup
Properties:
HealthCheckIntervalSeconds: 6
HealthCheckPath: /
HealthCheckProtocol: HTTP
HealthCheckTimeoutSeconds: 5
HealthyThresholdCount: 2
TargetType: ip
Name: !Ref 'TaskNamelInput'
Port: !Ref 'ContainerPortInput'
Protocol: HTTP
UnhealthyThresholdCount: 2

VpcId:
Fn::ImportValue:
1Sub "${StackName}-VPC" # output parameter from another CloudFormation
template

Create a rule on the load balancer for routing traffic to the target group
LoadBalancerRule:
Type: AWS::ElasticlLoadBalancingV2::ListenerRule
Properties:
Actions:

AWS CloudFormation laC files 79

AWS Proton User Guide
- TargetGroupArn: !Ref 'TargetGroup'
Type: 'forward'
Conditions:
- Field: path-pattern
Values:

[N

ListenerArn: !Ref PubliclLoadBalancerListener
Priority: 1

Enable autoscaling for this service
ScalableTarget:
Type: AWS::ApplicationAutoScaling::ScalableTarget
DependsOn: Service
Properties:
ServiceNamespace:
ScalableDimension: 'ecs:service:DesiredCount'
Resourceld:
Fn::Join:
o U
- - service
- Fn::ImportValue:
ISub "${StackName}-ECSCluster"
- IRef 'TaskNameInput'
MinCapacity: 1
MaxCapacity: 10

ecs

RoleARN: !Sub arn:aws:iam::${AWS: :AccountId}:role/
aws-service-role/ecs.application-autoscaling.amazonaws.com/

AWSServiceRoleForApplicationAutoScaling_ECSService

Create scaling policies for the service
ScaleDownPolicy:
Type: AWS::ApplicationAutoScaling::ScalingPolicy
DependsOn: ScalableTarget
Properties:
PolicyName:
Fn::Join:
o U
- - scale
- IRef 'TaskNameInput'
- down
PolicyType: StepScaling
Resourceld:
Fn::Join:

- l/l

AWS CloudFormation laC files

80

AWS Proton

User Guide

- - service
- Fn::ImportValue:

1Sub "${StackName}-ECSCluster" # output parameter from another

CloudFormation template
- IRef 'TaskNameInput'
ScalableDimension: 'ecs:service:DesiredCount'
ServiceNamespace: '
StepScalingPolicyConfiguration:
AdjustmentType: 'ChangeInCapacity'
StepAdjustments:
- MetricIntervalUpperBound: @
ScalingAdjustment: -1
MetricAggregationType: 'Average'
Cooldown: 60

ecs

ScaleUpPolicy:
Type: AWS::ApplicationAutoScaling::ScalingPolicy
DependsOn: ScalableTarget

Properties:
PolicyName:
Fn::Join:
-
- - scale
- IRef 'TaskNameInput'
- up
PolicyType: StepScaling
Resourceld:
Fn::Join:
o U
- - service

- Fn::ImportValue:
1Sub "${StackName}-ECSCluster"

- IRef 'TaskNameInput'
ScalableDimension: 'ecs:service:DesiredCount'
ServiceNamespace: '
StepScalingPolicyConfiguration:

AdjustmentType: 'ChangeInCapacity'
StepAdjustments:

- MetricIntervallowerBound: 0
MetricIntervalUpperBound: 15
ScalingAdjustment: 1

- MetricIntervallLowerBound: 15
MetricIntervalUpperBound: 25
ScalingAdjustment: 2

ecs

AWS CloudFormation laC files

81

AWS Proton User Guide

- MetricIntervallowerBound: 25
ScalingAdjustment: 3
MetricAggregationType: 'Average'
Cooldown: 60

Create alarms to trigger these policies

LowCpuUsageAlarm:
Type: AWS::CloudWatch::Alarm
Properties:
AlarmName:
Fn::Join:
- - low-cpu
- IRef 'TaskNameInput'
AlarmDescription:
Fn::Join:

- - "Low CPU utilization for service"
- IRef 'TaskNameInput'
MetricName: CPUUtilization
Namespace: AWS/ECS
Dimensions:
- Name: ServiceName
Value: !Ref 'TaskNameInput'
- Name: ClusterName
Value:
Fn::ImportValue:
1Sub "${StackName}-ECSCluster"
Statistic: Average
Period: 60
EvaluationPeriods: 1
Threshold: 20
ComparisonOperator: LessThanOrEqualToThreshold
AlarmActions:
- IRef ScaleDownPolicy

HighCpuUsageAlarm:
Type: AWS::CloudWatch::Alarm
Properties:
AlarmName:
Fn::Join:

- - high-cpu
- IRef 'TaskNameInput'

AWS CloudFormation laC files 82

AWS Proton User Guide

AlarmDescription:
Fn::Join:

- - "High CPU utilization for service"
- IRef 'TaskNameInput'
MetricName: CPUUtilization
Namespace: AWS/ECS
Dimensions:
- Name: ServiceName
Value: !Ref 'TaskNameInput'
- Name: ClusterName
Value:
Fn::ImportValue:
ISub "${StackName}-ECSCluster"
Statistic: Average
Period: 60
EvaluationPeriods: 1
Threshold: 70
ComparisonOperator: GreaterThanOrEqualToThreshold
AlarmActions:
- IRef ScaleUpPolicy

EcsSecurityGroupIngressFromPublicALB:
Type: AWS::EC2::SecurityGroupIngress
Properties:
Description: Ingress from the public ALB
GrouplId:
Fn::ImportValue:
1Sub "${StackName}-ContainerSecurityGroup"
IpProtocol: -1
SourceSecurityGroupId: !Ref 'PubliclLoadBalancerSG'

Public load balancer, hosted in public subnets that is accessible

to the public, and is intended to route traffic to one or more public
facing services. This is used for accepting traffic from the public

internet and directing it to public facing microservices

PubliclLoadBalancerSG:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Access to the public facing load balancer
VpcId:

Fn::ImportValue:
1Sub "${StackName}-VPC"
SecurityGroupIngress:

AWS CloudFormation laC files 83

AWS Proton User Guide

Allow access to ALB from anywhere on the internet
- CidrIp: 0.0.0.0/0
IpProtocol: -1

PublicloadBalancer:
Type: AWS::ElasticlLoadBalancingV2::LoadBalancer
Properties:
Scheme: internet-facing
LoadBalancerAttributes:
- Key: idle_timeout.timeout_seconds
Value: '30'
Subnets:
The load balancer is placed into the public subnets, so that traffic
from the internet can reach the load balancer directly via the internet
gateway
- Fn::ImportValue:
1Sub "${StackName}-PublicSubnetOne"
- Fn::ImportValue:
1Sub "${StackName}-PublicSubnetTwo"
SecurityGroups: [!Ref 'PubliclLoadBalancerSG']

PublicLoadBalancerlListener:
Type: AWS::ElasticLoadBalancingV2::Listener
DependsOn:
- PubliclLoadBalancer
Properties:
DefaultActions:
- TargetGroupArn: !Ref 'TargetGroup'
Type: 'forward'
LoadBalancerArn: !Ref 'PubliclLoadBalancer'
Port: 80
Protocol: HTTP
These output values will be available to other templates to use.
Outputs:
ServiceEndpoint: # output
Description: The URL to access the service
Value: !Sub "http://${PublicLoadBalancer.DNSName}"

You can adapt these files for use with AWS Proton.

AWS CloudFormation laC files 84

AWS Proton User Guide

Bring your infrastructure as code to AWS Proton

With slight modifications, you can use Example 1 as an infrastructure as code (laC) file for an
environment template bundle that AWS Proton uses to deploy an environment (as shown in

Example 3).

Instead of using the CloudFormation parameters, you use Jinja syntax to reference parameters that
you have defined in an Open API based schema file. These input parameters are commented for
your convenience and referenced multiple times in the laC file. This way, AWS Proton can audit and
check parameter values. It can also match and insert output parameter values in one laC file to
parameters in another laC file.

As administrator, you can add the AWS Proton environment.inputs. namespace to
the input parameters. When you reference environment laC file outputs in a service laC
file, you can add the environment.outputs. namespace to the outputs (for example,
environment.outputs.ClusterName). Last, you surround them with curly braces and
quotation marks.

With these modifications, your CloudFormation IaC files can be used by AWS Proton.

Example 3: AWS Proton environment infrastructure as code file

AWSTemplateFormatVersion: '2010-09-09'
Description: AWS Fargate cluster running containers in a public subnet. Only supports
public facing load balancer, and public service discovery prefixes.
Mappings:
The VPC and subnet configuration is passed in via the environment spec.
SubnetConfig:
VPC:
CIDR: '{{ environment.inputs.vpc_cidr}}"' # input parameter
PublicOne:
CIDR: '{{ environment.inputs.subnet_one_cidr}}' # input parameter
PublicTwo:
CIDR: '{{ environment.inputs.subnet_two_cidr}}' # input parameter
Resources:

VPC:
Type: AWS::EC2::VPC
Properties:

EnableDnsSupport: true
EnableDnsHostnames: true
CidrBlock: !FindInMap ['SubnetConfig', 'VPC', 'CIDR']

AWS CloudFormation laC files 85

https://jinja.palletsprojects.com/en/2.11.x/templates/
https://swagger.io/docs/specification/data-models/

AWS Proton User Guide

Two public subnets, where containers will have public IP addresses
PublicSubnetOne:
Type: AWS::EC2::Subnet
Properties:
AvailabilityZone:
Fn::Select:
-0
- Fn::GetAZs: {Ref: 'AWS::Region'}
VpcId: !Ref 'VPC'
CidrBlock: !FindInMap ['SubnetConfig', 'PublicOne', 'CIDR']
MapPublicIpOnLaunch: true

PublicSubnetTwo:
Type: AWS::EC2::Subnet
Properties:
AvailabilityZone:
Fn::Select:
-1
- Fn::GetAZs: {Ref: 'AWS::Region'}
VpcId: !Ref 'VPC'
CidrBlock: !FindInMap ['SubnetConfig', 'PublicTwo', 'CIDR']
MapPublicIpOnLaunch: true

Setup networking resources for the public subnets. Containers
in the public subnets have public IP addresses and the routing table
sends network traffic via the internet gateway.

InternetGateway:
Type: AWS::EC2::InternetGateway
GatewayAttachement:
Type: AWS::EC2::VPCGatewayAttachment
Properties:

VpcId: !Ref 'VPC'
InternetGatewayId: !Ref 'InternetGateway'

PublicRouteTable:
Type: AWS::EC2::RouteTable
Properties:
VpcId: !Ref 'VPC'
PublicRoute:

Type: AWS::EC2::Route

DependsOn: GatewayAttachement

Properties:
RouteTableId: !Ref 'PublicRouteTable'
DestinationCidrBlock: '0.0.0.0/0'
GatewayId: !Ref 'InternetGateway'

AWS CloudFormation laC files 86

AWS Proton User Guide

PublicSubnetOneRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !Ref PublicSubnetOne
RouteTableId: !Ref PublicRouteTable
PublicSubnetTwoRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !'Ref PublicSubnetTwo
RouteTableId: !Ref PublicRouteTable

ECS Resources
ECSCluster:
Type: AWS::ECS::Cluster

A security group for the containers we will run in Fargate.
Rules are added to this security group based on what ingress you
add for the cluster.
ContainerSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Access to the Fargate containers
VpcId: !Ref 'VPC'

This is a role which is used by the ECS tasks themselves.
ECSTaskExecutionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Effect: Allow
Principal:
Service: [ecs-tasks.amazonaws.com]
Action: ['sts:AssumeRole']
Path: /
ManagedPolicyArns:
- 'arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy'

These output values are available to service infrastructure as code files as outputs,
when given the

the 'service_instance.environment.outputs.' namespace, for example,
service_instance.environment.outputs.ClusterName.

Outputs:

AWS CloudFormation laC files 87

AWS Proton User Guide

ClusterName: # output
Description: The name of the ECS cluster
Value: !Ref 'ECSCluster'

ECSTaskExecutionRole: # output
Description: The ARN of the ECS role
Value: !GetAtt 'ECSTaskExecutionRole.Arn'

VpcId: # output
Description: The ID of the VPC that this stack is deployed in
Value: !Ref 'VPC'

PublicSubnetOne: # output
Description: Public subnet one
Value: !Ref 'PublicSubnetOne'

PublicSubnetTwo: # output
Description: Public subnet two
Value: !Ref 'PublicSubnetTwo'

ContainerSecurityGroup: # output
Description: A security group used to allow Fargate containers to receive traffic
Value: !Ref 'ContainerSecurityGroup'

The laC files in Example 1 and Example 3 produce slightly different CloudFormation stacks.
Parameters are displayed differently in the stack template files. The Example 7 CloudFormation
stack template file displays the parameter labels (keys) in the stack template view. The Example 3
AWS Proton CloudFormation infrastructure stack template file displays the parameter values. AWS
Proton input parameters don’t appear in the console CloudFormation stack parameters view.

In Example 4, the AWS Proton service laC file corresponds with Example 2.

Example 4: AWS Proton service instance laC file

AWSTemplateFormatVersion: '2010-09-09'
Description: Deploy a service on AWS Fargate, hosted in a public subnet, and accessible
via a public load balancer.
Mappings:
TaskSize:
x-small:
cpu: 256
memory: 512
small:
cpu: 512
memory: 1024
medium:
cpu: 1024
memory: 2048

AWS CloudFormation laC files 88

AWS Proton User Guide

large:
cpu: 2048
memory: 4096
x-large:
cpu: 4096
memory: 8192
Resources:
A log group for storing the stdout logs from this service's containers
LogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName: '{{service_instance.namel}}' # resource parameter

The task definition. This is a simple metadata description of what
container to run, and what resource requirements it has.
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
Family: '{{service_instance.name}}"
Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_sizel}}, cpul # input
parameter
Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory]
NetworkMode: awsvpc
RequiresCompatibilities:
- FARGATE
ExecutionRoleArn: '{{environment.outputs.ECSTaskExecutionRole}}' # output from an
environment infrastructure as code file
TaskRoleArn: !Ref "AWS::NoValue"
ContainerDefinitions:
- Name: '{{service_instance.name}}'
Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, cpu]
Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory]
Image: '{{service_instance.inputs.image}}'

PortMappings:

- ContainerPort: '{{service_instance.inputs.port}}' # input parameter
LogConfiguration:

LogDriver: 'awslogs'

Options:

awslogs-group: '{{service_instance.name}}"
awslogs-region: !Ref 'AWS::Region'
awslogs-stream-prefix: '{{service_instance.name}}"

The service_instance. The service is a resource which allows you to run multiple
copies of a type of task, and gather up their logs and metrics, as well

AWS CloudFormation laC files 89

AWS Proton User Guide

as monitor the number of running tasks and replace any that have crashed
Service:
Type: AWS::ECS::Service
DependsOn: LoadBalancerRule
Properties:
ServiceName: '{{service_instance.name}}"
Cluster: '{{environment.outputs.ClusterName}}' # output from an environment
infrastructure as code file
LaunchType: FARGATE
DeploymentConfiguration:
MaximumPercent: 200
MinimumHealthyPercent: 75
DesiredCount: '{{service_instance.inputs.desired_count}}' # input parameter
NetworkConfiguration:
AwsvpcConfiguration:
AssignPublicIp: ENABLED
SecurityGroups:
- '"{{environment.outputs.ContainerSecurityGroup}}' # output from an
environment infrastructure as code file
Subnets:
- '"{{environment.outputs.PublicSubnetOne}}" # output from an
environment infrastructure as code file
- '"{{environment.outputs.PublicSubnetTwo}}"
TaskDefinition: !Ref 'TaskDefinition'
LoadBalancers:
- ContainerName: '{{service_instance.name}}'
ContainerPort: '{{service_instance.inputs.port}}'
TargetGroupArn: !Ref 'TargetGroup'

A target group. This is used for keeping track of all the tasks, and
what IP addresses / port numbers they have. You can query it yourself,
to use the addresses yourself, but most often this target group is just
connected to an application load balancer, or network load balancer, so
it can automatically distribute traffic across all the targets.
TargetGroup:
Type: AWS::ElasticlLoadBalancingV2::TargetGroup
Properties:
HealthCheckIntervalSeconds: 6
HealthCheckPath: /
HealthCheckProtocol: HTTP
HealthCheckTimeoutSeconds: 5
HealthyThresholdCount: 2
TargetType: ip
Name: '{{service_instance.name}}"

AWS CloudFormation laC files

90

AWS Proton User Guide

Port: '{{service_instance.inputs.port}}"'

Protocol: HTTP

UnhealthyThresholdCount: 2

VpcId: '{{environment.outputs.VpcId}}' # output from an environment
infrastructure as code file

Create a rule on the load balancer for routing traffic to the target group
LoadBalancerRule:
Type: AWS::ElasticlLoadBalancingV2::ListenerRule
Properties:
Actions:
- TargetGroupArn: !Ref 'TargetGroup'
Type: 'forward'
Conditions:
- Field: path-pattern
Values:

[N

ListenerArn: !Ref PubliclLoadBalancerListener
Priority: 1

Enable autoscaling for this service
ScalableTarget:
Type: AWS::ApplicationAutoScaling::ScalableTarget
DependsOn: Service
Properties:
ServiceNamespace:

ecs
ScalableDimension: 'ecs:service:DesiredCount'
Resourceld:
Fn::Join:
-
- - service
- '{{environment.outputs.ClusterName}}' # output from an environment
infrastructure as code file
- '"{{service_instance.name}}"'
MinCapacity: 1
MaxCapacity: 10
RoleARN: !Sub arn:aws:iam::${AWS::AccountId}:role/
aws-service-role/ecs.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ECSService

Create scaling policies for the service
ScaleDownPolicy:
Type: AWS::ApplicationAutoScaling::ScalingPolicy
DependsOn: ScalableTarget

AWS CloudFormation laC files 91

AWS Proton

User Guide

Properties:
PolicyName:
Fn::Join:
-
- - scale
- '{{service_instance.name}}"
- down
PolicyType: StepScaling
Resourceld:
Fn::Join:
o U
- - service

- '"{{environment.outputs.ClusterName}}"
'{{service_instance.name}}"'
ScalableDimension: 'ecs:service:DesiredCount'

ServiceNamespace:
StepScalingPolicyConfiguration:
AdjustmentType: 'ChangeInCapacity'
StepAdjustments:
- MetricIntervalUpperBound: 0
ScalingAdjustment: -1
MetricAggregationType: 'Average'
Cooldown: 60

ecs

ScaleUpPolicy:
Type: AWS::ApplicationAutoScaling::ScalingPolicy
DependsOn: ScalableTarget

Properties:
PolicyName:
Fn::Join:
o U
- - scale
- '{{service_instance.name}}"
- up
PolicyType: StepScaling
Resourceld:
Fn::Join:
-
- - service

- '{{environment.outputs.ClusterName}}"

- '{{service_instance.name}}"
ScalableDimension: 'ecs:service:DesiredCount'
ServiceNamespace: '
StepScalingPolicyConfiguration:

ecs

AWS CloudFormation laC files

92

AWS Proton

User Guide

AdjustmentType: 'ChangeInCapacity'
StepAdjustments:

- MetricIntervallowerBound: @
MetricIntervalUpperBound: 15
ScalingAdjustment: 1

- MetricIntervallLowerBound: 15
MetricIntervalUpperBound: 25
ScalingAdjustment: 2

- MetricIntervallowerBound: 25
ScalingAdjustment: 3

MetricAggregationType: 'Average'
Cooldown: 60

Create alarms to trigger these policies
LowCpuUsageAlarm:
Type: AWS::CloudWatch::Alarm
Properties:
AlarmName:
Fn::Join:

- - low-cpu
- '"{{service_instance.name}}"'
AlarmDescription:
Fn::Join:

- - "Low CPU utilization for service"
- '{{service_instance.name}}"
MetricName: CPUUtilization
Namespace: AWS/ECS
Dimensions:
- Name: ServiceName
Value: '{{service_instance.name}}'
- Name: ClusterName
Value:

'{{environment.outputs.ClusterName}}'

Statistic: Average
Period: 60
EvaluationPeriods: 1
Threshold: 20

ComparisonOperator: LessThanOrEqualToThreshold

AlarmActions:
- IRef ScaleDownPolicy

HighCpuUsageAlarm:

AWS CloudFormation laC files

93

AWS Proton

User Guide

Type: AWS::CloudWatch::Alarm
Properties:
AlarmName:
Fn::Join:

- - high-cpu
- '{{service_instance.namel}}"
AlarmDescription:
Fn::Join:

- - "High CPU utilization for service"

- '{{service_instance.name}}"
MetricName: CPUUtilization
Namespace: AWS/ECS
Dimensions:

- Name: ServiceName

Value: '{{service_instance.name}}"'

- Name: ClusterName
Value:

"{{environment.outputs.ClusterName}}"

Statistic: Average
Period: 60
EvaluationPeriods: 1
Threshold: 70

ComparisonOperator: GreaterThanOrEqualToThreshold

AlarmActions:
- IRef ScaleUpPolicy

EcsSecurityGroupIngressFromPublicALB:
Type: AWS::EC2::SecurityGroupIngress
Properties:

Description: Ingress from the public ALB
GroupId: '{{environment.outputs.ContainerSecurityGroup}}"

IpProtocol: -1

SourceSecurityGroupId: !Ref 'PubliclLoadBalancerSG'

#
#
#
#
PubliclLoadBalancerSG:

Type: AWS::EC2::SecurityGroup
Properties:

GroupDescription: Access to the public facing load balancer

Public load balancer, hosted in public subnets that is accessible

to the public, and is intended to route traffic to one or more public
facing services. This is used for accepting traffic from the public
internet and directing it to public facing microservices

AWS CloudFormation laC files

94

AWS Proton User Guide

VpcId: '{{environment.outputs.VpcId}}'
SecurityGroupIngress:
Allow access to ALB from anywhere on the internet
- CidrIp: 0.0.0.0/0
IpProtocol: -1

PublicloadBalancer:
Type: AWS::ElasticlLoadBalancingV2::LoadBalancer
Properties:
Scheme: internet-facing
LoadBalancerAttributes:
- Key: idle_timeout.timeout_seconds
Value: '30'
Subnets:
The load balancer is placed into the public subnets, so that traffic
from the internet can reach the load balancer directly via the internet
gateway
- '{{environment.outputs.PublicSubnetOne}}"'
- '"{{environment.outputs.PublicSubnetTwo}}"
SecurityGroups: [!Ref 'PubliclLoadBalancerSG']

PublicLoadBalancerlListener:

Type: AWS::ElasticLoadBalancingV2::Listener
DependsOn:

- PubliclLoadBalancer
Properties:

DefaultActions:

- TargetGroupArn: !Ref 'TargetGroup'
Type: 'forward'
LoadBalancerArn: !Ref 'PubliclLoadBalancer'

Port: 80
Protocol: HTTP
Outputs:
ServiceEndpoint: # output

Description: The URL to access the service
Value: !Sub "http://${PubliclLoadBalancer.DNSName}"

In Example 5, the AWS Proton pipeline IaC file provisions the pipeline infrastructure to support the
service instances provisioned by Example 4.

Example 5: AWS Proton service pipeline laC file

Resources:

AWS CloudFormation laC files 95

AWS Proton User Guide

ECRRepo:
Type: AWS::ECR::Repository
DeletionPolicy: Retain
BuildProject:
Type: AWS::CodeBuild::Project
Properties:
Artifacts:
Type: CODEPIPELINE
Environment:
ComputeType: BUILD_GENERAL1_SMALL
Image: aws/codebuild/amazonlinux2-x86_64-standard:3.0
PrivilegedMode: true
Type: LINUX_CONTAINER
EnvironmentVariables:
- Name: repo_name
Type: PLAINTEXT
Value: !Ref ECRRepo
- Name: service_name
Type: PLAINTEXT

Value: '{{ service.name }}' # resource parameter
ServiceRole:
Fn::GetAtt:
- PublishRole
- Arn
Source:
BuildSpec:
Fn::Join:
o o 2o
{
"version": "0.2",
"phases": {
"install": {
"runtime-versions": {
"docker": 18
.

"commands": [

"pip3 install --upgrade --user awscli",

"echo
'febd1536a743ab170b35c94ed4c7c4479763356bd543af5d391122F4af852460 yq_linux_amd64' >
yq_linux_amd64.sha",

"wget https://github.com/mikefarah/yq/releases/download/3.4.0/

yq_linux_amd64",

"sha256sum -c yqg_linux_amd64.sha",

AWS CloudFormation laC files 96

AWS Proton User Guide

"mv yq_linux_amd64 /usr/bin/yq",
"chmod +x /usr/bin/yq"
]
.
"pre_build": {
"commands": [
"cd $CODEBUILD_SRC_DIR",
"$(aws ecr get-login --no-include-email --region
$AWS_DEFAULT_REGION)",
"{{ pipeline.inputs.unit_test_command }}", # input parameter
]
.
"build": {
"commands": [
"IMAGE_REPO_NAME=$repo_name",
"IMAGE_TAG=$CODEBUILD_BUILD_NUMBER",
"IMAGE_ID=
- Ref: AWS::AccountId
- D -
.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com/$IMAGE_REPO_NAME:
$IMAGE_TAG",
"docker build -t $IMAGE_REPO_NAME:$IMAGE_TAG -f
{{ pipeline.inputs.dockerfile }} .", # input parameter
"docker tag $IMAGE_REPO_NAME:$IMAGE_TAG $IMAGE_ID;",
"docker push $IMAGE_ID"
]
},
"post_build": {
"commands": [
"aws proton --region $AWS_DEFAULT_REGION get-service --name
$service_name | jq -r .service.spec > service.yaml",
"yg w service.yaml 'instances[*].spec.image' \"$IMAGE_ID\" >
rendered_service.yaml"
]
}
.
"artifacts": {
"files": [
"rendered_service.yaml"

}
Type: CODEPIPELINE
EncryptionKey:

AWS CloudFormation laC files 97

AWS Proton

User Guide

Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
{% for service_instance in service_instances %}
Deploy{{loop.index}}Project:
Type: AWS::CodeBuild::Project
Properties:
Artifacts:
Type: CODEPIPELINE
Environment:
ComputeType: BUILD_GENERAL1_SMALL
Image: aws/codebuild/amazonlinux2-x86_64-standard:3.0
PrivilegedMode: false
Type: LINUX_CONTAINER
EnvironmentVariables:
- Name: service_name
Type: PLAINTEXT
Value: '{{service.name}}' # resource parameter
- Name: service_instance_name
Type: PLAINTEXT
Value: '{{service_instance.name}}' # resource parameter
ServiceRole:
Fn::GetAtt:
- DeploymentRole
- Arn
Source:
BuildSpec: >-
{
"version": "0.2",
"phases": {
"build": {
"commands": [

"pip3 install --upgrade --user awscli",

"aws proton --region $AWS_DEFAULT_REGION update-service-instance
--deployment-type CURRENT_VERSION --name $service_instance_name --service-name
$service_name --spec file://rendered_service.yaml",

"aws proton --region $AWS_DEFAULT_REGION wait service-instance-

deployed --name $service_instance_name --service-name $service_name"

]

}
Type: CODEPIPELINE
EncryptionKey:

AWS CloudFormation laC files

98

AWS Proton User Guide

Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
{% endfor %}
This role is used to build and publish an image to ECR

PublishRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:

- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: codebuild.amazonaws.com
Version: "2012-10-17"
PublishRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- logs:CreatelLogGroup
- logs:CreatelLogStream
- logs:PutLogEvents
Effect: Allow

Resource:
- Fn::Join:
- - "arn:"
- Ref: AWS::Partition
- ":logs:"

- Ref: AWS::Region
- Ref: AWS::AccountId
- :log-group:/aws/codebuild/
- Ref: BuildProject

- Fn::Join:

- - "arn:
- Ref: AWS::Partition
- ":logs:"
- Ref: AWS::Region

- Ref: AWS::AccountId

AWS CloudFormation laC files 99

AWS Proton

User Guide

- :log-group:/aws/codebuild/
- Ref: BuildProject
- %
- Action:
- codebuild:CreateReportGroup
- codebuild:CreateReport
- codebuild:UpdateReport
- codebuild:BatchPutTestCases

Effect: Allow

Resource:
Fn::Join:
- - Ilarn:ll
- Ref: AWS::Partition
- ":codebuild:"

- Ref: AWS::Region

- Ref: AWS::AccountId
- :report-group/

- Ref: BuildProject

*

- Action:
- ecr:GetAuthorizationToken
Effect: Allow
Resource: "*"
- Action:
- ecr:BatchChecklLayerAvailability
- ecr:CompletelLayerUpload
- ecr:GetAuthorizationToken
- ecr:InitiatelLayerUpload
- ecr:PutlImage
- ecr:UploadLayerPart
Effect: Allow
Resource:
Fn::GetAtt:
- ECRRepo
- Arn
- Action:
- proton:GetService
Effect: Allow
Resource: "*"
- Action:
- s3:GetObject*
- s3:GetBucket*

AWS CloudFormation laC files

100

AWS Proton

User Guide

s3:List*
s3:DeleteObject*
s3:PutObject*
s3:Abort*
Effect: Allow
Resource:

Fn:
Fn:

- Action:

kms:
kms:
kms:
kms:
kms:

Effect:
Resource:
Fn::GetAtt:

- PipelineArtifactsBucketEncryptionKey

:GetAtt:
PipelineArtifactsBucket
Arn
:Join:
- Fn::GetAtt:
- PipelineArtifactsBucket
- Arn

_/*

Decrypt
DescribeKey
Encrypt
ReEncrypt*
GenerateDataKey*
Allow

- Arn

- Action:

kms
kms
kms
kms

:Decrypt

:Encrypt
:ReEncrypt*
:GenerateDataKey*

Effect: Allow
Resource:
Fn::GetAtt:

Version:

Roles:

- PipelineArtifactsBucketEncryptionKey

- Arn
"2012-10-17"
PolicyName: PublishRoleDefaultPolicy

- Ref: PublishRole

DeploymentRole:
Type: AWS::IAM::Role

Properties:

AWS CloudFormation laC files

101

AWS Proton User Guide

AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: codebuild.amazonaws.com
Version: "2012-10-17"
DeploymentRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- logs:CreatelLogGroup
- logs:CreatelLogStream
- logs:PutLogEvents
Effect: Allow

Resource:
- Fn::Join:
- - "arn:"
- Ref: AWS::Partition
- ":logs:"

- Ref: AWS::Region

- Ref: AWS::AccountId

- :log-group:/aws/codebuild/Deploy*Project*
- Fn::Join:

- - "arn:
- Ref: AWS::Partition
- ":logs:"
- Ref: AWS::Region
- Ref: AWS::AccountId
- :log-group:/aws/codebuild/Deploy*Project:*
- Action:
- codebuild:CreateReportGroup
- codebuild:CreateReport
- codebuild:UpdateReport
- codebuild:BatchPutTestCases
Effect: Allow
Resource:
Fn::Join:

AWS CloudFormation laC files 102

AWS Proton

User Guide

- Action:
- prot
- prot
Effect:

"arn:
Ref: AWS::Partition
":codebuild:"

Ref: AWS::Region
Ref: AWS::AccountId
:report-group/Deploy*Project

*

on:UpdateServicelnstance
on:GetServicelnstance
Allow

Resource: "*"

- Action:

- s3:GetObject*
- s3:GetBucket*
- s3:List*

Effect:

Allow

Resource:

- Fn:

- Fn:

- Action:
- kms:

- kms:
Effect:

:GetAtt:

PipelineArtifactsBucket
Arn

:Join:

- Fn::GetAtt:
- PipelineArtifactsBucket
- Arn

_/*

Decrypt
DescribeKey
Allow

Resource:
Fn::GetAtt:

- PipelineArtifactsBucketEncryptionKey

- Arn

- Action:
- kms:

- kms:

- kms:

- kms:
Effect:

Decrypt

Encrypt
ReEncrypt*
GenerateDataKey*
Allow

Resource:

AWS CloudFormation laC files

103

AWS Proton

User Guide

Fn::GetAtt:

- PipelineArtifactsBucketEncryptionKey

- Arn
Version: "2012-10-17"

PolicyName: DeploymentRoleDefaultPolicy

Roles:
- Ref: DeploymentRole
PipelineArtifactsBucketEncryptionKey:
Type: AWS::KMS: :Key
Properties:
KeyPolicy:
Statement:
- Action:
- kms:Create*
- kms:Describe*
- kms:Enable*
- kms:List*
- kms:Put*
- kms:Update*
- kms:Revoke*
- kms:Disable*
- kms:Get*
- kms:Delete*
- kms:ScheduleKeyDeletion
- kms:CancelKeyDeletion
- kms:GenerateDataKey
- kms:TagResource
- kms:UntagResource
Effect: Allow

Principal:
AWS :
Fn::Join:
- - "arn:"
- Ref: AWS::Partition
- ":iiam::"
- Ref: AWS::AccountId
- :root
Resource: "*"
- Action:

- kms:Decrypt

- kms:DescribeKey
- kms:Encrypt

- kms:ReEncrypt*

AWS CloudFormation laC files

104

User Guide

AWS Proton
- kms:GenerateDataKey*
Effect: Allow
Principal:
AWS:
Fn::GetAtt:
- PipelineRole
- Arn

Resource: "*"

- Action:

- kms:
- kms:
- kms:
- kms:
- kms:

Effect:

Decrypt
DescribeKey
Encrypt
ReEncrypt*
GenerateDataKey*
Allow

Principal:

AWS:
Fn:

:GetAtt:
PublishRole
Arn

Resource: "*"

- Action:
- kms

- kms

- kms

- kms
Effect:

:Decrypt

:Encrypt

:ReEncrypt*

:GenerateDataKey*
Allow

Principal:

AWS:
Fn:

:GetAtt:
PublishRole
Arn

Resource: "*"

- Action:
- kms:Decrypt
- kms:DescribeKey
Effect: Allow
Principal:
AWS:
Fn::GetAtt:
- DeploymentRole
- Arn

Resource: "*"

- Action:

AWS CloudFormation laC files

105

AWS Proton User Guide

- kms:Decrypt

- kms:Encrypt

- kms:ReEncrypt*

- kms:GenerateDataKey*
Effect: Allow

Principal:
AWS:
Fn::GetAtt:
- DeploymentRole
- Arn

Resource: "*"

Version: "2012-10-17"
UpdateReplacePolicy: Delete
DeletionPolicy: Delete

PipelineArtifactsBucket:
Type: AWS::S3::Bucket
Properties:
VersioningConfiguration:
Status: Enabled
BucketEncryption:
ServerSideEncryptionConfiguration:
- ServerSideEncryptionByDefault:

KMSMasterKeyID:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn

SSEAlgorithm: aws:kms
PublicAccessBlockConfiguration:
BlockPublicAcls: true
BlockPublicPolicy: true
IgnorePublicAcls: true
RestrictPublicBuckets: true
UpdateReplacePolicy: Retain
DeletionPolicy: Retain
PipelineArtifactsBucketEncryptionKeyAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: 'alias/codepipeline-encryption-key-{{ service.name }}'
TargetKeyId:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
UpdateReplacePolicy: Delete
DeletionPolicy: Delete

AWS CloudFormation laC files 106

AWS Proton User Guide

PipelineRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:

- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: codepipeline.amazonaws.com
Version: "2012-10-17"
PipelineRoleDefaultPolicy:
Type: AWS::IAM::Policy

Properties:
PolicyDocument:
Statement:
- Action:
- s3:GetObject*
- s3:GetBucket*
- s3:List*
- s3:DeleteObject*
- s3:PutObject*
- s3:Abort*
Effect: Allow
Resource:
- Fn::GetAtt:
- PipelineArtifactsBucket
- Arn
- Fn::Join:
- - Fn::GetAtt:
- PipelineArtifactsBucket
- Arn
- /%
- Action:

- kms:Decrypt

- kms:DescribeKey

- kms:Encrypt

- kms:ReEncrypt*

- kms:GenerateDataKey*
Effect: Allow

Resource:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn

AWS CloudFormation laC files 107

AWS Proton User Guide

- Action: codestar-connections:*
Effect: Allow
Resource: "*"

- Action: sts:AssumeRole
Effect: Allow

Resource:
Fn::GetAtt:
- PipelineBuildCodePipelineActionRole
- Arn

- Action: sts:AssumeRole
Effect: Allow

Resource:
Fn::GetAtt:
- PipelineDeployCodePipelineActionRole
- Arn

Version: "2012-10-17"
PolicyName: PipelineRoleDefaultPolicy
Roles:
- Ref: PipelineRole
Pipeline:
Type: AWS::CodePipeline::Pipeline
Properties:
RoleArn:
Fn::GetAtt:
- PipelineRole
- Arn
Stages:
- Actions:
- ActionTypeld:
Category: Source
Owner: AWS
Provider: CodeStarSourceConnection
Version: "1"
Configuration:
ConnectionArn: '{{ service.repository_connection_arn }}'
FullRepositoryId: '{{ service.repository_ id }}'
BranchName: '{{ service.branch_name }}'
Name: Checkout
OutputArtifacts:
- Name: Artifact_Source_Checkout
RunOrder: 1
Name: Source
- Actions:
- ActionTypeld:

AWS CloudFormation laC files 108

AWS Proton User Guide

Category: Build
Owner: AWS
Provider: CodeBuild
Version: "1"
Configuration:
ProjectName:
Ref: BuildProject
InputArtifacts:
- Name: Artifact_Source_Checkout
Name: Build
OutputArtifacts:
- Name: BuildOutput
RoleAzrn:
Fn::GetAtt:
- PipelineBuildCodePipelineActionRole
- Arn
RunOrder: 1
Name: Build {%- for service_instance in service_instances %}
- Actions:
- ActionTypeld:
Category: Build
Owner: AWS
Provider: CodeBuild
Version: "1"
Configuration:
ProjectName:
Ref: Deploy{{loop.index}}Project
InputArtifacts:
- Name: BuildOutput
Name: Deploy
RoleArn:
Fn::GetAtt:
- PipelineDeployCodePipelineActionRole
- Arn
RunOrder: 1
Name: 'Deploy{{service_instance.name}}"
{%- endfor %}

ArtifactStore:
EncryptionKey:
Id:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
Type: KMS

AWS CloudFormation laC files 109

AWS Proton

User Guide

Location:
Ref: PipelineArtifactsBucket
Type: S3
DependsOn:
- PipelineRoleDefaultPolicy
- PipelineRole
PipelineBuildCodePipelineActionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow

Principal:
AWS:
Fn::Join:

- - "arn:"
- Ref: AWS::Partition
- ":iiam::"
- Ref: AWS::AccountId
- :root

Version: "2012-10-17"
PipelineBuildCodePipelineActionRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- codebuild:BatchGetBuilds
- codebuild:StartBuild
- codebuild:StopBuild
Effect: Allow

Resource:
Fn::GetAtt:
- BuildProject
- Arn

Version: "2012-10-17"
PolicyName: PipelineBuildCodePipelineActionRoleDefaultPolicy
Roles:
- Ref: PipelineBuildCodePipelineActionRole
PipelineDeployCodePipelineActionRole:
Type: AWS::IAM::Role
Properties:

AWS CloudFormation laC files

110

AWS Proton User Guide

AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow

Principal:
AWS:
Fn::Join:

- - "arn:"
- Ref: AWS::Partition
- ":iam::"
- Ref: AWS::AccountId
- :root

Version: "2012-10-17"
PipelineDeployCodePipelineActionRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- codebuild:BatchGetBuilds
- codebuild:StartBuild
- codebuild:StopBuild
Effect: Allow

Resource:
Fn::Join:
- - Ilarn:ll
- Ref: AWS::Partition
- ":codebuild:"

- Ref: AWS::Region
- Ref: AWS::AccountId
- ":project/Deploy*"
Version: "2012-10-17"
PolicyName: PipelineDeployCodePipelineActionRoleDefaultPolicy
Roles:
- Ref: PipelineDeployCodePipelineActionRole
Outputs:
PipelineEndpoint:
Description: The URL to access the pipeline
Value: !Sub "https://${AWS::Region}.console.aws.amazon.com/codesuite/codepipeline/
pipelines/${Pipeline}/view?region=${AWS: :Region}"

AWS CloudFormation laC files 111

AWS Proton User Guide

3
Type: CODEPIPELINE

EncryptionKey:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
{% endfor %}
This role is used to build and publish an image to ECR
PublishRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: codebuild.amazonaws.com
Version: "2012-10-17"
PublishRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- logs:CreatelLogGroup
- logs:CreatelLogStream
- logs:PutLogEvents
Effect: Allow

Resource:
- Fn::Join:
- - "arn:"
- Ref: AWS::Partition
- ":logs:"

- Ref: AWS::Region
- Ref: AWS::AccountId
- :log-group:/aws/codebuild/
- Ref: BuildProject

- Fn::Join:

AWS CloudFormation laC files 112

AWS Proton User Guide

- - "arn:
- Ref: AWS::Partition
- ":logs:"
- Ref: AWS::Region

- Ref: AWS::AccountId
- :log-group:/aws/codebuild/
- Ref: BuildProject
:*
- Action:
- codebuild:CreateReportGroup
- codebuild:CreateReport
- codebuild:UpdateReport
- codebuild:BatchPutTestCases
Effect: Allow

Resource:
Fn::Join:
- - Ilarn:ll
- Ref: AWS::Partition
- ":codebuild:"

- Ref: AWS::Region

- Ref: AWS::AccountId
- :report-group/

- Ref: BuildProject

*

- Action:
- ecr:GetAuthorizationToken
Effect: Allow
Resource: "*"
- Action:
- ecr:BatchChecklLayerAvailability
- ecr:CompletelLayerUpload
- ecr:GetAuthorizationToken
- ecr:InitiatelLayerUpload
- ecr:PutlImage
- ecr:UploadLayerPart
Effect: Allow
Resource:
Fn::GetAtt:
- ECRRepo
- Arn
- Action:

AWS CloudFormation laC files 113

AWS Proton

User Guide

- proton:GetService
Effect: Allow
Resource: "*"

- Action:

s3:
s3:
s3:
s3:
s3:
s3:

Effect:
Resource:

Fn:

Fn:

- Action:

kms:
kms:
kms:
kms:
kms:

Effect:
Resource:
Fn::GetAtt:

- PipelineArtifactsBucketEncryptionKey

GetObject*
GetBucket*
List*
DeleteObject*
PutObject*
Abort*

Allow

:GetAtt:
PipelineArtifactsBucket
Arn
:Join:
- Fn::GetAtt:
- PipelineArtifactsBucket
- Arn

_/*

Decrypt
DescribeKey
Encrypt
ReEncrypt*
GenerateDataKey*
Allow

- Arn

- Action:

kms
kms
kms
kms

:Decrypt

:Encrypt
:ReEncrypt*
:GenerateDataKey*

Effect: Allow

Resource:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
Version: "2012-10-17"

PolicyName: PublishRoleDefaultPolicy

AWS CloudFormation laC files

AWS Proton User Guide

Roles:
- Ref: PublishRole

DeploymentRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: codebuild.amazonaws.com
Version: "2012-10-17"
DeploymentRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- logs:CreatelLogGroup
- logs:CreatelLogStream
- logs:PutLogEvents
Effect: Allow

Resource:
- Fn::Join:
- - "arn:"
- Ref: AWS::Partition
- ":logs:"

- Ref: AWS::Region

- Ref: AWS::AccountId

- :log-group:/aws/codebuild/Deploy*Project*
- Fn::Join:

- - "arn:
- Ref: AWS::Partition
- ":logs:"
- Ref: AWS::Region
- Ref: AWS::AccountId
- :log-group:/aws/codebuild/Deploy*Project:*
- Action:
- codebuild:CreateReportGroup

AWS CloudFormation laC files 115

AWS Proton

User Guide

- codebuild:CreateReport

- codebuild:UpdateReport

- codebuild:BatchPutTestCases
Effect: Allow

Resource:
Fn::Join:
- - Ilarn:ll
- Ref: AWS::Partition
- ":codebuild:"

- Ref: AWS::Region
- Ref: AWS::AccountId
:report-group/Deploy*Project

*

- Action:
- proton:UpdateServicelnstance
- proton:GetServiceIlnstance
Effect: Allow
Resource: "*"
- Action:
- s3:GetObject*
- s3:GetBucket*

- s3:List*
Effect: Allow
Resource:
- Fn::GetAtt:
- PipelineArtifactsBucket
- Arn
- Fn::Join:
- - Fn::GetAtt:
- PipelineArtifactsBucket
- Arn
-/
- Action:

- kms:Decrypt

- kms:DescribeKey
Effect: Allow
Resource:

Fn::GetAtt:

- PipelineArtifactsBucketEncryptionKey

- Arn
- Action:

AWS CloudFormation laC files

116

AWS Proton

User Guide

- kms
- kms
- kms
- kms
Effect:

:Decrypt

:Encrypt

:ReEncrypt*

:GenerateDataKey*
Allow

Resource:
Fn::GetAtt:

- PipelineArtifactsBucketEncryptionKey

- Arn
Version: "2012-10-17"

PolicyName: DeploymentRoleDefaultPolicy

Roles:

- Ref: DeploymentRole
PipelineArtifactsBucketEncryptionKey:

Type: AWS::KMS:
Properties:
KeyPolicy:

Statement:

- Action:

- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:
- kms:

Effect:

:Key

Create*

Describe*

Enable*

List*

Put*

Update*

Revoke*

Disable*

Get*

Delete*
ScheduleKeyDeletion
CancelKeyDeletion
GenerateDataKey
TagResource
UntagResource
Allow

Principal:

AWS:
Fn:

:Join:
mnmn

"arn:
Ref: AWS::Partition

tiam::"
Ref: AWS::AccountId

- :root

AWS CloudFormation laC files

AWS Proton

User Guide

Resource: "*"

- Action:

- kms:
- kms:
- kms:
- kms:
- kms:

Effect:

Decrypt
DescribeKey
Encrypt
ReEncrypt*
GenerateDataKey*
Allow

Principal:

AWS :
Fn:

:GetAtt:
PipelineRole
Arn

Resource: "*"

- Action:

- kms:
- kms:
- kms:
- kms:
- kms:

Effect:

Decrypt
DescribeKey
Encrypt
ReEncrypt*
GenerateDataKey*
Allow

Principal:

AWS:
Fn:

:GetAtt:
PublishRole
Arn

Resource: "*"

- Action:
- kms

- kms

- kms

- kms
Effect:

:Decrypt

:Encrypt

:ReEncrypt*

:GenerateDataKey*
Allow

Principal:

AWS:
Fn:

:GetAtt:
PublishRole
Arn

Resource: "*"

- Action:
- kms

- kms
Effect:

:Decrypt
:DescribeKey
Allow

Principal:

AWS CloudFormation laC files

118

AWS Proton User Guide

AWS:
Fn::GetAtt:
- DeploymentRole
- Arn

Resource: "*"
- Action:
- kms:Decrypt
- kms:Encrypt
- kms:ReEncrypt*
- kms:GenerateDataKey*
Effect: Allow

Principal:
AWS:
Fn::GetAtt:
- DeploymentRole
- Arn

Resource: "*"

Version: "2012-10-17"
UpdateReplacePolicy: Delete
DeletionPolicy: Delete

PipelineArtifactsBucket:
Type: AWS::S3::Bucket
Properties:

BucketEncryption:
ServerSideEncryptionConfiguration:
- ServerSideEncryptionByDefault:

KMSMasterKeyID:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn

SSEAlgorithm: aws:kms
PublicAccessBlockConfiguration:
BlockPublicAcls: true
BlockPublicPolicy: true
IgnorePublicAcls: true
RestrictPublicBuckets: true
UpdateReplacePolicy: Retain
DeletionPolicy: Retain
PipelineArtifactsBucketEncryptionKeyAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: 'alias/codepipeline-encryption-key-{{ service.name }}' # resource
parameter
TargetKeyId:

AWS CloudFormation laC files 119

AWS Proton User Guide

Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
UpdateReplacePolicy: Delete
DeletionPolicy: Delete
PipelineRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: codepipeline.amazonaws.com
Version: "2012-10-17"
PipelineRoleDefaultPolicy:
Type: AWS::IAM::Policy

Properties:
PolicyDocument:
Statement:
- Action:
- s3:GetObject*
- s3:GetBucket*
- s3:List*
- s3:DeleteObject*
- s3:PutObject*
- s3:Abort*
Effect: Allow
Resource:
- Fn::GetAtt:
- PipelineArtifactsBucket
- Arn
- Fn::Join:
- - Fn::GetAtt:
- PipelineArtifactsBucket
- Arn
A
- Action:
- kms:Decrypt

- kms:DescribeKey

- kms:Encrypt

- kms:ReEncrypt*

- kms:GenerateDataKey*

AWS CloudFormation laC files 120

AWS Proton User Guide

Effect: Allow

Resource:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn

- Action: codestar-connections:*
Effect: Allow
Resource: "*"

- Action: sts:AssumeRole
Effect: Allow

Resource:
Fn::GetAtt:
- PipelineBuildCodePipelineActionRole
- Arn

- Action: sts:AssumeRole
Effect: Allow

Resource:
Fn::GetAtt:
- PipelineDeployCodePipelineActionRole
- Arn

Version: "2012-10-17"
PolicyName: PipelineRoleDefaultPolicy
Roles:

- Ref: PipelineRole

Pipeline:
Type: AWS::CodePipeline::Pipeline
Properties:
RoleArn:
Fn::GetAtt:
- PipelineRole
- Arn
Stages:
- Actions:
- ActionTypeld:
Category: Source
Owner: AWS
Provider: CodeStarSourceConnection
Version: "1"
Configuration:
ConnectionArn: '{{ service.repository_connection_arn }}' # resource
parameter
FullRepositoryId: '{{ service.repository_ id }}' # resource
parameter

AWS CloudFormation laC files 121

AWS Proton User Guide

BranchName: '{{ service.branch_name }}' # resource
parameter
Name: Checkout
OutputArtifacts:
- Name: Artifact_Source_Checkout
RunOrder: 1
Name: Source
- Actions:
- ActionTypeld:
Category: Build
Owner: AWS
Provider: CodeBuild
Version: "1"
Configuration:
ProjectName:
Ref: BuildProject
InputArtifacts:
- Name: Artifact_Source_Checkout
Name: Build
OutputArtifacts:
- Name: BuildOutput
RoleAzrn:
Fn::GetAtt:
- PipelineBuildCodePipelineActionRole
- Arn
RunOrder: 1
Name: Build {%- for service_instance in service_instances %}
- Actions:
- ActionTypeld:
Category: Build
Owner: AWS
Provider: CodeBuild
Version: "1"
Configuration:
ProjectName:
Ref: Deploy{{loop.index}}Project
InputArtifacts:
- Name: BuildOutput
Name: Deploy
RoleAzrn:
Fn::GetAtt:
- PipelineDeployCodePipelineActionRole
- Arn
RunOrder: 1

AWS CloudFormation laC files 122

AWS Proton

User Guide

Name: 'Deploy{{service_instance.name}}"
{%- endfor %}
ArtifactStore:
EncryptionKey:
Id:
Fn::GetAtt:
- PipelineArtifactsBucketEncryptionKey
- Arn
Type: KMS
Location:
Ref: PipelineArtifactsBucket
Type: S3
DependsOn:
- PipelineRoleDefaultPolicy
- PipelineRole
PipelineBuildCodePipelineActionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow

Principal:
AWS :
Fn::Join:

- - "arn:"

- Ref: AWS::Partition
":iam::"

- Ref: AWS::AccountId
- :root

Version: "2012-10-17"
PipelineBuildCodePipelineActionRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- codebuild:BatchGetBuilds
- codebuild:StartBuild
- codebuild:StopBuild
Effect: Allow
Resource:
Fn::GetAtt:

resource parameter

AWS CloudFormation laC files

123

AWS Proton User Guide

- BuildProject
- Arn
Version: "2012-10-17"
PolicyName: PipelineBuildCodePipelineActionRoleDefaultPolicy
Roles:
- Ref: PipelineBuildCodePipelineActionRole
PipelineDeployCodePipelineActionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow

Principal:
AWS :
Fn::Join:

- - "arn:"
- Ref: AWS::Partition
- ":iiam::"
- Ref: AWS::AccountId
- :root

Version: "2012-10-17"
PipelineDeployCodePipelineActionRoleDefaultPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyDocument:
Statement:
- Action:
- codebuild:BatchGetBuilds
- codebuild:StartBuild
- codebuild:StopBuild
Effect: Allow

Resource:
Fn::Join:
- - Ilarn:ll
- Ref: AWS::Partition
- ":codebuild:"

- Ref: AWS::Region
- Ref: AWS::AccountId
- ":project/Deploy*"
Version: "2012-10-17"

AWS CloudFormation laC files 124

AWS Proton User Guide

PolicyName: PipelineDeployCodePipelineActionRoleDefaultPolicy
Roles:
- Ref: PipelineDeployCodePipelineActionRole
Outputs:
PipelineEndpoint:
Description: The URL to access the pipeline
Value: !Sub "https://${AWS::Region}.console.aws.amazon.com/codesuite/codepipeline/
pipelines/${Pipeline}/view?region=${AWS: :Region}"

CodeBuild provisioning template bundle

With CodeBuild provisioning, instead of using IaC templates to render laC files and run them
using an laC provisioning engine, AWS Proton simply runs your shell commands. To do that,
AWS Proton creates an AWS CodeBuild project for the environment, in the environment account,
and starts a job to run your commands for each AWS Proton resource creation or update. When
you author a template bundle, you provide a manifest that specifies infrastructure provisioning
and deprovisioning commands, and any programs, scripts, and other files that these commands
may need. Your commands can read inputs that AWS Proton provides, and are responsible for
provisioning or deprovisioning infrastructure and generating output values.

The manifest also specifies how AWS Proton should render the input file that your code can input
and get input values from. It can be rendered into JSON or HCL. For more information about input
parameters, see the section called “CodeBuild provisioning parameters”. For more information
about manifest files, see the section called “Manifest and wrap up”.

® Note

You can use CodeBuild provisioning with environments and services. At this time you can't
provision components this way.

Example: using the AWS CDK with CodeBuild provisioning

As an example to using CodeBuild provisioning, you can include code that uses the AWS Cloud
Development Kit (AWS CDK) to provision (deploy) and deprovision (destroy) AWS resources, and a
manifest that installs the CDK and runs your CDK code.

The following sections list example files you can include in a CodeBuild provisioning template
bundle that provisions an environment using the AWS CDK.

CodeBuild bundle 125

AWS Proton User Guide

Manifest

The following manifest file specifies CodeBuild provisioning, and includes the commands necessary
to install and use the AWS CDK, output file processing, and reporting outputs back to AWS Proton.

Example infrastructure/manifest.yaml

infrastructure:
templates:
- rendering_engine: codebuild
settings:
image: aws/codebuild/amazonlinux2-x86_64-standard:4.0
runtimes:
nodejs: 16
provision:
- npm install
- npm run build
- npm run cdk bootstrap
- npm run cdk deploy -- --require-approval never --outputs-file proton-
outputs.json
- jq 'to_entries | map_values(.value) | add | to_entries | map({key:.key,
valueString:.value})' < proton-outputs.json > outputs.json
- aws proton notify-resource-deployment-status-change --resource-arn
$RESOURCE_ARN --status IN_PROGRESS --outputs file://./outputs.json
deprovision:
- npm install
- npm run build
- npm run cdk destroy
project_properties:
VpcConfig:
VpcId: "{{ environment.inputs.codebuild_vpc_id }}"
Subnets: "{{ environment.inputs.codebuild_subnets }}"
SecurityGroupIds: "{{ environment.inputs.codebuild_security_groups }}"

Schema

The following schema file defines parameters for the environment. Your AWS CDK code can refer
to values of these parameters during deployment.

Example schema/schema.yaml

schema:

CodeBuild bundle 126

AWS Proton

User Guide

format:
openapi: "3.0.0"
environment_input_type: "MyEnvironmentInputType"
types:
MyEnvironmentInputType:
type: object
description: "Input properties for my environment"
properties:
my_sample_input:
type: string
description: "This is a sample input"
default: "hello world"
my_other_sample_input:
type: string
description: "Another sample input"
required:
- my_other_sample_input

AWS CDK files
The following files are an example to a Node.js CDK project.

Example infrastructure/package.json

{
"name": "ProtonEnvironment",
"version": "0.1.0",
"bin": {
"ProtonEnvironmente": "bin/ProtonEnvironment.js"
.
"scripts": {
"build": "tsc",
"watch": "tsc -w",
"test": "jest",
"cdk": "cdk"
.

"devDependencies": {
"@types/jest": "728.1.7",
"@types/node": "18.7.6",
"jest": "7228.1.3",
"ts-jest": "~28.0.8",
"aws-cdk": "2.37.1",
"ts-node": "710.9.1",

CodeBuild bundle

127

AWS Proton User Guide

"typescript": "~4.7.4"

.

"dependencies": {
"aws-cdk-1ib": "2.37.1",
"constructs": "710.1.77",
"source-map-support": "4@.5.21"

Example infrastructure/tsconfig.json

"compilerOptions": {
"target": "ES2018",
"module": "commonjs",
"lib": [

"es2018"
1,
"declaration": true,
"strict": true,
"noImplicitAny": true,
"strictNullChecks": true,
"noImplicitThis": true,
"alwaysStrict": true,
"noUnusedLocals": false,
"noUnusedParameters": false,
"noImplicitReturns": true,
"noFallthroughCasesInSwitch": false,
"inlineSourceMap": true,
"inlineSources": true,
"experimentalDecorators": true,
"strictPropertyInitialization": false,
"resolvelsonModule": true,
"esModuleInterop": true,
"typeRoots": [
"./node_modules/@types"

]

1,

"exclude": [
"node_modules",
"cdk.out"

CodeBuild bundle 128

AWS Proton

User Guide

Example infrastructure/cdk.json

app": "npx ts-node --prefer-ts-exts bin/ProtonEnvironment.ts",
"outputsFile": "proton-outputs.json",
"watch": {
"include": [
"ok
1,
"exclude": [
"README .md",
"cdk*.json",
"rx/x d.ts",
"**/*.jS",
"tsconfig.json",
"package*.json",
"yarn.lock",
"node_modules",
"test"
]
.
"context": {
"@aws-cdk/aws-apigateway:usagePlanKeyOrderInsensitiveId": true,
"@aws-cdk/core:stackRelativeExports": true,
"@aws-cdk/aws-rds:lowercaseDbIdentifier": true,
"@aws-cdk/aws-lambda:recognizeVersionProps": true,
"@aws-cdk/aws-cloudfront:defaultSecurityPolicyTLSv1.2_2021": true,

"@aws-cdk-containers/ecs-service-extensions:enableDefaultLogDriver": true,

"@aws-cdk/aws-ec2:uniqueImdsv2TemplateName": true,
"@aws-cdk/core:target-partitions": [

n aWS n ,

"aws-cn"

Example infrastructure/bin/ProtonEnvironment.ts

#!/usr/bin/env node

import 'source-map-support/register’;

import * as cdk from 'aws-cdk-1lib';

import { ProtonEnvironmentStack } from '../lib/ProtonEnvironmentStack’;

CodeBuild bundle

129

AWS Proton User Guide

const app = new cdk.App();
new ProtonEnvironmentStack(app, 'ProtonEnvironmentStack', {});

Example infrastructure/lib/ProtonEnvironmentStack.ts

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';

import * as cdk from 'aws-cdk-1lib';

import * as ssm from 'aws-cdk-lib/aws-ssm';
import input from '../proton-inputs.json';

export class ProtonEnvironmentStack extends Stack {
constructor(scope: Construct, id: string, props?: StackProps) {
super(scope, id, { ...props, stackName: process.env.STACK_NAME });

const ssmParam = new ssm.StringParameter(this, "ssmParam", {
stringValue: input.environment.inputs.my_sample_input,
parameterName: ‘${process.env.STACK_NAME}-Param’,
tier: ssm.ParameterTier.STANDARD

1)

new cdk.CfnOutput(this, 'ssmParamOutput', {
value: ssmParam.parameterName,
description: 'The name of the ssm parameter',
exportName: ‘${process.env.STACK_NAME}-Param’

1)

Rendered input file

When you create an environment using a CodeBuild-based provisioning template, AWS Proton
renders an input file with input parameter values that you provided. Your code can refer to these
values. The following file is an example to a rendered input file.

Example infrastructure/proton-inputs.json

"environment": {
"name": "myenv",
"inputs": {

"my_sample_input": "10.0.0.0/16",
"my_other_sample_input": "11.0.0.0/16"

CodeBuild bundle 130

https://docs.aws.amazon.com/proton/latest/userguide/parameters.html

AWS Proton User Guide

}
}
}

Terraform lacC files

Learn how to use Terraform infrastructure as code (laC) files with AWS Proton. Terraform is a
widely used open-source laC engine that was developed by HashiCorp. Terraform modules are
developed in HashiCorp's HCL language, and support several backend infrastructures providers,
including Amazon Web Services.

AWS Proton supports self-managed provisioning for Terraform laC.

For a complete example of a provisioning repository that responds to pull requests and
implements infrastructure provisioning, see Terraform OpenSource GitHub Actions automation
template for AWS Proton on GitHub.

How self-managed provisioning works with Terraform laC template bundle files:

1. When you create an environment from Terraform template bundles, AWS Proton compiles
your . tf files with console or spec file input parameters.

2. It makes a pull request to merge the compiled laC files to repository that you have registered

with AWS Proton.

If the request is approved, AWS Proton waits on provisioning status that you provide.
4. If the request is rejected, the environment creation is cancelled.

If the pull request times out, environment creation isn‘t complete.

AWS Proton with Terraform laC considerations:

« AWS Proton doesn't manage your Terraform provisioning.

» You must register a provisioning repository with AWS Proton. AWS Proton makes pull requests
on this repository.

» You must create a CodeStar connection to connect AWS Proton with your provisioning

repository.

» To provision from AWS Proton compiled laC files, you must respond to AWS Proton pull requests.

AWS Proton makes pull requests after environment and service create and update actions. For
more information, see AWS Proton environments and AWS Proton services.

Terraform laC files

https://www.terraform.io/
https://www.hashicorp.com/
https://github.com/aws-samples/aws-proton-terraform-github-actions-sample
https://github.com/aws-samples/aws-proton-terraform-github-actions-sample

AWS Proton User Guide

« To provision a pipeline from AWS Proton compiled laC files, you must create a CI/CD pipeline
repository.

« Your pull request based provisioning automation must include steps to notify AWS Proton

of any provisioned AWS Proton resource status changes. You can use the AWS Proton
NotifyResourceDeploymentStatusChange API.

» You can't deploy services, pipelines, and components created from CloudFormation laC files to
environments created from Terraform laC files.

» You can't deploy services, pipelines, and components created from Terraform laC files to
environments created from CloudFormation laC files.

When preparing your Terraform laC files for AWS Proton, you attach namespaces to your input
variables, as shown in the following examples. For more information, see Parameters.

Example 1: AWS Proton environment Terraform lacC file

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 3.0"

}

}

// This tells terraform to store the state file in s3 at the location
// s3://terraform-state-bucket/tf-os-sample/terraform.tfstate

backend "s3" {

bucket = "terraform-state-bucket"
key = "tf-os-sample/terraform.tfstate"
region = "us-east-1"

}

// Configure the AWS Provider
provider "aws" {
region = "us-east-1"
default_tags {
tags = var.proton_tags

}

resource "aws_ssm_parameter my_ssm_parameter" {

Terraform laC files 132

https://docs.aws.amazon.com/proton/latest/APIReference/API_NotifyResourceDeploymentStatusChange.html

AWS Proton User Guide
name = "my_ssm_parameter"
type = "String"

// Use the Proton environment.inputs. namespace
value = var.environment.inputs.ssm_parameter_value

Compiled infrastructure as code

When you create an environment or service, AWS Proton compiles your infrastructure as code files
with console or spec file inputs. It creates proton.resource-type.variables.tf and
proton.auto.tfvars. json files for your inputs that can be used by Terraform, as shown in the
following examples. These files are located in a specified repository in a folder that matches the

environment or service instance name.

The example shows how AWS Proton includes tags in the variable definition and variable values,
and how you can propagate these AWS Proton tags to provisioned resources. For more information,

see the section called “Tag propagation to provisioned resources”.

Example 2: compiled laC files for an environment named "dev".

dev/environment.tf:

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 3.0Q"

}

}

// This tells terraform to store the state file in s3 at the location
// s3://terraform-state-bucket/tf-os-sample/terraform.tfstate

backend "s3" {
bucket = "terraform-state-bucket"
key "tf-os-sample/terraform.tfstate"
region = "us-east-1"

// Configure the AWS Provider
provider "aws" {
region = "us-east-1"
default_tags {

Terraform laC files

133

AWS Proton User Guide

tags = var.proton_tags

}

}

resource "aws_ssm_parameter" "my_ssm_parameter" {
name = "my_ssm_parameter"
type = "String"

// Use the Proton environment.inputs. namespace
value = var.environment.inputs.ssm_parameter_value

dev/proton.environment.variables.tf:

variable "environment" {
type = object({

inputs = map(string)
name = string

1)

variable "proton_tags" {
type = map(string)
default = null

dev/proton.auto.tfvars.json:

"environment": {
"name": "dev",
"inputs": {
"ssm_parameter_value": "MyNewParamValue"

"proton_tags" : {
"proton:account" : "123456789012",
"proton:template" : "arn:aws:proton:us-east-1:123456789012:environment-template/

fargate-env",
"proton:environment" : "arn:aws:proton:us-east-1:123456789012:environment/dev"

Terraform laC files 134

AWS Proton

User Guide

Repository paths

AWS Proton uses console or spec inputs from environment or service create actions to find the
repository and path where it is to locate the compiled IaC files. The input values are passed to
namespaced input parameters.

AWS Proton supports two repository path layouts. In the following examples, the paths are named

by the namespaced resource parameters from two environments. Each environment has service

instances of two services, and the service instances of one of the services have directly defined

components.

Resource type

Environment

Environment

Service

Service
instance

Service
instance

Service

Service
instance

Name parameter

environment.name

environment.name

service.name

service_instance.name

service_instance.name

service.name

service_instance.name

Resource
name

"env-prod

"env-stag
edll

"service-
one"

"instance
-one-
prod"

"instance
-one-
staged"

"service-
two"

"instance
-two-
prod"

Terraform laC files

135

AWS Proton User Guide

Resource type Name parameter = Resource
name
Component service_instance.components.default.name ""componen
t-prod"
Service service_instance.name "instance
instance -two-
staged"
Component service_instance.components.default.name "'componen
t-
staged"
Layout 1

If AWS Proton finds the specified repository with an environments folder, it creates a folder
that includes the compiled laC files and is named with the environment.name.

If AWS Proton finds the specified repository with an environments folder that contains a
folder name that matches a service instance compatible environment name, it creates a folder
that includes the compiled instance laC files and is named with the service_instance.name.

/repo
/environments
/env-prod # environment folder
main.tf

proton.environment.variables.tf
proton.auto.tfvars.json

/service-one-instance-one-prod # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

/service-two-instance-two-prod # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

Terraform laC files 136

AWS Proton User Guide

/component-prod # component folder
main.tf
proton.component.variables.tf
proton.auto.tfvars.json

/env-staged # environment folder
main.tf
proton.variables.tf
proton.auto.tfvars.json

/service-one-instance-one-staged # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

/service-two-instance-two-staged # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

/component-staged # component folder
main.tf
proton.component.variables.tf
proton.auto.tfvars.json

Layout 2

If AWS Proton finds the specified repository without an environments folder, it creates an
environment.name folder where it locates the compiled environment laC files.

If AWS Proton finds the specified repository with a folder name that matches a service instance
compatible environment name, it creates a service_instance.name folder where it locates
the compiled instance laC files.

/xrepo
/env-prod # environment folder
main.tf
proton.environment.variables.tf
proton.auto.tfvars.json

/service-one-instance-one-prod # instance folder
main.tf
proton.service_instance.variables.tf

Terraform laC files 137

AWS Proton User Guide

proton.auto.tfvars.json

/service-two-instance-two-prod # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

/component-prod # component folder
main.tf
proton.component.variables.tf
proton.auto.tfvars.json

/env-staged # environment folder
main.tf
proton.variables.tf
proton.auto.tfvars.json

/service-one-instance-one-staged # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

/service-two-instance-two-staged # instance folder
main.tf
proton.service_instance.variables.tf
proton.auto.tfvars.json

/component-staged # component folder
main.tf

proton.component.variables.tf
proton.auto.tfvars.json

Schema file

As an administrator, when you use the Open API Data Models (schemas) section to define a

parameter schema YAML file for your template bundle, AWS Proton can validate parameter value
inputs against the requirements that you defined in your schema.

For more information about formats and available keywords, see the Schema object section of the
OpenAPl.

Schema file 138

https://swagger.io/docs/specification/data-models/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#schemaObject

AWS Proton User Guide

Schema requirements for environment template bundles

Your schema must follow the Data Models (schemas) section of the OpenAPI in the YAML format. It

must also be a part of your environment template bundle.

For your environment schema, you must include the formatted headers to establish that you're
using the Data Models (schemas) section of the Open API. In the following environment schema
examples, these headers appear in the first three lines.

An environment_input_type must be included and defined with a name that you provide. In
the following examples, this is defined on line 5. By defining this parameter, you associate it with
an AWS Proton environment resource.

To follow the Open API schema model, you must include types. In the following example, this is
line 6.

Following types, you must define an environment_input_type type. You define the input
parameters for your environment as properties of the environment_input_type. You must
include at least one property with a name that matches at least one parameter that's listed in the
environment infrastructure as code (laC) file that's associated with schema.

When you create an environment and provide customized parameter values, AWS Proton uses the
schema file to match, validate, and inject them into the curly braced parameters in the associated
CloudFormation laC file. For each property (parameter), provide a name and type. Optionally, also
provide a description, default,and pattezrn.

The defined parameters for the following example standard environment template schema include
vpc_cidr, subnet_one_cidr, and subnet_two_cidr with the default keyword and default
values. When you create an environment with this environment template bundle schema, you can
accept the default values or provide your own. If a parameter doesn't have a default value and is
listed as a required property (parameter), you must provide values for it when you create an
environment.

The second example standard environment template schema lists the required parameter
my_other_sample_input.

You can create a schema for two types of environment templates. For more information, see
Register and publish templates.

o Standard environment templates

Environment schema requirements 139

https://swagger.io/docs/specification/data-models/

AWS Proton User Guide

In the following example, an environment input type is defined with a description and input
properties. This schema example can be used with the AWS Proton CloudFormation laC file

shown in Example 3.

Example schema for a standard environment template:

schema: # required
format: # required
openapi: "3.0.0" # required
required defined by administrator
environment_input_type: "PublicEnvironmentInput"
types: # required

defined by administrator
PublicEnvironmentInput:
type: object
description: "Input properties for my environment"
properties:
vpc_cidr: # parameter
type: string
description: "This CIDR range for your VPC"
default: 10.0.0.0/16
pattern: ([0-91{1,3}\.){33[0-91{1,33($|/(16]|24))
subnet_one_cidr: # parameter
type: string
description: "The CIDR range for subnet one"
default: 10.0.0.0/24
pattern: ([0-91{1,3}\.){3}[0-91{1,3}($|/(16]24))
subnet_two_cidr: # parameter
type: string
description: "The CIDR range for subnet one"
default: 10.0.1.0/24
pattern: ([0-91{1,33\.){33[0-91{1,33($|/(16]|24))

Example schema for a standard environment template that includes a required parameter:

schema: # required
format: # required
openapi: "3.0.0" # required
required defined by administrator
environment_input_type: "MyEnvironmentInputType"
types: # required

Environment schema requirements 140

AWS Proton User Guide

defined by administrator
MyEnvironmentInputType:
type: object
description: "Input properties for my environment"
properties:
my_sample_input: # parameter
type: string
description: "This is a sample input"
default: "hello world"
my_other_sample_input: # parameter
type: string
description: "Another sample input"
another_optional_input: # parameter
type: string
description: "Another optional input"
default: "I"
required:
- my_other_sample_input

o Customer managed environment templates

In the following example, the schema only includes a list of outputs that replicate the outputs
from the laC that you used to provision your customer managed infrastructure. You need to
define output value types as strings only (not lists, arrays or other types). For example, the next
code snippet shows the outputs section of an external AWS CloudFormation template. This is
from the template shown in Example 1. It can be used to create external customer managed
infrastructure for an AWS Proton Fargate service created from Example 4.

/A Important

As an administrator, you must ensure that your provisioned and managed infrastructure
and all output parameters are compatible with the associated customer managed
environment templates. AWS Proton can't account for changes on your behalf because
these changes aren't visible to AWS Proton. Inconsistencies result in failures.

Example CloudFormation laC file outputs for a customer managed environment template:

// Cloudformation Template Outputs

[...]
Outputs:

Environment schema requirements 141

AWS Proton User Guide

ClusterName:
Description: The name of the ECS cluster
Value: !Ref 'ECSCluster'

ECSTaskExecutionRole:
Description: The ARN of the ECS role
Value: !GetAtt 'ECSTaskExecutionRole.Arn'

VpcId:
Description: The ID of the VPC that this stack is deployed in
Value: !Ref 'VPC'

[...]

The schema for the corresponding AWS Proton customer managed environment template bundle
is shown in the following example. Each output value is defined as a string.

Example schema for a customer managed environment template:

schema: # required
format: # required
openapi: "3.0.0" # required

required defined by administrator

environment_input_type: "EnvironmentOutput"
types: # required
defined by administrator
EnvironmentOutput:
type: object
description: "Outputs of the environment"
properties:
ClusterName: # parameter
type: string
description: "The name of the ECS cluster"
ECSTaskExecutionRole: # parameter
type: string
description: "The ARN of the ECS role"
VpcId: # parameter
type: string
description: "The ID of the VPC that this stack is deployed in"

Environment schema requirements 142

AWS Proton User Guide

Schema requirements for service template bundles

Your schema must follow the Data Models (schemas) section of the OpenAPI in YAML format as

shown in the following examples. You must provide a schema file in your service template bundle.

In the following service schema examples, you must include the formatted headers. In the
following example, this is in the first three lines. This is to establish that you're using the Data
Models (schemas) section of the Open API.

A service_input_type must be included and defined with a name that you provide. In the
following example, this is in line 5. This associates the parameters with an AWS Proton service
resource.

An AWS Proton service pipeline is included by default when you use the console or the CLI

to create a service. When you include a service pipeline for your service, you must include
pipeline_input_type with a name that you provide. In the following example, this is in line
7. Don’t include this parameter if you aren’t including an AWS Proton service pipeline. For more
information, see Register and publish templates.

To follow the Open API schema model, you must include types In the following example, this is in
line 9.

Following types, you must define a service_input_type type. You define the input parameters
for your service as properties of the service_input_type. You must include at least one
property with a name that matches at least one parameter listed in the service infrastructure as
code (IaC) file that is associated with schema.

To define a service pipeline, below your service_input_type definition, you must define a
pipeline_input_type. As above, you must include at least one property with a name that
matches at least one parameter listed in a pipeline 1aC file that is associated with schema. Don’t
include this definition if you aren’t including an AWS Proton service pipeline.

When you, as an administrator or developer, create a service and provide customized parameter
values, AWS Proton uses the schema file to match, validate, and inject them into the associated
CloudFormation laC file's curly braced parameters. For each property (parameter), provide a name
and a type. Optionally, also provide a description, default, and pattern.

The defined parameters for the example schema include port, desired_count, task_size and
image with the default keyword and default values. When you create a service with this service
template bundle schema, you can accept the default values or provide your own. The parameter

Service schema requirements 143

https://swagger.io/docs/specification/data-models/

AWS Proton User Guide

unique_name is also included in the example and doesn't have a default value. It is listed as a
required property (parameter). You, as administrator or developer, must provide values for
required parameters when you create services.

If you want to create a service template with a service pipeline, include the
pipeline_input_type in your schema.

Example service schema file for a service that includes an AWS Proton service pipeline.

This schema example can be used with the AWS Proton laC files shown in Example 4 and Example
5. A service pipeline is included.

schema: # required
format: # required
openapi: "3.0.0" # required

required defined by administrator

service_input_type: "LoadBalancedServiceInput"
only include if including AWS Proton service pipeline, defined by administrator
pipeline_input_type: "PipelineInputs"

types: # required
defined by administrator
LoadBalancedServicelnput:
type: object
description: "Input properties for a loadbalanced Fargate service"
properties:
port: # parameter
type: number
description: "The port to route traffic to"
default: 80
minimum: @
maximum: 65535
desired_count: # parameter
type: number
description: "The default number of Fargate tasks you want running"
default: 1
minimum: 1
task_size: # parameter
type: string
description: "The size of the task you want to run"
enum: ["x-small", "small", "medium", "large", "x-large"]
default: "x-small"
image: # parameter

Service schema requirements 144

AWS Proton User Guide

type: string
description: "The name/url of the container image"
default: "public.ecr.aws/z9d2n7el/nginx:1.19.5"
minLength: 1
maxLength: 200
unique_name: # parameter
type: string
description: "The unique name of your service identifier. This will be used
to name your log group, task definition and ECS service"
minLength: 1
maxLength: 100
required:
- unique_name
defined by administrator
PipelineInputs:
type: object
description: "Pipeline input properties"”
properties:
dockerfile: # parameter
type: string
description: "The location of the Dockerfile to build"
default: "Dockerfile"
minLength: 1
maxLength: 100
unit_test_command: # parameter
type: string
description: "The command to run to unit test the application code"
default: "echo 'add your unit test command here'"
minLength: 1
maxLength: 200

If you want to create a service template without a service pipeline, don't include the
pipeline_input_type in your schema, as shown in the following example.

Example service schema file for a service that doesn’t include an AWS Proton service pipeline

schema: # required
format: # required
openapi: "3.0.0" # required

required defined by administrator

service_input_type: "MyServiceInstanceInputType"

types: # required

Service schema requirements 145

AWS Proton User Guide

defined by administrator
MyServiceInstanceInputType:
type: object
description: "Service instance input properties"
required:
- my_sample_service_instance_required_input
properties:
my_sample_service_instance_optional_input: # parameter
type: string
description: "This is a sample input"
default: "hello world"
my_sample_service_instance_required_input: # parameter
type: string
description: "Another sample input"

Wrap up template files for AWS Proton

After preparing your environment and service infrastructure as code (laC) files and their respective

schema files, you must organize them in directories. You must also create a manifest YAML file. The
manifest file lists the laC files in a directory, the rendering engine, and the template language used
to develop the IaC in this template.

(® Note

A manifest file can also be used independently of template bundles, as a direct input
to directly defined components. In this case, it always specifies a single laC template file,
for both CloudFormation and Terraform. For more information about components, see

Components.

The manifest file needs to adhere to the format and content shown in the following example.
CloudFormation manifest file format:

With CloudFormation, you list a single file.

infrastructure:
templates:
- file: "cloudformation.yaml"
rendering_engine: jinja

Manifest and wrap up 146

AWS Proton User Guide

template_language: cloudformation

Terraform manifest file format:
With terraform, you can explicitly list a single file or use the wildcard * to list each of the files in a

directory.

® Note

The wildcard only includes files whose names end with . tf. Other files are ignored.

infrastructure:
templates:
- file: "*"

rendering_engine: hcl
template_language: terraform

CodeBuild-based provisioning manifest file format:

With CodeBuild-based provisioning, you specify provisioning and deprovisioning shell commands.

(® Note

In addition to the manifest, your bundle should include any files that your commands
depend on.

The following example manifest uses CodeBuild-based provisioning to provision (deploy) and
deprovision (destroy) resources using the AWS Cloud Development Kit (AWS CDK) (AWS CDK). The
template bundle should also include the CDK code.

During provisioning, AWS Proton creates an input file with values for input parameters that you
defined in the template's schema with the name proton-input. json.

infrastructure:
templates:
- rendering_engine: codebuild
settings:
image: aws/codebuild/amazonlinux2-x86_64-standard:4.0

Manifest and wrap up 147

AWS Proton User Guide

runtimes:
nodejs: 16
provision:
- npm install
- npm run build
- npm run cdk bootstrap
- npm run cdk deploy -- --require-approval never --outputs-file proton-
outputs.json
- jq 'to_entries | map_values(.value) | add | to_entries | map({key:.key,
valueString:.valuel})' < proton-outputs.json > outputs.json
- aws proton notify-resource-deployment-status-change --resource-arn
$RESOURCE_ARN --status IN_PROGRESS --outputs file://./outputs.json
deprovision:
- npm install
- npm run build
- npm run cdk destroy
project_properties:
VpcConfig:
VpcId: "{{ environment.inputs.codebuild_vpc_id }}"
Subnets: "{{ environment.inputs.codebuild_subnets }}"
SecurityGroupIds: "{{ environment.inputs.codebuild_security_groups }}"

After you set up the directories and manifest files for your environment or service template bundle,
you gzip the directories into a tar ball and upload them to an Amazon Simple Storage Service
(Amazon S3) bucket where AWS Proton can retrieve them, or to a template sync Git repository.

When you create a minor version of an environment or a service template that you registered with
AWS Proton, you provide the path to your environment or service template bundle tar ball that's
located in your S3 bucket. AWS Proton saves it with the new template minor version. You can select
the new template minor version to create or update environments or services with AWS Proton.

Environment template bundle wrap up

There are two types of environment template bundles that you create for AWS Proton.

« To create an environment template bundle for a standard environment template, organize
the schema, infrastructure as code (IaC) files and manifest file in directories as shown in the
following environment template bundle directory structure.

 To create an environment template bundle for a customer managed environment template,
provide only the schema file and directory. Don't include the infrastructure directory and files.
AWS Proton throws an error if the infrastructure directory and files are included.

Environment template bundle wrap up 148

AWS Proton User Guide

For more information, see Register and publish templates.

CloudFormation environment template bundle directory structure:

/schema
schema.yaml
/infrastructure
manifest.yaml
cloudformation.yaml

Terraform environment template bundle directory structure:

/schema
schema.yaml

/infrastructure
manifest.yaml
environment.tf

Service template bundle wrap up

To create a service template bundle, you must organize the schema, infrastructure as code (laC)
files, and manifest files into directories as shown in the service template bundle directory structure
example.

If you don’t include a service pipeline in your template bundle, don't include the pipeline directory
and files and set "pipelineProvisioning": "CUSTOMER_MANAGED" when you create the
service template that is to be associated with this template bundle.

@ Note

You can't modify pipelineProvisioning after the service template is created.

For more information, see Register and publish templates.

CloudFormation service template bundle directory structure:

/schema
schema.yaml
/instance_infrastructure

Service template bundle wrap up 149

AWS Proton

User Guide

manifest.yaml
cloudformation.yaml
/pipeline_infrastructure
manifest.yaml
cloudformation.yaml

Terraform service template bundle directory structure:

/schema
schema.yaml
/instance_infrastructure
manifest.yaml
instance.tf
/pipeline_infrastructure
manifest.yaml
pipeline.tf

Template bundle considerations

« Infrastructure as code (laC) files

AWS Proton audits templates for the correct file format. However, AWS Proton doesn't check for
template development, dependency, and logic errors. For example, assume that you specified

the creation of an Amazon S3 bucket in your AWS CloudFormation laC file as part of your

service or environment template. A service is created based on those templates. Now, suppose
at some point you want to delete the service. If the specified S3 bucket isn't empty and the
CloudFormation laC file doesn't mark it as Retain in the DeletionPolicy, AWS Proton fails on

the service delete operation.

« Bundle file size limits and format

« Bundle file size, count, and name size limits can be found at AWS Proton quotas.

« The template bundle directories of files are gzipped into a tar ball and located in an Amazon

Simple Storage Service (Amazon S3) bucket.

« Each file in the bundle must be a valid formatted YAML file.

« S3 bucket template bundle encryption

If you want to encrypt sensitive data in your template bundles at rest in your S3 bucket, use SSE-

S3 or SSE-KMS keys to allow AWS Proton to retrieve them.

Template bundle considerations

150

AWS Proton User Guide

AWS Proton templates

To add your template bundle to your AWS Proton template library, create a template minor version
and register it with AWS Proton. When creating the template, provide the name of the Amazon S3
bucket and path for your template bundle. After templates are published, they can be selected by
platform team members and developers. After they're selected, AWS Proton uses the template to
create and provision infrastructure and applications.

As an administrator, you can create and register an environment template with AWS Proton. This
environment template can then be used to deploy multiple environments. For example, it can be
used to deploy "dev," "staging," and "prod" environments. The "dev" environment might include a
VPC with private subnets and a restrictive access policy to all resources. Environment outputs can

be used as inputs for services.

You can create and register environment templates to create two different types of environments.
Both you and developers can use AWS Proton to deploy services to both types.

« Register and publish a standard environment template that AWS Proton uses to create a
standard environment that provisions and manages the environment infrastructure.

« Register and publish a customer managed environment template that AWS Proton uses to create
a customer managed environment that connects to your existing provisioned infrastructure. AWS
Proton doesn't manage your existing provisioned infrastructure.

You can create and register service templates with AWS Proton to deploy services to environments.
An AWS Proton environment must be created before a service can be deployed to it.

The following list describes how you create and manage templates with AWS Proton.

» (Optional) Prepare an IAM role to control developer access to AWS Proton API calls and AWS
Proton IAM service roles. For more information, see the section called “IAM Roles".

« Compose a template bundle. For more information, see Template bundles.

» Create and register a template with AWS Proton after the template bundle is composed,
compressed, and saved in an Amazon S3 bucket. You can do this either in the console or by using
the AWS CLI.

» Test and use the template to create and manage AWS Proton provisioned resources after it's
registered with AWS Proton.

151

AWS Proton User Guide

» Create and manage major and minor versions of the template throughout the life of the
template.

You can manage template versions manually or with template sync configurations:

» Use the AWS Proton console and AWS CLI to create a new minor or major version.

» Create a template sync configuration that lets AWS Proton automatically create a new minor or
major version when it detects a change to your template bundle in a repository that you define.

For additional information, see the The AWS Proton Service APl Reference.

Topics

» Versioned templates

» Register and publish templates

« View template data

« Update a template

» Delete templates

« Template sync configurations

« Service sync configurations

Versioned templates

As an administrator or a member of a platform team, you define, create, and manage a library of
versioned templates that are used to provision infrastructure resources. There are two types of
template versions—minor versions and major versions.

» Minor versions — Changes to the template that have a backward compatible schema. These
changes don't require the developer to provide new information when updating to the new
template version.

When you attempt to make a minor version change, AWS Proton makes a best-effort attempt
to determine whether the schema of the new version is backward compatible with the previous
minor versions of the template. If the new schema isn't backward compatible, AWS Proton fails
the registration of the new minor version.

Versions 152

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html

AWS Proton User Guide

® Note

Compatibility is determined solely based on schema. AWS Proton doesn't check if
the template bundle infrastructure as code (laC) file is backward compatible with the
previous minor versions. For example, AWS Proton doesn't check if the new IaC file
causes breaking changes for the applications that are running on the infrastructure
provisioned by a previous minor version of the template.

» Major versions — Changes to the template that may not be not backward compatible. These
changes typically require new inputs from the developer and often involve template schema
changes.

You may sometimes choose to designate a backward compatible change as a major version
based on your team'’s operational model.

The way AWS Proton determines if a template version request is for a minor or major version
depends on the way template changes are tracked:

« When you explicitly make a request to create a new template version, you request a major
version by specifying a major version number, and you request a minor version by not specifying
a major version number.

« When you use template sync (and therefore you don't make explicit template version requests),
AWS Proton attempts to create new minor versions for template changes that occur in the
existing YAML file. AWS Proton creates a major version when you create a new directory for the
new template change (for example, move from v1 to v2).

® Note

A new minor version registration based on template sync still fails if AWS Proton
determines that the change isn't backward compatible.

When you publish a new version of a template, it becomes the Recommended version if it's
the highest major and minor version. New AWS Proton resources are created using the new
recommended version, and AWS Proton prompts administrators to use the new version and to
update existing AWS Proton resources that are using an outdated version.

Versions 153

AWS Proton User Guide

Register and publish templates

You can register and publish environment and service templates with AWS Proton, as described in
the following sections.

You can create a new version of a template with the console or AWS CLI.

Alternatively, you can use the console or AWS CLI to create a template and configure a configure
a template sync for it. This configuration lets AWS Proton sync from template bundles located in

registered git repositories that you have defined. Whenever a commit is pushed to your repository
that changes one of your template bundles, a new minor or major version of your template is
created, if the version doesn't already exist. To learn more about template sync configuration
prerequisites and requirements, see Template sync configurations.

Register and publish environment templates
You can register and publish the following types of environment templates.

» Register and publish a standard environment template that AWS Proton uses to deploy and
manage environment infrastructure.

 Register and publish a customer managed environment template that AWS Proton uses to
connect to your existing provisioned infrastructure that you manage. AWS Proton doesn't
manage your existing provisioned infrastructure.

/A Important

As an administrator, ensure that your provisioned and managed infrastructure and all
output parameters are compatible with associated customer managed environment
templates. AWS Proton can't account for changes on your behalf because these changes
aren't visible to AWS Proton. Inconsistencies result in failures.

You can use the console or the AWS CLI to register and publish an environment template.
AWS Management Console
Use the console to register and publish a new environment template.

1. Inthe AWS Proton console, choose Environment templates.

Publish 154

https://console.aws.amazon.com/proton/

AWS Proton User Guide

2. Choose Create environment template.

3. In the Create environment template page, in the Template options section, choose one of
the two available template options.
» Create a template for provisioning new environments.
» Create a template to use provisioned infrastructure that you manage.

4. If you chose Create a template for provisioning new environments, in the Template
bundle source section, choose one of the three available template bundle source options.
To learn more about requirements and prerequisites for syncing templates, see Template
sync configurations.

» Use one of our sample template bundles.
« Use your own template bundle.

» Sync templates from Git.

5. Provide a path to a template bundle.

a. If you chose Use one of our sample template bundles:

In the Sample template bundle section, select a sample template bundle.

b. If you chose Sync templates from Git, in the Source code section:

i. Select the repository for your template sync configuration.

ii. Enter the name of the repository branch to sync from.

iii. (Optional) Enter name of a directory to limit the search for your template bundle.
c. Otherwise, in the S3 bundle location section, provide a path to your template bundle.

6. Inthe Template details section.

a. Enter a Template name.
b. (Optional) Enter a Template display name.
c. (Optional) Enter a Template description for the environment template.

7. (Optional) Check the check box for Customize encryption settings (advanced) in the
Encryption settings section to provide your own encryption key.

8. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

9. Choose Create Environment template.
Publish environment templates 155

AWS Proton User Guide

10.

11.

12.
13.

14.

You're now on a new page that displays the status and details for your new environment
template. These details include a list of AWS and customer managed tags. AWS Proton
automatically generates AWS managed tags for you when you create AWS Proton
resources. For more information, see AWS Proton resources and tagging.

The status of a new environment template status starts in the Draft state. You and others
with proton:CreateEnvironment permissions can view and access it. Follow the next
step to make the template available to others.

In the Template versions section, choose the radio button to the left of the minor version
of the template you just created (1.0). As an alternative, you can choose Publish in the info
alert and skip the next step.

In the Template versions section, choose Publish.

The template status changes to Published. Because it's the latest version of the template,
it's the Recommended version.

In the navigation pane, select Environment templates to view a list of your environment
templates and details.

Use the console to register new major and minor versions of an environment template.

For more information, see Versioned templates.

1.
2.

In the AWS Proton console, choose Environment Templates.

In the list of environment templates, choose the name of the environment template that
you want to create a major or minor version for.

In the environment template detail view, choose Create new version in the Template
versions section.

In the Create a new environment template version page, in the Template bundle source
section, choose one of the two available template bundle source options.

« Use one of our sample template bundles.

« Use your own template bundle.

Provide a path to the selected template bundle.

« If you chose Use one of our sample template bundles, in the Sample template bundle
section, select a sample template bundle.

Publish environment templates 156

https://console.aws.amazon.com/proton/

AWS Proton User Guide

« If you chose Use your own template bundle, in the S3 bundle location section, choose
the path to your template bundle.

In the Template details section.

a. (Optional) Enter a Template display name.

b. (Optional) Enter a Template description for the service template.

In the Template details section, choose one of the following options.

» To create a minor version, keep the check box Check to create a new major version
empty.

» To create a major version, check the check box Check to create a new major version.

Continue through the console steps to create the new minor or major version and choose
Create new version.

AWS CLI

Use the CLI to register and publish a new environment template as shown in the following
steps.

Create a standard OR customer managed environment template by specifying the region,
name, display name (optional), and description (optional).

a. Create a standard environment template.

Run the following command:

$ aws proton create-environment-template \
--name "simple-env'" \
--display-name "Fargate" \
--description "VPC with public access"

Response:

"environmentTemplate": {
"arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env",
"createdAt": "2020-11-11T23:02:45.336000+00:00",

Publish environment templates 157

AWS Proton User Guide

"description": "VPC with public access",
"displayName": "VPC",

"lastModifiedAt": "2020-11-11T23:02:45.336000+00:00",
"name": "simple-env"

b. Create a customer managed environment template by adding the provisioning
parameter with value CUSTOMER_MANAGED.

Run the following command:

$ aws proton create-environment-template \
--name "simple-env" \
--display-name "Fargate" \
--description "VPC with public access" \
--provisioning "CUSTOMER_MANAGED"

Response:

"environmentTemplate": {

arn": "arn:aws:proton:region-id:123456789012:environment-template/

simple-env",
"createdAt": "2020-11-11T723:02:45.336000+00:00",
"description": "VPC with public access",
"displayName": "VPC",
"lastModifiedAt": "2020-11-11T23:02:45.336000+00:00",
"name": "simple-env",
"provisioning": "CUSTOMER_MANAGED"

2. Create a minor version 0 of major version 1 of the environment template

This and the remaining steps are the same for both the standard and customer managed
environment templates.

Include the template name, major version, and the S3 bucket name and key for the bucket
that contains your environment template bundle.

Run the following command:

Publish environment templates 158

AWS Proton User Guide

$ aws proton create-environment-template-version \
--template-name "simple-env'" \
--description "Version 1" \
--source s3="{bucket=your_s3_bucket, key=your_s3_key}"

Response:

"environmentTemplateVersion": {
" "arn:aws:proton:region-id:123456789012:environment-template/
simple-env:1.0",
"createdAt": "2020-11-11T23:02:47.763000+00:00",

arn :

"description": "Version 1",

"lastModifiedAt": "2020-11-11T23:02:47.763000+00:00",
"majorVersion": "1",

"minorVersion": "Q",

"status": "REGISTRATION_IN_PROGRESS",

"templateName": "simple-env"

3. Use the get command to check the registrations status.

Run the following command:

$ aws proton get-environment-template-version \
--template-name "simple-env'" \
--major-version "1" \
--minor-version "0"

Response:

"environment": {
" "arn:aws:proton:region-id:123456789012:environment-template/
simple-env:1.0",
"createdAt": "2020-11-11T23:02:47.763000+00:00",

arn :

"description": "Version 1",

"lastModifiedAt": "2020-11-11T23:02:47.763000+00:00",
"majorVersion": "1",

"minorVersion": "Q",

Publish environment templates 159

AWS Proton User Guide

"recommendedMinorVersion": "0@",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
environment_input_type: \"MyEnvironmentInputType\"\n types:\n
MyEnvironmentInputType:\n type: object\n description: \"Input
properties for my environment\"\n properties:\n my_sample_input:\n

type: string\n description: \"This is a sample input\"\n
default: \"hello world\"\n my_other_sample_input:\n type:
string\n description: \"Another sample input\"\n required:\n
- my_other_sample_input\n",

"status": "DRAFT",

"statusMessage": "",

"templateName": "simple-env"

4. Publish of minor version 0 of major version 1 of the environment template by providing the
template name and the major and minor version. This version is the Recommended version.

Run the following command:

$ aws proton update-environment-template-version \
--template-name "simple-env" \
--major-version "1" \
--minor-vexrsion "0" \
--status "PUBLISHED"

Response:

"environmentTemplateVersion": {

arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env:1.0",

"createdAt": "2020-11-11T723:02:47.763000+00:00",

"description": "Version 1",

"lastModifiedAt": "2020-11-11T23:02:54.610000+00:00",
"majorVersion": "1",

"minorVersion": "Q",

"recommendedMinorVersion": "Q",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
environment_input_type: \"MyEnvironmentInputType\"\n types:\n

MyEnvironmentInputType:\n type: object\n description: \"Input
properties for my environment\"\n properties:\n my_sample_input:\n
type: string\n description: \"This is a sample input\"\n

Publish environment templates 160

AWS Proton User Guide

default: \"hello world\"\n my_other_sample_input:\n type:
string\n description: \"Another sample input\"\n required:\n
- my_other_sample_input\n",
"status": "PUBLISHED",

"statusMessage": ,
"templateName": "simple-env"

After creating a new template using the AWS CLI, you can view a list of AWS and customer
managed tags. AWS Proton automatically generates AWS managed tags for you. You can also
modify and create customer managed tags using the AWS CLI. For more information, see AWS
Proton resources and tagging.

Run the following command:

$ aws proton list-tags-for-resource \
--resource-arn "arn:aws:proton:region-id:123456789012:environment-
template/simple-env"

Register and publish service templates

When you create a service template version, you specify a list of compatible environment
templates. That way, when developers select a service template, they have options for which
environment to deploy their service to.

Before creating a service from a service template or before publishing a service template, confirm
that environments are deployed from the listed compatible environment templates.

You can't update a service to the new major version if it's deployed to an environment that was
built from a removed compatible environment template.

To add or remove compatible environment templates for a service template version, you create a
new major version of it.

You can use the console or the AWS CLI to register and publish a service template.

Publish service templates 161

AWS Proton User Guide

AWS Management Console

Use the console to register and publish a new service template.

1.
2.

In the AWS Proton console, choose Service templates.

Choose Create service template.

In the Create service template page, in the Template bundle source section, choose one
of the available template options.

« Use your own template bundle.

« Sync templates from Git.

Provide a path to a template bundle.
a. If you chose Sync templates from Git, in the Source code repository section:

i. Select the repository for your template sync configuration.

ii. Enter the name of the repository branch to sync from.

iii. (Optional) Enter name of a directory to limit the search for your template bundle.
b. Otherwise, in the S3 bundle location section, provide a path to your template bundle.

In the Template details section.

a. Enter a Template name.
b. (Optional) Enter a Template display name.
c. (Optional) Enter a Template description for the service template.

In the Compatible environment templates section, choose from a list of compatible
environment templates.

(Optional) In the Encryption settings section, choose Customize encryption settings
(advanced) to provide your own encryption key.

(Optional) In the Pipeline section:

If you aren't including a service pipeline definition in your service template, uncheck the
Pipeline - optional check box at the bottom of the page. You can't change this after the
service template is created. For more information, see Template bundles.

Publish service templates 162

https://console.aws.amazon.com/proton/

AWS Proton User Guide

9.

10.

11.

12.

13.

14.
15.

16.

(Optional) In the Supported component sources section, for Component sources, choose
Directly defined to enable attachment of directly defined components to your service
instances.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Choose Create a service template.

You're now on a new page that displays the status and details for your new service
template. These details include a list of AWS and customer managed tags. AWS Proton
automatically generates AWS managed tags for you when you create AWS Proton
resources. For more information, see AWS Proton resources and tagging.

The status of a new service template status starts in the Draft state. You and others with
proton:CreateService permissions can view and access it. Follow the next step to make
the template available to others.

In the Template versions section, choose the radio button to the left of the minor version
of the template you just created (1.0). As an alternative, you can choose Publish in the info
alert and skip the next step.

In the Template versions section, choose Publish.

The template status changes to Published. Because it's the latest version of the template,
it's the Recommended version.

In the navigation pane, select Service templates to view a list of your service templates
and details.

Use the console to register new major and minor versions of a service template.

For more information, see Versioned templates.

1.
2.

In the AWS Proton console, choose Service Templates.

In the list of service templates, choose the name of the service template that you want to
create a major or minor version for.

In the service template detail view, choose Create new version in the Template versions
section.

In the Create a new service template version page, in the Bundle source section, select
Use your own template bundle.

In the S3 bundle location section, choose the path to your template bundle.

Publish service templates 163

https://console.aws.amazon.com/proton/

AWS Proton User Guide

6. Inthe Template details section.

a. (Optional) Enter a Template display name.
b. (Optional) Enter a Template description for the service template.

7. In the Template details section, choose one of the following options.

» To create a minor version, keep the check box Check to create a new major version
empty.

» To create a major version, check the check box Check to create a new major version.

8. Continue through the console steps to create the new minor or major version and choose
Create new version.

AWS CLI

To create service template that deploys a service without a service pipeline, add the parameter
and value --pipeline-provisioning "CUSTOMER_MANAGED" to the create-service-
template command. Configure your template bundles as described in Template bundles

creation and Schema requirements for service template bundles.

(® Note

You can't modify pipelineProvisioning after the service template is created.

1. Use the CLI to register and publish a new service template, with or without a service
pipeline, as shown in the following steps.

a. Create a service template with a service pipeline using the CLI.
Specify the name, display name (optional), and description (optional).

Run the following command:

$ aws proton create-service-template \
--name "fargate-service" \
--display-name "Fargate" \
--description "Fargate-based Service"

Response:

Publish service templates 164

AWS Proton User Guide

"serviceTemplate": {

"arn": "arn:aws:proton:region-id:123456789012:service-template/
fargate-service",

"createdAt": "2020-11-11T23:02:55.551000+00:00",

"description": "Fargate-based Service",

"displayName": "Fargate",

"lastModifiedAt": "2020-11-11T23:02:55.551000+00:00",

"name": "fargate-service"

b. Create a service template without a service pipeline.
Add --pipeline-provisioning.

Run the folllowing command:

$ aws proton create-service-template \
--name "fargate-service" \
--display-name "Fargate" \
--description "Fargate-based Service" \
--pipeline-provisioning "CUSTOMER_MANAGED"

Response:

"serviceTemplate": {

" "arn:aws:proton:region-id:123456789012:service-template/
fargate-service",

"createdAt": "2020-11-11T723:02:55.551000+00:00",

"description": "Fargate-based Service",

"displayName": "Fargate",

"lastModifiedAt": "2020-11-11T23:02:55.551000+00:00",

"name": "fargate-service",

"pipelineProvisioning": "CUSTOMER_MANAGED"

arn :

Publish service templates 165

AWS Proton User Guide

2. Create a minor version 0 of major version 1 of the service template.

Include the template name, compatible environment templates, major version, and the S3
bucket name and key for the bucket that contains your service template bundle.

Run the following command:

$ aws proton create-service-template-version \
--template-name "fargate-service" \
--description "Version 1" \
--source s3="{bucket=your_s3_bucket, key=your_s3_key}" \
--compatible-environment-templates '[{"templateName":"simple-
env","majorVersion":"1"}]'

Response:

"serviceTemplateMinorVersion": {

"arn": "arn:aws:proton:region-id:123456789012:service-template/fargate-
service:1.0",

"compatibleEnvironmentTemplates": [

{
"majorVersion": "1",
"templateName": "simple-env"
}
1,
"createdAt": "2020-11-11T23:02:57.912000+00:00",
"description": "Version 1",
"lastModifiedAt": "2020-11-11T23:02:57.912000+00:00",
"majorVersion": "1",
"minorVersion": "Q",
"status": "REGISTRATION_IN_PROGRESS",
"templateName": "fargate-service"

3. Use the get command to check the registrations status.

Run the folllowing command:

$ aws proton get-service-template-version \

Publish service templates 166

AWS Proton User Guide

--template-name "fargate-service" \
--major-version "1" \
--minox-vexsion "0"

Response:

"serviceTemplateMinorVersion": {
"arn": "arn:aws:proton:us-east-1:123456789012:service-template/fargate-
service:1.0",
"compatibleEnvironmentTemplates": [

{
"majorVersion": "1",
"templateName": "simple-env"
}
1,
"createdAt": "2020-11-11T23:02:57.912000+00:00",
"description": "Version 1",
"lastModifiedAt": "2020-11-11T23:02:57.912000+00:00",
"majorVersion": "1",
"minorVersion": "@",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
pipeline_input_type: \"MyPipelineInputType\"\n service_input_type:
\"MyServiceInstanceInputType\"\n\n types:\n MyPipelineInputType:\n

type: object\n description: \"Pipeline input properties\"\n
required:\n - my_sample_pipeline_required_input\n properties:\n
my_sample_pipeline_optional_input:\n type: string\n
description: \"This is a sample input\"\n default: \"hello world
\"\n my_sample_pipeline_required_input:\n type: string\n
description: \"Another sample input\"\n\n MyServiceInstanceInputType:
\n type: object\n description: \"Service instance input properties
\"\n required:\n - my_sample_service_instance_required_input\n
properties:\n my_sample_service_instance_optional_input:\n
type: string\n description: \"This is a sample input\"\n
default: \"hello world\"\n my_sample_service_instance_required_input:\n
type: string\n description: \"Another sample input\"",

"status": "DRAFT",

"statusMessage": "",

"templateName": "fargate-service"

Publish service templates 167

AWS Proton User Guide

4. Publish the service template by using the update command to change the status to
"PUBLISHED".

Run the following command:

$ aws proton update-service-template-version \
--template-name "fargate-service" \
--description "Version 1" \
--major-version "1" \
--minoxr-version "0" \
--status "PUBLISHED"

Response:

"serviceTemplateVersion": {
" "arn:aws:proton:region-id:123456789012:service-template/fargate-

arn":
service:1.0",
"compatibleEnvironmentTemplates": [

{
"majorVersion": "1",
"templateName": "simple-env"
}
1,
"createdAt": "2020-11-11T23:02:57.912000+00:00",
"description": "Version 1",
"lastModifiedAt": "2020-11-11T23:02:57.912000+00:00",
"majorVersion": "1",
"minorVersion": "Q",
"recommendedMinorVersion": "Q",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
pipeline_input_type: \"MyPipelineInputType\"\n service_input_type:
\"MyServiceInstanceInputType\"\n\n types:\n MyPipelineInputType:\n

type: object\n description: \"Pipeline input properties\"\n
required:\n - my_sample_pipeline_required_input\n properties:\n
my_sample_pipeline_optional_input:\n type: string\n
description: \"This is a sample input\"\n default: \"hello pipeline
\"\n my_sample_pipeline_required_input:\n type: string\n
description: \"Another sample input\"\n\n MyServiceInstanceIlnputType:
\n type: object\n description: \"Service instance input properties
\"\n required:\n - my_sample_service_instance_required_input\n
properties:\n my_sample_service_instance_optional_input:\n

Publish service templates 168

AWS Proton User Guide

type: string\n description: \"This is a sample input\"\n
default: \"hello world\"\n my_sample_service_instance_required_input:\n
type: string\n description: \"Another sample input\"\n",
"status": "PUBLISHED",
"statusMessage": "",
"templateName": "fargate-service"
}

5. Check that AWS Proton has published version 1.0 by using the get command to retrieve
service template detail data.

Run the following command:

$ aws proton get-service-template-version \
--template-name "fargate-service" \
--major-version "1" \
--minoxr-version "0"

Response:

"serviceTemplateMinorVersion": {
"arn": "arn:aws:proton:us-east-1:123456789012:service-template/fargate-
service:1.0",
"compatibleEnvironmentTemplates": [

{
"majorVersion": "1",
"templateName": "simple-env"
}
1,
"createdAt": "2020-11-11T23:02:57.912000+00:00",
"description": "Version 1",
"lastModifiedAt": "2020-11-11T23:03:04.767000+00:00",
"majorVersion": "1",
"minorVersion": "Q@",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
pipeline_input_type: \"MyPipelineInputType\"\n service_input_type:
\"MyServiceInstanceInputType\"\n\n types:\n MyPipelineInputType:\n

type: object\n description: \"Pipeline input properties\"\n
required:\n - my_sample_pipeline_required_input\n properties:\n

my_sample_pipeline_optional_input:\n type: string\n
description: \"This is a sample input\"\n default: \"hello world

Publish service templates 169

AWS Proton User Guide

\"\n my_sample_pipeline_required_input:\n type: string\n
description: \"Another sample input\"\n\n MyServiceInstanceInputType:
\n type: object\n description: \'"Service instance input properties
\"\n required:\n - my_sample_service_instance_required_input\n
properties:\n my_sample_service_instance_optional_input:\n
type: string\n description: \"This is a sample input\"\n
default: \"hello world\"\n my_sample_service_instance_required_input:\n
type: string\n description: \"Another sample input\"",
"status": "PUBLISHED",
"statusMessage": "",
"templateName": "fargate-service"
}
}

View template data

You can view lists of templates with details and view individual templates with detail data by using
the AWS Proton console and AWS CLI.

Customer managed environment template data includes the provisioned parameter with the
value CUSTOMER_MANAGED.

If a service template doesn't include a service pipeline, the service template data includes the
pipelineProvisioning parameter with the value CUSTOMER_MANAGED.

For more information, see Register and publish templates.

You can use the console or the AWS CLI to list and view template data.
AWS Management Console
Use the console to list and view templates.

1. To view a list of templates, choose (Environment or Service) templates.

2. To view detail data choose the name of a template.

View the detail data of the template, a list of the major and minor versions of the template,
a list of the AWS Proton resources that were deployed using template versions and
template tags.

The recommended major version and minor version is labeled as Recommended.

View templates 170

https://console.aws.amazon.com/proton/

AWS Proton User Guide

AWS CLI
Use the AWS CLI to list and view templates.

Run the following command:

$ aws proton get-environment-template-version \
--template-name "simple-env" \
--major-version "1" \
--minor-version "0"

Response:

"environmentTemplateVersion": {

arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env:1.0",

"createdAt": "2020-11-10T18:35:08.293000+00:00",

"description": "Version 1",

"lastModifiedAt": "2020-11-10T18:35:11.162000+00:00",

"majorVersion": "1",

"minorVersion": "Q",

"recommendedMinorVersion": "Q",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
environment_input_type: \"MyEnvironmentInputType\'"\n types:\n

MyEnvironmentInputType:\n type: object\n description: \"Input properties

for my environment\"\n properties:\n my_sample_input:\n

type: string\n description: \"This is a sample input\"\n

default: \"hello world\"\n my_other_sample_input:\n type: string
\n description: \"Another sample input\"\n required:\n -

my_other_sample_input\n",
"status": "DRAFT",
"statusMessage": "",
"templateName": "simple-env"

Run the following command:

$ aws proton list-environment-templates

Response:

View templates 171

AWS Proton

User Guide

"templates": [

{

simple-env-3

simple-env-1

arn": "arn:aws:proton:region-id:123456789012:environment-template/

n
4

"createdAt": "2020-11-10T18:35:05.763000+00:00",
"description": "VPC with Public Access",
"displayName": "VPC",

"lastModifiedAt": "2020-11-10T18:35:05.763000+00:00",

"name": "simple-env-3",
"recommendedVersion": "1.0"
"arn": "arn:aws:proton:region-id:123456789012:environment-template/

n
4

"createdAt": "2020-11-10T00:14:06.881000+00:00",
"description": "Some SSM Parameters",

"displayName": "simple-env-1",

"lastModifiedAt": "2020-11-10T00:14:06.881000+00:00",
"name": "simple-env-1",

"recommendedVersion": "1.0"

View a minor version of a service template.

Run the following command:

$ aws proton

get-service-template-version \

--template-name "fargate-service" \
--major-version "1" \
--minox-version "0"

Response:

"serviceTemplateMinorVersion": {

service:1.0"

arn :

"arn:aws:proton:us-east-1:123456789012:service-template/fargate-

’

"compatibleEnvironmentTemplates": [

{

"majorVersion": "1",

View templates

172

AWS Proton User Guide

"templateName": "simple-env"

}
1,
"createdAt": "2020-11-11T23:02:57.912000+00:00",
"description": "Version 1",
"lastModifiedAt": "2020-11-11T23:02:57.912000+00:00",
"majorVersion": "1",
"minorVersion": "Q@",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
pipeline_input_type: \"MyPipelineInputType\"\n service_input_type:
\"MyServiceInstanceInputType\"\n\n types:\n MyPipelineInputType:\n
type: object\n description: \"Pipeline input properties\"\n
required:\n - my_sample_pipeline_required_input\n properties:\n
my_sample_pipeline_optional_input:\n type: string\n
description: \"This is a sample input\"\n default: \"hello world\"\n
my_sample_pipeline_required_input:\n type: string\n description:
\"Another sample input\'"\n\n MyServiceInstanceInputType:\n type: object
\n description: \"Service instance input properties\"\n required:\n
- my_sample_service_instance_required_input\n properties:\n
my_sample_service_instance_optional_input:\n type: string\n
description: \"This is a sample input\"\n default: \"hello world\"\n
my_sample_service_instance_required_input:\n type: string\n
description: \"Another sample input\"",
"status": "DRAFT",
"statusMessage": ""

’

"templateName": "fargate-service"

View a service template without a service pipeline as shown in the next example command and
response.

Run the following command:

$ aws proton get-service-template \
--name "simple-svc-template-cli"

Response:

"serviceTemplate": {
"arn": "arn:aws:proton:region-id:123456789012:service-template/simple-svc-

template-cli",

View templates 173

AWS Proton User Guide

"createdAt": "2021-02-18T15:38:57.949000+00:00",
"displayName": "simple-svc-template-cli",
"lastModifiedAt": "2021-02-18T15:38:57.949000+00:00",
"status": "DRAFT",

"name": "simple-svc-template-cli",
"pipelineProvisioning": "CUSTOMER_MANAGED"

Update a template

You can update a template as described in the following list.

» Edit the description ordisplay name of a template when you use either the console or AWS
CLI. You can't edit the name of a template.

» Update the status of a template minor version when you use either the console or AWS CLI. You
can only change the status from DRAFT to PUBLISHED.

« Edit the display name and description of a minor or major version of a template when you use
the AWS CLI.

AWS Management Console

Edit a template description and display name using the console as described in the following
steps.

In the list of templates.

1. Inthe AWS Proton console, choose (Environment or Service) Templates.

2. In the list of templates, choose the radio button to the left of the template that you want
to update the description or display name for.

3. Choose Actions and then Edit.

4. In the Edit (environment or service) template page, in the Template details section, enter
your edits in the form and choose Save changes.

Change the status of a minor version of a template using the console to publish a template as
described in the following. You can only change the status from DRAFT to PUBLISHED.

Update a template 174

https://console.aws.amazon.com/proton/

AWS Proton User Guide

In the (environment or service) template detail page.

1. Inthe AWS Proton console, choose (Environment or Service) templates.

2. In the list of templates, choose the name of the template that you want to update the
status of a minor version from Draft to Published.

3. In the (environment or service) template detail page, in the Template versions section,
select the radio button to the left of the minor version that you want to publish.

4. Choose Publish in the Template versions section. The status changes from Draft to
Published.

AWS CLI

The following example command and response shows how you can edit the description of an
environment template.

Run the following command.

$ aws proton update-environment-template \
--name "simple-env" \
--description "A single VPC with public access"

Response:

"environmentTemplate": {

arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env",

"createdAt": "2020-11-28T22:02:10.651000+00:00",

"description": "A single VPC with public access",

"displayName": "simple-env",

"lastModifiedAt": "2020-11-29T16:11:18.956000+00:00",

"majorVersion": "1",

"minorVersion": "Q@",

"recommendedMinorVersion": "0@",

"schema": "schema:\n format:\n openapi: \"3.0.0\"\n
environment_input_type: \"MyEnvironmentInputType\"\n types:\n

MyEnvironmentInputType:\n type: object\n description: \"Input properties
for my environment\"\n properties:\n my_sample_input:\n

type: string\n description: \"This is a sample input\"\n

default: \"hello world\"\n my_other_sample_input:\n type: string

Update a template 175

https://console.aws.amazon.com/proton/

AWS Proton User Guide

\n description: \"Another sample input\"\n required:\n -
my_other_sample_input\n",
"status": "PUBLISHED",
"statusMessage": "",
"templateName": "simple-env"

You can also use the AWS CLI to update service templates. See Register and publish service
templates, step 5, for an example of updating the status of a minor version of a service
template.

Delete templates

Templates can be deleted using the console and AWS CLI.

You can delete a minor version of an environment template if there are no environments deployed
to that version.

You can delete a minor version of a service template if there are no service instances or pipelines
deployed to that version. Your pipeline can be deployed to a different template version than your
service instance. For example, if your service instance is updated to version 1.1 from 1.0 and your
pipeline is still deployed to version 1.0, you can’t delete service template 1.0.

AWS Management Console

You can use the console to delete the entire template or individual minor and major versions of
a template.

Use the console to delete templates as follows.

(® Note

When using the console to delete templates.

« When you delete the entire template, you also delete the major and minor versions of
the template.

Delete templates 176

AWS Proton User Guide

In the list of (environment or service) templates.

1.
2.

In the AWS Proton console, choose (Environment or Service) Templates.

In the list of templates, select the radio button to the left of the template you want to
delete.

You can only delete an entire template if there are no AWS Proton resources deployed to its
versions.

Choose Actions and then Delete to delete the entire template.
A modal prompts you to confirm the delete action.

Follow the instructions and choose Yes, delete.

In the (environment or service) template detail page.

In the AWS Proton console, choose (Environment or Service) Templates.

In the list of templates, choose the name of the template that you want to entirely delete
or delete individual major or minor versions of it.

To delete the entire template.

You can only delete an entire template if there are no AWS Proton resources deployed to its
versions.

a. Choose Delete, top right corner of page.

b. A modal prompts you to confirm the delete action.

c. Follow the instructions and choose Yes, delete.

To delete major or minor versions of a template.

You can only delete a minor version of a template if there are no AWS Proton resources
deployed to that version.

a. Inthe Template versions section, select the radio button to the left of the version that
you want to delete.

b. Choose Delete in the Template versions section.

¢. A modal prompts you to confirm the delete action.

d. Follow the instructions and choose Yes, delete.

Delete templates 177

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/

AWS Proton User Guide

AWS CLI

AWS CLI template delete operations don't include the deletion of other versions of a template.
When using the AWS CLI, delete templates with the following conditions.

« Delete an entire template if no minor or major versions of the template exist.
» Delete a major version when you delete the last remaining minor version.

» Delete a minor version of a template if there are no AWS Proton resources deployed to that
version.

o Delete the recommended minor version of a template if no other minor versions of the
template exist and there are no AWS Proton resources deployed to that version.

The following example commands and responses show how to use the AWS CLI to delete
templates.

Run the following command:

$ aws proton delete-environment-template-version \
--template-name "simple-env" \
--major-version "1" \
--minor-version "0"

Response:

"environmentTemplateVersion": {

"arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env:1.0",

"createdAt": "2020-11-11T23:02:47.763000+00:00",

"description": "Version 1",

"lastModifiedAt": "2020-11-11T23:02:54.610000+00:00",

"majorVersion": "1",

"minorVersion": "Q@",

"status": "PUBLISHED",

"statusMessage": "",

"templateName": "simple-env"

Run the following command:

Delete templates 178

AWS Proton User Guide

$ aws proton delete-environment-template \
--name "simple-env"

Response:

"environmentTemplate": {

"arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env",
"createdAt": "2020-11-11T723:02:45.336000+00:00",
"description": "VPC with Public Access",
"displayName": "VPC",
"lastModifiedAt": "2020-11-12T00:23:22.339000+00:00",
"name": "simple-env",
"recommendedVersion": "1.0"
}
}

Run the following command:

$ aws proton delete-service-template-version \
--template-name "fargate-service" \
--major-version "1" \
--minoxr-version "O"

Response:

"serviceTemplateVersion": {
"arn": "arn:aws:proton:region-id:123456789012:service-template/fargate-
service:1.0",
"compatibleEnvironmentTemplates": [{"majorVersion": "1", "templateName":
"simple-env"}],
"createdAt": "2020-11-28T22:07:05.798000+00:00",
"lastModifiedAt": "2020-11-28T22:19:05.368000+00:00",

"majorVersion": "1",
"minorVersion": "Q",

"status": "PUBLISHED",
"statusMessage": "",
"templateName": "fargate-service"

Delete templates 179

AWS Proton User Guide

}

Template sync configurations

Learn how to configure a template to let AWS Proton sync from template bundles located in
registered git repositories that you define. When a commit is pushed to your repository, AWS
Proton checks for changes to your repository template bundles. If it detects a template bundle
change, a new minor or major version of its template is created, if the version doesn't already exist.
AWS Proton currently supports GitHub, GitHub Enterprise, and BitBucket.

Pushing a commit to a synced template bundle

When you push a commit to a branch that's being tracked by one of your templates, AWS Proton
clones your repository and determines what templates it needs to sync. It scans the files in your
directory to find directories matching the convention of {template-name}/{major-version}/.

After AWS Proton determines which templates and major versions are associated with your
repository and branch, it starts trying to sync all of those templates in parallel.

During each sync to a particular template, AWS Proton first checks to see if the contents of the
template directory changed since the last successful sync. If the contents didn't change, AWS
Proton skips registering a duplicate bundle. This ensures that a new template minor version is
created if the content of the template bundle changes. If the contents of the template bundle
changed, the bundle is registered with AWS Proton.

After the template bundle is registered, AWS Proton monitors the registration status until the
registration is complete.

Only one sync can occur to a particular template minor and major version at a single given time.
Any commits that might have been pushed while a sync was in progress are batched. The batched
commits are synced after the previous sync attempt is complete.

Syncing service templates

AWS Proton can sync both environment and service templates from your git repository. To sync
your service templates you add an additional file named .template-registration.yaml to
each major version directory in your template bundle. This file contains additional details that AWS
Proton needs when it creates a service template version for you following a commit: compatible
environments and supported component sources.

Template sync configurations 180

AWS Proton User Guide

The file's full path is service-template-name/major-version/.template-
registration.yaml. For more information, see the section called “Syncing service templates”.

Template sync configuration considerations

Review the following considerations for using template sync configurations.

» Repositories must be no larger than 250 MB.

» To configure template sync, first link the repository to AWS Proton. For more information, see
the section called “Create a repository link".

« When a new template version is created from a synced template, it's in the DRAFT state.
« A new minor version of a template is created if one of the following is true:

» The template bundle contents are different from those of the last synced template minor
version.

» The last previously synced template minor version was deleted.
« Syncing can't be paused.
« Both new minor or major versions are automatically synced.
« New top-level templates can't be created by template sync configurations.
» You can't sync to one template from multiple repositories with a template sync configuration.
» You can't use tags instead of branches.

« When you create a service template, you specify compatible environment templates.

» You can create an environment template and add it as a compatible environment for your service
template in the same commit.

 Syncs to a single template major version are run one at a time. During a sync, if any new commits
are detected, they're batched and applied at the end of active sync. Syncs to different template
major versions happen in parallel.

« If you change the branch your templates are syncing from, any ongoing syncs from the old
branch first complete. Then syncing begins from the new branch.

« If you change the repository your templates sync from, any ongoing syncs from the old
repository might fail or run to completion. It depends on which stage of the sync they're in.

For more information, see the The AWS Proton Service API Reference.

Topics

Template sync considerations 181

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html

AWS Proton User Guide

Create a template sync configuration

View template sync configuration details

Edit a template sync configuration

Delete a template sync configuration

Create a template sync configuration

Learn how to create a template sync configuration with AWS Proton.
Create a template sync configuration prerequisites:

» You've linked a repository with AWS Proton.

« A template bundle is located in your repository.

The repository link consists of the following:

« An CodeConnections connection that gives AWS Proton permission to access your repository and
subscribe to its notifications.

» Aservice linked role. When you link your repository, the service linked role is created for you.

Before you create your first template sync configuration, push a template bundle to your
repository as shown in the following directory layout.

/templates/ # subdirectory (optional)
/templates/my-env-template/ # template name
/templates/my-env-template/vl/ # template version
/templates/my-env-template/vl/infrastructure/ # template bundle

/templates/my-env-template/v1l/schema/

After you create your first template sync configuration, new template versions are automatically
created when you push a commit that adds an updated template bundle under a new version (for
example, under /my-env-template/v2/).

/templates/ # subdirectory (optional)
/templates/my-env-template/ # template name
/templates/my-env-template/vl/ # template version
/templates/my-env-template/vl/infrastructure/ # template bundle

Create 182

AWS Proton User Guide

/templates/my-env-template/vl/schema/
/templates/my-env-template/v2/
/templates/my-env-template/v2/infrastructure/
/templates/my-env-template/v2/schema/

You can include new template bundle versions for one or more sync configured templates in a
single commit. AWS Proton creates a new template version for each new template bundle version
that was included in the commit.

After you created the template sync configuration, you can still manually create new versions of
the template in the console or with the AWS CLI by uploading template bundles from an S3 bucket.
Template syncing only works in one direction: from your repository to AWS Proton. Manually
created template versions aren’t synced.

After you set up a template sync configuration, AWS Proton listens for changes to your repository.
Whenever a change is pushed, it looks for any directory that has the same name as your template.
It then looks inside that directory for any directories that look like major versions. AWS Proton
registers the template bundle to the corresponding template major version. The new versions are
always in the DRAFT state. You can publish the new versions with the console or AWS CLI.

For example, suppose you have a template that's called my-env-template configured to sync
from my-repo/templates on branch main with the following layout.

/code

/code/service.go

README . md

/templates/

/templates/my-env-template/
/templates/my-env-template/vl/
/templates/my-env-template/vl/infrastructure/
/templates/my-env-template/vl/schema/
/templates/my-env-template/v2/
/templates/my-env-template/v2/infrastructure/
/templates/my-env-template/v2/schema/

AWS Proton syncs the contents of /templates/my-env-template/vl/ tomy-env-
template:1 and the contents of /templates/my-env-template/v2/to my-env-
template: 2. If they don't already exist, it creates these major versions.

AWS Proton found the first directory that matched the template name. You can limit the
directories AWS Proton searches by specifying a subdirectoryPath when you create or edit

Create 183

AWS Proton User Guide

a template sync configuration. For example, you can specify /production-templates/ for

subdirectoryPath.

You can create a template sync configuration using the console or CLI.

AWS Management Console

Create a template and template sync configuration using the console.

1.
2.

In the AWS Proton console, choose Environment templates.

Choose Create environment template.

In the Create environment template page, in the Template options section, choose Create
a template for provisioning new environments.

In the Template bundle source section, choose Sync templates from Git.

In the Source code repository section:

a. For Repository, select the linked repository that contains your template bundle.
b. For Branch, select a repository branch to sync from.

c. (Optional) For Template bundle directory, enter the name of a directory to scope
down the search for your template bundle.

In the Template details section.

a. Enter a Template name.
b. (Optional) Enter a Template display name.
c. (Optional) Enter a Template description for the environment template.

(Optional) Check the checkbox for Customize encryption settings (advanced) in the
Encryption settings section to provide your own encryption key.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Choose Create Environment template.

You're now on a new page that displays the status and details for your new environment

template. These details include a list of AWS managed and customer managed tags. AWS
Proton automatically generates AWS managed tags for you when you create AWS Proton
resources. For more information, see AWS Proton resources and tagging.

Create

184

https://console.aws.amazon.com/proton/

AWS Proton User Guide

10. In the template detail page, choose the Sync tab to view template sync configuration detail
data.

11. Choose the Template versions tab to view template versions with status details.

12. The status of a new environment template status starts in the Draft state. You and others
with proton:CreateEnvironment permissions can view and access it. Follow the next
step to make the template available to others.

13. In the Template versions section, choose the radio button to the left of the minor version
of the template that you just created (1.0). As an alternative, you can choose Publish in the
info alert and skip the next step.

14. In the Template versions section, choose Publish.

15. The template status changes to Published. It's the latest and Recommended version of the
template.

16. In the navigation pane, select Environment templates to view a list of your environment
templates and details.

The procedure for creating a service template and template sync configuration is similar.

AWS CLI
Create a template and template sync configuration using the AWS CLI.

1. Create a template. In this example, an environment template is created.

Run the following command.

$ aws proton create-environment-template \
--name "env-template"

The response is as follows.

"environmentTemplate": {
"arn": "arn:aws:proton:us-east-1:123456789012:environment-template/env-
template",
"createdAt": "2021-11-07T23:32:43.045000+00:00",
"displayName": "env-template",
"lastModifiedAt": "2021-11-07T23:32:43.045000+00:00",
"name": "env-template",

Create 185

AWS Proton User Guide
"status": "DRAFT",
"templateName": "env-template"
}
}
2. Create your template sync configuration with AWS CLI by providing the following:

« The template that you want to sync to. After you have created the template sync
configuration, you can still create new versions from it manually in the console or with
the AWS CLI.

o The template name.

« The template type.

« The linked repository that you want to sync from.
» The linked repository provider.

» The branch where the template bundle is located.

« (Optional) The path to the directory containing your template bundle. By default, AWS
Proton looks for the first directory that matches your template name.

Run the following command.

$ aws proton create-template-sync-config \
--template-name "env-template" \
--template-type "ENVIRONMENT" \
--repository-name "myrepos/templates" \
--repository-provider "GITHUB" \
--branch "main" \
--subdirectory "env-template/"

The response is as follows.

"templateSyncConfigDetails": {
"branch": "main",
"repositoryName": "myrepos/templates",
"repositoryProvider": "GITHUB",
"subdirectory": "templates",
"templateName": "env-template",
"templateType": "ENVIRONMENT"

Create

186

AWS Proton User Guide

3. To publish your template version, see Register and publish templates.

Syncing service templates

The preceding examples show how you can sync environment templates. Service templates

are similar. To sync service templates you add an additional file named . template-
registration.yaml to each major version directory in your template bundle. This file contains
additional details that AWS Proton needs when it creates a service template version for you
following a commit. When you explicitly create a service template version using the AWS Proton
console or API, you provide these details as inputs, and this file replaces these inputs for template

sync.
./templates/ # subdirectory (optional)
/templates/my-svc-template/ # service template name
/templates/my-svc-template/vl/ # service template version
/templates/my-svc-template/vl/.template-registration.yaml # service template version
properties
/templates/my-svc-template/vl/instance_infrastructure/ # template bundle

/templates/my-svc-template/vl/schema/

The .template-registration.yaml file contains the following details:

« Compatible environments [required] — Environments based on these environment templates
and major versions are compatible with services based on this service template version.

» Supported component sources [optional] - Components using these sources are compatible
with services based on this service template version. If not specified, components can't be
attached to these services. For more information about components, see Components.

The file's YAML syntax is as follows:

compatible_environments:

- env-templ-name:major-version
supported_component_sources:

- DIRECTLY_DEFINED

Create 187

AWS Proton User Guide

Specify one or more environment template / major version combinations. Specifying
supported_component_sources is optional, and the only supported value is
DIRECTLY_DEFINED.

Example .template-registration.yaml

In this example, the service template version is compatible with major versions 1 and 2 of

the my-env-template environment template. It's also compatible with the major versions

1 and 3 of the another-env-template environment template. The file doesn't specify
supported_component_sources, so components can't be attached to services based on this
service template version.

compatible_environments:
- my-env-template:1
- my-env-template:2
- another-env-template:1
- another-env-template:3

(® Note

Previously, AWS Proton defined a different file, . compatible-envs, for specifying
compatible environments. AWS Proton still supports that file and its format for backward
compatibility. We don't recommend using it anymore, because it isn't extensible and can't
support newer features like components.

View template sync configuration details
View template sync configuration detail data using the console or CLI.
AWS Management Console

Use the console to view template sync configuration details.

1. In the navigation pane, choose (Environment or Service) templates.

2. To view detail data, choose the name of a template that you created a template sync
configuration for.

3. Inthe detail page for the template, select the Sync tab to view the template sync
configuration detail data.

View

188

AWS Proton User Guide

AWS CLI
Use the AWS CLI to view a synced template.

Run the following command.

$ aws proton get-template-sync-config \
--template-name "svc-template" \
--template-type "SERVICE"

The response is as follows.

"templateSyncConfigDetails": {
"branch": "main",
"repositoryProvider": "GITHUB",
"repositoryName": "myrepos/myrepo",
"subdirectory": "svc-template",
"templateName": "svc-template",
"templateType": "SERVICE"

Use the AWS CLI to get template sync status.
For template-version, enter the template major version.

Run the following command.

$ aws proton get-template-sync-status \
--template-name "env-template" \
--template-type "ENVIRONMENT" \
--template-version "1"

Edit a template sync configuration

You can edit any of the template sync configuration parameters except template-name and
template-type.

Learn to edit a template sync configuration using the console or CLI.

Edit 189

AWS Proton User Guide

AWS Management Console
Edit a template sync configuration branch using the console.
In the list of templates.

1. Inthe AWS Proton console, choose (Environment or Service) Templates.

2. In the list of templates, choose the name of the template with the template sync
configuration that you want to edit.

In the template detail page, choose the Template sync tab.
4. In the Template sync details section, choose Edit.

In the Edit page, in the Source code repository section, for Branch, select a branch, and
then choose Save configuration.

AWS CLI

The following example command and response shows how you can edit a template sync
configuration branch using the CLI.

Run the following command.

$ aws proton update-template-sync-config \
--template-name "env-template" \
--template-type "ENVIRONMENT" \
--repository-provider "GITHUB" \
--repository-name "myrepos/templates" \
--branch "fargate" \
--subdirectory "env-template"

The response is as follows.

"templateSyncConfigDetails": {
"branch": "fargate",
"repositoryProvider": "GITHUB",
"repositoryName": "myrepos/myrepo",
"subdirectory": "templates",
"templateName": "env-template",
"templateType": "ENVIRONMENT"

Edit 190

https://console.aws.amazon.com/proton/

AWS Proton User Guide

}

You can similarly use the AWS CLI to update synced service templates.

Delete a template sync configuration
Delete a template sync configuration using the console or CLI.
AWS Management Console

Delete a template sync configuration using the console.

1. In the template details page, choose the Sync tab.

2. In the Sync details section, choose Disconnect.

AWS CLI

The following example commands and responses show how to use the AWS CLI to delete
synced template configurations.

Run the following command.

$ aws proton delete-template-sync-config \
--template-name "env-template" \
--template-type "ENVIRONMENT"

The response is as follows.

{

"templateSyncConfig": {
"templateName": "env-template",
"templateType": "ENVIRONMENT"

}

}

Service sync configurations

With service sync, you can configure and deploy your AWS Proton services using Git. You can
use service sync to manage initial deployments and updates to your AWS Proton service with a

Delete 191

AWS Proton User Guide

configuration defined in a Git repository. Through Git, you can use features like version tracking
and pull requests to configure, manage, and deploy your services. Service sync combines AWS
Proton and Git to help you provision standardized infrastructure that is defined and managed
through AWS Proton templates. It manages service definitions in your Git repository and reduces
tool switching. Compared to using Git alone, the standardization of templates and deployment in
AWS Proton helps you spend less time managing your infrastructure. AWS Proton also provides
higher transparency and auditability for both developers and platform teams.

AWS Proton OPS file

The proton-ops file defines where AWS Proton finds the spec file that's used to update your
service instance. It also defines what order to update service instances in and when to promote
changes from one instance to another.

The proton-ops file supports syncing a service instance using the spec file, or multiple spec files,
found in your linked repository. You can do this by defining a sync block in the proton-ops file,
like in the following example.

Example ./configuration/proton-ops.yaml:

sync:
services:
frontend-svc:
alpha:
branch: dev
spec: ./frontend-svc/test/frontend-spec.yaml
beta:
branch: dev
spec: ./frontend-svc/test/frontend-spec.yaml
gamma:
branch: pre-prod
spec: ./frontend-svc/pre-prod/frontend-spec.yaml
prod-one:
branch: prod
spec: ./frontend-svc/prod/frontend-spec-second.yaml
prod-two:
branch: prod
spec: ./frontend-svc/prod/frontend-spec-second.yaml
prod-three:
branch: prod
spec: ./frontend-svc/prod/frontend-spec-second.yaml

AWS Proton OPS file 192

AWS Proton User Guide

In the preceding example, frontend-svc is the service name, and alpha, beta, gamma, prod-
one, prod-two, and prod-three are the instances.

The spec file can be all of the instances or a subset of the instances that are defined within the
proton-ops file. However, at minimum, it must have the instance defined within the branch and
the spec it's syncing from. If instances aren't defined in the proton-ops file, with the specific
branch and spec file location, service sync won't create or update those instances.

The following examples show what the spec files look like. Remember, the proton-ops file is
synced from these spec files.

Example ./frontend-svc/test/frontend-spec.yaml:

proton: "ServiceSpec"
instances:
- name: "alpha"
environment: "frontend-env"
spec:
port: 80
desired_count: 1
task_size: "x-small"
image: "public.ecr.aws/z9d2n7el/nginx:1.21.0"
- name: "beta"
environment: "frontend-env"
spec:
port: 80
desired_count: 1
task_size: "x-small"
image: "public.ecr.aws/z9d2n7el/nginx:1.21.0"

Example ./frontend-svc/pre-prod/frontend-spec.yaml:

proton: "ServiceSpec"
instances:
- name: '"gamma"
environment: "frontend-env"
spec:
port: 80
desired_count: 1
task_size: "x-small"
image: "public.ecr.aws/z9d2n7el/nginx:1.21.0"

AWS Proton OPS file 193

AWS Proton User Guide

Example . /frontend-svc/prod/frontend-spec-second.yaml:

proton: "ServiceSpec"
instances:
- name: "prod-one"
environment: "frontend-env"
spec:
port: 80
desired_count: 1
task_size: "x-small"
image: "public.ecr.aws/z9d2n7el/nginx:1.21.0"
- name: "prod-two"
environment: "frontend-env"
spec:
port: 80
desired_count: 1
task_size: "x-small"
image: "public.ecr.aws/z9d2n7el/nginx:1.21.0"
- name: "prod-three"
environment: "frontend-env"
spec:
port: 80
desired_count: 1
task_size: "x-small"
image: "public.ecr.aws/z9d2n7el/nginx:1.21.0"

If an instance doesn't sync, and there's a continuing issue when trying to sync it, calling the
GetServicelInstanceSyncStatus APl may help in resolving the issue.

(® Note

Customers using service sync are still restricted by AWS Proton limits.

Blockers

By syncing your service using AWS Proton service sync, you can update your service spec and create
and update service instances from your Git repository. However, there may be moments where you
need to update a service or instance manually through the AWS Management Console or AWS CLI.

AWS Proton helps avoid overwriting any manual changes you make through the AWS Management
Console or AWS CLI, such as updating a service instance or deleting a service instance. To achieve

AWS Proton OPS file 194

https://docs.aws.amazon.com/proton/latest/APIReference/API_GetServiceInstanceSyncStatus.html

AWS Proton User Guide

this, AWS Proton automatically creates a service sync blocker by disabling service sync when it
detects a manual change.

To get all the blockers associated with a service, you must do the following in order for each
servicelnstance associated to the service:

e Call the getServiceSyncBlockerSummary API with only the serviceName.

o Call the getServiceSyncBlockerSummary API with the serviceName and
servicelInstanceName.

This returns a list of the most recent blockers and the status associated with them. If any blockers
are marked ACTIVE, you must resolve them by calling the UpdateServiceSyncBlocker APl with
the blockerId and resolvedReason for each one.

If you manually update or create a service instance, AWS Proton creates a service sync blocker on
the service instance. AWS Proton continues to sync all other service instances, but disables the
syncing of this service instance until the blocker is resolved. If you delete a service instance from a
service, AWS Proton creates a service sync blocker on the service. This prevents AWS Proton from
syncing any of the service instances until the blocker has been resolved.

After you have all the active blockers, you must resolve them by calling the
UpdateServiceSyncBlocker APl with the blockerId and resolvedReason for each of the
active blockers.

Using the AWS Management Console, you can determine if a service sync is disabled by navigating
to AWS Proton and choosing the Service Sync tab. If the service or service instances are blocked,
an Enable button appears. To enable service sync, choose Enable.

Topics

Create a service sync configuration

View configuration details for a service sync

Edit a service sync configuration

Delete a service sync configuration

Create a service sync configuration

Create 195

AWS Proton User Guide

You can create a service sync configuration using the console or AWS CLI.

AWS Management Console

1.

2
3.
4

10.

11.

12.
13.

14.

15.
16.

On the Choose a service template page, select a template and choose Configure.
On the Configure service page, in the Service details section, enter a new Service name.
(Optional) Enter a description for the service.

In the Application source code repository section, choose Choose a linked Git repository
to select a repository you've already linked with AWS Proton. If you don't already have a
linked repository, choose Link another Git repository and follow the instructions in Create
a link to your repository.

For Repository, choose the name of your source code repository from the list.
For Branch, choose the name of the repository branch for your source code from the list.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Choose Next.

On the Configure service instances page, in the Service definition source section, select
Sync your service from Git.

In the Service definition files section, if you want AWS Proton to create your proton-ops

file, select I want AWS Proton to create the files. With this option, AWS Proton creates the
spec and proton-ops file in the locations you specify. Select | am providing my own files
to create your own OPS file.

In the Service definition repository section, choose Choose a linked Git repository to
select a repository you've already linked with AWS Proton.

For Repository name, choose the name of your source code repository from the list.

For proton-ops file branch, choose the name of your branch from the list where AWS
Proton will put your OPS and spec file.

In the Service instances section, each field is automatically filled based on the values in the
proton-ops file.

Choose Next and review your inputs.

Choose Create.

Create

196

https://docs.aws.amazon.com/proton/latest/userguide/ag-create-repo.html
https://docs.aws.amazon.com/proton/latest/userguide/ag-create-repo.html

AWS Proton User Guide

AWS CLI
Create a service sync configuration using the AWS CLI

e Run the following command.

$ aws proton create-service-sync-config \
--resource "service-arn" \
--repository-provider "GITHUB" \
--repository "example/proton-sync-service" \
--ops-file-branch "main" \
--proton-ops-file "./configuration/custom-proton-ops.yaml" (optional)

The response is as follows.

"serviceSyncConfig": {
"branch": "main",
"filePath": "./configuration/custom-proton-ops.yaml",
"repositoryName": "example/proton-sync-service",
"repositoryProvider": "GITHUB",
"serviceName": "service name"

View configuration details for a service sync

You can view the configuration details data for a service sync using the console or AWS CLI.
AWS Management Console
Use the console to view configuration details for a service sync

1. In the navigation pane, choose Services.

2. To view detail data, choose the name of a service that you created a service sync
configuration for.

3. Inthe detail page for the service, select the Service sync tab to view the configuration
detail data for the service sync.

View 197

AWS Proton User Guide

AWS CLI
Use the AWS CLI to get a synced service.

Run the following command.

$ aws proton get-service-sync-config \
--service-name "service name"

The response is as follows.

"serviceSyncConfig": {
"branch": "main",
"filePath": "./configuration/custom-proton-ops.yaml",
"repositoryName": "example/proton-sync-service",
"repositoryProvider": "GITHUB",
"serviceName": "service name"

Use the AWS CLI to get the service sync status.

Run the following command.

$ aws proton get-service-sync-status \
--service-name "service name"

Edit a service sync configuration

You can edit a service sync configuration using the console or AWS CLI.

AWS Management Console
Edit a service sync configuration using the console.

1. In the navigation pane, choose Services.
2. To view detail data, choose the name of a service that you created a service sync

configuration for.

Edit 198

AWS Proton User Guide

3. On the service detail page, choose the Service sync tab.
4. Inthe Service sync section, choose Edit.

5. On the Edit page, update the information you want to edit and then choose Save.

AWS CLI

The following example command and response shows how you can edit a service sync
configuration using the AWS CLI.

Run the following command.

$ aws proton update-service-sync-config \
--service-name "service name" \
--repository-provider "GITHUB" \
--repositoxry "example/proton-sync-service" \
--ops-file-branch "main" \
--ops-file "./configuration/custom-proton-ops.yaml"

The response is as follows.

"serviceSyncConfig": {
"branch": "main",
"filePath": "./configuration/custom-proton-ops.yaml",
"repositoryName": "example/proton-sync-service",
"repositoryProvider": "GITHUB",
"serviceName": "service name"

Delete a service sync configuration

You can delete a service sync configuration using the console or AWS CLI.
AWS Management Console
Delete a service sync configuration using the console

1. On the service details page, choose the Service sync tab.

Delete 199

AWS Proton User Guide

2. Inthe Service sync details section, choose Disconnect to disconnect your repository. After
your repository is disconnected, we no longer sync the service from that repository.

AWS CLI

The following example commands and responses show how to use the AWS CLI to delete
service synced configurations.

Run the following command.

$ aws proton delete-service-sync-config \
--service-name "service name"

The response is as follows.

{
"serviceSyncConfig": {
"branch": "main",
"filePath": "./configuration/custom-proton-ops.yaml",
"repositoryName": "example/proton-sync-service",
"repositoryProvider": "GITHUB",
"serviceName": "service name"
}
}
(® Note

Service sync doesn't delete service instances. It only deletes the configuration.

Delete 200

AWS Proton User Guide

AWS Proton environments

For AWS Proton, an environment represents the set of shared resources and policies that AWS
Proton services are deployed into. They can contain any resources that are expected to be shared
across AWS Proton service instances. These resources can include VPCs, clusters, and shared load
balancers or APl Gateways. An AWS Proton environment must be created before a service can be
deployed to it.

This section describes how to manage environments using create, view, update, and delete
operations. For >additional information, see the The AWS Proton Service API Reference.

Topics
e |IAM Roles

e Create an environment

+ View environment data

« Update an environment

« Delete an environment

« Environment account connections

» Customer-managed environments

» CodeBuild provisioning role creation

IAM Roles

With AWS Proton, you supply the IAM roles and AWS KMS keys for the AWS resources that you own
and manage. These are later applied to and used by resources owned and managed by developers.
You create an IAM role to control your developer team's access to the AWS Proton API.

AWS Proton service role

When you create a new environment, you provide a related IAM service role. The role contains
all permissions that are necessary to update all provisioned infrastructure defined in both the
environment templates and the service templates. For role examples, see AWS Proton service

role for provisioning using AWS CloudFormation. If you use environment account connections

and environment accounts, you create the role in a selected environment account. For more

IAM Roles 201

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html

AWS Proton User Guide

information, see Create an environment in one account and provision in another account and

Environment account connections.

How you provide this service role, and who assumes the role, depends on your environment's
provisioning method.

« AWS-managed provisioning — You provide the role to AWS Proton, either directly while creating
an environment, or indirectly through account connections. AWS Proton assumes the role in the
relevant account to provision environment and service infrastructure.

« Self-managed provisioning — It's your responsibility to configure your provisioning automation
to assume an appropriate role using appropriate credentials when a pull request (PR) triggers a
provisioning action. For an example GitHub Action that assumes a role, see Assuming a Role in
the "Configure AWS Credentials" Action For GitHub Actions documentation.

For more information about provisioning methods, see the section called “Provisioning methods".

Create an environment

Learn to create AWS Proton environments.

You can create an AWS Proton environment in one of two ways:

» Create, manage, and provision a standard environment by using a standard environment
template. AWS Proton provisions infrastructure for your environment.

« Connect AWS Proton to customer-managed infrastructure by using a customer-managed
environment template. You provision your own shared resources outside of AWS Proton, and then
you provide provisioning outputs that AWS Proton can use.

You can choose one of several provisioning approaches when you create an environment.

« AWS managed provisioning — Create, manage, and provision an environment in a single account.
AWS Proton provisions your environment.

This method only supports CloudFormation infrastructure code (laC) templates.

« AWS managed provisioning to another account — In a single management account, create and
manage an environment that's provisioned in another account with environment account
connections. AWS Proton provisions your environment in the other account. For more

Create 202

https://github.com/aws-actions/configure-aws-credentials#assuming-a-role

AWS Proton User Guide

information, see Create an environment in one account and provision in another account and

Environment account connections.

This method only supports CloudFormation laC templates.

» Self-managed provisioning — AWS Proton submits provisioning pull requests to a linked repository
with your own provisioning infrastructure.

This method only supports Terraform laC templates.

» CodeBuild provisioning — AWS Proton uses AWS CodeBuild to run shell commands that you
provide. Your commands can read inputs that AWS Proton provides, and are responsible for
provisioning or deprovisioning infrastructure and generating output values. A template bundle
for this method includes your commands in a manifest file and any programs, scripts, or other
files that these commands may need.

As an example to using CodeBuild provisioning, you can include code that uses the AWS Cloud
Development Kit (AWS CDK) to provision AWS resources, and a manifest that installs the CDK
and runs your CDK code.

For more information, see the section called “CodeBuild bundle”.

® Note

You can use CodeBuild provisioning with environments and services. At this time you
can't provision components this way.

With AWS managed provisioning (both in the same account and to another account), AWS Proton
makes direct calls to provision your resources.

With self-managed provisioning, AWS Proton makes pull requests to provide compiled IaC files that
your laC engine uses to provision resources.

For more information, see the section called “Provisioning methods”, the section called “Template

bundles”, and the section called “Environment schema requirements”.

Topics

» Create and provision a standard environment in the same account

« Create an environment in one account and provision in another account

Create 203

AWS Proton User Guide

» Create and provision an environment using self-managed provisioning

Create and provision a standard environment in the same account

Use the console or AWS CLI to create and provision an environment in a single account.
Provisioning is managed by AWS.

AWS Management Console

Use the console to create and provision an environment in a single account

1.

2
3.
4

b

10.

11.

12.

13.
14.

In the AWS Proton console, choose Environments.

Choose Create environment.
In the Choose an environment template page, select a template and choose Configure.

In the Configure environment page, in the Provisioning section, choose AWS managed
provisioning.

In the Deployment account section, choose This AWS account.

In the Configure environment page, in the Environment settings section, enter an
Environment name.

(Optional) Enter a description for the environment.

In the Environment roles section, select the AWS Proton service role that you created as
part of Setting up AWS Proton service roles.

(Optional) In the Component role section, select a service role that enables directly defined
components to run in the environment and scopes down the resources that they can
provision. For more information, see Components.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Choose Next.

In the Configure environment custom settings page, you must enter values for the
required parameters. You can enter values for the optional parameters or use the
defaults when given.

Choose Next and review your inputs.

Choose Create.

Create and provision in the same account 204

https://console.aws.amazon.com/proton/

AWS Proton User Guide

View the environment details and status, as well as the AWS managed tags and customer
managed tags for your environment.

15. In the navigation pane, choose Environments.

A new page displays a list of your environments along with the status and other
environment details.

AWS CLI
Use the AWS CLI to create and provision an environment in a single account.

To create an environment, you specify the AWS Proton service role ARN, path to your spec file,
environment name, environment template ARN, the major and minor versions, and description

(optional).

The next examples shows a YAML formatted spec file that specifies values for two inputs that
are defined in the environment template schema file. You can use the get-environment-
template-minor-version command to view the environment template schema.

proton: EnvironmentSpec

spec:
my_sample_input: "the first"
my_other_sample_input: "the second"

Create an environment by running the following command.

$ aws proton create-environment \
--name "MySimpleEnv" \
--template-name simple-env \
--template-major-version 1 \
--proton-service-role-arn "arn:aws:iam::123456789012:xo0le/AWSProtonServiceRole"

--spec "file://env-spec.yaml"

Response:

Create and provision in the same account 205

AWS Proton User Guide

"environment": {
"arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",
"createdAt": "2020-11-11T723:03:05.405000+00:00",
"deploymentStatus": "IN_PROGRESS",
"lastDeploymentAttemptedAt": "2020-11-11T23:03:05.405000+00:00",

"name": "MySimpleEnv",
"protonServiceRoleArn": "arn:aws:iam::123456789012:role/ProtonServiceRole",
"templateName": "simple-env"

After you create a new environment, you can view a list of AWS and customer managed tags as
shown in the following example command. AWS Proton automatically generates AWS managed
tags for you. You can also modify and create customer managed tags using the AWS CLI. For
more information, see AWS Proton resources and tagging.

Command:

$ aws proton list-tags-for-resource \
--resource-arn "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv"

Create an environment in one account and provision in another account

Use the console or AWS CLI to create a standard environment in a management account that
provisions environment infrastructure in another account. Provisioning is managed by AWS.

Before using the console or CLI, complete the following steps.

1. Identify the AWS account IDs for the management and environment account, and copy them
for later use.

2. Inthe environment account, create an AWS Proton service role with minimum permissions for
the environment to create. For more information, see AWS Proton service role for provisioning

using AWS CloudFormation.

Create in one account and provision in another 206

AWS Proton User Guide

AWS Management Console

Use the console create an environment in one account and provision in another.

1.

In the environment account, create an environment account connection, and use it to
send a request to connect to the management account.

a. In AWS Proton console, choose Environment account connections in the navigation

pane.

b. Inthe Environment account connections page, choose Request to connect.

® Note

Verify that the account ID that's listed in the Environment account connection
page heading matches your pre-identified environment account ID.

c. Inthe Request to connect page, in the Environment role section, select Existing
service role and the name of the service role that you created for the environment.

d. Inthe Connect to management account section, enter the Management account ID
and an Environment name for your AWS Proton environment. Copy the name for later
use.

e. Choose Request to connect at the lower right corner of the page.

f. Your request shows as pending in the Environment connections sent to a
management account table and a modal shows how to accept the request from the
management account.

In the management account, accept a request to connect from the environment account.

a. Login to your management account and choose Environment account connections in
the AWS Proton console.

b. Inthe Environment account connections page, in the Environment account
connection requests table, select the environment account connection with the
environment account ID that matches your pre-identified environment account ID.

® Note

Verify that the account ID that's listed in the Environment account connection
page heading matches your pre-identified management account ID.

Create in one account and provision in another 207

https://console.aws.amazon.com/proton/

AWS Proton User Guide

c. Choose Accept. The status changes from PENDING to CONNECTED.

3. Inthe management account, create an environment.

In the navigation pane, choose Environment templates.

a
b. Inthe Environment templates page, choose Create environment template.

n

In the Choose an environment template page, choose an environment template.

d. Inthe Configure environment page, in the Provisioning section, choose AWS
managed provisioning.

e. Inthe Deployment account section, choose Another AWS account;.

f. In the Environment details section, select your Environment account connection and
Environment name.

g. Choose Next.
h. Fill out the forms and choose Next until you reach the Review and Create page.

i. Review and choose Create environment.

AWS CLI
Use the AWS CLI to create an environment in one account and provision in another.

In the environment account, create an environment account connection and request to connect
by running the following command.

$ aws proton create-environment-account-connection \

--environment-name "simple-env-connected" \

--role-arn "arn:aws:iam::222222222222:ro0le/sexvice-role/env-account-proton-
service-role" \

--management-account-id "111111111111"

Response:

"environmentAccountConnection": {
"arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",
"environmentAccountId": '"222222222222",
"environmentName": "simple-env-connected",
"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:13:50.847000+00:00",

Create in one account and provision in another 208

AWS Proton User Guide

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role",

"status": "PENDING"

In the management account, accept the environment account connection request by running
the following command.

$ aws proton accept-environment-account-connection \
--id "alb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

"environmentAccountConnection": {

"arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": "222222222222",

"environmentName": "simple-env-connected",

"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:15:33.486000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:ro0le/service-role/env-account-proton-
service-role",

"status": "CONNECTED"

View your environment account connection by running the following command.

$ aws proton get-environment-account-connection \
--id "alb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

"environmentAccountConnection": {

Create in one account and provision in another 209

AWS Proton User Guide

arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": '"222222222222",

"environmentName": "simple-env-connected",

"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:15:33.486000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role",

"status": "CONNECTED"

In the management account, create an environment by running the following command.

$ aws proton create-environment \
--name "simple-env-connected" \
--template-name simple-env-template \
--template-major-version "1" \
--template-minor-version "1" \
--spec "file://simple-env-template/specs/original.yaml" \
--environment-account-connection-id "alb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

"environment": {

"arn": "arn:aws:proton:region-id:111111111111:environment/simple-env-
connected",

"createdAt": "2021-04-28T23:02:57.944000+00:00",

"deploymentStatus": "IN_PROGRESS",

"environmentAccountConnectionId": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": '"222222222222",

"lastDeploymentAttemptedAt": "2021-04-28T23:02:57.944000+00:00",

"name": "simple-env-connected",

"templateName": "simple-env-template"

Create in one account and provision in another 210

AWS Proton

User Guide

Create and provision an environment using self-managed provisioning

When you use self-managed provisioning, AWS Proton submits provisioning pull requests to a

linked repository with your own provisioning infrastructure. The pull requests start your own

workflow, which calls AWS services; to provision infrastructure.

Self-managed provisioning considerations:

« Before you create an environment, set up a repository resource directory for self-managed

provisioning. For more information, see AWS Proton infrastructure as code files.

« After you create the environment, AWS Proton waits to receive asynchronous notifications
regarding the status of your infrastructure provisioning. Your provisioning code must use the
AWS Proton NotifyResourceStateChange API to send these asynchronous notifications to
AWS Proton.

You can use self-managed provisioning in the console or with the AWS CLI. The following examples

show how you can use self-managed provisioning with Terraform.

AWS Management Console

Use the console to create a Terraform environment using self-managed provisioning.

1.
2.

In the AWS Proton console, choose Environments.

Choose Create environment.

In the Choose an environment template page, select a Terraform template and choose
Configure.

In the Configure environment page, in the Provisioning section, choose Self-managed
provisioning.

In the Provisioning repository details section:

a. If you haven't yet linked your provisioning repository to AWS Proton, choose

New repository, choose one of the repository providers, and then, for CodeStar
connection, choose one of your connections.

(@ Note

If you don't yet have a connection to the relevant repository provider account,
choose Add a new CodeStar connection. Then, create a connection, and then

Self-managed provisioning 211

https://console.aws.amazon.com/proton/

AWS Proton User Guide

11.
12.

13.

14.

choose the refresh button next to the CodeStar connection menu. You should
now be able to choose your new connection in the menu.

If you've already linked your repository to AWS Proton, choose Existing repository.

b. For Repository name, choose a repository. The drop-down menu shows linked
repositories for Existing repository or the list of repositories in the provider account
for New repository.

c. For Branch name, choose one of the repository branches.
In the Environment settings section, enter an Environment name.
(Optional) Enter a description for the environment.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Choose Next.

In the Configure environment custom settings page, you must enter values for the
required parameters. You can enter values for the optional parameters or use the
defaults when given.

Choose Next and review your inputs.

Choose Create to send a pull request.

« If you approve the pull request, the deployment is in progress.
« If you reject the pull request, the environment creation is cancelled.
« If the pull request times out, environment creation isn't complete.

View the environment details and status, as well as the AWS managed tags and customer
managed tags for your environment.

In the navigation pane, choose Environments.

A new page displays a list of your environments along with the status and other
environment details.

AWS CLI

When you create an environment using self-managed provisioning, you add the

provisioningRepository parameter and omit the ProtonServiceRoleArn and

environmentAccountConnectionId parameters.

Self-managed provisioning 212

AWS Proton User Guide

Use the AWS CLI to create a Terraform environment with self-managed provisioning.

1. Create an environment and send a pull request to the repository for review and approval.

The next examples shows a YAML formatted spec file that defines the values for two inputs
based on the environment template schema file. You can use the get-environment-
template-minor-version command to view the environment template schema.

Spec:

proton: EnvironmentSpec
spec:
ssm_parameter_value: "test"

Create an environment by running the following command.

$ aws proton create-environment \
--name "pr-environment" \
--template-name "pr-env-template" \
--template-major-version "1" \
--provisioning-repository="branch=main,name=myrepos/env-
repo,providexr=GITHUB" \
--spec "file://env-spec.yaml"

Response:>

"environment": {

"arn": "arn:aws:proton:region-id:123456789012:environment/pr-
environment",
"createdAt": "2021-11-18T17:06:58.679000+00:00",
"deploymentStatus": "IN_PROGRESS",
"lastDeploymentAttemptedAt": "2021-11-18T17:06:58.679000+00:00",
"name": "pr-environment",
"provisioningRepository": {
"arn": "arn:aws:proton:region-id:123456789012:repository/
github:myrepos/env-repo",
"branch": "main",
"name": "myrepos/env-repo",
"provider": "GITHUB"

+

Self-managed provisioning 213

AWS Proton User Guide

"templateName": "pr-env-template"

}
2. Review the request.

« If you approve the request, provisioning is in progress.
« If you reject the request, the environment creation is cancelled.
« If the pull request times out, environment creation isn't complete.

3. Asynchronously provide provisioning status to AWS Proton. The following example notifies
AWS Proton of a successful provisioning.

$ aws proton notify-resource-deployment-status-change \
--resource-arn "arn:aws:proton:region-id:123456789012:environment/pr-

environment" \
--status "SUCCEEDED"

View environment data

You can view environment detail data using either the AWS Proton console or the AWS CLI.

AWS Management Console

You can view lists of environments with details and individual environments with detail data
by using the AWS Proton console.

1. To view a list of your environments, choose Environments in the navigation pane.

2. To view detail data, choose the name of an environment.

View your environment detail data.

AWS CLI
Use the AWS CLI get or list environment details.

Run the following command:

$ aws proton get-environment \
--name "MySimpleEnv"

View 214

https://console.aws.amazon.com/proton/

AWS Proton User Guide

Response:

"environment": {
"arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",
"createdAt": "2020-11-11T23:03:05.405000+00:00",
"deploymentStatus": "SUCCEEDED",
"lastDeploymentAttemptedAt": "2020-11-11T23:03:05.405000+00:00",
"lastDeploymentSucceededAt": "2020-11-11T23:03:05.405000+00:00",

"name": "MySimpleEnv",

"protonServiceRoleArn": "arn:aws:iam::123456789012:role/ProtonServiceRole",

"spec": "proton: EnvironmentSpec\nspec:\n my_sample_input: \"the first\"\n
my_other_sample_input: \"the second\"\n",

"templateMajorVersion": "1",

"templateMinorVersion": "Q@",

"templateName": "simple-env"

Update an environment

If the AWS Proton environment is associated with an environment account connection, don't
update or include the protonServiceRoleArn parameter to update or connect to an
environment account connection.

You can only update to a new environment account connection if both of the following is true:

« The environment account connection was created in the same environment account that the
current environment account connection was created in.

« >The environment account connection is associated with the current environment.

If the environment isn’t associated with an environment account connection, don’t update or
include the environmentAccountConnectionId parameter.

You can update either the environmentAccountConnectionId or protonServiceRoleArn
parameter and value. You can’t update both.

If your environment uses self-managed provisioning, don't update the provisioning-
repository parameter and omit the environmentAccountConnectionId and
protonServiceRoleArn parameters.

Update 215

AWS Proton User Guide

There are four modes for updating an environment as described in the following list. When using
the AWS CLI, the deployment-type field defines the mode. When using the console, these modes
map to the Edit, Update, Update minor, and Update major actions that drop down from Actions.

NONE

In this mode, a deployment doesn't occur. Only the requested metadata parameters are
updated.

CURRENT_VERSION

In this mode, the environment is deployed and updated with the new spec that you provide.
Only requested parameters are updated. Don’t include minor or major version parameters when
you use this deployment-type.

MINOR_VERSION

In this mode, the environment is deployed and updated with the published, recommended
(latest) minor version of the current major version in use by default. You can also specify a
different minor version of the current major version in use.

MAJOR_VERSION

In this mode, the environment is deployed and updated with the published, recommended
(latest) major and minor version of the current template by default. You can also specify

a different major version that is higher than the major version in use and a minor version
(optional).

Topics

« Update an AWS managed provisioning environment

» Update a self-managed provisioning environment

» Cancel an environment deployment in progress

Update an AWS managed provisioning environment

Standard provisioning is only supported by environments that provision with AWS CloudFormation.

Update an AWS managed provisioning environment 216

AWS Proton User Guide

Use the console or AWS CLI to update your environment.
AWS Management Console
Update an environment using the console as shown in the following steps.
1. Choose 1 of the following 2 steps.
a. In the list of environments.

i. Inthe AWS Proton console, choose Environments.

ii. Inthe list of environments, choose the radio button to the left of the environment
that you want to update.

b. Inthe console environment detail page.

i. Inthe AWS Proton console, choose Environments.

ii. Inthe list of environments, choose the name of the environment that you want to
update.

2. Choose 1 of the next 4 steps to update your environment.
a. To make an edit that doesn't require environment deployment.
i. For example, to change a description.

Choose Edit.
ii. Fill out the form and choose Next.
iii. Review your edit and choose Update.

b. To make updates to metadata inputs only.

i. Choose Actions and then Update.

ii. Fill out the form and choose Edit.

iii. Fill out the forms and choose Next until you reach the Review page.
iv. Review your updates and choose Update.

c. To make an update to a new minor version of its environment template.

i. Choose Actions and then Update minor.
ii. Fill out the form and choose Next.

iii. Fill out the forms and choose Next until you reach the Review page.

Update an AWS managed provisioning environment 217

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/

AWS Proton User Guide

iv. Review your updates and choose Update.

d. To make an update to a new major version of its environment template.

i. Choose Actions and then Update major.
ii. Fill out the form and choose Next.
iii. Fill out the forms and choose Next until you reach the Review page.

iv. Review your updates and choose Update.

AWS CLI
Use the AWS Proton AWS CLI to update an environment to a new minor version.

Run the following command to update your environment:

$ aws proton update-environment \

--name "MySimpleEnv" \

--deployment-type "MINOR_VERSION" \

--template-major-version "1" \

--template-minor-version "1" \

--proton-service-role-arn arn:aws:iam::123456789012:role/service-
role/ProtonServiceRole \

--spec "file:///spec.yaml"

Response:

"environment": {

arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",
"createdAt": "2021-04-02T17:29:55.472000+00:00",

"deploymentStatus": "IN_PROGRESS",

"lastDeploymentAttemptedAt": "2021-04-02T17:48:26.307000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T17:29:55.472000+00:00",
"name": "MySimpleEnv",
"protonServiceRoleArn":

arn:aws:iam::123456789012:role/service-role/

ProtonServiceRole",
"templateMajorVersion": "1",
"templateMinorVersion": "Q@",
"templateName": "simple-env"

}

}

Update an AWS managed provisioning environment 218

AWS Proton User Guide

Run the following command to get and confirm the status:

$ aws proton get-environment \
--name "MySimpleEnv"

Response:

"environment": {
arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",

"createdAt": "2021-04-02T17:29:55.472000+00:00",
"deploymentStatus": "SUCCEEDED",

"environmentName": "MySimpleEnv",

"lastDeploymentAttemptedAt": "2021-04-02T17:48:26.307000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00",

"protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole",

"spec": "proton: EnvironmentSpec\n\nspec:\n my_sample_input: hello\n
my_other_sample_input: everybody\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "simple-env"

Update a self-managed provisioning environment
Self-managed provisioning is only supported by environments that provision with Terraform.

Use the console or AWS CLI to update your environment.
AWS Management Console
Update an environment using the console as shown in the following steps.
1. Choose 1 of the following 2 steps.
a. In the list of environments.

i. Inthe AWS Proton console, choose Environments.

Update a self-managed provisioning environment 219

https://console.aws.amazon.com/proton/

AWS Proton

User Guide

In the list of environments, choose the radio button to the left of the environment

template that you want to update.

b. Inthe console environment detail page.

In the AWS Proton console, choose Environments.

In the list of environments, choose the name of the environment that you want to

update.

2. Choose 1 of the next 4 steps to update your environment.

a. To make an edit that doesn't require environment deployment.

For example, to change a description.

Choose Edit.
Fill out the form and choose Next.

Review your edit and choose Update.

b. To make updates to metadata inputs only.

c. To make an update to a new minor version of its environment template.

d. To make an update to a new major version of its environment template.

Choose Actions and then Update.
Fill out the form and choose Edit.
Fill out the forms and choose Next until you reach the Review page.

Review your updates and choose Update.

Choose Actions and then Update minor.
Fill out the form and choose Next.
Fill out the forms and choose Next until you reach the Review page.

Review your updates and choose Update.

Choose Actions and then Update major.
Fill out the form and choose Next.
Fill out the forms and choose Next until you reach the Review page.

Review your updates and choose Update.

Update a self-managed provisioning environment

220

https://console.aws.amazon.com/proton/

AWS Proton User Guide

AWS CLI

Use the AWS CLI to update a Terraform environment to a new minor version with self-
managed provisioning.

1. Run the following command to update your environment:

$ aws proton update-environment \

--name "pr-environment" \

--deployment-type "MINOR_VERSION" \

--template-major-version "1" \

--template-minor-version "1" \

--provisioning-repository "branch=main,name=myrepos/env-
repo,providex=GITHUB" \

--spec "file://env-spec-mod.yaml"

Response:

"environment": {
" "arn:aws:proton:region-id:123456789012:environment/pr-

arn":
environment",
"createdAt": "2021-11-18T21:09:15.745000+00:00",
"deploymentStatus": "IN_PROGRESS",
"lastDeploymentAttemptedAt": "2021-11-18T21:25:41.998000+00:00",
"lastDeploymentSucceededAt": "2021-11-18T21:09:15.745000+00:00",
"name": "pr-environment",
"provisioningRepository": {
" "arn:aws:proton:region-id:123456789012:repository/
github:myrepos/env-repo",

arn :

"branch": "main",
"name": "myrepos/env-repo",
"provider": "GITHUB"
b
"templateMajorVersion": "1",
"templateMinorVersion": "Q",
"templateName": "pr-env-template"

2. Run the following command to get and confirm the status:

Update a self-managed provisioning environment 221

AWS Proton User Guide

$ aws proton get-environment \
--name "pr-environment"

Response:

"environment": {

"arn": "arn:aws:proton:region-id:123456789012:environment/pr-
environment",

"createdAt": "2021-11-18T21:09:15.745000+00:00",

"deploymentStatus": "SUCCEEDED",

"lastDeploymentAttemptedAt": "2021-11-18T21:25:41.998000+00:00",

"lastDeploymentSucceededAt": "2021-11-18T21:25:41.998000+00:00",

"name": "pr-environment",

"provisioningRepository": {

"arn": "arn:aws:proton:region-id:123456789012:repository/

github:myrepos/env-repo",

"branch": "main",
"name": "myrepos/env-repo",
"provider": "GITHUB"
.
"spec": "proton: EnvironmentSpec\nspec:\n ssm_parameter_value: \'"test
\"\n ssm_another_parameter_value: \"update\"\n",
"templateMajorVersion": "1",
"templateMinorVersion": "1",
"templateName": "pr-env-template"

3. Review the pull request that was sent by AWS Proton.

« If you approve the request, provisioning is in progress.
« If you reject the request, the environment creation is cancelled.
o If the pull request times out, environment creation isn't complete.

4. Provide provisioning status to AWS Proton.

$ aws proton notify-resource-deployment-status-change \

--resource-arn "arn:aws:proton:region-id:123456789012:environment/pr-
environment" \

--status "SUCCEEDED"

Update a self-managed provisioning environment 222

AWS Proton User Guide

Cancel an environment deployment in progress

You can attempt to cancel an environment update deployment if the deploymentStatus is
in IN_PROGRESS. AWS Proton attempts to cancel the deployment. Successful cancellation isn’t
guaranteed.

When you cancel an update deployment, AWS Proton attempts to cancel the deployment as listed
in the following steps.

With AWS-managed provisioning, AWS Proton does the following:

» Sets the deployment state to CANCELLING.

» Stops the deployment in progress and deletes any new resources that were created by the
deployment when IN_PROGRESS.

» Sets the deployment state to CANCELLED.

» Reverts the state of the resource to what it was before the deployment was started.

With self-managed provisioning, AWS Proton does the following:

« Attempts to close the pull request to prevent merging the changes to your repository.

» Sets the deployment state to CANCELLED if the pull request was successfully closed.

For instructions on how to cancel an environment deployment, see CancelEnvironmentDeployment
in the AWS Proton API Reference.

You can use the console or CLI to cancel environments that are in progress.
AWS Management Console

Use the console to cancel an environment update deployment as shown in the following
steps.

1. Inthe AWS Proton console, choose Environments in the navigation pane.

2. Inthe list of environments, choose the name of the environment with the deployment
update that you want to cancel.

3. If your update deployment status is In progress, in the environment detail page, choose
Actions and then Cancel deployment.

Cancel an environment deployment in progress 223

https://docs.aws.amazon.com/proton/latest/APIReference/API_CancelEnvironmentDeployment.html
https://console.aws.amazon.com/proton/

AWS Proton User Guide

4. A modal prompts you to confirm that you want to cancel. Choose Cancel deployment.

5. Your update deployment status is set to Cancelling and then Cancelled to complete the
cancellation.

AWS CLI

Use the AWS Proton AWS CLI to cancel an IN_PROGRESS environment update deployment to
a new minor version 2.

A wait condition is included in the template used for this example so that the cancellation starts
before the update deployment succeeds.

Run the following command to cancel the update:

$ aws proton cancel-environment-deployment \
--environment-name "MySimpleEnv"

Response:

"environment": {
"arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",
"createdAt": "2021-04-02T17:29:55.472000+00:00",
"deploymentStatus": "CANCELLING",
"lastDeploymentAttemptedAt": "2021-04-02T18:15:10.243000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00",

"name": "MySimpleEnv",

"protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole",

"spec": "proton: EnvironmentSpec\n\nspec:\n my_sample_input: hello\n
my_other_sample_input: everybody\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "simple-env"

Run the following command to get and confirm the status:"

$ aws proton get-environment \

Cancel an environment deployment in progress 224

AWS Proton User Guide

--name "MySimpleEnv"

Response:

"environment": {
"arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",
"createdAt": "2021-04-02T17:29:55.472000+00:00",
"deploymentStatus": "CANCELLED",
"deploymentStatusMessage": "User initiated cancellation.",
"lastDeploymentAttemptedAt": "2021-04-02T18:15:10.243000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00",

"name": "MySimpleEnv",

"protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole",

"spec": "proton: EnvironmentSpec\n\nspec:\n my_sample_input: hello\n
my_other_sample_input: everybody\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "simple-env"

Delete an environment

You can delete an AWS Proton environment by using the AWS Proton console or the AWS CLI.

(@ Note

You can't delete an environment that has any associated component. To delete such an

environment, you should first delete all components that are running in the environment.

For more information about components, see Components.

AWS Management Console

Delete an environment using the console as described in the following two options.
In the list of environments.

1. Inthe AWS Proton console, choose Environments.

Delete

225

https://console.aws.amazon.com/proton/

AWS Proton User Guide

2.

In the list of environments, select the radio button to the left of the environment that you
want to delete.

Choose Actions and then Delete.
A modal prompts you to confirm the delete action.

Follow the instructions and choose Yes, delete.

In the environment detail page.

1. Inthe AWS Proton console, choose Environments.
2. In the list of environments, choose the name of the environment that you want to delete.
3. Inthe environment detail page, choose Actions and then Delete.
4. A modal prompts you to confirm that you want to delete.
5. Follow the instructions and choose Yes, delete.
AWS CLI

Use the AWS CLI to delete an environment.

Don't delete an environment if services or service instances are deployed to the environment.

Run the following command:

$ aws proton delete-environment \

--name "MySimpleEnv"

Response:

"environment": {
"arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv",
"createdAt": "2021-04-02T17:29:55.472000+00:00",
"deploymentStatus": "DELETE_IN_PROGRESS",
"lastDeploymentAttemptedAt": "2021-04-02T17:48:26.307000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00",
"name": "MySimpleEnv",
"protonServiceRoleArn": "arn:aws:iam::123456789012:role/ProtonServiceRole",
"templateMajorVersion": "1",

Delete

226

https://console.aws.amazon.com/proton/

AWS Proton User Guide

"templateMinorVersion": "1",
"templateName": "simple-env"

Environment account connections

Overview

Learn how to create and manage an AWS Proton environment in one account and provision its
infrastructure resources in another account. This can help improve visibility and efficiency at scale.

Environment account connections only support standard provisioning with AWS CloudFormation
infrastructure as code.

(@ Note

The information in this topic is relevant to environments that are configured with AWS
managed provisioning. With environments configured with self~-managed provisioning, AWS
Proton doesn't directly provision your infrastructure. Instead, it sends pull requests (PRs)
to your repository for provisioning. It's your responsibility to ensure that your automation
code assumes the right identity and role.

For more information about provisioning methods, see the section called “Provisioning
methods".

Terminology

Account connections 227

AWS Proton User Guide

Region

AWS Proton

Management
account

Administrators g—p» EF;A:ETETET
Environment

¢ accounts
P
o Environment Environment
Administrators g——» Environments account infrastructure

connections

*

’ 1
Developers g——p Services
. J
S S
Administrators Senvice templates
A J

With AWS Proton environment account connections, you can create an AWS Proton environment
from one account and provision its infrastructure in another account.

Management account

The single account where you, as an administrator, create an AWS Proton environment that
provisions infrastructure resources in another environment account.

Environment account

An account that environment infrastructure is provisioned in, when you create an AWS Proton
environment in another account.

Account connections 228

AWS Proton User Guide

Environment account connection

A secure bi-directional connection between a management account and an environment
account. It maintains authorization and permissions as described further in the following
sections.

When you create an environment account connection in an environment account in a specific
Region, only the management accounts in the same Region can see and use the environment
account connection. This means that the AWS Proton environment created in the management
account and the environment infrastructure provisioned in the environment account must be in the
same Region.

Environment account connection considerations

« You need an environment account connection for each environment that you want to provision
in an environment account.

« For information about environment account connection quotas, see AWS Proton quotas.

Tagging

In the environment account, use the console or the AWS CLI to view and manage environment
account connection customer managed tags. AWS managed tags aren't generated for environment
account connections. For more information, see Tagging.

Create an environment in one account and provision its infrastructure
in another account

To create and provision an environment from a single management account, set up an environment
account for an environment that you plan to create.

Start in the environment account and create connection.

In the environment account, create an AWS Proton service role that's scoped down to only the
permissions that are needed for provisioning your environment infrastructure resources. For more
information, see AWS Proton service role for provisioning using AWS CloudFormation.

Then, create and send an environment account connection request to your management
account. When the request is accepted, AWS Proton can use the associated IAM role that permits
environment resource provisioning in the associated environment account.

Create an environment with environment account connections 229

AWS Proton User Guide

In the management account, accept or reject the environment account connection.

In the management account, accept or reject the environment account connection request. You
can’t delete an environment account connection from your management account.

If you accept the request, the AWS Proton can use the associated IAM role that permits resource
provisioning in the associated environment account.

The environment infrastructure resources are provisioned in the associated environment account.
You can only use AWS Proton APIs to access and manage your environment and its infrastructure
resources, from your management account. For more information, see Create an environment in

one account and provision in another account and Update an environment.

After you reject a request, you can’t accept or use the rejected environment account connection.

(® Note

You can’t reject an environment account connection that's connected to an environment.
To reject the environment account connection, you must first delete the associated
environment.

In the environment account, access the provisioned infrastructure resources.

In the environment account, you can view and access the provisioned infrastructure resources. For
example, you can use CloudFormation API actions to monitor and clean up stacks if needed. You
can't use the AWS Proton API actions to access or manage the AWS Proton environment that was
used to provision the infrastructure resources.

In the environment account, you can delete environment account connections that you have
created in the environment account. You can’t accept or reject them. If you delete an environment
account connection that's in use by an AWS Proton environment, AWS Proton won't be able

to manage the environment infrastructure resources until a new environment connection is
accepted for the environment account and named environment. You're responsible for cleaning up
provisioned resources that remain without an environment connection.

Use the console or CLI to manage environment account connections

You can use the console or CLI to create and manage environment account connections.

Manage environment account connections 230

AWS Proton User Guide

AWS Management Console

Use the console to create an environment account connection and send a request to the
management account as shown in the next steps.

1. Decide on a name for the environment that you plan to create in your management
account or choose the name of an existing environment that requires an environment
account connection.

2. In an environment account, in the AWS Proton console, choose Environment account

connections in the navigation pane.

3. In the Environment account connections page, choose Request to connect.

® Note
Verify the account ID that's listed in the Environment account connection page
heading. Make sure that it matches the account ID of the environment account that
you want your named environment to provision in.

4. Inthe Request to connect page:

a. Inthe Connect to management account section, enter the Management account ID
and the Environment name that you entered in step 1.

b. In the Environment role section, choose New service role and AWS Proton
automatically creates a new role for you. Or, select Existing service role and the name
of the service role that you created previously.

® Note

The role that AWS Proton automatically creates for you has broad permissions.
We recommend that you scope down the role to the permissions required to
provision your environment infrastructure resources. For more information, see
AWS Proton service role for provisioning using AWS CloudFormation.

c. (Optional) In the Tags section, choose Add new tag to create a customer managed tag
for your environment account connection.

d. Choose Request to connect.

Manage environment account connections 231

https://console.aws.amazon.com/proton/

AWS Proton User Guide

5. Your request shows as pending in the Environment connections sent to a management
account table and a modal lets you know how to accept the request from the management
account.

Accept or reject an environment account connection request.

1. In a management account, in the AWS Proton console, choose Environment account
connections in the navigation pane.

2. In the Environment account connections page, in the Environment account connection
requests table, choose the environment connection request to accept or reject.

® Note

Verify the account ID that's listed in the Environment account connection page
heading. Make sure that it matches the account ID of the management account
that's associated with the environment account connection to reject. After you
reject this environment account connection, you can’t accept or use the rejected
environment account connection.

3. Choose Reject or Accept.

« If you selected Reject, the status changes from pending to rejected.

« If you selected Accept, the status changes from pending to connected.

Delete an environment account connection.

1. In an environment account, in the AWS Proton console, choose Environment account
connections in the navigation pane.

® Note

Verify the account ID that's listed in the Environment account connection page
heading. Make sure that it matches the account ID of the management account
that's associated with the environment account connection to reject. After you
delete this environment account connection, AWS Proton can’t manage the
environment infrastructure resources in the environment account. It can only

Manage environment account connections 232

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/

AWS Proton User Guide

manage it after a new environment account connection for the environment
account and named environment is accepted by the management account.

2. Inthe Environment account connections page, in the Sent requests to connect to
management account section, choose Delete.

3. A modal prompts you to confirm that you want to delete. Choose Delete.

AWS CLI

Decide on a name for the environment that you plan to create in your management account or
choose the name of an existing environment that requires an environment account connection.

Create an environment account connection in an environment account.

Run the following command:

$ aws proton create-environment-account-connection \

--environment-name "simple-env-connected" \

--role-arn "arn:aws:iam::222222222222:role/sexvice-role/env-account-proton-
service-role" \

--management-account-id "111111111111"

Response:

"environmentAccountConnection": {

arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": "222222222222",

"environmentName": "simple-env-connected",

"id": "alb2c3d4-5678-9@ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:13:50.847000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T723:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:ro0le/service-role/env-account-proton-
service-role",

"status": "PENDING"

Manage environment account connections 233

AWS Proton User Guide

Accept or reject an environment account connection in a management account as shown in
the following command and response.

(® Note

If you reject this environment account connection, you won't be able to accept or use
the rejected environment account connection.

If you specify Reject, the status changes from pending to rejected.
If you specify Accept, the status changes from pending to connected.

Run the following command to accept the environment account connection:

$ aws proton accept-environment-account-connection \
--id "alb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

"environmentAccountConnection": {

"arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": '"222222222222",

"environmentName": "simple-env-connected",

"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:15:33.486000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:ro0le/service-role/env-account-proton-
service-role",

"status": "CONNECTED"

Run the following command to reject the environment account connection:

$ aws proton reject-environment-account-connection \
--id "ailb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Manage environment account connections 234

AWS Proton User Guide

Response:

"environmentAccountConnection": {

"arn": "arn:aws:proton:us-east-1:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"status": "REJECTED",

"environmentAccountId": '"222222222222",

"environmentName": "simple-env-reject",

"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:13:50.847000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role"

}

View an environment account's connections. You can get or list environment account
connections.

Run the following get command:

$ aws proton get-environment-account-connection \
--id "alb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

"environmentAccountConnection": {

"arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": '"222222222222",

"environmentName": "simple-env-connected",

"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:15:33.486000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:ro0le/service-role/env-account-proton-
service-role",

"status": "CONNECTED"

Manage environment account connections 235

AWS Proton User Guide

}

Delete an environment account connection in an environment account.

(@ Note

If you delete this environment account connection, AWS Proton won't be able to
manage the environment infrastructure resources in the environment account until
a new environment connection has been accepted for the environment account and
named environment. You're responsible for cleaning up provisioned resources that
remain without an environment connection.

Run the following command:

$ aws proton delete-environment-account-connection \
--id "alb2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

"environmentAccountConnection": {

arn": "arn:aws:proton:us-east-1:222222222222:environment-account-
connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"environmentAccountId": '"222222222222",

"environmentName": "simple-env-connected",

"id": "alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"lastModifiedAt": "2021-04-28T23:13:50.847000+00:00",

"managementAccountId": "111111111111",

"requestedAt": "2021-04-28T23:13:50.847000+00:00",

"roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role",

"status": "CONNECTED"

Manage environment account connections 236

AWS Proton User Guide

Customer-managed environments

With customer-managed environments, you can use existing infrastructure, like a VPC, that

you already have deployed as your AWS Proton environment. While using customer-managed
environments, you can provision your own shared resources outside of AWS Proton. However,

you can still allow AWS Proton to consume relevant provisioning outputs as inputs for AWS
Proton services when they are deployed. If the outputs can change, AWS Proton is able to accept
updates. AWS Proton is unable to change the environment directly, though, since the provisioning
is managed outside of AWS Proton.

After the environment is created, you're responsible for providing the same outputs to AWS Proton
that would have been created if AWS Proton had made the environment, such as Amazon ECS
cluster names or Amazon VPC IDs.

With this functionality, you can deploy and update AWS Proton service resources from an AWS
Proton service template to this environment. However, the environment itself isn't modified
through template updates in AWS Proton. You're responsible for executing updates to the
environment and updating those outputs in AWS Proton.

You can have multiple environments in a single account that are a mix of AWS Proton managed
and customer-managed environments. You can also link a second account and use an AWS Proton
template in the primary account to execute deployments and updates to environments and
services in that second, linked account.

How to use customer-managed environments

The first thing administrators need to do is register an imported, customer-managed environment
template. Don't supply manifests or infrastructure files in the template bundle. Only supply the
schema.

The schema below outlines a list of outputs using the open API format and replicates the outputs
from an AWS CloudFormation template.

/A Important

Only string inputs are allowed for the outputs.

The following example is a snippet of the output sections of an AWS CloudFormation template for
a corresponding Fargate template.

Customer-managed 237

AWS Proton User Guide

Outputs:
ClusterName:
Description: The name of the ECS cluster
Value: !Ref 'ECSCluster'
ECSTaskExecutionRole:
Description: The ARN of the ECS role
Value: !GetAtt 'ECSTaskExecutionRole.Arn'
VpcId:
Description: The ID of the VPC that this stack is deployed in
Value: !Ref 'VPC'
[...]

The schema for the corresponding AWS Proton imported environment is similar to the following.
Don't supply default values in the schema.

schema:
format:
openapi: "3.0.0"
environment_input_type: "EnvironmentOutput"
types:
EnvironmentOutput:
type: object
description: "Outputs of the environment"
properties:
ClusterName:
type: string
description: "The name of the ECS cluster"
ECSTaskExecutionRole:
type: string
description: "The ARN of the ECS role"
VpcId:
type: string
description: "The ID of the VPC that this stack is deployed in"

At the time of registering the template, you indicate that this template is imported and provides
the Amazon S3 bucket location for the bundle. AWS Proton validates that the schema only

contains environment_input_type and no AWS CloudFormation template parameters before
putting the template in draft.

You provide the following to create an imported environment.

Using customer-managed environments 238

AWS Proton User Guide

« An IAM role to use when making deployments.

» A specification with the values for the required outputs.

You can provide both of these through either the console or the AWS CLI using a process similar to
the deployment of a regular environment.

CodeBuild provisioning role creation

Infrastructure as a Code (laaC) tools like AWS CloudFormation and Terraform require permissions
for the many different types of AWS resources. For example, if an laaC template declares an
Amazon S3 bucket, it needs permissions to create, read, update, and delete Amazon S3 buckets.
It's considered a security best practice to limit roles to the minimal permissions required. Given

the breadth of AWS resources, it's challenging to create least-privilege policies for laaC templates,
especially when the resources being managed by those templates can change later. For example, in
your latest edits to a template being managed by AWS Proton, you add an RDS database resource.

Configuring the right permissions helps make deployments of your laC smooth. AWS Proton
CodeBuild Provisioning executes arbitrary customer-supplied CLI commands in a CodeBuild project
located in the customer’s account. Typically, these commands create and delete infrastructure
using an Infrastructure as Code (laaC) tool such as AWS CDK. When an AWS resource deploys
whose template uses CodeBuild Provisioning, AWS will start a build in a CodeBuild project
managed by AWS. A role is passed to CodeBuild, which CodeBuild assumes to execute commands.
This role, called the CodeBuild Provisioning Role, is provided by the customer and contains
permissions required to provision infrastructure. It's meant to be assumed only by CodeBuild and
even AWS Proton can't assume it.

Creating the role

The CodeBuild Provisioning role can be created in the IAM console or in the AWS CLI. To create it in
the AWS CLI:

aws iam create-role --role-name AWSProtonCodeBuildProvisioning --assume-role-
policy-document '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"Service":"codebuild.amazonaws.com"}, "Action":"sts:AssumeRole"}]}"

aws iam attach-role-policy --role-name AWSProtonCodeBuildProvisioning --policy-arn

arn:aws:iam::aws:policy/AWSProtonCodeBuildProvisioningBasicAccess

CodeBuild provisioning role creation 239

AWS Proton User Guide

This also attaches the AWSProtonCodeBuildProvisioningBasicAccess, which contains the
minimal permissions needed by the CodeBuild service to run a build.

If you prefer to use the console, please ensure the following when you create the role:

1. For trusted entity, select AWS service and then select CodeBuild.

2. Inthe Add permissions step, select AWSProtonCodeBuildProvisioningBasicAccess and
any other policies you want to attach.

Administrator Access

If you attach the AdministratorAccess policy to the CodeBuild Provisioning Role, it will
guarantee that any laaC template won't fail due to lack of permissions. It also means that anyone
who can create an Environment Template or Service Template can perform administrator-

level actions, even if that user isn't an administrator. AWS Proton doesn't recommend

using AdministatorAccess with the CodeBuild Provisioning Role. If you decide to use
AdministratorAccess with the CodeBuild Provisioning Role, do so in a sandbox environment.

You can create a role with AdministratorAccess in the IAM console or by executing this
command:

aws iam create-role --role-name AWSProtonCodeBuildProvisioning --assume-role-
policy-document '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"Service":"codebuild.amazonaws.com"}, "Action":"sts:AssumeRole"}]}"

aws iam attach-role-policy --role-name AWSProtonCodeBuildProvisioning --policy-arn
arn:aws:iam::aws:policy/AdministratorAccess

Creating a Minimally-Scoped Role

If you want to create a role with minimum permissions, there are multiple approaches:

» Deploy with admin permissions, then scope down the role. We recommend using IAM Access
Analyzer.

« Use managed policies to give access to the services you plan on using.

AWS CDK

CodeBuild provisioning role creation 240

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Proton User Guide

If you're using AWS CDK with AWS Proton, and you've run cdk bootstrap on each environment
account/Region, then there already exists a role for cdk deploy. In this case, attach the following
policy to the CodeBuild Provisioning Role:

{

"Action": "sts:AssumeRole",

"Resource": [
"arn:aws:iam::account-id:role/cdk-*-deploy-role-*",
"arn:aws:iam::account-id:role/cdk-*-file-publishing-role-*"

1,

"Effect": "Allow"

}
Custom VPC

If you decide to run CodeBuild in a custom VPC, you'll need the following permissions in your
CodeBuild role:

"Effect": "Allow",

"Action": [
"ec2:CreateNetworkInterface"

1,

"Resource": [
"arn:aws:ec2:region:account-id:network-interface/*",
"arn:aws:ec2:region:account-id:subnet/*",
"arn:aws:ec2:region:account-id:security-group/*"

"Effect": "Allow",

"Action": [
"ec2:DeleteNetworkInterface"

1,

"Resource": [
"arn:aws:ec2:region:account-id:*/*"

"Effect": "Allow",

"Action": [
"ec2:DescribeDhcpOptions",
"ec2:DescribeNetworkInterfaces",

CodeBuild provisioning role creation 241

https://docs.aws.amazon.com/proton/latest/userguide/vpc-codebuild-custom-support.html

AWS Proton User Guide

"ec2:DescribeSubnets",
"ec2:DescribeSecurityGroups",
"ec2:DescribeVpcs"

1,

"Resource": "*"

"Effect": "Allow",
"Action": [
"ec2:CreateNetworkInterfacePermission"

]I

"Resource": "arn:aws:ec2:region:account-id:network-interface/*",
"Condition": {
"StringEquals": {
"ec2:AuthorizedService": "codebuild.amazonaws.com"

You could also use the AmazonEC2FullAccess managed policy, although that includes
permissions that you may not need. To attach the managed policy using the CLI:

aws iam create-role --role-name AWSProtonCodeBuildProvisioning --assume-role-

policy-document '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"Service":"codebuild.amazonaws.com"}, "Action":"sts:AssumeRole"}]}"'

aws iam attach-role-policy --role-name AWSProtonCodeBuildProvisioning --policy-azrn
arn:aws:iam::aws:policy/AdministratorAccess

CodeBuild provisioning role creation 242

https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess

AWS Proton User Guide

AWS Proton services

An AWS Proton service is an instantiation of a service template, normally including several service
instances and a pipeline. An AWS Proton service instance is an instantiation of a service template
in a specific environment. A service template is a complete definition of the infrastructure and
optional service pipeline for an AWS Proton service.

After you deploy your service instances, you can update them by source code pushes that prompt
the CI/CD pipeline or by updating the service to new versions of its service template. AWS Proton
prompts you when new versions of its service template become available so you can update your
services to a new version. When your service is updated, AWS Proton re-deploys the service and
service instances.

This chapter shows how to manage services by using create, view, update and delete operations.
For additional information, see the The AWS Proton Service API Reference.

Topics

e Create a service

+ View service data

« Edit a service

e Delete a service

« View service instance data

» Update a service instance

« Update a service pipeline

Create a service

To deploy an application with AWS Proton, as a developer, you create a service and provide the
following inputs.

1. The name of an AWS Proton service template that's published by the platform team.
2. A name for the service.
3. The number of service instances that you want to deploy.

4. A selection of environments that you want to use.

Create 243

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html

AWS Proton User Guide

5. A connection to your code repository if you're using a service template that includes a service
pipeline (optional).

What's in a service?

When you create an AWS Proton service, you can choose from two different types of service
templates:

« A service template that includes a service pipeline (default).

« A service template that doesn't include a service pipeline.

You must create at least one service instance when you create your service.

A service instance and optional pipeline are associated with a service. You can only create or delete
a pipeline within the context of service create and delete actions. To learn how to add and remove
instances from a service, see Edit a service.

® Note

Your environment is configured for either AWS- or self-managed provisioning. AWS
Proton provisions services in an environment using the same provisioning method as the
environment uses. The developer creating or updating service instances doesn't see the
difference and their experience is the same in both case.

For more information about provisioning methods, see the section called “Provisioning
methods".

Service templates

Both major and minor versions of service templates are available. When you use the console, you
select the latest Recommended major and minor version of the service template. When you use the
AWS CLI and you specify only the major version of the service template, you implicitly specify its
latest Recommended minor version.

The following describes the difference between major and minor template versions and their use.

What's in a service? 244

AWS Proton User Guide

« New versions of a template become Recommended as soon as they're approved by a member
of the platform team. This means that new services are created using that version, and you're
prompted to update existing services to the new version.

« Through AWS Proton, the platform team can automatically update service instances to a new
minor version of a service template. Minor versions must be backward compatible.

» Because major versions require you to provide new inputs as part of the update process, you

need to update your service to a major version of its service template. Major versions aren't

backward compatible.

Create a service

The following procedures show how to use the AWS Proton console or AWS CLI to create a service

with or without a service pipeline.

AWS Management Console

Create a service as shown in the following console steps.

1.
2.

8.

In the AWS Proton console, choose Services.

Choose Create service.

In the Choose a service template page, select a template and choose Configure.

When you don't want to use an enabled pipeline, choose a template marked with Excludes
pipeline for your service.

In the Configure service page, in the Service settings section, enter an Service name.
(Optional) Enter a description for the service.

In the Service repository settings section:

a. For CodeStar Connection, choose your connection from the list.
b. For Repository ID, choose the name of your source code repository from the list.

c. For Branch name, choose the name of your source code repository branch from the
list.

(Optional) In the Tags section, choose Add new tag and enter a key and value to create a
customer managed tag.

Choose Next.

Create a service 245

https://console.aws.amazon.com/proton/

AWS Proton User Guide

9.

10.

11.
12.

13.

In the Configure custom settings page, in the Service instances section, in the New
instance section. You must enter values for the required parameters. You can enter
values for the optional parameters or use the defaults when given.

In the Pipeline inputs section, you must enter values for the required parameters. You
can enter values for the optional parameters or use the defaults when given.

Choose Next and review your inputs.

Choose Create.

View the service details and status, as well as the AWS managed tags and customer
managed tags for your service.

In the navigation pane, choose Services.

A new page displays a list of your services along with the status and other service details.

AWS CLI

When you use the AWS CLI, you specify service inputs in a YAML formatted spec file, . aws-

proton/service.yaml, located in your source code directory.

You can use the CLI get-service-template-minor-version command to view the schema

required and optional parameters that you provide values for in your spec file.

If you want to use a service template that has pipelineProvisioning:
"CUSTOMER_MANAGED", don't include the pipeline: section in your spec and don’t include -
repository-connection-arn, -repository-id, and -branch-name parameters in your

create-service command.

Create a service with a service pipeline as shown in the following CLI steps.

1.

Set up the service role for the pipeline as shown in the following CLI example
command.

Command:

$ aws proton update-account-settings \
--pipeline-service-role-arn
"arn:aws:iam: :123456789012:ro0le/AWSProtonServiceRole"

Create a service 246

AWS Proton User Guide

2. The following listing shows an example spec, based on the service template schema, that
includes the service pipeline and instance inputs.

Spec:

proton: ServiceSpec

pipeline:
my_sample_pipeline_required_input: "hello"
my_sample_pipeline_optional_input: "bye"

instances:
- name: "acme-network-dev"
environment: "ENV_NAME"
spec:
my_sample_service_instance_required_input: "hi"
my_sample_service_instance_optional_input: "ho"

Create a service with a pipeline as shown in the following CLI example command and
response.

Command:

$ aws proton create-service \

--name "MySimpleService" \

--branch-name "mainline" \

--template-major-version "1" \

--template-name "fargate-service" \

--repository-connection-arn "arn:aws:codestar-connections:region-
id:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111" \

--repository-id "myorg/myapp" \

--spec "file://spec.yaml"

Response:

"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService",
"createdAt": "2020-11-18T19:50:27.460000+00:00",

"lastModifiedAt": "2020-11-18T19:50:27.460000+00:00",

"name": "MySimpleService",

Create a service 247

AWS Proton User Guide

"repositoryConnectionArn": "arn:aws:codestar-connections:region-
1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"repositoryId": "myorg/myapp",

"status": "CREATE_IN_PROGRESS",

"templateName": "fargate-service"

Create a service without a service pipeline as shown in the following CLI example command
and response.

The following shows an example spec that doesn't include service pipeline inputs.

Spec:

proton: ServiceSpec

instances:
- name: "acme-network-dev"
environment: "ENV_NAME"
spec:
my_sample_service_instance_required_input: "hi"
my_sample_service_instance_optional_input: "ho"

To create a service without a provisioned service pipeline, you provide the path to a
spec.yaml and you don't include repository parameters as shown in the following CLI
example command and response.

Command:

$ aws proton create-service \
--name "MySimpleServiceNoPipeline" \
--template-major-version "1" \
--template-name "fargate-service" \
--spec "file://spec-no-pipeline.yaml"

Response:

"service": {

Create a service 248

AWS Proton User Guide

arn": "arn:aws:proton:region-id:123456789012:service/
MySimpleServiceNoPipeline",
"createdAt": "2020-11-18T19:50:27.460000+00:00",

"lastModifiedAt": "2020-11-18T19:50:27.460000+00:00",

"name": "MySimpleServiceNoPipeline",
"status": "CREATE_IN_PROGRESS",
"templateName": "fargate-service-no-pipeline"

View service data

You can view and list service detail data using the AWS Proton console or the AWS CLI.

AWS Management Console

List and view service details using the AWS Proton console as shown in the following steps.

1. To view a list of your services, choose Services in the navigation pane.

2. To view detail data, choose the name of a service.

View your service detail data.

AWS CLI

View the details of a service with a service pipeline as shown in the following CLI example
command and response.

Command:

$ aws proton get-service \
--name "simple-svc"

Response:
{
"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc",
"branchName": "mainline",

View 249

https://console.aws.amazon.com/proton/

AWS Proton

User Guide

"createdAt": "2020-11-28T22:40:50.512000+00:00",
"lastModifiedAt": "2020-11-28T22:44:51.207000+00:00",

"name": "simple-svc",
"pipeline": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/

pipeline/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",
"createdAt": "2020-11-28T22:40:50.512000+00:00",
"deploymentStatus": "SUCCEEDED",
"lastDeploymentAttemptedAt": "2020-11-28T22:40:50.512000+00:00",
"lastDeploymentSucceededAt": "2020-11-28T22:40:50.512000+00:00",
"spec": "proton: ServiceSpec\npipeline:\n

my_sample_pipeline_required_input: hello\n my_sample_pipeline_optional_input:

bye\ninstances:\n- name: instance-svc-simple\n environment: my-simple-

env\n spec:\n my_sample_service_instance_required_input: hi\n
my_sample_service_instance_optional_input: ho\n",
"templateMajorVersion": "1",
"templateMinorVersion": "1",
"templateName": "svc-simple"
},
"repositoryConnectionArn": "arn:aws:codestar-connections:region-

i1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE22222",
"repositoryId": "myorg/myapp",
"spec": "proton: ServiceSpec\npipeline:\n

my_sample_pipeline_required_input: hello\n my_sample_pipeline_optional_input:

bye\ninstances:\n- name: instance-svc-simple\n environment: my-simple-
env\n spec:\n my_sample_service_instance_required_input: hi\n
my_sample_service_instance_optional_input: ho\n",
"status": "ACTIVE",
"templateName": "svc-simple"

View the details of a service without a service pipeline as shown in the following CLI
example command and response.

Command:

$ aws proton get-service \
--name "simple-svc-no-pipeline"

Response:

View

250

AWS Proton User Guide

"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc-without-
pipeline",
"createdAt": "2020-11-28T22:40:50.512000+00:00",
"lastModifiedAt": "2020-11-28T22:44:51.207000+00:00",

"name": "simple-svc-without-pipeline",

"spec": "proton: ServiceSpec\ninstances:\n- name: instance-svc-simple\n
environment: my-simple-env\n spec:\n my_sample_service_instance_required_input:
hi\n my_sample_service_instance_optional_input: ho\n",

"status": "ACTIVE",

"templateName": "svc-simple-no-pipeline"

Edit a service

You can make the following edits to an AWS Proton service.

« Edit the service description.

- Edit a service by adding and removing service instances.

Edit service description

You can use the console or the AWS CLI to edit a service description.
AWS Management Console
Edit a service using the console as described in the following steps.
In the list of services.

1. Inthe AWS Proton console, choose Services.

2. In the list of services, choose the radio button to the left of the service that you want to
update.

3. Choose Edit.

4. Inthe Configure service page, fill out the form and choose Next.

5. In the Configure custom settings page, choose Next.

6. Review your edits and choose Save changes.

Edit 251

https://console.aws.amazon.com/proton/

AWS Proton User Guide

In the service detail page.

1. Inthe AWS Proton console, choose Services.

2. Inthe list of services, choose the name of the service that you want to edit.
3. Inthe service detail page, choose Edit.
4. In the Configure service page, fill out the form and choose Next.
5. In the Configure custom settings page, fill out the form and choose Next.
6. Review your edits and choose Save changes.

AWS CLI

Edit a description as shown in the following CLI example command and response.

Command:

$ aws proton update-service \
--name "MySimpleService" \
--description "Edit by updating description"

Response:
{
"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService",
"branchName": "main",
"createdAt": "2021-03-12T22:39:42.318000+00:00",
"description": "Edit by updating description",
"lastModifiedAt": "2021-03-12T22:44:21.975000+00:00",
"name": "MySimpleService",
"repositoryConnectionArn": "arn:aws:codestar-connections:region-

i1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",
"repositoryId": "my-repository/myorg-myapp",
"status": "ACTIVE",
"templateName": "fargate-service"

Edit service description 252

https://console.aws.amazon.com/proton/

AWS Proton User Guide

Edit a service to add or remove service instances

For an AWS Proton service, you can add or delete service instances by submitting an edited spec.
The following conditions must be met for a successful request:

» Your service and pipeline aren't already being edited or deleted when you submit the edit
request.

» Your edited spec doesn't include edits that modify the service pipeline or edits to existing service
instances that aren't to be deleted.

» Your edited spec doesn't remove any existing service instance that has an attached component.
To delete such a service instance, you should first update the component to detach it from its
service instance. For more information about components, see Components.

Deletion-failed instances are service instances in the DELETE_FAILED state. When you request a
service edit, AWS Proton attempts to remove the deletion-failed instances for you, as part of the
edit process. If any of your service instances failed to delete, there might still be resources that are
associated with the instances, even though they aren't visible from the console or AWS CLI. Check
your deletion-failed instance infrastructure resources and clean them up so that AWS Proton can
remove them for you.

For the quota of service instances for a service, see AWS Proton quotas. You also must maintain

at least 1 service instance for your service after it's created. During the update process, AWS
Proton makes a count of the existing service instances and the instances to be added or removed.
Deletion-failed instances are included in this count and you must account for them when you edit
your spec.

Use the console or AWS CLI to add or remove service instances
AWS Management Console

Edit your service to add or remove service instances using the console.

In the AWS Proton console

1. In the navigation pane, choose Services.
2. Select the service that you want to edit.

3. Choose Edit.

Add or remove service instances 253

https://console.aws.amazon.com/proton/

AWS Proton User Guide

4. (Optional) On the Configure service page, edit the service name or description, and then
choose Next.

5. On the Configure custom settings page, choose Delete to delete a service instance and
choose Add new instance to add a service instance and fill out the form.

6. Choose Next.
7. Review your update and choose Save changes.

8. A modal asks you to verify deletion of service instances. Follow the instructions and choose
Yes, delete.

9. On the service detail page, view the status details for your service.

AWS CLI

Add and delete service instances with an edited spec as shown in the following AWS CLI
example commands and responses.

When you use the CLI, your spec must exclude the service instances to delete and include both
the service instances to add and the existing service instances that you haven't marked for
deletion.

The following listing shows the example spec before the edit and a list of the service instances
deployed by the spec. This spec was used in the previous example for editing a service
description.

Spec:

proton: ServiceSpec

pipeline:

my_sample_pipeline_optional_input: "abc

my_sample_pipeline_required_input: "123"

instances:
- name: "my-instance"
environment: "simple-env"
spec:
my_sample_service_instance_optional_input: "def"
my_sample_service_instance_required_input: "456"
- name: "my-other-instance"
environment: "simple-env"

Add or remove service instances 254

AWS Proton User Guide

spec:
my_sample_service_instance_required_input: "789"

The following example CLI 1ist-service-instances command and response shows the
active instances prior to adding or deleting a service instance.

Command:

$ aws proton list-service-instances \
--service-name "MySimpleService"

Response:

"serviceInstances": [

{

arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/
service-instance/my-other-instance",
"createdAt": "2021-03-12T22:39:42.318000+00:00",
"deploymentStatus": "SUCCEEDED",
"environmentName": "simple-env",
"lastDeploymentAttemptedAt": "2021-03-12T22:39:43.109000+00:00",
"lastDeploymentSucceededAt": "2021-03-12T22:39:43.109000+00:00",
"name": "my-other-instance",
"serviceName": "example-svc",
"templateMajorVersion": "1",
"templateMinorVersion": "Q@",
"templateName": "fargate-service"

arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/
service-instance/my-instance",

"createdAt": "2021-03-12T22:39:42.318000+00:00",

"deploymentStatus": "SUCCEEDED",

"environmentName": "simple-env",

"lastDeploymentAttemptedAt": "2021-03-12T22:39:43.160000+00:00",

"lastDeploymentSucceededAt": "2021-03-12T22:39:43.160000+00:00",

"name": "my-instance",

"serviceName": "example-svc",

"serviceTemplateArn": "arn:aws:proton:region-id:123456789012:service-
template/fargate-service",

"templateMajorVersion": "1",

"templateMinorVersion": "Q@",

Add or remove service instances 255

AWS Proton User Guide

"templateName": "fargate-service"

The following listing shows the example edited spec used to delete and add an instance. The
existing instance named my-instance is removed and a new instance named yet-another-
instance is added.

Spec:

proton: ServiceSpec

pipeline:
my_sample_pipeline_optional_input: "abc"
my_sample_pipeline_required_input: "123"

instances:
- name: "my-other-instance"
environment: "simple-env"
spec:
my_sample_service_instance_required_input: "789"
- name: "yet-another-instance"
environment: "simple-env"
spec:
my_sample_service_instance_required_input: "789"

You can use "${Proton: :CURRENT_VAL}" to indicate which parameter values to preserve
from the original spec, if the values exist in the spec. Use get-service to view the original
spec for a service, as described in View service data.

The following listing shows how you can use "${Proton: : CURRENT_VAL}" to ensure that
your spec doesn't include parameter values changes for the existing services instances to
remain.

Spec:

proton: ServiceSpec

pipeline:
my_sample_pipeline_optional_input: "${Proton::CURRENT_VAL}"

Add or remove service instances 256

AWS Proton User Guide

my_sample_pipeline_required_input: "${Proton::CURRENT_VAL}"

instances:
- name: "my-other-instance"
environment: "simple-env"
spec:
my_sample_service_instance_required_input: "${Proton::CURRENT_VAL}"
- name: "yet-another-instance"
environment: "simple-env"
spec:
my_sample_service_instance_required_input: "789"

The next listing shows the CLI command and response to edit the service.

Command:

$ aws proton update-service
--name "MySimpleService" \
--description "Edit by adding and deleting a service instance" \
--spec "file://spec.yaml"

Response:
{
"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService",
"branchName": "main",
"createdAt": "2021-03-12T722:39:42.318000+00:00",
"description": "Edit by adding and deleting a service instance",
"lastModifiedAt": "2021-03-12T722:55:48.169000+00:00",
"name": "MySimpleService",
"repositoryConnectionArn": "arn:aws:codestar-connections:region-

1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",
"repositoryId": "my-repository/myorg-myapp",
"status": "UPDATE_IN_PROGRESS",
"templateName": "fargate-service"

The following 1list-service-instances command and response confirms that the existing
instance named my-instance is removed and a new instance named yet-another-
instance is added.

Add or remove service instances 257

AWS Proton

User Guide

Command:

$ aws proton list-service-instances \
--service-name "MySimpleService"

Response:

"serviceInstances": [

{

"arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/

service-instance/yet-another-instance",

"createdAt": "2021-03-12T22:39:42.318000+00:00",
"deploymentStatus": "SUCCEEDED",

"environmentName": "simple-env",

"lastDeploymentAttemptedAt": "2021-03-12T22:56:01.565000+00:00",
"lastDeploymentSucceededAt": "2021-03-12T22:56:01.565000+00:00",
"name": "yet-another-instance",

"serviceName": "MySimpleService",

"templateMajorVersion": "1",

"templateMinorVersion": "Q",

"templateName": "fargate-service"

"arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/

service-instance/my-other-instance",

"createdAt": "2021-03-12T22:39:42.318000+00:00",
"deploymentStatus": "SUCCEEDED",

"environmentName": "simple-env",

"lastDeploymentAttemptedAt": "2021-03-12T22:39:43.109000+00:00",
"lastDeploymentSucceededAt": "2021-03-12T22:39:43.109000+00:00",
"name": "my-other-instance",

"serviceName": "MySimpleService",

"templateMajorVersion": "1",

"templateMinorVersion": "Q",

"templateName": "fargate-service"

Add or remove service instances

258

AWS Proton User Guide

What happens when you add or remove service instances

After you submit a service edit to delete and add service instances, AWS Proton takes the following
actions.

» Sets the service to UPDATE_IN_PROGRESS.

« If the service has a pipeline, sets its status to IN_PROGRESS and blocks pipeline actions.

» Sets any service instances that are to be deleted to DELETE_IN_PROGRESS.

 Blocks service actions.

« Blocks actions on service instances that are marked for deletion.

» Creates new service instances.

« Deletes instances that you listed for deletion.

« Attempts to remove deletion-failed instances.

« After additions and deletions are complete, re-provisions the service pipeline (if there is one),
sets your service to ACTIVE and enables service and pipeline actions.

AWS Proton attempts to re-mediate failure modes as follows.

« If one or more service instances failed to be created, AWS Proton tries to de-provision all of the
newly created service instances and reverts the spec to the previous state. It doesn't delete any
service instances and it doesn't modify the pipeline in any way.

« If one or more service instances failed to be deleted, AWS Proton re-provisions the pipeline
without the deleted instances. The spec is updated to include the added instances and to
exclude the instances that were marked for deletion.

« If the pipeline fails provisioning, a rollback isn't attempted and both the service and pipeline
reflect a failed update state.

Tagging and service edits

When you add service instances as part of your service edit, AWS managed tags propagate to and
are automatically created for the new instances and provisioned resources. If you create new tags,
those tags are only applied to the new instances. Existing service customer managed tags also
propagate to the new instances. For more information, see AWS Proton resources and tagging.

Add or remove service instances 259

AWS Proton User Guide

Delete a service

You can delete an AWS Proton service, with its instances and pipeline, by using the AWS Proton
console or the AWS CLI.

You can't delete a service that has any service instance with an attached component. To delete
such a service, you should first update all attached components to detach them from their service
instances. For more information about components, see Components.

AWS Management Console
Delete a service using the console as described in the following steps.

In the service detail page.

1. In the AWS Proton console, choose Services.
2. In the list of services, choose the name of the service that you want to delete.
3. Onthe service detail page, choose Actions and then Delete.
4. A modal prompts you to confirm the delete action.
5. Follow the instructions and choose Yes, delete.
AWS CLI

Delete a service as shown in the following CLI example command and response.

Command:

$ aws proton delete-service \
--name "simple-svc"

Response:
{
"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc",
"branchName": "mainline",
"createdAt": "2020-11-28T22:40:50.512000+00:00",
"description": "Edit by updating description",
"lastModifiedAt": "2020-11-29T00:30:39.248000+00:00",
"name": "simple-svc",

Delete 260

https://console.aws.amazon.com/proton/

AWS Proton User Guide

"repositoryConnectionArn": "arn:aws:codestar-connections:region-
1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"repositoryId": "myorg/myapp",

"status": "DELETE_IN_PROGRESS",

"templateName": "fargate-service"

View service instance data

Learn to view AWS Proton service instance detail data. You can use the console or the AWS CLI.

A service instance belongs to a service. You can only create or delete an instance within the context
of service edit, create and delete actions. To learn how to add and remove instances from a service,

see Edit a service.
AWS Management Console

List and view service instance details using the AWS Proton console as shown in the
following steps.

1. To view a list of your service instances, choose Services instances in the navigation pane.

2. To view detail data, choose the name of a service instance.

View your service instance detail data.

AWS CLI

List and view service instance details as shown in the following CLI example commands and
responses.

Command:

$ aws proton list-service-instances

Response:

"serviceInstances": [

View instances 261

https://console.aws.amazon.com/proton/

AWS Proton User Guide

"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/
service-instance/instance-one",

"createdAt": "2020-11-28T22:40:50.512000+00:00",

"deploymentStatus": "SUCCEEDED",

"environmentArn": "arn:aws:proton:region-id:123456789012:environment/
simple-env",

"lastDeploymentAttemptedAt": "2020-11-28T22:40:50.512000+00:00",

"lastDeploymentSucceededAt": "2020-11-28T22:40:50.512000+00:00",

"name": "instance-one",
"serviceName": "simple-svc",
"templateMajorVersion": "1",
"templateMinorVersion": "Q@",
"templateName": "fargate-service"
}
]
}
Command:

$ aws proton get-service-instance \
--name "instance-one" \
--service-name "simple-svc"

Response:

"serviceInstance": {

arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one",

"createdAt": "2020-11-28T22:40:50.512000+00:00",

"deploymentStatus": "SUCCEEDED",

"environmentName": "simple-env",

"lastDeploymentAttemptedAt": "2020-11-28T22:40:50.512000+00:00",

"lastDeploymentSucceededAt": "2020-11-28T22:40:50.512000+00:00",

"name": "instance-one",
"serviceName": "simple-svc",
"spec": "proton: ServiceSpec\npipeline:\n

my_sample_pipeline_optional_input: hello world\n
my_sample_pipeline_required_input: pipeline up\ninstances:\n- name: instance-one\n

environment: my-simple-env\n spec:\n my_sample_service_instance_optional_input:
0la\n my_sample_service_instance_required_input: Ciao\n",
"templateMajorVersion": "1",

View instances 262

AWS Proton User Guide

"templateMinorVersion": "Q@",
"templateName": "svc-simple"

Update a service instance

Learn to update an AWS Proton service instance and cancel the update.

A service instance belongs to a service. You can only create or delete an instance within the context
of service edit, create and delete actions. To learn how to add and remove instances from a service,

see Edit a service.

There are four modes for updating a service instance as described in the following list. When using
the AWS CLI, the deployment-type field defines the mode. When using the console, these modes
map to the Edit and the Update to latest minor version and Update to latest major version
actions that drop down from Actions in the service instance detail page.

NONE

In this mode, a deployment doesn’t occur. Only the requested metadata parameters are
updated.

CURRENT_VERSION

In this mode, the service instance is deployed and updated with the new spec that you provide.
Only requested parameters are updated. Don’t include minor or major version parameters when
you use this deployment-type.

MINOR_VERSION

In this mode, the service instance is deployed and updated with the published, recommended
(latest) minor version of the current major version in use by default. You can also specify a
different minor version of the current major version in use.

MAJOR_VERSION

In this mode, the service instance is deployed and updated with the published, recommended
(latest) major and minor version of the current template by default. You can also specify

Update instance 263

AWS Proton User Guide

a different major version that is higher than the major version in use and a minor version
(optional).

You can attempt to cancel a service instance update deployment if the deploymentStatus is
IN_PROGRESS. AWS Proton attempts to cancel the deployment. Successful cancellation isn’t
guaranteed.

When you cancel an update deployment, AWS Proton attempts to cancel the deployment as listed
in the following steps.

Sets the deployment state to CANCELLING.

Stops the deployment in process and deletes any new resources that were created by the
deployment when IN_PROGRESS.

Sets the deployment state to CANCELLED.

Reverts the state of the resource to what it was before the deployment was started.

For more information on cancelling a service instance deployment, see
CancelServicelnstanceDeployment in the AWS Proton API Reference.

Use the console or AWS CLI to make updates or cancel update deployments.
AWS Management Console
Update a service instance using the console by following these steps.

1. Inthe AWS Proton console, choose Service instances in the navigation pane.

2. In the list of service instances, choose the name of the service instance that you want to
update.

3. Choose Actions and then choose one of the update options, Edit to update spec or Actions
and then Update to latest minor version, or Update to latest major version.

4. Fill out each form and choose Next until you reach the Review page.

Review your edits and choose Update.

AWS CLI

Update a service instance to a new minor version as shown in the CLI example commands
and responses.

Update instance 264

https://docs.aws.amazon.com/proton/latest/APIReference/API_CancelServiceInstanceDeployment.html
https://console.aws.amazon.com/proton/

AWS Proton User Guide

When you update your service instance with a modified spec, you can use

"${Proton: :CURRENT_VAL}" to indicate which parameter values to preserve from the
original spec, if the values exist in the spec. Use get-service to view the original spec for a
service instance, as described in View service data.

The following example shows how you can use "${Proton: : CURRENT_VAL}" in a spec.

Spec:

proton: ServiceSpec

pipeline:
my_sample_pipeline_optional_input: "${Proton::CURRENT_VAL}"
my_sample_pipeline_required_input: "${Proton::CURRENT_VAL}"

instances:
- name: "my-instance"
environment: "simple-env"
spec:
my_sample_service_instance_optional_input: "${Proton::CURRENT_VAL}"
my_sample_service_instance_required_input: "${Proton::CURRENT_VAL}"
- name: "my-other-instance"
environment: "simple-env"
spec:
my_sample_service_instance_required_input: "789"

Command: to update

$ aws proton update-service-instance \
--name "instance-one" \
--service-name "simple-svc" \
--spec "file://service-spec.yaml" \
--template-major-version "1" \
--template-minor-version "1" \
--deployment-type "MINOR_VERSION"

Response:

"serviceInstance": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one",

Update instance 265

AWS Proton User Guide

"createdAt": "2021-04-02T21:29:59.962000+00:00",

"deploymentStatus": "IN_PROGRESS",

"environmentName": "arn:aws:proton:region-id:123456789012:environment/
simple-env",

"lastDeploymentAttemptedAt": "2021-04-02T21:38:00.823000+00:00",

"lastDeploymentSucceededAt": "2021-04-02T21:29:59.962000+00:00",

"name": "instance-one",

"serviceName": "simple-svc",

"templateMajorVersion": "1",

"templateMinorVersion": "Q",

"templateName": "svc-simple"

Command: to get and confirm status

$ aws proton get-service-instance \
--name "instance-one" \
--service-name "simple-svc"

Response:

"serviceInstance": {

arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one",

"createdAt": "2021-04-02T21:29:59.962000+00:00",

"deploymentStatus": "SUCCEEDED",

"environmentName": "simple-env",

"lastDeploymentAttemptedAt": "2021-04-02T21:38:00.823000+00:00",

"lastDeploymentSucceededAt": "2021-04-02T21:38:00.823000+00:00",

"name": "instance-one",

"serviceName": "simple-svc",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"instance-one\"\n environment: \"simple-

env\"\n spec:\n my_sample_service_instance_optional_input: \"def\"\n
my_sample_service_instance_required_input: \"456\"\n - name: \"my-

other-instance\"\n environment: \"kls-simple-env\"\n spec:\n

my_sample_service_instance_required_input: \"789\"\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "svc-simple"

Update instance 266

AWS Proton User Guide

AWS Management Console
Cancel a service instance deployment using the console as shown in the following steps.

1. Inthe AWS Proton console, choose Service instances in the navigation pane.

2. Inthe list of service instances, choose the name of the service instance with the
deployment update that you want to cancel.

3. If your update deployment status is In progress, in the service instance detail page, choose
Actions and then Cancel deployment.

4. A modal asks you to confirm the cancellation. Choose Cancel deployment.

5. Your update deployment status is set to Cancelling and then Cancelled to complete the
cancellation.

AWS CLI

Cancel an IN_PROGRESS service instance deployment update to new minor version 2 as
shown in the following CLI example commands and responses.

A wait condition is included in the template used for this example so that the cancellation starts
before the update deployment succeeds.

Command: to cancel

$ aws proton cancel-service-instance-deployment \
--service-instance-name "instance-one" \
--service-name "simple-svc"

Response:

"serviceInstance": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one",
"createdAt": "2021-04-02T21:29:59.962000+00:00",
"deploymentStatus": "CANCELLING",

Update instance 267

https://console.aws.amazon.com/proton/

AWS Proton User Guide

"environmentName": "simple-env",
"lastDeploymentAttemptedAt": "2021-04-02T21:45:15.406000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T21:38:00.823000+00:00",

"name": "instance-one",
"serviceName": "simple-svc",
"spec": "proton: ServiceSpec\npipeline:\n

my_sample_pipeline_optional_input: abc\n my_sample_pipeline_required_input:
'123'\ninstances:\n- name: my-instance\n environment: MySimpleEnv
\n spec:\n my_sample_service_instance_optional_input: def\n

my_sample_service_instance_required_input: '456'\n- name: my-other-instance\n
environment: MySimpleEnv\n spec:\n my_sample_service_instance_required_input:
'789'\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "svc-simple"

Command: to get and confirm status

$ aws proton get-service-instance \
--name "instance-one" \
--service-name "simple-svc"

Response:

"serviceInstance": {

" "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one",

"createdAt": "2021-04-02T721:29:59.962000+00:00",

"deploymentStatus": "CANCELLED",

"deploymentStatusMessage": "User initiated cancellation.",

"environmentName": "simple-env",

"lastDeploymentAttemptedAt": "2021-04-02T21:45:15.406000+00:00",

"lastDeploymentSucceededAt": "2021-04-02T21:38:00.823000+00:00",

arn :

"name": "instance-one",

"serviceName": "simple-svc",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"instance-one\"\n environment: \'"simple-

env\"\n spec:\n my_sample_service_instance_optional_input: \"def\"\n
my_sample_service_instance_required_input: \"456\"\n - name: \'"my-

Update instance 268

AWS Proton User Guide

other-instance\"\n environment: \"kls-simple-env\"\n spec:\n
my_sample_service_instance_required_input: \"789\"\n",
"templateMajorVersion": "1",
"templateMinorVersion": "1",
"templateName": "svc-simple"
}
}

Update a service pipeline

Learn to update an AWS Proton service pipeline and cancel the update.

A service pipeline belongs to a service. You can only create or delete a pipeline within the context
of service create and delete actions.

There are four modes for updating a service pipeline as described in the following list. When using
the AWS CLI, the deployment-type field defines the mode. When you use the console, these
modes map to the Edit pipeline and Update to recommended version.

NONE

In this mode, a deployment doesn't occur. Only the requested metadata parameters are
updated.

CURRENT_VERSION

In this mode, the service pipeline is deployed and updated with the new spec that you provide.
Only requested parameters are updated. Don’t include minor or major version parameters when
you use this deployment-type.

MINOR_VERSION

In this mode, the service pipeline is deployed and updated with the published, recommended
(latest) minor version of the current major version in use by default. You can also specify a
different minor version of the current major version in use.

MAJOR_VERSION

In this mode, the service pipeline is deployed and updated with the published, recommended
(latest) major and minor version of the current template by default. You can also specify

Update pipeline 269

AWS Proton User Guide

a different major version that is higher than the major version in use and a minor version
(optional).

You can attempt to cancel a service pipeline update deployment if the deploymentStatus is
IN_PROGRESS. AWS Proton attempts to cancel the deployment. Successful cancellation isn’t
guaranteed.

When you cancel an update deployment, AWS Proton attempts to cancel the deployment as listed
in the following steps.
» Sets the deployment state to CANCELLING.

» Stops the deployment in process and deletes any new resources that were created by the
deployment when IN_PROGRESS.

« Sets the deployment state to CANCELLED.

» Reverts the state of the resource to what it was before the deployment was started.

For more information on cancelling a service pipeline deployment, see
CancelServicePipelineDeployment in the AWS Proton API Reference.

Use the console or AWS CLI to make updates or cancel update deployments.
AWS Management Console
Update a service pipeline using the console as described in the following steps.

1. Inthe AWS Proton console, choose Services.

2. Inthe list of services, choose the name of the service that you want to update the pipeline
for.

3. There are two tabs on the service detail page, Overview and Pipeline. Choose Pipeline.

4. If you want to update specs, choose Edit Pipeline and fill out each form and choose Next
until you complete the final form and then choose Update pipeline.

If you want to update to a new version and there's an information icon that indicates
a new version is available at Pipeline template, choose the name of the new template
version.

a. Choose Update to recommended version.

Update pipeline 270

https://docs.aws.amazon.com/proton/latest/APIReference/API_CancelServicePipelineDeployment.html
https://console.aws.amazon.com/proton/

AWS Proton User Guide

b. Fill out each form and choose Next until you complete the final form and choose
Update.

AWS CLI

Update a service pipeline to a new minor version as shown in the following CLI example
commands and responses.

When you update your service pipeline with a modified spec, you can use

"${Proton: :CURRENT_VAL}" to indicate which parameter values to preserve from the
original spec, if the values exist in the spec. Use get-service to view the original spec for a
service pipeline, as described in View service data.

The following example shows how you can use "${Proton: : CURRENT_VAL}" in a spec.
Spec:

proton: ServiceSpec

pipeline:
my_sample_pipeline_optional_input: "${Proton::CURRENT_VAL}"
my_sample_pipeline_required_input: "${Proton::CURRENT_VAL}"

instances:
- name: "my-instance"
environment: "simple-env"
spec:
my_sample_service_instance_optional_input: "${Proton::CURRENT_VAL}"
my_sample_service_instance_required_input: "${Proton::CURRENT_VAL}"
- name: "my-other-instance"
environment: "simple-env"
spec:
my_sample_service_instance_required_input: "789"

Command: to update

$ aws proton update-service-pipeline \
--service-name "simple-svc" \
--spec "file://service-spec.yaml" \
--template-major-version "1" \
--template-minor-version "1" \

Update pipeline 271

AWS Proton User Guide

--deployment-type "MINOR_VERSION"

Response:

"pipeline": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/pipeline/
alb2c3d4-5678-90ab-cdef-EXAMPLE11111",
"createdAt": "2021-04-02T21:29:59.962000+00:00",
"deploymentStatus": "IN_PROGRESS",
"lastDeploymentAttemptedAt": "2021-04-02T21:39:28.991000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T21:29:59.962000+00:00",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"my-instance\"\n environment: \"MySimpleEnv

\"\n spec:\n my_sample_service_instance_optional_input: \"def
\"\n my_sample_service_instance_required_input: \"456\"\n - name:
\"my-other-instance\"\n environment: \"MySimpleEnv\"\n spec:\n

my_sample_service_instance_required_input: \"789\"\n",

"templateMajorVersion": "1",

"templateMinorVersion": "Q@",

"templateName": "svc-simple"

Command: to get and confirm status

$ aws proton get-service \
--name "simple-svc"

Response:
{
"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc",
"branchName": "main",

"createdAt": "2021-04-02T721:29:59.962000+00:00",
"lastModifiedAt": "2021-04-02T21:30:54.364000+00:00",

"name": "simple-svc",
"pipeline": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/

pipeline",

Update pipeline 272

AWS Proton User Guide

"createdAt": "2021-04-02T721:29:59.962000+00:00",
"deploymentStatus": "SUCCEEDED",

"lastDeploymentAttemptedAt": "2021-04-02T21:39:28.991000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T21:39:28.991000+00:00",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"instance-one\"\n environment: \'"simple-

env\"\n spec:\n my_sample_service_instance_optional_input: \"def

\"\n my_sample_service_instance_required_input: \"456\"\n - name:
\"my-other-instance\"\n environment: \"simple-env\"\n spec:\n
my_sample_service_instance_required_input: \"789\"\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "svc-simple"

},

"repositoryConnectionArn": "arn:aws:codestar-connections:region-

i1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"repositoryId": "repo-name/myorg-myapp",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"instance-one\"\n environment: \'"simple-

env\"\n spec:\n my_sample_service_instance_optional_input: \"def
\"\n my_sample_service_instance_required_input: \"456\"\n - name:
\"my-other-instance\"\n environment: \"simple-env\"\n spec:\n

my_sample_service_instance_required_input: \"789\"\n",
"status": "ACTIVE",
"templateName": "svc-simple"

AWS Management Console
Cancel a service pipeline deployment using the console as shown in the following steps.

1. Inthe AWS Proton console, choose Services in the navigation pane.

2. Inthe list of services, choose the name of the service that has the pipeline with the
deployment update that you want to cancel.

3. Inthe service detail page, choose the Pipeline tab.

4. If your update deployment status is In progress, in the service pipeline detail page, choose
Cancel deployment.

Update pipeline 273

https://console.aws.amazon.com/proton/

AWS Proton User Guide

5. A modal asks you to confirm the cancellation. Choose Cancel deployment.

6. Your update deployment status is set to Cancelling and then Cancelled to complete the
cancellation.

AWS CLI

Cancel an IN_PROGRESS service pipeline deployment update to minor version 2 as shown in
the following CLI example commands and responses.

A wait condition is included in the template used for this example so that the cancellation starts
before the update deployment succeeds.

Command: to cancel

$ aws proton cancel-service-pipeline-deployment \
--service-name "simple-svc"

Response:

"pipeline": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/pipeline",
"createdAt": "2021-04-02T21:29:59.962000+00:00",
"deploymentStatus": "CANCELLING",
"lastDeploymentAttemptedAt": "2021-04-02T22:02:45.095000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T21:39:28.991000+00:00",

"templateMajorVersion": "1",
"templateMinorVersion": "1",
"templateName": "svc-simple"

Command: to get and confirm status

$ aws proton get-service \
--name "simple-svc"

Response:

Update pipeline 274

AWS Proton User Guide

"service": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc",
"branchName": "main",
"createdAt": "2021-04-02T21:29:59.962000+00:00",
"lastModifiedAt": "2021-04-02T21:30:54.364000+00:00",

"name": "simple-svc",
"pipeline": {
"arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/

pipeline",
"createdAt": "2021-04-02T21:29:59.962000+00:00",
"deploymentStatus": "CANCELLED",
"deploymentStatusMessage": "User initiated cancellation.",
"lastDeploymentAttemptedAt": "2021-04-02T22:02:45.095000+00:00",
"lastDeploymentSucceededAt": "2021-04-02T21:39:28.991000+00:00",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"instance-one\"\n environment: \'"simple-

env\"\n spec:\n my_sample_service_instance_optional_input: \"def

\"\n my_sample_service_instance_required_input: \"456\"\n - name:
\"my-other-instance\"\n environment: \"simple-env\"\n spec:\n
my_sample_service_instance_required_input: \"789\"\n",

"templateMajorVersion": "1",

"templateMinorVersion": "1",

"templateName": "svc-simple"

},

"repositoryConnectionArn": "arn:aws:codestar-connections:region-

i1d:123456789012:connection/alb2c3d4-5678-90ab-cdef-EXAMPLE11111",

"repositoryId": "repo-name/myorg-myapp",

"spec": "proton: ServiceSpec\n\npipeline:\n
my_sample_pipeline_optional_input: \"abc\"\n my_sample_pipeline_required_input:
\"123\"\n\ninstances:\n - name: \"instance-one\"\n environment: \'"simple-

env\"\n spec:\n my_sample_service_instance_optional_input: \"def
\"\n my_sample_service_instance_required_input: \"456\"\n - name:
\"my-other-instance\"\n environment: \"simple-env\"\n spec:\n

my_sample_service_instance_required_input: \"789\"\n",
"status": "ACTIVE",
"templateName": "svc-simple"

Update pipeline 275

AWS Proton User Guide

AWS Proton components

Components are a type of AWS Proton resource. They add flexibility to service templates.
Components provide platform teams with a mechanism to extend core infrastructure patterns, and
define safeguards that empower developers to manage aspects of their application infrastructure.

In AWS Proton administrators define standard infrastructure that is used across development
teams and applications. However, development teams might need to include additional resources
for their specific use cases, like Amazon Simple Queue Service (Amazon SQS) queues or Amazon
DynamoDB tables. These application-specific resources might change frequently, particularly
during early application development. Maintaining these frequent changes in administrator
authored templates might be hard to manage and scale—administrators would need to maintain
many more templates without real administrator added value. The alternative—letting application
developers author templates for their applications—isn't ideal either, because it takes away
administrators' ability to standardize the main architecture components, like AWS Fargate tasks.
This is where components come in.

With a component, a developer can add supplemental resources to their application, above and
beyond what administrators defined in environment and service templates. The developer then
attaches the component to a service instance. AWS Proton provisions infrastructure resources
defined by the component just like it provisions resources for environments and service instances.

A component can read service instance inputs and provide outputs to the service instance, for

a fully integrated experience. For example, if the component adds an Amazon Simple Storage
Service (Amazon S3) bucket for use by a service instance, the component template can take the
environment and service instance names into account for naming the bucket. When AWS Proton
renders the service template to provision a service instance, the service instance can refer to the
bucket and use it.

The components that AWS Proton currently supports are directly defined components. You pass the
Infrastructure as Code (laC) file that defines the component's infrastructure directly to the AWS
Proton API or console. This is different than an environment or service, where you define laCin a
template bundle and register the bundle as a template resource, then use a template resource to
create the environment or service.

276

AWS Proton User Guide

® Note

Directly defined components allow developers to define extra infrastructure and provision
it. AWS Proton provisions all directly defined components running in the same environment
using the same AWS Identity and Access Management (IAM) role.

An administrator can control what developers can do with components in two ways:

o Supported component sources — An administrator can allow the attachment of components to
service instances based on a property of AWS Proton service template versions. By default,
developers can't attach components to service instances.

For more information about this property, see the supportedComponentSources parameter of
the CreateServiceTemplateVersion APl action in the AWS Proton API Reference.

® Note

When you use template sync, AWS Proton creates service template versions implicitly
when you commit changes to a service template bundle in a repository. In this case,
instead of specifying supported component sources during service template version
creation, you specify this property in a file associated with each service template major
version. For more information, see the section called “Syncing service templates”.

o Component roles — An administrator can assign a component role to an environment. AWS Proton
assumes this role when it provisions infrastructure defined by directly defined component in the
environment. Therefore, the component role scopes down the infrastructure that developers can
add using directly defined components in the environment. In the absence of the component
role, developers can't create directly defined components in the environment.

For more information about assigning a component role, see the componentRoleArn parameter
of the CreateEnvironment API action in the AWS Proton API Reference.

® Note

Component roles aren't used in Self-managed provisioning environments.

277

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html#proton-CreateServiceTemplateVersion-request-supportedComponentSources
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html#proton-CreateEnvironment-request-componentRoleArn
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html

AWS Proton User Guide

Topics

How do components compare to other AWS Proton resources?

Components in the AWS Proton console
Components in the AWS Proton APl and AWS CLI

Component frequently asked questions

Component states

Component infrastructure as code files

Component AWS CloudFormation example

How do components compare to other AWS Proton resources?

In many ways, components are similar to other AWS Proton resources. Their infrastructure is

defined in an laC template file, authored in either AWS CloudFormation YAML or Terraform

HCL format. AWS Proton can provision component infrastructure using either AWS-managed

provisioning or self-managed provisioning.

Components are, however, different from other AWS Proton resources in a few ways:

Detached state — Components are designed to be attached to service instances and to extend
their infrastructure, but can also be in a detached state, in which they aren't attached to
any service instance. For more information about component states, see the section called

“Component states”.

No schema — Components don't have an associated schema like template bundles have.

Component inputs are defined by a service. A component can consume inputs when it is attached
to a service instance.

No customer-managed components — AWS Proton always provisions component infrastructure for
you. There isn't a bring your own resources version of components. For more information about
customer-managed environments, see the section called “Create”.

No template resource — Directly defined components don't have an associated template resource
similar to environment and service templates. You provide an laC template file directly to the
component. Similarly, you directly provide a manifest that defines the template language and
rendering engine for provisioning the component's infrastructure. You author the template file
and the manifest in a way similar to authoring a template bundle. However, with directly defined

components, there's no requirement to store laC files as bundles in particular locations, and you
don't create a template resource in AWS Proton out of laC files.

Components vs. other resources 278

AWS Proton User Guide

» No CodeBuild-based provisioning — You can't provision directly defined components using your
own custom provisioning script, known as CodeBuild-based provisioning. For more information,
see the section called “CodeBuild provisioning"”.

Components in the AWS Proton console

Use the AWS Proton console to create, update, view, and use AWS Proton components.

The following console pages are related to components. We include direct links to top level console
pages.

« Components — View the list of components in your AWS account. You can create new
components, and update or delete existing components. Choose a component name on the list
to view its details page.

Similar lists exist also on the Environment details and Service instance details pages. These lists
show only the components associated with the resource that is being viewed. When you create a
component from one of these lists, AWS Proton pre-selects the associated environment on the
Create component page.

« Component details — To view the component details page, choose a component name on the
Components list.

On the details page, view the component details and status, and update or delete the
component. View and manage lists of outputs (for example, provisioned resource ARNs),
provisioned AWS CloudFormation stacks, and assigned tags.

» Create component — Create a component. Enter the component name and description, choose

the associated resources, specify the component source laC file, and assign tags.

« Update component - To update a component, select the component on the Components list,
and then, on the Actions menu, choose Update component. Alternatively, on the Component
details pages, choose Update.

You can update most of the component's details. You can't update the component name. And
you can choose whether or not to redeploy the component after a successful update.

» Configure environment — When you create or update an environment, you can specify a
Component role. This role controls the ability to run directly defined components in the
environment and provides permissions for provisioning them.

AWS Proton console 279

https://console.aws.amazon.com/proton/#/components
https://console.aws.amazon.com/proton/#/components
https://console.aws.amazon.com/proton/#/components/create
https://console.aws.amazon.com/proton/#/components

AWS Proton User Guide

« Create new service template version — When you create a service template version, you can
specify Supported component sources for the template version. This controls the ability to
attach components to service instances of services based on this template version.

Components in the AWS Proton APl and AWS CLI

Use the AWS Proton API or the AWS CLI to create, update, view, and use AWS Proton components.
The following API actions directly manage AWS Proton component resources.

» CreateComponent — Create an AWS Proton component.

e DeleteComponent — Delete an AWS Proton component.

« GetComponent — Get detailed data for a component.

« ListComponentOutputs — Get a list of component Infrastructure as Code (laC) outputs.

» ListComponentProvisionedResources — List provisioned resources for a component with details.

» ListComponents - List components with summary data. You can filter the result list by

environment, service, or a single service instance.

The following API actions of other AWS Proton resources have some functionality related to
components.

« CreateEnvironment, UpdateEnvironment — Use componentRoleArn to specify the Amazon

Resource Name (ARN) of the IAM service role that AWS Proton uses when provisioning directly
defined components in this environment. It determines the scope of infrastructure that a directly
defined component can provision.

» CreateServiceTemplateVersion — Use supportedComponentSources to specify supported

component sources. Components with supported sources can be attached to service instances
based on this service template version.

Component frequently asked questions

What is the lifecycle of a component?

Components can be in an attached or detached state. They are designed to be attached to a
service instance and enhance its infrastructure most of the time. Detached components are in a

AWS Proton APl and AWS CLI 280

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateComponent.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_DeleteComponent.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_GetComponent.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_ListComponentOutputs.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_ListComponentProvisionedResources.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_ListComponents.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html

AWS Proton User Guide

transitional state that enables you to delete a component or attach it to another service instance in
a controlled and safe way. For more information, see the section called “Component states".

Why can't | delete my attached components?

Solution: To delete an attached component, update the component to detach it from the service
instance, validate service instance stability, and then delete the component.

Why is this required? Attached components provide extra infrastructure that your application
needs to perform its runtime functions. The service instance might be using component outputs
to detect and use resources of this infrastructure. Deleting the component, thereby removing its
infrastructure resources, could be disruptive to the attached service instance.

As an added safety measure, AWS Proton requires that you update the component and detach it
from its service instance before you can delete it. You can then validate your service instance to
ensure that it continues to deploy and function properly. If you detect an issue, you can quickly
reattach the component to the service instance, then work to fix the issue. When you're confident
that your service instance is clear of any dependency on the component, you can safely delete the
component.

Why can't | change a component's attached service instance directly?

Solution: To change attachment, update the component to detach it from the service instance,
validate component and service instance stability, then attach the component to the new service
instance.

Why is this required? A component is designed to be attached to a service instance. Your
component might use service instance inputs for infrastructure resource naming and configuration.
Changing the attached service instance could be disruptive to the component (in addition to
possible disruption to the service instance, as described in the previous FAQ, Why can't | delete my
attached components?). For example, it might cause renaming, and possibly even replacement, of
resources defined in the component's IaC template.

As an added safety measure, AWS Proton requires that you update the component and detach it
from its service instance before you can attach it to another service instance. You can then validate
the stability of both the component and the service instance before attaching the component to
the new service instance.

Component FAQ 281

AWS Proton User Guide

Component states

AWS Proton components can be in two fundamentally different states:

» Attached - The component is attached to a service instance. It defines infrastructure that
supports the runtime functionality of the service instance. The component extends the
infrastructure defined in environment and service templates with developer-defined
infrastructure.

A typical component is in the attached state throughout most of the useful part of its lifecycle.

o Detached — The component is associated with an AWS Proton environment, and isn't attached to
any service instance in the environment.

This is a transitional state for extending the lifetime of a component beyond a single service
instance.

The following table provides a top level comparison of the different component states.

Attached Detached
State's main To extend the infrastructure of a To maintain the component's
purpose service instance. infrastructure between service

instance attachments.

Associated with A service instance and an environme An environment

nt
Key specific « Service name « Environment name
properties « Service instance name
» Spec
Can be deleted X No v Yes
Can be updated X No v Yes
to another
service instance
Canread inputs v Yes X No

Component states 282

AWS Proton User Guide

A component's main purpose is to be attached to a service instance and extend its infrastructure
with additional resources. An attached component can read inputs from the service instance
according to the spec. You can't directly delete the component or attach it to a different service
instance. You can't delete its service instance or the related service and environment, either. To do
any of these things, update the component to detach it from its service instance first.

To maintain the component's infrastructure beyond the lifetime of a single service instance,

you update the component and detach it from its service instance by removing the service and
service instance names. This detached state is a transitional state. The component has no inputs.
Its infrastructure stays provisioned and you can update it. You can delete resources that the
component was associated with when it was attached (service instance, service). You can delete the
component or update it to be attached to a service instance again.

Component infrastructure as code files

Component infrastructure as code (l1aC) files are similar to those for other AWS Proton resources.
Learn here about some details that are specific to components. For complete information about
authoring laC files for AWS Proton, see Template authoring and bundles.

Using parameters with components

The AWS Proton parameter namespace includes some parameters that a service laC file can
reference to get an associated component's name and outputs. The namespace also includes
parameters that a component IaC file can reference to get inputs, outputs, and resource values
from the environment, service, and service instance that the component is associated with.

A components doesn't have inputs of its own—it gets its inputs from the service instance it's
attached to. A component can also read environment outputs.

For more information about using parameters in component and associated service laC files, see
the section called “Component CloudFormation laC parameters”. For general information about
AWS Proton parameters and a complete reference of the parameter namespace, see the section
called “Parameters”.

Authoring robust laC files

As an administrator, when you create a service template version, you can decide if you want to
allow service instances created from the template version to have attached components. See the
supportedComponentSources parameter of the CreateServiceTemplateVersion APl action in the

Component laC files 283

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html#proton-CreateServiceTemplateVersion-request-supportedComponentSources
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html

AWS Proton User Guide

AWS Proton API Reference. However, for any future service instance, the person who creates the
instance, decides whether or not to attach a component to it, and (in the case of directly defined
components) authors the component laC is typically a different person—a developer using your
service template. Therefore, you can't guarantee that a component would be attached to a service
instance. You also can't guarantee the existence of specific component output names or the validity
and safety of the values of these outputs.

AWS Proton and the Jinja syntax help you work around these issues and author robust service
templates that render without failure in the following ways:

« AWS Proton parameter filters — When you refer to component output properties, you can
use parameter filters—modifiers that validate, filter, and format parameter values. For more
information and examples, see the section called “CloudFormation parameter filters".

 Single property default — When you refer to a single resource or output property of a component,
you can guarantee that rendering your service template won't fail by using the default filter,
with or without a default value. If the component, or a specific output parameter you're referring
to, doesn't exist, the default value (or an empty string, if you haven't specified a default value) is
rendered instead, and rendering succeeds. For more information, see the section called “Provide
default values".

Examples:
o {{ service_instance.components.default.name | default("") }}

o {{ service_instance.components.default.outputs.my-output |
default("17") }3}

® Note

Do not confuse the .default part of the namespace, which designates directly defined
components, with the default filter, which provides a default value when referenced
property doesn't exist.

» Entire object reference — When you refer to the entire component, or to the collection of a
component's outputs, AWS Proton returns an empty object, {}, and therefore guarantees that
rendering your service template won't fail. You don't have to use any filter. Be sure to make the
reference in a context that can take an empty object, orusean {{ if .. }} condition to test
for an empty obiject.

Examples:

Authoring robust laC files 284

AWS Proton User Guide

o {{ service_instance.components.default }}

o {{ service_instance.components.default.outputs }}

Component AWS CloudFormation example

Here is a complete example of an AWS Proton directly defined component and how you can use it
in an AWS Proton service. The component provisions an Amazon Simple Storage Service (Amazon
S3) bucket and related access policy. The service instance can refer to this bucket and use it. The
bucket name is based on the names of the environment, service, service instance, and component,
meaning that the bucket is coupled with a specific instance of the component template extending
a specific service instance. Developers can create multiple components based on this component
template, to provision Amazon S3 buckets for different service instances and functional needs.

The example covers authoring the various required AWS CloudFormation infrastructure as code
(1aC) files and creating a required AWS Identity and Access Management (IAM) role. The example
groups steps by the owning people roles.

Administrator steps

To enable developers to use components with a service

1. Create an AWS Identity and Access Management (IAM) role that scopes down the resources
that directly defined components running in your environment can provision. AWS Proton
assumes this role later to provision directly defined components in the environment.

For this example, use the following policy:

Example directly defined component role

"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"cloudformation:CancelUpdateStack",
"cloudformation:CreateChangeSet",
"cloudformation:DeleteChangeSet",
"cloudformation:DescribeStacks",

Component AWS CloudFormation example 285

AWS Proton User Guide

"cloudformation:ContinueUpdateRollback",
"cloudformation:DetectStackResourceDrift",
"cloudformation:DescribeStackResourceDrifts",
"cloudformation:DescribeStackEvents",
"cloudformation:CreateStack",
"cloudformation:DeleteStack",
"cloudformation:UpdateStack",
"cloudformation:DescribeChangeSet",
"cloudformation:ExecuteChangeSet",
"cloudformation:ListChangeSets",
"cloudformation:ListStackResources"
1,
"Resource": "arn:aws:cloudformation:*:123456789012:stack/AWSProton-*"
.
{
"Effect": "Allow",

"Action": [
"s3:CreateBucket",
"s3:DeleteBucket",
"s3:GetBucket",
"iam:CreatePolicy",
"iam:DeletePolicy",
"iam:GetPolicy",
"iam:ListPolicyVersions",
"iam:DeletePolicyVersion"

1,

"Resource": "*",

"Condition": {
"ForAnyValue:StringEquals": {

"aws:CalledVia": "cloudformation.amazonaws.com"

2. Provide the role you created in the previous step when you create or update the environment.
In the AWS Proton console, specify a Component role on the Configure environment page.
If you're using the AWS Proton API or AWS CLI, specify the componentRoleArn of the
CreateEnvironment or UpdateEnvironment API actions.

3. Create a service template that refers to a directly defined component attached to the service
instance.

Administrator steps 286

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateEnvironment.html

AWS Proton User Guide

The example shows how to write a robust service template that doesn't break if a component
isn't attached to the service instance.

Example service CloudFormation laC file using a component

service/instance_infrastructure/cloudformation.yaml

Resources:
TaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
TaskRoleArn: !Ref TaskRole
ContainerDefinitions:
- Name: '{{service_instance.name}}'
...
% if service_instance.components.default.outputs | length > 0 %}
Environment:
{{ service_instance.components.default.outputs |
proton_cfn_ecs_task_definition_formatted_env_vars }}
{% endif %}

.
TaskRole:
Type: AWS::IAM::Role
Properties:
oo
ManagedPolicyArns:

- IRef BaseTaskRoleManagedPolicy
{{ service_instance.components.default.outputs
| proton_cfn_iam_policy_arns }}

Basic permissions for the task
BaseTaskRoleManagedPolicy:
Type: AWS::IAM::ManagedPolicy
Properties:
...

4. Create a new service template minor version that declares directly defined components as
supported.

Administrator steps 287

AWS Proton User Guide

« Template bundle in Amazon S3 - In the AWS Proton console, when you create a

service template version, for Supported component sources, choose Directly defined.
If you're using the AWS Proton API or AWS CLI, specify DIRECTLY_DEFINED in the
supportedComponentSources parameter of the CreateServiceTemplateVersion or

UpdateServiceTemplateVersion API actions.

« Template sync - Commit a change to your service template bundle repository, where you

specify DIRECTLY_DEFINED as an item of supported_component_sources: in the
.template-registration.yaml file in the major version directory. For more information
about this file, see the section called “Syncing service templates”.

Publish the new service template minor version. For more information, see the section called
“Publish”.

Be sure to allow the proton:CreateComponent in the IAM role of developers that use this
service template.

Developer steps

To use a directly defined component with a service instance

1.

Create a service that uses the service template version that the administrator created with
component support. Alternatively, update one of your existing service instances to use the
latest template version.

Write a component laC template file that provisions an Amazon S3 bucket and a related access
policy and exposes these resources as outputs.

Example component CloudFormation laC file

cloudformation.yaml

A component that defines an S3 bucket and a policy for accessing the bucket.
Resources:
S3Bucket:
Type: 'AWS::S3::Bucket'
Properties:
BucketName: '{{environment.name}}-{{sexvice.name}}-{{service_instance.name}}-
{{component.name}}"’
S3BucketAccessPolicy:
Type: AWS::IAM::ManagedPolicy

Developer steps 288

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateServiceTemplateVersion.html

AWS Proton User Guide

Properties:
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Action:
- 's3:Get*!’
- 's3:List*!'
- 's3:PutObject’
Resource: !GetAtt S3Bucket.Arn
Outputs:
BucketName:
Description: "Bucket to access"
Value: !GetAtt S3Bucket.Arn
BucketAccessPolicyArn:
Value: !Ref S3BucketAccessPolicy

3. If you're using the AWS Proton APl or AWS CLI, write a manifest file for the component.

Example directly defined component manifest

infrastructure:
templates:
- file: "cloudformation.yaml"
rendering_engine: jinja
template_language: cloudformation

4. Create a directly defined component. AWS Proton assumes the component role that the
administrator defined to provision the component.

In the AWS Proton console, on the Components page, choose Create component. For
Component settings, enter a Component name and an optional Component description.
For Component attachment, choose Attach the component to a service instance. Select
your environment, service, and service instance. For Component source, choose AWS
CloudFormation, and then choose the component IaC file.

(@ Note

You don't need to provide a manifest—the console creates one for you.

Developer steps 289

https://console.aws.amazon.com/proton/#/components

AWS Proton User Guide

If you're using the AWS Proton API or AWS CLI, use the CreateComponent API action. Set a
component name and optional description. Set environmentName, serviceName, and
serviceInstanceName. Set templateSource and manifest to the paths of the files you

created.

(@ Note

Specifying an environment name is optional when you specify service and service
instance names. The combination of these two is unique in your AWS account, and
AWS Proton can determine the environment from the service instance.

5. Update your service instance to redeploy it. AWS Proton uses outputs from your component
in the rendered service instance template, to enable your application to use the Amazon S3
bucket that the component provisioned.

Developer steps 290

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateComponent.html

AWS Proton User Guide

Using git repositories with AWS Proton

AWS Proton uses git repositories for a variety of purposes. The following list categorizes the
repository types associated with AWS Proton resources. For AWS Proton features that repeatedly
connect to your repository to either push content to it or pull content from it, you have to register
a repository link with AWS Proton in your AWS account. A repository link is a set of properties that
AWS Proton can use when it connects to a repository. AWS Proton currently supports GitHub,
GitHub Enterprise, and BitBucket.

Developer repositories

Code repository — A repository that developers use to store application code. Used for code
deployment. AWS Proton doesn't interact directly with this repository. When a developer
provisions a service that includes a pipeline, they provide the repository name and branch to
read their application code from. AWS Proton passes this information to the pipeline that it
provisions.

For more information, see the section called “Create”.

Administrator repositories

Template repository — A repository where administrators store AWS Proton template bundles.
Used for template sync. When an administrator creates a template in AWS Proton, they can
point to a template repository, and AWS Proton keeps the new template in sync with it. When
the administrator updates the template bundle in the repository, AWS Proton automatically
creates a new template version. Link a template repository to AWS Proton before you can use it
for syncing.

For more information, see the section called “Template sync configurations”.

® Note

A template repository isn't require