
User Guide

AWS Proton

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS Proton User Guide

AWS Proton: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



AWS Proton User Guide

Table of Contents

What is AWS Proton? ...................................................................................................................... 1
Platform teams ............................................................................................................................................. 1
Developers ...................................................................................................................................................... 2
Workflow ........................................................................................................................................................ 2

Setting up ........................................................................................................................................ 4
Setting up with IAM ..................................................................................................................................... 4

Sign up for AWS ...................................................................................................................................... 5
Create an IAM user ................................................................................................................................. 5
Service roles ............................................................................................................................................. 6

Setting up with AWS Proton ...................................................................................................................... 7
Setting up an Amazon S3 bucket ........................................................................................................ 7
Setting up an AWS CodeStar connection .......................................................................................... 8
Setting up account CI/CD pipeline settings ...................................................................................... 8
Setting up the AWS CLI ....................................................................................................................... 11

Getting started .............................................................................................................................. 12
Prerequisites ................................................................................................................................................ 12
Getting started workflow ......................................................................................................................... 13
Getting started with the console ............................................................................................................ 14

Step 1: Open the AWS Proton console ............................................................................................ 15
Step 2: Prepare to use the example templates .............................................................................. 15
Step 3: Create an environment template ........................................................................................ 15
Step 4: Create a service template ..................................................................................................... 16
Step 5: Create an environment .......................................................................................................... 17
Step 6: Optional - Create a service and deploy an application ................................................... 18
Step 7: Clean up. .................................................................................................................................. 20

Getting started with the CLI .................................................................................................................... 21
1. Register an environment template ............................................................................................... 21
2. Register a service template ........................................................................................................... 22
3. Deploy an environment .................................................................................................................. 23
4. Deploy a service ............................................................................................................................... 24
5. Clean up ............................................................................................................................................. 26

Template library ......................................................................................................................................... 27
How AWS Proton works ................................................................................................................ 28

Objects .......................................................................................................................................................... 29

iii



AWS Proton User Guide

Provisioning methods ................................................................................................................................ 32
AWS-managed provisioning ................................................................................................................ 34
CodeBuild provisioning ........................................................................................................................ 36
Self-managed provisioning ................................................................................................................. 38

AWS Proton terminology .......................................................................................................................... 41
Template authoring and bundles ................................................................................................. 44

Template bundles ....................................................................................................................................... 44
Parameters ................................................................................................................................................... 46

Parameter types .................................................................................................................................... 46
Using parameters .................................................................................................................................. 47
Environment CloudFormation IaC parameters ............................................................................... 51
Service CloudFormation IaC parameters .......................................................................................... 55
Component CloudFormation IaC parameters ................................................................................. 58
CloudFormation parameter filters ..................................................................................................... 61
CodeBuild provisioning parameters .................................................................................................. 69
Terraform IaC parameters ................................................................................................................... 70

Infrastructure as code files ...................................................................................................................... 71
AWS CloudFormation IaC files ........................................................................................................... 72
CodeBuild bundle ............................................................................................................................... 125
Terraform IaC files .............................................................................................................................. 131

Schema file ................................................................................................................................................ 138
Environment schema requirements ................................................................................................ 139
Service schema requirements .......................................................................................................... 143

Manifest and wrap up ............................................................................................................................. 146
Environment template bundle wrap up ........................................................................................ 148
Service template bundle wrap up ................................................................................................... 149

Template bundle considerations .......................................................................................................... 150
Templates ..................................................................................................................................... 151

Versions ...................................................................................................................................................... 152
Publish ........................................................................................................................................................ 154

Publish environment templates ...................................................................................................... 154
Publish service templates ................................................................................................................. 161

View templates ......................................................................................................................................... 170
Update a template .................................................................................................................................. 174
Delete templates ...................................................................................................................................... 176
Template sync configurations ............................................................................................................... 180

iv



AWS Proton User Guide

Pushing a commit ............................................................................................................................... 180
Syncing service templates ................................................................................................................ 180
Template sync considerations .......................................................................................................... 181
Create .................................................................................................................................................... 182
View ....................................................................................................................................................... 188
Edit ......................................................................................................................................................... 189
Delete .................................................................................................................................................... 191

Service sync configurations ................................................................................................................... 191
AWS Proton OPS file ......................................................................................................................... 192
Create .................................................................................................................................................... 195
View ....................................................................................................................................................... 197
Edit ......................................................................................................................................................... 198
Delete .................................................................................................................................................... 199

Environments ............................................................................................................................... 201
IAM Roles ................................................................................................................................................... 201

AWS Proton service role ................................................................................................................... 201
Create ......................................................................................................................................................... 202

Create and provision in the same account .................................................................................... 204
Create in one account and provision in another .......................................................................... 206
Self-managed provisioning ............................................................................................................... 211

View ............................................................................................................................................................ 214
Update ........................................................................................................................................................ 215

Update an AWS managed provisioning environment ................................................................. 216
Update a self-managed provisioning environment ..................................................................... 219
Cancel an environment deployment in progress ......................................................................... 223

Delete ......................................................................................................................................................... 225
Account connections ............................................................................................................................... 227

Create an environment with environment account connections .............................................. 229
Manage environment account connections .................................................................................. 230

Customer-managed ................................................................................................................................. 237
Using customer-managed environments ....................................................................................... 237

CodeBuild provisioning role creation ................................................................................................... 239
Services ........................................................................................................................................ 243

Create ......................................................................................................................................................... 243
What's in a service? ............................................................................................................................ 244
Service templates ............................................................................................................................... 244

v



AWS Proton User Guide

Create a service ................................................................................................................................... 245
View ............................................................................................................................................................ 249
Edit .............................................................................................................................................................. 251

Edit service description ..................................................................................................................... 251
Add or remove service instances ..................................................................................................... 253

Delete ......................................................................................................................................................... 260
View instances .......................................................................................................................................... 261
Update instance ....................................................................................................................................... 263
Update pipeline ........................................................................................................................................ 269

Components ................................................................................................................................. 276
Components vs. other resources .......................................................................................................... 278
AWS Proton console ................................................................................................................................ 279
AWS Proton API and AWS CLI .............................................................................................................. 280
Component FAQ ....................................................................................................................................... 280
Component states .................................................................................................................................... 282
Component IaC files ................................................................................................................................ 283

Using parameters with components .............................................................................................. 283
Authoring robust IaC files ................................................................................................................ 283

Component AWS CloudFormation example ....................................................................................... 285
Administrator steps ............................................................................................................................ 285
Developer steps .................................................................................................................................. 288

Repositories .................................................................................................................................. 291
Create a repository link .......................................................................................................................... 292
View linked repository data ................................................................................................................... 294
Delete a repository link .......................................................................................................................... 296

Monitoring ................................................................................................................................... 298
Automate AWS Proton with EventBridge ........................................................................................... 298

Event types .......................................................................................................................................... 298
AWS Proton event examples ............................................................................................................ 301

EventBridgeTutorial: Send Amazon Simple Notification Service alerts for AWS Proton service 
status changes .......................................................................................................................................... 302

Prerequisites ........................................................................................................................................ 303
Step 1: Create and subscribe to an Amazon SNS topic .............................................................. 303
Step 2: Register an event rule ......................................................................................................... 303
Step 3: Test your event rule ............................................................................................................ 305
Step 4: Clean up ................................................................................................................................. 306

vi



AWS Proton User Guide

AWS Proton dashboard .......................................................................................................................... 307
AWS Proton console .......................................................................................................................... 307

Security ........................................................................................................................................ 310
Identity and Access Management ........................................................................................................ 311

Audience ............................................................................................................................................... 311
Authenticating with identities ......................................................................................................... 312
Managing access using policies ....................................................................................................... 315
How AWS Proton works with IAM .................................................................................................. 317
Policy examples .................................................................................................................................. 325
AWS managed policies ...................................................................................................................... 338
Using service-linked roles ................................................................................................................. 354
Troubleshooting .................................................................................................................................. 362

Configuration and vulnerability analysis ............................................................................................ 363
Data protection ........................................................................................................................................ 364

Server side encryption at rest ......................................................................................................... 365
Encryption in transit .......................................................................................................................... 365
AWS Proton encryption key management .................................................................................... 365
AWS Proton encryption context ...................................................................................................... 365

Infrastructure security ............................................................................................................................. 367
VPC endpoints (AWS PrivateLink) ................................................................................................... 367

Logging and monitoring ........................................................................................................................ 369
Resilience ................................................................................................................................................... 370

AWS Proton backups ......................................................................................................................... 370
Security best practices ............................................................................................................................ 371

Use IAM to control access ................................................................................................................ 371
Do not embed credentials in your templates and template bundles ...................................... 371
Use encryption to protect sensitive data ...................................................................................... 372
Use AWS CloudTrail to view and log API calls ............................................................................. 372

Cross-service confused deputy prevention ......................................................................................... 372
Codebuild custom support .................................................................................................................... 373

Updating the Environment Template ............................................................................................. 374
Tagging ......................................................................................................................................... 378

AWS tagging ............................................................................................................................................. 378
AWS Proton tagging ................................................................................................................................ 379

AWS Proton AWS managed tags ..................................................................................................... 379
Tag propagation to provisioned resources .................................................................................... 380

vii



AWS Proton User Guide

Customer managed tags ................................................................................................................... 383
Create tags using the console and CLI .......................................................................................... 383
Create tags using the AWS Proton AWS CLI ................................................................................. 385

Troubleshooting ........................................................................................................................... 386
Deployment errors that reference AWS CloudFormation dynamic parameters .......................... 386

AWS Proton quotas ..................................................................................................................... 388
Document history ........................................................................................................................ 389
AWS Glossary ............................................................................................................................... 394

viii



AWS Proton User Guide

What is AWS Proton?

AWS Proton is:

• Automated infrastructure as code provisioning and deployment of serverless and container-
based applications

The AWS Proton service is a two-pronged automation framework. As an administrator, you 
create versioned service templates that define standardized infrastructure and deployment 
tooling for serverless and container-based applications. As an application developer, you can 
select from the available service templates to automate your application or service deployments.

AWS Proton identifies all existing service instances that are using an outdated template version 
for you. As an administrator, you can request AWS Proton to upgrade them with one click.

• Standardized infrastructure

Platform teams can use AWS Proton and versioned infrastructure as code templates. They 
can use these templates to define and manage standard application stacks that contain the 
architecture, infrastructure resources, and the CI/CD software deployment pipeline.

• Deployments integrated with CI/CD

When developers use the AWS Proton self-service interface to select a service template, they're 
selecting a standardized application stack definition for their code deployments. AWS Proton 
automatically provisions the resources, configures the CI/CD pipeline, and deploys the code into 
the defined infrastructure.

AWS Proton for platform teams

As an administrator, you or members of your platform team, create environment templates and
service templates containing infrastructure as code. The environment template defines shared 
infrastructure used by multiple applications or resources. The service template defines the type 
of infrastructure that's needed to deploy and maintain a single application or microservice in 
an environment. An AWS Proton service is an instantiation of a service template, which normally 
includes several service instances and a pipeline. An AWS Proton service instance is an instantiation 
of a service template in a specific environment. You or others in your team can specify which
environment templates are compatible with a given service template. For more information about
templates, see AWS Proton templates.

Platform teams 1



AWS Proton User Guide

You can use the following infrastructure as code providers with AWS Proton:

• AWS CloudFormation

• Terraform

AWS Proton for developers

As an application developer, you select a standardized service template that AWS Proton uses to 
create a service that deploys and manages your application in a service instance. An AWS Proton
service is an instantiation of a service template, which normally includes several service instances
and a pipeline.

AWS Proton workflow

The following diagram is a visualization of the main AWS Proton concepts discussed in the 
preceding paragraph. It also offers a high-level overview of what constitutes a simple AWS Proton 
workflow.

As 
an Administrator, you create and register an Environment Template with AWS Proton, which 
defines the shared resources.

Developers 2

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://www.terraform.io/


AWS Proton User Guide

AWS 
Proton deploys one or more Environments, based on an Environment Template.

As an Administrator, you create and register a Service Template with AWS Proton, which defines 
the related infrastructure, monitoring, and CI/CD resources as well as compatible Environment 
Templates.

As a Developer, you select a registered Service Template and provide a link to your Source code
repository.

AWS Proton provisions the Service with a CI/CD Pipeline for your Service instances.

AWS Proton provisions and manages the Service and the Service Instances that are running 
the Source code as was defined in the selected Service Template. A Service Instance is an 
instantiation of the selected Service Template in an Environment for a single stage of a Pipeline
(for example Prod).

Workflow 3



AWS Proton User Guide

Setting up

Complete the tasks in this section so that you can create and register service and environment 
templates. You need these to deploy environments and services with AWS Proton.

Note

We're offering AWS Proton at no additional expense. You can create, register, and maintain 
service and environment templates at no charge. You can also count on AWS Proton to self-
manage its own operations, such as storage, security, and deployment. The only expenses 
that you incur while using AWS Proton are the following.

• Costs of deploying and using AWS Cloud resources that you instructed AWS Proton to 
deploy and maintain for you.

• Costs of maintaining an AWS CodeStar connection to your code repository.

• Costs of maintaining an Amazon S3 bucket, if you use a bucket to provide inputs to AWS 
Proton. You can avoid these costs if you switch to the section called “Template sync 
configurations” using Git repositories for your the section called “Template bundles”.

Topics

• Setting up with IAM

• Setting up with AWS Proton

Setting up with IAM

When you sign up for AWS, your AWS account is automatically signed up for all services in AWS, 
including AWS Proton. You're charged only for the services and resources that you use.

Note

You and your team, including administrators and developers, must all be under the same 
account.

Setting up with IAM 4



AWS Proton User Guide

Sign up for AWS

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

Create an IAM user

To create an administrator user, choose one of the following options.

Choose 
one 
way to 
manage 
your 
administr 
ator

To By You can also

In IAM 
Identity 
Center

(Recommen 
ded)

Use short-term 
credentials to access 
AWS.

This aligns with the 
security best practices 
. For information 
about best practices 
, see Security best 

Following the instructions 
in Getting started in the
AWS IAM Identity Center 
User Guide.

Configure programmatic 
access by Configuring the 
AWS CLI to use AWS IAM 
Identity Center in the AWS 
Command Line Interface User 
Guide.

Sign up for AWS 5

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html


AWS Proton User Guide

Choose 
one 
way to 
manage 
your 
administr 
ator

To By You can also

practices in IAM in the
IAM User Guide.

In IAM

(Not 
recommend 
ed)

Use long-term 
credentials to access 
AWS.

Following the instructions 
in Creating your first IAM 
admin user and user group
in the IAM User Guide.

Configure programmatic 
access by Managing access 
keys for IAM users in the IAM 
User Guide.

Setting up AWS Proton service roles

There are a few IAM roles that you might want to create for different parts of your AWS Proton 
solution. You can create them in advance using the IAM console, or you can use the AWS Proton 
console to create them for you.

Create AWS Proton environment roles to allow AWS Proton to make API calls to other AWS services, 
like AWS CloudFormation, AWS CodeBuild, and various compute and storage services, on your 
behalf to provision resources for you. A AWS-managed provisioning role is required when an 
environment or any of the service instances running in it use AWS-managed provisioning. A
CodeBuild role is required when an environment or any of its service instances use CodeBuild 
provisioning. To learn more about the AWS Proton environment roles, see the section called 
“IAM Roles”. When you create an environment, you can use the AWS Proton console to choose an 
existing role for either of these two roles, or to create a role with administrative privileges for you.

Similarly, create AWS Proton pipeline roles to allow AWS Proton to make API calls to other services 
on your behalf to provision a CI/CD pipeline for you. To learn more about the AWS Proton pipeline 
roles, see the section called “Pipeline service roles”. For more information about configuring CI/CD 
settings, see the section called “Setting up account CI/CD pipeline settings”.

Service roles 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html


AWS Proton User Guide

Note

Because we don't know which resources you will define in your AWS Proton templates, 
the roles that you create using the console have broad permissions and can be used 
as both the AWS Proton pipeline service roles and the AWS Proton service roles. For 
production deployments, we recommend that you scope down the permissions to the 
specific resources that will be deployed by creating customized policies for both the AWS 
Proton pipeline service roles and the AWS Proton environment service roles. You can create 
and customize these roles by using the AWS CLI or IAM. For more information, see Service 
roles for AWS Proton and Create a service.

Setting up with AWS Proton

If you want to use the AWS CLI to run AWS Proton APIs, verify that you have installed it. If you 
haven’t installed it, see Setting up the AWS CLI.

AWS Proton specific configuration:

• To create and manage templates:

• If you're using template sync configurations, set up an AWS CodeStar connection.

• Otherwise, set up an Amazon S3 bucket.

• To provision infrastructure:

• For self-managed provisioning, you must set up an AWS CodeStar connection.

• (Optional) To provision pipelines:

• For AWS-managed provisioning and CodeBuild-based provisioning, set up pipeline roles.

• For self-managed provisioning, set up a pipeline repository.

For more information about provisioning methods, see the section called “AWS-managed 
provisioning”.

Setting up an Amazon S3 bucket

To set up an S3 bucket, follow the instructions at Create your first S3 bucket to set up an S3 
bucket. Place your inputs to AWS Proton in the bucket where AWS Proton can retrieve them. These 

Setting up with AWS Proton 7

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html


AWS Proton User Guide

inputs are known as template bundles. You can learn more about them in other sections of this 
guide.

Setting up an AWS CodeStar connection

To connect AWS Proton to a repository, you create an AWS CodeStar connection that activates a 
pipeline when a new commit is made on a third-party source code repository.

AWS Proton uses the connection to:

• Activate a service pipeline when a new commit is made on your repository source code.

• Make a pull request on an infrastructure as code repository.

• Create a new template minor or major version whenever a commit is pushed to a template 
repository that changes one of your templates, if the version doesn’t already exist.

You can connect to Bitbucket, GitHub, GitHub Enterprise and GitHub Enterprise Server repositories 
with CodeConnections. For more information, see CodeConnections in the AWS CodePipeline User 
Guide.

To set up a CodeStar connection.

1. Open the AWS Proton console.

2. In the navigation pane, select Settings and then Repository connections to take you to the
Connections page in Developer Tools Settings. The page displays a list of connections.

3. Choose Create connection and follow the instructions.

Setting up account CI/CD pipeline settings

AWS Proton can provision CI/CD pipelines for deploying application code into your service 
instances. The AWS Proton settings you need for pipeline provisioning depend on the provisioning 
method you choose for your pipeline.

AWS-managed and CodeBuild-based provisioning—set up pipeline roles

With AWS-managed provisioning and CodeBuild provisioning, AWS Proton provisions pipelines 
for you. Therefore, AWS Proton needs a service role that provides permissions for provisioning 
pipelines. Each one of these two provisioning methods uses its own service role. These roles are 

Setting up an AWS CodeStar connection 8

https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://console.aws.amazon.com/proton/


AWS Proton User Guide

shared across all AWS Proton service pipelines and you configure them once in your account 
settings.

To create pipeline service roles using the console

1. Open the AWS Proton console.

2. In the navigation pane, choose Settings, and then choose Account settings.

3. In the Account CI/CD settings page, choose Configure.

4. Do one of the following:

• To have AWS Proton create a pipeline service role for you

[To enable AWS-managed provisioning of pipelines] In the Configure account settings
page, in the AWS-managed provisioning pipeline role section:

a. Select New service role.

b. Enter a name for the role, for example, myProtonPipelineServiceRole.

c. Check the check box to agree to create an AWS Proton role with administrative 
privileges in your account.

[To enable CodeBuild-based provisioning of pipelines] In the Configure account settings
page, in the CodeBuild pipeline role section, choose Existing service role, and choose the 
service role that you created in the CloudFormation pipeline role section. Or, if you did 
not assign a CloudFormation pipeline role, repeat the previous three steps to create a new 
service role.

• To choose existing pipeline service roles

[To enable AWS-managed provisioning of pipelines] In the Configure account settings
page, in the AWS-managed provisioning pipeline role section, choose Existing service 
role, and choose a service role in your AWS account.

[To enable CodeBuild provisioning of pipelines] In the Configure account settings page, 
in the CodeBuild pipeline provisioning role section, choose Existing service role, and 
choose a service role in your AWS account.

5. Choose Save changes.

Your new pipeline service role is displayed on the Account settings page.

Setting up account CI/CD pipeline settings 9

https://console.aws.amazon.com/proton/


AWS Proton User Guide

Self-managed provisioning—set up a pipeline repository

With self-managed provisioning, AWS Proton sends a pull request (PR) to a provisioning repository 
that you have set up, and your automation code is responsible for provisioning pipelines. Therefore, 
AWS Proton doesn't need a service role to provision pipelines. Instead, it needs a registered 
provisioning repository. Your automation code in the repository has to assume an appropriate role 
that provides permissions for provisioning pipelines.

To register a pipeline provisioning repository using the console

1. Create a CI/CD pipeline provisioning repository if you haven't yet created one. For more 
information about pipelines in self-managed provisioning, see the section called “Self-
managed provisioning”.

2. In the navigation pane, choose Settings, and then choose Account settings.

3. In the Account CI/CD settings page, choose Configure.

4. In the Configure account settings page, in the CI/CD pipeline repository section:

a. Select New repository, and then choose one of the repository providers.

b. For CodeStar connection, choose one of your connections.

Note

If you don't yet have a connection to the relevant repository provider account, 
choose Add a new CodeStar connection, complete the connection creation 
process, and then choose the refresh button next to the CodeStar connection
menu. You should now be able to choose your new connection in the menu.

c. For Repository name, choose your pipeline provisioning repository. The drop-down menu 
shows the list of repositories in the provider account.

d. For Branch name, choose one of the repository branches.

5. Choose Save changes.

Your pipeline repository is displayed on the Account settings page.

Setting up account CI/CD pipeline settings 10



AWS Proton User Guide

Setting up the AWS CLI

To use the AWS CLI to make AWS Proton API calls, verify that you have installed the latest version 
of the AWS CLI. For more information, see Getting started with the AWS CLI in the AWS Command 
Line Interface User Guide. Then, to get started using the AWS CLI with AWS Proton, see the section 
called “Getting started with the CLI”.

Setting up the AWS CLI 11

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html


AWS Proton User Guide

Getting started with AWS Proton

Before getting started, get set up to use AWS Proton and verify you have met the Getting started 
prerequisites.

Get started with AWS Proton by choosing one or more of the following paths:

• Follow a guided example console or CLI workflow through documentation links.

• Run through a guided example console workflow.

• Run through a guided example AWS CLI workflow.

Topics

• Prerequisites

• Getting started workflow

• Getting started with the AWS Management Console

• Getting started with the AWS CLI

• The AWS Proton template library

Prerequisites

Before you start using AWS Proton, make sure that the following prerequisites are met. For more 
information, see Setting up.

• You have an IAM account with administrator permissions. For more information, see Setting up 
with IAM.

• You have the AWS Proton service role and the AWS Proton pipeline service role are attached to 
your account. For more information, see Setting up AWS Proton service roles and Service roles 
for AWS Proton.

• You have an AWS CodeStar connection. For more information, see Setting up an AWS CodeStar 
connection.

• You're familiar with creating AWS CloudFormation templates and Jinja parameterization. For 
more information, see What is AWS CloudFormation? in the AWS CloudFormation User Guide  and
Jinja website.

Prerequisites 12

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://palletsprojects.com/p/jinja/


AWS Proton User Guide

• You have working knowledge of AWS infrastructure services.

• You're logged into your AWS account.

Getting started workflow

Learn to create template bundles, create and register templates, and create environments and 
services by following the example steps and links.

Before starting, verify that you created an AWS Proton service role.

If your service template includes an AWS Proton service pipeline, verify that you created an AWS 
CodeStar connection and a AWS Proton pipeline service role.

For more information, see The AWS Proton service API Reference.

Example: Getting started workflow

1. Refer to the diagram in How AWS Proton works for a high-level view of AWS Proton inputs and 
outputs.

2. Create an environment bundle and a service template bundle.

a. Identify input parameters.

b. Create a schema file.

c. Create infrastructure as code (IaC) files.

d. To wrap up your template bundle, create a manifest file and organize your IaC files, 
manifest files, and schema file in directories.

e. Make your template bundle accessible to AWS Proton.

3. Create and register an environment template version with AWS Proton.

When you use the console to create and register a template, a template version is 
automatically created.

When you use the AWS CLI to create and register a template:

a. Create an environment template.

b. Create an environment template version.

Getting started workflow 13

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html


AWS Proton User Guide

For more information, see CreateEnvironmentTemplate and
CreateEnvironmentTemplateVersion in the AWS Proton API reference.

4. Publish your environment template to make it available for use.

For more information, see UpdateEnvironmentTemplateVersion in the AWS Proton API 
reference.

5. To create an environment, select a published environment template version and provide values 
for required inputs.

For more information, see CreateEnvironment in the AWS Proton API reference.

6. Create and register a service template version with AWS Proton.

When you use the console to create and register a template, a template version is 
automatically created.

When you use the AWS CLI to create and register a template:

a. Create a service template.

b. Create a service template version.

For more information, see CreateServiceTemplate and CreateServiceTemplateVersion in the
AWS Proton API reference.

7. Publish your service template to make it available for use.

For more information, see UpdateServiceTemplateVersion in the AWS Proton API reference.

8. To create a service, select a published service template version and provide values for required 
inputs.

For more information, see CreateService in the AWS Proton API reference.

Getting started with the AWS Management Console

Get started with AWS Proton

• Create and view an environment template.

Getting started with the console 14

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironmentTemplate.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironmentTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateEnvironmentTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplate.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateService.html


AWS Proton User Guide

• Create, view, and publish a service template that uses the environment template that you just 
created.

• Create an environment and service (optional).

• Delete the service template, environment template, environment and service, if created.

Step 1: Open the AWS Proton console

• Open the AWS Proton console

Step 2: Prepare to use the example templates

1. Create a Codestar Connection to Github and name the connection my-proton-connection.

2. Navigate to https://github.com/aws-samples/aws-proton-cloudformation-sample-templates

3. Create a fork of the repository in your Github account.

Step 3: Create an environment template

In the navigation pane, choose Environment templates.

1. In the Environment templates page, choose Create Environment template.

2. In the Create environment template page, in the Template options section, choose Create a 
template for provisioning new environments.

3. In the Template bundle source section, choose Sync a template bundle from Git.

4. In the Template definition repository section, select Choose a linked Git repository.

5. Select my-proton-connection from the Repository list.

6. Select main from the Branch list.

7. In the Proton environment template details section.

a. Enter the template name as fargate-env.

b. Enter the environment template display name as My Fargate Environment.

c. (Optional) Enter a description for the environment template.

8. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

Step 1: Open the AWS Proton console 15

https://console.aws.amazon.com/proton/
https://github.com/aws-samples/aws-proton-cloudformation-sample-templates


AWS Proton User Guide

9. Choose Create Environment template.

You're now on a new page that displays the status and details for your new environment 
template. These details include a list of AWS and customer managed tags. AWS Proton 
automatically generates AWS managed tags for you when you create AWS Proton resources. 
For more information, see AWS Proton resources and tagging.

10. The status of a new environment template status starts in the Draft state. You and others with
proton:CreateEnvironment permissions can view and access it. Follow the next step to 
make the template available to others.

11. In the Template versions section, choose the radio button to the left of the minor version of 
the template you just created (1.0). As an alternative, you can choose Publish in the info alert 
banner and skip the next step.

12. In the Template versions section, choose Publish.

13. The template status changes to Published. Because it's the latest version of the template, it's 
the Recommended version.

14. In the navigation pane, select Environment templates.

A new page displays a list of your environment templates along with template details.

Step 4: Create a service template

Create a service template.

1. In the navigation pane, choose Service templates.

2. In the Service templates page, choose Create Service template.

3. In the Create service template page, in the Template bundle source section, choose Sync a 
template bundle from Git.

4. In the Template  section, select Choose a linked Git repository.

5. Select my-proton-connection from the Repository list.

6. Select main from the Branch list.

7. In the Proton service template details section.

a. Enter the service template name as backend-fargate-svc.

b. Enter the service template display name as My Fargate Service.

c. (Optional) Enter a description for the service template.

Step 4: Create a service template 16



AWS Proton User Guide

8. In the Compatible environment templates section.

• Check the check-box to the left of the environment template My Fargate Environment to 
select the compatible environment template for the new service template.

9. For Encryption settings, keep the defaults.

10. In the Pipeline definition section.

• Keep the This template includes a CI/CD pipeline button selected.

11. Choose Create service template.

You're now on a new page that displays the status and details for your new service template, 
including a list of AWS and customer managed tags.

12. The status of a new service template status starts in the Draft state. Only administrators can 
view and access it. To make the service template available for use by developers, follow the 
next step.

13. In the Template versions section, choose the radio button to the left of the minor version of 
the template you just created (1.0). As an alternative, you can choose Publish in the info alert 
banner and skip the next step.

14. In the Template versions section, choose Publish.

15. The template status changes to Published.

The first minor version of your service template is published and available for use by 
developers. Because it's the latest version of the template, it's the Recommended version.

16. In the navigation pane, choose Service templates.

A new page displays a list of your service templates and details.

Step 5: Create an environment

In the navigation pane, choose Environments.

1. Choose Create environment.

2. In the Choose an environment template page, select the template that you just created. It's 
named My Fargate Environment. Then, choose Configure.

3. In the Configure environment page, in the Provisioning section, choose Provision through 
AWS Proton.

Step 5: Create an environment 17



AWS Proton User Guide

4. In the Deployment account section, select This AWS account.

5. In Environment Settings, enter the environment name as my-fargate-environment.

6. In the Environment roles section, select New service role or, if you have already created an 
AWS Proton service role, select Existing service role.

a. Select New service role to create a new role.

i. Enter the Environment role name as MyProtonServiceRole.

ii. Check the check box to agree to create an AWS Proton service role with administrative 
privileges for your account.

b. Select Existing service role to use an existing role.

• Select your role in the Environment role name drop down field.

7. Choose Next.

8. On the Configure custom settings page, use the defaults.

9. Choose Next and review your inputs.

10. Choose Create.

View the environment details and status, as well as the AWS managed tags and customer 
managed tags for your environment.

11. In the navigation pane, choose Environments.

A new page displays a list of your environments along with the status and other environment 
details.

Step 6: Optional - Create a service and deploy an application

1. Open the AWS Proton console.

2. In the navigation pane, choose Services.

3. In the Services page, choose Create service.

4. In the Choose a service template page, select the My Fargate Service template by choosing 
the radio button at the top-right corner of the template card.

5. Choose Configure at the lower right corner of the page.

6. In the Configure service page, in the Service settings section, enter the service name my-
service.

Step 6: Optional - Create a service and deploy an application 18

https://console.aws.amazon.com/proton/


AWS Proton User Guide

7. (Optional) Enter a description for the service.

8. In the Service repository settings section:

a. For CodeStar connection, choose your connection from the list.

b. For Repository name, choose the name of your source code repository from the list.

c. For Branch name, choose the name of your source code repository branch from the list.

9. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag. Then choose Next.

10. In the Configure custom settings page, in the Service instances section, in the New instance
section, follow the next steps to provide custom values for your service instance parameters.

a. Enter the instance name my-app-service.

b. Choose the environment my-fargate-environment for your service instance.

c. Keep the defaults for the remaining instance parameters.

d. Keep the defaults for Pipeline inputs.

e. Choose Next and review your inputs.

f. Choose Create and view your service status and details.

11. In the service details page, view the status of your service instance and pipeline by choosing 
the Overview and Pipeline tabs. On these pages you can also view AWS and customer 
managed tags. AWS Proton automatically creates AWS managed tags for you. Choose Manage 
tags to create and modify customer managed tags. For more information about tagging, see
AWS Proton resources and tagging.

12. After the service is Active, in the Overview tab, in the Service Instances section, choose the 
name of your service instance, my-app-service.

You are now on the service instance detail page.

13. To view your application, in the Outputs section, copy the ServiceEndpoint link to your 
browser.

You see an AWS Proton graphic in the web page.

14. After the service is created, in the navigation pane, choose Services to view a list of your 
services.

Step 6: Optional - Create a service and deploy an application 19



AWS Proton User Guide

Step 7: Clean up.

1. Open the AWS Proton console.

2. Delete a service (if you created one)

a. In the navigation pane, choose Services.

b. In the Services page, choose the service name my-service.

You're now on the service detail page for my-service.

c. In the upper right-hand corner of the page, choose Actions and then Delete.

d. A modal prompts you to confirm the delete action.

e. Follow the instructions and choose Yes, delete.

3. Delete an environment

a. In the navigation pane, choose Environments.

b. In the Environments page, select the radio button the left of the environment that you 
just created.

c. Choose Actions, then Delete.

d. A modal prompts you to confirm the delete action.

e. Follow the instructions and choose Yes, delete.

4. Delete a service template

a. In the navigation pane, choose Service templates.

b. In the Service templates page, select the radio button to the left of service template my-
svc-template.

c. Choose Actions, then Delete.

d. A modal prompts you to confirm the delete action.

e. Follow the instructions and choose Yes, delete. This deletes the service template and all 
of its versions.

5. Delete an environment template

a. In the navigation pane, choose Environment templates.

b. In the Environment templates page, select the radio button to the left of my-env-
template.

c. Choose Actions, then Delete.

Step 7: Clean up. 20

https://console.aws.amazon.com/proton/


AWS Proton User Guide

d. A modal prompts you to confirm the delete action.

e. Follow the instructions and choose Yes, delete. This deletes the environment template 
and all of its versions.

6. Delete your Codestar Connection

Getting started with the AWS CLI

To get started with AWS Proton using the AWS CLI, follow this tutorial. The tutorial demonstrates a 
public facing load-balanced AWS Proton service based on AWS Fargate. The tutorial also provisions 
a CI/CD pipeline that deploys a static website with a displayed image.

Before you start, be sure you are set up correctly. For details, see the section called “Prerequisites”.

Step 1: Register an environment template

In this step, as an administrator, you register an example environment template, which contains 
an Amazon Elastic Container Service (Amazon ECS) cluster and an Amazon Virtual Private Cloud 
(Amazon VPC) with two public/private subnets.

To register an environment template

1. Fork the AWS Proton Sample CloudFormation Templates repository into your GitHub account 
or organization. This repository includes the environment and service templates that we use in 
this tutorial.

Then, register your forked repository with AWS Proton. For more information, see the section 
called “Create a repository link”.

2. Create an environment template.

The environment template resource tracks environment template versions.

$ aws proton create-environment-template \ 
  --name "fargate-env" \ 
  --display-name "Public VPC Fargate" \ 
  --description "VPC with public access and ECS cluster"

3. Create a template sync configuration.

Getting started with the CLI 21

https://github.com/aws-samples/aws-proton-cloudformation-sample-templates/


AWS Proton User Guide

AWS Proton sets up a sync relationship between your repository and your environment 
template. It then creates template version 1.0 in DRAFT status.

$ aws proton create-template-sync-config \ 
  --template-name "fargate-env" \ 
  --template-type "ENVIRONMENT" \ 
  --repository-name "your-forked-repo" \ 
  --repository-provider "GITHUB" \ 
  --branch "your-branch" \ 
  --subdirectory "environment-templates/fargate-env"

4. Wait for the environment template version to be successfully registered.

When this command returns with an exit status of 0, version registration is complete. This is 
useful in scripts to ensure you can successfully run the command in the next step.

$ aws proton wait environment-template-version-registered \ 
  --template-name "fargate-env" \ 
  --major-version "1" \ 
  --minor-version "0"

5. Publish the environment template version to make it available for environment creation.

$ aws proton update-environment-template-version \ 
  --template-name "fargate-env" \ 
  --major-version "1" \ 
  --minor-version "0" \ 
  --status "PUBLISHED"

Step 2: Register a service template

In this step, as an administrator, you register an example service template, which contains all the 
resources required to provision an Amazon ECS Fargate service behind a load balancer and a CI/CD 
pipeline that uses AWS CodePipeline.

To register a service template

1. Create a service template.

The service template resource tracks service template versions.

2. Register a service template 22



AWS Proton User Guide

$ aws proton create-service-template \ 
  --name "load-balanced-fargate-svc" \ 
  --display-name "Load balanced Fargate service" \ 
  --description "Fargate service with an application load balancer"

2. Create a template sync configuration.

AWS Proton sets up a sync relationship between your repository and your service template. It 
then creates template version 1.0 in DRAFT status.

$ aws proton create-template-sync-config \ 
  --template-name "load-balanced-fargate-svc" \ 
  --template-type "SERVICE" \ 
  --repository-name "your-forked-repo" \ 
  --repository-provider "GITHUB" \ 
  --branch "your-branch" \ 
  --subdirectory "service-templates/load-balanced-fargate-svc"

3. Wait for the service template version to be successfully registered.

When this command returns with an exit status of 0, version registration is complete. This is 
useful in scripts to ensure you can successfully run the command in the next step.

$ aws proton wait service-template-version-registered \ 
  --template-name "load-balanced-fargate-svc" \ 
  --major-version "1" \ 
  --minor-version "0"

4. Publish the service template version to make it available for service creation.

$ aws proton update-service-template-version \ 
  --template-name "load-balanced-fargate-svc" \ 
  --major-version "1" \ 
  --minor-version "0" \ 
  --status "PUBLISHED"

Step 3: Deploy an environment

In this step, as an administrator, you instantiate an AWS Proton environment from the environment 
template.

3. Deploy an environment 23



AWS Proton User Guide

To deploy an environment

1. Get an example spec file for the environment template that you registered.

You can download the file environment-templates/fargate-env/spec/spec.yaml
from the template example repository. Alternatively, you can fetch the entire repository locally 
and run the create-environment command from the environment-templates/fargate-
env directory.

2. Create an environment.

AWS Proton reads input values from your environment spec, combines them with your 
environment template, and provisions environment resources in your AWS account using your 
AWS Proton service role.

$ aws proton create-environment \ 
  --name "fargate-env-prod" \ 
  --template-name "fargate-env" \ 
  --template-major-version 1 \ 
  --proton-service-role-arn "arn:aws:iam::123456789012:role/AWSProtonServiceRole" \ 
  --spec "file://spec/spec.yaml"

3. Wait for the environment to successfully deploy.

$ aws proton wait environment-deployed --name "fargate-env-prod"

Step 4: Deploy a service [application developer]

In the previous steps, an administrator registered and published a service template and deployed 
an environment. As an application developer, you can now create an AWS Proton service and 
deploy it into the AWS Proton environment

To deploy a service

1. Get an example spec file for the service template that the administrator registered.

You can download the file service-templates/load-balanced-fargate-svc/spec/
spec.yaml from the template example repository. Alternatively, you can fetch the entire 
repository locally and run the create-service command from the service-templates/
load-balanced-fargate-svc directory.

4. Deploy a service 24



AWS Proton User Guide

2. Fork the AWS Proton Sample Services repository into your GitHub account or organization. 
This repository includes the application source code that we use in this tutorial.

3. Create a service.

AWS Proton reads input values from your service spec, combines them with your service 
template, and provisions service resources in your AWS account in the environment that is 
specified in the spec. An AWS CodePipeline pipeline deploys your application code from the 
repository that you specify in the command.

$ aws proton create-service \ 
  --name "static-website" \ 
  --repository-connection-arn \ 
    "arn:aws:codestar-connections:us-east-1:123456789012:connection/your-codestar-
connection-id" \ 
  --repository-id "your-GitHub-account/aws-proton-sample-services" \ 
  --branch-name "main" \ 
  --template-major-version 1 \ 
  --template-name "load-balanced-fargate-svc" \ 
  --spec "file://spec/spec.yaml"

4. Wait for the service to successfully deploy.

$ aws proton wait service-created --name "static-website"

5. Retrieve outputs and view your new website.

Run the following command:

$ aws proton list-service-instance-outputs \ 
  --service-name "static-website" \ 
  --service-instance-name load-balanced-fargate-svc-prod

The command's output should be similar to the following:

{ 
    "outputs": [ 
        { 
            "key": "ServiceURL", 
            "valueString": "http://your-service-endpoint.us-
east-1.elb.amazonaws.com" 
        } 

4. Deploy a service 25

https://github.com/aws-samples/aws-proton-sample-services/


AWS Proton User Guide

    ]
}

The value of the ServiceURL instance output is the endpoint to your new service website. 
Use your browser to navigate to it. You should see the following graphic on a static page:

Step 5: Clean up (optional)

In this step, when you're done exploring the AWS resources that you created as part of this tutorial, 
and to save on costs associated with these resources, you delete them.

To delete tutorial resources

1. To delete the service, run the following command:

$ aws proton delete-service --name "static-website"

5. Clean up 26



AWS Proton User Guide

2. To delete the environment, run the following command:

$ aws proton delete-environment --name "fargate-env-prod"

3. To delete the service template, run the following commands:

$ aws proton delete-template-sync-config \ 
  --template-name "load-balanced-fargate-svc" \ 
  --template-type "SERVICE"
$ aws proton delete-service-template --name "load-balanced-fargate-svc"

4. To delete the environment template, run the following commands:

$ aws proton delete-template-sync-config \ 
  --template-name "fargate-env" \ 
  --template-type "ENVIRONMENT"
$ aws proton delete-environment-template --name "fargate-env"

The AWS Proton template library

The AWS Proton team maintains a library of template examples on GitHub. The library includes 
examples of infrastructure as code (IaC) files for many common environment and application 
infrastructure scenarios.

The template library is stored in two GitHub repositories:

• aws-proton-cloudformation-sample-templates – Examples of template bundles that use AWS 
CloudFormation with Jinja as their IaC language. You can use these examples for AWS-managed 
provisioning environments.

• aws-proton-terraform-sample-templates – Examples of template bundles that use Terraform as 
their IaC language. You can use these examples for Self-managed provisioning environments.

Each one of these repositories has a README file with full information about the repository's 
content and structure. Each example has information about the use case that the template covers, 
the example's architecture, and the input parameters that the template takes.

You can use the templates in this library directly by forking one of the library's repositories into 
your GitHub account. Alternatively, use these examples as a starting point for developing your 
environment and service templates.

Template library 27

https://github.com/aws-samples/aws-proton-cloudformation-sample-templates/
https://github.com/aws-samples/aws-proton-terraform-sample-templates/


AWS Proton User Guide

How AWS Proton works

With AWS Proton, you provision environments, and then services running in those environments. 
Environments and services are based on environment and service templates, respectively, that you 
choose in your AWS Proton versioned template library.

When you, as an administrator, select an environment template with AWS Proton, you provide 
values for required input parameters.

AWS Proton uses the environment template and parameter values to provision your environment.

28



AWS Proton User Guide

When you, as a developer or administrator, select a service template with AWS Proton, you provide 
values for required input parameters. You also select an environment to deploy your application or 
service to.

AWS Proton uses the service template, and both your service and selected environment parameter 
values, to provision your service.

You provide values for the input parameters to customize your template for re-use and multiple 
use cases, applications, or services.

To make this work, you create environment or service template bundles and upload them to 
registered environment or service templates, respectively.

Template bundles contain everything AWS Proton needs to provision environments or services.

When you create an environment or service template, you upload a template bundle that contains 
the parametrized infrastructure as code (IaC) files that AWS Proton uses to provision environments 
or services.

When you select an environment or service template to create or update an environment or 
service, you provide values for the template bundle IaC file parameters.

Topics

• AWS Proton objects

• How AWS Proton provisions infrastructure

• AWS Proton terminology

AWS Proton objects

The following diagram shows the main AWS Proton objects and their relationship to other AWS 
and third-party objects. The arrows represent the direction of data flow (the inverse direction of 
dependency).

We follow the diagram with brief descriptions and reference links for these AWS Proton objects.

Objects 29



AWS Proton User Guide

• Environment template – A collection of environment template versions that can be used to 
create AWS Proton environments.

For more information, see Template authoring and bundles and Templates.

• Environment template version – A specific version of an environment template. Takes a
template bundle as input, either from an S3 bucket or from a Git repository. The bundle specifies 
Infrastructure as Code (IaC) and related input parameters for an AWS Proton environment.

Objects 30



AWS Proton User Guide

For more information, see the section called “Versions”, the section called “Publish”, and the 
section called “Template sync configurations”.

• Environment – The set of shared AWS infrastructure resources and access policies that AWS 
Proton services are deployed into. AWS resources are provisioned by using an environment 
template version invoked with specific parameter values. Access policies are provided in a service 
role.

For more information, see Environments.

• Service template – A collection of service template versions that can be used to create AWS 
Proton services.

For more information, see Template authoring and bundles and Templates.

• Service template version – A specific version of a service template. Takes a template bundle as 
input, either from an S3 bucket or from a Git repository. The bundle specifies Infrastructure as 
Code (IaC) and related input parameters for an AWS Proton service.

A service template version also specifies these constraints on service instances based on the 
version:

• Compatible environment templates – Instances can only run in environments based on these 
compatible environment templates.

• Supported component sources – The types of components that developers can associate with 
instances.

For more information, see the section called “Versions”, the section called “Publish”, and the 
section called “Template sync configurations”.

• Service – A collection of service instances that run an application using resources specified in a 
service template, and optionally a CI/CD pipeline that deploys the application code into these 
instances.

In the diagram, the dashed line from Service template means that the service passes the 
template through to service instances and the pipeline.

For more information, see Services.

• Service instance – The set of AWS infrastructure resources that run an application in a specific 
AWS Proton environment. AWS resources are provisioned by using a service template version 
invoked with specific parameter values.

Objects 31



AWS Proton User Guide

For more information, see Services and the section called “Update instance”.

• Pipeline – An optional CI/CD pipeline that deploys an application into the instances of a service, 
with access policies to provision this pipeline. Access policies are provided in a service role. A 
service doesn't always have an associated AWS Proton pipeline—you can choose to manage your 
app code deployments outside of AWS Proton.

In the diagram, the dashed line from Service and the dashed box around Pipeline mean that if 
you choose to manage your CI/CD deployments yourself, the AWS Proton pipeline may not be 
created, and your own pipeline may not be within your AWS account.

For more information, see Services and the section called “Update pipeline”.

• Component – A developer-defined extension to a service instance. Specifies additional AWS 
infrastructure resources that a particular application might need, in addition to the resources 
provided by the environment and the service instance. Platform teams control the infrastructure 
that a component can provision by attaching a component role to the environment.

For more information, see Components.

How AWS Proton provisions infrastructure

AWS Proton can provision infrastructure in one of several ways:

• AWS-managed provisioning – AWS Proton calls the provisioning engine on your behalf. This 
method supports only AWS CloudFormation template bundles. For more information, see the 
section called “AWS CloudFormation IaC files”.

• CodeBuild provisioning – AWS Proton uses AWS CodeBuild to run shell commands that you 
provide. Your commands can read inputs that AWS Proton provides, and are responsible for 
provisioning or deprovisioning infrastructure and generating output values. A template bundle 
for this method includes your commands in a manifest file and any programs, scripts, or other 
files that these commands may need.

As an example to using CodeBuild provisioning, you can include code that uses the AWS Cloud 
Development Kit (AWS CDK) to provision AWS resources, and a manifest that installs the CDK 
and runs your CDK code.

For more information, see the section called “CodeBuild bundle”.

Provisioning methods 32



AWS Proton User Guide

Note

You can use CodeBuild provisioning with environments and services. At this time you 
can't provision components this way.

• Self-managed provisioning – AWS Proton issues a pull request (PR) to a repository that you 
provide, where your own infrastructure deployment system runs the provisioning process. This 
method supports only Terraform template bundles. For more information, see the section called 
“Terraform IaC files”.

AWS Proton determines and sets the provisioning method for each environment and service 
separately. When you create or update an environment or a service, AWS Proton examines the 
template bundle that you provide, and determines the provisioning method that the template 
bundle indicates. At the environment level, you provide the parameters that the environment 
and its potential services might need for their provisioning methods—AWS Identity and Access 
Management (IAM) roles, an environment account connection, or an infrastructure repository.

Developers who use AWS Proton to provision a service have the same experience regardless 
of provisioning method. Developers don't need to be aware of the provisioning method and 
don't need to change anything in the service provisioning process. The service template sets the 
provisioning method, and each environment that a developer deploys the service to provides the 
necessary parameters for service instance provisioning.

The following diagram summarizes some major traits of the different provisioning methods. The 
sections that follow the table provide details about each method.

Provisioning 
method

Templates Provisioned by Status tracked by

AWS-managed manifest, schema, IaC 
file (CloudFormation)

AWS Proton (through 
CloudFormation)

AWS Proton (through 
CloudFormation)

CodeBuild manifest (with 
commands), schema, 
command dependenc 
ies (e.g. AWS CDK code)

AWS Proton (through 
CodeBuild)

AWS Proton (your 
commands return 
status through 
CodeBuild)

Provisioning methods 33



AWS Proton User Guide

Provisioning 
method

Templates Provisioned by Status tracked by

self-managed manifest, schema, IaC 
files (Terraform)

Your code (through Git 
actions)

Your code (passed to 
AWS through API call)

How AWS-managed provisioning works

When an environment or a service uses AWS-managed provisioning, infrastructure is provisioned as 
follows:

1. An AWS Proton customer (an administrator or a developer) creates the AWS Proton resource 
(an environment or a service). The customer selects a template for the resource and provides 
the required parameters. For more information, see the following section, the section called 
“Considerations for AWS-managed provisioning”.

2. AWS Proton renders a complete AWS CloudFormation template for provisioning the resource.

3. AWS Proton calls AWS CloudFormation to start provisioning using the rendered template.

4. AWS Proton continuously monitors the AWS CloudFormation deployment.

5. When provisioning completes, AWS Proton reports back errors in case of failure, and captures 
provisioning outputs, like Amazon VPC ID, in case of success.

The following diagram shows that AWS Proton takes care of most of these steps directly.

Considerations for AWS-managed provisioning

• Infrastructure provisioning role – When an environment or any of the service instances running in 
it might use AWS-managed provisioning, an administrator needs to configure an IAM role (either 
directly or as part of an AWS Proton environment account connection). AWS Proton uses this role 
to provision the infrastructure of these AWS-managed provisioning resources. The role should 

AWS-managed provisioning 34



AWS Proton User Guide

have permissions to use AWS CloudFormation to create all the resources that the templates of 
these resources include.

For more information, see the section called “IAM Roles” and the section called “Service role 
policy examples”.

• Service provisioning – When a developer deploys a service instance that uses AWS-managed 
provisioning to the environment, AWS Proton uses the role provided to that environment to 
provision infrastructure for the service instance. Developers don't see this role and can't change 
it.

• Service with pipeline – A service template that uses AWS-managed provisioning may include a 
pipeline definition written in the AWS CloudFormation YAML schema. AWS Proton also creates 
the pipeline by calling AWS CloudFormation. The role that AWS Proton uses to create a pipeline 
is separate from the role for each individual environment. This role is provided to AWS Proton 
separately, only once at the AWS account level, and it's used to provision and manage all AWS-
managed pipelines. This role should have permissions to create pipelines and other resources 
that your pipelines need.

The following procedures show how to provide the pipeline role to AWS Proton.

AWS Proton console

To provide the pipeline role

1. In the AWS Proton console, on the navigation pane, choose Settings > Account settings, 
and then choose Configure.

2. Use the Pipeline AWS-managed role section to configure a new or existing pipeline role 
for AWS-managed provisioning.

AWS Proton API

To provide the pipeline role

1. Use the UpdateAccountSettings API action.

2. Provide the Amazon Resource Name (ARN) of your pipeline service role in the
pipelineServiceRoleArn parameter.

AWS-managed provisioning 35

https://console.aws.amazon.com/proton/
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html


AWS Proton User Guide

AWS CLI

To provide the pipeline role

Run the following command:

$ aws proton update-account-settings \ 
    --pipeline-service-role-arn \ 
        "arn:aws:iam::123456789012:role/my-pipeline-role"

How CodeBuild provisioning works

When an environment or a service uses CodeBuild provisioning, infrastructure is provisioned as 
follows:

1. An AWS Proton customer (an administrator or a developer) creates the AWS Proton resource 
(an environment or a service). The customer selects a template for the resource and provides 
the required parameters. For more information, see the following section, the section called 
“Considerations for CodeBuild provisioning”.

2. AWS Proton renders an input file with input parameter values for provisioning the resource.

3. AWS Proton calls CodeBuild to start a job. The CodeBuild job runs the customer shell commands 
specified in the template. These commands provision the desired infrastructure, while optionally 
reading input values.

4. When provisioning completes, the final customer command returns the provisioning status to 
CodeBuild and calls the NotifyResourceDeploymentStatusChange AWS Proton API action to 
provide outputs, like Amazon VPC ID, if any exist.

Important

Be sure that your commands correctly return the provisioning status to CodeBuild and 
provide the outputs. If they don't, AWS Proton can't properly track the provisioning 
status and can't provide correct outputs to service instances.

The following diagram illustrates the steps that AWS Proton performs and the steps that your 
commands perform within a CodeBuild job.

CodeBuild provisioning 36

https://docs.aws.amazon.com/proton/latest/APIReference/API_NotifyResourceDeploymentStatusChange.html


AWS Proton User Guide

Considerations for CodeBuild provisioning

• Infrastructure provisioning role – When an environment or any of the service instances running 
in it might use CodeBuild-based provisioning, an administrator needs to configure an IAM role 
(either directly or as part of an AWS Proton environment account connection). AWS Proton 
uses this role to provision the infrastructure of these CodeBuild provisioning resources. The role 
should have permissions to use CodeBuild to create all the resources that your commands in the 
templates of these resources provision.

For more information, see the section called “IAM Roles” and the section called “Service role 
policy examples”.

• Service provisioning – When a developer deploys a service instance that uses CodeBuild 
provisioning to the environment, AWS Proton uses the role provided to that environment to 
provision infrastructure for the service instance. Developers don't see this role and can't change 
it.

• Service with pipeline – A service template that uses CodeBuild provisioning may include 
commands to provision a pipeline. AWS Proton also creates the pipeline by calling CodeBuild. 
The role that AWS Proton uses to create a pipeline is separate from the role for each individual 
environment. This role is provided to AWS Proton separately, only once at the AWS account 
level, and it's used to provision and manage all CodeBuild-based pipelines. This role should have 
permissions to create pipelines and other resources that your pipelines need.

The following procedures show how to provide the pipeline role to AWS Proton.

AWS Proton console

To provide the pipeline role

1. In the AWS Proton console, on the navigation pane, choose Settings > Account settings, 
and then choose Configure.

CodeBuild provisioning 37

https://console.aws.amazon.com/proton/


AWS Proton User Guide

2. Use the Codebuild pipeline provisioning role section to configure a new or existing 
pipeline role for CodeBuild provisioning.

AWS Proton API

To provide the pipeline role

1. Use the UpdateAccountSettings API action.

2. Provide the Amazon Resource Name (ARN) of your pipeline service role in the
pipelineCodebuildRoleArn parameter.

AWS CLI

To provide the pipeline role

Run the following command:

$ aws proton update-account-settings \ 
    --pipeline-codebuild-role-arn \ 
        "arn:aws:iam::123456789012:role/my-pipeline-role"

How self-managed provisioning works

When an environment is configured to use self-managed provisioning, infrastructure is provisioned 
as follows:

1. An AWS Proton customer (an administrator or a developer) creates the AWS Proton resource 
(an environment or a service). The customer selects a template for the resource and provides 
the required parameters. For an environment, the customer also provides a linked infrastructure 
repository. For more information, see the following section, the section called “Considerations 
for self-managed provisioning”.

2. AWS Proton renders a complete Terraform template. It consists of one or more Terraform files, 
potentially in multiple folders, and a .tfvars variables file. AWS Proton writes parameter 
values provided on the resource creation call into this variables file.

3. AWS Proton submits a PR to the infrastructure repository with the rendered Terraform template.

Self-managed provisioning 38

https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html


AWS Proton User Guide

4. When the customer (administrator or developer) merges the PR, the customer's automation 
triggers the provisioning engine to start provisioning infrastructure using the merged template.

Note

If the customer (administrator or developer) closes the PR, AWS Proton recognizes the 
PR as closed and marks the deployment as cancelled.

5. When provisioning completes, the customer's automation calls the
NotifyResourceDeploymentStatusChange AWS Proton API action to indicate completion, provide 
the status (success or failure), and provide outputs, like Amazon VPC ID, if any exist.

Important

Be sure that your automation code calls back into AWS Proton with the provisioning 
status and outputs. If it doesn't, AWS Proton might consider the provisioning as pending 
for longer than it should, and keep showing In progress status.

The following diagram illustrates the steps that AWS Proton performs and the steps that your own 
provisioning system performs.

Considerations for self-managed provisioning

• Infrastructure repository – When an administrator configures an environment for self-managed 
provisioning, they need to provide a linked infrastructure repository. AWS Proton submits PRs to 
this repository to provision the infrastructure of the environment and all the service instances 
that are deployed to it. The customer-owned automation action in the repository should assume 
an IAM role with permissions to create all the resources that your environment and service 
templates include, and an identity that reflects the destination AWS account. For an example 

Self-managed provisioning 39

https://docs.aws.amazon.com/proton/latest/APIReference/API_NotifyResourceDeploymentStatusChange.html


AWS Proton User Guide

GitHub Action that assumes a role, see Assuming a Role in the "Configure AWS Credentials" Action 
For GitHub Actions documentation.

• Permissions – Your provisioning code has to authenticate with an account as necessary (for 
example, authenticate to an AWS account) and provide resource provisioning authorization (for 
example, provide a role).

• Service provisioning – When a developer deploys a service instance that uses self-managed 
provisioning to the environment, AWS Proton submits a PR to the repository that is associated 
with the environment to provision infrastructure for the service instance. Developers don't see 
the repository and can't change it.

Note

Developers creating services use the same process regardless of provisioning method, 
and the difference is abstracted from them. However, with self-managed provisioning 
developers might experience slower response, because they need to wait until someone 
(which might not be themselves) merges the PR in the infrastructure repository before 
provisioning can start.

• Service with pipeline – A service template for an environment with self-managed provisioning 
may include a pipeline definition (for example, an AWS CodePipeline pipeline), written in 
Terraform HCL. To enable AWS Proton to provision these pipelines, an administrator provides 
a linked pipeline repository to AWS Proton. When provisioning a pipeline, the customer-owned 
automation action in the repository should assume an IAM role with permissions to provision 
the pipeline, and an identity that reflects the destination AWS account. The pipeline repository 
and role are separate from those used for each individual environment. The linked repository 
is provided to AWS Proton separately, only once at the AWS account level, and it's used to 
provision and manage all pipelines. The role should have permissions to create pipelines and 
other resources that your pipelines need.

The following procedures show how to provide the pipeline repository and role to AWS Proton.

AWS Proton console

To provide the pipeline role

1. In the AWS Proton console, on the navigation pane, choose Settings > Account settings, 
and then choose Configure.

2. Use the CI/CD pipeline repository section to configure a new or existing repository link.

Self-managed provisioning 40

https://github.com/aws-actions/configure-aws-credentials#assuming-a-role
https://console.aws.amazon.com/proton/


AWS Proton User Guide

AWS Proton API

To provide the pipeline role

1. Use the UpdateAccountSettings API action.

2. Provide the provider, name, and branch of your pipeline repository in the
pipelineProvisioningRepository parameter.

AWS CLI

To provide the pipeline role

Run the following command:

$ aws proton update-account-settings \ 
    --pipeline-provisioning-repository \ 
        "provider=GITHUB,name=my-pipeline-repo-name,branch=my-branch"

• Deletion of self-managed provisioned resources – Terraform modules may include configuration 
elements that are necessary for Terraform operation, in addition to resource definitions. 
Therefore, AWS Proton can't delete all the Terraform files for an environment or service instance. 
Instead, AWS Proton marks the files for deletion and updated a flag in the PR metadata. Your 
automation can read that flag and use it to trigger a terraform destroy command.

AWS Proton terminology

Environment template

Defines shared infrastructure, such as a VPC or cluster, that is used by multiple applications or 
resources.

Environment template bundle

A collection of files that you upload to create and register an environment template in AWS 
Proton. An environment template bundle contains the following:

1. A schema file that defines infrastructure as code input parameters.

2. An infrastructure as code (IaC) file that defines shared infrastructure, such as a VPC or cluster, 
that is used by multiple applications or resources.

AWS Proton terminology 41

https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html


AWS Proton User Guide

3. A manifest file that lists the IaC file.

Environment

Provisioned shared infrastructure, such as a VPC or cluster, that is used by multiple applications 
or resources.

Service template

Defines the type of infrastructure that's needed to deploy and maintain an application or 
microservice in an environment.

Service template bundle

A collection of files that you upload to create and register a service template in AWS Proton. A 
service template bundle contains the following:

1. A schema file that defines infrastructure as code (IaC) input parameters.

2. An IaC file that defines the infrastructure that's needed to deploy and maintain an 
application or microservice in an environment.

3. A manifest file that lists the IaC file.

4. Optional

a. An IaC file that defines the service pipeline infrastructure.

b. A manifest file that lists the IaC file.

Service

Provisioned infrastructure that's needed to deploy and maintain an application or microservice 
in an environment.

Service instance

Provisioned infrastructure that supports an application or microservice in an environment.

Service pipeline

Provisioned infrastructure that supports a pipeline.

Template version

A major or minor version of a template. For more information, see Versioned templates.

Input parameters

Defined in a schema file and used in an infrastructure as code (IaC) file so that the IaC file can 
be used repeatably and for a variety of use cases.

AWS Proton terminology 42



AWS Proton User Guide

Schema file

Defines infrastructure as code file input parameters.

Spec file

Specifies values for infrastructure as code file input parameters, as defined in a schema file.

Manifest file

Lists an infrastructure as code file.

AWS Proton terminology 43



AWS Proton User Guide

Authoring templates and creating bundles for AWS 
Proton

AWS Proton provisions resources for you based on infrastructure as code (IaC) files. You describe 
infrastructure in reusable IaC files. To make the files reusable for different environments and 
applications, you author them as templates, define input parameters, and use these parameters in 
IaC definitions. When you later create a provisioning resource (environment, service instance, or 
component), AWS Proton uses a rendering engine, which combines input values with a template to 
create an IaC file that is ready to provision.

Administrators author most templates as template bundles, and then upload and register them into 
AWS Proton. The remainder of this page discusses these AWS Proton template bundles. Directly 
defined components are an exception—developers create them and provide IaC template files 
directly. For more information about components, see Components.

Topics

• Template bundles

• AWS Proton parameters

• AWS Proton infrastructure as code files

• Schema file

• Wrap up template files for AWS Proton

• Template bundle considerations

Template bundles

As an administrator, you create and register templates with AWS Proton. You use these templates 
to create environments and services. When you create a service, AWS Proton provisions and 
deploys service instances to selected environments. For more information, see AWS Proton for 
platform teams.

To create and register a template in AWS Proton, you upload a template bundle that contains the 
infrastructure as code (IaC) files that AWS Proton needs to provision and environment or service.

A template bundle contains the following:

Template bundles 44



AWS Proton User Guide

• An Infrastructure as code (IaC) file with a manifest YAML file that lists the IaC file.

• A schema YAML file for your IaC file input parameter definitions.

A CloudFormation environment template bundle contains one IaC file.

A CloudFormation service template bundle contains one IaC file for service instance definitions and 
another optional IaC file for a pipeline definition.

Terraform environment and service template bundles can contain multiple IaC files each.

AWS Proton requires an input parameter schema file. When you use AWS CloudFormation to 
create your IaC files, you use Jinja syntax to reference your input parameters. AWS Proton provides 
parameter namespaces that you can use to reference parameters in your IaC files.

The following diagram shows an example of steps that you can take to create a template for AWS 
Proton.

Identify input parameters.

Create a schema file to define your input parameters.

Template bundles 45

https://jinja.palletsprojects.com/en/2.11.x/


AWS Proton User Guide

Create IaC files that reference your input parameters. You can reference environment IaC file
outputs as inputs for your service IaC files.

Register a template version with AWS Proton and upload your template bundle.

AWS Proton parameters

You can define and use parameters in your infrastructure as code (IaC) files to make them flexible 
and re-usable. You read a parameter value in your IaC files by referring to the parameter's name 
in the AWS Proton parameter namespace. AWS Proton injects parameter values into the rendered 
IaC files that it generates during resource provisioning. To process AWS CloudFormation IaC 
parameters, AWS Proton uses Jinja. To process Terraform IaC parameters, AWS Proton generates a 
Terraform parameter value file and relies on the parametrization ability built into HCL.

With CodeBuild provisioning, AWS Proton generates an input file that your code can import. 
The file is a JSON or HCL file, depending on a property in your template's manifest. For more 
information, see the section called “CodeBuild provisioning parameters”.

You can refer to parameters in your environment, service, and component IaC files or provisioning 
code with the following requirements:

• The length of each parameter name doesn't exceed 100 characters.

• The length of the parameter namespace and resource name combined doesn't exceed the 
character limit for the resource name.

AWS Proton provisioning fails if these quotas are exceeded.

Parameter types

The following parameter types are available to you for reference in AWS Proton IaC files:

Input parameter

Environments and service instances can take input parameters that you define in a schema file
that you associate with the environment or service template. You can refer to a resource's input 

Parameters 46

https://jinja.palletsprojects.com/en/2.11.x/


AWS Proton User Guide

parameters in the resource's IaC file. Component IaC files can refer to input parameters of the 
service instance that the component is attached to.

AWS Proton checks input parameter names against your schema file, and matches them with 
the parameters that are referenced in your IaC files to inject the input values that you provide in 
a spec file during resource provisioning.

Output parameter

You can define outputs in any of your IaC files. An output can be, for example, a name, ID, or 
ARN of one of the resources that the template provisions, or it can be a way to pass through 
one of the template's inputs. You can refer to these outputs in IaC files of other resources.

In CloudFormation IaC files,define output parameters in the Outputs: block. In a Terraform IaC 
file, define each output parameter using an output statement.

Resource parameter

AWS Proton automatically creates AWS Proton resource parameters. These parameters 
expose properties of the AWS Proton resource object. An example of a resource parameter is
environment.name.

Using AWS Proton parameters in your IaC files

To read a parameter value in an IaC file, you refer to the parameter's name in the AWS Proton 
parameter namespace. For AWS CloudFormation IaC files, you use Jinja syntax and surround the 
parameter with pairs of curly braces and quotation marks.

The following table shows the reference syntax for each supported template language, with an 
example.

Template 
language

Syntax Example: environment input named "VPC"

CloudForm 
ation

"{{ parameter-name
}}"

"{{ environment.inputs.VPC }}"

Terraform var.parameter-name var.environment.inputs.VPC

Generated Terraform variable definitions

Using parameters 47



AWS Proton User Guide

Note

If you use CloudFormation dynamic parameters in your IaC file, you must escape them to 
prevent Jinja misinterpretation errors. For more information, see Troubleshooting AWS 
Proton

The following table lists namespace names for all AWS Proton resource parameters. Each template 
file type can use a different subset of the parameter namespace.

Template 
file

Parameter 
type

Parameter name Description

resource environment. name Environment nameEnvironme 
nt

input environment.inputs. input-name Schema-defined 
environment inputs

resource environment. name

environment. account_id

Environment name and 
AWS account ID

output environment.outputs. output-name Environment IaC file 
outputs

resource service.branch_name

service.name

service.repository_connect 
ion_arn

service.repository_id

Service name and code 
repository

resource service_instance. name Service instance name

Service

input service_instance.inputs. input-
name

Schema-defined service 
instance inputs

Using parameters 48

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://jinja.palletsprojects.com/en/2.11.x/templates/#escaping


AWS Proton User Guide

Template 
file

Parameter 
type

Parameter name Description

resource service_instance.components 
.default. name

Attached default 
component name

output service_instance.components 
.default.outputs. output-name

Attached default 
component IaC file 
outputs

resource service_instance.environmen 
t. name

service_instance.environmen 
t. account_id

Service instance 
environment name and 
AWS account ID

output service_instance.environmen 
t.outputs. output-name

Service instance 
environment IaC file 
outputs

input pipeline.inputs. input-name Schema-defined 
pipeline inputs

resource service.branch_name

service.name

service.repository_connect 
ion_arn

service.repository_id

Service name and code 
repository

input service_instance.inputs. input-
name

Schema-defined service 
instance inputs

Pipeline

collectio 
n

{% for service_instance in
service_instances  %}...{% endfor 
%}

A collection of service 
instances that you can 
loop through

Using parameters 49



AWS Proton User Guide

Template 
file

Parameter 
type

Parameter name Description

resource environment. name

environment. account_id

Environment name and 
AWS account account 
ID

output environment.outputs. output-name Environment IaC file 
outputs

resource service.branch_name

service.name

service.repository_connect 
ion_arn

service.repository_id

Service name and code 
repository (attached 
components)

resource service_instance. name Service instance name 
(attached components)

input service_instance.inputs. input-
name

Schema-defined 
service instance inputs 
(attached components)

Component

resource component. name Component name

For more information and examples, see the subtopics about parameters in IaC template files for 
different resource types and template languages.

Topics

• Environment CloudFormation IaC file parameter details and examples

• Service CloudFormation IaC file parameter details and examples

• Component CloudFormation IaC file parameter details and examples

• Parameter filters for CloudFormation IaC files

• CodeBuild provisioning parameter details and examples

Using parameters 50



AWS Proton User Guide

• Terraform infrastructure as code (IaC) file parameter details and examples

Environment CloudFormation IaC file parameter details and examples

You can define and reference parameters in your environment infrastructure as code (IaC) files. For 
a detailed description of AWS Proton parameters, parameter types, the parameter namespace, and 
how to use parameters in your IaC files, see the section called “Parameters”.

Define environment parameters

You can define both input and output parameters for environment IaC files.

• Input parameters – Define environment input parameters in your schema file.

The following list includes examples of environment input parameters for typical use cases.

• VPC CIDR values

• Load balancer settings

• Database settings

• A health check timeout

As an administrator, you can provide values for input parameters when you create an 
environment:

• Use the console to fill out a schema-based form that AWS Proton provides.

• Use the CLI to provide a spec that includes the values.

• Output parameters – Define environment outputs in your environment IaC files. You can then 
refer to these outputs in IaC files of other resources.

Read parameter values in environment IaC files

You can read parameters related to the environment in environment IaC files. You read a parameter 
value by referencing the parameter's name in the AWS Proton parameter namespace.

• Input parameters – Read an environment input value by referencing
environment.inputs.input-name.

• Resource parameters – Read AWS Proton resource parameters by referencing names such as
environment.name.

Environment CloudFormation IaC parameters 51



AWS Proton User Guide

Note

No output parameters of other resources are available to environment IaC files.

Example environment and service IaC files with parameters

The following example demonstrates parameter definition and reference in an environment IaC 
file. The example then shows how environment output parameters defined in the environment IaC 
file can be referenced in a service IaC file.

Example Environment CloudFormation IaC file

Note the following in this example:

• The environment.inputs. namespace refers to environment input parameters.

• The Amazon EC2 Systems Manager (SSM) parameter StoreInputValue concatenates the 
environment inputs.

• The MyEnvParameterValue output exposes the same input parameter concatenation as 
an output parameter. Three additional output parameters also expose the input parameters 
individually.

• Six additional output parameters expose resources that the environment provisions.

Resources: 
  StoreInputValue: 
    Type: AWS::SSM::Parameter 
    Properties: 
      Type: String 
      Value: "{{ environment.inputs.my_sample_input }} 
 {{ environment.inputs.my_other_sample_input}} 
 {{ environment.inputs.another_optional_input }}" 
              # input parameter references

# These output values are available to service infrastructure as code files as outputs, 
 when given the  
# the 'environment.outputs' namespace, for example, 
 service_instance.environment.outputs.ClusterName.
Outputs: 
  MyEnvParameterValue:                                        # output definition 
    Value: !GetAtt StoreInputValue.Value 

Environment CloudFormation IaC parameters 52



AWS Proton User Guide

  MySampleInputValue:                                         # output definition 
    Value: "{{ environment.inputs.my_sample_input }}"         #   input parameter 
 reference 
  MyOtherSampleInputValue:                                    # output definition 
    Value: "{{ environment.inputs.my_other_sample_input }}"   #   input parameter 
 reference 
  AnotherOptionalInputValue:                                  # output definition 
    Value: "{{ environment.inputs.another_optional_input }}"  #   input parameter 
 reference 
  ClusterName:                                                # output definition 
    Description: The name of the ECS cluster 
    Value: !Ref 'ECSCluster'                                  #   provisioned resource 
  ECSTaskExecutionRole:                                       # output definition 
    Description: The ARN of the ECS role 
    Value: !GetAtt 'ECSTaskExecutionRole.Arn'                 #   provisioned resource 
  VpcId:                                                      # output definition 
    Description: The ID of the VPC that this stack is deployed in 
    Value: !Ref 'VPC'                                         #   provisioned resource 
  PublicSubnetOne:                                            # output definition 
    Description: Public subnet one 
    Value: !Ref 'PublicSubnetOne'                             #   provisioned resource 
  PublicSubnetTwo:                                            # output definition 
    Description: Public subnet two 
    Value: !Ref 'PublicSubnetTwo'                             #   provisioned resource 
  ContainerSecurityGroup:                                     # output definition 
    Description: A security group used to allow Fargate containers to receive traffic 
    Value: !Ref 'ContainerSecurityGroup'                      #   provisioned resource

Example Service CloudFormation IaC file

The environment.outputs. namespace refers to environment outputs from an environment 
IaC file. For example, the name environment.outputs.ClusterName reads the value of the
ClusterName environment output parameter.

AWSTemplateFormatVersion: '2010-09-09'
Description: Deploy a service on AWS Fargate, hosted in a public subnet, and accessible 
 via a public load balancer.
Mappings: 
  TaskSize: 
    x-small: 
      cpu: 256 
      memory: 512 
    small: 

Environment CloudFormation IaC parameters 53



AWS Proton User Guide

      cpu: 512 
      memory: 1024 
    medium: 
      cpu: 1024 
      memory: 2048 
    large: 
      cpu: 2048 
      memory: 4096 
    x-large: 
      cpu: 4096 
      memory: 8192
Resources: 
  # A log group for storing the stdout logs from this service's containers 
  LogGroup: 
    Type: AWS::Logs::LogGroup 
    Properties: 
      LogGroupName: '{{service_instance.name}}' # resource parameter 

  # The task definition. This is a simple metadata description of what 
  # container to run, and what resource requirements it has. 
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      Family: '{{service_instance.name}}' # resource parameter 
      Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, cpu] # input 
 parameter 
      Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory]  
      NetworkMode: awsvpc 
      RequiresCompatibilities: 
        - FARGATE 
      ExecutionRoleArn: '{{environment.outputs.ECSTaskExecutionRole}}'  # output 
 reference to an environment infrastructure code file 
      TaskRoleArn: !Ref "AWS::NoValue" 
      ContainerDefinitions: 
        - Name: '{{service_instance.name}}'  # resource parameter 
          Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, cpu] 
          Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory] 
          Image: '{{service_instance.inputs.image}}' 
          PortMappings: 
            - ContainerPort: '{{service_instance.inputs.port}}' # input parameter 
          LogConfiguration: 
            LogDriver: 'awslogs' 
            Options: 
              awslogs-group: '{{service_instance.name}}' # resource parameter 

Environment CloudFormation IaC parameters 54



AWS Proton User Guide

              awslogs-region: !Ref 'AWS::Region' 
              awslogs-stream-prefix: '{{service_instance.name}}' # resource parameter 

  # The service_instance. The service is a resource which allows you to run multiple 
  # copies of a type of task, and gather up their logs and metrics, as well 
  # as monitor the number of running tasks and replace any that have crashed 
  Service: 
    Type: AWS::ECS::Service 
    DependsOn: LoadBalancerRule 
    Properties: 
      ServiceName: '{{service_instance.name}}'  # resource parameter 
      Cluster: '{{environment.outputs.ClusterName}}' # output reference to an 
 environment infrastructure as code file 
      LaunchType: FARGATE 
      DeploymentConfiguration: 
        MaximumPercent: 200 
        MinimumHealthyPercent: 75 
      DesiredCount: '{{service_instance.inputs.desired_count}}'# input parameter 
      NetworkConfiguration: 
        AwsvpcConfiguration: 
          AssignPublicIp: ENABLED 
          SecurityGroups: 
            - '{{environment.outputs.ContainerSecurityGroup}}' # output reference to an 
 environment infrastructure as code file 
          Subnets: 
            - '{{environment.outputs.PublicSubnetOne}}' # output reference to an 
 environment infrastructure as code file 
            - '{{environment.outputs.PublicSubnetTwo}}' # output reference to an 
 environment infrastructure as code file 
      TaskDefinition: !Ref 'TaskDefinition' 
      LoadBalancers: 
        - ContainerName: '{{service_instance.name}}'  # resource parameter 
          ContainerPort: '{{service_instance.inputs.port}}' # input parameter 
          TargetGroupArn: !Ref 'TargetGroup'
[...]

Service CloudFormation IaC file parameter details and examples

You can define and reference parameters in your service and pipeline infrastructure as code 
(IaC) files. For a detailed description of AWS Proton parameters, parameter types, the parameter 
namespace, and how to use parameters in your IaC files, see the section called “Parameters”.

Service CloudFormation IaC parameters 55



AWS Proton User Guide

Define service parameters

You can define both input and output parameters for service IaC files.

• Input parameters – Define service instance input parameters in your schema file.

The following list includes examples of service input parameters for typical use cases.

• Port

• Task size

• Image

• Desired count

• Docker file

• Unit test command

You provide values for input parameters when you create a service:

• Use the console to fill out a schema-based form that AWS Proton provides.

• Use the CLI to provide a spec that includes the values.

• Output parameters – Define service instance outputs in your service IaC files. You can then refer 
to these outputs in IaC files of other resources.

Read parameter values in service IaC files

You can read parameters related to the service and to other resources in service IaC files. You read 
a parameter value by referencing the parameter's name in the AWS Proton parameter namespace.

• Input parameters – Read a service instance input value by referencing
service_instance.inputs.input-name.

• Resource parameters – Read AWS Proton resource parameters by referencing names such as
service.name, service_instance.name, and environment.name.

• Output parameters – Read outputs of other resources by referencing
environment.outputs.output-name or
service_instance.components.default.outputs.output-name.

Service CloudFormation IaC parameters 56



AWS Proton User Guide

Example service IaC file with parameters

The following example is a snippet from a service CloudFormation IaC file. The
environment.outputs. namespace refers to outputs from the environment IaC file. The
service_instance.inputs. namespace refers to service instance input parameters. The
service_instance.name property refers to an AWS Proton resource parameter.

Resources: 
  StoreServiceInstanceInputValue: 
    Type: AWS::SSM::Parameter 
    Properties: 
      Type: String 
      Value: "{{ service.name }} {{ service_instance.name }} 
 {{ service_instance.inputs.my_sample_service_instance_required_input }} 
 {{ service_instance.inputs.my_sample_service_instance_optional_input }} 
 {{ environment.outputs.MySampleInputValue }} 
 {{ environment.outputs.MyOtherSampleInputValue }}" 
              #  resource parameter references               # input parameter 
 references                                                                        
                                             # output references to an environment 
 infrastructure as code file
Outputs: 
  MyServiceInstanceParameter:                                                         # 
 output definition 
    Value: !Ref StoreServiceInstanceInputValue  
  MyServiceInstanceRequiredInputValue:                                                # 
 output definition 
    Value: "{{ service_instance.inputs.my_sample_service_instance_required_input }}"  # 
 input parameter reference 
  MyServiceInstanceOptionalInputValue:                                                # 
 output definition 
    Value: "{{ service_instance.inputs.my_sample_service_instance_optional_input }}"  # 
 input parameter reference 
  MyServiceInstancesEnvironmentSampleOutputValue:                                     # 
 output definition 
    Value: "{{ environment.outputs.MySampleInputValue }}"                             # 
 output reference to an environment IaC file 
  MyServiceInstancesEnvironmentOtherSampleOutputValue:                                # 
 output definition 
    Value: "{{ environment.outputs.MyOtherSampleInputValue }}"                        # 
 output reference to an environment IaC file

Service CloudFormation IaC parameters 57



AWS Proton User Guide

Component CloudFormation IaC file parameter details and examples

You can define and reference parameters in your component infrastructure as code (IaC) files. For 
a detailed description of AWS Proton parameters, parameter types, the parameter namespace, and 
how to use parameters in your IaC files, see the section called “Parameters”. For more information 
about components, see Components.

Define component output parameters

You can define output parameters in your component IaC files. You can then refer to these outputs 
in service IaC files.

Note

You can't define inputs for component IaC files. Attached components can get inputs from 
the service instance that they are attached to. Detached components don't have inputs.

Read parameter values in component IaC files

You can read parameters related to the component and to other resources in component IaC files. 
You read a parameter value by referencing the parameter's name in the AWS Proton parameter 
namespace.

• Input parameters – Read an attached service instance input value by referencing
service_instance.inputs.input-name.

• Resource parameters – Read AWS Proton resource parameters by referencing names such as
component.name, service.name, service_instance.name, and environment.name.

• Output parameters – Read environment outputs by referencing
environment.outputs.output-name.

Example component and service IaC files with parameters

The following example shows a component that provisions an Amazon Simple Storage Service 
(Amazon S3) bucket and related access policy and exposes the Amazon Resource Names (ARNs) 
of both resources as component outputs. A service IaC template adds the component outputs as 
container environment variables of an Amazon Elastic Container Service (Amazon ECS) task to 
make the outputs available to code running in the container, and adds the bucket access policy 

Component CloudFormation IaC parameters 58



AWS Proton User Guide

to the task's role. The bucket name is based on the names of the environment, service, service 
instance, and component, meaning that the bucket is coupled with a specific instance of the 
component template extending a specific service instance. Developers can create multiple custom 
components based on this component template, to provision Amazon S3 buckets for different 
service instances and functional needs.

The example shows how you use Jinja {{ ... }} syntax to refer to component and other resource 
parameters in your service IaC file. You can use {% if ... %} statements to add blocks of 
statements only when a component is attached to the service instance. The proton_cfn_*
keywords are filters that you can use to sanitize and format output parameter values. For more 
information about filters, see the section called “CloudFormation parameter filters”.

As an administrator, you author the service IaC template file.

Example service CloudFormation IaC file using a component

# service/instance_infrastructure/cloudformation.yaml

Resources:  
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      TaskRoleArn: !Ref TaskRole 
      ContainerDefinitions: 
        - Name: '{{service_instance.name}}' 
          # ... 
           {% if service_instance.components.default.outputs | length > 0 %} 
          Environment: 
            {{ service_instance.components.default.outputs | 
                proton_cfn_ecs_task_definition_formatted_env_vars }} 
          {% endif %}

  # ... 

  TaskRole: 
    Type: AWS::IAM::Role 
    Properties: 
      # ... 
      ManagedPolicyArns: 
        - !Ref BaseTaskRoleManagedPolicy 
         {{ service_instance.components.default.outputs 
            | proton_cfn_iam_policy_arns }}

Component CloudFormation IaC parameters 59



AWS Proton User Guide

  # Basic permissions for the task 
  BaseTaskRoleManagedPolicy: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ...

As a developer, you author the component IaC template file.

Example component CloudFormation IaC file

# cloudformation.yaml

# A component that defines an S3 bucket and a policy for accessing the bucket.
Resources: 
  S3Bucket: 
    Type: 'AWS::S3::Bucket' 
    Properties: 
      BucketName: '{{environment.name}}-{{service.name}}-{{service_instance.name}}-
{{component.name}}'
  S3BucketAccessPolicy: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      PolicyDocument: 
        Version: "2012-10-17" 
        Statement: 
          - Effect: Allow 
            Action: 
              - 's3:Get*' 
              - 's3:List*' 
              - 's3:PutObject' 
            Resource: !GetAtt S3Bucket.Arn
Outputs: 
  BucketName: 
    Description: "Bucket to access" 
    Value: !GetAtt S3Bucket.Arn 
  BucketAccessPolicyArn: 
    Value: !Ref S3BucketAccessPolicy

When AWS Proton renders an AWS CloudFormation template for your service instance and replaces 
all parameters with actual values, the template might look like the following file.

Component CloudFormation IaC parameters 60



AWS Proton User Guide

Example service instance CloudFormation rendered IaC file

Resources:  
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      TaskRoleArn: !Ref TaskRole 
      ContainerDefinitions: 
        - Name: '{{service_instance.name}}' 
          # ... 
          Environment: 
            - Name: BucketName
              Value: arn:aws:s3:us-
east-1:123456789012:environment_name-service_name-service_instance_name-component_name
            - Name: BucketAccessPolicyArn
              Value: arn:aws:iam::123456789012:policy/cfn-generated-policy-name
  # ... 

  TaskRole: 
    Type: AWS::IAM::Role 
    Properties: 
      # ... 
      ManagedPolicyArns: 
        - !Ref BaseTaskRoleManagedPolicy 
        - arn:aws:iam::123456789012:policy/cfn-generated-policy-name

  # Basic permissions for the task 
  BaseTaskRoleManagedPolicy: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ...

Parameter filters for CloudFormation IaC files

When you make references to AWS Proton parameters in your AWS CloudFormation IaC files, you 
can use Jinja modifiers known as filters to validate, filter, and format parameter values before they 
get inserted into the rendered template. Filter validations are particularly useful when referring 
to component output parameters, because component creation and attachment are done by 
developers, and an administrator using component outputs in a service instance template might 
want to verify their existence and validity. However, you can use filters in any Jinja IaC file.

CloudFormation parameter filters 61



AWS Proton User Guide

The following sections describe and define the available parameter filters, and provide examples. 
AWS Proton defines most of these filters. The default filter is a Jinja built-in filter.

Format environment properties for Amazon ECS tasks

Declaration

dict # proton_cfn_ecs_task_definition_formatted_env_vars (raw: boolean = True) # YAML 
 list of dicts

Description

This filter formats a list of outputs to be used in an Environment property in the
ContainerDefinition section of an Amazon Elastic Container Service (Amazon ECS) task 
definition.

Set raw to False to also validate the parameter value. In this case, the value is required to match 
the regular expression ^[a-zA-Z0-9_-]*$. If the value fails this validation, template rendering 
fails.

Example

With the following custom component template:

Resources: 
  # ...
Outputs: 
  Output1: 
    Description: "Example component output 1" 
    Value: hello 
  Output2: 
    Description: "Example component output 2" 
    Value: world

And the following service template:

Resources: 
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      # ... 
      ContainerDefinitions: 

CloudFormation parameter filters 62

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-containerdefinitions.html#cfn-ecs-taskdefinition-containerdefinition-environment


AWS Proton User Guide

        - Name: MyServiceName 
          # ... 
          Environment: 
            {{ service_instance.components.default.outputs 
              | proton_cfn_ecs_task_definition_formatted_env_vars }}

The rendered service template is as follows:

Resources: 
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      # ... 
      ContainerDefinitions: 
        - Name: MyServiceName 
          # ... 
          Environment: 
            - Name: Output1 
              Value: hello 
            - Name: Output2 
              Value: world

Format environment properties for Lambda functions

Declaration

dict # proton_cfn_lambda_function_formatted_env_vars (raw: boolean = True) # YAML dict

Description

This filter formats a list of outputs to be used in an Environment property in the Properties
section of an AWS Lambda function definition.

Set raw to False to also validate the parameter value. In this case, the value is required to match 
the regular expression ^[a-zA-Z0-9_-]*$. If the value fails this validation, template rendering 
fails.

Example

With the following custom component template:

Resources: 

CloudFormation parameter filters 63

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html#cfn-lambda-function-environment


AWS Proton User Guide

  # ...
Outputs: 
  Output1: 
    Description: "Example component output 1" 
    Value: hello 
  Output2: 
    Description: "Example component output 2" 
    Value: world

And the following service template:

Resources: 
  Lambda: 
    Type: AWS::Lambda::Function 
    Properties: 
      Environment: 
        Variables: 
          {{ service_instance.components.default.outputs 
            | proton_cfn_lambda_function_formatted_env_vars }}

The rendered service template is as follows:

Resources: 
  Lambda: 
    Type: AWS::Lambda::Function 
    Properties: 
      Environment: 
        Variables: 
          Output1: hello 
          Output2: world

Extract IAM policy ARNs to include in IAM roles

Declaration

dict # proton_cfn_iam_policy_arns # YAML list

Description

This filter formats a list of outputs to be used in a ManagedPolicyArns property in the Properties
section of an AWS Identity and Access Management (IAM) role definition. The filter uses the regular 

CloudFormation parameter filters 64

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html#cfn-iam-role-managepolicyarns


AWS Proton User Guide

expression ^arn:[a-zA-Z-]+:iam::\d{12}:policy/ to extract valid IAM policy ARNs from the 
list of output parameters. You can use this filter to append policies in output parameter values to 
an IAM role definition in a service template.

Example

With the following custom component template:

Resources: 
  # ... 
  ExamplePolicy1: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ... 
  ExamplePolicy2: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ... 

  # ...

Outputs: 
  Output1: 
    Description: "Example component output 1" 
    Value: hello 
  Output2: 
    Description: "Example component output 2" 
    Value: world 
  PolicyArn1: 
    Description: "ARN of policy 1" 
    Value: !Ref ExamplePolicy1 
  PolicyArn2: 
    Description: "ARN of policy 2" 
    Value: !Ref ExamplePolicy2

And the following service template:

Resources:  

  # ... 

  TaskRole: 
    Type: AWS::IAM::Role 

CloudFormation parameter filters 65



AWS Proton User Guide

    Properties: 
      # ... 
      ManagedPolicyArns: 
        - !Ref BaseTaskRoleManagedPolicy 
        {{ service_instance.components.default.outputs 
            | proton_cfn_iam_policy_arns }} 

  # Basic permissions for the task 
  BaseTaskRoleManagedPolicy: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ...

The rendered service template is as follows:

Resources:  

  # ... 

  TaskRole: 
    Type: AWS::IAM::Role 
    Properties: 
      # ... 
      ManagedPolicyArns: 
        - !Ref BaseTaskRoleManagedPolicy 
        - arn:aws:iam::123456789012:policy/cfn-generated-policy-name-1
        - arn:aws:iam::123456789012:policy/cfn-generated-policy-name-2

  # Basic permissions for the task 
  BaseTaskRoleManagedPolicy: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ...

Sanitize property values

Declaration

string # proton_cfn_sanitize # string

Description

CloudFormation parameter filters 66



AWS Proton User Guide

This is a general purpose filter. Use it to validate the safety of a parameter value. The filter 
validates that the value either matches the regular expression ^[a-zA-Z0-9_-]*$ or is a valid 
Amazon Resource Name (ARN). If the value fails this validation, template rendering fails.

Example

With the following custom component template:

Resources: 
  # ...
Outputs: 
  Output1: 
    Description: "Example of valid output" 
    Value: "This-is_valid_37" 
  Output2: 
    Description: "Example incorrect output" 
    Value: "this::is::incorrect" 
  SomeArn: 
    Description: "Example ARN" 
    Value: arn:aws:some-service::123456789012:some-resource/resource-name

• The following reference in a service template:

# ... 
  {{ service_instance.components.default.outputs.Output1
    | proton_cfn_sanitize }}

Renders as follows:

# ... 
  This-is_valid_37

• The following reference in a service template:

# ... 
  {{ service_instance.components.default.outputs.Output2
    | proton_cfn_sanitize }}

Results with the following rendering error:

CloudFormation parameter filters 67



AWS Proton User Guide

Illegal character(s) detected in "this::is::incorrect". Must match regex ^[a-zA-
Z0-9_-]*$ or be a valid ARN

• The following reference in a service template:

# ... 
  {{ service_instance.components.default.outputs.SomeArn
    | proton_cfn_sanitize }}

Renders as follows:

# ... 
  arn:aws:some-service::123456789012:some-resource/resource-name

Provide default values for nonexistent references

Description

The default filter provides a default value when a namespace reference doesn't exist. Use it to 
write robust templates that can render without failure even when the parameter you refer to is 
missing.

Example

The following reference in a service template causes template rendering to fail if the service 
instance doesn't have an attached directly defined (default) component, or if the attached 
component doesn't have an output named test.

# ... 
  {{ service_instance.components.default.outputs.test }}

To avoid this issue, add the default filter.

# ... 
  {{ service_instance.components.default.outputs.test | default("[optional-value]") }}

CloudFormation parameter filters 68



AWS Proton User Guide

CodeBuild provisioning parameter details and examples

You can define parameters in your templates for CodeBuild-based AWS Proton resources and 
reference these parameters in your provisioning code. For a detailed description of AWS Proton 
parameters, parameter types, the parameter namespace, and how to use parameters in your IaC 
files, see the section called “Parameters”.

Note

You can use CodeBuild provisioning with environments and services. At this time you can't 
provision components this way.

Input parameters

When you create an AWS Proton resource, like an environment or a service, you provide values 
for input parameters that are defined in your template's schema file. When the resource that you 
create uses CodeBuild provisioning, AWS Proton renders these input values into an input file. Your 
provisioning code can import and get parameter values from this file.

For an example of a CodeBuild templates, see the section called “CodeBuild bundle”. For more 
information about manifest files, see the section called “Manifest and wrap up”.

The following example is a JSON input file generated during CodeBuild-based provisioning of a 
service instance.

Example: using the AWS CDK with CodeBuild provisioning

{ 
  "service_instance": { 
    "name": "my-service-staging", 
    "inputs": { 
      "port": "8080", 
      "task_size": "medium" 
    } 
  }, 
  "service": { 
    "name": "my-service" 
  }, 
  "environment": { 
    "account_id": "123456789012", 

CodeBuild provisioning parameters 69



AWS Proton User Guide

    "name": "my-env-staging", 
    "outputs": { 
      "vpc-id": "hdh2323423" 
    } 
  }
}

Output parameters

To communicate resource provisioning outputs back to AWS Proton, your provisioning code can 
generate a JSON file named proton-outputs.json with values for output parameters defined 
in your template's schema file. For example, the cdk deploy command has the --outputs-file
argument that instructs the AWS CDK to generate a JSON file with provisioning outputs. If your 
resource uses the AWS CDK, specify the following command in your CodeBuild template manifest:

aws proton notify-resource-deployment-status-change

AWS Proton looks for this JSON file. If the file exists after your provisioning code successfully 
completes, AWS Proton reads output parameter values from it.

Terraform infrastructure as code (IaC) file parameter details and 
examples

You can include Terraform input variables in variable.tf files in your template bundle. You can 
also create a schema to create AWS Proton managed variables. AWS Proton creates variable .tf 
files from your schema file. For more information, see the section called “Terraform IaC files”.

To reference your schema defined AWS Proton variables in your infrastructure .tf files, you use 
the AWS Proton namespaces shown in the Parameters and namespaces for Terraform IaC table. For 
example, you can use var.environment.inputs.vpc_cidr. Inside quotation marks, surround 
these variables with single brackets and add a dollar sign in front of the first brace (for example,
“${var.environment.inputs.vpc_cidr}”).

The following example shows how to use namespaces to include AWS Proton parameters in an 
environment .tf file.

terraform { 
  required_providers { 
    aws = { 

Terraform IaC parameters 70



AWS Proton User Guide

      source  = "hashicorp/aws" 
      version = "~> 3.0" 
    } 
  } 
  // This tells terraform to store the state file in s3 at the location 
  // s3://terraform-state-bucket/tf-os-sample/terraform.tfstate 
  backend "s3" { 
    bucket = "terraform-state-bucket" 
    key    = "tf-os-sample/terraform.tfstate" 
    region = "us-east-1" 
  }
}

// Configure the AWS Provider
provider "aws" { 
  region = "us-east-1" 
  default_tags { 
    tags = var.proton_tags 
  }
}

resource "aws_ssm_parameter" "my_ssm_parameter" { 
  name  = "my_ssm_parameter" 
  type  = "String" 
  // Use the Proton environment.inputs. namespace 
  value = var.environment.inputs.ssm_parameter_value
}

AWS Proton infrastructure as code files

The primary parts of the template bundle are infrastructure as code (IaC) files that define the 
infrastructure resources and properties that you want to provision. AWS CloudFormation and other 
infrastructure as code engines use these types of files to provision infrastructure resources.

Note

An IaC file can also be used independently of template bundles, as a direct input to directly 
defined components. For more information about components, see Components.

AWS Proton currently supports two types of IaC files:

Infrastructure as code files 71



AWS Proton User Guide

• CloudFormation files – Used for AWS-managed provisioning. AWS Proton uses Jinja on top of the 
CloudFormation template file format for parametrization.

• Terraform HCL files – Used for Self-managed provisioning. HCL natively supports parametrization.

You can’t provision AWS Proton resources using a combination of provisioning methods. You must 
use one or the other. You can’t deploy an AWS-managed provisioning service to a self-managed 
provisioning environment, or vice versa.

For more information, see the section called “Provisioning methods”, Environments, Services, and
Components.

AWS CloudFormation IaC files

Learn how to use AWS CloudFormation infrastructure as code files with AWS Proton. AWS 
CloudFormation is an infrastructure as code (IaC) service that helps you model and set up your 
AWS resources. You define your infrastructure resources in templates, using Jinja on top of the 
CloudFormation template file format for parametrization. AWS Proton expands parameters and 
renders the full CloudFormation template. CloudFormation provisions the defined resources 
as CloudFormation stack. For more information, see What is AWS CloudFormation in the AWS 
CloudFormation User Guide.

AWS Proton supports AWS-managed provisioning for CloudFormation IaC.

Start with your own existing infrastructure as code files

You can adapt your own existing infrastructure as code (IaC) files for use with AWS Proton.

The following AWS CloudFormation examples, Example 1, and Example 2, represent your own 
existing CloudFormation IaC files. CloudFormation can use these files to create two different 
CloudFormation stacks.

In Example 1, the CloudFormation IaC file is configured to provision infrastructure to be shared 
among container applications. In this example, input parameters are added so that you can use 
the same IaC file to create multiple sets of provisioned infrastructure. Each set can have different 
names along with a different set of VPC and subnet CIDR values. As either an administrator 
or a developer, you provide values for these parameters when you use an IaC file to provision 
infrastructure resources with CloudFormation. For your convenience, these input parameters are 
marked with comments and referenced multiple times in the example. The outputs are defined at 
the end of the template. They can be referenced in other CloudFormation IaC files.

AWS CloudFormation IaC files 72

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html


AWS Proton User Guide

In Example 2, the CloudFormation IaC file is configured to deploy an application to the 
infrastructure that's provisioned from Example 1. The parameters are commented for your 
convenience.

Example 1: CloudFormation IaC file

AWSTemplateFormatVersion: '2010-09-09'
Description: AWS Fargate cluster running containers in a public subnet. Only supports 
             public facing load balancer, and public service discovery namespaces.
Parameters: 
   VpcCIDR:       # input parameter 
        Description: CIDR for VPC 
        Type: String 
        Default: "10.0.0.0/16" 
   SubnetOneCIDR: # input parameter 
        Description: CIDR for SubnetOne 
        Type: String 
        Default: "10.0.0.0/24" 
   SubnetTwoCIDR: # input parameters 
        Description: CIDR for SubnetTwo 
        Type: String 
        Default: "10.0.1.0/24"
Resources: 
  VPC: 
    Type: AWS::EC2::VPC 
    Properties: 
      EnableDnsSupport: true 
      EnableDnsHostnames: true 
      CidrBlock:  
        Ref: 'VpcCIDR' 

  # Two public subnets, where containers will have public IP addresses 
  PublicSubnetOne: 
    Type: AWS::EC2::Subnet 
    Properties: 
      AvailabilityZone: 
         Fn::Select: 
         - 0 
         - Fn::GetAZs: {Ref: 'AWS::Region'} 
      VpcId: !Ref 'VPC' 
      CidrBlock: 
         Ref: 'SubnetOneCIDR' 
      MapPublicIpOnLaunch: true 

AWS CloudFormation IaC files 73



AWS Proton User Guide

  PublicSubnetTwo: 
    Type: AWS::EC2::Subnet 
    Properties: 
      AvailabilityZone: 
         Fn::Select: 
         - 1 
         - Fn::GetAZs: {Ref: 'AWS::Region'} 
      VpcId: !Ref 'VPC' 
      CidrBlock: 
        Ref: 'SubnetTwoCIDR' 
      MapPublicIpOnLaunch: true 

  # Setup networking resources for the public subnets. Containers 
  # in the public subnets have public IP addresses and the routing table 
  # sends network traffic via the internet gateway. 
  InternetGateway: 
    Type: AWS::EC2::InternetGateway 
  GatewayAttachement: 
    Type: AWS::EC2::VPCGatewayAttachment 
    Properties: 
      VpcId: !Ref 'VPC' 
      InternetGatewayId: !Ref 'InternetGateway' 
  PublicRouteTable: 
    Type: AWS::EC2::RouteTable 
    Properties: 
      VpcId: !Ref 'VPC' 
  PublicRoute: 
    Type: AWS::EC2::Route 
    DependsOn: GatewayAttachement 
    Properties: 
      RouteTableId: !Ref 'PublicRouteTable' 
      DestinationCidrBlock: '0.0.0.0/0' 
      GatewayId: !Ref 'InternetGateway' 
  PublicSubnetOneRouteTableAssociation: 
    Type: AWS::EC2::SubnetRouteTableAssociation 
    Properties: 
      SubnetId: !Ref PublicSubnetOne 
      RouteTableId: !Ref PublicRouteTable 
  PublicSubnetTwoRouteTableAssociation: 
    Type: AWS::EC2::SubnetRouteTableAssociation 
    Properties: 
      SubnetId: !Ref PublicSubnetTwo 
      RouteTableId: !Ref PublicRouteTable 

AWS CloudFormation IaC files 74



AWS Proton User Guide

  # ECS Resources 
  ECSCluster: 
    Type: AWS::ECS::Cluster 

  # A security group for the containers we will run in Fargate. 
  # Rules are added to this security group based on what ingress you 
  # add for the cluster. 
  ContainerSecurityGroup: 
    Type: AWS::EC2::SecurityGroup 
    Properties: 
      GroupDescription: Access to the Fargate containers 
      VpcId: !Ref 'VPC' 

  # This is a role which is used by the ECS tasks themselves. 
  ECSTaskExecutionRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
        - Effect: Allow 
          Principal: 
            Service: [ecs-tasks.amazonaws.com] 
          Action: ['sts:AssumeRole'] 
      Path: / 
      ManagedPolicyArns: 
        - 'arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy'

# These output values will be available to other templates to use.
Outputs: 
  ClusterName:                                               # output 
    Description: The name of the ECS cluster 
    Value: !Ref 'ECSCluster' 
    Export: 
      Name: 
        Fn::Sub: "${AWS::StackName}-ECSCluster" 
  ECSTaskExecutionRole:                                       # output 
    Description: The ARN of the ECS role 
    Value: !GetAtt 'ECSTaskExecutionRole.Arn' 
    Export:  
      Name: 
        Fn::Sub: "${AWS::StackName}-ECSTaskExecutionRole" 
  VpcId:                                                      # output 
    Description: The ID of the VPC that this stack is deployed in 

AWS CloudFormation IaC files 75



AWS Proton User Guide

    Value: !Ref 'VPC' 
    Export:  
      Name:  
        Fn::Sub: "${AWS::StackName}-VPC" 
  PublicSubnetOne:                                            # output 
    Description: Public subnet one 
    Value: !Ref 'PublicSubnetOne' 
    Export:  
      Name: 
        Fn::Sub: "${AWS::StackName}-PublicSubnetOne" 
  PublicSubnetTwo:                                            # output 
    Description: Public subnet two 
    Value: !Ref 'PublicSubnetTwo' 
    Export:  
      Name: 
        Fn::Sub: "${AWS::StackName}-PublicSubnetTwo" 
  ContainerSecurityGroup:                                     # output 
    Description: A security group used to allow Fargate containers to receive traffic 
    Value: !Ref 'ContainerSecurityGroup' 
    Export:  
      Name: 
        Fn::Sub: "${AWS::StackName}-ContainerSecurityGroup"

Example 2: CloudFormation IaC file

AWSTemplateFormatVersion: '2010-09-09'
Description: Deploy a service on AWS Fargate, hosted in a public subnet, and accessible 
 via a public load balancer.
Parameters: 
    ContainerPortInput:  # input parameter 
        Description: The port to route traffic to 
        Type: Number 
        Default: 80 
    TaskCountInput:      # input parameter 
        Description: The default number of Fargate tasks you want running 
        Type: Number 
        Default: 1 
    TaskSizeInput:       # input parameter 
        Description: The size of the task you want to run 
        Type: String 
        Default: x-small 
    ContainerImageInput: # input parameter 
        Description: The name/url of the container image 

AWS CloudFormation IaC files 76



AWS Proton User Guide

        Type: String 
        Default: "public.ecr.aws/z9d2n7e1/nginx:1.19.5" 
    TaskNameInput:       # input parameter 
        Description: Name for your task 
        Type: String 
        Default: "my-fargate-instance" 
    StackName:           # input parameter 
        Description: Name of the environment stack to deploy to 
        Type: String 
        Default: "my-fargate-environment"
Mappings: 
  TaskSizeMap: 
    x-small: 
      cpu: 256 
      memory: 512 
    small: 
      cpu: 512 
      memory: 1024 
    medium: 
      cpu: 1024 
      memory: 2048 
    large: 
      cpu: 2048 
      memory: 4096 
    x-large: 
      cpu: 4096 
      memory: 8192
Resources: 
  # A log group for storing the stdout logs from this service's containers 
  LogGroup: 
    Type: AWS::Logs::LogGroup 
    Properties: 
      LogGroupName: 
        Ref: 'TaskNameInput' # input parameter 

  # The task definition. This is a simple metadata description of what 
  # container to run, and what resource requirements it has. 
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      Family: !Ref 'TaskNameInput' 
      Cpu: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', cpu] 
      Memory: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', memory] 
      NetworkMode: awsvpc 

AWS CloudFormation IaC files 77



AWS Proton User Guide

      RequiresCompatibilities: 
        - FARGATE 
      ExecutionRoleArn: 
        Fn::ImportValue: 
          !Sub "${StackName}-ECSTaskExecutionRole"    # output parameter from another 
 CloudFormation template 
              awslogs-region: !Ref 'AWS::Region' 
              awslogs-stream-prefix: !Ref 'TaskNameInput' 
                 

  # The service_instance. The service is a resource which allows you to run multiple 
  # copies of a type of task, and gather up their logs and metrics, as well 
  # as monitor the number of running tasks and replace any that have crashed 
  Service: 
    Type: AWS::ECS::Service 
    DependsOn: LoadBalancerRule 
    Properties: 
      ServiceName: !Ref 'TaskNameInput' 
      Cluster: 
        Fn::ImportValue: 
          !Sub "${StackName}-ECSCluster"  # output parameter from another 
 CloudFormation template 
      LaunchType: FARGATE 
      DeploymentConfiguration: 
        MaximumPercent: 200 
        MinimumHealthyPercent: 75 
      DesiredCount: !Ref 'TaskCountInput' 
      NetworkConfiguration: 
        AwsvpcConfiguration: 
          AssignPublicIp: ENABLED 
          SecurityGroups: 
            - Fn::ImportValue: 
                !Sub "${StackName}-ContainerSecurityGroup"    # output parameter from 
 another CloudFormation template 
          Subnets: 
            - Fn::ImportValue:r CloudFormation template 
      TaskRoleArn: !Ref "AWS::NoValue" 
      ContainerDefinitions:         
        - Name: !Ref 'TaskNameInput' 
          Cpu: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', cpu] 
          Memory: !FindInMap [TaskSizeMap, !Ref 'TaskSizeInput', memory] 
          Image: !Ref 'ContainerImageInput'             # input parameter 
          PortMappings: 
            - ContainerPort: !Ref 'ContainerPortInput'  # input parameter 

AWS CloudFormation IaC files 78



AWS Proton User Guide

          
          LogConfiguration: 
            LogDriver: 'awslogs' 
            Options: 
              awslogs-group: !Ref 'TaskNameInput' 
                !Sub "${StackName}-PublicSubnetOne"    # output parameter from another 
 CloudFormation template 
            - Fn::ImportValue: 
                !Sub "${StackName}-PublicSubnetTwo"    # output parameter from another 
 CloudFormation template 
      TaskDefinition: !Ref 'TaskDefinition' 
      LoadBalancers: 
        - ContainerName: !Ref 'TaskNameInput' 
          ContainerPort: !Ref 'ContainerPortInput'  # input parameter 
          TargetGroupArn: !Ref 'TargetGroup' 

  # A target group. This is used for keeping track of all the tasks, and 
  # what IP addresses / port numbers they have. You can query it yourself, 
  # to use the addresses yourself, but most often this target group is just 
  # connected to an application load balancer, or network load balancer, so 
  # it can automatically distribute traffic across all the targets. 
  TargetGroup: 
    Type: AWS::ElasticLoadBalancingV2::TargetGroup 
    Properties: 
      HealthCheckIntervalSeconds: 6 
      HealthCheckPath: / 
      HealthCheckProtocol: HTTP 
      HealthCheckTimeoutSeconds: 5 
      HealthyThresholdCount: 2 
      TargetType: ip 
      Name: !Ref 'TaskNameInput' 
      Port: !Ref 'ContainerPortInput' 
      Protocol: HTTP 
      UnhealthyThresholdCount: 2 
      VpcId: 
        Fn::ImportValue: 
          !Sub "${StackName}-VPC"    # output parameter from another CloudFormation 
 template 

  # Create a rule on the load balancer for routing traffic to the target group 
  LoadBalancerRule: 
    Type: AWS::ElasticLoadBalancingV2::ListenerRule 
    Properties: 
      Actions: 

AWS CloudFormation IaC files 79



AWS Proton User Guide

        - TargetGroupArn: !Ref 'TargetGroup' 
          Type: 'forward' 
      Conditions: 
        - Field: path-pattern 
          Values: 
            - '*' 
      ListenerArn: !Ref PublicLoadBalancerListener 
      Priority: 1 

  # Enable autoscaling for this service 
  ScalableTarget: 
    Type: AWS::ApplicationAutoScaling::ScalableTarget 
    DependsOn: Service 
    Properties: 
      ServiceNamespace: 'ecs' 
      ScalableDimension: 'ecs:service:DesiredCount' 
      ResourceId: 
        Fn::Join: 
          - '/' 
          - - service 
            - Fn::ImportValue: 
                !Sub "${StackName}-ECSCluster" 
            - !Ref 'TaskNameInput' 
      MinCapacity: 1 
      MaxCapacity: 10 
      RoleARN: !Sub arn:aws:iam::${AWS::AccountId}:role/
aws-service-role/ecs.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ECSService 

  # Create scaling policies for the service 
  ScaleDownPolicy: 
    Type: AWS::ApplicationAutoScaling::ScalingPolicy 
    DependsOn: ScalableTarget 
    Properties: 
      PolicyName: 
        Fn::Join: 
          - '/' 
          - - scale 
            - !Ref 'TaskNameInput' 
            - down 
      PolicyType: StepScaling 
      ResourceId: 
        Fn::Join: 
          - '/' 

AWS CloudFormation IaC files 80



AWS Proton User Guide

          - - service 
            - Fn::ImportValue: 
                !Sub "${StackName}-ECSCluster"  # output parameter from another 
 CloudFormation template 
            - !Ref 'TaskNameInput' 
      ScalableDimension: 'ecs:service:DesiredCount' 
      ServiceNamespace: 'ecs' 
      StepScalingPolicyConfiguration: 
        AdjustmentType: 'ChangeInCapacity' 
        StepAdjustments: 
          - MetricIntervalUpperBound: 0 
            ScalingAdjustment: -1 
        MetricAggregationType: 'Average' 
        Cooldown: 60 

  ScaleUpPolicy: 
    Type: AWS::ApplicationAutoScaling::ScalingPolicy 
    DependsOn: ScalableTarget 
    Properties: 
      PolicyName: 
        Fn::Join: 
          - '/' 
          - - scale 
            - !Ref 'TaskNameInput' 
            - up 
      PolicyType: StepScaling 
      ResourceId: 
        Fn::Join: 
          - '/' 
          - - service 
            - Fn::ImportValue: 
                !Sub "${StackName}-ECSCluster" 
            - !Ref 'TaskNameInput' 
      ScalableDimension: 'ecs:service:DesiredCount' 
      ServiceNamespace: 'ecs' 
      StepScalingPolicyConfiguration: 
        AdjustmentType: 'ChangeInCapacity' 
        StepAdjustments: 
          - MetricIntervalLowerBound: 0 
            MetricIntervalUpperBound: 15 
            ScalingAdjustment: 1 
          - MetricIntervalLowerBound: 15 
            MetricIntervalUpperBound: 25 
            ScalingAdjustment: 2 

AWS CloudFormation IaC files 81



AWS Proton User Guide

          - MetricIntervalLowerBound: 25 
            ScalingAdjustment: 3 
        MetricAggregationType: 'Average' 
        Cooldown: 60 

  # Create alarms to trigger these policies 
  LowCpuUsageAlarm: 
    Type: AWS::CloudWatch::Alarm 
    Properties: 
      AlarmName: 
        Fn::Join: 
          - '-' 
          - - low-cpu 
            - !Ref 'TaskNameInput' 
      AlarmDescription: 
        Fn::Join: 
          - ' ' 
          - - "Low CPU utilization for service" 
            - !Ref 'TaskNameInput' 
      MetricName: CPUUtilization 
      Namespace: AWS/ECS 
      Dimensions: 
        - Name: ServiceName 
          Value: !Ref 'TaskNameInput' 
        - Name: ClusterName 
          Value: 
            Fn::ImportValue: 
              !Sub "${StackName}-ECSCluster" 
      Statistic: Average 
      Period: 60 
      EvaluationPeriods: 1 
      Threshold: 20 
      ComparisonOperator: LessThanOrEqualToThreshold 
      AlarmActions: 
        - !Ref ScaleDownPolicy 

  HighCpuUsageAlarm: 
    Type: AWS::CloudWatch::Alarm 
    Properties: 
      AlarmName: 
        Fn::Join: 
          - '-' 
          - - high-cpu 
            - !Ref 'TaskNameInput' 

AWS CloudFormation IaC files 82



AWS Proton User Guide

      AlarmDescription: 
        Fn::Join: 
          - ' ' 
          - - "High CPU utilization for service" 
            - !Ref 'TaskNameInput' 
      MetricName: CPUUtilization 
      Namespace: AWS/ECS 
      Dimensions: 
        - Name: ServiceName 
          Value: !Ref 'TaskNameInput' 
        - Name: ClusterName 
          Value: 
            Fn::ImportValue: 
              !Sub "${StackName}-ECSCluster" 
      Statistic: Average 
      Period: 60 
      EvaluationPeriods: 1 
      Threshold: 70 
      ComparisonOperator: GreaterThanOrEqualToThreshold 
      AlarmActions: 
        - !Ref ScaleUpPolicy 

  EcsSecurityGroupIngressFromPublicALB: 
    Type: AWS::EC2::SecurityGroupIngress 
    Properties: 
      Description: Ingress from the public ALB 
      GroupId: 
        Fn::ImportValue: 
          !Sub "${StackName}-ContainerSecurityGroup" 
      IpProtocol: -1 
      SourceSecurityGroupId: !Ref 'PublicLoadBalancerSG' 

  # Public load balancer, hosted in public subnets that is accessible 
  # to the public, and is intended to route traffic to one or more public 
  # facing services. This is used for accepting traffic from the public 
  # internet and directing it to public facing microservices 
  PublicLoadBalancerSG: 
    Type: AWS::EC2::SecurityGroup 
    Properties: 
      GroupDescription: Access to the public facing load balancer 
      VpcId: 
        Fn::ImportValue: 
          !Sub "${StackName}-VPC" 
      SecurityGroupIngress: 

AWS CloudFormation IaC files 83



AWS Proton User Guide

          # Allow access to ALB from anywhere on the internet 
          - CidrIp: 0.0.0.0/0 
            IpProtocol: -1 

  PublicLoadBalancer: 
    Type: AWS::ElasticLoadBalancingV2::LoadBalancer 
    Properties: 
      Scheme: internet-facing 
      LoadBalancerAttributes: 
      - Key: idle_timeout.timeout_seconds 
        Value: '30' 
      Subnets: 
        # The load balancer is placed into the public subnets, so that traffic 
        # from the internet can reach the load balancer directly via the internet 
 gateway 
        - Fn::ImportValue: 
            !Sub "${StackName}-PublicSubnetOne" 
        - Fn::ImportValue: 
            !Sub "${StackName}-PublicSubnetTwo" 
      SecurityGroups: [!Ref 'PublicLoadBalancerSG'] 

  PublicLoadBalancerListener: 
    Type: AWS::ElasticLoadBalancingV2::Listener 
    DependsOn: 
      - PublicLoadBalancer 
    Properties: 
      DefaultActions: 
        - TargetGroupArn: !Ref 'TargetGroup' 
          Type: 'forward' 
      LoadBalancerArn: !Ref 'PublicLoadBalancer' 
      Port: 80 
      Protocol: HTTP
# These output values will be available to other templates to use.
Outputs: 
  ServiceEndpoint:        # output 
    Description: The URL to access the service 
    Value: !Sub "http://${PublicLoadBalancer.DNSName}"

You can adapt these files for use with AWS Proton.

AWS CloudFormation IaC files 84



AWS Proton User Guide

Bring your infrastructure as code to AWS Proton

With slight modifications, you can use Example 1 as an infrastructure as code (IaC) file for an 
environment template bundle that AWS Proton uses to deploy an environment (as shown in
Example 3).

Instead of using the CloudFormation parameters, you use Jinja syntax to reference parameters that 
you have defined in an Open API based schema file. These input parameters are commented for 
your convenience and referenced multiple times in the IaC file. This way, AWS Proton can audit and 
check parameter values. It can also match and insert output parameter values in one IaC file to 
parameters in another IaC file.

As administrator, you can add the AWS Proton environment.inputs. namespace to 
the input parameters. When you reference environment IaC file outputs in a service IaC 
file, you can add the environment.outputs. namespace to the outputs (for example,
environment.outputs.ClusterName). Last, you surround them with curly braces and 
quotation marks.

With these modifications, your CloudFormation IaC files can be used by AWS Proton.

Example 3: AWS Proton environment infrastructure as code file

AWSTemplateFormatVersion: '2010-09-09'
Description: AWS Fargate cluster running containers in a public subnet. Only supports 
             public facing load balancer, and public service discovery prefixes.
Mappings: 
  # The VPC and subnet configuration is passed in via the environment spec. 
  SubnetConfig: 
    VPC: 
      CIDR: '{{ environment.inputs.vpc_cidr}}'        # input parameter 
    PublicOne: 
      CIDR: '{{ environment.inputs.subnet_one_cidr}}' # input parameter 
    PublicTwo: 
      CIDR: '{{ environment.inputs.subnet_two_cidr}}' # input parameter
Resources: 
  VPC: 
    Type: AWS::EC2::VPC 
    Properties: 
      EnableDnsSupport: true 
      EnableDnsHostnames: true 
      CidrBlock: !FindInMap ['SubnetConfig', 'VPC', 'CIDR'] 

AWS CloudFormation IaC files 85

https://jinja.palletsprojects.com/en/2.11.x/templates/
https://swagger.io/docs/specification/data-models/


AWS Proton User Guide

  # Two public subnets, where containers will have public IP addresses 
  PublicSubnetOne: 
    Type: AWS::EC2::Subnet 
    Properties: 
      AvailabilityZone: 
         Fn::Select: 
         - 0 
         - Fn::GetAZs: {Ref: 'AWS::Region'} 
      VpcId: !Ref 'VPC' 
      CidrBlock: !FindInMap ['SubnetConfig', 'PublicOne', 'CIDR'] 
      MapPublicIpOnLaunch: true 

  PublicSubnetTwo: 
    Type: AWS::EC2::Subnet 
    Properties: 
      AvailabilityZone: 
         Fn::Select: 
         - 1 
         - Fn::GetAZs: {Ref: 'AWS::Region'} 
      VpcId: !Ref 'VPC' 
      CidrBlock: !FindInMap ['SubnetConfig', 'PublicTwo', 'CIDR'] 
      MapPublicIpOnLaunch: true 

  # Setup networking resources for the public subnets. Containers 
  # in the public subnets have public IP addresses and the routing table 
  # sends network traffic via the internet gateway. 
  InternetGateway: 
    Type: AWS::EC2::InternetGateway 
  GatewayAttachement: 
    Type: AWS::EC2::VPCGatewayAttachment 
    Properties: 
      VpcId: !Ref 'VPC' 
      InternetGatewayId: !Ref 'InternetGateway' 
  PublicRouteTable: 
    Type: AWS::EC2::RouteTable 
    Properties: 
      VpcId: !Ref 'VPC' 
  PublicRoute: 
    Type: AWS::EC2::Route 
    DependsOn: GatewayAttachement 
    Properties: 
      RouteTableId: !Ref 'PublicRouteTable' 
      DestinationCidrBlock: '0.0.0.0/0' 
      GatewayId: !Ref 'InternetGateway' 

AWS CloudFormation IaC files 86



AWS Proton User Guide

  PublicSubnetOneRouteTableAssociation: 
    Type: AWS::EC2::SubnetRouteTableAssociation 
    Properties: 
      SubnetId: !Ref PublicSubnetOne 
      RouteTableId: !Ref PublicRouteTable 
  PublicSubnetTwoRouteTableAssociation: 
    Type: AWS::EC2::SubnetRouteTableAssociation 
    Properties: 
      SubnetId: !Ref PublicSubnetTwo 
      RouteTableId: !Ref PublicRouteTable 

  # ECS Resources 
  ECSCluster: 
    Type: AWS::ECS::Cluster 

  # A security group for the containers we will run in Fargate. 
  # Rules are added to this security group based on what ingress you 
  # add for the cluster. 
  ContainerSecurityGroup: 
    Type: AWS::EC2::SecurityGroup 
    Properties: 
      GroupDescription: Access to the Fargate containers 
      VpcId: !Ref 'VPC' 

  # This is a role which is used by the ECS tasks themselves. 
  ECSTaskExecutionRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
        - Effect: Allow 
          Principal: 
            Service: [ecs-tasks.amazonaws.com] 
          Action: ['sts:AssumeRole'] 
      Path: / 
      ManagedPolicyArns: 
        - 'arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy'

# These output values are available to service infrastructure as code files as outputs, 
 when given the  
# the 'service_instance.environment.outputs.' namespace, for example, 
 service_instance.environment.outputs.ClusterName.

Outputs: 

AWS CloudFormation IaC files 87



AWS Proton User Guide

  ClusterName:                                            # output 
    Description: The name of the ECS cluster 
    Value: !Ref 'ECSCluster' 
  ECSTaskExecutionRole:                                   # output 
    Description: The ARN of the ECS role 
    Value: !GetAtt 'ECSTaskExecutionRole.Arn' 
  VpcId:                                                  # output 
    Description: The ID of the VPC that this stack is deployed in 
    Value: !Ref 'VPC' 
  PublicSubnetOne:                                        # output 
    Description: Public subnet one 
    Value: !Ref 'PublicSubnetOne' 
  PublicSubnetTwo:                                        # output 
    Description: Public subnet two 
    Value: !Ref 'PublicSubnetTwo' 
  ContainerSecurityGroup:                                 # output 
    Description: A security group used to allow Fargate containers to receive traffic 
    Value: !Ref 'ContainerSecurityGroup'

The IaC files in Example 1 and Example 3 produce slightly different CloudFormation stacks. 
Parameters are displayed differently in the stack template files. The Example 1 CloudFormation 
stack template file displays the parameter labels (keys) in the stack template view. The Example 3
AWS Proton CloudFormation infrastructure stack template file displays the parameter values. AWS 
Proton input parameters don’t appear in the console CloudFormation stack parameters view.

In Example 4, the AWS Proton service IaC file corresponds with Example 2.

Example 4: AWS Proton service instance IaC file

AWSTemplateFormatVersion: '2010-09-09'
Description: Deploy a service on AWS Fargate, hosted in a public subnet, and accessible 
 via a public load balancer.
Mappings: 
  TaskSize: 
    x-small: 
      cpu: 256 
      memory: 512 
    small: 
      cpu: 512 
      memory: 1024 
    medium: 
      cpu: 1024 
      memory: 2048 

AWS CloudFormation IaC files 88



AWS Proton User Guide

    large: 
      cpu: 2048 
      memory: 4096 
    x-large: 
      cpu: 4096 
      memory: 8192
Resources: 
  # A log group for storing the stdout logs from this service's containers 
  LogGroup: 
    Type: AWS::Logs::LogGroup 
    Properties: 
      LogGroupName: '{{service_instance.name}}' # resource parameter 

  # The task definition. This is a simple metadata description of what 
  # container to run, and what resource requirements it has. 
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      Family: '{{service_instance.name}}' 
      Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, cpu] # input 
 parameter 
      Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory]  
      NetworkMode: awsvpc 
      RequiresCompatibilities: 
        - FARGATE 
      ExecutionRoleArn: '{{environment.outputs.ECSTaskExecutionRole}}' # output from an 
 environment infrastructure as code file 
      TaskRoleArn: !Ref "AWS::NoValue" 
      ContainerDefinitions: 
        - Name: '{{service_instance.name}}' 
          Cpu: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, cpu] 
          Memory: !FindInMap [TaskSize, {{service_instance.inputs.task_size}}, memory] 
          Image: '{{service_instance.inputs.image}}' 
          PortMappings: 
            - ContainerPort: '{{service_instance.inputs.port}}' # input parameter 
          LogConfiguration: 
            LogDriver: 'awslogs' 
            Options: 
              awslogs-group: '{{service_instance.name}}' 
              awslogs-region: !Ref 'AWS::Region' 
              awslogs-stream-prefix: '{{service_instance.name}}' 

  # The service_instance. The service is a resource which allows you to run multiple 
  # copies of a type of task, and gather up their logs and metrics, as well 

AWS CloudFormation IaC files 89



AWS Proton User Guide

  # as monitor the number of running tasks and replace any that have crashed 
  Service: 
    Type: AWS::ECS::Service 
    DependsOn: LoadBalancerRule 
    Properties: 
      ServiceName: '{{service_instance.name}}' 
      Cluster: '{{environment.outputs.ClusterName}}' # output from an environment 
 infrastructure as code file 
      LaunchType: FARGATE 
      DeploymentConfiguration: 
        MaximumPercent: 200 
        MinimumHealthyPercent: 75 
      DesiredCount: '{{service_instance.inputs.desired_count}}'       # input parameter 
      NetworkConfiguration: 
        AwsvpcConfiguration: 
          AssignPublicIp: ENABLED 
          SecurityGroups: 
            - '{{environment.outputs.ContainerSecurityGroup}}' # output from an 
 environment infrastructure as code file 
          Subnets: 
            - '{{environment.outputs.PublicSubnetOne}}'        # output from an 
 environment infrastructure as code file 
            - '{{environment.outputs.PublicSubnetTwo}}' 
      TaskDefinition: !Ref 'TaskDefinition' 
      LoadBalancers: 
        - ContainerName: '{{service_instance.name}}' 
          ContainerPort: '{{service_instance.inputs.port}}' 
          TargetGroupArn: !Ref 'TargetGroup' 

  # A target group. This is used for keeping track of all the tasks, and 
  # what IP addresses / port numbers they have. You can query it yourself, 
  # to use the addresses yourself, but most often this target group is just 
  # connected to an application load balancer, or network load balancer, so 
  # it can automatically distribute traffic across all the targets. 
  TargetGroup: 
    Type: AWS::ElasticLoadBalancingV2::TargetGroup 
    Properties: 
      HealthCheckIntervalSeconds: 6 
      HealthCheckPath: / 
      HealthCheckProtocol: HTTP 
      HealthCheckTimeoutSeconds: 5 
      HealthyThresholdCount: 2 
      TargetType: ip 
      Name: '{{service_instance.name}}' 

AWS CloudFormation IaC files 90



AWS Proton User Guide

      Port: '{{service_instance.inputs.port}}' 
      Protocol: HTTP 
      UnhealthyThresholdCount: 2 
      VpcId: '{{environment.outputs.VpcId}}' # output from an environment 
 infrastructure as code file 

  # Create a rule on the load balancer for routing traffic to the target group 
  LoadBalancerRule: 
    Type: AWS::ElasticLoadBalancingV2::ListenerRule 
    Properties: 
      Actions: 
        - TargetGroupArn: !Ref 'TargetGroup' 
          Type: 'forward' 
      Conditions: 
        - Field: path-pattern 
          Values: 
            - '*' 
      ListenerArn: !Ref PublicLoadBalancerListener 
      Priority: 1 

  # Enable autoscaling for this service 
  ScalableTarget: 
    Type: AWS::ApplicationAutoScaling::ScalableTarget 
    DependsOn: Service 
    Properties: 
      ServiceNamespace: 'ecs' 
      ScalableDimension: 'ecs:service:DesiredCount' 
      ResourceId: 
        Fn::Join: 
          - '/' 
          - - service 
            - '{{environment.outputs.ClusterName}}' # output from an environment 
 infrastructure as code file 
            - '{{service_instance.name}}' 
      MinCapacity: 1 
      MaxCapacity: 10 
      RoleARN: !Sub arn:aws:iam::${AWS::AccountId}:role/
aws-service-role/ecs.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ECSService 

  # Create scaling policies for the service 
  ScaleDownPolicy: 
    Type: AWS::ApplicationAutoScaling::ScalingPolicy 
    DependsOn: ScalableTarget 

AWS CloudFormation IaC files 91



AWS Proton User Guide

    Properties: 
      PolicyName: 
        Fn::Join: 
          - '/' 
          - - scale 
            - '{{service_instance.name}}' 
            - down 
      PolicyType: StepScaling 
      ResourceId: 
        Fn::Join: 
          - '/' 
          - - service 
            - '{{environment.outputs.ClusterName}}' 
            - '{{service_instance.name}}' 
      ScalableDimension: 'ecs:service:DesiredCount' 
      ServiceNamespace: 'ecs' 
      StepScalingPolicyConfiguration: 
        AdjustmentType: 'ChangeInCapacity' 
        StepAdjustments: 
          - MetricIntervalUpperBound: 0 
            ScalingAdjustment: -1 
        MetricAggregationType: 'Average' 
        Cooldown: 60 

  ScaleUpPolicy: 
    Type: AWS::ApplicationAutoScaling::ScalingPolicy 
    DependsOn: ScalableTarget 
    Properties: 
      PolicyName: 
        Fn::Join: 
          - '/' 
          - - scale 
            - '{{service_instance.name}}' 
            - up 
      PolicyType: StepScaling 
      ResourceId: 
        Fn::Join: 
          - '/' 
          - - service 
            - '{{environment.outputs.ClusterName}}' 
            - '{{service_instance.name}}' 
      ScalableDimension: 'ecs:service:DesiredCount' 
      ServiceNamespace: 'ecs' 
      StepScalingPolicyConfiguration: 

AWS CloudFormation IaC files 92



AWS Proton User Guide

        AdjustmentType: 'ChangeInCapacity' 
        StepAdjustments: 
          - MetricIntervalLowerBound: 0 
            MetricIntervalUpperBound: 15 
            ScalingAdjustment: 1 
          - MetricIntervalLowerBound: 15 
            MetricIntervalUpperBound: 25 
            ScalingAdjustment: 2 
          - MetricIntervalLowerBound: 25 
            ScalingAdjustment: 3 
        MetricAggregationType: 'Average' 
        Cooldown: 60 

  # Create alarms to trigger these policies 
  LowCpuUsageAlarm: 
    Type: AWS::CloudWatch::Alarm 
    Properties: 
      AlarmName: 
        Fn::Join: 
          - '-' 
          - - low-cpu 
            - '{{service_instance.name}}' 
      AlarmDescription: 
        Fn::Join: 
          - ' ' 
          - - "Low CPU utilization for service" 
            - '{{service_instance.name}}' 
      MetricName: CPUUtilization 
      Namespace: AWS/ECS 
      Dimensions: 
        - Name: ServiceName 
          Value: '{{service_instance.name}}' 
        - Name: ClusterName 
          Value: 
            '{{environment.outputs.ClusterName}}' 
      Statistic: Average 
      Period: 60 
      EvaluationPeriods: 1 
      Threshold: 20 
      ComparisonOperator: LessThanOrEqualToThreshold 
      AlarmActions: 
        - !Ref ScaleDownPolicy 

  HighCpuUsageAlarm: 

AWS CloudFormation IaC files 93



AWS Proton User Guide

    Type: AWS::CloudWatch::Alarm 
    Properties: 
      AlarmName: 
        Fn::Join: 
          - '-' 
          - - high-cpu 
            - '{{service_instance.name}}' 
      AlarmDescription: 
        Fn::Join: 
          - ' ' 
          - - "High CPU utilization for service" 
            - '{{service_instance.name}}' 
      MetricName: CPUUtilization 
      Namespace: AWS/ECS 
      Dimensions: 
        - Name: ServiceName 
          Value: '{{service_instance.name}}' 
        - Name: ClusterName 
          Value: 
            '{{environment.outputs.ClusterName}}' 
      Statistic: Average 
      Period: 60 
      EvaluationPeriods: 1 
      Threshold: 70 
      ComparisonOperator: GreaterThanOrEqualToThreshold 
      AlarmActions: 
        - !Ref ScaleUpPolicy 

  EcsSecurityGroupIngressFromPublicALB: 
    Type: AWS::EC2::SecurityGroupIngress 
    Properties: 
      Description: Ingress from the public ALB 
      GroupId: '{{environment.outputs.ContainerSecurityGroup}}' 
      IpProtocol: -1 
      SourceSecurityGroupId: !Ref 'PublicLoadBalancerSG' 

  # Public load balancer, hosted in public subnets that is accessible 
  # to the public, and is intended to route traffic to one or more public 
  # facing services. This is used for accepting traffic from the public 
  # internet and directing it to public facing microservices 
  PublicLoadBalancerSG: 
    Type: AWS::EC2::SecurityGroup 
    Properties: 
      GroupDescription: Access to the public facing load balancer 

AWS CloudFormation IaC files 94



AWS Proton User Guide

      VpcId: '{{environment.outputs.VpcId}}' 
      SecurityGroupIngress: 
          # Allow access to ALB from anywhere on the internet 
          - CidrIp: 0.0.0.0/0 
            IpProtocol: -1 

  PublicLoadBalancer: 
    Type: AWS::ElasticLoadBalancingV2::LoadBalancer 
    Properties: 
      Scheme: internet-facing 
      LoadBalancerAttributes: 
      - Key: idle_timeout.timeout_seconds 
        Value: '30' 
      Subnets: 
        # The load balancer is placed into the public subnets, so that traffic 
        # from the internet can reach the load balancer directly via the internet 
 gateway 
        - '{{environment.outputs.PublicSubnetOne}}' 
        - '{{environment.outputs.PublicSubnetTwo}}' 
      SecurityGroups: [!Ref 'PublicLoadBalancerSG'] 

  PublicLoadBalancerListener: 
    Type: AWS::ElasticLoadBalancingV2::Listener 
    DependsOn: 
      - PublicLoadBalancer 
    Properties: 
      DefaultActions: 
        - TargetGroupArn: !Ref 'TargetGroup' 
          Type: 'forward' 
      LoadBalancerArn: !Ref 'PublicLoadBalancer' 
      Port: 80 
      Protocol: HTTP
Outputs: 
  ServiceEndpoint:         # output 
    Description: The URL to access the service 
    Value: !Sub "http://${PublicLoadBalancer.DNSName}"

In Example 5, the AWS Proton pipeline IaC file provisions the pipeline infrastructure to support the 
service instances provisioned by Example 4.

Example 5: AWS Proton service pipeline IaC file

Resources: 

AWS CloudFormation IaC files 95



AWS Proton User Guide

  ECRRepo: 
    Type: AWS::ECR::Repository 
    DeletionPolicy: Retain 
  BuildProject: 
    Type: AWS::CodeBuild::Project 
    Properties: 
      Artifacts: 
        Type: CODEPIPELINE 
      Environment: 
        ComputeType: BUILD_GENERAL1_SMALL 
        Image: aws/codebuild/amazonlinux2-x86_64-standard:3.0 
        PrivilegedMode: true 
        Type: LINUX_CONTAINER 
        EnvironmentVariables: 
        - Name: repo_name 
          Type: PLAINTEXT 
          Value: !Ref ECRRepo 
        - Name: service_name 
          Type: PLAINTEXT 
          Value: '{{ service.name }}'    # resource parameter 
      ServiceRole: 
        Fn::GetAtt: 
          - PublishRole 
          - Arn 
      Source: 
        BuildSpec: 
          Fn::Join: 
            - "" 
            - - >- 
                { 
                  "version": "0.2", 
                  "phases": { 
                    "install": { 
                      "runtime-versions": { 
                        "docker": 18 
                      }, 
                      "commands": [ 
                        "pip3 install --upgrade --user awscli", 
                        "echo 
 'f6bd1536a743ab170b35c94ed4c7c4479763356bd543af5d391122f4af852460  yq_linux_amd64' > 
 yq_linux_amd64.sha", 
                        "wget https://github.com/mikefarah/yq/releases/download/3.4.0/
yq_linux_amd64", 
                        "sha256sum -c yq_linux_amd64.sha", 

AWS CloudFormation IaC files 96



AWS Proton User Guide

                        "mv yq_linux_amd64 /usr/bin/yq", 
                        "chmod +x /usr/bin/yq" 
                      ] 
                    }, 
                    "pre_build": { 
                      "commands": [ 
                        "cd $CODEBUILD_SRC_DIR", 
                        "$(aws ecr get-login --no-include-email --region 
 $AWS_DEFAULT_REGION)", 
                        "{{ pipeline.inputs.unit_test_command }}",    # input parameter 
                      ] 
                    }, 
                    "build": { 
                      "commands": [ 
                        "IMAGE_REPO_NAME=$repo_name", 
                        "IMAGE_TAG=$CODEBUILD_BUILD_NUMBER", 
                        "IMAGE_ID= 
              - Ref: AWS::AccountId 
              - >- 
                .dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com/$IMAGE_REPO_NAME:
$IMAGE_TAG", 
                        "docker build -t $IMAGE_REPO_NAME:$IMAGE_TAG -f 
 {{ pipeline.inputs.dockerfile }} .",     # input parameter 
                        "docker tag $IMAGE_REPO_NAME:$IMAGE_TAG $IMAGE_ID;", 
                        "docker push $IMAGE_ID" 
                      ] 
                    }, 
                    "post_build": { 
                      "commands": [ 
                        "aws proton --region $AWS_DEFAULT_REGION get-service --name 
 $service_name | jq -r .service.spec > service.yaml", 
                        "yq w service.yaml 'instances[*].spec.image' \"$IMAGE_ID\" > 
 rendered_service.yaml" 
                      ] 
                    } 
                  }, 
                  "artifacts": { 
                    "files": [ 
                      "rendered_service.yaml" 
                    ] 
                  } 
                } 
        Type: CODEPIPELINE 
      EncryptionKey: 

AWS CloudFormation IaC files 97



AWS Proton User Guide

        Fn::GetAtt: 
          - PipelineArtifactsBucketEncryptionKey 
          - Arn
{% for service_instance in service_instances %} 
  Deploy{{loop.index}}Project: 
    Type: AWS::CodeBuild::Project 
    Properties: 
      Artifacts: 
        Type: CODEPIPELINE 
      Environment: 
        ComputeType: BUILD_GENERAL1_SMALL 
        Image: aws/codebuild/amazonlinux2-x86_64-standard:3.0 
        PrivilegedMode: false 
        Type: LINUX_CONTAINER 
        EnvironmentVariables: 
        - Name: service_name 
          Type: PLAINTEXT 
          Value:  '{{service.name}}'          # resource parameter 
        - Name: service_instance_name 
          Type: PLAINTEXT 
          Value: '{{service_instance.name}}'  # resource parameter 
      ServiceRole: 
        Fn::GetAtt: 
          - DeploymentRole 
          - Arn 
      Source: 
        BuildSpec: >- 
          { 
            "version": "0.2", 
            "phases": { 
              "build": { 
                "commands": [ 
                  "pip3 install --upgrade --user awscli", 
                  "aws proton --region $AWS_DEFAULT_REGION update-service-instance 
 --deployment-type CURRENT_VERSION --name $service_instance_name --service-name 
 $service_name --spec file://rendered_service.yaml", 
                  "aws proton --region $AWS_DEFAULT_REGION wait service-instance-
deployed --name $service_instance_name --service-name $service_name" 
                ] 
              } 
            } 
          } 
        Type: CODEPIPELINE 
      EncryptionKey: 

AWS CloudFormation IaC files 98



AWS Proton User Guide

        Fn::GetAtt: 
          - PipelineArtifactsBucketEncryptionKey 
          - Arn
{% endfor %} 
  # This role is used to build and publish an image to ECR 
  PublishRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              Service: codebuild.amazonaws.com 
        Version: "2012-10-17" 
  PublishRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - logs:CreateLogGroup 
              - logs:CreateLogStream 
              - logs:PutLogEvents 
            Effect: Allow 
            Resource: 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/ 
                    - Ref: BuildProject 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 

AWS CloudFormation IaC files 99



AWS Proton User Guide

                    - :log-group:/aws/codebuild/ 
                    - Ref: BuildProject 
                    - :* 
          - Action: 
              - codebuild:CreateReportGroup 
              - codebuild:CreateReport 
              - codebuild:UpdateReport 
              - codebuild:BatchPutTestCases 
            Effect: Allow 
            Resource: 
              Fn::Join: 
                - "" 
                - - "arn:" 
                  - Ref: AWS::Partition 
                  - ":codebuild:" 
                  - Ref: AWS::Region 
                  - ":" 
                  - Ref: AWS::AccountId 
                  - :report-group/ 
                  - Ref: BuildProject 
                  - -* 
          - Action: 
              - ecr:GetAuthorizationToken 
            Effect: Allow 
            Resource: "*" 
          - Action: 
              - ecr:BatchCheckLayerAvailability 
              - ecr:CompleteLayerUpload 
              - ecr:GetAuthorizationToken 
              - ecr:InitiateLayerUpload 
              - ecr:PutImage 
              - ecr:UploadLayerPart 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - ECRRepo 
                - Arn 
          - Action: 
              - proton:GetService 
            Effect: Allow 
            Resource: "*" 
          - Action: 
              - s3:GetObject* 
              - s3:GetBucket* 

AWS CloudFormation IaC files 100



AWS Proton User Guide

              - s3:List* 
              - s3:DeleteObject* 
              - s3:PutObject* 
              - s3:Abort* 
            Effect: Allow 
            Resource: 
              - Fn::GetAtt: 
                  - PipelineArtifactsBucket 
                  - Arn 
              - Fn::Join: 
                  - "" 
                  - - Fn::GetAtt: 
                        - PipelineArtifactsBucket 
                        - Arn 
                    - /* 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
          - Action: 
              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: PublishRoleDefaultPolicy 
      Roles: 
        - Ref: PublishRole 

  DeploymentRole: 
    Type: AWS::IAM::Role 
    Properties: 

AWS CloudFormation IaC files 101



AWS Proton User Guide

      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              Service: codebuild.amazonaws.com 
        Version: "2012-10-17" 
  DeploymentRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - logs:CreateLogGroup 
              - logs:CreateLogStream 
              - logs:PutLogEvents 
            Effect: Allow 
            Resource: 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/Deploy*Project* 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/Deploy*Project:* 
          - Action: 
              - codebuild:CreateReportGroup 
              - codebuild:CreateReport 
              - codebuild:UpdateReport 
              - codebuild:BatchPutTestCases 
            Effect: Allow 
            Resource: 
              Fn::Join: 

AWS CloudFormation IaC files 102



AWS Proton User Guide

                - "" 
                - - "arn:" 
                  - Ref: AWS::Partition 
                  - ":codebuild:" 
                  - Ref: AWS::Region 
                  - ":" 
                  - Ref: AWS::AccountId 
                  - :report-group/Deploy*Project 
                  - -* 
          - Action: 
              - proton:UpdateServiceInstance 
              - proton:GetServiceInstance 
            Effect: Allow 
            Resource: "*" 
          - Action: 
              - s3:GetObject* 
              - s3:GetBucket* 
              - s3:List* 
            Effect: Allow 
            Resource: 
              - Fn::GetAtt: 
                  - PipelineArtifactsBucket 
                  - Arn 
              - Fn::Join: 
                  - "" 
                  - - Fn::GetAtt: 
                        - PipelineArtifactsBucket 
                        - Arn 
                    - /* 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
          - Action: 
              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 

AWS CloudFormation IaC files 103



AWS Proton User Guide

              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: DeploymentRoleDefaultPolicy 
      Roles: 
        - Ref: DeploymentRole 
  PipelineArtifactsBucketEncryptionKey: 
    Type: AWS::KMS::Key 
    Properties: 
      KeyPolicy: 
        Statement: 
          - Action: 
              - kms:Create* 
              - kms:Describe* 
              - kms:Enable* 
              - kms:List* 
              - kms:Put* 
              - kms:Update* 
              - kms:Revoke* 
              - kms:Disable* 
              - kms:Get* 
              - kms:Delete* 
              - kms:ScheduleKeyDeletion 
              - kms:CancelKeyDeletion 
              - kms:GenerateDataKey 
              - kms:TagResource 
              - kms:UntagResource 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":iam::" 
                    - Ref: AWS::AccountId 
                    - :root 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 

AWS CloudFormation IaC files 104



AWS Proton User Guide

              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - PipelineRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - PublishRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - PublishRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - DeploymentRole 
                  - Arn 
            Resource: "*" 
          - Action: 

AWS CloudFormation IaC files 105



AWS Proton User Guide

              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - DeploymentRole 
                  - Arn 
            Resource: "*" 
        Version: "2012-10-17" 
    UpdateReplacePolicy: Delete 
    DeletionPolicy: Delete 
  PipelineArtifactsBucket: 
    Type: AWS::S3::Bucket 
    Properties: 
      VersioningConfiguration: 
        Status: Enabled 
      BucketEncryption: 
        ServerSideEncryptionConfiguration: 
          - ServerSideEncryptionByDefault: 
              KMSMasterKeyID: 
                Fn::GetAtt: 
                  - PipelineArtifactsBucketEncryptionKey 
                  - Arn 
              SSEAlgorithm: aws:kms 
      PublicAccessBlockConfiguration: 
        BlockPublicAcls: true 
        BlockPublicPolicy: true 
        IgnorePublicAcls: true 
        RestrictPublicBuckets: true 
    UpdateReplacePolicy: Retain 
    DeletionPolicy: Retain 
  PipelineArtifactsBucketEncryptionKeyAlias: 
    Type: AWS::KMS::Alias 
    Properties: 
      AliasName: 'alias/codepipeline-encryption-key-{{ service.name }}' 
      TargetKeyId: 
        Fn::GetAtt: 
          - PipelineArtifactsBucketEncryptionKey 
          - Arn 
    UpdateReplacePolicy: Delete 
    DeletionPolicy: Delete 

AWS CloudFormation IaC files 106



AWS Proton User Guide

  PipelineRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              Service: codepipeline.amazonaws.com 
        Version: "2012-10-17" 
  PipelineRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - s3:GetObject* 
              - s3:GetBucket* 
              - s3:List* 
              - s3:DeleteObject* 
              - s3:PutObject* 
              - s3:Abort* 
            Effect: Allow 
            Resource: 
              - Fn::GetAtt: 
                  - PipelineArtifactsBucket 
                  - Arn 
              - Fn::Join: 
                  - "" 
                  - - Fn::GetAtt: 
                        - PipelineArtifactsBucket 
                        - Arn 
                    - /* 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 

AWS CloudFormation IaC files 107



AWS Proton User Guide

          - Action: codestar-connections:* 
            Effect: Allow 
            Resource: "*" 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineBuildCodePipelineActionRole 
                - Arn 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineDeployCodePipelineActionRole 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: PipelineRoleDefaultPolicy 
      Roles: 
        - Ref: PipelineRole 
  Pipeline: 
    Type: AWS::CodePipeline::Pipeline 
    Properties: 
      RoleArn: 
        Fn::GetAtt: 
          - PipelineRole 
          - Arn 
      Stages: 
        - Actions: 
            - ActionTypeId: 
                Category: Source 
                Owner: AWS 
                Provider: CodeStarSourceConnection 
                Version: "1" 
              Configuration: 
                ConnectionArn: '{{ service.repository_connection_arn }}' 
                FullRepositoryId: '{{ service.repository_id }}' 
                BranchName: '{{ service.branch_name }}' 
              Name: Checkout 
              OutputArtifacts: 
                - Name: Artifact_Source_Checkout 
              RunOrder: 1 
          Name: Source 
        - Actions: 
            - ActionTypeId: 

AWS CloudFormation IaC files 108



AWS Proton User Guide

                Category: Build 
                Owner: AWS 
                Provider: CodeBuild 
                Version: "1" 
              Configuration: 
                ProjectName: 
                  Ref: BuildProject 
              InputArtifacts: 
                - Name: Artifact_Source_Checkout 
              Name: Build 
              OutputArtifacts: 
                - Name: BuildOutput 
              RoleArn: 
                Fn::GetAtt: 
                  - PipelineBuildCodePipelineActionRole 
                  - Arn 
              RunOrder: 1 
          Name: Build {%- for service_instance in service_instances %} 
        - Actions: 
            - ActionTypeId: 
                Category: Build 
                Owner: AWS 
                Provider: CodeBuild 
                Version: "1" 
              Configuration: 
                ProjectName: 
                  Ref: Deploy{{loop.index}}Project 
              InputArtifacts: 
                - Name: BuildOutput 
              Name: Deploy 
              RoleArn: 
                Fn::GetAtt: 
                  - PipelineDeployCodePipelineActionRole 
                  - Arn 
              RunOrder: 1 
          Name: 'Deploy{{service_instance.name}}'
{%- endfor %} 
      ArtifactStore: 
        EncryptionKey: 
          Id: 
            Fn::GetAtt: 
              - PipelineArtifactsBucketEncryptionKey 
              - Arn 
          Type: KMS 

AWS CloudFormation IaC files 109



AWS Proton User Guide

        Location: 
          Ref: PipelineArtifactsBucket 
        Type: S3 
    DependsOn: 
      - PipelineRoleDefaultPolicy 
      - PipelineRole 
  PipelineBuildCodePipelineActionRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":iam::" 
                    - Ref: AWS::AccountId 
                    - :root 
        Version: "2012-10-17" 
  PipelineBuildCodePipelineActionRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - codebuild:BatchGetBuilds 
              - codebuild:StartBuild 
              - codebuild:StopBuild 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - BuildProject 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: PipelineBuildCodePipelineActionRoleDefaultPolicy 
      Roles: 
        - Ref: PipelineBuildCodePipelineActionRole 
  PipelineDeployCodePipelineActionRole: 
    Type: AWS::IAM::Role 
    Properties: 

AWS CloudFormation IaC files 110



AWS Proton User Guide

      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":iam::" 
                    - Ref: AWS::AccountId 
                    - :root 
        Version: "2012-10-17" 
  PipelineDeployCodePipelineActionRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - codebuild:BatchGetBuilds 
              - codebuild:StartBuild 
              - codebuild:StopBuild 
            Effect: Allow 
            Resource: 
              Fn::Join: 
                - "" 
                - - "arn:" 
                  - Ref: AWS::Partition 
                  - ":codebuild:" 
                  - Ref: AWS::Region 
                  - ":" 
                  - Ref: AWS::AccountId 
                  - ":project/Deploy*" 
        Version: "2012-10-17" 
      PolicyName: PipelineDeployCodePipelineActionRoleDefaultPolicy 
      Roles: 
        - Ref: PipelineDeployCodePipelineActionRole
Outputs: 
  PipelineEndpoint: 
    Description: The URL to access the pipeline 
    Value: !Sub "https://${AWS::Region}.console.aws.amazon.com/codesuite/codepipeline/
pipelines/${Pipeline}/view?region=${AWS::Region}" 

AWS CloudFormation IaC files 111



AWS Proton User Guide

                ] 
              } 
            } 
          } 
        Type: CODEPIPELINE 
      EncryptionKey: 
        Fn::GetAtt: 
          - PipelineArtifactsBucketEncryptionKey 
          - Arn
{% endfor %} 
  # This role is used to build and publish an image to ECR 
  PublishRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              Service: codebuild.amazonaws.com 
        Version: "2012-10-17" 
  PublishRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - logs:CreateLogGroup 
              - logs:CreateLogStream 
              - logs:PutLogEvents 
            Effect: Allow 
            Resource: 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/ 
                    - Ref: BuildProject 
              - Fn::Join: 
                  - "" 

AWS CloudFormation IaC files 112



AWS Proton User Guide

                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/ 
                    - Ref: BuildProject 
                    - :* 
          - Action: 
              - codebuild:CreateReportGroup 
              - codebuild:CreateReport 
              - codebuild:UpdateReport 
              - codebuild:BatchPutTestCases 
            Effect: Allow 
            Resource: 
              Fn::Join: 
                - "" 
                - - "arn:" 
                  - Ref: AWS::Partition 
                  - ":codebuild:" 
                  - Ref: AWS::Region 
                  - ":" 
                  - Ref: AWS::AccountId 
                  - :report-group/ 
                  - Ref: BuildProject 
                  - -* 
          - Action: 
              - ecr:GetAuthorizationToken 
            Effect: Allow 
            Resource: "*" 
          - Action: 
              - ecr:BatchCheckLayerAvailability 
              - ecr:CompleteLayerUpload 
              - ecr:GetAuthorizationToken 
              - ecr:InitiateLayerUpload 
              - ecr:PutImage 
              - ecr:UploadLayerPart 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - ECRRepo 
                - Arn 
          - Action: 

AWS CloudFormation IaC files 113



AWS Proton User Guide

              - proton:GetService 
            Effect: Allow 
            Resource: "*" 
          - Action: 
              - s3:GetObject* 
              - s3:GetBucket* 
              - s3:List* 
              - s3:DeleteObject* 
              - s3:PutObject* 
              - s3:Abort* 
            Effect: Allow 
            Resource: 
              - Fn::GetAtt: 
                  - PipelineArtifactsBucket 
                  - Arn 
              - Fn::Join: 
                  - "" 
                  - - Fn::GetAtt: 
                        - PipelineArtifactsBucket 
                        - Arn 
                    - /* 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
          - Action: 
              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: PublishRoleDefaultPolicy 

AWS CloudFormation IaC files 114



AWS Proton User Guide

      Roles: 
        - Ref: PublishRole 

  DeploymentRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              Service: codebuild.amazonaws.com 
        Version: "2012-10-17" 
  DeploymentRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - logs:CreateLogGroup 
              - logs:CreateLogStream 
              - logs:PutLogEvents 
            Effect: Allow 
            Resource: 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/Deploy*Project* 
              - Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":logs:" 
                    - Ref: AWS::Region 
                    - ":" 
                    - Ref: AWS::AccountId 
                    - :log-group:/aws/codebuild/Deploy*Project:* 
          - Action: 
              - codebuild:CreateReportGroup 

AWS CloudFormation IaC files 115



AWS Proton User Guide

              - codebuild:CreateReport 
              - codebuild:UpdateReport 
              - codebuild:BatchPutTestCases 
            Effect: Allow 
            Resource: 
              Fn::Join: 
                - "" 
                - - "arn:" 
                  - Ref: AWS::Partition 
                  - ":codebuild:" 
                  - Ref: AWS::Region 
                  - ":" 
                  - Ref: AWS::AccountId 
                  - :report-group/Deploy*Project 
                  - -* 
          - Action: 
              - proton:UpdateServiceInstance 
              - proton:GetServiceInstance 
            Effect: Allow 
            Resource: "*" 
          - Action: 
              - s3:GetObject* 
              - s3:GetBucket* 
              - s3:List* 
            Effect: Allow 
            Resource: 
              - Fn::GetAtt: 
                  - PipelineArtifactsBucket 
                  - Arn 
              - Fn::Join: 
                  - "" 
                  - - Fn::GetAtt: 
                        - PipelineArtifactsBucket 
                        - Arn 
                    - /* 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
          - Action: 

AWS CloudFormation IaC files 116



AWS Proton User Guide

              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: DeploymentRoleDefaultPolicy 
      Roles: 
        - Ref: DeploymentRole 
  PipelineArtifactsBucketEncryptionKey: 
    Type: AWS::KMS::Key 
    Properties: 
      KeyPolicy: 
        Statement: 
          - Action: 
              - kms:Create* 
              - kms:Describe* 
              - kms:Enable* 
              - kms:List* 
              - kms:Put* 
              - kms:Update* 
              - kms:Revoke* 
              - kms:Disable* 
              - kms:Get* 
              - kms:Delete* 
              - kms:ScheduleKeyDeletion 
              - kms:CancelKeyDeletion 
              - kms:GenerateDataKey 
              - kms:TagResource 
              - kms:UntagResource 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":iam::" 
                    - Ref: AWS::AccountId 
                    - :root 

AWS CloudFormation IaC files 117



AWS Proton User Guide

            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - PipelineRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - PublishRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - PublishRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
            Effect: Allow 
            Principal: 

AWS CloudFormation IaC files 118



AWS Proton User Guide

              AWS: 
                Fn::GetAtt: 
                  - DeploymentRole 
                  - Arn 
            Resource: "*" 
          - Action: 
              - kms:Decrypt 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::GetAtt: 
                  - DeploymentRole 
                  - Arn 
            Resource: "*" 
        Version: "2012-10-17" 
    UpdateReplacePolicy: Delete 
    DeletionPolicy: Delete 
  PipelineArtifactsBucket: 
    Type: AWS::S3::Bucket 
    Properties: 
      BucketEncryption: 
        ServerSideEncryptionConfiguration: 
          - ServerSideEncryptionByDefault: 
              KMSMasterKeyID: 
                Fn::GetAtt: 
                  - PipelineArtifactsBucketEncryptionKey 
                  - Arn 
              SSEAlgorithm: aws:kms 
      PublicAccessBlockConfiguration: 
        BlockPublicAcls: true 
        BlockPublicPolicy: true 
        IgnorePublicAcls: true 
        RestrictPublicBuckets: true 
    UpdateReplacePolicy: Retain 
    DeletionPolicy: Retain 
  PipelineArtifactsBucketEncryptionKeyAlias: 
    Type: AWS::KMS::Alias 
    Properties: 
      AliasName: 'alias/codepipeline-encryption-key-{{ service.name }}'     # resource 
 parameter 
      TargetKeyId: 

AWS CloudFormation IaC files 119



AWS Proton User Guide

        Fn::GetAtt: 
          - PipelineArtifactsBucketEncryptionKey 
          - Arn 
    UpdateReplacePolicy: Delete 
    DeletionPolicy: Delete 
  PipelineRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              Service: codepipeline.amazonaws.com 
        Version: "2012-10-17" 
  PipelineRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - s3:GetObject* 
              - s3:GetBucket* 
              - s3:List* 
              - s3:DeleteObject* 
              - s3:PutObject* 
              - s3:Abort* 
            Effect: Allow 
            Resource: 
              - Fn::GetAtt: 
                  - PipelineArtifactsBucket 
                  - Arn 
              - Fn::Join: 
                  - "" 
                  - - Fn::GetAtt: 
                        - PipelineArtifactsBucket 
                        - Arn 
                    - /* 
          - Action: 
              - kms:Decrypt 
              - kms:DescribeKey 
              - kms:Encrypt 
              - kms:ReEncrypt* 
              - kms:GenerateDataKey* 

AWS CloudFormation IaC files 120



AWS Proton User Guide

            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineArtifactsBucketEncryptionKey 
                - Arn 
          - Action: codestar-connections:* 
            Effect: Allow 
            Resource: "*" 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineBuildCodePipelineActionRole 
                - Arn 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 
                - PipelineDeployCodePipelineActionRole 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: PipelineRoleDefaultPolicy 
      Roles: 
        - Ref: PipelineRole 
  Pipeline: 
    Type: AWS::CodePipeline::Pipeline 
    Properties: 
      RoleArn: 
        Fn::GetAtt: 
          - PipelineRole 
          - Arn 
      Stages: 
        - Actions: 
            - ActionTypeId: 
                Category: Source 
                Owner: AWS 
                Provider: CodeStarSourceConnection 
                Version: "1" 
              Configuration: 
                ConnectionArn: '{{ service.repository_connection_arn }}'   # resource 
 parameter 
                FullRepositoryId: '{{ service.repository_id }}'            # resource 
 parameter 

AWS CloudFormation IaC files 121



AWS Proton User Guide

                BranchName: '{{ service.branch_name }}'                    # resource 
 parameter 
              Name: Checkout 
              OutputArtifacts: 
                - Name: Artifact_Source_Checkout 
              RunOrder: 1 
          Name: Source 
        - Actions: 
            - ActionTypeId: 
                Category: Build 
                Owner: AWS 
                Provider: CodeBuild 
                Version: "1" 
              Configuration: 
                ProjectName: 
                  Ref: BuildProject 
              InputArtifacts: 
                - Name: Artifact_Source_Checkout 
              Name: Build 
              OutputArtifacts: 
                - Name: BuildOutput 
              RoleArn: 
                Fn::GetAtt: 
                  - PipelineBuildCodePipelineActionRole 
                  - Arn 
              RunOrder: 1 
          Name: Build {%- for service_instance in service_instances %} 
        - Actions: 
            - ActionTypeId: 
                Category: Build 
                Owner: AWS 
                Provider: CodeBuild 
                Version: "1" 
              Configuration: 
                ProjectName: 
                  Ref: Deploy{{loop.index}}Project 
              InputArtifacts: 
                - Name: BuildOutput 
              Name: Deploy 
              RoleArn: 
                Fn::GetAtt: 
                  - PipelineDeployCodePipelineActionRole 
                  - Arn 
              RunOrder: 1 

AWS CloudFormation IaC files 122



AWS Proton User Guide

          Name: 'Deploy{{service_instance.name}}'         # resource parameter
{%- endfor %} 
      ArtifactStore: 
        EncryptionKey: 
          Id: 
            Fn::GetAtt: 
              - PipelineArtifactsBucketEncryptionKey 
              - Arn 
          Type: KMS 
        Location: 
          Ref: PipelineArtifactsBucket 
        Type: S3 
    DependsOn: 
      - PipelineRoleDefaultPolicy 
      - PipelineRole 
  PipelineBuildCodePipelineActionRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":iam::" 
                    - Ref: AWS::AccountId 
                    - :root 
        Version: "2012-10-17" 
  PipelineBuildCodePipelineActionRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - codebuild:BatchGetBuilds 
              - codebuild:StartBuild 
              - codebuild:StopBuild 
            Effect: Allow 
            Resource: 
              Fn::GetAtt: 

AWS CloudFormation IaC files 123



AWS Proton User Guide

                - BuildProject 
                - Arn 
        Version: "2012-10-17" 
      PolicyName: PipelineBuildCodePipelineActionRoleDefaultPolicy 
      Roles: 
        - Ref: PipelineBuildCodePipelineActionRole 
  PipelineDeployCodePipelineActionRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Statement: 
          - Action: sts:AssumeRole 
            Effect: Allow 
            Principal: 
              AWS: 
                Fn::Join: 
                  - "" 
                  - - "arn:" 
                    - Ref: AWS::Partition 
                    - ":iam::" 
                    - Ref: AWS::AccountId 
                    - :root 
        Version: "2012-10-17" 
  PipelineDeployCodePipelineActionRoleDefaultPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyDocument: 
        Statement: 
          - Action: 
              - codebuild:BatchGetBuilds 
              - codebuild:StartBuild 
              - codebuild:StopBuild 
            Effect: Allow 
            Resource: 
              Fn::Join: 
                - "" 
                - - "arn:" 
                  - Ref: AWS::Partition 
                  - ":codebuild:" 
                  - Ref: AWS::Region 
                  - ":" 
                  - Ref: AWS::AccountId 
                  - ":project/Deploy*" 
        Version: "2012-10-17" 

AWS CloudFormation IaC files 124



AWS Proton User Guide

      PolicyName: PipelineDeployCodePipelineActionRoleDefaultPolicy 
      Roles: 
        - Ref: PipelineDeployCodePipelineActionRole
Outputs: 
  PipelineEndpoint: 
    Description: The URL to access the pipeline 
    Value: !Sub "https://${AWS::Region}.console.aws.amazon.com/codesuite/codepipeline/
pipelines/${Pipeline}/view?region=${AWS::Region}"

CodeBuild provisioning template bundle

With CodeBuild provisioning, instead of using IaC templates to render IaC files and run them 
using an IaC provisioning engine, AWS Proton simply runs your shell commands. To do that, 
AWS Proton creates an AWS CodeBuild project for the environment, in the environment account, 
and starts a job to run your commands for each AWS Proton resource creation or update. When 
you author a template bundle, you provide a manifest that specifies infrastructure provisioning 
and deprovisioning commands, and any programs, scripts, and other files that these commands 
may need. Your commands can read inputs that AWS Proton provides, and are responsible for 
provisioning or deprovisioning infrastructure and generating output values.

The manifest also specifies how AWS Proton should render the input file that your code can input 
and get input values from. It can be rendered into JSON or HCL. For more information about input 
parameters, see the section called “CodeBuild provisioning parameters”. For more information 
about manifest files, see the section called “Manifest and wrap up”.

Note

You can use CodeBuild provisioning with environments and services. At this time you can't 
provision components this way.

Example: using the AWS CDK with CodeBuild provisioning

As an example to using CodeBuild provisioning, you can include code that uses the AWS Cloud 
Development Kit (AWS CDK) to provision (deploy) and deprovision (destroy) AWS resources, and a 
manifest that installs the CDK and runs your CDK code.

The following sections list example files you can include in a CodeBuild provisioning template 
bundle that provisions an environment using the AWS CDK.

CodeBuild bundle 125



AWS Proton User Guide

Manifest

The following manifest file specifies CodeBuild provisioning, and includes the commands necessary 
to install and use the AWS CDK, output file processing, and reporting outputs back to AWS Proton.

Example infrastructure/manifest.yaml

infrastructure: 
  templates: 
    - rendering_engine: codebuild 
      settings: 
        image: aws/codebuild/amazonlinux2-x86_64-standard:4.0 
        runtimes: 
          nodejs: 16 
        provision: 
          - npm install 
          - npm run build 
          - npm run cdk bootstrap 
          - npm run cdk deploy -- --require-approval never --outputs-file proton-
outputs.json 
          - jq 'to_entries | map_values(.value) | add | to_entries | map({key:.key, 
 valueString:.value})' < proton-outputs.json > outputs.json 
          - aws proton notify-resource-deployment-status-change --resource-arn 
 $RESOURCE_ARN --status IN_PROGRESS --outputs file://./outputs.json 
        deprovision: 
          - npm install 
          - npm run build 
          - npm run cdk destroy 
        project_properties: 
          VpcConfig: 
            VpcId: "{{ environment.inputs.codebuild_vpc_id }}" 
            Subnets: "{{ environment.inputs.codebuild_subnets }}" 
            SecurityGroupIds: "{{ environment.inputs.codebuild_security_groups }}"

Schema

The following schema file defines parameters for the environment. Your AWS CDK code can refer 
to values of these parameters during deployment.

Example schema/schema.yaml

schema: 

CodeBuild bundle 126



AWS Proton User Guide

  format: 
    openapi: "3.0.0" 
  environment_input_type: "MyEnvironmentInputType" 
  types: 
    MyEnvironmentInputType: 
      type: object 
      description: "Input properties for my environment" 
      properties: 
        my_sample_input: 
          type: string 
          description: "This is a sample input" 
          default: "hello world" 
        my_other_sample_input: 
          type: string 
          description: "Another sample input" 
      required: 
        - my_other_sample_input

AWS CDK files

The following files are an example to a Node.js CDK project.

Example infrastructure/package.json

{ 
  "name": "ProtonEnvironment", 
  "version": "0.1.0", 
  "bin": { 
    "ProtonEnvironmente": "bin/ProtonEnvironment.js" 
  }, 
  "scripts": { 
    "build": "tsc", 
    "watch": "tsc -w", 
    "test": "jest", 
    "cdk": "cdk" 
  }, 
  "devDependencies": { 
    "@types/jest": "^28.1.7", 
    "@types/node": "18.7.6", 
    "jest": "^28.1.3", 
    "ts-jest": "^28.0.8", 
    "aws-cdk": "2.37.1", 
    "ts-node": "^10.9.1", 

CodeBuild bundle 127



AWS Proton User Guide

    "typescript": "~4.7.4" 
  }, 
  "dependencies": { 
    "aws-cdk-lib": "2.37.1", 
    "constructs": "^10.1.77", 
    "source-map-support": "^0.5.21" 
  }
}

Example infrastructure/tsconfig.json

{ 
  "compilerOptions": { 
    "target": "ES2018", 
    "module": "commonjs", 
    "lib": [ 
      "es2018" 
    ], 
    "declaration": true, 
    "strict": true, 
    "noImplicitAny": true, 
    "strictNullChecks": true, 
    "noImplicitThis": true, 
    "alwaysStrict": true, 
    "noUnusedLocals": false, 
    "noUnusedParameters": false, 
    "noImplicitReturns": true, 
    "noFallthroughCasesInSwitch": false, 
    "inlineSourceMap": true, 
    "inlineSources": true, 
    "experimentalDecorators": true, 
    "strictPropertyInitialization": false, 
    "resolveJsonModule": true, 
    "esModuleInterop": true, 
    "typeRoots": [ 
      "./node_modules/@types" 
    ] 
  }, 
  "exclude": [ 
    "node_modules", 
    "cdk.out" 
  ]
}

CodeBuild bundle 128



AWS Proton User Guide

Example infrastructure/cdk.json

{ 
  "app": "npx ts-node --prefer-ts-exts bin/ProtonEnvironment.ts", 
  "outputsFile": "proton-outputs.json", 
  "watch": { 
    "include": [ 
      "**" 
    ], 
    "exclude": [ 
      "README.md", 
      "cdk*.json", 
      "**/*.d.ts", 
      "**/*.js", 
      "tsconfig.json", 
      "package*.json", 
      "yarn.lock", 
      "node_modules", 
      "test" 
    ] 
  }, 
  "context": { 
    "@aws-cdk/aws-apigateway:usagePlanKeyOrderInsensitiveId": true, 
    "@aws-cdk/core:stackRelativeExports": true, 
    "@aws-cdk/aws-rds:lowercaseDbIdentifier": true, 
    "@aws-cdk/aws-lambda:recognizeVersionProps": true, 
    "@aws-cdk/aws-cloudfront:defaultSecurityPolicyTLSv1.2_2021": true, 
    "@aws-cdk-containers/ecs-service-extensions:enableDefaultLogDriver": true, 
    "@aws-cdk/aws-ec2:uniqueImdsv2TemplateName": true, 
    "@aws-cdk/core:target-partitions": [ 
      "aws", 
      "aws-cn" 
    ] 
  }
}

Example infrastructure/bin/ProtonEnvironment.ts

#!/usr/bin/env node
import 'source-map-support/register';
import * as cdk from 'aws-cdk-lib';
import { ProtonEnvironmentStack } from '../lib/ProtonEnvironmentStack';

CodeBuild bundle 129



AWS Proton User Guide

const app = new cdk.App();
new ProtonEnvironmentStack(app, 'ProtonEnvironmentStack', {});

Example infrastructure/lib/ProtonEnvironmentStack.ts

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import * as cdk from 'aws-cdk-lib';
import * as ssm from 'aws-cdk-lib/aws-ssm';
import input from '../proton-inputs.json';

export class ProtonEnvironmentStack extends Stack { 
  constructor(scope: Construct, id: string, props?: StackProps) { 
    super(scope, id, { ...props, stackName: process.env.STACK_NAME }); 

    const ssmParam = new ssm.StringParameter(this, "ssmParam", { 
      stringValue: input.environment.inputs.my_sample_input, 
      parameterName: `${process.env.STACK_NAME}-Param`, 
      tier: ssm.ParameterTier.STANDARD 
    }) 

    new cdk.CfnOutput(this, 'ssmParamOutput', { 
      value: ssmParam.parameterName, 
      description: 'The name of the ssm parameter', 
      exportName: `${process.env.STACK_NAME}-Param` 
    }); 
  }
}

Rendered input file

When you create an environment using a CodeBuild-based provisioning template, AWS Proton 
renders an input file with input parameter values that you provided. Your code can refer to these 
values. The following file is an example to a rendered input file.

Example infrastructure/proton-inputs.json

{ 
  "environment": { 
    "name": "myenv", 
    "inputs": { 
      "my_sample_input": "10.0.0.0/16", 
      "my_other_sample_input": "11.0.0.0/16" 

CodeBuild bundle 130

https://docs.aws.amazon.com/proton/latest/userguide/parameters.html


AWS Proton User Guide

    } 
  }
}

Terraform IaC files

Learn how to use Terraform infrastructure as code (IaC) files with AWS Proton. Terraform is a 
widely used open-source IaC engine that was developed by HashiCorp. Terraform modules are 
developed in HashiCorp's HCL language, and support several backend infrastructures providers, 
including Amazon Web Services.

AWS Proton supports self-managed provisioning for Terraform IaC.

For a complete example of a provisioning repository that responds to pull requests and 
implements infrastructure provisioning, see Terraform OpenSource GitHub Actions automation 
template for AWS Proton on GitHub.

How self-managed provisioning works with Terraform IaC template bundle files:

1. When you create an environment from Terraform template bundles, AWS Proton compiles 
your .tf files with console or spec file input parameters.

2. It makes a pull request to merge the compiled IaC files to repository that you have registered 
with AWS Proton.

3. If the request is approved, AWS Proton waits on provisioning status that you provide.

4. If the request is rejected, the environment creation is cancelled.

5. If the pull request times out, environment creation isn't complete.

AWS Proton with Terraform IaC considerations:

• AWS Proton doesn’t manage your Terraform provisioning.

• You must register a provisioning repository with AWS Proton. AWS Proton makes pull requests 
on this repository.

• You must create a CodeStar connection to connect AWS Proton with your provisioning 
repository.

• To provision from AWS Proton compiled IaC files, you must respond to AWS Proton pull requests. 
AWS Proton makes pull requests after environment and service create and update actions. For 
more information, see AWS Proton environments and AWS Proton services.

Terraform IaC files 131

https://www.terraform.io/
https://www.hashicorp.com/
https://github.com/aws-samples/aws-proton-terraform-github-actions-sample
https://github.com/aws-samples/aws-proton-terraform-github-actions-sample


AWS Proton User Guide

• To provision a pipeline from AWS Proton compiled IaC files, you must create a CI/CD pipeline 
repository.

• Your pull request based provisioning automation must include steps to notify AWS Proton 
of any provisioned AWS Proton resource status changes. You can use the AWS Proton
NotifyResourceDeploymentStatusChange API.

• You can’t deploy services, pipelines, and components created from CloudFormation IaC files to 
environments created from Terraform IaC files.

• You can’t deploy services, pipelines, and components created from Terraform IaC files to 
environments created from CloudFormation IaC files.

When preparing your Terraform IaC files for AWS Proton, you attach namespaces to your input 
variables, as shown in the following examples. For more information, see Parameters.

Example 1: AWS Proton environment Terraform IaC file

terraform { 
  required_providers { 
    aws = { 
      source  = "hashicorp/aws" 
      version = "~> 3.0" 
    } 
  } 
  // This tells terraform to store the state file in s3 at the location 
  // s3://terraform-state-bucket/tf-os-sample/terraform.tfstate 
  backend "s3" { 
    bucket = "terraform-state-bucket" 
    key    = "tf-os-sample/terraform.tfstate" 
    region = "us-east-1" 
  }
}

// Configure the AWS Provider
provider "aws" { 
  region = "us-east-1" 
  default_tags { 
    tags = var.proton_tags 
  }
}

resource "aws_ssm_parameter" "my_ssm_parameter" { 

Terraform IaC files 132

https://docs.aws.amazon.com/proton/latest/APIReference/API_NotifyResourceDeploymentStatusChange.html


AWS Proton User Guide

  name  = "my_ssm_parameter" 
  type  = "String" 
  // Use the Proton environment.inputs. namespace 
  value = var.environment.inputs.ssm_parameter_value
}

Compiled infrastructure as code

When you create an environment or service, AWS Proton compiles your infrastructure as code files 
with console or spec file inputs. It creates proton.resource-type.variables.tf and
proton.auto.tfvars.json files for your inputs that can be used by Terraform, as shown in the 
following examples. These files are located in a specified repository in a folder that matches the 
environment or service instance name.

The example shows how AWS Proton includes tags in the variable definition and variable values, 
and how you can propagate these AWS Proton tags to provisioned resources. For more information, 
see the section called “Tag propagation to provisioned resources”.

Example 2: compiled IaC files for an environment named "dev".

dev/environment.tf:

terraform { 
  required_providers { 
    aws = { 
      source  = "hashicorp/aws" 
      version = "~> 3.0" 
    } 
  } 
  // This tells terraform to store the state file in s3 at the location 
  // s3://terraform-state-bucket/tf-os-sample/terraform.tfstate 
  backend "s3" { 
    bucket = "terraform-state-bucket" 
    key    = "tf-os-sample/terraform.tfstate" 
    region = "us-east-1" 
  }
}

// Configure the AWS Provider
provider "aws" { 
  region = "us-east-1" 
  default_tags { 

Terraform IaC files 133



AWS Proton User Guide

    tags = var.proton_tags 
  }
}

resource "aws_ssm_parameter" "my_ssm_parameter" { 
  name  = "my_ssm_parameter" 
  type  = "String" 
  // Use the Proton environment.inputs. namespace 
  value = var.environment.inputs.ssm_parameter_value
}

dev/proton.environment.variables.tf:

variable "environment" { 
  type = object({ 
    inputs = map(string) 
    name = string 
  })
}

variable "proton_tags" { 
  type = map(string) 
  default = null
}

dev/proton.auto.tfvars.json:

{ 
  "environment": { 
    "name": "dev", 
    "inputs": { 
      "ssm_parameter_value": "MyNewParamValue" 
    } 
  } 

  "proton_tags" : { 
    "proton:account" : "123456789012", 
    "proton:template" : "arn:aws:proton:us-east-1:123456789012:environment-template/
fargate-env", 
    "proton:environment" : "arn:aws:proton:us-east-1:123456789012:environment/dev" 
  }
}

Terraform IaC files 134



AWS Proton User Guide

Repository paths

AWS Proton uses console or spec inputs from environment or service create actions to find the 
repository and path where it is to locate the compiled IaC files. The input values are passed to
namespaced input parameters.

AWS Proton supports two repository path layouts. In the following examples, the paths are named 
by the namespaced resource parameters from two environments. Each environment has service 
instances of two services, and the service instances of one of the services have directly defined 
components.

Resource type Name parameter = Resource 
name

Environment environment.name "env-prod 
"

Environment environment.name "env-stag 
ed"

Service service.name "service- 
one"

  Service 
instance

service_instance.name "instance 
-one-
prod"

  Service 
instance

service_instance.name "instance 
-one-
staged"

Service service.name "service- 
two"

  Service 
instance

service_instance.name

=

"instance 
-two-
prod"

Terraform IaC files 135



AWS Proton User Guide

Resource type Name parameter = Resource 
name

    Component service_instance.components.default.name "componen 
t-prod"

  Service 
instance

service_instance.name "instance 
-two-
staged"

    Component service_instance.components.default.name "componen 
t-
staged"

Layout 1

If AWS Proton finds the specified repository with an environments folder, it creates a folder 
that includes the compiled IaC files and is named with the environment.name.

If AWS Proton finds the specified repository with an environments folder that contains a 
folder name that matches a service instance compatible environment name, it creates a folder 
that includes the compiled instance IaC files and is named with the service_instance.name.

/repo 
    /environments 
        /env-prod                             # environment folder 
            main.tf 
            proton.environment.variables.tf 
            proton.auto.tfvars.json 
           
            /service-one-instance-one-prod    # instance folder 
                main.tf 
                proton.service_instance.variables.tf 
                proton.auto.tfvars.json 
               
            /service-two-instance-two-prod    # instance folder 
                main.tf 
                proton.service_instance.variables.tf 
                proton.auto.tfvars.json 
               

Terraform IaC files 136



AWS Proton User Guide

            /component-prod                   # component folder 
                main.tf 
                proton.component.variables.tf 
                proton.auto.tfvars.json 
               
        /env-staged                           # environment folder 
            main.tf 
            proton.variables.tf 
            proton.auto.tfvars.json          
           
            /service-one-instance-one-staged  # instance folder 
                main.tf 
                proton.service_instance.variables.tf 
                proton.auto.tfvars.json 
               
            /service-two-instance-two-staged  # instance folder 
                main.tf 
                proton.service_instance.variables.tf 
                proton.auto.tfvars.json 
               
            /component-staged                 # component folder 
                main.tf 
                proton.component.variables.tf 
                proton.auto.tfvars.json

Layout 2

If AWS Proton finds the specified repository without an environments folder, it creates an
environment.name folder where it locates the compiled environment IaC files.

If AWS Proton finds the specified repository with a folder name that matches a service instance 
compatible environment name, it creates a service_instance.name folder where it locates 
the compiled instance IaC files.

/repo 
    /env-prod                             # environment folder 
        main.tf 
        proton.environment.variables.tf 
        proton.auto.tfvars.json 
       
        /service-one-instance-one-prod    # instance folder 
            main.tf 
            proton.service_instance.variables.tf 

Terraform IaC files 137



AWS Proton User Guide

            proton.auto.tfvars.json 
           
        /service-two-instance-two-prod    # instance folder 
            main.tf 
            proton.service_instance.variables.tf 
            proton.auto.tfvars.json 
           
        /component-prod                   # component folder 
            main.tf 
            proton.component.variables.tf 
            proton.auto.tfvars.json 
           
    /env-staged                           # environment folder 
        main.tf 
        proton.variables.tf 
        proton.auto.tfvars.json          
       
        /service-one-instance-one-staged  # instance folder 
            main.tf 
            proton.service_instance.variables.tf 
            proton.auto.tfvars.json 
           
        /service-two-instance-two-staged  # instance folder 
            main.tf 
            proton.service_instance.variables.tf 
            proton.auto.tfvars.json 
           
        /component-staged                 # component folder 
            main.tf 
            proton.component.variables.tf 
            proton.auto.tfvars.json

Schema file

As an administrator, when you use the Open API Data Models (schemas) section to define a 
parameter schema YAML file for your template bundle, AWS Proton can validate parameter value 
inputs against the requirements that you defined in your schema.

For more information about formats and available keywords, see the Schema object section of the 
OpenAPI.

Schema file 138

https://swagger.io/docs/specification/data-models/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#schemaObject


AWS Proton User Guide

Schema requirements for environment template bundles

Your schema must follow the Data Models (schemas) section of the OpenAPI in the YAML format. It 
must also be a part of your environment template bundle.

For your environment schema, you must include the formatted headers to establish that you're 
using the Data Models (schemas) section of the Open API. In the following environment schema 
examples, these headers appear in the first three lines.

An environment_input_type must be included and defined with a name that you provide. In 
the following examples, this is defined on line 5. By defining this parameter, you associate it with 
an AWS Proton environment resource.

To follow the Open API schema model, you must include types. In the following example, this is 
line 6.

Following types, you must define an environment_input_type type. You define the input 
parameters for your environment as properties of the environment_input_type. You must 
include at least one property with a name that matches at least one parameter that's listed in the 
environment infrastructure as code (IaC) file that's associated with schema.

When you create an environment and provide customized parameter values, AWS Proton uses the 
schema file to match, validate, and inject them into the curly braced parameters in the associated 
CloudFormation IaC file. For each property (parameter), provide a name and type. Optionally, also 
provide a description, default,and pattern.

The defined parameters for the following example standard environment template schema include
vpc_cidr, subnet_one_cidr, and subnet_two_cidr with the default keyword and default 
values. When you create an environment with this environment template bundle schema, you can 
accept the default values or provide your own. If a parameter doesn't have a default value and is 
listed as a required property (parameter), you must provide values for it when you create an 
environment.

The second example standard environment template schema lists the required parameter
my_other_sample_input.

You can create a schema for two types of environment templates. For more information, see
Register and publish templates.

• Standard environment templates

Environment schema requirements 139

https://swagger.io/docs/specification/data-models/


AWS Proton User Guide

In the following example, an environment input type is defined with a description and input 
properties. This schema example can be used with the AWS Proton CloudFormation IaC file 
shown in Example 3.

Example schema for a standard environment template:

schema:                            # required 
  format:                          # required 
    openapi: "3.0.0"               # required 
  # required              defined by administrator 
  environment_input_type: "PublicEnvironmentInput" 
  types:                           # required 
    # defined by administrator 
    PublicEnvironmentInput: 
      type: object 
      description: "Input properties for my environment" 
      properties: 
        vpc_cidr:                   # parameter 
          type: string 
          description: "This CIDR range for your VPC" 
          default: 10.0.0.0/16 
          pattern: ([0-9]{1,3}\.){3}[0-9]{1,3}($|/(16|24)) 
        subnet_one_cidr:            # parameter 
          type: string 
          description: "The CIDR range for subnet one" 
          default: 10.0.0.0/24 
          pattern: ([0-9]{1,3}\.){3}[0-9]{1,3}($|/(16|24)) 
        subnet_two_cidr:            # parameter 
          type: string 
          description: "The CIDR range for subnet one" 
          default: 10.0.1.0/24 
          pattern: ([0-9]{1,3}\.){3}[0-9]{1,3}($|/(16|24))

Example schema for a standard environment template that includes a required parameter:

schema:                            # required 
  format:                          # required 
    openapi: "3.0.0"               # required 
  # required              defined by administrator 
  environment_input_type: "MyEnvironmentInputType" 
  types:                           # required 

Environment schema requirements 140



AWS Proton User Guide

    # defined by administrator 
    MyEnvironmentInputType: 
      type: object 
      description: "Input properties for my environment" 
      properties: 
        my_sample_input:           # parameter 
          type: string 
          description: "This is a sample input" 
          default: "hello world" 
        my_other_sample_input:     # parameter 
          type: string 
          description: "Another sample input" 
        another_optional_input:    # parameter 
          type: string 
          description: "Another optional input" 
          default: "!" 
      required: 
        - my_other_sample_input

• Customer managed environment templates

In the following example, the schema only includes a list of outputs that replicate the outputs 
from the IaC that you used to provision your customer managed infrastructure. You need to 
define output value types as strings only (not lists, arrays or other types). For example, the next 
code snippet shows the outputs section of an external AWS CloudFormation template. This is 
from the template shown in Example 1. It can be used to create external customer managed
infrastructure for an AWS Proton Fargate service created from Example 4.

Important

As an administrator, you must ensure that your provisioned and managed infrastructure 
and all output parameters are compatible with the associated customer managed
environment templates. AWS Proton can't account for changes on your behalf because 
these changes aren't visible to AWS Proton. Inconsistencies result in failures.

Example CloudFormation IaC file outputs for a customer managed environment template:

// Cloudformation Template Outputs
[...]
Outputs: 

Environment schema requirements 141



AWS Proton User Guide

  ClusterName: 
    Description: The name of the ECS cluster 
    Value: !Ref 'ECSCluster' 
  ECSTaskExecutionRole: 
    Description: The ARN of the ECS role 
    Value: !GetAtt 'ECSTaskExecutionRole.Arn' 
  VpcId: 
    Description: The ID of the VPC that this stack is deployed in 
    Value: !Ref 'VPC'
[...]

The schema for the corresponding AWS Proton customer managed environment template bundle 
is shown in the following example. Each output value is defined as a string.

Example schema for a customer managed environment template:

schema:                            # required 
  format:                          # required 
    openapi: "3.0.0"               # required 
  # required              defined by administrator 
  environment_input_type: "EnvironmentOutput" 
  types:                           # required 
    # defined by administrator 
    EnvironmentOutput: 
      type: object 
      description: "Outputs of the environment" 
      properties: 
        ClusterName:               # parameter 
          type: string 
          description: "The name of the ECS cluster" 
        ECSTaskExecutionRole:      # parameter 
          type: string 
          description: "The ARN of the ECS role" 
        VpcId:                     # parameter 
          type: string 
          description: "The ID of the VPC that this stack is deployed in"
[...]

Environment schema requirements 142



AWS Proton User Guide

Schema requirements for service template bundles

Your schema must follow the Data Models (schemas) section of the OpenAPI in YAML format as 
shown in the following examples. You must provide a schema file in your service template bundle.

In the following service schema examples, you must include the formatted headers. In the 
following example, this is in the first three lines. This is to establish that you're using the Data 
Models (schemas) section of the Open API.

A service_input_type must be included and defined with a name that you provide. In the 
following example, this is in line 5. This associates the parameters with an AWS Proton service 
resource.

An AWS Proton service pipeline is included by default when you use the console or the CLI 
to create a service. When you include a service pipeline for your service, you must include
pipeline_input_type with a name that you provide. In the following example, this is in line 
7. Don’t include this parameter if you aren’t including an AWS Proton service pipeline. For more 
information, see Register and publish templates.

To follow the Open API schema model, you must include types In the following example, this is in 
line 9.

Following types, you must define a service_input_type type. You define the input parameters 
for your service as properties of the service_input_type. You must include at least one 
property with a name that matches at least one parameter listed in the service infrastructure as 
code (IaC) file that is associated with schema.

To define a service pipeline, below your service_input_type definition, you must define a
pipeline_input_type. As above, you must include at least one property with a name that 
matches at least one parameter listed in a pipeline IaC file that is associated with schema. Don’t
include this definition if you aren’t including an AWS Proton service pipeline.

When you, as an administrator or developer, create a service and provide customized parameter 
values, AWS Proton uses the schema file to match, validate, and inject them into the associated 
CloudFormation IaC file’s curly braced parameters. For each property (parameter), provide a name
and a type. Optionally, also provide a description, default, and pattern.

The defined parameters for the example schema include port, desired_count, task_size and
image with the default keyword and default values. When you create a service with this service 
template bundle schema, you can accept the default values or provide your own. The parameter

Service schema requirements 143

https://swagger.io/docs/specification/data-models/


AWS Proton User Guide

unique_name is also included in the example and doesn't have a default value. It is listed as a
required property (parameter). You, as administrator or developer, must provide values for
required parameters when you create services.

If you want to create a service template with a service pipeline, include the
pipeline_input_type in your schema.

Example service schema file for a service that includes an AWS Proton service pipeline.

This schema example can be used with the AWS Proton IaC files shown in Example 4 and Example 
5. A service pipeline is included.

schema:                            # required 
  format:                          # required 
    openapi: "3.0.0"               # required 
  # required           defined by administrator 
  service_input_type: "LoadBalancedServiceInput" 
  # only include if including AWS Proton service pipeline, defined by administrator 
  pipeline_input_type: "PipelineInputs" 

  types:                           # required 
    # defined by administrator 
    LoadBalancedServiceInput: 
      type: object 
      description: "Input properties for a loadbalanced Fargate service" 
      properties: 
        port:                      # parameter 
          type: number 
          description: "The port to route traffic to" 
          default: 80 
          minimum: 0 
          maximum: 65535 
        desired_count:             # parameter 
          type: number 
          description: "The default number of Fargate tasks you want running" 
          default: 1 
          minimum: 1 
        task_size:                 # parameter 
          type: string 
          description: "The size of the task you want to run" 
          enum: ["x-small", "small", "medium", "large", "x-large"] 
          default: "x-small" 
        image:                     # parameter 

Service schema requirements 144



AWS Proton User Guide

          type: string 
          description: "The name/url of the container image" 
          default: "public.ecr.aws/z9d2n7e1/nginx:1.19.5" 
          minLength: 1 
          maxLength: 200 
        unique_name:               # parameter 
          type: string 
          description: "The unique name of your service identifier. This will be used 
 to name your log group, task definition and ECS service" 
          minLength: 1 
          maxLength: 100 
      required: 
        - unique_name 
    # defined by administrator 
    PipelineInputs: 
      type: object 
      description: "Pipeline input properties" 
      properties: 
        dockerfile:                # parameter 
          type: string 
          description: "The location of the Dockerfile to build" 
          default: "Dockerfile" 
          minLength: 1 
          maxLength: 100 
        unit_test_command:         # parameter 
          type: string 
          description: "The command to run to unit test the application code" 
          default: "echo 'add your unit test command here'" 
          minLength: 1 
          maxLength: 200

If you want to create a service template without a service pipeline, don't include the
pipeline_input_type in your schema, as shown in the following example.

Example service schema file for a service that doesn't include an AWS Proton service pipeline

schema:                            # required 
  format:                          # required 
    openapi: "3.0.0"               # required 
  # required            defined by administrator   
  service_input_type: "MyServiceInstanceInputType" 

  types:                           # required 

Service schema requirements 145



AWS Proton User Guide

    # defined by administrator 
    MyServiceInstanceInputType: 
      type: object 
      description: "Service instance input properties" 
      required: 
        - my_sample_service_instance_required_input 
      properties: 
        my_sample_service_instance_optional_input:   # parameter 
          type: string 
          description: "This is a sample input" 
          default: "hello world" 
        my_sample_service_instance_required_input:   # parameter 
          type: string 
          description: "Another sample input"

Wrap up template files for AWS Proton

After preparing your environment and service infrastructure as code (IaC) files and their respective 
schema files, you must organize them in directories. You must also create a manifest YAML file. The 
manifest file lists the IaC files in a directory, the rendering engine, and the template language used 
to develop the IaC in this template.

Note

A manifest file can also be used independently of template bundles, as a direct input 
to directly defined components. In this case, it always specifies a single IaC template file, 
for both CloudFormation and Terraform. For more information about components, see
Components.

The manifest file needs to adhere to the format and content shown in the following example.

CloudFormation manifest file format:

With CloudFormation, you list a single file.

infrastructure: 
  templates: 
    - file: "cloudformation.yaml" 
      rendering_engine: jinja 

Manifest and wrap up 146



AWS Proton User Guide

      template_language: cloudformation

Terraform manifest file format:

With terraform, you can explicitly list a single file or use the wildcard * to list each of the files in a 
directory.

Note

The wildcard only includes files whose names end with .tf. Other files are ignored.

infrastructure: 
  templates: 
    - file: "*" 
      rendering_engine: hcl 
      template_language: terraform

CodeBuild-based provisioning manifest file format:

With CodeBuild-based provisioning, you specify provisioning and deprovisioning shell commands.

Note

In addition to the manifest, your bundle should include any files that your commands 
depend on.

The following example manifest uses CodeBuild-based provisioning to provision (deploy) and 
deprovision (destroy) resources using the AWS Cloud Development Kit (AWS CDK) (AWS CDK). The 
template bundle should also include the CDK code.

During provisioning, AWS Proton creates an input file with values for input parameters that you 
defined in the template's schema with the name proton-input.json.

infrastructure: 
  templates: 
    - rendering_engine: codebuild 
      settings: 
        image: aws/codebuild/amazonlinux2-x86_64-standard:4.0 

Manifest and wrap up 147



AWS Proton User Guide

        runtimes: 
          nodejs: 16 
        provision: 
          - npm install 
          - npm run build 
          - npm run cdk bootstrap 
          - npm run cdk deploy -- --require-approval never --outputs-file proton-
outputs.json 
          - jq 'to_entries | map_values(.value) | add | to_entries | map({key:.key, 
 valueString:.value})' < proton-outputs.json > outputs.json 
          - aws proton notify-resource-deployment-status-change --resource-arn 
 $RESOURCE_ARN --status IN_PROGRESS --outputs file://./outputs.json 
        deprovision: 
          - npm install 
          - npm run build 
          - npm run cdk destroy 
        project_properties: 
          VpcConfig: 
            VpcId: "{{ environment.inputs.codebuild_vpc_id }}" 
            Subnets: "{{ environment.inputs.codebuild_subnets }}" 
            SecurityGroupIds: "{{ environment.inputs.codebuild_security_groups }}"

After you set up the directories and manifest files for your environment or service template bundle, 
you gzip the directories into a tar ball and upload them to an Amazon Simple Storage Service 
(Amazon S3) bucket where AWS Proton can retrieve them, or to a template sync Git repository.

When you create a minor version of an environment or a service template that you registered with 
AWS Proton, you provide the path to your environment or service template bundle tar ball that's 
located in your S3 bucket. AWS Proton saves it with the new template minor version. You can select 
the new template minor version to create or update environments or services with AWS Proton.

Environment template bundle wrap up

There are two types of environment template bundles that you create for AWS Proton.

• To create an environment template bundle for a standard environment template, organize 
the schema, infrastructure as code (IaC) files and manifest file in directories as shown in the 
following environment template bundle directory structure.

• To create an environment template bundle for a customer managed environment template, 
provide only the schema file and directory. Don't include the infrastructure directory and files. 
AWS Proton throws an error if the infrastructure directory and files are included.

Environment template bundle wrap up 148



AWS Proton User Guide

For more information, see Register and publish templates.

CloudFormation environment template bundle directory structure:

 /schema 
   schema.yaml 
 /infrastructure 
   manifest.yaml 
   cloudformation.yaml

Terraform environment template bundle directory structure:

 /schema 
   schema.yaml 
 /infrastructure 
   manifest.yaml 
   environment.tf

Service template bundle wrap up

To create a service template bundle, you must organize the schema, infrastructure as code (IaC) 
files, and manifest files into directories as shown in the service template bundle directory structure 
example.

If you don’t include a service pipeline in your template bundle, don't include the pipeline directory 
and files and set "pipelineProvisioning": "CUSTOMER_MANAGED" when you create the 
service template that is to be associated with this template bundle.

Note

You can't modify pipelineProvisioning after the service template is created.

For more information, see Register and publish templates.

CloudFormation service template bundle directory structure:

 /schema 
   schema.yaml 
 /instance_infrastructure 

Service template bundle wrap up 149



AWS Proton User Guide

   manifest.yaml 
   cloudformation.yaml 
 /pipeline_infrastructure 
   manifest.yaml 
   cloudformation.yaml

Terraform service template bundle directory structure:

 /schema 
   schema.yaml 
 /instance_infrastructure 
   manifest.yaml 
   instance.tf 
 /pipeline_infrastructure 
   manifest.yaml 
   pipeline.tf

Template bundle considerations

• Infrastructure as code (IaC) files

AWS Proton audits templates for the correct file format. However, AWS Proton doesn't check for 
template development, dependency, and logic errors. For example, assume that you specified 
the creation of an Amazon S3 bucket in your AWS CloudFormation IaC file as part of your 
service or environment template. A service is created based on those templates. Now, suppose 
at some point you want to delete the service. If the specified S3 bucket isn't empty and the 
CloudFormation IaC file doesn't mark it as Retain in the DeletionPolicy, AWS Proton fails on 
the service delete operation.

• Bundle file size limits and format

• Bundle file size, count, and name size limits can be found at AWS Proton quotas.

• The template bundle directories of files are gzipped into a tar ball and located in an Amazon 
Simple Storage Service (Amazon S3) bucket.

• Each file in the bundle must be a valid formatted YAML file.

• S3 bucket template bundle encryption

If you want to encrypt sensitive data in your template bundles at rest in your S3 bucket, use SSE-
S3 or SSE-KMS keys to allow AWS Proton to retrieve them.

Template bundle considerations 150



AWS Proton User Guide

AWS Proton templates

To add your template bundle to your AWS Proton template library, create a template minor version 
and register it with AWS Proton. When creating the template, provide the name of the Amazon S3 
bucket and path for your template bundle. After templates are published, they can be selected by 
platform team members and developers. After they're selected, AWS Proton uses the template to 
create and provision infrastructure and applications.

As an administrator, you can create and register an environment template with AWS Proton. This 
environment template can then be used to deploy multiple environments. For example, it can be 
used to deploy "dev," "staging," and "prod" environments. The "dev" environment might include a 
VPC with private subnets and a restrictive access policy to all resources. Environment outputs can 
be used as inputs for services.

You can create and register environment templates to create two different types of environments. 
Both you and developers can use AWS Proton to deploy services to both types.

• Register and publish a standard environment template that AWS Proton uses to create a
standard environment that provisions and manages the environment infrastructure.

• Register and publish a customer managed environment template that AWS Proton uses to create 
a customer managed environment that connects to your existing provisioned infrastructure. AWS 
Proton doesn't manage your existing provisioned infrastructure.

You can create and register service templates with AWS Proton to deploy services to environments. 
An AWS Proton environment must be created before a service can be deployed to it.

The following list describes how you create and manage templates with AWS Proton.

• (Optional) Prepare an IAM role to control developer access to AWS Proton API calls and AWS 
Proton IAM service roles. For more information, see the section called “IAM Roles”.

• Compose a template bundle. For more information, see Template bundles.

• Create and register a template with AWS Proton after the template bundle is composed, 
compressed, and saved in an Amazon S3 bucket. You can do this either in the console or by using 
the AWS CLI.

• Test and use the template to create and manage AWS Proton provisioned resources after it's 
registered with AWS Proton.

151



AWS Proton User Guide

• Create and manage major and minor versions of the template throughout the life of the 
template.

You can manage template versions manually or with template sync configurations:

• Use the AWS Proton console and AWS CLI to create a new minor or major version.

• Create a template sync configuration that lets AWS Proton automatically create a new minor or 
major version when it detects a change to your template bundle in a repository that you define.

For additional information, see the The AWS Proton Service API Reference.

Topics

• Versioned templates

• Register and publish templates

• View template data

• Update a template

• Delete templates

• Template sync configurations

• Service sync configurations

Versioned templates

As an administrator or a member of a platform team, you define, create, and manage a library of 
versioned templates that are used to provision infrastructure resources. There are two types of 
template versions—minor versions and major versions.

• Minor versions – Changes to the template that have a backward compatible schema. These 
changes don't require the developer to provide new information when updating to the new 
template version.

When you attempt to make a minor version change, AWS Proton makes a best-effort attempt 
to determine whether the schema of the new version is backward compatible with the previous 
minor versions of the template. If the new schema isn't backward compatible, AWS Proton fails 
the registration of the new minor version.

Versions 152

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html


AWS Proton User Guide

Note

Compatibility is determined solely based on schema. AWS Proton doesn't check if 
the template bundle infrastructure as code (IaC) file is backward compatible with the 
previous minor versions. For example, AWS Proton doesn't check if the new IaC file 
causes breaking changes for the applications that are running on the infrastructure 
provisioned by a previous minor version of the template.

• Major versions – Changes to the template that may not be not backward compatible. These 
changes typically require new inputs from the developer and often involve template schema 
changes.

You may sometimes choose to designate a backward compatible change as a major version 
based on your team’s operational model.

The way AWS Proton determines if a template version request is for a minor or major version 
depends on the way template changes are tracked:

• When you explicitly make a request to create a new template version, you request a major 
version by specifying a major version number, and you request a minor version by not specifying 
a major version number.

• When you use template sync (and therefore you don't make explicit template version requests), 
AWS Proton attempts to create new minor versions for template changes that occur in the 
existing YAML file. AWS Proton creates a major version when you create a new directory for the 
new template change (for example, move from v1 to v2).

Note

A new minor version registration based on template sync still fails if AWS Proton 
determines that the change isn't backward compatible.

When you publish a new version of a template, it becomes the Recommended version if it's 
the highest major and minor version. New AWS Proton resources are created using the new 
recommended version, and AWS Proton prompts administrators to use the new version and to 
update existing AWS Proton resources that are using an outdated version.

Versions 153



AWS Proton User Guide

Register and publish templates

You can register and publish environment and service templates with AWS Proton, as described in 
the following sections.

You can create a new version of a template with the console or AWS CLI.

Alternatively, you can use the console or AWS CLI to create a template and configure a configure 
a template sync for it. This configuration lets AWS Proton sync from template bundles located in 
registered git repositories that you have defined. Whenever a commit is pushed to your repository 
that changes one of your template bundles, a new minor or major version of your template is 
created, if the version doesn’t already exist. To learn more about template sync configuration 
prerequisites and requirements, see Template sync configurations.

Register and publish environment templates

You can register and publish the following types of environment templates.

• Register and publish a standard environment template that AWS Proton uses to deploy and 
manage environment infrastructure.

• Register and publish a customer managed environment template that AWS Proton uses to 
connect to your existing provisioned infrastructure that you manage. AWS Proton doesn't
manage your existing provisioned infrastructure.

Important

As an administrator, ensure that your provisioned and managed infrastructure and all 
output parameters are compatible with associated customer managed environment 
templates. AWS Proton can't account for changes on your behalf because these changes 
aren't visible to AWS Proton. Inconsistencies result in failures.

You can use the console or the AWS CLI to register and publish an environment template.

AWS Management Console

Use the console to register and publish a new environment template.

1. In the AWS Proton console, choose Environment templates.

Publish 154

https://console.aws.amazon.com/proton/


AWS Proton User Guide

2. Choose Create environment template.

3. In the Create environment template page, in the Template options section, choose one of 
the two available template options.

• Create a template for provisioning new environments.

• Create a template to use provisioned infrastructure that you manage.

4. If you chose Create a template for provisioning new environments, in the Template 
bundle source section, choose one of the three available template bundle source options. 
To learn more about requirements and prerequisites for syncing templates, see Template 
sync configurations.

• Use one of our sample template bundles.

• Use your own template bundle.

• Sync templates from Git.

5. Provide a path to a template bundle.

a. If you chose Use one of our sample template bundles:

In the Sample template bundle section, select a sample template bundle.

b. If you chose Sync templates from Git, in the Source code section:

i. Select the repository for your template sync configuration.

ii. Enter the name of the repository branch to sync from.

iii. (Optional) Enter name of a directory to limit the search for your template bundle.

c. Otherwise, in the S3 bundle location section, provide a path to your template bundle.

6. In the Template details section.

a. Enter a Template name.

b. (Optional) Enter a Template display name.

c. (Optional) Enter a Template description for the environment template.

7. (Optional) Check the check box for Customize encryption settings (advanced) in the
Encryption settings section to provide your own encryption key.

8. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

9. Choose Create Environment template.
Publish environment templates 155



AWS Proton User Guide

You're now on a new page that displays the status and details for your new environment 
template. These details include a list of AWS and customer managed tags. AWS Proton 
automatically generates AWS managed tags for you when you create AWS Proton 
resources. For more information, see AWS Proton resources and tagging.

10. The status of a new environment template status starts in the Draft state. You and others 
with proton:CreateEnvironment permissions can view and access it. Follow the next 
step to make the template available to others.

11. In the Template versions section, choose the radio button to the left of the minor version 
of the template you just created (1.0). As an alternative, you can choose Publish in the info 
alert and skip the next step.

12. In the Template versions section, choose Publish.

13. The template status changes to Published. Because it's the latest version of the template, 
it's the Recommended version.

14. In the navigation pane, select Environment templates to view a list of your environment 
templates and details.

Use the console to register new major and minor versions of an environment template.

For more information, see Versioned templates.

1. In the AWS Proton console, choose Environment Templates.

2. In the list of environment templates, choose the name of the environment template that 
you want to create a major or minor version for.

3. In the environment template detail view, choose Create new version in the Template 
versions section.

4. In the Create a new environment template version page, in the Template bundle source
section, choose one of the two available template bundle source options.

• Use one of our sample template bundles.

• Use your own template bundle.

5. Provide a path to the selected template bundle.

• If you chose Use one of our sample template bundles, in the Sample template bundle
section, select a sample template bundle.

Publish environment templates 156

https://console.aws.amazon.com/proton/


AWS Proton User Guide

• If you chose Use your own template bundle, in the S3 bundle location section, choose 
the path to your template bundle.

6. In the Template details section.

a. (Optional) Enter a Template display name.

b. (Optional) Enter a Template description for the service template.

7. In the Template details section, choose one of the following options.

• To create a minor version, keep the check box Check to create a new major version
empty.

• To create a major version, check the check box Check to create a new major version.

8. Continue through the console steps to create the new minor or major version and choose
Create new version.

AWS CLI

Use the CLI to register and publish a new environment template as shown in the following 
steps.

1. Create a standard OR customer managed environment template by specifying the region, 
name, display name (optional), and description (optional).

a. Create a standard environment template.

Run the following command:

$ aws proton create-environment-template \ 
    --name "simple-env" \ 
    --display-name "Fargate" \ 
    --description "VPC with public access"

Response:

{ 
    "environmentTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env", 
        "createdAt": "2020-11-11T23:02:45.336000+00:00", 

Publish environment templates 157



AWS Proton User Guide

        "description": "VPC with public access", 
        "displayName": "VPC", 
        "lastModifiedAt": "2020-11-11T23:02:45.336000+00:00", 
        "name": "simple-env" 
    }
}

b. Create a customer managed environment template by adding the provisioning
parameter with value CUSTOMER_MANAGED.

Run the following command:

$ aws proton create-environment-template \ 
    --name "simple-env" \ 
    --display-name "Fargate" \ 
    --description "VPC with public access" \ 
    --provisioning "CUSTOMER_MANAGED"

Response:

{ 
    "environmentTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env", 
        "createdAt": "2020-11-11T23:02:45.336000+00:00", 
        "description": "VPC with public access", 
        "displayName": "VPC", 
        "lastModifiedAt": "2020-11-11T23:02:45.336000+00:00", 
        "name": "simple-env", 
        "provisioning": "CUSTOMER_MANAGED" 
    }
}

2. Create a minor version 0 of major version 1 of the environment template

This and the remaining steps are the same for both the standard and customer managed
environment templates.

Include the template name, major version, and the S3 bucket name and key for the bucket 
that contains your environment template bundle.

Run the following command:

Publish environment templates 158



AWS Proton User Guide

$ aws proton create-environment-template-version \ 
    --template-name "simple-env" \ 
    --description "Version 1" \ 
    --source s3="{bucket=your_s3_bucket, key=your_s3_key}"

Response:

{ 
    "environmentTemplateVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env:1.0", 
        "createdAt": "2020-11-11T23:02:47.763000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:47.763000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "status": "REGISTRATION_IN_PROGRESS", 
        "templateName": "simple-env" 
    }
}

3. Use the get command to check the registrations status.

Run the following command:

$ aws proton get-environment-template-version \ 
    --template-name "simple-env" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env:1.0", 
        "createdAt": "2020-11-11T23:02:47.763000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:47.763000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 

Publish environment templates 159



AWS Proton User Guide

        "recommendedMinorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 environment_input_type: \"MyEnvironmentInputType\"\n  types:\n    
 MyEnvironmentInputType:\n      type: object\n      description: \"Input 
 properties for my environment\"\n      properties:\n        my_sample_input:\n 
          type: string\n          description: \"This is a sample input\"\n     
      default: \"hello world\"\n        my_other_sample_input:\n          type: 
 string\n          description: \"Another sample input\"\n      required:\n      
   - my_other_sample_input\n", 
        "status": "DRAFT", 
        "statusMessage": "", 
        "templateName": "simple-env" 
    }
}

4. Publish of minor version 0 of major version 1 of the environment template by providing the 
template name and the major and minor version. This version is the Recommended version.

Run the following command:

$ aws proton update-environment-template-version \ 
    --template-name "simple-env" \ 
    --major-version "1" \ 
    --minor-version "0" \ 
    --status "PUBLISHED"

Response:

{ 
    "environmentTemplateVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env:1.0", 
        "createdAt": "2020-11-11T23:02:47.763000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:54.610000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "recommendedMinorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 environment_input_type: \"MyEnvironmentInputType\"\n  types:\n    
 MyEnvironmentInputType:\n      type: object\n      description: \"Input 
 properties for my environment\"\n      properties:\n        my_sample_input:\n 
          type: string\n          description: \"This is a sample input\"\n     

Publish environment templates 160



AWS Proton User Guide

      default: \"hello world\"\n        my_other_sample_input:\n          type: 
 string\n          description: \"Another sample input\"\n      required:\n      
   - my_other_sample_input\n", 
        "status": "PUBLISHED", 
        "statusMessage": "", 
        "templateName": "simple-env" 
    }
}

After creating a new template using the AWS CLI, you can view a list of AWS and customer 
managed tags. AWS Proton automatically generates AWS managed tags for you. You can also 
modify and create customer managed tags using the AWS CLI. For more information, see AWS 
Proton resources and tagging.

Run the following command:

$ aws proton list-tags-for-resource \ 
    --resource-arn "arn:aws:proton:region-id:123456789012:environment-
template/simple-env"

Register and publish service templates

When you create a service template version, you specify a list of compatible environment 
templates. That way, when developers select a service template, they have options for which 
environment to deploy their service to.

Before creating a service from a service template or before publishing a service template, confirm 
that environments are deployed from the listed compatible environment templates.

You can't update a service to the new major version if it's deployed to an environment that was 
built from a removed compatible environment template.

To add or remove compatible environment templates for a service template version, you create a 
new major version of it.

You can use the console or the AWS CLI to register and publish a service template.

Publish service templates 161



AWS Proton User Guide

AWS Management Console

Use the console to register and publish a new service template.

1. In the AWS Proton console, choose Service templates.

2. Choose Create service template.

3. In the Create service template page, in the Template bundle source section, choose one 
of the available template options.

• Use your own template bundle.

• Sync templates from Git.

4. Provide a path to a template bundle.

a. If you chose Sync templates from Git, in the Source code repository section:

i. Select the repository for your template sync configuration.

ii. Enter the name of the repository branch to sync from.

iii. (Optional) Enter name of a directory to limit the search for your template bundle.

b. Otherwise, in the S3 bundle location section, provide a path to your template bundle.

5. In the Template details section.

a. Enter a Template name.

b. (Optional) Enter a Template display name.

c. (Optional) Enter a Template description for the service template.

6. In the Compatible environment templates section, choose from a list of compatible 
environment templates.

7. (Optional) In the Encryption settings section, choose Customize encryption settings 
(advanced) to provide your own encryption key.

8. (Optional) In the Pipeline section:

If you aren't including a service pipeline definition in your service template, uncheck the
Pipeline - optional check box at the bottom of the page. You can't change this after the 
service template is created. For more information, see Template bundles.

Publish service templates 162

https://console.aws.amazon.com/proton/


AWS Proton User Guide

9. (Optional) In the Supported component sources section, for Component sources, choose
Directly defined to enable attachment of directly defined components to your service 
instances.

10. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

11. Choose Create a service template.

You're now on a new page that displays the status and details for your new service 
template. These details include a list of AWS and customer managed tags. AWS Proton 
automatically generates AWS managed tags for you when you create AWS Proton 
resources. For more information, see AWS Proton resources and tagging.

12. The status of a new service template status starts in the Draft state. You and others with
proton:CreateService permissions can view and access it. Follow the next step to make 
the template available to others.

13. In the Template versions section, choose the radio button to the left of the minor version 
of the template you just created (1.0). As an alternative, you can choose Publish in the info 
alert and skip the next step.

14. In the Template versions section, choose Publish.

15. The template status changes to Published. Because it's the latest version of the template, 
it's the Recommended version.

16. In the navigation pane, select Service templates to view a list of your service templates 
and details.

Use the console to register new major and minor versions of a service template.

For more information, see Versioned templates.

1. In the AWS Proton console, choose Service Templates.

2. In the list of service templates, choose the name of the service template that you want to 
create a major or minor version for.

3. In the service template detail view, choose Create new version in the Template versions
section.

4. In the Create a new service template version page, in the Bundle source section, select
Use your own template bundle.

5. In the S3 bundle location section, choose the path to your template bundle.

Publish service templates 163

https://console.aws.amazon.com/proton/


AWS Proton User Guide

6. In the Template details section.

a. (Optional) Enter a Template display name.

b. (Optional) Enter a Template description for the service template.

7. In the Template details section, choose one of the following options.

• To create a minor version, keep the check box Check to create a new major version
empty.

• To create a major version, check the check box Check to create a new major version.

8. Continue through the console steps to create the new minor or major version and choose
Create new version.

AWS CLI

To create service template that deploys a service without a service pipeline, add the parameter 
and value --pipeline-provisioning "CUSTOMER_MANAGED" to the create-service-
template command. Configure your template bundles as described in Template bundles
creation and Schema requirements for service template bundles.

Note

You can't modify pipelineProvisioning after the service template is created.

1. Use the CLI to register and publish a new service template, with or without a service 
pipeline, as shown in the following steps.

a. Create a service template with a service pipeline using the CLI.

Specify the name, display name (optional), and description (optional).

Run the following command:

$ aws proton create-service-template \ 
    --name "fargate-service" \ 
    --display-name "Fargate" \ 
    --description "Fargate-based Service"

Response:

Publish service templates 164



AWS Proton User Guide

{ 
    "serviceTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:service-template/
fargate-service", 
        "createdAt": "2020-11-11T23:02:55.551000+00:00", 
        "description": "Fargate-based Service", 
        "displayName": "Fargate", 
        "lastModifiedAt": "2020-11-11T23:02:55.551000+00:00", 
        "name": "fargate-service" 
    }
}

b. Create a service template without a service pipeline.

Add --pipeline-provisioning.

Run the folllowing command:

$ aws proton create-service-template \ 
    --name "fargate-service" \ 
    --display-name "Fargate" \ 
    --description "Fargate-based Service" \ 
    --pipeline-provisioning "CUSTOMER_MANAGED"

Response:

{ 
    "serviceTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:service-template/
fargate-service", 
        "createdAt": "2020-11-11T23:02:55.551000+00:00", 
        "description": "Fargate-based Service", 
        "displayName": "Fargate", 
        "lastModifiedAt": "2020-11-11T23:02:55.551000+00:00", 
        "name": "fargate-service", 
        "pipelineProvisioning": "CUSTOMER_MANAGED" 
    }
}

Publish service templates 165



AWS Proton User Guide

2. Create a minor version 0 of major version 1 of the service template.

Include the template name, compatible environment templates, major version, and the S3 
bucket name and key for the bucket that contains your service template bundle.

Run the following command:

$ aws proton create-service-template-version \ 
    --template-name "fargate-service" \ 
    --description "Version 1" \ 
    --source s3="{bucket=your_s3_bucket, key=your_s3_key}" \ 
    --compatible-environment-templates '[{"templateName":"simple-
env","majorVersion":"1"}]'

Response:

{ 
    "serviceTemplateMinorVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:service-template/fargate-
service:1.0", 
        "compatibleEnvironmentTemplates": [ 
            { 
                "majorVersion": "1", 
                "templateName": "simple-env" 
            } 
        ], 
        "createdAt": "2020-11-11T23:02:57.912000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:57.912000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "status": "REGISTRATION_IN_PROGRESS", 
        "templateName": "fargate-service" 
    }
}

3. Use the get command to check the registrations status.

Run the folllowing command:

$ aws proton get-service-template-version \ 

Publish service templates 166



AWS Proton User Guide

    --template-name "fargate-service" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "serviceTemplateMinorVersion": { 
        "arn": "arn:aws:proton:us-east-1:123456789012:service-template/fargate-
service:1.0", 
        "compatibleEnvironmentTemplates": [ 
            { 
                "majorVersion": "1", 
                "templateName": "simple-env" 
            } 
        ], 
        "createdAt": "2020-11-11T23:02:57.912000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:57.912000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 pipeline_input_type: \"MyPipelineInputType\"\n  service_input_type: 
 \"MyServiceInstanceInputType\"\n\n  types:\n    MyPipelineInputType:\n   
    type: object\n      description: \"Pipeline input properties\"\n      
 required:\n        - my_sample_pipeline_required_input\n      properties:\n 
        my_sample_pipeline_optional_input:\n          type: string\n        
   description: \"This is a sample input\"\n          default: \"hello world
\"\n        my_sample_pipeline_required_input:\n          type: string\n      
     description: \"Another sample input\"\n\n    MyServiceInstanceInputType:
\n      type: object\n      description: \"Service instance input properties
\"\n      required:\n        - my_sample_service_instance_required_input\n   
    properties:\n        my_sample_service_instance_optional_input:\n        
   type: string\n          description: \"This is a sample input\"\n          
 default: \"hello world\"\n        my_sample_service_instance_required_input:\n  
         type: string\n          description: \"Another sample input\"", 
        "status": "DRAFT", 
        "statusMessage": "", 
        "templateName": "fargate-service" 
    }
}

Publish service templates 167



AWS Proton User Guide

4. Publish the service template by using the update command to change the status to
"PUBLISHED".

Run the following command:

$ aws proton update-service-template-version \ 
    --template-name "fargate-service" \ 
    --description "Version 1" \ 
    --major-version "1" \ 
    --minor-version "0" \ 
    --status "PUBLISHED"

Response:

{ 
    "serviceTemplateVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:service-template/fargate-
service:1.0", 
        "compatibleEnvironmentTemplates": [ 
            { 
                "majorVersion": "1", 
                "templateName": "simple-env" 
            } 
        ], 
        "createdAt": "2020-11-11T23:02:57.912000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:57.912000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "recommendedMinorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 pipeline_input_type: \"MyPipelineInputType\"\n  service_input_type: 
 \"MyServiceInstanceInputType\"\n\n  types:\n    MyPipelineInputType:\n   
    type: object\n      description: \"Pipeline input properties\"\n      
 required:\n        - my_sample_pipeline_required_input\n      properties:\n 
        my_sample_pipeline_optional_input:\n          type: string\n          
 description: \"This is a sample input\"\n          default: \"hello pipeline
\"\n        my_sample_pipeline_required_input:\n          type: string\n      
     description: \"Another sample input\"\n\n    MyServiceInstanceInputType:
\n      type: object\n      description: \"Service instance input properties
\"\n      required:\n        - my_sample_service_instance_required_input\n   
    properties:\n        my_sample_service_instance_optional_input:\n        

Publish service templates 168



AWS Proton User Guide

   type: string\n          description: \"This is a sample input\"\n          
 default: \"hello world\"\n        my_sample_service_instance_required_input:\n  
         type: string\n          description: \"Another sample input\"\n", 
        "status": "PUBLISHED", 
        "statusMessage": "", 
        "templateName": "fargate-service" 
    }
}

5. Check that AWS Proton has published version 1.0 by using the get command to retrieve 
service template detail data.

Run the following command:

$ aws proton get-service-template-version \ 
    --template-name "fargate-service" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "serviceTemplateMinorVersion": { 
        "arn": "arn:aws:proton:us-east-1:123456789012:service-template/fargate-
service:1.0", 
        "compatibleEnvironmentTemplates": [ 
            { 
                "majorVersion": "1", 
                "templateName": "simple-env" 
            } 
        ], 
        "createdAt": "2020-11-11T23:02:57.912000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:03:04.767000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 pipeline_input_type: \"MyPipelineInputType\"\n  service_input_type: 
 \"MyServiceInstanceInputType\"\n\n  types:\n    MyPipelineInputType:\n   
    type: object\n      description: \"Pipeline input properties\"\n      
 required:\n        - my_sample_pipeline_required_input\n      properties:\n 
        my_sample_pipeline_optional_input:\n          type: string\n        
   description: \"This is a sample input\"\n          default: \"hello world

Publish service templates 169



AWS Proton User Guide

\"\n        my_sample_pipeline_required_input:\n          type: string\n      
     description: \"Another sample input\"\n\n    MyServiceInstanceInputType:
\n      type: object\n      description: \"Service instance input properties
\"\n      required:\n        - my_sample_service_instance_required_input\n   
    properties:\n        my_sample_service_instance_optional_input:\n        
   type: string\n          description: \"This is a sample input\"\n          
 default: \"hello world\"\n        my_sample_service_instance_required_input:\n  
         type: string\n          description: \"Another sample input\"", 
        "status": "PUBLISHED", 
        "statusMessage": "", 
        "templateName": "fargate-service" 
    }
}

View template data

You can view lists of templates with details and view individual templates with detail data by using 
the AWS Proton console and AWS CLI.

Customer managed environment template data includes the provisioned parameter with the 
value CUSTOMER_MANAGED.

If a service template doesn't include a service pipeline, the service template data includes the
pipelineProvisioning parameter with the value CUSTOMER_MANAGED.

For more information, see Register and publish templates.

You can use the console or the AWS CLI to list and view template data.

AWS Management Console

Use the console to list and view templates.

1. To view a list of templates, choose (Environment or Service) templates.

2. To view detail data choose the name of a template.

View the detail data of the template, a list of the major and minor versions of the template, 
a list of the AWS Proton resources that were deployed using template versions and 
template tags.

The recommended major version and minor version is labeled as Recommended.

View templates 170

https://console.aws.amazon.com/proton/


AWS Proton User Guide

AWS CLI

Use the AWS CLI to list and view templates.

Run the following command:

$ aws proton get-environment-template-version \ 
    --template-name "simple-env" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "environmentTemplateVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env:1.0", 
        "createdAt": "2020-11-10T18:35:08.293000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-10T18:35:11.162000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "recommendedMinorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 environment_input_type: \"MyEnvironmentInputType\"\n  types:\n    
 MyEnvironmentInputType:\n      type: object\n      description: \"Input properties 
 for my environment\"\n      properties:\n        my_sample_input:\n         
  type: string\n          description: \"This is a sample input\"\n          
 default: \"hello world\"\n        my_other_sample_input:\n          type: string
\n          description: \"Another sample input\"\n      required:\n        - 
 my_other_sample_input\n", 
        "status": "DRAFT", 
        "statusMessage": "", 
        "templateName": "simple-env" 
    }
}

Run the following command:

$ aws proton list-environment-templates

Response:

View templates 171



AWS Proton User Guide

{ 
    "templates": [ 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env-3", 
            "createdAt": "2020-11-10T18:35:05.763000+00:00", 
            "description": "VPC with Public Access", 
            "displayName": "VPC", 
            "lastModifiedAt": "2020-11-10T18:35:05.763000+00:00", 
            "name": "simple-env-3", 
            "recommendedVersion": "1.0"             
        }, 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:environment-template/
simple-env-1", 
            "createdAt": "2020-11-10T00:14:06.881000+00:00", 
            "description": "Some SSM Parameters", 
            "displayName": "simple-env-1", 
            "lastModifiedAt": "2020-11-10T00:14:06.881000+00:00", 
            "name": "simple-env-1", 
            "recommendedVersion": "1.0"            
        } 
    ]
}

View a minor version of a service template.

Run the following command:

$ aws proton get-service-template-version \ 
    --template-name "fargate-service" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "serviceTemplateMinorVersion": { 
        "arn": "arn:aws:proton:us-east-1:123456789012:service-template/fargate-
service:1.0", 
        "compatibleEnvironmentTemplates": [ 
            { 
                "majorVersion": "1", 

View templates 172



AWS Proton User Guide

                "templateName": "simple-env" 
            } 
        ], 
        "createdAt": "2020-11-11T23:02:57.912000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:57.912000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 pipeline_input_type: \"MyPipelineInputType\"\n  service_input_type: 
 \"MyServiceInstanceInputType\"\n\n  types:\n    MyPipelineInputType:\n   
    type: object\n      description: \"Pipeline input properties\"\n      
 required:\n        - my_sample_pipeline_required_input\n      properties:\n 
        my_sample_pipeline_optional_input:\n          type: string\n          
 description: \"This is a sample input\"\n          default: \"hello world\"\n       
  my_sample_pipeline_required_input:\n          type: string\n          description: 
 \"Another sample input\"\n\n    MyServiceInstanceInputType:\n      type: object
\n      description: \"Service instance input properties\"\n      required:\n  
       - my_sample_service_instance_required_input\n      properties:\n        
 my_sample_service_instance_optional_input:\n          type: string\n          
 description: \"This is a sample input\"\n          default: \"hello world\"\n    
     my_sample_service_instance_required_input:\n          type: string\n          
 description: \"Another sample input\"", 
        "status": "DRAFT", 
        "statusMessage": "", 
        "templateName": "fargate-service" 
    }
}

View a service template without a service pipeline as shown in the next example command and 
response.

Run the following command:

$ aws proton get-service-template \ 
    --name "simple-svc-template-cli"

Response:

{ 
    "serviceTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:service-template/simple-svc-
template-cli", 

View templates 173



AWS Proton User Guide

        "createdAt": "2021-02-18T15:38:57.949000+00:00", 
        "displayName": "simple-svc-template-cli", 
        "lastModifiedAt": "2021-02-18T15:38:57.949000+00:00", 
        "status": "DRAFT", 
        "name": "simple-svc-template-cli", 
        "pipelineProvisioning": "CUSTOMER_MANAGED" 
    }
}

Update a template

You can update a template as described in the following list.

• Edit the description or display name of a template when you use either the console or AWS 
CLI. You can't edit the name of a template.

• Update the status of a template minor version when you use either the console or AWS CLI. You 
can only change the status from DRAFT to PUBLISHED.

• Edit the display name and description of a minor or major version of a template when you use 
the AWS CLI.

AWS Management Console

Edit a template description and display name using the console as described in the following 
steps.

In the list of templates.

1. In the AWS Proton console, choose (Environment or Service) Templates.

2. In the list of templates, choose the radio button to the left of the template that you want 
to update the description or display name for.

3. Choose Actions and then Edit.

4. In the Edit (environment or service) template page, in the Template details section, enter 
your edits in the form and choose Save changes.

Change the status of a minor version of a template using the console to publish a template as 
described in the following. You can only change the status from DRAFT to PUBLISHED.

Update a template 174

https://console.aws.amazon.com/proton/


AWS Proton User Guide

In the (environment or service) template detail page.

1. In the AWS Proton console, choose (Environment or Service) templates.

2. In the list of templates, choose the name of the template that you want to update the 
status of a minor version from Draft to Published.

3. In the (environment or service) template detail page, in the Template versions section, 
select the radio button to the left of the minor version that you want to publish.

4. Choose Publish in the Template versions section. The status changes from Draft to
Published.

AWS CLI

The following example command and response shows how you can edit the description of an 
environment template.

Run the following command.

$ aws proton update-environment-template \ 
    --name "simple-env" \ 
    --description "A single VPC with public access"

Response:

{ 
    "environmentTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env", 
        "createdAt": "2020-11-28T22:02:10.651000+00:00", 
        "description": "A single VPC with public access", 
        "displayName": "simple-env", 
        "lastModifiedAt": "2020-11-29T16:11:18.956000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "recommendedMinorVersion": "0", 
        "schema": "schema:\n  format:\n    openapi: \"3.0.0\"\n  
 environment_input_type: \"MyEnvironmentInputType\"\n  types:\n    
 MyEnvironmentInputType:\n      type: object\n      description: \"Input properties 
 for my environment\"\n      properties:\n        my_sample_input:\n         
  type: string\n          description: \"This is a sample input\"\n          
 default: \"hello world\"\n        my_other_sample_input:\n          type: string

Update a template 175

https://console.aws.amazon.com/proton/


AWS Proton User Guide

\n          description: \"Another sample input\"\n      required:\n        - 
 my_other_sample_input\n", 
        "status": "PUBLISHED", 
        "statusMessage": "", 
        "templateName": "simple-env" 
    }
}

You can also use the AWS CLI to update service templates. See Register and publish service 
templates, step 5, for an example of updating the status of a minor version of a service 
template.

Delete templates

Templates can be deleted using the console and AWS CLI.

You can delete a minor version of an environment template if there are no environments deployed 
to that version.

You can delete a minor version of a service template if there are no service instances or pipelines 
deployed to that version. Your pipeline can be deployed to a different template version than your 
service instance. For example, if your service instance is updated to version 1.1 from 1.0 and your 
pipeline is still deployed to version 1.0, you can’t delete service template 1.0.

AWS Management Console

You can use the console to delete the entire template or individual minor and major versions of 
a template.

Use the console to delete templates as follows.

Note

When using the console to delete templates.

• When you delete the entire template, you also delete the major and minor versions of 
the template.

Delete templates 176



AWS Proton User Guide

In the list of (environment or service) templates.

1. In the AWS Proton console, choose (Environment or Service) Templates.

2. In the list of templates, select the radio button to the left of the template you want to 
delete.

You can only delete an entire template if there are no AWS Proton resources deployed to its 
versions.

3. Choose Actions and then Delete to delete the entire template.

4. A modal prompts you to confirm the delete action.

5. Follow the instructions and choose Yes, delete.

In the (environment or service) template detail page.

1. In the AWS Proton console, choose (Environment or Service) Templates.

2. In the list of templates, choose the name of the template that you want to entirely delete 
or delete individual major or minor versions of it.

3. To delete the entire template.

You can only delete an entire template if there are no AWS Proton resources deployed to its 
versions.

a. Choose Delete, top right corner of page.

b. A modal prompts you to confirm the delete action.

c. Follow the instructions and choose Yes, delete.

4. To delete major or minor versions of a template.

You can only delete a minor version of a template if there are no AWS Proton resources 
deployed to that version.

a. In the Template versions section, select the radio button to the left of the version that 
you want to delete.

b. Choose Delete in the Template versions section.

c. A modal prompts you to confirm the delete action.

d. Follow the instructions and choose Yes, delete.

Delete templates 177

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/


AWS Proton User Guide

AWS CLI

AWS CLI template delete operations don't include the deletion of other versions of a template. 
When using the AWS CLI, delete templates with the following conditions.

• Delete an entire template if no minor or major versions of the template exist.

• Delete a major version when you delete the last remaining minor version.

• Delete a minor version of a template if there are no AWS Proton resources deployed to that 
version.

• Delete the recommended minor version of a template if no other minor versions of the 
template exist and there are no AWS Proton resources deployed to that version.

The following example commands and responses show how to use the AWS CLI to delete 
templates.

Run the following command:

$ aws proton delete-environment-template-version \ 
    --template-name "simple-env" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "environmentTemplateVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env:1.0", 
        "createdAt": "2020-11-11T23:02:47.763000+00:00", 
        "description": "Version 1", 
        "lastModifiedAt": "2020-11-11T23:02:54.610000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "status": "PUBLISHED", 
        "statusMessage": "", 
        "templateName": "simple-env" 
    }
}

Run the following command:

Delete templates 178



AWS Proton User Guide

$ aws proton delete-environment-template \ 
    --name "simple-env"

Response:

{ 
    "environmentTemplate": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment-template/simple-
env", 
        "createdAt": "2020-11-11T23:02:45.336000+00:00", 
        "description": "VPC with Public Access", 
        "displayName": "VPC", 
        "lastModifiedAt": "2020-11-12T00:23:22.339000+00:00", 
        "name": "simple-env", 
        "recommendedVersion": "1.0" 
    }
}

Run the following command:

$ aws proton delete-service-template-version \ 
    --template-name "fargate-service" \ 
    --major-version "1" \ 
    --minor-version "0"

Response:

{ 
    "serviceTemplateVersion": { 
        "arn": "arn:aws:proton:region-id:123456789012:service-template/fargate-
service:1.0", 
        "compatibleEnvironmentTemplates": [{"majorVersion": "1", "templateName": 
 "simple-env"}], 
        "createdAt": "2020-11-28T22:07:05.798000+00:00", 
        "lastModifiedAt": "2020-11-28T22:19:05.368000+00:00", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "status": "PUBLISHED", 
        "statusMessage": "", 
        "templateName": "fargate-service" 
    }

Delete templates 179



AWS Proton User Guide

}

Template sync configurations

Learn how to configure a template to let AWS Proton sync from template bundles located in 
registered git repositories that you define. When a commit is pushed to your repository, AWS 
Proton checks for changes to your repository template bundles. If it detects a template bundle 
change, a new minor or major version of its template is created, if the version doesn’t already exist. 
AWS Proton currently supports GitHub, GitHub Enterprise, and BitBucket.

Pushing a commit to a synced template bundle

When you push a commit to a branch that's being tracked by one of your templates, AWS Proton 
clones your repository and determines what templates it needs to sync. It scans the files in your 
directory to find directories matching the convention of {template-name}/{major-version}/.

After AWS Proton determines which templates and major versions are associated with your 
repository and branch, it starts trying to sync all of those templates in parallel.

During each sync to a particular template, AWS Proton first checks to see if the contents of the 
template directory changed since the last successful sync. If the contents didn't change, AWS 
Proton skips registering a duplicate bundle. This ensures that a new template minor version is 
created if the content of the template bundle changes. If the contents of the template bundle 
changed, the bundle is registered with AWS Proton.

After the template bundle is registered, AWS Proton monitors the registration status until the 
registration is complete.

Only one sync can occur to a particular template minor and major version at a single given time. 
Any commits that might have been pushed while a sync was in progress are batched. The batched 
commits are synced after the previous sync attempt is complete.

Syncing service templates

AWS Proton can sync both environment and service templates from your git repository. To sync 
your service templates you add an additional file named .template-registration.yaml to 
each major version directory in your template bundle. This file contains additional details that AWS 
Proton needs when it creates a service template version for you following a commit: compatible 
environments and supported component sources.

Template sync configurations 180



AWS Proton User Guide

The file's full path is service-template-name/major-version/.template-
registration.yaml. For more information, see the section called “Syncing service templates”.

Template sync configuration considerations

Review the following considerations for using template sync configurations.

• Repositories must be no larger than 250 MB.

• To configure template sync, first link the repository to AWS Proton. For more information, see
the section called “Create a repository link”.

• When a new template version is created from a synced template, it's in the DRAFT state.

• A new minor version of a template is created if one of the following is true:

• The template bundle contents are different from those of the last synced template minor 
version.

• The last previously synced template minor version was deleted.

• Syncing can’t be paused.

• Both new minor or major versions are automatically synced.

• New top-level templates can’t be created by template sync configurations.

• You can’t sync to one template from multiple repositories with a template sync configuration.

• You can’t use tags instead of branches.

• When you create a service template, you specify compatible environment templates.

• You can create an environment template and add it as a compatible environment for your service 
template in the same commit.

• Syncs to a single template major version are run one at a time. During a sync, if any new commits 
are detected, they're batched and applied at the end of active sync. Syncs to different template 
major versions happen in parallel.

• If you change the branch your templates are syncing from, any ongoing syncs from the old 
branch first complete. Then syncing begins from the new branch.

• If you change the repository your templates sync from, any ongoing syncs from the old 
repository might fail or run to completion. It depends on which stage of the sync they're in.

For more information, see the The AWS Proton Service API Reference.

Topics

Template sync considerations 181

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html


AWS Proton User Guide

• Create a template sync configuration

• View template sync configuration details

• Edit a template sync configuration

• Delete a template sync configuration

Create a template sync configuration

Learn how to create a template sync configuration with AWS Proton.

Create a template sync configuration prerequisites:

• You've linked a repository with AWS Proton.

• A template bundle is located in your repository.

The repository link consists of the following:

• An CodeConnections connection that gives AWS Proton permission to access your repository and 
subscribe to its notifications.

• A service linked role. When you link your repository, the service linked role is created for you.

Before you create your first template sync configuration, push a template bundle to your 
repository as shown in the following directory layout.

 /templates/                                                 # subdirectory (optional) 
 /templates/my-env-template/                                 # template name 
 /templates/my-env-template/v1/                              # template version 
 /templates/my-env-template/v1/infrastructure/               # template bundle 
 /templates/my-env-template/v1/schema/

After you create your first template sync configuration, new template versions are automatically 
created when you push a commit that adds an updated template bundle under a new version (for 
example, under /my-env-template/v2/).

 /templates/                                                 # subdirectory (optional) 
 /templates/my-env-template/                                 # template name 
 /templates/my-env-template/v1/                              # template version 
 /templates/my-env-template/v1/infrastructure/               # template bundle 

Create 182



AWS Proton User Guide

 /templates/my-env-template/v1/schema/ 
 /templates/my-env-template/v2/ 
 /templates/my-env-template/v2/infrastructure/ 
 /templates/my-env-template/v2/schema/

You can include new template bundle versions for one or more sync configured templates in a 
single commit. AWS Proton creates a new template version for each new template bundle version 
that was included in the commit.

After you created the template sync configuration, you can still manually create new versions of 
the template in the console or with the AWS CLI by uploading template bundles from an S3 bucket. 
Template syncing only works in one direction: from your repository to AWS Proton. Manually 
created template versions aren’t synced.

After you set up a template sync configuration, AWS Proton listens for changes to your repository. 
Whenever a change is pushed, it looks for any directory that has the same name as your template. 
It then looks inside that directory for any directories that look like major versions. AWS Proton 
registers the template bundle to the corresponding template major version. The new versions are 
always in the DRAFT state. You can publish the new versions with the console or AWS CLI.

For example, suppose you have a template that's called my-env-template configured to sync 
from my-repo/templates on branch main with the following layout.

 /code 
 /code/service.go 
 README.md 
 /templates/ 
 /templates/my-env-template/ 
 /templates/my-env-template/v1/ 
 /templates/my-env-template/v1/infrastructure/ 
 /templates/my-env-template/v1/schema/ 
 /templates/my-env-template/v2/ 
 /templates/my-env-template/v2/infrastructure/ 
 /templates/my-env-template/v2/schema/

AWS Proton syncs the contents of /templates/my-env-template/v1/ to my-env-
template:1 and the contents of /templates/my-env-template/v2/ to my-env-
template:2. If they don’t already exist, it creates these major versions.

AWS Proton found the first directory that matched the template name. You can limit the 
directories AWS Proton searches by specifying a subdirectoryPath when you create or edit 

Create 183



AWS Proton User Guide

a template sync configuration. For example, you can specify /production-templates/ for
subdirectoryPath.

You can create a template sync configuration using the console or CLI.

AWS Management Console

Create a template and template sync configuration using the console.

1. In the AWS Proton console, choose Environment templates.

2. Choose Create environment template.

3. In the Create environment template page, in the Template options section, choose Create 
a template for provisioning new environments.

4. In the Template bundle source section, choose Sync templates from Git.

5. In the Source code repository section:

a. For Repository, select the linked repository that contains your template bundle.

b. For Branch, select a repository branch to sync from.

c. (Optional) For Template bundle directory, enter the name of a directory to scope 
down the search for your template bundle.

6. In the Template details section.

a. Enter a Template name.

b. (Optional) Enter a Template display name.

c. (Optional) Enter a Template description for the environment template.

7. (Optional) Check the checkbox for Customize encryption settings (advanced) in the
Encryption settings section to provide your own encryption key.

8. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

9. Choose Create Environment template.

You're now on a new page that displays the status and details for your new environment 
template. These details include a list of AWS managed and customer managed tags. AWS 
Proton automatically generates AWS managed tags for you when you create AWS Proton 
resources. For more information, see AWS Proton resources and tagging.

Create 184

https://console.aws.amazon.com/proton/


AWS Proton User Guide

10. In the template detail page, choose the Sync tab to view template sync configuration detail 
data.

11. Choose the Template versions tab to view template versions with status details.

12. The status of a new environment template status starts in the Draft state. You and others 
with proton:CreateEnvironment permissions can view and access it. Follow the next 
step to make the template available to others.

13. In the Template versions section, choose the radio button to the left of the minor version 
of the template that you just created (1.0). As an alternative, you can choose Publish in the 
info alert and skip the next step.

14. In the Template versions section, choose Publish.

15. The template status changes to Published. It's the latest and Recommended version of the 
template.

16. In the navigation pane, select Environment templates to view a list of your environment 
templates and details.

The procedure for creating a service template and template sync configuration is similar.

AWS CLI

Create a template and template sync configuration using the AWS CLI.

1. Create a template. In this example, an environment template is created.

Run the following command.

$ aws proton create-environment-template \ 
    --name "env-template"

The response is as follows.

{ 
    "environmentTemplate": { 
        "arn": "arn:aws:proton:us-east-1:123456789012:environment-template/env-
template", 
        "createdAt": "2021-11-07T23:32:43.045000+00:00", 
        "displayName": "env-template", 
        "lastModifiedAt": "2021-11-07T23:32:43.045000+00:00", 
        "name": "env-template", 

Create 185



AWS Proton User Guide

        "status": "DRAFT", 
        "templateName": "env-template" 
    }
}

2. Create your template sync configuration with AWS CLI by providing the following:

• The template that you want to sync to. After you have created the template sync 
configuration, you can still create new versions from it manually in the console or with 
the AWS CLI.

• The template name.

• The template type.

• The linked repository that you want to sync from.

• The linked repository provider.

• The branch where the template bundle is located.

• (Optional) The path to the directory containing your template bundle. By default, AWS 
Proton looks for the first directory that matches your template name.

Run the following command.

$ aws proton create-template-sync-config \ 
    --template-name "env-template" \ 
    --template-type "ENVIRONMENT" \ 
    --repository-name "myrepos/templates" \ 
    --repository-provider "GITHUB" \ 
    --branch "main" \ 
    --subdirectory "env-template/"

The response is as follows.

{ 
    "templateSyncConfigDetails": { 
        "branch": "main", 
        "repositoryName": "myrepos/templates", 
        "repositoryProvider": "GITHUB", 
        "subdirectory": "templates", 
        "templateName": "env-template", 
        "templateType": "ENVIRONMENT" 
    }

Create 186



AWS Proton User Guide

}

3. To publish your template version, see Register and publish templates.

Syncing service templates

The preceding examples show how you can sync environment templates. Service templates 
are similar. To sync service templates you add an additional file named .template-
registration.yaml to each major version directory in your template bundle. This file contains 
additional details that AWS Proton needs when it creates a service template version for you 
following a commit. When you explicitly create a service template version using the AWS Proton 
console or API, you provide these details as inputs, and this file replaces these inputs for template 
sync.

./templates/                                                 # subdirectory (optional) 
 /templates/my-svc-template/                                 # service template name 
 /templates/my-svc-template/v1/                              # service template version 
 /templates/my-svc-template/v1/.template-registration.yaml   # service template version 
 properties 
 /templates/my-svc-template/v1/instance_infrastructure/      # template bundle 
 /templates/my-svc-template/v1/schema/

The .template-registration.yaml file contains the following details:

• Compatible environments [required] – Environments based on these environment templates 
and major versions are compatible with services based on this service template version.

• Supported component sources [optional] – Components using these sources are compatible 
with services based on this service template version. If not specified, components can't be 
attached to these services. For more information about components, see Components.

The file's YAML syntax is as follows:

compatible_environments: 
  - env-templ-name:major-version
  - ...
supported_component_sources: 
  - DIRECTLY_DEFINED

Create 187



AWS Proton User Guide

Specify one or more environment template / major version combinations. Specifying
supported_component_sources is optional, and the only supported value is
DIRECTLY_DEFINED.

Example .template-registration.yaml

In this example, the service template version is compatible with major versions 1 and 2 of 
the my-env-template environment template. It's also compatible with the major versions 
1 and 3 of the another-env-template environment template. The file doesn't specify
supported_component_sources, so components can't be attached to services based on this 
service template version.

compatible_environments: 
  - my-env-template:1 
  - my-env-template:2 
  - another-env-template:1 
  - another-env-template:3

Note

Previously, AWS Proton defined a different file, .compatible-envs, for specifying 
compatible environments. AWS Proton still supports that file and its format for backward 
compatibility. We don't recommend using it anymore, because it isn't extensible and can't 
support newer features like components.

View template sync configuration details

View template sync configuration detail data using the console or CLI.

AWS Management Console

Use the console to view template sync configuration details.

1. In the navigation pane, choose (Environment or Service) templates.

2. To view detail data, choose the name of a template that you created a template sync 
configuration for.

3. In the detail page for the template, select the Sync tab to view the template sync 
configuration detail data.

View 188



AWS Proton User Guide

AWS CLI

Use the AWS CLI to view a synced template.

Run the following command.

$ aws proton get-template-sync-config \ 
    --template-name "svc-template" \ 
    --template-type "SERVICE"

The response is as follows.

{ 
    "templateSyncConfigDetails": { 
        "branch": "main", 
        "repositoryProvider": "GITHUB", 
        "repositoryName": "myrepos/myrepo", 
        "subdirectory": "svc-template", 
        "templateName": "svc-template", 
        "templateType": "SERVICE" 
    }
}

Use the AWS CLI to get template sync status.

For template-version, enter the template major version.

Run the following command.

$ aws proton get-template-sync-status \ 
    --template-name "env-template" \ 
    --template-type "ENVIRONMENT" \ 
    --template-version "1"

Edit a template sync configuration

You can edit any of the template sync configuration parameters except template-name and
template-type.

Learn to edit a template sync configuration using the console or CLI.

Edit 189



AWS Proton User Guide

AWS Management Console

Edit a template sync configuration branch using the console.

In the list of templates.

1. In the AWS Proton console, choose (Environment or Service) Templates.

2. In the list of templates, choose the name of the template with the template sync 
configuration that you want to edit.

3. In the template detail page, choose the Template sync tab.

4. In the Template sync details section, choose Edit.

5. In the Edit page, in the Source code repository section, for Branch, select a branch, and 
then choose Save configuration.

AWS CLI

The following example command and response shows how you can edit a template sync 
configuration branch using the CLI.

Run the following command.

$ aws proton update-template-sync-config \ 
    --template-name "env-template" \ 
    --template-type "ENVIRONMENT" \ 
    --repository-provider "GITHUB" \ 
    --repository-name "myrepos/templates" \ 
    --branch "fargate" \ 
    --subdirectory "env-template"

The response is as follows.

{ 
    "templateSyncConfigDetails": { 
        "branch": "fargate", 
        "repositoryProvider": "GITHUB", 
        "repositoryName": "myrepos/myrepo", 
        "subdirectory": "templates", 
        "templateName": "env-template", 
        "templateType": "ENVIRONMENT" 
    }

Edit 190

https://console.aws.amazon.com/proton/


AWS Proton User Guide

}

You can similarly use the AWS CLI to update synced service templates.

Delete a template sync configuration

Delete a template sync configuration using the console or CLI.

AWS Management Console

Delete a template sync configuration using the console.

1. In the template details page, choose the Sync tab.

2. In the Sync details section, choose Disconnect.

AWS CLI

The following example commands and responses show how to use the AWS CLI to delete 
synced template configurations.

Run the following command.

$ aws proton delete-template-sync-config \ 
    --template-name "env-template" \ 
    --template-type "ENVIRONMENT"

The response is as follows.

{ 
    "templateSyncConfig": { 
        "templateName": "env-template", 
        "templateType": "ENVIRONMENT" 
    }
}

Service sync configurations

With service sync, you can configure and deploy your AWS Proton services using Git. You can 
use service sync to manage initial deployments and updates to your AWS Proton service with a 

Delete 191



AWS Proton User Guide

configuration defined in a Git repository. Through Git, you can use features like version tracking 
and pull requests to configure, manage, and deploy your services. Service sync combines AWS 
Proton and Git to help you provision standardized infrastructure that is defined and managed 
through AWS Proton templates. It manages service definitions in your Git repository and reduces 
tool switching. Compared to using Git alone, the standardization of templates and deployment in 
AWS Proton helps you spend less time managing your infrastructure. AWS Proton also provides 
higher transparency and auditability for both developers and platform teams.

AWS Proton OPS file

The proton-ops file defines where AWS Proton finds the spec file that's used to update your 
service instance. It also defines what order to update service instances in and when to promote 
changes from one instance to another.

The proton-ops file supports syncing a service instance using the spec file, or multiple spec files, 
found in your linked repository. You can do this by defining a sync block in the proton-ops file, 
like in the following example.

Example ./configuration/proton-ops.yaml:

sync: 
  services: 
      frontend-svc: 
          alpha: 
              branch: dev 
              spec: ./frontend-svc/test/frontend-spec.yaml 
          beta: 
              branch: dev 
              spec: ./frontend-svc/test/frontend-spec.yaml 
          gamma: 
              branch: pre-prod 
              spec: ./frontend-svc/pre-prod/frontend-spec.yaml 
          prod-one: 
              branch: prod 
              spec: ./frontend-svc/prod/frontend-spec-second.yaml 
          prod-two: 
              branch: prod 
              spec: ./frontend-svc/prod/frontend-spec-second.yaml 
          prod-three: 
              branch: prod 
              spec: ./frontend-svc/prod/frontend-spec-second.yaml

AWS Proton OPS file 192



AWS Proton User Guide

In the preceding example, frontend-svc is the service name, and alpha, beta, gamma, prod-
one, prod-two, and prod-three are the instances.

The spec file can be all of the instances or a subset of the instances that are defined within the
proton-ops file. However, at minimum, it must have the instance defined within the branch and 
the spec it's syncing from. If instances aren't defined in the proton-ops file, with the specific 
branch and spec file location, service sync won't create or update those instances.

The following examples show what the spec files look like. Remember, the proton-ops file is 
synced from these spec files.

Example ./frontend-svc/test/frontend-spec.yaml:

proton: "ServiceSpec"
instances:
- name: "alpha" 
  environment: "frontend-env" 
  spec: 
    port: 80 
    desired_count: 1 
    task_size: "x-small" 
    image: "public.ecr.aws/z9d2n7e1/nginx:1.21.0"
- name: "beta" 
  environment: "frontend-env" 
  spec: 
    port: 80 
    desired_count: 1 
    task_size: "x-small" 
    image: "public.ecr.aws/z9d2n7e1/nginx:1.21.0"

Example ./frontend-svc/pre-prod/frontend-spec.yaml:

proton: "ServiceSpec"
instances:
- name: "gamma" 
  environment: "frontend-env" 
  spec: 
    port: 80 
    desired_count: 1 
    task_size: "x-small" 
    image: "public.ecr.aws/z9d2n7e1/nginx:1.21.0"

AWS Proton OPS file 193



AWS Proton User Guide

Example ./frontend-svc/prod/frontend-spec-second.yaml:

proton: "ServiceSpec"
instances:
- name: "prod-one" 
  environment: "frontend-env" 
  spec: 
    port: 80 
    desired_count: 1 
    task_size: "x-small" 
    image: "public.ecr.aws/z9d2n7e1/nginx:1.21.0"
- name: "prod-two" 
  environment: "frontend-env" 
  spec: 
    port: 80 
    desired_count: 1 
    task_size: "x-small" 
    image: "public.ecr.aws/z9d2n7e1/nginx:1.21.0"
- name: "prod-three" 
  environment: "frontend-env" 
  spec: 
    port: 80 
    desired_count: 1 
    task_size: "x-small" 
    image: "public.ecr.aws/z9d2n7e1/nginx:1.21.0"

If an instance doesn't sync, and there's a continuing issue when trying to sync it, calling the
GetServiceInstanceSyncStatus API may help in resolving the issue.

Note

Customers using service sync are still restricted by AWS Proton limits.

Blockers

By syncing your service using AWS Proton service sync, you can update your service spec and create 
and update service instances from your Git repository. However, there may be moments where you 
need to update a service or instance manually through the AWS Management Console or AWS CLI.

AWS Proton helps avoid overwriting any manual changes you make through the AWS Management 
Console or AWS CLI, such as updating a service instance or deleting a service instance. To achieve 

AWS Proton OPS file 194

https://docs.aws.amazon.com/proton/latest/APIReference/API_GetServiceInstanceSyncStatus.html


AWS Proton User Guide

this, AWS Proton automatically creates a service sync blocker by disabling service sync when it 
detects a manual change.

To get all the blockers associated with a service, you must do the following in order for each
serviceInstance associated to the service:

• Call the getServiceSyncBlockerSummary API with only the serviceName.

• Call the getServiceSyncBlockerSummary API with the serviceName and
serviceInstanceName.

This returns a list of the most recent blockers and the status associated with them. If any blockers 
are marked ACTIVE, you must resolve them by calling the UpdateServiceSyncBlocker API with 
the blockerId and resolvedReason for each one.

If you manually update or create a service instance, AWS Proton creates a service sync blocker on 
the service instance. AWS Proton continues to sync all other service instances, but disables the 
syncing of this service instance until the blocker is resolved. If you delete a service instance from a 
service, AWS Proton creates a service sync blocker on the service. This prevents AWS Proton from 
syncing any of the service instances until the blocker has been resolved.

After you have all the active blockers, you must resolve them by calling the
UpdateServiceSyncBlocker API with the blockerId and resolvedReason for each of the 
active blockers.

Using the AWS Management Console, you can determine if a service sync is disabled by navigating 
to AWS Proton and choosing the Service Sync tab. If the service or service instances are blocked, 
an Enable button appears. To enable service sync, choose Enable.

Topics

• Create a service sync configuration

• View configuration details for a service sync

• Edit a service sync configuration

• Delete a service sync configuration

Create a service sync configuration

Create 195



AWS Proton User Guide

You can create a service sync configuration using the console or AWS CLI.

AWS Management Console

1. On the Choose a service template page, select a template and choose Configure.

2. On the Configure service page, in the Service details section, enter a new Service name.

3. (Optional) Enter a description for the service.

4. In the Application source code repository section, choose Choose a linked Git repository
to select a repository you've already linked with AWS Proton. If you don't already have a 
linked repository, choose Link another Git repository and follow the instructions in Create 
a link to your repository.

5. For Repository, choose the name of your source code repository from the list.

6. For Branch, choose the name of the repository branch for your source code from the list.

7. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

8. Choose Next.

9. On the Configure service instances page, in the Service definition source section, select
Sync your service from Git.

10. In the Service definition files section, if you want AWS Proton to create your proton-ops
file, select I want AWS Proton to create the files. With this option, AWS Proton creates the
spec and proton-ops file in the locations you specify. Select I am providing my own files
to create your own OPS file.

11. In the Service definition repository section, choose Choose a linked Git repository to 
select a repository you've already linked with AWS Proton.

12. For Repository name, choose the name of your source code repository from the list.

13. For proton-ops file branch, choose the name of your branch from the list where AWS 
Proton will put your OPS and spec file.

14. In the Service instances section, each field is automatically filled based on the values in the
proton-ops file.

15. Choose Next and review your inputs.

16. Choose Create.

Create 196

https://docs.aws.amazon.com/proton/latest/userguide/ag-create-repo.html
https://docs.aws.amazon.com/proton/latest/userguide/ag-create-repo.html


AWS Proton User Guide

AWS CLI

Create a service sync configuration using the AWS CLI

• Run the following command.

$ aws proton create-service-sync-config \ 
    --resource "service-arn" \ 
    --repository-provider "GITHUB" \ 
    --repository "example/proton-sync-service" \ 
    --ops-file-branch "main" \ 
    --proton-ops-file "./configuration/custom-proton-ops.yaml" (optional)

The response is as follows.

{ 
    "serviceSyncConfig": { 
        "branch": "main", 
        "filePath": "./configuration/custom-proton-ops.yaml", 
        "repositoryName": "example/proton-sync-service", 
        "repositoryProvider": "GITHUB", 
        "serviceName": "service name" 
    }
}

View configuration details for a service sync

You can view the configuration details data for a service sync using the console or AWS CLI.

AWS Management Console

Use the console to view configuration details for a service sync

1. In the navigation pane, choose Services.

2. To view detail data, choose the name of a service that you created a service sync 
configuration for.

3. In the detail page for the service, select the Service sync tab to view the configuration 
detail data for the service sync.

View 197



AWS Proton User Guide

AWS CLI

Use the AWS CLI to get a synced service.

Run the following command.

$ aws proton get-service-sync-config \ 
    --service-name "service name"

The response is as follows.

{ 
    "serviceSyncConfig": { 
        "branch": "main", 
        "filePath": "./configuration/custom-proton-ops.yaml", 
        "repositoryName": "example/proton-sync-service", 
        "repositoryProvider": "GITHUB", 
        "serviceName": "service name" 
    }
}

Use the AWS CLI to get the service sync status.

Run the following command.

$ aws proton get-service-sync-status \ 
    --service-name "service name"

Edit a service sync configuration

You can edit a service sync configuration using the console or AWS CLI.

AWS Management Console

Edit a service sync configuration using the console.

1. In the navigation pane, choose Services.

2. To view detail data, choose the name of a service that you created a service sync 
configuration for.

Edit 198



AWS Proton User Guide

3. On the service detail page, choose the Service sync tab.

4. In the Service sync section, choose Edit.

5. On the Edit page, update the information you want to edit and then choose Save.

AWS CLI

The following example command and response shows how you can edit a service sync 
configuration using the AWS CLI.

Run the following command.

$ aws proton update-service-sync-config \ 
    --service-name "service name" \ 
    --repository-provider "GITHUB" \ 
    --repository "example/proton-sync-service" \ 
    --ops-file-branch "main" \ 
    --ops-file "./configuration/custom-proton-ops.yaml"

The response is as follows.

{ 
    "serviceSyncConfig": { 
        "branch": "main", 
        "filePath": "./configuration/custom-proton-ops.yaml", 
        "repositoryName": "example/proton-sync-service", 
        "repositoryProvider": "GITHUB", 
        "serviceName": "service name" 
    }
}

Delete a service sync configuration

You can delete a service sync configuration using the console or AWS CLI.

AWS Management Console

Delete a service sync configuration using the console

1. On the service details page, choose the Service sync tab.

Delete 199



AWS Proton User Guide

2. In the Service sync details section, choose Disconnect to disconnect your repository. After 
your repository is disconnected, we no longer sync the service from that repository.

AWS CLI

The following example commands and responses show how to use the AWS CLI to delete 
service synced configurations.

Run the following command.

$ aws proton delete-service-sync-config \ 
    --service-name "service name"

The response is as follows.

{ 
    "serviceSyncConfig": { 
        "branch": "main", 
        "filePath": "./configuration/custom-proton-ops.yaml", 
        "repositoryName": "example/proton-sync-service", 
        "repositoryProvider": "GITHUB", 
        "serviceName": "service name" 
    }
}

Note

Service sync doesn't delete service instances. It only deletes the configuration.

Delete 200



AWS Proton User Guide

AWS Proton environments

For AWS Proton, an environment represents the set of shared resources and policies that AWS 
Proton services are deployed into. They can contain any resources that are expected to be shared 
across AWS Proton service instances. These resources can include VPCs, clusters, and shared load 
balancers or API Gateways. An AWS Proton environment must be created before a service can be 
deployed to it.

This section describes how to manage environments using create, view, update, and delete 
operations. For >additional information, see the The AWS Proton Service API Reference.

Topics

• IAM Roles

• Create an environment

• View environment data

• Update an environment

• Delete an environment

• Environment account connections

• Customer-managed environments

• CodeBuild provisioning role creation

IAM Roles

With AWS Proton, you supply the IAM roles and AWS KMS keys for the AWS resources that you own 
and manage. These are later applied to and used by resources owned and managed by developers. 
You create an IAM role to control your developer team's access to the AWS Proton API.

AWS Proton service role

When you create a new environment, you provide a related IAM service role. The role contains 
all permissions that are necessary to update all provisioned infrastructure defined in both the 
environment templates and the service templates. For role examples, see AWS Proton service 
role for provisioning using AWS CloudFormation. If you use environment account connections 
and environment accounts, you create the role in a selected environment account. For more 

IAM Roles 201

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html


AWS Proton User Guide

information, see Create an environment in one account and provision in another account and
Environment account connections.

How you provide this service role, and who assumes the role, depends on your environment's 
provisioning method.

• AWS-managed provisioning – You provide the role to AWS Proton, either directly while creating 
an environment, or indirectly through account connections. AWS Proton assumes the role in the 
relevant account to provision environment and service infrastructure.

• Self-managed provisioning – It's your responsibility to configure your provisioning automation 
to assume an appropriate role using appropriate credentials when a pull request (PR) triggers a 
provisioning action. For an example GitHub Action that assumes a role, see Assuming a Role in 
the "Configure AWS Credentials" Action For GitHub Actions documentation.

For more information about provisioning methods, see the section called “Provisioning methods”.

Create an environment

Learn to create AWS Proton environments.

You can create an AWS Proton environment in one of two ways:

• Create, manage, and provision a standard environment by using a standard environment 
template. AWS Proton provisions infrastructure for your environment.

• Connect AWS Proton to customer-managed infrastructure by using a customer-managed 
environment template. You provision your own shared resources outside of AWS Proton, and then 
you provide provisioning outputs that AWS Proton can use.

You can choose one of several provisioning approaches when you create an environment.

• AWS managed provisioning – Create, manage, and provision an environment in a single account. 
AWS Proton provisions your environment.

This method only supports CloudFormation infrastructure code (IaC) templates.

• AWS managed provisioning to another account – In a single management account, create and 
manage an environment that's provisioned in another account with environment account 
connections. AWS Proton provisions your environment in the other account. For more 

Create 202

https://github.com/aws-actions/configure-aws-credentials#assuming-a-role


AWS Proton User Guide

information, see Create an environment in one account and provision in another account and
Environment account connections.

This method only supports CloudFormation IaC templates.

• Self-managed provisioning – AWS Proton submits provisioning pull requests to a linked repository 
with your own provisioning infrastructure.

This method only supports Terraform IaC templates.

• CodeBuild provisioning – AWS Proton uses AWS CodeBuild to run shell commands that you 
provide. Your commands can read inputs that AWS Proton provides, and are responsible for 
provisioning or deprovisioning infrastructure and generating output values. A template bundle 
for this method includes your commands in a manifest file and any programs, scripts, or other 
files that these commands may need.

As an example to using CodeBuild provisioning, you can include code that uses the AWS Cloud 
Development Kit (AWS CDK) to provision AWS resources, and a manifest that installs the CDK 
and runs your CDK code.

For more information, see the section called “CodeBuild bundle”.

Note

You can use CodeBuild provisioning with environments and services. At this time you 
can't provision components this way.

With AWS managed provisioning (both in the same account and to another account), AWS Proton 
makes direct calls to provision your resources.

With self-managed provisioning, AWS Proton makes pull requests to provide compiled IaC files that 
your IaC engine uses to provision resources.

For more information, see the section called “Provisioning methods”, the section called “Template 
bundles”, and the section called “Environment schema requirements”.

Topics

• Create and provision a standard environment in the same account

• Create an environment in one account and provision in another account

Create 203



AWS Proton User Guide

• Create and provision an environment using self-managed provisioning

Create and provision a standard environment in the same account

Use the console or AWS CLI to create and provision an environment in a single account. 
Provisioning is managed by AWS.

AWS Management Console

Use the console to create and provision an environment in a single account

1. In the AWS Proton console, choose Environments.

2. Choose Create environment.

3. In the Choose an environment template page, select a template and choose Configure.

4. In the Configure environment page, in the Provisioning section, choose AWS managed 
provisioning.

5. In the Deployment account section, choose This AWS account.

6. In the Configure environment page, in the Environment settings section, enter an
Environment name.

7. (Optional) Enter a description for the environment.

8. In the Environment roles section, select the AWS Proton service role that you created as 
part of Setting up AWS Proton service roles.

9. (Optional) In the Component role section, select a service role that enables directly defined 
components to run in the environment and scopes down the resources that they can 
provision. For more information, see Components.

10. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

11. Choose Next.

12. In the Configure environment custom settings page, you must enter values for the
required parameters. You can enter values for the optional parameters or use the 
defaults when given.

13. Choose Next and review your inputs.

14. Choose Create.

Create and provision in the same account 204

https://console.aws.amazon.com/proton/


AWS Proton User Guide

View the environment details and status, as well as the AWS managed tags and customer 
managed tags for your environment.

15. In the navigation pane, choose Environments.

A new page displays a list of your environments along with the status and other 
environment details.

AWS CLI

Use the AWS CLI to create and provision an environment in a single account.

To create an environment, you specify the AWS Proton service role ARN, path to your spec file, 
environment name, environment template ARN, the major and minor versions, and description 
(optional).

The next examples shows a YAML formatted spec file that specifies values for two inputs that 
are defined in the environment template schema file. You can use the get-environment-
template-minor-version command to view the environment template schema.

proton: EnvironmentSpec
spec: 
  my_sample_input: "the first" 
  my_other_sample_input: "the second"

Create an environment by running the following command.

$ aws proton create-environment \ 
    --name "MySimpleEnv" \ 
    --template-name simple-env \ 
    --template-major-version 1 \ 
    --proton-service-role-arn "arn:aws:iam::123456789012:role/AWSProtonServiceRole" 
 \ 
    --spec "file://env-spec.yaml"

Response:

{ 

Create and provision in the same account 205



AWS Proton User Guide

    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2020-11-11T23:03:05.405000+00:00", 
        "deploymentStatus": "IN_PROGRESS", 
        "lastDeploymentAttemptedAt": "2020-11-11T23:03:05.405000+00:00", 
        "name": "MySimpleEnv", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/ProtonServiceRole", 
        "templateName": "simple-env" 
    }
}

After you create a new environment, you can view a list of AWS and customer managed tags as 
shown in the following example command. AWS Proton automatically generates AWS managed 
tags for you. You can also modify and create customer managed tags using the AWS CLI. For 
more information, see AWS Proton resources and tagging.

Command:

$ aws proton list-tags-for-resource \ 
    --resource-arn "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv"

Create an environment in one account and provision in another account

Use the console or AWS CLI to create a standard environment in a management account that 
provisions environment infrastructure in another account. Provisioning is managed by AWS.

Before using the console or CLI, complete the following steps.

1. Identify the AWS account IDs for the management and environment account, and copy them 
for later use.

2. In the environment account, create an AWS Proton service role with minimum permissions for 
the environment to create. For more information, see AWS Proton service role for provisioning 
using AWS CloudFormation.

Create in one account and provision in another 206



AWS Proton User Guide

AWS Management Console

Use the console create an environment in one account and provision in another.

1. In the environment account, create an environment account connection, and use it to 
send a request to connect to the management account.

a. In AWS Proton console, choose Environment account connections in the navigation 
pane.

b. In the Environment account connections page, choose Request to connect.

Note

Verify that the account ID that's listed in the Environment account connection
page heading matches your pre-identified environment account ID.

c. In the Request to connect page, in the Environment role section, select Existing 
service role and the name of the service role that you created for the environment.

d. In the Connect to management account section, enter the Management account ID
and an Environment name for your AWS Proton environment. Copy the name for later 
use.

e. Choose Request to connect at the lower right corner of the page.

f. Your request shows as pending in the Environment connections sent to a 
management account table and a modal shows how to accept the request from the 
management account.

2. In the management account, accept a request to connect from the environment account.

a. Log in to your management account and choose Environment account connections in 
the AWS Proton console.

b. In the Environment account connections page, in the Environment account 
connection requests table, select the environment account connection with the 
environment account ID that matches your pre-identified environment account ID.

Note

Verify that the account ID that's listed in the Environment account connection
page heading matches your pre-identified management account ID.

Create in one account and provision in another 207

https://console.aws.amazon.com/proton/


AWS Proton User Guide

c. Choose Accept. The status changes from PENDING to CONNECTED.

3. In the management account, create an environment.

a. In the navigation pane, choose Environment templates.

b. In the Environment templates page, choose Create environment template.

c. In the Choose an environment template page, choose an environment template.

d. In the Configure environment page, in the Provisioning section, choose AWS 
managed provisioning.

e. In the Deployment account section, choose Another AWS account;.

f. In the Environment details section, select your Environment account connection and
Environment name.

g. Choose Next.

h. Fill out the forms and choose Next until you reach the Review and Create page.

i. Review and choose Create environment.

AWS CLI

Use the AWS CLI to create an environment in one account and provision in another.

In the environment account, create an environment account connection and request to connect 
by running the following command.

$ aws proton create-environment-account-connection \ 
    --environment-name "simple-env-connected" \ 
    --role-arn "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role" \ 
    --management-account-id "111111111111"

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:13:50.847000+00:00", 

Create in one account and provision in another 208



AWS Proton User Guide

        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "PENDING" 
    }
}

In the management account, accept the environment account connection request by running 
the following command.

$ aws proton accept-environment-account-connection \ 
    --id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:15:33.486000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "CONNECTED" 
    }
}

View your environment account connection by running the following command.

$ aws proton get-environment-account-connection \ 
    --id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

{ 
    "environmentAccountConnection": { 

Create in one account and provision in another 209



AWS Proton User Guide

        "arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:15:33.486000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "CONNECTED" 
    }
}

In the management account, create an environment by running the following command.

$ aws proton create-environment \ 
    --name "simple-env-connected" \ 
    --template-name simple-env-template \ 
    --template-major-version "1" \ 
    --template-minor-version "1" \ 
    --spec "file://simple-env-template/specs/original.yaml" \ 
    --environment-account-connection-id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:111111111111:environment/simple-env-
connected", 
        "createdAt": "2021-04-28T23:02:57.944000+00:00", 
        "deploymentStatus": "IN_PROGRESS", 
        "environmentAccountConnectionId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "lastDeploymentAttemptedAt": "2021-04-28T23:02:57.944000+00:00", 
        "name": "simple-env-connected", 
        "templateName": "simple-env-template" 
    }
}

Create in one account and provision in another 210



AWS Proton User Guide

Create and provision an environment using self-managed provisioning

When you use self-managed provisioning, AWS Proton submits provisioning pull requests to a 
linked repository with your own provisioning infrastructure. The pull requests start your own 
workflow, which calls AWS services; to provision infrastructure.

Self-managed provisioning considerations:

• Before you create an environment, set up a repository resource directory for self-managed 
provisioning. For more information, see AWS Proton infrastructure as code files.

• After you create the environment, AWS Proton waits to receive asynchronous notifications 
regarding the status of your infrastructure provisioning. Your provisioning code must use the 
AWS Proton NotifyResourceStateChange API to send these asynchronous notifications to 
AWS Proton.

You can use self-managed provisioning in the console or with the AWS CLI. The following examples 
show how you can use self-managed provisioning with Terraform.

AWS Management Console

Use the console to create a Terraform environment using self-managed provisioning.

1. In the AWS Proton console, choose Environments.

2. Choose Create environment.

3. In the Choose an environment template page, select a Terraform template and choose
Configure.

4. In the Configure environment page, in the Provisioning section, choose Self-managed 
provisioning.

5. In the Provisioning repository details section:

a. If you haven't yet linked your provisioning repository to AWS Proton, choose
New repository, choose one of the repository providers, and then, for CodeStar 
connection, choose one of your connections.

Note

If you don't yet have a connection to the relevant repository provider account, 
choose Add a new CodeStar connection. Then, create a connection, and then 

Self-managed provisioning 211

https://console.aws.amazon.com/proton/


AWS Proton User Guide

choose the refresh button next to the CodeStar connection menu. You should 
now be able to choose your new connection in the menu.

If you've already linked your repository to AWS Proton, choose Existing repository.

b. For Repository name, choose a repository. The drop-down menu shows linked 
repositories for Existing repository or the list of repositories in the provider account 
for New repository.

c. For Branch name, choose one of the repository branches.

6. In the Environment settings section, enter an Environment name.

7. (Optional) Enter a description for the environment.

8. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

9. Choose Next.

10. In the Configure environment custom settings page, you must enter values for the
required parameters. You can enter values for the optional parameters or use the 
defaults when given.

11. Choose Next and review your inputs.

12. Choose Create to send a pull request.

• If you approve the pull request, the deployment is in progress.

• If you reject the pull request, the environment creation is cancelled.

• If the pull request times out, environment creation isn't complete.

13. View the environment details and status, as well as the AWS managed tags and customer 
managed tags for your environment.

14. In the navigation pane, choose Environments.

A new page displays a list of your environments along with the status and other 
environment details.

AWS CLI

When you create an environment using self-managed provisioning, you add the
provisioningRepository parameter and omit the ProtonServiceRoleArn and
environmentAccountConnectionId parameters.

Self-managed provisioning 212



AWS Proton User Guide

Use the AWS CLI to create a Terraform environment with self-managed provisioning.

1. Create an environment and send a pull request to the repository for review and approval.

The next examples shows a YAML formatted spec file that defines the values for two inputs 
based on the environment template schema file. You can use the get-environment-
template-minor-version command to view the environment template schema.

Spec:

proton: EnvironmentSpec
spec: 
  ssm_parameter_value: "test"

Create an environment by running the following command.

$ aws proton create-environment \ 
    --name "pr-environment" \ 
    --template-name "pr-env-template" \ 
    --template-major-version "1" \ 
    --provisioning-repository="branch=main,name=myrepos/env-
repo,provider=GITHUB" \ 
    --spec "file://env-spec.yaml"

Response:>

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/pr-
environment", 
        "createdAt": "2021-11-18T17:06:58.679000+00:00", 
        "deploymentStatus": "IN_PROGRESS", 
        "lastDeploymentAttemptedAt": "2021-11-18T17:06:58.679000+00:00", 
        "name": "pr-environment", 
        "provisioningRepository": { 
            "arn": "arn:aws:proton:region-id:123456789012:repository/
github:myrepos/env-repo", 
            "branch": "main", 
            "name": "myrepos/env-repo", 
            "provider": "GITHUB" 
        }, 

Self-managed provisioning 213



AWS Proton User Guide

        "templateName": "pr-env-template" 
    }

2. Review the request.

• If you approve the request, provisioning is in progress.

• If you reject the request, the environment creation is cancelled.

• If the pull request times out, environment creation isn't complete.

3. Asynchronously provide provisioning status to AWS Proton. The following example notifies 
AWS Proton of a successful provisioning.

$ aws proton notify-resource-deployment-status-change \ 
    --resource-arn "arn:aws:proton:region-id:123456789012:environment/pr-
environment" \ 
    --status "SUCCEEDED"

View environment data

You can view environment detail data using either the AWS Proton console or the AWS CLI.

AWS Management Console

You can view lists of environments with details and individual environments with detail data 
by using the AWS Proton console.

1. To view a list of your environments, choose Environments in the navigation pane.

2. To view detail data, choose the name of an environment.

View your environment detail data.

AWS CLI

Use the AWS CLI get or list environment details.

Run the following command:

$ aws proton get-environment \ 
    --name "MySimpleEnv"

View 214

https://console.aws.amazon.com/proton/


AWS Proton User Guide

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2020-11-11T23:03:05.405000+00:00", 
        "deploymentStatus": "SUCCEEDED", 
        "lastDeploymentAttemptedAt": "2020-11-11T23:03:05.405000+00:00", 
        "lastDeploymentSucceededAt": "2020-11-11T23:03:05.405000+00:00", 
        "name": "MySimpleEnv", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/ProtonServiceRole", 
        "spec": "proton: EnvironmentSpec\nspec:\n  my_sample_input: \"the first\"\n  
 my_other_sample_input: \"the second\"\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "0", 
        "templateName": "simple-env" 
    }
}

Update an environment

If the AWS Proton environment is associated with an environment account connection, don't
update or include the protonServiceRoleArn parameter to update or connect to an 
environment account connection.

You can only update to a new environment account connection if both of the following is true:

• The environment account connection was created in the same environment account that the 
current environment account connection was created in.

• >The environment account connection is associated with the current environment.

If the environment isn’t associated with an environment account connection, don’t update or 
include the environmentAccountConnectionId parameter.

You can update either the environmentAccountConnectionId or protonServiceRoleArn
parameter and value. You can’t update both.

If your environment uses self-managed provisioning, don't update the provisioning-
repository parameter and omit the environmentAccountConnectionId and
protonServiceRoleArn parameters.

Update 215



AWS Proton User Guide

There are four modes for updating an environment as described in the following list. When using 
the AWS CLI, the deployment-type field defines the mode. When using the console, these modes 
map to the Edit, Update, Update minor, and Update major actions that drop down from Actions.

NONE

In this mode, a deployment doesn't occur. Only the requested metadata parameters are 
updated.

CURRENT_VERSION

In this mode, the environment is deployed and updated with the new spec that you provide. 
Only requested parameters are updated. Don’t include minor or major version parameters when 
you use this deployment-type.

MINOR_VERSION

In this mode, the environment is deployed and updated with the published, recommended 
(latest) minor version of the current major version in use by default. You can also specify a 
different minor version of the current major version in use.

MAJOR_VERSION

In this mode, the environment is deployed and updated with the published, recommended 
(latest) major and minor version of the current template by default. You can also specify 
a different major version that is higher than the major version in use and a minor version 
(optional).

Topics

• Update an AWS managed provisioning environment

• Update a self-managed provisioning environment

• Cancel an environment deployment in progress

Update an AWS managed provisioning environment

Standard provisioning is only supported by environments that provision with AWS CloudFormation.

Update an AWS managed provisioning environment 216



AWS Proton User Guide

Use the console or AWS CLI to update your environment.

AWS Management Console

Update an environment using the console as shown in the following steps.

1. Choose 1 of the following 2 steps.

a. In the list of environments.

i. In the AWS Proton console, choose Environments.

ii. In the list of environments, choose the radio button to the left of the environment 
that you want to update.

b. In the console environment detail page.

i. In the AWS Proton console, choose Environments.

ii. In the list of environments, choose the name of the environment that you want to 
update.

2. Choose 1 of the next 4 steps to update your environment.

a. To make an edit that doesn't require environment deployment.

i. For example, to change a description.

Choose Edit.

ii. Fill out the form and choose Next.

iii. Review your edit and choose Update.

b. To make updates to metadata inputs only.

i. Choose Actions and then Update.

ii. Fill out the form and choose Edit.

iii. Fill out the forms and choose Next until you reach the Review page.

iv. Review your updates and choose Update.

c. To make an update to a new minor version of its environment template.

i. Choose Actions and then Update minor.

ii. Fill out the form and choose Next.

iii. Fill out the forms and choose Next until you reach the Review page.

Update an AWS managed provisioning environment 217

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/


AWS Proton User Guide

iv. Review your updates and choose Update.

d. To make an update to a new major version of its environment template.

i. Choose Actions and then Update major.

ii. Fill out the form and choose Next.

iii. Fill out the forms and choose Next until you reach the Review page.

iv. Review your updates and choose Update.

AWS CLI

Use the AWS Proton AWS CLI to update an environment to a new minor version.

Run the following command to update your environment:

$ aws proton update-environment \ 
        --name "MySimpleEnv" \ 
        --deployment-type "MINOR_VERSION" \ 
        --template-major-version "1" \ 
        --template-minor-version "1" \ 
        --proton-service-role-arn arn:aws:iam::123456789012:role/service-
role/ProtonServiceRole \ 
        --spec "file:///spec.yaml"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2021-04-02T17:29:55.472000+00:00", 
        "deploymentStatus": "IN_PROGRESS",         
        "lastDeploymentAttemptedAt": "2021-04-02T17:48:26.307000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T17:29:55.472000+00:00", 
        "name": "MySimpleEnv", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "0", 
        "templateName": "simple-env" 
    }
}

Update an AWS managed provisioning environment 218



AWS Proton User Guide

Run the following command to get and confirm the status:

$ aws proton get-environment \ 
        --name "MySimpleEnv"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2021-04-02T17:29:55.472000+00:00", 
        "deploymentStatus": "SUCCEEDED", 
        "environmentName": "MySimpleEnv", 
        "lastDeploymentAttemptedAt": "2021-04-02T17:48:26.307000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole", 
        "spec": "proton: EnvironmentSpec\n\nspec:\n  my_sample_input: hello\n  
 my_other_sample_input: everybody\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "simple-env" 
    }
}

Update a self-managed provisioning environment

Self-managed provisioning is only supported by environments that provision with Terraform.

Use the console or AWS CLI to update your environment.

AWS Management Console

Update an environment using the console as shown in the following steps.

1. Choose 1 of the following 2 steps.

a. In the list of environments.

i. In the AWS Proton console, choose Environments.

Update a self-managed provisioning environment 219

https://console.aws.amazon.com/proton/


AWS Proton User Guide

ii. In the list of environments, choose the radio button to the left of the environment 
template that you want to update.

b. In the console environment detail page.

i. In the AWS Proton console, choose Environments.

ii. In the list of environments, choose the name of the environment that you want to 
update.

2. Choose 1 of the next 4 steps to update your environment.

a. To make an edit that doesn't require environment deployment.

i. For example, to change a description.

Choose Edit.

ii. Fill out the form and choose Next.

iii. Review your edit and choose Update.

b. To make updates to metadata inputs only.

i. Choose Actions and then Update.

ii. Fill out the form and choose Edit.

iii. Fill out the forms and choose Next until you reach the Review page.

iv. Review your updates and choose Update.

c. To make an update to a new minor version of its environment template.

i. Choose Actions and then Update minor.

ii. Fill out the form and choose Next.

iii. Fill out the forms and choose Next until you reach the Review page.

iv. Review your updates and choose Update.

d. To make an update to a new major version of its environment template.

i. Choose Actions and then Update major.

ii. Fill out the form and choose Next.

iii. Fill out the forms and choose Next until you reach the Review page.

iv. Review your updates and choose Update.

Update a self-managed provisioning environment 220

https://console.aws.amazon.com/proton/


AWS Proton User Guide

AWS CLI

Use the AWS CLI to update a Terraform environment to a new minor version with self-
managed provisioning.

1. Run the following command to update your environment:

$ aws proton update-environment \ 
    --name "pr-environment" \ 
    --deployment-type "MINOR_VERSION" \ 
    --template-major-version "1" \ 
    --template-minor-version "1" \ 
    --provisioning-repository "branch=main,name=myrepos/env-
repo,provider=GITHUB" \ 
    --spec "file://env-spec-mod.yaml"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/pr-
environment", 
        "createdAt": "2021-11-18T21:09:15.745000+00:00", 
        "deploymentStatus": "IN_PROGRESS", 
        "lastDeploymentAttemptedAt": "2021-11-18T21:25:41.998000+00:00", 
        "lastDeploymentSucceededAt": "2021-11-18T21:09:15.745000+00:00", 
        "name": "pr-environment", 
        "provisioningRepository": { 
            "arn": "arn:aws:proton:region-id:123456789012:repository/
github:myrepos/env-repo", 
            "branch": "main", 
            "name": "myrepos/env-repo", 
            "provider": "GITHUB" 
        }, 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "0", 
        "templateName": "pr-env-template" 
    }
}

2. Run the following command to get and confirm the status:

Update a self-managed provisioning environment 221



AWS Proton User Guide

$ aws proton get-environment \ 
    --name "pr-environment"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/pr-
environment", 
        "createdAt": "2021-11-18T21:09:15.745000+00:00", 
        "deploymentStatus": "SUCCEEDED", 
        "lastDeploymentAttemptedAt": "2021-11-18T21:25:41.998000+00:00", 
        "lastDeploymentSucceededAt": "2021-11-18T21:25:41.998000+00:00", 
        "name": "pr-environment", 
        "provisioningRepository": { 
            "arn": "arn:aws:proton:region-id:123456789012:repository/
github:myrepos/env-repo", 
            "branch": "main", 
            "name": "myrepos/env-repo", 
            "provider": "GITHUB" 
        }, 
        "spec": "proton: EnvironmentSpec\nspec:\n   ssm_parameter_value: \"test
\"\n ssm_another_parameter_value: \"update\"\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "pr-env-template" 
    }
}

3. Review the pull request that was sent by AWS Proton.

• If you approve the request, provisioning is in progress.

• If you reject the request, the environment creation is cancelled.

• If the pull request times out, environment creation isn't complete.

4. Provide provisioning status to AWS Proton.

$ aws proton notify-resource-deployment-status-change \ 
    --resource-arn "arn:aws:proton:region-id:123456789012:environment/pr-
environment" \ 
    --status "SUCCEEDED"

Update a self-managed provisioning environment 222



AWS Proton User Guide

Cancel an environment deployment in progress

You can attempt to cancel an environment update deployment if the deploymentStatus is 
in IN_PROGRESS. AWS Proton attempts to cancel the deployment. Successful cancellation isn’t
guaranteed.

When you cancel an update deployment, AWS Proton attempts to cancel the deployment as listed 
in the following steps.

With AWS-managed provisioning, AWS Proton does the following:

• Sets the deployment state to CANCELLING.

• Stops the deployment in progress and deletes any new resources that were created by the 
deployment when IN_PROGRESS.

• Sets the deployment state to CANCELLED.

• Reverts the state of the resource to what it was before the deployment was started.

With self-managed provisioning, AWS Proton does the following:

• Attempts to close the pull request to prevent merging the changes to your repository.

• Sets the deployment state to CANCELLED if the pull request was successfully closed.

For instructions on how to cancel an environment deployment, see CancelEnvironmentDeployment
in the AWS Proton API Reference.

You can use the console or CLI to cancel environments that are in progress.

AWS Management Console

Use the console to cancel an environment update deployment as shown in the following 
steps.

1. In the AWS Proton console, choose Environments in the navigation pane.

2. In the list of environments, choose the name of the environment with the deployment 
update that you want to cancel.

3. If your update deployment status is In progress, in the environment detail page, choose
Actions and then Cancel deployment.

Cancel an environment deployment in progress 223

https://docs.aws.amazon.com/proton/latest/APIReference/API_CancelEnvironmentDeployment.html
https://console.aws.amazon.com/proton/


AWS Proton User Guide

4. A modal prompts you to confirm that you want to cancel. Choose Cancel deployment.

5. Your update deployment status is set to Cancelling and then Cancelled to complete the 
cancellation.

AWS CLI

Use the AWS Proton AWS CLI to cancel an IN_PROGRESS environment update deployment to 
a new minor version 2.

A wait condition is included in the template used for this example so that the cancellation starts 
before the update deployment succeeds.

Run the following command to cancel the update:

$ aws proton cancel-environment-deployment \ 
        --environment-name "MySimpleEnv"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2021-04-02T17:29:55.472000+00:00", 
        "deploymentStatus": "CANCELLING", 
        "lastDeploymentAttemptedAt": "2021-04-02T18:15:10.243000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00", 
        "name": "MySimpleEnv", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole", 
        "spec": "proton: EnvironmentSpec\n\nspec:\n  my_sample_input: hello\n  
 my_other_sample_input: everybody\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "simple-env" 
    }
}

Run the following command to get and confirm the status:"

$ aws proton get-environment \ 

Cancel an environment deployment in progress 224



AWS Proton User Guide

        --name "MySimpleEnv"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2021-04-02T17:29:55.472000+00:00", 
        "deploymentStatus": "CANCELLED", 
        "deploymentStatusMessage": "User initiated cancellation.", 
        "lastDeploymentAttemptedAt": "2021-04-02T18:15:10.243000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00", 
        "name": "MySimpleEnv", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/service-role/
ProtonServiceRole", 
        "spec": "proton: EnvironmentSpec\n\nspec:\n  my_sample_input: hello\n  
 my_other_sample_input: everybody\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "simple-env" 
    }
}

Delete an environment

You can delete an AWS Proton environment by using the AWS Proton console or the AWS CLI.

Note

You can't delete an environment that has any associated component. To delete such an 
environment, you should first delete all components that are running in the environment. 
For more information about components, see Components.

AWS Management Console

Delete an environment using the console as described in the following two options.

In the list of environments.

1. In the AWS Proton console, choose Environments.

Delete 225

https://console.aws.amazon.com/proton/


AWS Proton User Guide

2. In the list of environments, select the radio button to the left of the environment that you 
want to delete.

3. Choose Actions and then Delete.

4. A modal prompts you to confirm the delete action.

5. Follow the instructions and choose Yes, delete.

In the environment detail page.

1. In the AWS Proton console, choose Environments.

2. In the list of environments, choose the name of the environment that you want to delete.

3. In the environment detail page, choose Actions and then Delete.

4. A modal prompts you to confirm that you want to delete.

5. Follow the instructions and choose Yes, delete.

AWS CLI

Use the AWS CLI to delete an environment.

Don't delete an environment if services or service instances are deployed to the environment.

Run the following command:

$ aws proton delete-environment \ 
    --name "MySimpleEnv"

Response:

{ 
    "environment": { 
        "arn": "arn:aws:proton:region-id:123456789012:environment/MySimpleEnv", 
        "createdAt": "2021-04-02T17:29:55.472000+00:00", 
        "deploymentStatus": "DELETE_IN_PROGRESS", 
        "lastDeploymentAttemptedAt": "2021-04-02T17:48:26.307000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T17:48:26.307000+00:00", 
        "name": "MySimpleEnv", 
        "protonServiceRoleArn": "arn:aws:iam::123456789012:role/ProtonServiceRole", 
        "templateMajorVersion": "1", 

Delete 226

https://console.aws.amazon.com/proton/


AWS Proton User Guide

        "templateMinorVersion": "1", 
        "templateName": "simple-env" 
    }
}

Environment account connections

Overview

Learn how to create and manage an AWS Proton environment in one account and provision its 
infrastructure resources in another account. This can help improve visibility and efficiency at scale. 
Environment account connections only support standard provisioning with AWS CloudFormation 
infrastructure as code.

Note

The information in this topic is relevant to environments that are configured with AWS 
managed provisioning. With environments configured with self-managed provisioning, AWS 
Proton doesn't directly provision your infrastructure. Instead, it sends pull requests (PRs) 
to your repository for provisioning. It's your responsibility to ensure that your automation 
code assumes the right identity and role.
For more information about provisioning methods, see the section called “Provisioning 
methods”.

Terminology

Account connections 227



AWS Proton User Guide

With AWS Proton environment account connections, you can create an AWS Proton environment 
from one account and provision its infrastructure in another account.

Management account

The single account where you, as an administrator, create an AWS Proton environment that 
provisions infrastructure resources in another environment account.

Environment account

An account that environment infrastructure is provisioned in, when you create an AWS Proton 
environment in another account.

Account connections 228



AWS Proton User Guide

Environment account connection

A secure bi-directional connection between a management account and an environment 
account. It maintains authorization and permissions as described further in the following 
sections.

When you create an environment account connection in an environment account in a specific 
Region, only the management accounts in the same Region can see and use the environment 
account connection. This means that the AWS Proton environment created in the management 
account and the environment infrastructure provisioned in the environment account must be in the 
same Region.

Environment account connection considerations

• You need an environment account connection for each environment that you want to provision 
in an environment account.

• For information about environment account connection quotas, see AWS Proton quotas.

Tagging

In the environment account, use the console or the AWS CLI to view and manage environment 
account connection customer managed tags. AWS managed tags aren't generated for environment 
account connections. For more information, see Tagging.

Create an environment in one account and provision its infrastructure 
in another account

To create and provision an environment from a single management account, set up an environment 
account for an environment that you plan to create.

Start in the environment account and create connection.

In the environment account, create an AWS Proton service role that's scoped down to only the 
permissions that are needed for provisioning your environment infrastructure resources. For more 
information, see AWS Proton service role for provisioning using AWS CloudFormation.

Then, create and send an environment account connection request to your management 
account. When the request is accepted, AWS Proton can use the associated IAM role that permits 
environment resource provisioning in the associated environment account.

Create an environment with environment account connections 229



AWS Proton User Guide

In the management account, accept or reject the environment account connection.

In the management account, accept or reject the environment account connection request. You
can’t delete an environment account connection from your management account.

If you accept the request, the AWS Proton can use the associated IAM role that permits resource 
provisioning in the associated environment account.

The environment infrastructure resources are provisioned in the associated environment account. 
You can only use AWS Proton APIs to access and manage your environment and its infrastructure 
resources, from your management account. For more information, see Create an environment in 
one account and provision in another account and Update an environment.

After you reject a request, you can’t accept or use the rejected environment account connection.

Note

You can’t reject an environment account connection that's connected to an environment. 
To reject the environment account connection, you must first delete the associated 
environment.

In the environment account, access the provisioned infrastructure resources.

In the environment account, you can view and access the provisioned infrastructure resources. For 
example, you can use CloudFormation API actions to monitor and clean up stacks if needed. You 
can’t use the AWS Proton API actions to access or manage the AWS Proton environment that was 
used to provision the infrastructure resources.

In the environment account, you can delete environment account connections that you have 
created in the environment account. You can’t accept or reject them. If you delete an environment 
account connection that’s in use by an AWS Proton environment, AWS Proton won't be able 
to manage the environment infrastructure resources until a new environment connection is 
accepted for the environment account and named environment. You're responsible for cleaning up 
provisioned resources that remain without an environment connection.

Use the console or CLI to manage environment account connections

You can use the console or CLI to create and manage environment account connections.

Manage environment account connections 230



AWS Proton User Guide

AWS Management Console

Use the console to create an environment account connection and send a request to the 
management account as shown in the next steps.

1. Decide on a name for the environment that you plan to create in your management 
account or choose the name of an existing environment that requires an environment 
account connection.

2. In an environment account, in the AWS Proton console, choose Environment account 
connections in the navigation pane.

3. In the Environment account connections page, choose Request to connect.

Note

Verify the account ID that's listed in the Environment account connection page 
heading. Make sure that it matches the account ID of the environment account that 
you want your named environment to provision in.

4. In the Request to connect page:

a. In the Connect to management account section, enter the Management account ID
and the Environment name that you entered in step 1.

b. In the Environment role section, choose New service role and AWS Proton 
automatically creates a new role for you. Or, select Existing service role and the name 
of the service role that you created previously.

Note

The role that AWS Proton automatically creates for you has broad permissions. 
We recommend that you scope down the role to the permissions required to 
provision your environment infrastructure resources. For more information, see
AWS Proton service role for provisioning using AWS CloudFormation.

c. (Optional) In the Tags section, choose Add new tag to create a customer managed tag 
for your environment account connection.

d. Choose Request to connect.

Manage environment account connections 231

https://console.aws.amazon.com/proton/


AWS Proton User Guide

5. Your request shows as pending in the Environment connections sent to a management 
account table and a modal lets you know how to accept the request from the management 
account.

Accept or reject an environment account connection request.

1. In a management account, in the AWS Proton console, choose Environment account 
connections in the navigation pane.

2. In the Environment account connections page, in the Environment account connection 
requests table, choose the environment connection request to accept or reject.

Note

Verify the account ID that's listed in the Environment account connection page 
heading. Make sure that it matches the account ID of the management account 
that's associated with the environment account connection to reject. After you 
reject this environment account connection, you can’t accept or use the rejected 
environment account connection.

3. Choose Reject or Accept.

• If you selected Reject, the status changes from pending to rejected.

• If you selected Accept, the status changes from pending to connected.

Delete an environment account connection.

1. In an environment account, in the AWS Proton console, choose Environment account 
connections in the navigation pane.

Note

Verify the account ID that's listed in the Environment account connection page 
heading. Make sure that it matches the account ID of the management account 
that's associated with the environment account connection to reject. After you 
delete this environment account connection, AWS Proton can’t manage the 
environment infrastructure resources in the environment account. It can only 

Manage environment account connections 232

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/


AWS Proton User Guide

manage it after a new environment account connection for the environment 
account and named environment is accepted by the management account.

2. In the Environment account connections page, in the Sent requests to connect to 
management account section, choose Delete.

3. A modal prompts you to confirm that you want to delete. Choose Delete.

AWS CLI

Decide on a name for the environment that you plan to create in your management account or 
choose the name of an existing environment that requires an environment account connection.

Create an environment account connection in an environment account.

Run the following command:

$ aws proton create-environment-account-connection \ 
    --environment-name "simple-env-connected" \ 
    --role-arn "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role" \ 
    --management-account-id "111111111111"

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:13:50.847000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "PENDING" 
    }
}

Manage environment account connections 233



AWS Proton User Guide

Accept or reject an environment account connection in a management account as shown in 
the following command and response.

Note

If you reject this environment account connection, you won't be able to accept or use 
the rejected environment account connection.

If you specify Reject, the status changes from pending to rejected.

If you specify Accept, the status changes from pending to connected.

Run the following command to accept the environment account connection:

$ aws proton accept-environment-account-connection \ 
    --id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:15:33.486000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "CONNECTED" 
    }
}

Run the following command to reject the environment account connection:

$ aws proton reject-environment-account-connection \ 
    --id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Manage environment account connections 234



AWS Proton User Guide

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:us-east-1:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "status": "REJECTED", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-reject", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:13:50.847000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role" 
    }
}

View an environment account's connections. You can get or list environment account 
connections.

Run the following get command:

$ aws proton get-environment-account-connection \ 
    --id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:region-id:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:15:33.486000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "CONNECTED" 
    }

Manage environment account connections 235



AWS Proton User Guide

}

Delete an environment account connection in an environment account.

Note

If you delete this environment account connection, AWS Proton won't be able to 
manage the environment infrastructure resources in the environment account until 
a new environment connection has been accepted for the environment account and 
named environment. You're responsible for cleaning up provisioned resources that 
remain without an environment connection.

Run the following command:

$ aws proton delete-environment-account-connection \ 
    --id "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Response:

{ 
    "environmentAccountConnection": { 
        "arn": "arn:aws:proton:us-east-1:222222222222:environment-account-
connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "environmentAccountId": "222222222222", 
        "environmentName": "simple-env-connected", 
        "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "lastModifiedAt": "2021-04-28T23:13:50.847000+00:00", 
        "managementAccountId": "111111111111", 
        "requestedAt": "2021-04-28T23:13:50.847000+00:00", 
        "roleArn": "arn:aws:iam::222222222222:role/service-role/env-account-proton-
service-role", 
        "status": "CONNECTED" 
    }
}

Manage environment account connections 236



AWS Proton User Guide

Customer-managed environments

With customer-managed environments, you can use existing infrastructure, like a VPC, that 
you already have deployed as your AWS Proton environment. While using customer-managed 
environments, you can provision your own shared resources outside of AWS Proton. However, 
you can still allow AWS Proton to consume relevant provisioning outputs as inputs for AWS 
Proton services when they are deployed. If the outputs can change, AWS Proton is able to accept 
updates. AWS Proton is unable to change the environment directly, though, since the provisioning 
is managed outside of AWS Proton.

After the environment is created, you're responsible for providing the same outputs to AWS Proton 
that would have been created if AWS Proton had made the environment, such as Amazon ECS 
cluster names or Amazon VPC IDs.

With this functionality, you can deploy and update AWS Proton service resources from an AWS 
Proton service template to this environment. However, the environment itself isn't modified 
through template updates in AWS Proton. You're responsible for executing updates to the 
environment and updating those outputs in AWS Proton.

You can have multiple environments in a single account that are a mix of AWS Proton managed 
and customer-managed environments. You can also link a second account and use an AWS Proton 
template in the primary account to execute deployments and updates to environments and 
services in that second, linked account.

How to use customer-managed environments

The first thing administrators need to do is register an imported, customer-managed environment 
template. Don't supply manifests or infrastructure files in the template bundle. Only supply the 
schema.

The schema below outlines a list of outputs using the open API format and replicates the outputs 
from an AWS CloudFormation template.

Important

Only string inputs are allowed for the outputs.

The following example is a snippet of the output sections of an AWS CloudFormation template for 
a corresponding Fargate template.

Customer-managed 237



AWS Proton User Guide

Outputs: 
  ClusterName: 
    Description: The name of the ECS cluster 
    Value: !Ref 'ECSCluster' 
  ECSTaskExecutionRole: 
    Description: The ARN of the ECS role 
    Value: !GetAtt 'ECSTaskExecutionRole.Arn' 
  VpcId: 
    Description: The ID of the VPC that this stack is deployed in 
    Value: !Ref 'VPC'
[...]

The schema for the corresponding AWS Proton imported environment is similar to the following. 
Don't supply default values in the schema.

schema: 
  format: 
    openapi: "3.0.0" 
  environment_input_type: "EnvironmentOutput" 
  types: 
    EnvironmentOutput: 
      type: object 
      description: "Outputs of the environment" 
      properties: 
        ClusterName: 
          type: string 
          description: "The name of the ECS cluster" 
        ECSTaskExecutionRole: 
          type: string 
          description: "The ARN of the ECS role" 
        VpcId: 
          type: string 
          description: "The ID of the VPC that this stack is deployed in"
[...]

At the time of registering the template, you indicate that this template is imported and provides 
the Amazon S3 bucket location for the bundle. AWS Proton validates that the schema only 
contains environment_input_type and no AWS CloudFormation template parameters before 
putting the template in draft.

You provide the following to create an imported environment.

Using customer-managed environments 238



AWS Proton User Guide

• An IAM role to use when making deployments.

• A specification with the values for the required outputs.

You can provide both of these through either the console or the AWS CLI using a process similar to 
the deployment of a regular environment.

CodeBuild provisioning role creation

Infrastructure as a Code (IaaC) tools like AWS CloudFormation and Terraform require permissions 
for the many different types of AWS resources. For example, if an IaaC template declares an 
Amazon S3 bucket, it needs permissions to create, read, update, and delete Amazon S3 buckets. 
It's considered a security best practice to limit roles to the minimal permissions required. Given 
the breadth of AWS resources, it’s challenging to create least-privilege policies for IaaC templates, 
especially when the resources being managed by those templates can change later. For example, in 
your latest edits to a template being managed by AWS Proton, you add an RDS database resource.

Configuring the right permissions helps make deployments of your IaC smooth. AWS Proton 
CodeBuild Provisioning executes arbitrary customer-supplied CLI commands in a CodeBuild project 
located in the customer’s account. Typically, these commands create and delete infrastructure 
using an Infrastructure as Code (IaaC) tool such as AWS CDK. When an AWS resource deploys 
whose template uses CodeBuild Provisioning, AWS will start a build in a CodeBuild project 
managed by AWS. A role is passed to CodeBuild, which CodeBuild assumes to execute commands. 
This role, called the CodeBuild Provisioning Role, is provided by the customer and contains 
permissions required to provision infrastructure. It's meant to be assumed only by CodeBuild and 
even AWS Proton can't assume it.

Creating the role

The CodeBuild Provisioning role can be created in the IAM console or in the AWS CLI. To create it in 
the AWS CLI:

aws iam create-role --role-name AWSProtonCodeBuildProvisioning --assume-role-
policy-document '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"Service":"codebuild.amazonaws.com"},"Action":"sts:AssumeRole"}]}'
aws iam attach-role-policy --role-name AWSProtonCodeBuildProvisioning --policy-arn 
 arn:aws:iam::aws:policy/AWSProtonCodeBuildProvisioningBasicAccess

CodeBuild provisioning role creation 239



AWS Proton User Guide

This also attaches the AWSProtonCodeBuildProvisioningBasicAccess, which contains the 
minimal permissions needed by the CodeBuild service to run a build.

If you prefer to use the console, please ensure the following when you create the role:

1. For trusted entity, select AWS service and then select CodeBuild.

2. In the Add permissions step, select AWSProtonCodeBuildProvisioningBasicAccess and 
any other policies you want to attach.

Administrator Access

If you attach the AdministratorAccess policy to the CodeBuild Provisioning Role, it will 
guarantee that any IaaC template won't fail due to lack of permissions. It also means that anyone 
who can create an Environment Template or Service Template can perform administrator-
level actions, even if that user isn't an administrator. AWS Proton doesn't recommend 
using AdministatorAccess with the CodeBuild Provisioning Role. If you decide to use
AdministratorAccess with the CodeBuild Provisioning Role, do so in a sandbox environment.

You can create a role with AdministratorAccess in the IAM console or by executing this 
command:

aws iam create-role --role-name AWSProtonCodeBuildProvisioning --assume-role-
policy-document '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"Service":"codebuild.amazonaws.com"},"Action":"sts:AssumeRole"}]}'
aws iam attach-role-policy --role-name AWSProtonCodeBuildProvisioning --policy-arn 
 arn:aws:iam::aws:policy/AdministratorAccess

Creating a Minimally-Scoped Role

If you want to create a role with minimum permissions, there are multiple approaches:

• Deploy with admin permissions, then scope down the role. We recommend using IAM Access 
Analyzer.

• Use managed policies to give access to the services you plan on using.

AWS CDK

CodeBuild provisioning role creation 240

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html


AWS Proton User Guide

If you're using AWS CDK with AWS Proton, and you’ve run cdk bootstrap on each environment 
account/Region, then there already exists a role for cdk deploy. In this case, attach the following 
policy to the CodeBuild Provisioning Role:

{ 
    "Action": "sts:AssumeRole", 
    "Resource": [ 
        "arn:aws:iam::account-id:role/cdk-*-deploy-role-*", 
        "arn:aws:iam::account-id:role/cdk-*-file-publishing-role-*" 
    ], 
    "Effect": "Allow"
}

Custom VPC

If you decide to run CodeBuild in a custom VPC, you’ll need the following permissions in your 
CodeBuild role:

{ 
    "Effect": "Allow", 
    "Action": [ 
        "ec2:CreateNetworkInterface" 
    ], 
    "Resource": [ 
        "arn:aws:ec2:region:account-id:network-interface/*", 
        "arn:aws:ec2:region:account-id:subnet/*", 
        "arn:aws:ec2:region:account-id:security-group/*" 
    ]
},
{ 
    "Effect": "Allow", 
    "Action": [ 
        "ec2:DeleteNetworkInterface" 
    ], 
    "Resource": [ 
        "arn:aws:ec2:region:account-id:*/*" 
    ]
},
{ 
    "Effect": "Allow", 
    "Action": [ 
        "ec2:DescribeDhcpOptions", 
        "ec2:DescribeNetworkInterfaces", 

CodeBuild provisioning role creation 241

https://docs.aws.amazon.com/proton/latest/userguide/vpc-codebuild-custom-support.html


AWS Proton User Guide

        "ec2:DescribeSubnets", 
        "ec2:DescribeSecurityGroups", 
        "ec2:DescribeVpcs" 
    ], 
    "Resource": "*"
},
{ 
    "Effect": "Allow", 
    "Action": [ 
        "ec2:CreateNetworkInterfacePermission" 
    ], 
    "Resource": "arn:aws:ec2:region:account-id:network-interface/*", 
    "Condition": { 
        "StringEquals": { 
            "ec2:AuthorizedService": "codebuild.amazonaws.com" 
        } 
    }
}

You could also use the AmazonEC2FullAccess managed policy, although that includes 
permissions that you may not need. To attach the managed policy using the CLI:

aws iam create-role --role-name AWSProtonCodeBuildProvisioning --assume-role-
policy-document '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"Service":"codebuild.amazonaws.com"},"Action":"sts:AssumeRole"}]}'
aws iam attach-role-policy --role-name AWSProtonCodeBuildProvisioning --policy-arn 
 arn:aws:iam::aws:policy/AdministratorAccess

CodeBuild provisioning role creation 242

https://us-east-1.console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess


AWS Proton User Guide

AWS Proton services

An AWS Proton service is an instantiation of a service template, normally including several service 
instances and a pipeline. An AWS Proton service instance is an instantiation of a service template 
in a specific environment. A service template is a complete definition of the infrastructure and 
optional service pipeline for an AWS Proton service.

After you deploy your service instances, you can update them by source code pushes that prompt 
the CI/CD pipeline or by updating the service to new versions of its service template. AWS Proton 
prompts you when new versions of its service template become available so you can update your 
services to a new version. When your service is updated, AWS Proton re-deploys the service and 
service instances.

This chapter shows how to manage services by using create, view, update and delete operations. 
For additional information, see the The AWS Proton Service API Reference.

Topics

• Create a service

• View service data

• Edit a service

• Delete a service

• View service instance data

• Update a service instance

• Update a service pipeline

Create a service

To deploy an application with AWS Proton, as a developer, you create a service and provide the 
following inputs.

1. The name of an AWS Proton service template that's published by the platform team.

2. A name for the service.

3. The number of service instances that you want to deploy.

4. A selection of environments that you want to use.

Create 243

https://docs.aws.amazon.com/proton/latest/APIReference/Welcome.html


AWS Proton User Guide

5. A connection to your code repository if you're using a service template that includes a service 
pipeline (optional).

What's in a service?

When you create an AWS Proton service, you can choose from two different types of service 
templates:

• A service template that includes a service pipeline (default).

• A service template that doesn't include a service pipeline.

You must create at least one service instance when you create your service.

A service instance and optional pipeline are associated with a service. You can only create or delete 
a pipeline within the context of service create and delete actions. To learn how to add and remove 
instances from a service, see Edit a service.

Note

Your environment is configured for either AWS- or self-managed provisioning. AWS 
Proton provisions services in an environment using the same provisioning method as the 
environment uses. The developer creating or updating service instances doesn't see the 
difference and their experience is the same in both case.
For more information about provisioning methods, see the section called “Provisioning 
methods”.

Service templates

Both major and minor versions of service templates are available. When you use the console, you 
select the latest Recommended major and minor version of the service template. When you use the 
AWS CLI and you specify only the major version of the service template, you implicitly specify its 
latest Recommended minor version.

The following describes the difference between major and minor template versions and their use.

What's in a service? 244



AWS Proton User Guide

• New versions of a template become Recommended as soon as they're approved by a member 
of the platform team. This means that new services are created using that version, and you're 
prompted to update existing services to the new version.

• Through AWS Proton, the platform team can automatically update service instances to a new 
minor version of a service template. Minor versions must be backward compatible.

• Because major versions require you to provide new inputs as part of the update process, you 
need to update your service to a major version of its service template. Major versions aren't
backward compatible.

Create a service

The following procedures show how to use the AWS Proton console or AWS CLI to create a service 
with or without a service pipeline.

AWS Management Console

Create a service as shown in the following console steps.

1. In the AWS Proton console, choose Services.

2. Choose Create service.

3. In the Choose a service template page, select a template and choose Configure.

When you don't want to use an enabled pipeline, choose a template marked with Excludes 
pipeline for your service.

4. In the Configure service page, in the Service settings section, enter an Service name.

5. (Optional) Enter a description for the service.

6. In the Service repository settings section:

a. For CodeStar Connection, choose your connection from the list.

b. For Repository ID, choose the name of your source code repository from the list.

c. For Branch name, choose the name of your source code repository branch from the 
list.

7. (Optional) In the Tags section, choose Add new tag and enter a key and value to create a 
customer managed tag.

8. Choose Next.

Create a service 245

https://console.aws.amazon.com/proton/


AWS Proton User Guide

9. In the Configure custom settings page, in the Service instances section, in the New 
instance section. You must enter values for the required parameters. You can enter 
values for the optional parameters or use the defaults when given.

10. In the Pipeline inputs section, you must enter values for the required parameters. You 
can enter values for the optional parameters or use the defaults when given.

11. Choose Next and review your inputs.

12. Choose Create.

View the service details and status, as well as the AWS managed tags and customer 
managed tags for your service.

13. In the navigation pane, choose Services.

A new page displays a list of your services along with the status and other service details.

AWS CLI

When you use the AWS CLI, you specify service inputs in a YAML formatted spec file, .aws-
proton/service.yaml, located in your source code directory.

You can use the CLI get-service-template-minor-version command to view the schema 
required and optional parameters that you provide values for in your spec file.

If you want to use a service template that has pipelineProvisioning: 
"CUSTOMER_MANAGED", don’t include the pipeline: section in your spec and don’t include -
repository-connection-arn, -repository-id, and -branch-name parameters in your
create-service command.

Create a service with a service pipeline as shown in the following CLI steps.

1. Set up the service role for the pipeline as shown in the following CLI example 
command.

Command:

$ aws proton update-account-settings \ 
        --pipeline-service-role-arn 
 "arn:aws:iam::123456789012:role/AWSProtonServiceRole"

Create a service 246



AWS Proton User Guide

2. The following listing shows an example spec, based on the service template schema, that 
includes the service pipeline and instance inputs.

Spec:

proton: ServiceSpec

pipeline: 
  my_sample_pipeline_required_input: "hello" 
  my_sample_pipeline_optional_input: "bye"

instances: 
  - name: "acme-network-dev" 
    environment: "ENV_NAME" 
    spec: 
      my_sample_service_instance_required_input: "hi" 
      my_sample_service_instance_optional_input: "ho"

Create a service with a pipeline as shown in the following CLI example command and 
response.

Command:

$ aws proton create-service \ 
        --name "MySimpleService" \ 
        --branch-name "mainline" \ 
        --template-major-version "1" \ 
        --template-name "fargate-service" \ 
        --repository-connection-arn "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111" \ 
        --repository-id "myorg/myapp" \ 
        --spec "file://spec.yaml"

Response:

{ 
    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService", 
        "createdAt": "2020-11-18T19:50:27.460000+00:00", 
        "lastModifiedAt": "2020-11-18T19:50:27.460000+00:00", 
        "name": "MySimpleService", 

Create a service 247



AWS Proton User Guide

        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "repositoryId": "myorg/myapp", 
        "status": "CREATE_IN_PROGRESS", 
        "templateName": "fargate-service" 
    }
}

Create a service without a service pipeline as shown in the following CLI example command 
and response.

The following shows an example spec that doesn't include service pipeline inputs.

Spec:

proton: ServiceSpec

instances: 
  - name: "acme-network-dev" 
    environment: "ENV_NAME" 
    spec: 
      my_sample_service_instance_required_input: "hi" 
      my_sample_service_instance_optional_input: "ho"

To create a service without a provisioned service pipeline, you provide the path to a
spec.yaml and you don't include repository parameters as shown in the following CLI 
example command and response.

Command:

$ aws proton create-service \ 
        --name "MySimpleServiceNoPipeline" \ 
        --template-major-version "1" \ 
        --template-name "fargate-service" \ 
        --spec "file://spec-no-pipeline.yaml"

Response:

{ 
    "service": { 

Create a service 248



AWS Proton User Guide

        "arn": "arn:aws:proton:region-id:123456789012:service/
MySimpleServiceNoPipeline", 
        "createdAt": "2020-11-18T19:50:27.460000+00:00", 
        "lastModifiedAt": "2020-11-18T19:50:27.460000+00:00", 
        "name": "MySimpleServiceNoPipeline", 
        "status": "CREATE_IN_PROGRESS", 
        "templateName": "fargate-service-no-pipeline" 
    }
}

View service data

You can view and list service detail data using the AWS Proton console or the AWS CLI.

AWS Management Console

List and view service details using the AWS Proton console as shown in the following steps.

1. To view a list of your services, choose Services in the navigation pane.

2. To view detail data, choose the name of a service.

View your service detail data.

AWS CLI

View the details of a service with a service pipeline as shown in the following CLI example 
command and response.

Command:

$ aws proton get-service \ 
    --name "simple-svc"

Response:

{ 
    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc", 
        "branchName": "mainline", 

View 249

https://console.aws.amazon.com/proton/


AWS Proton User Guide

        "createdAt": "2020-11-28T22:40:50.512000+00:00", 
        "lastModifiedAt": "2020-11-28T22:44:51.207000+00:00", 
        "name": "simple-svc", 
        "pipeline": { 
            "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/
pipeline/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
            "createdAt": "2020-11-28T22:40:50.512000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "lastDeploymentAttemptedAt": "2020-11-28T22:40:50.512000+00:00", 
            "lastDeploymentSucceededAt": "2020-11-28T22:40:50.512000+00:00", 
            "spec": "proton: ServiceSpec\npipeline:\n  
 my_sample_pipeline_required_input: hello\n  my_sample_pipeline_optional_input: 
 bye\ninstances:\n- name: instance-svc-simple\n  environment: my-simple-
env\n  spec:\n    my_sample_service_instance_required_input: hi\n    
 my_sample_service_instance_optional_input: ho\n", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "1", 
            "templateName": "svc-simple" 
        }, 
        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE22222", 
        "repositoryId": "myorg/myapp", 
        "spec": "proton: ServiceSpec\npipeline:\n  
 my_sample_pipeline_required_input: hello\n  my_sample_pipeline_optional_input: 
 bye\ninstances:\n- name: instance-svc-simple\n  environment: my-simple-
env\n  spec:\n    my_sample_service_instance_required_input: hi\n    
 my_sample_service_instance_optional_input: ho\n", 
        "status": "ACTIVE", 
        "templateName": "svc-simple" 
    }
}

View the details of a service without a service pipeline as shown in the following CLI 
example command and response.

Command:

$ aws proton get-service \ 
    --name "simple-svc-no-pipeline"

Response:

{ 

View 250



AWS Proton User Guide

    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc-without-
pipeline", 
        "createdAt": "2020-11-28T22:40:50.512000+00:00", 
        "lastModifiedAt": "2020-11-28T22:44:51.207000+00:00", 
        "name": "simple-svc-without-pipeline", 
        "spec": "proton: ServiceSpec\ninstances:\n- name: instance-svc-simple\n  
 environment: my-simple-env\n  spec:\n    my_sample_service_instance_required_input: 
 hi\n    my_sample_service_instance_optional_input: ho\n", 
        "status": "ACTIVE", 
        "templateName": "svc-simple-no-pipeline" 
    }
}

Edit a service

You can make the following edits to an AWS Proton service.

• Edit the service description.

• Edit a service by adding and removing service instances.

Edit service description

You can use the console or the AWS CLI to edit a service description.

AWS Management Console

Edit a service using the console as described in the following steps.

In the list of services.

1. In the AWS Proton console, choose Services.

2. In the list of services, choose the radio button to the left of the service that you want to 
update.

3. Choose Edit.

4. In the Configure service page, fill out the form and choose Next.

5. In the Configure custom settings page, choose Next.

6. Review your edits and choose Save changes.

Edit 251

https://console.aws.amazon.com/proton/


AWS Proton User Guide

In the service detail page.

1. In the AWS Proton console, choose Services.

2. In the list of services, choose the name of the service that you want to edit.

3. In the service detail page, choose Edit.

4. In the Configure service page, fill out the form and choose Next.

5. In the Configure custom settings page, fill out the form and choose Next.

6. Review your edits and choose Save changes.

AWS CLI

Edit a description as shown in the following CLI example command and response.

Command:

$ aws proton update-service \ 
    --name "MySimpleService" \ 
    --description "Edit by updating description"

Response:

{ 
    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService", 
        "branchName": "main", 
        "createdAt": "2021-03-12T22:39:42.318000+00:00", 
        "description": "Edit by updating description", 
        "lastModifiedAt": "2021-03-12T22:44:21.975000+00:00", 
        "name": "MySimpleService", 
        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "repositoryId": "my-repository/myorg-myapp", 
        "status": "ACTIVE", 
        "templateName": "fargate-service" 
    }
}

Edit service description 252

https://console.aws.amazon.com/proton/


AWS Proton User Guide

Edit a service to add or remove service instances

For an AWS Proton service, you can add or delete service instances by submitting an edited spec. 
The following conditions must be met for a successful request:

• Your service and pipeline aren't already being edited or deleted when you submit the edit 
request.

• Your edited spec doesn't include edits that modify the service pipeline or edits to existing service 
instances that aren't to be deleted.

• Your edited spec doesn't remove any existing service instance that has an attached component. 
To delete such a service instance, you should first update the component to detach it from its 
service instance. For more information about components, see Components.

Deletion-failed instances are service instances in the DELETE_FAILED state. When you request a 
service edit, AWS Proton attempts to remove the deletion-failed instances for you, as part of the 
edit process. If any of your service instances failed to delete, there might still be resources that are 
associated with the instances, even though they aren't visible from the console or AWS CLI. Check 
your deletion-failed instance infrastructure resources and clean them up so that AWS Proton can 
remove them for you.

For the quota of service instances for a service, see AWS Proton quotas. You also must maintain 
at least 1 service instance for your service after it's created. During the update process, AWS 
Proton makes a count of the existing service instances and the instances to be added or removed. 
Deletion-failed instances are included in this count and you must account for them when you edit 
your spec.

Use the console or AWS CLI to add or remove service instances

AWS Management Console

Edit your service to add or remove service instances using the console.

In the AWS Proton console

1. In the navigation pane, choose Services.

2. Select the service that you want to edit.

3. Choose Edit.

Add or remove service instances 253

https://console.aws.amazon.com/proton/


AWS Proton User Guide

4. (Optional) On the Configure service page, edit the service name or description, and then 
choose Next.

5. On the Configure custom settings page, choose Delete to delete a service instance and 
choose Add new instance to add a service instance and fill out the form.

6. Choose Next.

7. Review your update and choose Save changes.

8. A modal asks you to verify deletion of service instances. Follow the instructions and choose
Yes, delete.

9. On the service detail page, view the status details for your service.

AWS CLI

Add and delete service instances with an edited spec as shown in the following AWS CLI 
example commands and responses.

When you use the CLI, your spec must exclude the service instances to delete and include both 
the service instances to add and the existing service instances that you haven't marked for 
deletion.

The following listing shows the example spec before the edit and a list of the service instances 
deployed by the spec. This spec was used in the previous example for editing a service 
description.

Spec:

proton: ServiceSpec

pipeline: 
  my_sample_pipeline_optional_input: "abc" 
  my_sample_pipeline_required_input: "123"

instances: 
  - name: "my-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_optional_input: "def" 
      my_sample_service_instance_required_input: "456" 
  - name: "my-other-instance" 
    environment: "simple-env" 

Add or remove service instances 254



AWS Proton User Guide

    spec: 
      my_sample_service_instance_required_input: "789"

The following example CLI list-service-instances command and response shows the 
active instances prior to adding or deleting a service instance.

Command:

$ aws proton list-service-instances \ 
    --service-name "MySimpleService"

Response:

{ 
    "serviceInstances": [ 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/
service-instance/my-other-instance", 
            "createdAt": "2021-03-12T22:39:42.318000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "environmentName": "simple-env", 
            "lastDeploymentAttemptedAt": "2021-03-12T22:39:43.109000+00:00", 
            "lastDeploymentSucceededAt": "2021-03-12T22:39:43.109000+00:00", 
            "name": "my-other-instance", 
            "serviceName": "example-svc", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "0", 
            "templateName": "fargate-service" 
        }, 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/
service-instance/my-instance", 
            "createdAt": "2021-03-12T22:39:42.318000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "environmentName": "simple-env", 
            "lastDeploymentAttemptedAt": "2021-03-12T22:39:43.160000+00:00", 
            "lastDeploymentSucceededAt": "2021-03-12T22:39:43.160000+00:00", 
            "name": "my-instance", 
            "serviceName": "example-svc", 
            "serviceTemplateArn": "arn:aws:proton:region-id:123456789012:service-
template/fargate-service", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "0", 

Add or remove service instances 255



AWS Proton User Guide

            "templateName": "fargate-service" 
        } 
    ]
}

The following listing shows the example edited spec used to delete and add an instance. The 
existing instance named my-instance is removed and a new instance named yet-another-
instance is added.

Spec:

proton: ServiceSpec

pipeline: 
  my_sample_pipeline_optional_input: "abc" 
  my_sample_pipeline_required_input: "123"

instances: 
  - name: "my-other-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_required_input: "789" 
  - name: "yet-another-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_required_input: "789"

You can use "${Proton::CURRENT_VAL}" to indicate which parameter values to preserve 
from the original spec, if the values exist in the spec. Use get-service to view the original
spec for a service, as described in View service data.

The following listing shows how you can use "${Proton::CURRENT_VAL}" to ensure that 
your spec doesn't include parameter values changes for the existing services instances to 
remain.

Spec:

proton: ServiceSpec

pipeline: 
  my_sample_pipeline_optional_input: "${Proton::CURRENT_VAL}" 

Add or remove service instances 256



AWS Proton User Guide

  my_sample_pipeline_required_input: "${Proton::CURRENT_VAL}"

instances: 
  - name: "my-other-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_required_input: "${Proton::CURRENT_VAL}" 
  - name: "yet-another-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_required_input: "789"

The next listing shows the CLI command and response to edit the service.

Command:

$ aws proton update-service  
    --name "MySimpleService" \ 
    --description "Edit by adding and deleting a service instance" \ 
    --spec "file://spec.yaml"

Response:

{ 
    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService", 
        "branchName": "main", 
        "createdAt": "2021-03-12T22:39:42.318000+00:00", 
        "description": "Edit by adding and deleting a service instance", 
        "lastModifiedAt": "2021-03-12T22:55:48.169000+00:00", 
        "name": "MySimpleService", 
        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "repositoryId": "my-repository/myorg-myapp", 
        "status": "UPDATE_IN_PROGRESS", 
        "templateName": "fargate-service" 
    }
}

The following list-service-instances command and response confirms that the existing 
instance named my-instance is removed and a new instance named yet-another-
instance is added.

Add or remove service instances 257



AWS Proton User Guide

Command:

$ aws proton list-service-instances \ 
    --service-name "MySimpleService"

Response:

{ 
    "serviceInstances": [ 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/
service-instance/yet-another-instance", 
            "createdAt": "2021-03-12T22:39:42.318000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "environmentName": "simple-env", 
            "lastDeploymentAttemptedAt": "2021-03-12T22:56:01.565000+00:00", 
            "lastDeploymentSucceededAt": "2021-03-12T22:56:01.565000+00:00", 
            "name": "yet-another-instance", 
            "serviceName": "MySimpleService", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "0", 
            "templateName": "fargate-service" 
        }, 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:service/MySimpleService/
service-instance/my-other-instance", 
            "createdAt": "2021-03-12T22:39:42.318000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "environmentName": "simple-env", 
            "lastDeploymentAttemptedAt": "2021-03-12T22:39:43.109000+00:00", 
            "lastDeploymentSucceededAt": "2021-03-12T22:39:43.109000+00:00", 
            "name": "my-other-instance", 
            "serviceName": "MySimpleService", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "0", 
            "templateName": "fargate-service" 
        } 
    ]
}

Add or remove service instances 258



AWS Proton User Guide

What happens when you add or remove service instances

After you submit a service edit to delete and add service instances, AWS Proton takes the following 
actions.

• Sets the service to UPDATE_IN_PROGRESS.

• If the service has a pipeline, sets its status to IN_PROGRESS and blocks pipeline actions.

• Sets any service instances that are to be deleted to DELETE_IN_PROGRESS.

• Blocks service actions.

• Blocks actions on service instances that are marked for deletion.

• Creates new service instances.

• Deletes instances that you listed for deletion.

• Attempts to remove deletion-failed instances.

• After additions and deletions are complete, re-provisions the service pipeline (if there is one), 
sets your service to ACTIVE and enables service and pipeline actions.

AWS Proton attempts to re-mediate failure modes as follows.

• If one or more service instances failed to be created, AWS Proton tries to de-provision all of the 
newly created service instances and reverts the spec to the previous state. It doesn't delete any 
service instances and it doesn't modify the pipeline in any way.

• If one or more service instances failed to be deleted, AWS Proton re-provisions the pipeline 
without the deleted instances. The spec is updated to include the added instances and to 
exclude the instances that were marked for deletion.

• If the pipeline fails provisioning, a rollback isn't attempted and both the service and pipeline 
reflect a failed update state.

Tagging and service edits

When you add service instances as part of your service edit, AWS managed tags propagate to and 
are automatically created for the new instances and provisioned resources. If you create new tags, 
those tags are only applied to the new instances. Existing service customer managed tags also 
propagate to the new instances. For more information, see AWS Proton resources and tagging.

Add or remove service instances 259



AWS Proton User Guide

Delete a service

You can delete an AWS Proton service, with its instances and pipeline, by using the AWS Proton 
console or the AWS CLI.

You can't delete a service that has any service instance with an attached component. To delete 
such a service, you should first update all attached components to detach them from their service 
instances. For more information about components, see Components.

AWS Management Console

Delete a service using the console as described in the following steps.

In the service detail page.

1. In the AWS Proton console, choose Services.

2. In the list of services, choose the name of the service that you want to delete.

3. On the service detail page, choose Actions and then Delete.

4. A modal prompts you to confirm the delete action.

5. Follow the instructions and choose Yes, delete.

AWS CLI

Delete a service as shown in the following CLI example command and response.

Command:

$ aws proton delete-service \ 
    --name "simple-svc"

Response:

{ 
    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc", 
        "branchName": "mainline", 
        "createdAt": "2020-11-28T22:40:50.512000+00:00", 
        "description": "Edit by updating description", 
        "lastModifiedAt": "2020-11-29T00:30:39.248000+00:00", 
        "name": "simple-svc", 

Delete 260

https://console.aws.amazon.com/proton/


AWS Proton User Guide

        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "repositoryId": "myorg/myapp", 
        "status": "DELETE_IN_PROGRESS", 
        "templateName": "fargate-service" 
    }
}

View service instance data

Learn to view AWS Proton service instance detail data. You can use the console or the AWS CLI.

A service instance belongs to a service. You can only create or delete an instance within the context 
of service edit, create and delete actions. To learn how to add and remove instances from a service, 
see Edit a service.

AWS Management Console

List and view service instance details using the AWS Proton console as shown in the 
following steps.

1. To view a list of your service instances, choose Services instances in the navigation pane.

2. To view detail data, choose the name of a service instance.

View your service instance detail data.

AWS CLI

List and view service instance details as shown in the following CLI example commands and 
responses.

Command:

$ aws proton list-service-instances

Response:

{ 
    "serviceInstances": [ 

View instances 261

https://console.aws.amazon.com/proton/


AWS Proton User Guide

        { 
            "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/
service-instance/instance-one", 
            "createdAt": "2020-11-28T22:40:50.512000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "environmentArn": "arn:aws:proton:region-id:123456789012:environment/
simple-env", 
            "lastDeploymentAttemptedAt": "2020-11-28T22:40:50.512000+00:00", 
            "lastDeploymentSucceededAt": "2020-11-28T22:40:50.512000+00:00", 
            "name": "instance-one", 
            "serviceName": "simple-svc", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "0", 
            "templateName": "fargate-service" 
        } 
    ]
}

Command:

$ aws proton get-service-instance \ 
    --name "instance-one" \ 
    --service-name "simple-svc"

Response:

{ 
    "serviceInstance": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one", 
        "createdAt": "2020-11-28T22:40:50.512000+00:00", 
        "deploymentStatus": "SUCCEEDED", 
        "environmentName": "simple-env", 
        "lastDeploymentAttemptedAt": "2020-11-28T22:40:50.512000+00:00", 
        "lastDeploymentSucceededAt": "2020-11-28T22:40:50.512000+00:00", 
        "name": "instance-one", 
        "serviceName": "simple-svc", 
        "spec": "proton: ServiceSpec\npipeline:\n  
 my_sample_pipeline_optional_input: hello world\n  
 my_sample_pipeline_required_input: pipeline up\ninstances:\n- name: instance-one\n  
 environment: my-simple-env\n  spec:\n    my_sample_service_instance_optional_input: 
 Ola\n    my_sample_service_instance_required_input: Ciao\n", 
        "templateMajorVersion": "1", 

View instances 262



AWS Proton User Guide

        "templateMinorVersion": "0", 
        "templateName": "svc-simple" 
    }
}

Update a service instance

Learn to update an AWS Proton service instance and cancel the update.

A service instance belongs to a service. You can only create or delete an instance within the context 
of service edit, create and delete actions. To learn how to add and remove instances from a service, 
see Edit a service.

There are four modes for updating a service instance as described in the following list. When using 
the AWS CLI, the deployment-type field defines the mode. When using the console, these modes 
map to the Edit and the Update to latest minor version and Update to latest major version
actions that drop down from Actions in the service instance detail page.

NONE

In this mode, a deployment doesn't occur. Only the requested metadata parameters are 
updated.

CURRENT_VERSION

In this mode, the service instance is deployed and updated with the new spec that you provide. 
Only requested parameters are updated. Don’t include minor or major version parameters when 
you use this deployment-type.

MINOR_VERSION

In this mode, the service instance is deployed and updated with the published, recommended 
(latest) minor version of the current major version in use by default. You can also specify a 
different minor version of the current major version in use.

MAJOR_VERSION

In this mode, the service instance is deployed and updated with the published, recommended 
(latest) major and minor version of the current template by default. You can also specify 

Update instance 263



AWS Proton User Guide

a different major version that is higher than the major version in use and a minor version 
(optional).

You can attempt to cancel a service instance update deployment if the deploymentStatus is
IN_PROGRESS. AWS Proton attempts to cancel the deployment. Successful cancellation isn’t
guaranteed.

When you cancel an update deployment, AWS Proton attempts to cancel the deployment as listed 
in the following steps.

• Sets the deployment state to CANCELLING.

• Stops the deployment in process and deletes any new resources that were created by the 
deployment when IN_PROGRESS.

• Sets the deployment state to CANCELLED.

• Reverts the state of the resource to what it was before the deployment was started.

For more information on cancelling a service instance deployment, see
CancelServiceInstanceDeployment in the AWS Proton API Reference.

Use the console or AWS CLI to make updates or cancel update deployments.

AWS Management Console

Update a service instance using the console by following these steps.

1. In the AWS Proton console, choose Service instances in the navigation pane.

2. In the list of service instances, choose the name of the service instance that you want to 
update.

3. Choose Actions and then choose one of the update options, Edit to update spec or Actions
and then Update to latest minor version, or Update to latest major version.

4. Fill out each form and choose Next until you reach the Review page.

5. Review your edits and choose Update.

AWS CLI

Update a service instance to a new minor version as shown in the CLI example commands 
and responses.

Update instance 264

https://docs.aws.amazon.com/proton/latest/APIReference/API_CancelServiceInstanceDeployment.html
https://console.aws.amazon.com/proton/


AWS Proton User Guide

When you update your service instance with a modified spec, you can use
"${Proton::CURRENT_VAL}" to indicate which parameter values to preserve from the 
original spec, if the values exist in the spec. Use get-service to view the original spec for a 
service instance, as described in View service data.

The following example shows how you can use "${Proton::CURRENT_VAL}" in a spec.

Spec:

proton: ServiceSpec

pipeline: 
  my_sample_pipeline_optional_input: "${Proton::CURRENT_VAL}" 
  my_sample_pipeline_required_input: "${Proton::CURRENT_VAL}"

instances: 
  - name: "my-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_optional_input: "${Proton::CURRENT_VAL}" 
      my_sample_service_instance_required_input: "${Proton::CURRENT_VAL}" 
  - name: "my-other-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_required_input: "789"

Command: to update

$ aws proton update-service-instance \ 
    --name "instance-one" \ 
    --service-name "simple-svc" \ 
    --spec "file://service-spec.yaml" \ 
    --template-major-version "1" \ 
    --template-minor-version "1" \ 
    --deployment-type "MINOR_VERSION"

Response:

{ 
    "serviceInstance": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one", 

Update instance 265



AWS Proton User Guide

        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "deploymentStatus": "IN_PROGRESS", 
        "environmentName": "arn:aws:proton:region-id:123456789012:environment/
simple-env", 
        "lastDeploymentAttemptedAt": "2021-04-02T21:38:00.823000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T21:29:59.962000+00:00", 
        "name": "instance-one", 
        "serviceName": "simple-svc", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "0", 
        "templateName": "svc-simple" 
    }
}

Command: to get and confirm status

$ aws proton get-service-instance \ 
    --name "instance-one" \ 
    --service-name "simple-svc"

Response:

{ 
    "serviceInstance": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "deploymentStatus": "SUCCEEDED", 
        "environmentName": "simple-env", 
        "lastDeploymentAttemptedAt": "2021-04-02T21:38:00.823000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T21:38:00.823000+00:00", 
        "name": "instance-one", 
        "serviceName": "simple-svc", 
        "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"instance-one\"\n    environment: \"simple-
env\"\n    spec:\n      my_sample_service_instance_optional_input: \"def\"\n 
      my_sample_service_instance_required_input: \"456\"\n  - name: \"my-
other-instance\"\n    environment: \"kls-simple-env\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "svc-simple" 

Update instance 266



AWS Proton User Guide

    }
}

AWS Management Console

Cancel a service instance deployment using the console as shown in the following steps.

1. In the AWS Proton console, choose Service instances in the navigation pane.

2. In the list of service instances, choose the name of the service instance with the 
deployment update that you want to cancel.

3. If your update deployment status is In progress, in the service instance detail page, choose
Actions and then Cancel deployment.

4. A modal asks you to confirm the cancellation. Choose Cancel deployment.

5. Your update deployment status is set to Cancelling and then Cancelled to complete the 
cancellation.

AWS CLI

Cancel an IN_PROGRESS service instance deployment update to new minor version 2 as 
shown in the following CLI example commands and responses.

A wait condition is included in the template used for this example so that the cancellation starts 
before the update deployment succeeds.

Command: to cancel

$ aws proton cancel-service-instance-deployment \ 
    --service-instance-name "instance-one" \ 
    --service-name "simple-svc"

Response:

{ 
    "serviceInstance": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "deploymentStatus": "CANCELLING", 

Update instance 267

https://console.aws.amazon.com/proton/


AWS Proton User Guide

        "environmentName": "simple-env", 
        "lastDeploymentAttemptedAt": "2021-04-02T21:45:15.406000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T21:38:00.823000+00:00", 
        "name": "instance-one", 
        "serviceName": "simple-svc", 
        "spec": "proton: ServiceSpec\npipeline:\n  
 my_sample_pipeline_optional_input: abc\n  my_sample_pipeline_required_input: 
 '123'\ninstances:\n- name: my-instance\n  environment: MySimpleEnv
\n  spec:\n    my_sample_service_instance_optional_input: def\n    
 my_sample_service_instance_required_input: '456'\n- name: my-other-instance\n  
 environment: MySimpleEnv\n  spec:\n    my_sample_service_instance_required_input: 
 '789'\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "svc-simple" 
    }
}

Command: to get and confirm status

$ aws proton get-service-instance \ 
    --name "instance-one" \ 
    --service-name "simple-svc"

Response:

{ 
    "serviceInstance": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/service-
instance/instance-one", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "deploymentStatus": "CANCELLED", 
        "deploymentStatusMessage": "User initiated cancellation.", 
        "environmentName": "simple-env", 
        "lastDeploymentAttemptedAt": "2021-04-02T21:45:15.406000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T21:38:00.823000+00:00", 
        "name": "instance-one", 
        "serviceName": "simple-svc", 
        "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"instance-one\"\n    environment: \"simple-
env\"\n    spec:\n      my_sample_service_instance_optional_input: \"def\"\n 
      my_sample_service_instance_required_input: \"456\"\n  - name: \"my-

Update instance 268



AWS Proton User Guide

other-instance\"\n    environment: \"kls-simple-env\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "svc-simple" 
    }
}

Update a service pipeline

Learn to update an AWS Proton service pipeline and cancel the update.

A service pipeline belongs to a service. You can only create or delete a pipeline within the context 
of service create and delete actions.

There are four modes for updating a service pipeline as described in the following list. When using 
the AWS CLI, the deployment-type field defines the mode. When you use the console, these 
modes map to the Edit pipeline and Update to recommended version.

NONE

In this mode, a deployment doesn't occur. Only the requested metadata parameters are 
updated.

CURRENT_VERSION

In this mode, the service pipeline is deployed and updated with the new spec that you provide. 
Only requested parameters are updated. Don’t include minor or major version parameters when 
you use this deployment-type.

MINOR_VERSION

In this mode, the service pipeline is deployed and updated with the published, recommended 
(latest) minor version of the current major version in use by default. You can also specify a 
different minor version of the current major version in use.

MAJOR_VERSION

In this mode, the service pipeline is deployed and updated with the published, recommended 
(latest) major and minor version of the current template by default. You can also specify 

Update pipeline 269



AWS Proton User Guide

a different major version that is higher than the major version in use and a minor version 
(optional).

You can attempt to cancel a service pipeline update deployment if the deploymentStatus is
IN_PROGRESS. AWS Proton attempts to cancel the deployment. Successful cancellation isn’t 
guaranteed.

When you cancel an update deployment, AWS Proton attempts to cancel the deployment as listed 
in the following steps.

• Sets the deployment state to CANCELLING.

• Stops the deployment in process and deletes any new resources that were created by the 
deployment when IN_PROGRESS.

• Sets the deployment state to CANCELLED.

• Reverts the state of the resource to what it was before the deployment was started.

For more information on cancelling a service pipeline deployment, see
CancelServicePipelineDeployment in the AWS Proton API Reference.

Use the console or AWS CLI to make updates or cancel update deployments.

AWS Management Console

Update a service pipeline using the console as described in the following steps.

1. In the AWS Proton console, choose Services.

2. In the list of services, choose the name of the service that you want to update the pipeline 
for.

3. There are two tabs on the service detail page, Overview and Pipeline. Choose Pipeline.

4. If you want to update specs, choose Edit Pipeline and fill out each form and choose Next
until you complete the final form and then choose Update pipeline.

If you want to update to a new version and there's an information icon that indicates 
a new version is available at Pipeline template, choose the name of the new template 
version.

a. Choose Update to recommended version.

Update pipeline 270

https://docs.aws.amazon.com/proton/latest/APIReference/API_CancelServicePipelineDeployment.html
https://console.aws.amazon.com/proton/


AWS Proton User Guide

b. Fill out each form and choose Next until you complete the final form and choose
Update.

AWS CLI

Update a service pipeline to a new minor version as shown in the following CLI example 
commands and responses.

When you update your service pipeline with a modified spec, you can use
"${Proton::CURRENT_VAL}" to indicate which parameter values to preserve from the 
original spec, if the values exist in the spec. Use get-service to view the original spec for a 
service pipeline, as described in View service data.

The following example shows how you can use "${Proton::CURRENT_VAL}" in a spec.

Spec:

proton: ServiceSpec

pipeline: 
  my_sample_pipeline_optional_input: "${Proton::CURRENT_VAL}" 
  my_sample_pipeline_required_input: "${Proton::CURRENT_VAL}"

instances: 
  - name: "my-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_optional_input: "${Proton::CURRENT_VAL}" 
      my_sample_service_instance_required_input: "${Proton::CURRENT_VAL}" 
  - name: "my-other-instance" 
    environment: "simple-env" 
    spec: 
      my_sample_service_instance_required_input: "789"

Command: to update

$ aws proton update-service-pipeline \ 
    --service-name "simple-svc" \ 
    --spec "file://service-spec.yaml" \ 
    --template-major-version "1" \ 
    --template-minor-version "1" \ 

Update pipeline 271



AWS Proton User Guide

    --deployment-type "MINOR_VERSION"

Response:

{ 
    "pipeline": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/pipeline/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "deploymentStatus": "IN_PROGRESS", 
        "lastDeploymentAttemptedAt": "2021-04-02T21:39:28.991000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T21:29:59.962000+00:00", 
        "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"my-instance\"\n    environment: \"MySimpleEnv
\"\n    spec:\n      my_sample_service_instance_optional_input: \"def
\"\n      my_sample_service_instance_required_input: \"456\"\n  - name: 
 \"my-other-instance\"\n    environment: \"MySimpleEnv\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "0", 
        "templateName": "svc-simple" 
    }
}

Command: to get and confirm status

$ aws proton get-service \ 
    --name "simple-svc"

Response:

{ 
    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc", 
        "branchName": "main", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "lastModifiedAt": "2021-04-02T21:30:54.364000+00:00", 
        "name": "simple-svc", 
        "pipeline": { 
            "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/
pipeline", 

Update pipeline 272



AWS Proton User Guide

            "createdAt": "2021-04-02T21:29:59.962000+00:00", 
            "deploymentStatus": "SUCCEEDED", 
            "lastDeploymentAttemptedAt": "2021-04-02T21:39:28.991000+00:00", 
            "lastDeploymentSucceededAt": "2021-04-02T21:39:28.991000+00:00", 
            "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"instance-one\"\n    environment: \"simple-
env\"\n    spec:\n      my_sample_service_instance_optional_input: \"def
\"\n      my_sample_service_instance_required_input: \"456\"\n  - name: 
 \"my-other-instance\"\n    environment: \"simple-env\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "1", 
            "templateName": "svc-simple" 
        }, 
        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "repositoryId": "repo-name/myorg-myapp", 
        "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"instance-one\"\n    environment: \"simple-
env\"\n    spec:\n      my_sample_service_instance_optional_input: \"def
\"\n      my_sample_service_instance_required_input: \"456\"\n  - name: 
 \"my-other-instance\"\n    environment: \"simple-env\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
        "status": "ACTIVE", 
        "templateName": "svc-simple" 
    }
}

AWS Management Console

Cancel a service pipeline deployment using the console as shown in the following steps.

1. In the AWS Proton console, choose Services in the navigation pane.

2. In the list of services, choose the name of the service that has the pipeline with the 
deployment update that you want to cancel.

3. In the service detail page, choose the Pipeline tab.

4. If your update deployment status is In progress, in the service pipeline detail page, choose
Cancel deployment.

Update pipeline 273

https://console.aws.amazon.com/proton/


AWS Proton User Guide

5. A modal asks you to confirm the cancellation. Choose Cancel deployment.

6. Your update deployment status is set to Cancelling and then Cancelled to complete the 
cancellation.

AWS CLI

Cancel an IN_PROGRESS service pipeline deployment update to minor version 2 as shown in 
the following CLI example commands and responses.

A wait condition is included in the template used for this example so that the cancellation starts 
before the update deployment succeeds.

Command: to cancel

$ aws proton cancel-service-pipeline-deployment \ 
    --service-name "simple-svc"

Response:

{ 
    "pipeline": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/pipeline", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "deploymentStatus": "CANCELLING", 
        "lastDeploymentAttemptedAt": "2021-04-02T22:02:45.095000+00:00", 
        "lastDeploymentSucceededAt": "2021-04-02T21:39:28.991000+00:00", 
        "templateMajorVersion": "1", 
        "templateMinorVersion": "1", 
        "templateName": "svc-simple" 
    }
}

Command: to get and confirm status

$ aws proton get-service \ 
    --name "simple-svc"

Response:

{ 

Update pipeline 274



AWS Proton User Guide

    "service": { 
        "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc", 
        "branchName": "main", 
        "createdAt": "2021-04-02T21:29:59.962000+00:00", 
        "lastModifiedAt": "2021-04-02T21:30:54.364000+00:00", 
        "name": "simple-svc", 
        "pipeline": { 
            "arn": "arn:aws:proton:region-id:123456789012:service/simple-svc/
pipeline", 
            "createdAt": "2021-04-02T21:29:59.962000+00:00", 
            "deploymentStatus": "CANCELLED", 
            "deploymentStatusMessage": "User initiated cancellation.", 
            "lastDeploymentAttemptedAt": "2021-04-02T22:02:45.095000+00:00", 
            "lastDeploymentSucceededAt": "2021-04-02T21:39:28.991000+00:00", 
            "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"instance-one\"\n    environment: \"simple-
env\"\n    spec:\n      my_sample_service_instance_optional_input: \"def
\"\n      my_sample_service_instance_required_input: \"456\"\n  - name: 
 \"my-other-instance\"\n    environment: \"simple-env\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
            "templateMajorVersion": "1", 
            "templateMinorVersion": "1", 
            "templateName": "svc-simple" 
        }, 
        "repositoryConnectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111", 
        "repositoryId": "repo-name/myorg-myapp", 
        "spec": "proton: ServiceSpec\n\npipeline:\n  
 my_sample_pipeline_optional_input: \"abc\"\n  my_sample_pipeline_required_input: 
 \"123\"\n\ninstances:\n  - name: \"instance-one\"\n    environment: \"simple-
env\"\n    spec:\n      my_sample_service_instance_optional_input: \"def
\"\n      my_sample_service_instance_required_input: \"456\"\n  - name: 
 \"my-other-instance\"\n    environment: \"simple-env\"\n    spec:\n      
 my_sample_service_instance_required_input: \"789\"\n", 
        "status": "ACTIVE", 
        "templateName": "svc-simple" 
    }
}

Update pipeline 275



AWS Proton User Guide

AWS Proton components

Components are a type of AWS Proton resource. They add flexibility to service templates. 
Components provide platform teams with a mechanism to extend core infrastructure patterns, and 
define safeguards that empower developers to manage aspects of their application infrastructure.

In AWS Proton administrators define standard infrastructure that is used across development 
teams and applications. However, development teams might need to include additional resources 
for their specific use cases, like Amazon Simple Queue Service (Amazon SQS) queues or Amazon 
DynamoDB tables. These application-specific resources might change frequently, particularly 
during early application development. Maintaining these frequent changes in administrator 
authored templates might be hard to manage and scale—administrators would need to maintain 
many more templates without real administrator added value. The alternative—letting application 
developers author templates for their applications—isn't ideal either, because it takes away 
administrators' ability to standardize the main architecture components, like AWS Fargate tasks. 
This is where components come in.

With a component, a developer can add supplemental resources to their application, above and 
beyond what administrators defined in environment and service templates. The developer then 
attaches the component to a service instance. AWS Proton provisions infrastructure resources 
defined by the component just like it provisions resources for environments and service instances.

A component can read service instance inputs and provide outputs to the service instance, for 
a fully integrated experience. For example, if the component adds an Amazon Simple Storage 
Service (Amazon S3) bucket for use by a service instance, the component template can take the 
environment and service instance names into account for naming the bucket. When AWS Proton 
renders the service template to provision a service instance, the service instance can refer to the 
bucket and use it.

The components that AWS Proton currently supports are directly defined components. You pass the 
Infrastructure as Code (IaC) file that defines the component's infrastructure directly to the AWS 
Proton API or console. This is different than an environment or service, where you define IaC in a 
template bundle and register the bundle as a template resource, then use a template resource to 
create the environment or service.

276



AWS Proton User Guide

Note

Directly defined components allow developers to define extra infrastructure and provision 
it. AWS Proton provisions all directly defined components running in the same environment 
using the same AWS Identity and Access Management (IAM) role.

An administrator can control what developers can do with components in two ways:

• Supported component sources – An administrator can allow the attachment of components to 
service instances based on a property of AWS Proton service template versions. By default, 
developers can't attach components to service instances.

For more information about this property, see the supportedComponentSources parameter of 
the CreateServiceTemplateVersion API action in the AWS Proton API Reference.

Note

When you use template sync, AWS Proton creates service template versions implicitly 
when you commit changes to a service template bundle in a repository. In this case, 
instead of specifying supported component sources during service template version 
creation, you specify this property in a file associated with each service template major 
version. For more information, see the section called “Syncing service templates”.

• Component roles – An administrator can assign a component role to an environment. AWS Proton 
assumes this role when it provisions infrastructure defined by directly defined component in the 
environment. Therefore, the component role scopes down the infrastructure that developers can 
add using directly defined components in the environment. In the absence of the component 
role, developers can't create directly defined components in the environment.

For more information about assigning a component role, see the componentRoleArn parameter 
of the CreateEnvironment API action in the AWS Proton API Reference.

Note

Component roles aren't used in Self-managed provisioning environments.

277

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html#proton-CreateServiceTemplateVersion-request-supportedComponentSources
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html#proton-CreateEnvironment-request-componentRoleArn
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html


AWS Proton User Guide

Topics

• How do components compare to other AWS Proton resources?

• Components in the AWS Proton console

• Components in the AWS Proton API and AWS CLI

• Component frequently asked questions

• Component states

• Component infrastructure as code files

• Component AWS CloudFormation example

How do components compare to other AWS Proton resources?

In many ways, components are similar to other AWS Proton resources. Their infrastructure is 
defined in an IaC template file, authored in either AWS CloudFormation YAML or Terraform 
HCL format. AWS Proton can provision component infrastructure using either AWS-managed 
provisioning or self-managed provisioning.

Components are, however, different from other AWS Proton resources in a few ways:

• Detached state – Components are designed to be attached to service instances and to extend 
their infrastructure, but can also be in a detached state, in which they aren't attached to 
any service instance. For more information about component states, see the section called 
“Component states”.

• No schema – Components don't have an associated schema like template bundles have. 
Component inputs are defined by a service. A component can consume inputs when it is attached 
to a service instance.

• No customer-managed components – AWS Proton always provisions component infrastructure for 
you. There isn't a bring your own resources version of components. For more information about 
customer-managed environments, see the section called “Create”.

• No template resource – Directly defined components don't have an associated template resource 
similar to environment and service templates. You provide an IaC template file directly to the 
component. Similarly, you directly provide a manifest that defines the template language and 
rendering engine for provisioning the component's infrastructure. You author the template file 
and the manifest in a way similar to authoring a template bundle. However, with directly defined 
components, there's no requirement to store IaC files as bundles in particular locations, and you 
don't create a template resource in AWS Proton out of IaC files.

Components vs. other resources 278



AWS Proton User Guide

• No CodeBuild-based provisioning – You can't provision directly defined components using your 
own custom provisioning script, known as CodeBuild-based provisioning. For more information, 
see the section called “CodeBuild provisioning”.

Components in the AWS Proton console

Use the AWS Proton console to create, update, view, and use AWS Proton components.

The following console pages are related to components. We include direct links to top level console 
pages.

• Components – View the list of components in your AWS account. You can create new 
components, and update or delete existing components. Choose a component name on the list 
to view its details page.

Similar lists exist also on the Environment details and Service instance details pages. These lists 
show only the components associated with the resource that is being viewed. When you create a 
component from one of these lists, AWS Proton pre-selects the associated environment on the
Create component page.

• Component details – To view the component details page, choose a component name on the
Components list.

On the details page, view the component details and status, and update or delete the 
component. View and manage lists of outputs (for example, provisioned resource ARNs), 
provisioned AWS CloudFormation stacks, and assigned tags.

• Create component – Create a component. Enter the component name and description, choose 
the associated resources, specify the component source IaC file, and assign tags.

• Update component – To update a component, select the component on the Components list, 
and then, on the Actions menu, choose Update component. Alternatively, on the Component 
details pages, choose Update.

You can update most of the component's details. You can't update the component name. And 
you can choose whether or not to redeploy the component after a successful update.

• Configure environment – When you create or update an environment, you can specify a
Component role. This role controls the ability to run directly defined components in the 
environment and provides permissions for provisioning them.

AWS Proton console 279

https://console.aws.amazon.com/proton/#/components
https://console.aws.amazon.com/proton/#/components
https://console.aws.amazon.com/proton/#/components/create
https://console.aws.amazon.com/proton/#/components


AWS Proton User Guide

• Create new service template version – When you create a service template version, you can 
specify Supported component sources for the template version. This controls the ability to 
attach components to service instances of services based on this template version.

Components in the AWS Proton API and AWS CLI

Use the AWS Proton API or the AWS CLI to create, update, view, and use AWS Proton components.

The following API actions directly manage AWS Proton component resources.

• CreateComponent – Create an AWS Proton component.

• DeleteComponent – Delete an AWS Proton component.

• GetComponent – Get detailed data for a component.

• ListComponentOutputs – Get a list of component Infrastructure as Code (IaC) outputs.

• ListComponentProvisionedResources – List provisioned resources for a component with details.

• ListComponents – List components with summary data. You can filter the result list by 
environment, service, or a single service instance.

The following API actions of other AWS Proton resources have some functionality related to 
components.

• CreateEnvironment, UpdateEnvironment – Use componentRoleArn to specify the Amazon 
Resource Name (ARN) of the IAM service role that AWS Proton uses when provisioning directly 
defined components in this environment. It determines the scope of infrastructure that a directly 
defined component can provision.

• CreateServiceTemplateVersion – Use supportedComponentSources to specify supported 
component sources. Components with supported sources can be attached to service instances 
based on this service template version.

Component frequently asked questions

What is the lifecycle of a component?

Components can be in an attached or detached state. They are designed to be attached to a 
service instance and enhance its infrastructure most of the time. Detached components are in a 

AWS Proton API and AWS CLI 280

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateComponent.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_DeleteComponent.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_GetComponent.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_ListComponentOutputs.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_ListComponentProvisionedResources.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_ListComponents.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html


AWS Proton User Guide

transitional state that enables you to delete a component or attach it to another service instance in 
a controlled and safe way. For more information, see the section called “Component states”.

Why can't I delete my attached components?

Solution: To delete an attached component, update the component to detach it from the service 
instance, validate service instance stability, and then delete the component.

Why is this required? Attached components provide extra infrastructure that your application 
needs to perform its runtime functions. The service instance might be using component outputs 
to detect and use resources of this infrastructure. Deleting the component, thereby removing its 
infrastructure resources, could be disruptive to the attached service instance.

As an added safety measure, AWS Proton requires that you update the component and detach it 
from its service instance before you can delete it. You can then validate your service instance to 
ensure that it continues to deploy and function properly. If you detect an issue, you can quickly 
reattach the component to the service instance, then work to fix the issue. When you're confident 
that your service instance is clear of any dependency on the component, you can safely delete the 
component.

Why can't I change a component's attached service instance directly?

Solution: To change attachment, update the component to detach it from the service instance, 
validate component and service instance stability, then attach the component to the new service 
instance.

Why is this required? A component is designed to be attached to a service instance. Your 
component might use service instance inputs for infrastructure resource naming and configuration. 
Changing the attached service instance could be disruptive to the component (in addition to 
possible disruption to the service instance, as described in the previous FAQ, Why can't I delete my 
attached components?). For example, it might cause renaming, and possibly even replacement, of 
resources defined in the component's IaC template.

As an added safety measure, AWS Proton requires that you update the component and detach it 
from its service instance before you can attach it to another service instance. You can then validate 
the stability of both the component and the service instance before attaching the component to 
the new service instance.

Component FAQ 281



AWS Proton User Guide

Component states

AWS Proton components can be in two fundamentally different states:

• Attached – The component is attached to a service instance. It defines infrastructure that 
supports the runtime functionality of the service instance. The component extends the 
infrastructure defined in environment and service templates with developer-defined 
infrastructure.

A typical component is in the attached state throughout most of the useful part of its lifecycle.

• Detached – The component is associated with an AWS Proton environment, and isn't attached to 
any service instance in the environment.

This is a transitional state for extending the lifetime of a component beyond a single service 
instance.

The following table provides a top level comparison of the different component states.

  Attached Detached

State's main 
purpose

To extend the infrastructure of a 
service instance.

To maintain the component's 
infrastructure between service 
instance attachments.

Associated with A service instance and an environme 
nt

An environment

Key specific 
properties

• Service name

• Service instance name

• Spec

• Environment name

Can be deleted ☓ No ✓ Yes

Can be updated 
to another 
service instance

☓ No ✓ Yes

Can read inputs ✓ Yes ☓ No

Component states 282



AWS Proton User Guide

A component's main purpose is to be attached to a service instance and extend its infrastructure 
with additional resources. An attached component can read inputs from the service instance 
according to the spec. You can't directly delete the component or attach it to a different service 
instance. You can't delete its service instance or the related service and environment, either. To do 
any of these things, update the component to detach it from its service instance first.

To maintain the component's infrastructure beyond the lifetime of a single service instance, 
you update the component and detach it from its service instance by removing the service and 
service instance names. This detached state is a transitional state. The component has no inputs. 
Its infrastructure stays provisioned and you can update it. You can delete resources that the 
component was associated with when it was attached (service instance, service). You can delete the 
component or update it to be attached to a service instance again.

Component infrastructure as code files

Component infrastructure as code (IaC) files are similar to those for other AWS Proton resources. 
Learn here about some details that are specific to components. For complete information about 
authoring IaC files for AWS Proton, see Template authoring and bundles.

Using parameters with components

The AWS Proton parameter namespace includes some parameters that a service IaC file can 
reference to get an associated component's name and outputs. The namespace also includes 
parameters that a component IaC file can reference to get inputs, outputs, and resource values 
from the environment, service, and service instance that the component is associated with.

A components doesn't have inputs of its own—it gets its inputs from the service instance it's 
attached to. A component can also read environment outputs.

For more information about using parameters in component and associated service IaC files, see
the section called “Component CloudFormation IaC parameters”. For general information about 
AWS Proton parameters and a complete reference of the parameter namespace, see the section 
called “Parameters”.

Authoring robust IaC files

As an administrator, when you create a service template version, you can decide if you want to 
allow service instances created from the template version to have attached components. See the
supportedComponentSources parameter of the CreateServiceTemplateVersion API action in the

Component IaC files 283

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html#proton-CreateServiceTemplateVersion-request-supportedComponentSources
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html


AWS Proton User Guide

AWS Proton API Reference. However, for any future service instance, the person who creates the 
instance, decides whether or not to attach a component to it, and (in the case of directly defined 
components) authors the component IaC is typically a different person—a developer using your 
service template. Therefore, you can't guarantee that a component would be attached to a service 
instance. You also can't guarantee the existence of specific component output names or the validity 
and safety of the values of these outputs.

AWS Proton and the Jinja syntax help you work around these issues and author robust service 
templates that render without failure in the following ways:

• AWS Proton parameter filters – When you refer to component output properties, you can 
use parameter filters—modifiers that validate, filter, and format parameter values. For more 
information and examples, see the section called “CloudFormation parameter filters”.

• Single property default – When you refer to a single resource or output property of a component, 
you can guarantee that rendering your service template won't fail by using the default filter, 
with or without a default value. If the component, or a specific output parameter you're referring 
to, doesn't exist, the default value (or an empty string, if you haven't specified a default value) is 
rendered instead, and rendering succeeds. For more information, see the section called “Provide 
default values”.

Examples:

• {{ service_instance.components.default.name | default("") }}

• {{ service_instance.components.default.outputs.my-output | 
default("17") }}

Note

Do not confuse the .default part of the namespace, which designates directly defined 
components, with the default filter, which provides a default value when referenced 
property doesn't exist.

• Entire object reference – When you refer to the entire component, or to the collection of a 
component's outputs, AWS Proton returns an empty object, {}, and therefore guarantees that 
rendering your service template won't fail. You don't have to use any filter. Be sure to make the 
reference in a context that can take an empty object, or use an {{ if .. }} condition to test 
for an empty object.

Examples:

Authoring robust IaC files 284



AWS Proton User Guide

• {{ service_instance.components.default }}

• {{ service_instance.components.default.outputs }}

Component AWS CloudFormation example

Here is a complete example of an AWS Proton directly defined component and how you can use it 
in an AWS Proton service. The component provisions an Amazon Simple Storage Service (Amazon 
S3) bucket and related access policy. The service instance can refer to this bucket and use it. The 
bucket name is based on the names of the environment, service, service instance, and component, 
meaning that the bucket is coupled with a specific instance of the component template extending 
a specific service instance. Developers can create multiple components based on this component 
template, to provision Amazon S3 buckets for different service instances and functional needs.

The example covers authoring the various required AWS CloudFormation infrastructure as code 
(IaC) files and creating a required AWS Identity and Access Management (IAM) role. The example 
groups steps by the owning people roles.

Administrator steps

To enable developers to use components with a service

1. Create an AWS Identity and Access Management (IAM) role that scopes down the resources 
that directly defined components running in your environment can provision. AWS Proton 
assumes this role later to provision directly defined components in the environment.

For this example, use the following policy:

Example directly defined component role

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudformation:CancelUpdateStack", 
        "cloudformation:CreateChangeSet", 
        "cloudformation:DeleteChangeSet", 
        "cloudformation:DescribeStacks", 

Component AWS CloudFormation example 285



AWS Proton User Guide

        "cloudformation:ContinueUpdateRollback", 
        "cloudformation:DetectStackResourceDrift", 
        "cloudformation:DescribeStackResourceDrifts", 
        "cloudformation:DescribeStackEvents", 
        "cloudformation:CreateStack", 
        "cloudformation:DeleteStack", 
        "cloudformation:UpdateStack", 
        "cloudformation:DescribeChangeSet", 
        "cloudformation:ExecuteChangeSet", 
        "cloudformation:ListChangeSets", 
        "cloudformation:ListStackResources" 
      ], 
      "Resource": "arn:aws:cloudformation:*:123456789012:stack/AWSProton-*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "s3:CreateBucket", 
        "s3:DeleteBucket", 
        "s3:GetBucket", 
        "iam:CreatePolicy", 
        "iam:DeletePolicy", 
        "iam:GetPolicy", 
        "iam:ListPolicyVersions", 
        "iam:DeletePolicyVersion" 
      ], 
      "Resource": "*", 
      "Condition": { 
        "ForAnyValue:StringEquals": { 
          "aws:CalledVia": "cloudformation.amazonaws.com" 
        } 
      } 
    } 
  ]
}

2. Provide the role you created in the previous step when you create or update the environment. 
In the AWS Proton console, specify a Component role on the Configure environment page. 
If you're using the AWS Proton API or AWS CLI, specify the componentRoleArn of the
CreateEnvironment or UpdateEnvironment API actions.

3. Create a service template that refers to a directly defined component attached to the service 
instance.

Administrator steps 286

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateEnvironment.html


AWS Proton User Guide

The example shows how to write a robust service template that doesn't break if a component 
isn't attached to the service instance.

Example service CloudFormation IaC file using a component

# service/instance_infrastructure/cloudformation.yaml

Resources:  
  TaskDefinition: 
    Type: AWS::ECS::TaskDefinition 
    Properties: 
      TaskRoleArn: !Ref TaskRole 
      ContainerDefinitions: 
        - Name: '{{service_instance.name}}' 
          # ... 
           {% if service_instance.components.default.outputs | length > 0 %} 
          Environment: 
            {{ service_instance.components.default.outputs | 
                proton_cfn_ecs_task_definition_formatted_env_vars }} 
          {% endif %}

  # ... 

  TaskRole: 
    Type: AWS::IAM::Role 
    Properties: 
      # ... 
      ManagedPolicyArns: 
        - !Ref BaseTaskRoleManagedPolicy 
         {{ service_instance.components.default.outputs 
            | proton_cfn_iam_policy_arns }}

  # Basic permissions for the task 
  BaseTaskRoleManagedPolicy: 
    Type: AWS::IAM::ManagedPolicy 
    Properties: 
      # ...

4. Create a new service template minor version that declares directly defined components as 
supported.

Administrator steps 287



AWS Proton User Guide

• Template bundle in Amazon S3 – In the AWS Proton console, when you create a 
service template version, for Supported component sources, choose Directly defined. 
If you're using the AWS Proton API or AWS CLI, specify DIRECTLY_DEFINED in the
supportedComponentSources parameter of the CreateServiceTemplateVersion or
UpdateServiceTemplateVersion API actions.

• Template sync – Commit a change to your service template bundle repository, where you 
specify DIRECTLY_DEFINED as an item of supported_component_sources: in the
.template-registration.yaml file in the major version directory. For more information 
about this file, see the section called “Syncing service templates”.

5. Publish the new service template minor version. For more information, see the section called 
“Publish”.

6. Be sure to allow the proton:CreateComponent in the IAM role of developers that use this 
service template.

Developer steps

To use a directly defined component with a service instance

1. Create a service that uses the service template version that the administrator created with 
component support. Alternatively, update one of your existing service instances to use the 
latest template version.

2. Write a component IaC template file that provisions an Amazon S3 bucket and a related access 
policy and exposes these resources as outputs.

Example component CloudFormation IaC file

# cloudformation.yaml

# A component that defines an S3 bucket and a policy for accessing the bucket.
Resources: 
  S3Bucket: 
    Type: 'AWS::S3::Bucket' 
    Properties: 
      BucketName: '{{environment.name}}-{{service.name}}-{{service_instance.name}}-
{{component.name}}'
  S3BucketAccessPolicy: 
    Type: AWS::IAM::ManagedPolicy 

Developer steps 288

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateServiceTemplateVersion.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateServiceTemplateVersion.html


AWS Proton User Guide

    Properties: 
      PolicyDocument: 
        Version: "2012-10-17" 
        Statement: 
          - Effect: Allow 
            Action: 
              - 's3:Get*' 
              - 's3:List*' 
              - 's3:PutObject' 
            Resource: !GetAtt S3Bucket.Arn
Outputs: 
  BucketName: 
    Description: "Bucket to access" 
    Value: !GetAtt S3Bucket.Arn 
  BucketAccessPolicyArn: 
    Value: !Ref S3BucketAccessPolicy

3. If you're using the AWS Proton API or AWS CLI, write a manifest file for the component.

Example directly defined component manifest

infrastructure: 
  templates: 
    - file: "cloudformation.yaml" 
      rendering_engine: jinja 
      template_language: cloudformation

4. Create a directly defined component. AWS Proton assumes the component role that the 
administrator defined to provision the component.

In the AWS Proton console, on the Components page, choose Create component. For
Component settings, enter a Component name and an optional Component description. 
For Component attachment, choose Attach the component to a service instance. Select 
your environment, service, and service instance. For Component source, choose AWS 
CloudFormation, and then choose the component IaC file.

Note

You don't need to provide a manifest—the console creates one for you.

Developer steps 289

https://console.aws.amazon.com/proton/#/components


AWS Proton User Guide

If you're using the AWS Proton API or AWS CLI, use the CreateComponent API action. Set a 
component name and optional description. Set environmentName, serviceName, and
serviceInstanceName. Set templateSource and manifest to the paths of the files you 
created.

Note

Specifying an environment name is optional when you specify service and service 
instance names. The combination of these two is unique in your AWS account, and 
AWS Proton can determine the environment from the service instance.

5. Update your service instance to redeploy it. AWS Proton uses outputs from your component 
in the rendered service instance template, to enable your application to use the Amazon S3 
bucket that the component provisioned.

Developer steps 290

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateComponent.html


AWS Proton User Guide

Using git repositories with AWS Proton

AWS Proton uses git repositories for a variety of purposes. The following list categorizes the 
repository types associated with AWS Proton resources. For AWS Proton features that repeatedly 
connect to your repository to either push content to it or pull content from it, you have to register 
a repository link with AWS Proton in your AWS account. A repository link is a set of properties that 
AWS Proton can use when it connects to a repository. AWS Proton currently supports GitHub, 
GitHub Enterprise, and BitBucket.

Developer repositories

Code repository – A repository that developers use to store application code. Used for code 
deployment. AWS Proton doesn't interact directly with this repository. When a developer 
provisions a service that includes a pipeline, they provide the repository name and branch to 
read their application code from. AWS Proton passes this information to the pipeline that it 
provisions.

For more information, see the section called “Create”.

Administrator repositories

Template repository – A repository where administrators store AWS Proton template bundles. 
Used for template sync. When an administrator creates a template in AWS Proton, they can 
point to a template repository, and AWS Proton keeps the new template in sync with it. When 
the administrator updates the template bundle in the repository, AWS Proton automatically 
creates a new template version. Link a template repository to AWS Proton before you can use it 
for syncing.

For more information, see the section called “Template sync configurations”.

Note

A template repository isn't required if you continue to upload your templates to 
Amazon Simple Storage Service (Amazon S3) and call the AWS Proton template 
management APIs to create new templates or template versions.

291



AWS Proton User Guide

Self-managed provisioning repositories

Infrastructure repository – A repository that hosts rendered infrastructure templates. Used 
for self-managed provisioning of resource infrastructure. When an administrator creates an 
environment for self-managed provisioning, they provide a repository. AWS Proton submits pull 
requests (PRs) to this repository to create the infrastructure for the environment and for any 
service instance deployed to the environment. Link an infrastructure repository to AWS Proton 
before you can use it for self-managed infrastructure provisioning.

Pipeline repository – A repository used to create pipelines. Used for self-managed provisioning
of pipelines. Using an additional repository to provision pipelines allows AWS Proton to store 
pipeline configurations independently from any individual environment or service. You only 
need to provide a single pipeline repository for all your self-managed provisioning services. 
Link a pipeline repository to AWS Proton before you can use it for self-managed pipeline 
provisioning.

For more information, see the section called “AWS-managed provisioning”.

Topics

• Create a link to your repository

• View linked repository data

• Delete a repository link

Create a link to your repository

You can create a link to your repository using the console or CLI. When you create a repository link, 
AWS Proton creates a service linked role for you.

AWS Management Console

Create a link to your repository as shown in the following console steps.

1. In the AWS Proton console, choose Repositories.

2. Choose Create repository.

3. In the Link new repository page, in the Repository details section:

a. Choose your repository provider.

Create a repository link 292

https://console.aws.amazon.com/proton/


AWS Proton User Guide

b. Choose one of your existing connections. If you don't have one, choose Add a new 
CodeStar connection to create a connection, and then go back to the AWS Proton 
console, refresh the connection list, and choose your new connection.

c. Choose from your connected source code repositories.

4. [optional] In the Tags section, choose Add new tag one or more times, and enter Key and
Value pairs.

5. Choose Create repository.

6. View the detail data for your linked repository.

AWS CLI

Create and register a link to your repository.

Run the following command:

$ aws proton create-repository \ 
    --name myrepos/environments \ 
    --connection-arn "arn:aws:codestar-connections:region-
id:123456789012:connection/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111" \ 
    --provider "GITHUB" \ 
    --encryption-key "arn:aws:kms:region-id:123456789012:key/bPxRfiCYEXAMPLEKEY" \ 
    --tags key=mytag1,value=value1 key=mytag2,value=value2

The last two parameters, --encryption-key and --tags, are optional.

Response:

{ 
    "repository": { 
        "arn": "arn:aws:proton:region-id:123456789012:repository/github:myrepos/
environments", 
        "connectionArn": "arn:aws:codestar-connections:region-
id:123456789012:connection/2ad03b28-a7c4-EXAMPLE11111", 
        "encryptionKey": "arn:aws:kms:region-id:123456789012:key/
bPxRfiCYEXAMPLEKEY", 
        "name": "myrepos/environments", 
        "provider": "GITHUB" 
    }
}

Create a repository link 293



AWS Proton User Guide

After you create a repository link, you can view a list of AWS and customer managed tags, as 
shown in the following example command. AWS Proton automatically generates AWS managed 
tags for you. You can also modify and create customer managed tags using the AWS CLI. For 
more information, see AWS Proton resources and tagging.

Command:

$ aws proton list-tags-for-resource \ 
    --resource-arn "arn:aws:proton:region-id:123456789012:repository/github:myrepos/
environments"

View linked repository data

You can list and view linked repository details using the console or the AWS CLI. For repository links 
that are used to sync git repositories with AWS Proton, you can retrieve repository sync definition 
and status using the AWS CLI.

AWS Management Console

List and view linked repository details using the AWS Proton console.

1. To list of your linked repositories, choose Repositories in the navigation pane.

2. To view detail data, choose the name of a repository.

AWS CLI

List your linked repositories.

Run the following command:

$ aws proton list-repositories

Response:

{ 
    "repositories": [ 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:repository/github:myrepos/
templates", 

View linked repository data 294

https://console.aws.amazon.com/proton/


AWS Proton User Guide

            "name": "myrepos/templates", 
            "provider": "GITHUB" 
        }, 
        { 
            "arn": "arn:aws:proton:region-id:123456789012:repository/github:myrepos/
environments", 
            "name": "myrepos/environments", 
            "provider": "GITHUB" 
        } 
    ]
}

View the details of a linked repository.

Run the following command:

$ aws proton get-repository \ 
    --name myrepos/templates \ 
    --provider "GITHUB"

Response:

{ 
    "repository": { 
        "arn": "arn:aws:proton:region-id:123456789012:repository/github:myrepos/
templates", 
        "name": "myrepos/templates", 
        "provider": "GITHUB" 
    }
}

List your synced repositories.

The following example lists repositories that you configured for template sync.

Run the following command:

$ aws proton list-repository-sync-definitions \ 
    --branch "main" \ 
    --repository-name myrepos/templates \ 
    --repository-provider "GITHUB" \ 
    --sync-type "TEMPLATE_SYNC"

View linked repository data 295



AWS Proton User Guide

View repository sync status.

The following example retrieves sync status of a template sync repository.

Run the following command:

$ aws proton get-repository-sync-status \ 
    --branch "main" \ 
    --repository-name myrepos/templates \ 
    --repository-provider "GITHUB" \ 
    --sync-type "TEMPLATE_SYNC"

Response:

{ 
    "latestSync": { 
        "events": [ 
            { 
                "event": "Clone started", 
                "time": "2021-11-21T00:26:35.883000+00:00", 
                "type": "CLONE_STARTED" 
            }, 
            { 
                "event": "Updated configuration", 
                "time": "2021-11-21T00:26:41.894000+00:00", 
                "type": "CONFIG_UPDATED" 
            }, 
            { 
                "event": "Starting syncs for commit 62c03ff86eEXAMPLE1111111", 
                "externalId": "62c03ff86eEXAMPLE1111111", 
                "time": "2021-11-21T00:26:44.861000+00:00", 
                "type": "STARTING_SYNC" 
            } 
        ], 
        "startedAt": "2021-11-21T00:26:29.728000+00:00", 
        "status": "SUCCEEDED" 
    }
}

Delete a repository link

You can delete a repository link by using the console or the AWS CLI.

Delete a repository link 296



AWS Proton User Guide

Note

Deleting a repository link only removes the registered link that AWS Proton has in your 
AWS account. It does not delete any information from your repository.

AWS Management Console

Delete a repository link using the console.

In the repository detail page.

1. In the AWS Proton console, choose Repositories.

2. In the list of repositories, choose the radio button to the left of the repository that you 
want to delete.

3. Choose Delete.

4. A modal prompts you to confirm the Delete action.

5. Follow the instructions and choose Yes, delete.

AWS CLI

Delete a repository link.

Run the following command:

$ aws proton delete-repository \ 
    --name myrepos/templates \ 
    --provider"GITHUB"

Response:

{ 
    "repository": { 
        "arn": "arn:aws:proton:region-id:123456789012:repository/github:myrepos/
templates", 
        "name": "myrepos/templates", 
        "provider": "GITHUB" 
    }
}

Delete a repository link 297

https://console.aws.amazon.com/proton/


AWS Proton User Guide

Monitoring AWS Proton

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS 
Proton and your AWS solutions. The following section describes monitoring tools that you can use 
with AWS Proton.

Automate AWS Proton with EventBridge

You can monitor AWS Proton events in Amazon EventBridge. EventBridge delivers a stream of 
real-time data from your own applications, software-as-a-service (SaaS) applications, and AWS 
services. You can configure events to respond to AWS resource state changes. EventBridge routes 
this data then to target services such as AWS Lambda and Amazon Simple Notification Service. 
These events are the same as those that appear in Amazon CloudWatch Events. CloudWatch Events 
delivers a near real-time stream of system events that describe changes in AWS resources. For more 
information, see What Is Amazon EventBridge? in the Amazon EventBridge User Guide.

Use EventBridge to be notified of state changes in the AWS Proton provisioning workflows.

Event types

Events are composed of rules that include an event pattern and targets. You configure a rule by 
choosing event pattern and target objects:

Event pattern

Each rule is expressed as an event pattern with the source and type of events to monitor and 
the event targets. To monitor events, you create a rule with the service that you're monitoring 
as the event source. For example, you can create a rule with an event pattern that uses AWS 
Proton as an event source to trigger a rule when there are changes in a deployment state.

Targets

The rule receives a selected service as the event target. You can set up a target service to send 
notifications, capture state information, take corrective action, initiate events, or take other 
actions.

Event objects contain standard fields of ID, account, AWS Region, detail-type, source, version, 
resource, time (optional). The detail field is a nested object containing custom fields for the event.

Automate AWS Proton with EventBridge 298

https://docs.aws.amazon.com/eventbridge/latest/userguide/


AWS Proton User Guide

AWS Proton events are emitted on a best effort basis. Best effort delivery means that the service 
attempts to send all events to EventBridge, but in some rare cases an event might not be delivered.

For each AWS Proton resource that can emit events, the following table lists the detail-type 
value, detail fields, and (where available) a reference to a list of values for the status and
previousStatus detail fields. When a resource is deleted, the status detail field value is
DELETED.

Resource Detail-type value Detail fields

EnvironmentTemplate AWS Proton Environment Template 
Status Change

name

status

previousS 
tatus

EnvironmentTemplat 
eVersion

AWS Proton Environment Template 
Version Status Change

name

majorVers 
ion

minorVers 
ion

status

previousS 
tatus

status values

ServiceTemplate AWS Proton Service Template Status 
Change

name

status

previousS 
tatus

ServiceTemplateVersion AWS Proton Service Template Version 
Status Change

name

Event types 299

https://docs.aws.amazon.com/proton/latest/APIReference/API_EnvironmentTemplateVersion.html#proton-Type-EnvironmentTemplateVersion-status


AWS Proton User Guide

Resource Detail-type value Detail fields

majorVers 
ion

minorVers 
ion

status

previousS 
tatus

status values

Environment AWS Proton Environment Status 
Change

name

status

previousS 
tatus

Service AWS Proton Service Status Change name

status

previousS 
tatus

status values

ServiceInstance AWS Proton Service Instance Status 
Change

name

serviceName

status

previousS 
tatus

Event types 300

https://docs.aws.amazon.com/proton/latest/APIReference/API_ServiceTemplateVersion.html#proton-Type-ServiceTemplateVersion-status
https://docs.aws.amazon.com/proton/latest/APIReference/API_Service.html#proton-Type-Service-status


AWS Proton User Guide

Resource Detail-type value Detail fields

ServicePipeline AWS Proton Service Pipeline Status 
Change

serviceName

status

previousS 
tatus

EnvironmentAccount 
Connection

AWS Proton Environment Account 
Connection Status Change

id

status

previousS 
tatus

status values

Component AWS Proton Component Status 
Change

name

status

previousS 
tatus

AWS Proton event examples

The following examples show the ways that AWS Proton can send events to EventBridge.

Service template

{ 
    "source": "aws.proton", 
    "detail-type": ["AWS Proton Service Template Status Change"], 
    "time": "2021-03-22T23:21:40.734Z", 
    "resources": ["arn:aws:proton:region_id:123456789012:service-template/sample-
service-template-name"], 
    "detail": { 
        "name": "sample-service-template-name", 
        "status": "PUBLISHED", 
        "previousStatus": "DRAFT" 

AWS Proton event examples 301

https://docs.aws.amazon.com/proton/latest/APIReference/API_EnvironmentAccountConnection.html#proton-Type-EnvironmentAccountConnection-status


AWS Proton User Guide

    }
}

Service template version

{ 
    "source": "aws.proton", 
    "detail-type": ["AWS Proton Service Template Version Status Change"], 
    "time": "2021-03-22T23:21:40.734Z", 
    "resources": ["arn:aws:proton:region_id:123456789012:service-template/sample-
service-template-name:1.0"], 
    "detail": { 
        "name": "sample-service-template-name", 
        "majorVersion": "1", 
        "minorVersion": "0", 
        "status": "REGISTRATION_FAILED", 
        "previousStatus": "REGISTRATION_IN_PROGRESS" 
    }
}

Environment

{ 
    "source": "aws.proton", 
    "detail-type": ["AWS Proton Environment Status Change"], 
    "time": "2021-03-22T23:21:40.734Z", 
    "resources": ["arn:aws:proton:region_id:123456789012:environment/sample-
environment"], 
    "detail": { 
        "name": "sample-environment", 
        "status": "DELETE_FAILED", 
        "previousStatus": "DELETE_IN_PROGRESS" 
    }
}

EventBridgeTutorial: Send Amazon Simple Notification Service 
alerts for AWS Proton service status changes

In this tutorial, you use an AWS Proton pre-configured event rule that captures status changes 
for your AWS Proton service. EventBridge sends the status changes to an Amazon SNS topic. You 

EventBridgeTutorial: Send Amazon Simple Notification Service alerts for AWS Proton service status 
changes

302



AWS Proton User Guide

subscribe to the topic and Amazon SNS sends you status change emails for your AWS Proton 
service.

Prerequisites

You have an existing AWS Proton service with an Active status. As part of this tutorial, you can 
add service instances to this service, and then delete the instances.

If you need to create an AWS Proton service, see Getting started. For more information, see AWS 
Proton quotas and the section called “Edit”.

Step 1: Create and subscribe to an Amazon SNS topic

Create an Amazon SNS topic to serve as an event target for the event rule that you create in Step 2.

Create an Amazon SNS topic

1. Log in and open the Amazon SNS console.

2. In the navigation pane, choose Topics, Create topic.

3. In Create topic page:

a. Choose Type Standard.

b. For Name, enter tutorial-service-status-change and choose Create topic.

4. In the tutorial-service-status-change detail page, choose Create subscription.

5. In the Create subscription page:

a. For Protocol, choose Email.

b. For Endpoint, enter an email address that you currently have access to and choose Create 
subscription.

6. Check your email account and wait to receive a subscription confirmation email message. 
When you receive it, open it and choose Confirm subscription.

Step 2: Register an event rule

Register an event rule that captures status changes for your AWS Proton service. For more 
information, see Prerequisites.

Prerequisites 303

https://console.aws.amazon.com/sns/v3/


AWS Proton User Guide

Create an event rule.

1. Open the Amazon EventBridge console.

2. In the navigation pane, choose Events, Rules.

3. In the Rules page, in the Rules section, choose Create rule.

4. In the Create rule page:

a. In the Name and description section, for Name, enter tutorial-rule.

b. In the Define pattern section, choose Event pattern.

i. For Event matching pattern, choose Pre-defined by service.

ii. For Service provider, choose AWS.

iii. For Service name, choose AWS Proton.

iv. For Event type, choose AWS Proton Service Status Change.

The Event pattern appears in a text editor.

v. Open the AWS Proton console.

vi. In the navigation pane, choose Services.

vii. In Services page, choose the name of your AWS Proton service.

viii. In Service details page, copy the service Amazon Resource Name (ARN).

ix. Navigate back to the EventBridge console and your tutorial rule and choose Edit at the 
text editor.

x. In the text editor, for "resources":, enter the service ARN that you copied in step 
viii.

{ 
    "source": ["aws.proton"], 
    "detail-type": ["AWS Proton Service Status Change"], 
    "resources": ["arn:aws:proton:region-id:123456789012:service/your-
service"]
}

xi. Save the event pattern.

c. In the Select targets section:

i. For Target, choose SNS topic.
Step 2: Register an event rule 304

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/proton/


AWS Proton User Guide

ii. For Topic, choose tutorial-service-status-change.

d. Choose Create.

Step 3: Test your event rule

Verify that your event rule is working by adding an instance to your AWS Proton service.

1. Switch to the AWS Proton console.

2. In the navigation pane, choose Services.

3. In Services page, choose the name of your service.

4. In Service details page, choose Edit.

5. In Configure service page, choose Next.

6. In Configure custom settings page, in the Service instances section, choose Add new 
instance.

7. Complete the form for your New instance:

a. Enter a Name for your new instance.

b. Select the same compatible environments that you chose for your existing instances.

c. Enter values for the required inputs.

d. Choose Next.

8. Review your inputs and choose Update.

9. After the Service status is Active, check your email to verify you received AWS notifications 
that give status updates.

{ 
    "version": "0", 
    "id": "af76c382-2b3c-7a0a-cf01-936dff228276", 
    "detail-type": "AWS Proton Service Status Change", 
    "source": "aws.proton", 
    "account": "123456789012", 
    "time": "2021-06-29T20:40:16Z", 
    "region": "region-id", 
    "resources": ["arn:aws:proton:region-id:123456789012:service/your-service"], 
    "detail": { 
        "previousStatus": "ACTIVE", 
        "status": "UPDATE_IN_PROGRESS", 

Step 3: Test your event rule 305

https://console.aws.amazon.com/proton/


AWS Proton User Guide

        "name": "your-service" 
    }
}

{ 
    "version": "0", 
    "id": "87131e29-ad95-bda2-cd30-0ce825dfb0cd", 
    "detail-type": "AWS Proton Service Status Change", 
    "source": "aws.proton", 
    "account": "123456789012", 
    "time": "2021-06-29T20:42:27Z", 
    "region": "region-id", 
    "resources": ["arn:aws:proton:region-id:123456789012:service/your-service"], 
    "detail": { 
        "previousStatus": "UPDATE_IN_PROGRESS", 
        "status": "ACTIVE", 
        "name": "your-service" 
    }
}

Step 4: Clean up

Delete your Amazon SNS topic and subscription and delete your EventBridge rule.

Delete your Amazon SNS topic and subscription.

1. Navigate to the Amazon SNS console.

2. In the navigation panel, choose Subscriptions.

3. In the Subscriptions page, choose the subscription that you made to the topic named
tutorial-service-status-change and then choose Delete.

4. In the navigation panel, choose Topics.

5. In the Topics page, choose the topic named tutorial-service-status-change and then 
choose Delete.

6. A modal prompts you to verify the deletion. Follow the instructions and choose Delete.

Delete your EventBridge rule.

1. Navigate to the Amazon EventBridge console.

Step 4: Clean up 306

https://console.aws.amazon.com/sns/v3/
https://console.aws.amazon.com/events/


AWS Proton User Guide

2. In the navigation pane, choose Events, Rules.

3. In the Rules page, choose the rule named tutorial-rule and then choose Delete.

4. A modal prompts you to verify the deletion. Choose Delete.

Delete the added service instance.

1. Navigate to the AWS Proton console.

2. In the navigation pane, choose Services.

3. In the Services page, choose the name of your service.

4. In the Service detail page, choose Edit and then Next.

5. In Configure custom settings page, in the Service instances section, choose Delete for the 
service instance that you created as part of this tutorial and then choose Next.

6. Review your inputs and choose Update.

7. A modal prompts you to verify the deletion. Follow the instructions and choose Yes, delete.

Keep infrastructure up to date with the AWS Proton dashboard

The AWS Proton dashboard provides a summary of AWS Proton resources in your AWS account, 
with a particular focus on staleness—how updated deployed resources are. A deployed resource 
is up to date when it uses the recommended version of its associated template. An out-of-date 
deployed resource might need a major or minor template version update.

View the dashboard in the AWS Proton console

To view the AWS Proton dashboard, open the AWS Proton console, and then, in the navigation 
pane, choose Dashboard.

AWS Proton dashboard 307

https://console.aws.amazon.com/proton/
https://console.aws.amazon.com/proton/


AWS Proton User Guide

Resources

The first tab of the dashboard displays counts of all resources in your account. The resources tab 
shows the number of your service instances, services, environments, and components, as well as 
your resource templates. It also breaks down resource counts for each deployed resource type by 
the status of resources of that type. A service instance table shows details of each service instance
—its deployment status, the AWS Proton resources that it's associated with, the updates that are 
available to it, and some time stamps.

You can filter the service instance list by any table property. For example, you can filter to see 
service instances with deployments within a specific time window, or service instances that are out 
of date relative to major or minor version recommendations.

Choose a service instance name to navigate to the service instance detail page, where you can act 
to make appropriate version updates. Choose any other AWS Proton resource name to navigate to 
its detail page, or choose a resource type to navigate to the respective resource list.

AWS Proton console 308



AWS Proton User Guide

Deployment history

The deployment history tab lets you see details about your deployments. In the deployment 
history table, you can keep track of the deployment status, as well as environment and deployment 
ID. You can choose the resource name or the deployment ID to see even more details, such as a 
deployment status message and resource outputs. The table also allows you to filter on any table 
property.

AWS Proton console 309



AWS Proton User Guide

Security in AWS Proton

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers 
and network architectures that are built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS 
Compliance Programs. To learn about the compliance programs that apply to AWS Proton, see
AWS services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your company’s 
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when 
using AWS Proton. The following topics show you how to configure AWS Proton to meet your 
security and compliance objectives. You also learn how to use other AWS services that help you to 
monitor and secure your AWS Proton resources.

Topics

• Identity and Access Management for AWS Proton

• Configuration and vulnerability analysis in AWS Proton

• Data protection in AWS Proton

• Infrastructure security in AWS Proton

• Logging and monitoring in AWS Proton

• Resilience in AWS Proton

• Security best practices for AWS Proton

• Cross-service confused deputy prevention

• CodeBuild provisioning custom Amazon VPC support

310

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/


AWS Proton User Guide

Identity and Access Management for AWS Proton

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use AWS Proton resources. IAM is an AWS service that you can 
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Proton works with IAM

• Policy examples for AWS Proton

• AWS managed policies for AWS Proton

• Using service-linked roles for AWS Proton

• Troubleshooting AWS Proton identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in AWS Proton.

Service user – If you use the AWS Proton service to do your job, then your administrator provides 
you with the credentials and permissions that you need. As you use more AWS Proton features to 
do your work, you might need additional permissions. Understanding how access is managed can 
help you request the right permissions from your administrator. If you cannot access a feature in 
AWS Proton, see Troubleshooting AWS Proton identity and access.

Service administrator – If you're in charge of AWS Proton resources at your company, you probably 
have full access to AWS Proton. It's your job to determine which AWS Proton features and resources 
your service users should access. You must then submit requests to your IAM administrator to 
change the permissions of your service users. Review the information on this page to understand 
the basic concepts of IAM. To learn more about how your company can use IAM with AWS Proton, 
see How AWS Proton works with IAM.

Identity and Access Management 311



AWS Proton User Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to AWS Proton. To view example AWS Proton identity-based 
policies that you can use in IAM, see Identity-based policy examples for AWS Proton.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 

Authenticating with identities 312

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html


AWS Proton User Guide

the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 
credentials provided through an identity source. When federated identities access AWS accounts, 
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can 
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users 
and groups in your own identity source for use across all your AWS accounts and applications. For 
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity 
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

Authenticating with identities 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose


AWS Proton User Guide

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 
AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

Authenticating with identities 314

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html


AWS Proton User Guide

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 

Managing access using policies 315

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json


AWS Proton User Guide

user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 
between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Managing access using policies 316

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html


AWS Proton User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 
service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see How SCPs 
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Proton works with IAM

Before you use IAM to manage access to AWS Proton, learn what IAM features are available to use 
with AWS Proton.

How AWS Proton works with IAM 317

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html


AWS Proton User Guide

IAM features you can use with AWS Proton

IAM feature AWS Proton support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how AWS Proton and other AWS services work with most IAM features, 
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AWS Proton

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

How AWS Proton works with IAM 318

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


AWS Proton User Guide

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. You can't specify the principal in an 
identity-based policy because it applies to the user or role to which it is attached. To learn about all 
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS Proton

To view examples of AWS Proton identity-based policies, see Identity-based policy examples for 
AWS Proton.

Resource-based policies within AWS Proton

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

To enable cross-account access, you can specify an entire account or IAM entities in another 
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource 
are in different AWS accounts, an IAM administrator in the trusted account must also grant 
the principal entity (user or role) permission to access the resource. They grant permission by 
attaching an identity-based policy to the entity. However, if a resource-based policy grants access 
to a principal in the same account, no additional identity-based policy is required. For more 
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AWS Proton

Supports policy actions Yes

How AWS Proton works with IAM 319

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html


AWS Proton User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 
There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS Proton actions, see Actions defined by AWS Proton in the Service Authorization 
Reference.

Policy actions in AWS Proton use the following prefix before the action:

proton

To specify multiple actions in a single statement, separate them with commas.

"Action": [ 
      "proton:action1", 
      "proton:action2" 
         ]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin 
with the word List, include the following action:

"Action": "proton:List*"

To view examples of AWS Proton identity-based policies, see Identity-based policy examples for 
AWS Proton.

Policy resources for AWS Proton

Supports policy resources Yes

How AWS Proton works with IAM 320

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html#awsproton-actions-as-permissions


AWS Proton User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AWS Proton resource types and their ARNs, see Resources defined by AWS Proton
in the Service Authorization Reference. To learn with which actions you can specify the ARN of each 
resource, see Actions defined by AWS Proton.

To view examples of AWS Proton identity-based policies, see Identity-based policy examples for 
AWS Proton.

Policy condition keys for AWS Proton

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement 
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in 
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple 
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of 
the conditions must be met before the statement's permissions are granted.

How AWS Proton works with IAM 321

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html#awsproton-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html#awsproton-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html


AWS Proton User Guide

You can also use placeholder variables when you specify conditions. For example, you can grant 
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more 
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global 
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AWS Proton condition keys, see Condition keys for AWS Proton in the Service 
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by AWS Proton.

To view an example condition-key-based policy for limiting access to a resource, see Condition-key 
based policy examples for AWS Proton.

Access control lists (ACLs) in AWS Proton

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Access control lists (ACLs) are lists of grantees that you can attach to resources. They grant 
accounts permissions to access the resource to which they are attached.

Attribute-based access control (ABAC) with AWS Proton

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based 
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or 
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then 
you design ABAC policies to allow operations when the principal's tag matches the tag on the 
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy 
management becomes cumbersome.

How AWS Proton works with IAM 322

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html#awsproton-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html#awsproton-actions-as-permissions


AWS Proton User Guide

To control access based on tags, you provide tag information in the condition element of a policy 
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the 
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with 
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging AWS Proton resources, see AWS Proton resources and tagging.

Using Temporary credentials with AWS Proton

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional 
information, including which AWS services work with temporary credentials, see AWS services that 
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using 
any method except a user name and password. For example, when you access AWS using your 
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You 
also automatically create temporary credentials when you sign in to the console as a user and then 
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use 
those temporary credentials to access AWS. AWS recommends that you dynamically generate 
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS Proton

Supports forward access sessions (FAS) Yes

How AWS Proton works with IAM 323

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html


AWS Proton User Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal. 
When you use some services, you might perform an action that then initiates another action in a 
different service. FAS uses the permissions of the principal calling an AWS service, combined with 
the requesting AWS service to make requests to downstream services. FAS requests are only made 
when a service receives a request that requires interactions with other AWS services or resources to 
complete. In this case, you must have permissions to perform both actions. For policy details when 
making FAS requests, see Forward access sessions.

Service roles for AWS Proton

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, 
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

For more information, see AWS Proton IAM service role policy examples.

Warning

Changing the permissions for a service role might break AWS Proton functionality. Edit 
service roles only when AWS Proton provides guidance to do so.

Service-linked roles for AWS Proton

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can 
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS 
account and are owned by the service. An IAM administrator can view, but not edit the permissions 
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM. 
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How AWS Proton works with IAM 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


AWS Proton User Guide

Policy examples for AWS Proton

Find AWS Proton IAM policy examples in the following sections.

Topics

• Identity-based policy examples for AWS Proton

• AWS Proton IAM service role policy examples

• Condition-key based policy examples for AWS Proton

Identity-based policy examples for AWS Proton

By default, users and roles don't have permission to create or modify AWS Proton resources. They 
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface 
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they 
need, an IAM administrator can create IAM policies. The administrator can then add the IAM 
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy 
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS Proton, including the format of the 
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS Proton in 
the Service Authorization Reference.

Topics

• Policy best practices

• Links to Identity-based policy examples for AWS Proton

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Proton 
resources in your account. These actions can incur costs for your AWS account. When you create or 
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 

Policy examples 325

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html


AWS Proton User Guide

recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM 
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users 
or a root user in your AWS account, turn on MFA for additional security. To require MFA when 
API operations are called, add MFA conditions to your policies. For more information, see 
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Links to Identity-based policy examples for AWS Proton

Links to example identity-based policy examples for AWS Proton

• AWS managed policies for AWS Proton

• AWS Proton IAM service role policy examples

• Condition-key based policy examples for AWS Proton

Policy examples 326

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html


AWS Proton User Guide

AWS Proton IAM service role policy examples

Administrators own and manage the resources that AWS Proton creates as defined by the 
environment and service templates. They attach IAM service roles to their account that permit 
AWS Proton to create resources on their behalf. Administrators supply the IAM roles and AWS Key 
Management Service keys for resources that are later owned and managed by developers when 
AWS Proton deploys their application as an AWS Proton service in an AWS Proton environment. For 
more information about AWS KMS and data encryption, see Data protection in AWS Proton.

A service role is an Amazon Web Services (IAM) role that allows AWS Proton to make calls to 
resources on your behalf. If you specify a service role, AWS Proton uses that role's credentials. Use a 
service role to explicitly specify the actions that AWS Proton can perform.

You create the service role and its permission policy with the IAM service. For more information 
about creating a service role, see Creating a role to delegate permissions to an AWS service in the
IAM User Guide.

AWS Proton service role for provisioning using AWS CloudFormation

As a member of the platform team, you can as an administrator create an AWS Proton service 
role and provide it to AWS Proton when you create an environment as the environment's 
CloudFormation service role (the protonServiceRoleArn parameter of the CreateEnvironment
API action). This role allows AWS Proton to make API calls to other services on your behalf when 
the environment or any of the service instances running in it use AWS-managed provisioning and 
AWS CloudFormation to provision infrastructure.

We recommend that you use the following IAM role and trust policy for your AWS Proton service 
role. When you use the AWS Proton console to create an environment and choose to create a new 
role, this is the policy that AWS Proton adds to the service role it creates for you. When scoping 
down permission on this policy, keep in mind that AWS Proton fails on Access Denied errors.

Important

Be aware that the policies shown in the following examples grant administrator privileges 
to anyone that can register a template to your account. Because we don't know which 
resources you will define in your AWS Proton templates, these policies have broad 
permissions. We recommend that you scope down the permissions to the specific resources 
that will be deployed in your environments.

Policy examples 327

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html


AWS Proton User Guide

AWS Proton service role policy example for AWS CloudFormation

Replace 123456789012 with your AWS account ID.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudformation:CancelUpdateStack", 
        "cloudformation:ContinueUpdateRollback", 
        "cloudformation:CreateChangeSet", 
        "cloudformation:CreateStack", 
        "cloudformation:DeleteChangeSet", 
        "cloudformation:DeleteStack", 
        "cloudformation:DescribeChangeSet", 
        "cloudformation:DescribeStackDriftDetectionStatus", 
        "cloudformation:DescribeStackEvents", 
        "cloudformation:DescribeStackResourceDrifts", 
        "cloudformation:DescribeStacks", 
        "cloudformation:DetectStackResourceDrift", 
        "cloudformation:ExecuteChangeSet", 
        "cloudformation:ListChangeSets", 
        "cloudformation:ListStackResources", 
        "cloudformation:UpdateStack" 
      ], 
      "Resource": "arn:aws:cloudformation:*:123456789012:stack/AWSProton-*" 
    }, 
    { 
      "Effect": "Allow", 
      "NotAction": [ 
        "organizations:*", 
        "account:*" 
      ], 
      "Resource": "*", 
      "Condition": { 
        "ForAnyValue:StringEquals": { 
          "aws:CalledVia": [ 
            "cloudformation.amazonaws.com" 
          ] 
        } 
      } 
    }, 

Policy examples 328



AWS Proton User Guide

    { 
      "Effect": "Allow", 
      "Action": [ 
        "organizations:DescribeOrganization", 
        "account:ListRegions" 
      ], 
      "Resource": "*", 
      "Condition": { 
        "ForAnyValue:StringEquals": { 
          "aws:CalledVia": [ 
            "cloudformation.amazonaws.com" 
          ] 
        } 
      } 
    } 
  ]
}

AWS Proton service trust policy

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "ServiceTrustRelationshipWithConfusedDeputyPrevention", 
    "Effect": "Allow", 
    "Principal": { 
      "Service": "proton.amazonaws.com" 
    }, 
    "Action": "sts:AssumeRole", 
    "Condition": { 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      }, 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws::proton:*:123456789012:environment/*" 
      } 
    } 
  }
}

Policy examples 329



AWS Proton User Guide

Scoped down AWS-managed provisioning service role policy

The following is an example of a scoped down AWS Proton service role policy that you can use if 
you only need AWS Proton services to provision S3 resources.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudformation:CancelUpdateStack", 
        "cloudformation:ContinueUpdateRollback", 
        "cloudformation:CreateChangeSet", 
        "cloudformation:CreateStack", 
        "cloudformation:DeleteChangeSet", 
        "cloudformation:DeleteStack", 
        "cloudformation:DescribeChangeSet", 
        "cloudformation:DescribeStackDriftDetectionStatus", 
        "cloudformation:DescribeStackEvents", 
        "cloudformation:DescribeStackResourceDrifts", 
        "cloudformation:DescribeStacks", 
        "cloudformation:DetectStackResourceDrift", 
        "cloudformation:ExecuteChangeSet", 
        "cloudformation:ListChangeSets", 
        "cloudformation:ListStackResources", 
        "cloudformation:UpdateStack" 
      ], 
      "Resource": "arn:aws:cloudformation:*:123456789012:stack/AWSProton-*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "s3:*" 
      ], 
      "Resource": "*", 
      "Condition": { 
        "ForAnyValue:StringEquals": { 
          "aws:CalledVia": [ 
            "cloudformation.amazonaws.com" 
          ] 
        } 
      } 
    } 

Policy examples 330



AWS Proton User Guide

  ]
}

AWS Proton service role for CodeBuild provisioning

As a member of the platform team, you can as an administrator create an AWS Proton service role 
and provide it to AWS Proton when you create an environment as the environment's CodeBuild 
service role (the codebuildRoleArn parameter of the CreateEnvironment API action). This role 
allows AWS Proton to make API calls to other services on your behalf when the environment or any 
of the service instances running in it use CodeBuild provisioning to provision infrastructure.

When you use the AWS Proton console to create an environment and choose to create a new role, 
AWS Proton adds a policy with administrator privileges to the service role it creates for you. When 
you create your own role and scope down permissions, keep in mind that AWS Proton fails on
Access Denied errors.

Important

Be aware that the policies that AWS Proton attaches to roles that it creates for you grant 
administrator privileges to anyone that can register a template to your account. Because we 
don't know which resources you will define in your AWS Proton templates, these policies 
have broad permissions. We recommend that you scope down the permissions to the 
specific resources that will be deployed in your environments.

AWS Proton service role policy example for CodeBuild

The following example provides permissions for CodeBuild to provision resources using the AWS 
Cloud Development Kit (AWS CDK).

Replace 123456789012 with your AWS account ID.

 { 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Action": [ 
        "logs:CreateLogStream", 
        "logs:CreateLogGroup", 
        "logs:PutLogEvents" 

Policy examples 331

https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html


AWS Proton User Guide

      ], 
      "Resource": [ 
        "arn:aws:logs:us-east-1:123456789012:log-group:/aws/codebuild/AWSProton-   
 Shell-*", 
        "arn:aws:logs:us-east-1:123456789012:log-group:/aws/codebuild/AWSProton-   
 Shell-*:*" 
      ], 
      "Effect": "Allow" 
    }, 
    { 
      "Action": "proton:NotifyResourceDeploymentStatusChange", 
      "Resource": "arn:aws:proton:us-east-1:123456789012:*", 
      "Effect": "Allow" 
    }, 
    { 
      "Action": "sts:AssumeRole", 
      "Resource": [ 
        "arn:aws:iam::123456789012:role/cdk-*-deploy-role-*", 
        "arn:aws:iam::123456789012:role/cdk-*-file-publishing-role-*" 
      ], 
      "Effect": "Allow" 
    } 
  ]
}

AWS Proton CodeBuild trust policy

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "CodeBuildTrustRelationshipWithConfusedDeputyPrevention", 
    "Effect": "Allow", 
    "Principal": { 
      "Service": "codebuild.amazonaws.com" 
    }, 
    "Action": "sts:AssumeRole", 
    "Condition": { 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      }, 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws::proton:*:123456789012:environment/*" 
      } 

Policy examples 332



AWS Proton User Guide

    } 
  }
}

AWS Proton pipeline service roles

To provision service pipelines, AWS Proton needs permissions to make API calls to other 
services. The required service roles are similar to the service roles you provide when you create 
environments. However, the roles for creating pipelines are shared among all services in your 
AWS account, and you provide these roles as Account settings in the console, or through the
UpdateAccountSettings API action.

When you use the AWS Proton console to update account settings and choose to create a new role 
for either the AWS CloudFormation or the CodeBuild service roles, the policies that AWS Proton 
adds to the service roles it creates for you are the same as the policies described in the previous 
sections, AWS-managed provisioning role and CodeBuild provisioning role. When scoping down 
permission on this policy, keep in mind that AWS Proton fails on Access Denied errors.

Important

Be aware that the example policies in the previous sections grant administrator privileges 
to anyone that can register a template to your account. Because we don't know which 
resources you will define in your AWS Proton templates, these policies have broad 
permissions. We recommend that you scope down the permissions to the specific resources 
that will be deployed in your pipelines.

AWS Proton component role

As a member of the platform team, you can as an administrator create an AWS Proton service 
role and provide it to AWS Proton when you create an environment as the environment's 
CloudFormation component role (the componentRoleArn parameter of the CreateEnvironment
API action). This role scopes down the infrastructure that directly defined components can 
provision. For more information about components, see Components.

The following example policy supports creating a directly defined component that provisions an 
Amazon Simple Storage Service (Amazon S3) bucket and a related access policy.

Policy examples 333

https://docs.aws.amazon.com/proton/latest/APIReference/API_UpdateAccountSettings.html
https://docs.aws.amazon.com/proton/latest/APIReference/API_CreateEnvironment.html


AWS Proton User Guide

AWS Proton component role policy example

Replace 123456789012 with your AWS account ID.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudformation:CancelUpdateStack", 
        "cloudformation:CreateChangeSet", 
        "cloudformation:DeleteChangeSet", 
        "cloudformation:DescribeStacks", 
        "cloudformation:ContinueUpdateRollback", 
        "cloudformation:DetectStackResourceDrift", 
        "cloudformation:DescribeStackResourceDrifts", 
        "cloudformation:DescribeStackEvents", 
        "cloudformation:CreateStack", 
        "cloudformation:DeleteStack", 
        "cloudformation:UpdateStack", 
        "cloudformation:DescribeChangeSet", 
        "cloudformation:ExecuteChangeSet", 
        "cloudformation:ListChangeSets", 
        "cloudformation:ListStackResources" 
      ], 
      "Resource": "arn:aws:cloudformation:*:123456789012:stack/AWSProton-*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "s3:CreateBucket", 
        "s3:DeleteBucket", 
        "s3:GetBucket", 
        "iam:CreatePolicy", 
        "iam:DeletePolicy", 
        "iam:GetPolicy", 
        "iam:ListPolicyVersions", 
        "iam:DeletePolicyVersion" 
      ], 
      "Resource": "*", 
      "Condition": { 
        "ForAnyValue:StringEquals": { 
          "aws:CalledVia": "cloudformation.amazonaws.com" 

Policy examples 334



AWS Proton User Guide

        } 
      } 
    } 
  ]
}

AWS Proton component trust policy

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "ServiceTrustRelationshipWithConfusedDeputyPrevention", 
    "Effect": "Allow", 
    "Principal": { 
      "Service": "proton.amazonaws.com" 
    }, 
    "Action": "sts:AssumeRole", 
    "Condition": { 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      }, 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws::proton:*:123456789012:environment/*" 
      } 
    } 
  }
}

Condition-key based policy examples for AWS Proton

The following example IAM policy denies access to AWS Proton actions that match the templates 
specified in the Condition block. Note that these condition keys are only supported by the 
actions listed at Actions, resources, and condition keys for AWS Proton. To manage permissions 
on other actions, such as DeleteEnvironmentTemplate, you must use Resource-level access 
control.

Example policy that denies AWS Proton template actions on a specific templates:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 

Policy examples 335

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsproton.html


AWS Proton User Guide

            "Effect": "Deny", 
            "Action": ["proton:*"], 
            "Resource": "*", 
            "Condition": { 
                "StringEqualsIfExists": { 
                    "proton:EnvironmentTemplate": 
 ["arn:aws:proton:region_id:123456789012:environment-template/my-environment-template"] 
                } 
            } 
        }, 
        { 
            "Effect": "Deny", 
            "Action": ["proton:*"], 
            "Resource": "*", 
            "Condition": { 
                "StringEqualsIfExists": { 
                    "proton:ServiceTemplate": 
 ["arn:aws:proton:region_id:123456789012:service-template/my-service-template"] 
                } 
            } 
        } 
    ]
}

In the next example policy, the first Resource-level statement denies access to AWS Proton 
template actions, other than ListServiceTemplates, that match the service template listed in 
the Resource block. The second statement denies access to AWS Proton actions that match the 
template listed in the Condition block.

Example policy that denies AWS Proton actions that match a specific template:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Deny", 
            "Action": [ 
                "proton:*" 
            ], 
            "Resource": "arn:aws:region_id:123456789012:service-template/my-service-
template" 
        }, 
        { 

Policy examples 336



AWS Proton User Guide

            "Effect": "Deny", 
            "Action": [ 
                "proton:*" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "StringEqualsIfExists": { 
                    "proton:ServiceTemplate": [ 
                        "arn:aws:proton:region_id:123456789012:service-template/my-
service-template" 
                    ] 
                } 
            } 
        } 
    ]
}

The final policy example allows developer AWS Proton actions that match the specific service 
template listed in the Condition block.

Example policy to allow AWS Proton developer actions that match a specific template:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "proton:ListServiceTemplates", 
                "proton:ListServiceTemplateVersions", 
                "proton:ListServices", 
                "proton:ListServiceInstances", 
                "proton:ListEnvironments", 
                "proton:GetServiceTemplate", 
                "proton:GetServiceTemplateVersion", 
                "proton:GetService", 
                "proton:GetServiceInstance", 
                "proton:GetEnvironment", 
                "proton:CreateService", 
                "proton:UpdateService", 
                "proton:UpdateServiceInstance", 
                "proton:UpdateServicePipeline", 
                "proton:DeleteService", 

Policy examples 337



AWS Proton User Guide

                "codestar-connections:ListConnections" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "StringEqualsIfExists": { 
                    "proton:ServiceTemplate": 
 "arn:aws:proton:region_id:123456789012:service-template/my-service-template" 
                } 
            } 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "codestar-connections:PassConnection" 
            ], 
            "Resource": "arn:aws:codestar-connections:*:*:connection/*", 
            "Condition": { 
                "StringEquals": { 
                    "codestar-connections:PassedToService": "proton.amazonaws.com" 
                } 
            } 
        } 

    ]
}

AWS managed policies for AWS Proton

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to 
write policies yourself. It takes time and expertise to create IAM customer managed policies that 
provide your team with only the permissions they need. To get started quickly, you can use our 
AWS managed policies. These policies cover common use cases and are available in your AWS 
account. For more information about AWS managed policies, see AWS managed policies in the IAM 
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in 
AWS managed policies. Services occasionally add additional permissions to an AWS managed 
policy to support new features. This type of update affects all identities (users, groups, and roles) 
where the policy is attached. Services are most likely to update an AWS managed policy when 
a new feature is launched or when new operations become available. Services do not remove 
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

AWS managed policies 338

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


AWS Proton User Guide

Additionally, AWS supports managed policies for job functions that span multiple services. For 
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services 
and resources. When a service launches a new feature, AWS adds read-only permissions for new 
operations and resources. For a list and descriptions of job function policies, see AWS managed 
policies for job functions in the IAM User Guide.

AWS Proton provides managed IAM policies and trust relationships that you can attach to users, 
groups, or roles that allow differing levels of control over resources and API operations. You can 
apply these policies directly, or you can use them as starting points for creating your own policies.

The following trust relationship is used for each of the AWS Proton managed policies.

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "ExampleTrustRelationshipWithProtonConfusedDeputyPrevention", 
    "Effect": "Allow", 
    "Principal": { 
      "Service": "proton.amazonaws.com" 
    }, 
    "Action": "sts:AssumeRole", 
    "Condition": { 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      }, 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws::proton:*:123456789012:environment/*" 
      } 
    } 
  }
}

AWS managed policy: AWSProtonFullAccess

You can attach AWSProtonFullAccess to your IAM entities. AWS Proton also attaches this policy to a 
service role that allows AWS Proton to perform actions on your behalf.

This policy grants administrative permissions that allow full access to AWS Proton actions and 
limited access to other AWS service actions that AWS Proton depends on.

The policy includes the following key action namespaces:

AWS managed policies 339

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html


AWS Proton User Guide

• proton – Allows administrators full access to AWS Proton APIs.

• iam – Allows administrators to pass roles to AWS Proton. This is required so that AWS Proton can 
make API calls to other services on the administrator's behalf.

• kms – Allows administrators to add a grant to a customer managed key.

• codeconnections – Allows administrators to list and pass codeconnections so they can be used 
by AWS Proton.

Permissions details

This policy includes the following permissions.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ProtonPermissions", 
            "Effect": "Allow", 
            "Action": [ 
                "proton:*", 
                "codestar-connections:ListConnections", 
                "kms:ListAliases", 
                "kms:DescribeKey" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Sid": "CreateGrantPermissions", 
            "Effect": "Allow", 
            "Action": [ 
                "kms:CreateGrant" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "StringLike": { 
                    "kms:ViaService": "proton.*.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Sid": "PassRolePermissions", 
            "Effect": "Allow", 

AWS managed policies 340



AWS Proton User Guide

            "Action": [ 
                "iam:PassRole" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "StringEquals": { 
                    "iam:PassedToService": "proton.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Sid": "CreateServiceLinkedRolePermissions", 
            "Effect": "Allow", 
            "Action": "iam:CreateServiceLinkedRole", 
            "Resource": "arn:aws:iam::*:role/aws-service-role/
sync.proton.amazonaws.com/AWSServiceRoleForProtonSync", 
            "Condition": { 
                "StringEquals": { 
                    "iam:AWSServiceName": "sync.proton.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Sid": "CodeStarConnectionsPermissions", 
            "Effect": "Allow", 
            "Action": [ 
                "codestar-connections:PassConnection" 
            ], 
            "Resource": [ 
                "arn:aws:codestar-connections:*:*:connection/*", 
                "arn:aws:codeconnections:*:*:connection/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "codestar-connections:PassedToService": "proton.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Sid": "CodeConnectionsPermissions", 
            "Effect": "Allow", 
            "Action": [ 
                "codeconnections:PassConnection" 
            ], 

AWS managed policies 341



AWS Proton User Guide

            "Resource": [ 
                "arn:aws:codestar-connections:*:*:connection/*", 
                "arn:aws:codeconnections:*:*:connection/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "codeconnections:PassedToService": "proton.amazonaws.com" 
                } 
            } 
        } 
    ]
}

AWS managed policy: AWSProtonDeveloperAccess

You can attach AWSProtonDeveloperAccess to your IAM entities. AWS Proton also attaches this 
policy to a service role that allows AWS Proton to perform actions on your behalf.

This policy grants permissions that allow limited access to AWS Proton actions and to other AWS 
actions that AWS Proton depends on. The scope of these permissions is designed to support the 
role of a developer who creates and deploys AWS Proton services.

This policy doesn't provide access to AWS Proton template and environment create, delete and 
update APIs. If developers need even more limited permissions than what this policy provides, we 
recommend creating a custom policy that is scoped down to grant the least privilege.

The policy includes the following key action namespaces:

• proton – Allows contributors access to a limited set of AWS Proton APIs.

• codeconnections – Allows contributors to list and pass codeconnections so they can be used 
by AWS Proton.

Permissions details

This policy includes the following permissions.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ProtonPermissions", 
            "Effect": "Allow", 

AWS managed policies 342

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege


AWS Proton User Guide

            "Action": [ 
                "codecommit:ListRepositories", 
                "codepipeline:GetPipeline", 
                "codepipeline:GetPipelineExecution", 
                "codepipeline:GetPipelineState", 
                "codepipeline:ListPipelineExecutions", 
                "codepipeline:ListPipelines", 
                "codestar-connections:ListConnections", 
                "codestar-connections:UseConnection", 
                "proton:CancelServiceInstanceDeployment", 
                "proton:CancelServicePipelineDeployment", 
                "proton:CreateService", 
                "proton:DeleteService", 
                "proton:GetAccountRoles", 
                "proton:GetAccountSettings", 
                "proton:GetEnvironment", 
                "proton:GetEnvironmentAccountConnection", 
                "proton:GetEnvironmentTemplate", 
                "proton:GetEnvironmentTemplateMajorVersion", 
                "proton:GetEnvironmentTemplateMinorVersion", 
                "proton:GetEnvironmentTemplateVersion", 
                "proton:GetRepository", 
                "proton:GetRepositorySyncStatus", 
                "proton:GetResourcesSummary", 
                "proton:GetService", 
                "proton:GetServiceInstance", 
                "proton:GetServiceTemplate", 
                "proton:GetServiceTemplateMajorVersion", 
                "proton:GetServiceTemplateMinorVersion", 
                "proton:GetServiceTemplateVersion", 
                "proton:GetTemplateSyncConfig", 
                "proton:GetTemplateSyncStatus", 
                "proton:ListEnvironmentAccountConnections", 
                "proton:ListEnvironmentOutputs", 
                "proton:ListEnvironmentProvisionedResources", 
                "proton:ListEnvironments", 
                "proton:ListEnvironmentTemplateMajorVersions", 
                "proton:ListEnvironmentTemplateMinorVersions", 
                "proton:ListEnvironmentTemplates", 
                "proton:ListEnvironmentTemplateVersions", 
                "proton:ListRepositories", 
                "proton:ListRepositorySyncDefinitions", 
                "proton:ListServiceInstanceOutputs", 
                "proton:ListServiceInstanceProvisionedResources", 

AWS managed policies 343



AWS Proton User Guide

                "proton:ListServiceInstances", 
                "proton:ListServicePipelineOutputs", 
                "proton:ListServicePipelineProvisionedResources", 
                "proton:ListServices", 
                "proton:ListServiceTemplateMajorVersions", 
                "proton:ListServiceTemplateMinorVersions", 
                "proton:ListServiceTemplates", 
                "proton:ListServiceTemplateVersions", 
                "proton:ListTagsForResource", 
                "proton:UpdateService", 
                "proton:UpdateServiceInstance", 
                "proton:UpdateServicePipeline", 
                "s3:ListAllMyBuckets", 
                "s3:ListBucket" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Sid": "CodeStarConnectionsPermissions", 
            "Effect": "Allow", 
            "Action": "codestar-connections:PassConnection", 
            "Resource": [ 
                "arn:aws:codestar-connections:*:*:connection/*", 
                "arn:aws:codeconnections:*:*:connection/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "codestar-connections:PassedToService": "proton.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Sid": "CodeConnectionsPermissions", 
            "Effect": "Allow", 
            "Action": "codeconnections:PassConnection", 
            "Resource": [ 
                "arn:aws:codestar-connections:*:*:connection/*", 
                "arn:aws:codeconnections:*:*:connection/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "codeconnections:PassedToService": "proton.amazonaws.com" 
                } 
            } 

AWS managed policies 344



AWS Proton User Guide

        } 
    ]
}

AWS managed policy: AWSProtonReadOnlyAccess

You can attach AWSProtonReadOnlyAccess to your IAM entities. AWS Proton also attaches this 
policy to a service role that allows AWS Proton to perform actions on your behalf.

This policy grants permissions that allow read-only access to AWS Proton actions and limited read-
only access to other AWS service actions that AWS Proton depends on.

The policy includes the following key action namespaces:

• proton – Allows contributors read-only access to AWS Proton APIs.

Permissions details

This policy includes the following permissions.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "codepipeline:ListPipelineExecutions", 
        "codepipeline:ListPipelines", 
        "codepipeline:GetPipeline", 
        "codepipeline:GetPipelineState", 
        "codepipeline:GetPipelineExecution", 
        "proton:GetAccountRoles", 
        "proton:GetAccountSettings", 
        "proton:GetEnvironment", 
        "proton:GetEnvironmentAccountConnection", 
        "proton:GetEnvironmentTemplate", 
        "proton:GetEnvironmentTemplateMajorVersion", 
        "proton:GetEnvironmentTemplateMinorVersion", 
        "proton:GetEnvironmentTemplateVersion", 
        "proton:GetRepository", 
        "proton:GetRepositorySyncStatus", 
        "proton:GetResourcesSummary", 
        "proton:GetService", 

AWS managed policies 345



AWS Proton User Guide

        "proton:GetServiceInstance", 
        "proton:GetServiceTemplate", 
        "proton:GetServiceTemplateMajorVersion", 
        "proton:GetServiceTemplateMinorVersion", 
        "proton:GetServiceTemplateVersion", 
        "proton:GetTemplateSyncConfig", 
        "proton:GetTemplateSyncStatus", 
        "proton:ListEnvironmentAccountConnections", 
        "proton:ListEnvironmentOutputs", 
        "proton:ListEnvironmentProvisionedResources", 
        "proton:ListEnvironments", 
        "proton:ListEnvironmentTemplateMajorVersions", 
        "proton:ListEnvironmentTemplateMinorVersions", 
        "proton:ListEnvironmentTemplates", 
        "proton:ListEnvironmentTemplateVersions", 
        "proton:ListRepositories", 
        "proton:ListRepositorySyncDefinitions", 
        "proton:ListServiceInstanceOutputs", 
        "proton:ListServiceInstanceProvisionedResources", 
        "proton:ListServiceInstances", 
        "proton:ListServicePipelineOutputs", 
        "proton:ListServicePipelineProvisionedResources", 
        "proton:ListServices", 
        "proton:ListServiceTemplateMajorVersions", 
        "proton:ListServiceTemplateMinorVersions", 
        "proton:ListServiceTemplates", 
        "proton:ListServiceTemplateVersions", 
        "proton:ListTagsForResource" 
      ], 
      "Resource": "*" 
    } 
  ]
} 

AWS managed policy: AWSProtonSyncServiceRolePolicy

AWS Proton attaches this policy to the AWSServiceRoleForProtonSync service-linked role that 
allows AWS Proton to perform template sync.

This policy grants permissions that allow limited access to AWS Proton actions and to other AWS 
service actions that AWS Proton depends on.

The policy includes the following key action namespaces:

AWS managed policies 346



AWS Proton User Guide

• proton – Allows AWS Proton sync limited access to AWS Proton APIs.

• codeconnections – Allows AWS Proton sync limited access to CodeConnections APIs.

For information on the permission details for the AWSProtonSyncServiceRolePolicy, see Service-
linked role permissions for AWS Proton.

AWS managed policy: AWSProtonCodeBuildProvisioningBasicAccess

Permissions CodeBuild needs to run a build for AWS Proton CodeBuild Provisioning. You can attach
AWSProtonCodeBuildProvisioningBasicAccess to your CodeBuild Provisioning Role.

This policy grants the minimum permissions for AWS Proton CodeBuild Provisioning to function. It 
grants permissions that allow CodeBuild to generate build logs. It also grants permission for Proton 
to make Infrastructure as Code (IaC) outputs available to AWS Proton users. It does not provide 
permissions needed by IaC tools to manage infrastructure.

The policy includes the following key action namespaces:

• logs ‐ Allows CodeBuild to generate build logs. Without this permission, CodeBuild will fail to 
start.

• proton ‐ Allows a CodeBuild Provisioning command to call aws proton notify-resource-
deployment-status-change for updating the IaaC outputs for a given AWS Proton resource.

Permissions details

This policy includes the following permissions.

{ 
 "Version": "2012-10-17", 
 "Statement": [ 
  { 
   "Effect": "Allow", 
   "Action": [ 
    "logs:CreateLogStream", 
    "logs:CreateLogGroup", 
    "logs:PutLogEvents" 
   ], 
   "Resource": [ 
    "arn:aws:logs:*:*:log-group:/aws/codebuild/AWSProton-*" 
   ] 

AWS managed policies 347

https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html
https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html


AWS Proton User Guide

  }, 
  { 
   "Effect": "Allow", 
   "Action": "proton:NotifyResourceDeploymentStatusChange", 
   "Resource": "arn:aws:proton:*:*:*" 
  } 
 ]
}

AWS managed policy: AWSProtonCodeBuildProvisioningServiceRolePolicy

AWS Proton attaches this policy to the AWSServiceRoleForProtonCodeBuildProvisioning service-
linked role that allows AWS Proton to perform CodeBuild-based provisioning.

This policy grants permissions that allow limited access to AWS service actions that AWS Proton 
depends on.

The policy includes the following key action namespaces:

• cloudformation – Allows AWS Proton CodeBuild-based provisioning limited access to AWS 
CloudFormation APIs.

• codebuild – Allows AWS Proton CodeBuild-based provisioning limited access to CodeBuild APIs.

• iam – Allows administrators to pass roles to AWS Proton. This is required so that AWS Proton can 
make API calls to other services on the administrator's behalf.

• servicequotas – Allows AWS Proton to check the CodeBuild concurrent build limit, which 
ensures proper build queuing.

Permissions details

This policy includes the following permissions.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudformation:CreateStack", 
        "cloudformation:CreateChangeSet", 
        "cloudformation:DeleteChangeSet", 
        "cloudformation:DeleteStack", 

AWS managed policies 348



AWS Proton User Guide

        "cloudformation:UpdateStack", 
        "cloudformation:DescribeStacks", 
        "cloudformation:DescribeStackEvents", 
        "cloudformation:ListStackResources" 
      ], 
      "Resource": [ 
        "arn:aws:cloudformation:*:*:stack/AWSProton-CodeBuild-*" 
      ] 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "codebuild:CreateProject", 
        "codebuild:DeleteProject", 
        "codebuild:UpdateProject", 
        "codebuild:StartBuild", 
        "codebuild:StopBuild", 
        "codebuild:RetryBuild", 
        "codebuild:BatchGetBuilds", 
        "codebuild:BatchGetProjects" 
      ], 
      "Resource": "arn:aws:codebuild:*:*:project/AWSProton*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": "iam:PassRole", 
      "Resource": "*", 
      "Condition": { 
        "StringEqualsIfExists": { 
          "iam:PassedToService": "codebuild.amazonaws.com" 
        } 
      } 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
          "servicequotas:GetServiceQuota" 
      ], 
      "Resource": "*" 
    }     
  ]
}

AWS managed policies 349



AWS Proton User Guide

AWS managed policy: AwsProtonServiceGitSyncServiceRolePolicy

AWS Proton attaches this policy to the AwsProtonServiceGitSyncServiceRolePolicy service-linked 
role that allows AWS Proton to perform service sync.

This policy grants permissions that allow limited access to AWS Proton actions and to other AWS 
service actions that AWS Proton depends on.

The policy includes the following key action namespaces:

• proton – Allows AWS Proton sync limited access to AWS Proton APIs.

For information on the permission details for the AwsProtonServiceGitSyncServiceRolePolicy, see
Service-linked role permissions for AWS Proton.

AWS Proton updates to AWS managed policies

View details about updates to AWS managed policies for AWS Proton since this service began 
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed 
on the AWS Proton Document history page.

Change Description Date

AWSProtonFullAccess  – 
Update to an existing policy

The managed policy for the 
service-linked role to use Git 
sync with Git repositories has 
been updated for resources 
with both service prefixes. 
For more information, see
Using service-linked roles for 
AWS CodeConnections and
Managed policies.

April 25, 2024

AWSProtonDeveloper 
Access  – Update to an 
existing policy

The managed policy for the 
service-linked role to use Git 
sync with Git repositories has 
been updated for resources 
with both service prefixes. 
For more information, see

April 25, 2024

AWS managed policies 350

https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonFullAccess
https://docs.aws.amazon.com/dtconsole/latest/userguide/what-is-dtconsole.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/what-is-dtconsole.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonDeveloperAccess
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonDeveloperAccess


AWS Proton User Guide

Change Description Date

Using service-linked roles for 
AWS CodeConnections and
Managed policies.

AWSProtonSyncServi 
ceRolePolicy  – Update 
to an existing policy

The managed policy for the 
service-linked role to use Git 
sync with Git repositories has 
been updated for resources 
with both service prefixes. 
For more information, see
Using service-linked roles for 
AWS CodeConnections and
Managed policies.

April 25, 2024

AWSProtonCodeBuild 
ProvisioningServiceRolePolicy
– Update to an existing policy

AWS Proton updated this 
policy to add permissions 
to ensure accounts have 
the necessary CodeBuild 
concurrent build limit in order 
to use CodeBuild Provision 
ing.

May 12, 2023

AwsProtonServiceGitSyncServ 
iceRolePolicy – New policy

AWS Proton added a new 
policy to allow AWS Proton 
to perform service syncing. 
The policy is used in the
AWSServiceRoleForP 
rotonServiceSync service-l 
inked role.

March 31, 2023

AWSProtonDeveloperAccess – 
Update to an existing policy

AWS Proton added a new
GetResourcesSummary
action that allows you to view 
a summary of your templates 
, deployed template resources 
, and out of date resources.

November 18, 2022

AWS managed policies 351

https://docs.aws.amazon.com/dtconsole/latest/userguide/what-is-dtconsole.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/what-is-dtconsole.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonSyncServiceRolePolicy
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonSyncServiceRolePolicy
https://docs.aws.amazon.com/dtconsole/latest/userguide/what-is-dtconsole.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/what-is-dtconsole.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html#service-linked-role-permissions-sync
https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html#service-linked-role-permissions-sync


AWS Proton User Guide

Change Description Date

AWSProtonReadOnlyAccess – 
Update to an existing policy

AWS Proton added a new
GetResourcesSummary
action that allows you to view 
a summary of your templates 
, deployed template resources 
, and out of date resources.

November 18, 2022

AWSProtonCodeBuild 
ProvisioningBasicAccess – 
New policy

AWS Proton added a new 
policy that gives CodeBuild 
the permissions it needs to 
run a build for AWS Proton 
CodeBuild Provisioning.

November 16, 2022

AWSProtonCodeBuild 
ProvisioningServiceRolePolicy
– New policy

AWS Proton added a new 
policy to allow AWS Proton 
to perform operations related 
to CodeBuild-based provision 
ing. The policy is used in 
the AWSServiceRoleForP 
rotonCodeBuildProvisioning
service-linked role.

September 02, 2022

AWSProtonFullAccess – 
Update to an existing policy

AWS Proton updated this 
policy to provide access 
to new AWS Proton API 
operations and to fix 
permission issues for 
some AWS Proton console 
operations.

March 30, 2022

AWS managed policies 352



AWS Proton User Guide

Change Description Date

AWSProtonDeveloperAccess – 
Update to an existing policy

AWS Proton update this 
policy to provide access 
to new AWS Proton API 
operations and to fix 
permission issues for 
some AWS Proton console 
operations.

March 30, 2022

AWSProtonReadOnlyAccess – 
Update to an existing policy

AWS Proton update this 
policy to provide access 
to new AWS Proton API 
operations and to fix 
permission issues for 
some AWS Proton console 
operations.

March 30, 2022

AWSProtonSyncServi 
ceRolePolicy – New policy

AWS Proton added a new 
policy to allow AWS Proton 
to perform operations related 
to template sync. The policy 
is used in the AWSServic 
eRoleForProtonSync service-l 
inked role.

November 23, 2021

AWSProtonFullAccess – New 
policy

AWS Proton added a new 
policy to provide administr 
ative role access to AWS 
Proton API operations and to 
the AWS Proton console.

June 09, 2021

AWSProtonDeveloperAccess – 
New policy

AWS Proton added a new 
policy to provide developer 
role access to AWS Proton API 
operations and to the AWS 
Proton console.

June 09, 2021

AWS managed policies 353



AWS Proton User Guide

Change Description Date

AWSProtonReadOnlyAccess – 
New policy

AWS Proton added a new 
policy to provide read-only 
access to AWS Proton API 
operations and to the AWS 
Proton console.

June 09, 2021

AWS Proton started tracking 
changes.

AWS Proton started tracking 
changes for its AWS managed 
policies.

June 09, 2021

Using service-linked roles for AWS Proton

AWS Proton uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked 
role is a unique type of IAM role that is linked directly to AWS Proton. Service-linked roles are 
predefined by AWS Proton and include all the permissions that the service requires to call other 
AWS services on your behalf.

Topics

• Using roles for AWS Proton sync

• Using roles for CodeBuild-based provisioning

Using roles for AWS Proton sync

AWS Proton uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked 
role is a unique type of IAM role that is linked directly to AWS Proton. Service-linked roles are 
predefined by AWS Proton and include all the permissions that the service requires to call other 
AWS services on your behalf.

A service-linked role makes setting up AWS Proton easier because you don’t have to manually add 
the necessary permissions. AWS Proton defines the permissions of its service-linked roles, and 
unless defined otherwise, only AWS Proton can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

Using service-linked roles 354

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role


AWS Proton User Guide

You can delete a service-linked role only after first deleting their related resources. This protects 
your AWS Proton resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for AWS Proton

AWS Proton uses two service-linked roles named AWSServiceRoleForProtonSync and
AWSServiceRoleForProtonServiceSync.

The AWSServiceRoleForProtonSync service-linked role trusts the following services to assume the 
role:

• sync.proton.amazonaws.com

The role permissions policy named AWSProtonSyncServiceRolePolicy allows AWS Proton to 
complete the following actions on the specified resources:

• Action: create, manage, and read on AWS Proton templates and template versions

• Action: use connection on CodeConnections

AWSProtonSyncServiceRolePolicy

This policy includes the following permissions:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "SyncToProton", 
            "Effect": "Allow", 
            "Action": [ 
                "proton:UpdateServiceTemplateVersion", 
                "proton:UpdateServiceTemplate", 
                "proton:UpdateEnvironmentTemplateVersion", 
                "proton:UpdateEnvironmentTemplate", 
                "proton:GetServiceTemplateVersion", 
                "proton:GetServiceTemplate", 

Using service-linked roles 355

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


AWS Proton User Guide

                "proton:GetEnvironmentTemplateVersion", 
                "proton:GetEnvironmentTemplate", 
                "proton:DeleteServiceTemplateVersion", 
                "proton:DeleteEnvironmentTemplateVersion", 
                "proton:CreateServiceTemplateVersion", 
                "proton:CreateServiceTemplate", 
                "proton:CreateEnvironmentTemplateVersion", 
                "proton:CreateEnvironmentTemplate", 
                "proton:ListEnvironmentTemplateVersions", 
                "proton:ListServiceTemplateVersions", 
                "proton:CreateEnvironmentTemplateMajorVersion", 
                "proton:CreateServiceTemplateMajorVersion" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Sid": "AccessGitRepos", 
            "Effect": "Allow", 
            "Action": [ 
                "codestar-connections:UseConnection",  
                "codeconnections:UseConnection" 
             ], 
            "Resource": [ 
                "arn:aws:codestar-connections:*:*:connection/*", 
                "arn:aws:codeconnections:*:*:connection/*" 
            ] 
        } 
    ]
}

For information on the the AWSProtonSyncServiceRolePolicy, see AWS managed policy: 
AWSProtonSyncServiceRolePolicy.

The AWSServiceRoleForProtonServiceSync service-linked role trusts the following services to 
assume the role:

• service-sync.proton.amazonaws.com

The role permissions policy named AWSServiceRoleForProtonServiceSync allows AWS Proton to 
complete the following actions on the specified resources:

• Action: create, manage, and read on AWS Proton services and service instances

Using service-linked roles 356

https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonSyncServiceRolePolicy
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonSyncServiceRolePolicy


AWS Proton User Guide

AwsProtonServiceGitSyncServiceRolePolicy

This policy includes the following permissions:

{ 
 "Version": "2012-10-17", 
 "Statement": [ 
  { 
   "Sid": "ProtonServiceSync", 
   "Effect": "Allow", 
   "Action": [ 
    "proton:GetService", 
    "proton:UpdateService", 
    "proton:UpdateServicePipeline", 
    "proton:CreateServiceInstance", 
    "proton:GetServiceInstance", 
    "proton:UpdateServiceInstance", 
    "proton:ListServiceInstances", 
    "proton:GetComponent", 
    "proton:CreateComponent", 
    "proton:ListComponents", 
    "proton:UpdateComponent", 
    "proton:GetEnvironment", 
    "proton:CreateEnvironment", 
    "proton:ListEnvironments", 
    "proton:UpdateEnvironment" 
   ], 
   "Resource": "*" 
  } 
 ]
}

For information on the the AwsProtonServiceSyncServiceRolePolicy, see AWS managed policy: 
AwsProtonServiceSyncServiceRolePolicy.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Using service-linked roles 357

https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AwsProtonServiceSyncServiceRolePolicy
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AwsProtonServiceSyncServiceRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions


AWS Proton User Guide

Creating a service-linked role for AWS Proton

You don't need to manually create a service-linked role. When you configure a repository or service 
for sync in AWS Proton in the AWS Management Console, the AWS CLI, or the AWS API, AWS 
Proton creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you configure a repository or service for sync in AWS 
Proton, AWS Proton creates the service-linked role for you again.

To recreate the AWSServiceRoleForProtonSync service-linked role, you would want to configure 
a repository for sync, and to recreate AWSServiceRoleForProtonServiceSync, you would want to 
configure a service for sync.

Editing a service-linked role for AWS Proton

AWS Proton doesn't allow you to edit the AWSServiceRoleForProtonSync service-linked role. After 
you create a service-linked role, you can't change the name of the role because various entities 
might reference the role. However, you can edit the description of the role using IAM. For more 
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for AWS Proton

You don't need to manually delete the AWSServiceRoleForProtonSync role. When you delete all 
AWS Proton linked repositories for repository sync in the AWS Management Console, the AWS CLI, 
or the AWS API, AWS Proton cleans up the resources and deletes the service-linked role for you.

Supported regions for AWS Proton service-linked roles

AWS Proton supports using service-linked roles in all of the AWS Regions where the service 
is available. For more information, see AWS Proton endpoints and quotas in the AWS General 
Reference.

Using roles for CodeBuild-based provisioning

AWS Proton uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked 
role is a unique type of IAM role that is linked directly to AWS Proton. Service-linked roles are 
predefined by AWS Proton and include all the permissions that the service requires to call other 
AWS services on your behalf.

A service-linked role makes setting up AWS Proton easier because you don’t have to manually add 
the necessary permissions. AWS Proton defines the permissions of its service-linked roles, and 

Using service-linked roles 358

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/proton.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role


AWS Proton User Guide

unless defined otherwise, only AWS Proton can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects 
your AWS Proton resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for AWS Proton

AWS Proton uses the service-linked role named AWSServiceRoleForProtonCodeBuildProvisioning
– A Service Linked Role for AWS Proton CodeBuild provisioning.

The AWSServiceRoleForProtonCodeBuildProvisioning service-linked role trusts the following 
services to assume the role:

• codebuild.proton.amazonaws.com

The role permissions policy named AWSProtonCodeBuildProvisioningServiceRolePolicy allows AWS 
Proton to complete the following actions on the specified resources:

• Action: create, manage, and read on AWS CloudFormation stacks and transforms

• Action: create, manage, and read on CodeBuild projects and builds

AWSProtonCodeBuildProvisioningServiceRolePolicy

This policy includes the following permissions:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudformation:CreateStack", 
        "cloudformation:CreateChangeSet", 
        "cloudformation:DeleteChangeSet", 

Using service-linked roles 359

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


AWS Proton User Guide

        "cloudformation:DeleteStack", 
        "cloudformation:UpdateStack", 
        "cloudformation:DescribeStacks", 
        "cloudformation:DescribeStackEvents", 
        "cloudformation:ListStackResources" 
      ], 
      "Resource": [ 
        "arn:aws:cloudformation:*:*:stack/AWSProton-CodeBuild-*" 
      ] 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "codebuild:CreateProject", 
        "codebuild:DeleteProject", 
        "codebuild:UpdateProject", 
        "codebuild:StartBuild", 
        "codebuild:StopBuild", 
        "codebuild:RetryBuild", 
        "codebuild:BatchGetBuilds", 
        "codebuild:BatchGetProjects" 
      ], 
      "Resource": "arn:aws:codebuild:*:*:project/AWSProton*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": "iam:PassRole", 
      "Resource": "*", 
      "Condition": { 
        "StringEqualsIfExists": { 
          "iam:PassedToService": "codebuild.amazonaws.com" 
        } 
      } 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
          "servicequotas:GetServiceQuota" 
      ], 
      "Resource": "*" 
    }     
  ]
}

Using service-linked roles 360



AWS Proton User Guide

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Creating a service-linked role for AWS Proton

You don't need to manually create a service-linked role. When you create an environment that uses 
CodeBuild-based provisioning in AWS Proton in the AWS Management Console, the AWS CLI, or the 
AWS API, AWS Proton creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you create an environment that uses CodeBuild-based 
provisioning in AWS Proton, AWS Proton creates the service-linked role for you again.

Editing a service-linked role for AWS Proton

AWS Proton does not allow you to edit the AWSServiceRoleForProtonCodeBuildProvisioning 
service-linked role. After you create a service-linked role, you cannot change the name of the role 
because various entities might reference the role. However, you can edit the description of the role 
using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for AWS Proton

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don’t have an unused entity that is not actively monitored 
or maintained. However, you must delete all environments and services (instances and pipelines) 
that use CodeBuild-based provisioning in AWS Proton before you can manually delete it.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the 
AWSServiceRoleForProtonCodeBuildProvisioning service-linked role. For more information, see
Deleting a service-linked role in the IAM User Guide.

Supported regions for AWS Proton service-linked roles

AWS Proton supports using service-linked roles in all of the AWS Regions where the service 
is available. For more information, see AWS Proton endpoints and quotas in the AWS General 
Reference.

Using service-linked roles 361

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/proton.html


AWS Proton User Guide

Troubleshooting AWS Proton identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with AWS Proton and IAM.

Topics

• I am not authorized to perform an action in AWS Proton

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS Proton resources

I am not authorized to perform an action in AWS Proton

If the AWS Management Console tells you that you're not authorized to perform an action, then 
you must contact your administrator for assistance. Your administrator is the person that provided 
you with your sign-in credentials.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but does not have the fictional
proton:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 proton:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the proton:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to AWS Proton.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in AWS Proton. However, the action requires the service to have permissions 
that are granted by a service role. Mary does not have permissions to pass the role to the service.

Troubleshooting 362



AWS Proton User Guide

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS Proton 
resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether AWS Proton supports these features, see How AWS Proton works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see Cross account resource access in IAM in the IAM User Guide.

Configuration and vulnerability analysis in AWS Proton

AWS Proton does not provide patches or updates for customer provided code. Customers are 
responsible for updating and applying patches to their own code, including the source code for 
their services and applications that are running on AWS Proton and the code provided in their 
service and environment template bundles.

Customers are responsible for updating and patching infrastructure resources in their 
environments and services. AWS Proton will not automatically update or patch any resources. 

Configuration and vulnerability analysis 363

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html


AWS Proton User Guide

Customers should consult the documentation for the resources in their architecture to understand 
their respective patching policies.

Other than providing customer requested environment and service updates to minor versions 
of service and environment templates, AWS Proton does not provide patches or updates to the 
resources that customers define in their service and environment templates and template bundles.

For more details, see the following resources:

• Shared Responsibility Model

• Amazon Web Services: Overview of Security Processes

Data protection in AWS Proton

AWS Proton conforms to the AWS shared responsibility model which includes regulations and 
guidelines for data protection. AWS is responsible for protecting the global infrastructure that runs 
all the AWS services. AWS maintains control over data hosted on this infrastructure, including the 
security configuration controls for handling customer content and personal data. AWS customers 
and APN partners, acting either as data controllers or data processors, are responsible for any 
personal data that they put in the AWS Cloud

For data protection purposes, we recommend that you protect AWS account credentials and set 
up individual user accounts with AWS Identity and Access Management (IAM), so that each user is 
given only the permissions necessary to fulfill their job duties. We also recommend that you secure 
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

We strongly recommend that you never put sensitive identifying information, such as your 
customers' account numbers, into free-form text fields such as a Name field. This includes when 
you work with AWS Proton or other AWS services using the console, API, AWS CLI, or AWS SDKs. 
Any data that you enter into free form text fields for resource identifiers or similar items related to 
the management of AWS resources might get picked up for inclusion in diagnostic logs. When you 

Data protection 364

https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://aws.amazon.com/compliance/shared-responsibility-model/


AWS Proton User Guide

provide a URL to an external server, don't include credentials information in the URL to validate 
your request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

Server side encryption at rest

If you choose to encrypt sensitive data in your template bundles at rest in the S3 bucket where 
you store your template bundles, you must use an SSE-S3 or SSE-KMS key to allow AWS Proton to 
retrieve the template bundles so they can be attached to a registered AWS Proton template.

Encryption in transit

All service to service communication is encrypted in transit using SSL/TLS.

AWS Proton encryption key management

Within AWS Proton, all customer data is encrypted by default using an AWS Proton owned key. If 
you supply a customer owned and managed AWS KMS key, all customer data is encrypted using the 
customer provided key as described in the following paragraphs.

When you create an AWS Proton template, you specify your key and AWS Proton uses your 
credentials to create a grant which allows AWS Proton to use your key.

If you manually retire the grant or, disable or delete your specified key, then AWS Proton is unable 
to read the data that was encrypted by the specified key and throws ValidationException.

AWS Proton encryption context

AWS Proton supports encryption context headers. An encryption context is an optional set of 
key-value pairs that can contain additional contextual information about the data. For general 
information about encryption context, see AWS Key Management Service Concepts - Encryption 
Context in the AWS Key Management Service Developer Guide.

An encryption context is a set of key–value pairs that contain arbitrary non-secret data. When 
including an encryption context in a request to encrypt data, AWS KMS cryptographically binds 
the encryption context to the encrypted data. To decrypt the data, you must pass in the same 
encryption context.

Server side encryption at rest 365

http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context


AWS Proton User Guide

Customers can use the encryption context to identify use of their customer managed key in 
audit records and logs. It also appears in plaintext in logs, such as AWS CloudTrail and Amazon 
CloudWatch Logs.

AWS Proton does not take in any customer-specified or externally-specified encryption context.

AWS Proton adds the following encryption context.

{ 
  "aws:proton:template": "<proton-template-arn>", 
  "aws:proton:resource": "<proton-resource-arn>"  
}

The first encryption context identifies the AWS Proton template that the resource is associated 
with and also serves as a constraint for customer managed key permissions and grants.

The second encryption context identifies the AWS Proton resource that is encrypted.

The following examples show AWS Proton encryption context use.

Developer creating a service instance.

{ 
  "aws:proton:template": "arn:aws:proton:region_id:123456789012:service-template/my-
template", 
  "aws:proton:resource": "arn:aws:proton:region_id:123456789012:service/my-service/
service-instance/my-service-instance"  
}

An administrator creating a template.

{ 
  "aws:proton:template": "arn:aws:proton:region_id:123456789012:service-template/my-
template", 
  "aws:proton:resource": "arn:aws:proton:region_id:123456789012:service-template/my-
template"
}

AWS Proton encryption context 366



AWS Proton User Guide

Infrastructure security in AWS Proton

As a managed service, AWS Proton is protected by AWS global network security. For information 
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To 
design your AWS environment using the best practices for infrastructure security, see Infrastructure 
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS Proton through the network. Clients must support 
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

To improve network isolation, you can use AWS PrivateLink as described in the following section.

AWS Proton and interface VPC endpoints (AWS PrivateLink)

You can establish a private connection between your VPC and AWS Proton by creating an interface 
VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that enables you 
to privately access AWS Proton APIs without an internet gateway, NAT device, VPN connection, 
or AWS Direct Connect connection. Instances in your VPC don't need public IP addresses to 
communicate with AWS Proton APIs. Traffic between your VPC and AWS Proton does not leave the 
Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User 
Guide.

Considerations for AWS Proton VPC endpoints

Before you set up an interface VPC endpoint for AWS Proton, ensure that you review Interface 
endpoint properties and limitations in the Amazon VPC User Guide.

Infrastructure security 367

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations


AWS Proton User Guide

AWS Proton supports making calls to all of its API actions from your VPC.

VPC endpoint policies are supported for AWS Proton. By default, full access to AWS Proton is 
allowed through the endpoint. For more information, see Controlling access to services with VPC 
endpoints in the Amazon VPC User Guide.

Creating an interface VPC endpoint for AWS Proton

You can create a VPC endpoint for the AWS Proton service using either the Amazon VPC console 
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface 
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for AWS Proton using the following service name:

• com.amazonaws.region.proton

If you enable private DNS for the endpoint, you can make API requests to AWS Proton using its 
default DNS name for the Region, for example, proton.region.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC 
User Guide.

Creating a VPC endpoint policy for AWS Proton

You can attach an endpoint policy to your VPC endpoint that controls access to AWS Proton. The 
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC 
User Guide.

Example: VPC endpoint policy for AWS Proton actions

The following is an example of an endpoint policy for AWS Proton. When attached to an endpoint, 
this policy grants access to the listed AWS Proton actions for all principals on all resources.

{ 

VPC endpoints (AWS PrivateLink) 368

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html


AWS Proton User Guide

  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Principal": "*", 
      "Action": [ 
        "proton:ListServiceTemplates", 
        "proton:ListServiceTemplateMajorVersions", 
        "proton:ListServiceTemplateMinorVersions", 
        "proton:ListServices", 
        "proton:ListServiceInstances", 
        "proton:ListEnvironments", 
        "proton:GetServiceTemplate", 
        "proton:GetServiceTemplateMajorVersion", 
        "proton:GetServiceTemplateMinorVersion", 
        "proton:GetService", 
        "proton:GetServiceInstance", 
        "proton:GetEnvironment", 
        "proton:CreateService", 
        "proton:UpdateService", 
        "proton:UpdateServiceInstance", 
        "proton:UpdateServicePipeline", 
        "proton:DeleteService" 
      ], 
      "Effect": "Allow", 
      "Resource": "*" 
    } 
  ]
}

Logging and monitoring in AWS Proton

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS 
Proton and your other AWS solutions. AWS provides the following monitoring tools to watch your 
instances running in AWS Proton, report when something is wrong, and take automatic actions 
when appropriate.

At this time, AWS Proton itself is not integrated with Amazon CloudWatch Logs or AWS Trusted 
Advisor. Administrators can configure and use CloudWatch to monitor other AWS services as 
defined in their service and environment templates. AWS Proton is integrated with AWS CloudTrail.

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real 
time. You can collect and track metrics, create customized dashboards, and set alarms that notify 

Logging and monitoring 369



AWS Proton User Guide

you or take actions when a specified metric reaches a threshold that you specify. For example, 
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances 
and automatically launch new instances when needed. For more information, see the Amazon 
CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon 
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the 
log files and notify you when certain thresholds are met. You can also archive your log data in 
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account 
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users 
and accounts called AWS, the source IP address from which the calls were made, and when the 
calls occurred. For more information, see the AWS CloudTrail User Guide.

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your 
applications with data from a variety of sources. EventBridge delivers a stream of real-time data 
from your own applications, Software-as-a-Service (SaaS) applications, and AWS services and 
routes that data to targets such as Lambda. This enables you to monitor events that happen in 
services, and build event-driven architectures. For more information, see Automate AWS Proton 
with EventBridge and the EventBridge User Guide.

Resilience in AWS Proton

The AWS global infrastructure is built around AWS Region and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you 
can design and operate applications and databases that automatically fail over between zones 
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than 
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS Proton offers features to help support your data 
resiliency and backup needs.

AWS Proton backups

AWS Proton maintains a backup of all customer data. In the case of a total outage, this backup can 
be used to restore AWS Proton and customer data from a previous valid state.

Resilience 370

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://aws.amazon.com/about-aws/global-infrastructure/


AWS Proton User Guide

Security best practices for AWS Proton

AWS Proton provides security features to consider as you develop and implement your own 
security policies. The following best practices are general guidelines and don’t represent a 
complete security solution. Because these best practices might not be appropriate or sufficient for 
your environment, treat them as helpful considerations rather than prescriptions.

Topics

• Use IAM to control access

• Do not embed credentials in your templates and template bundles

• Use encryption to protect sensitive data

• Use AWS CloudTrail to view and log API calls

Use IAM to control access

IAM is an AWS service that you can use to manage users and their permissions in AWS. You can 
use IAM with AWS Proton to specify which AWS Proton actions administrators and developers can 
perform, such as managing templates, environments or services. You can use IAM service roles to 
allow AWS Proton to make calls to other services on your behalf.

For more information on AWS Proton and IAM roles, see Identity and Access Management for AWS 
Proton.

Implement least privilege access. For more information, see Policies and permissions in IAM in the
AWS Identity and Access Management User Guide.

Do not embed credentials in your templates and template bundles

Rather than embedding sensitive information in your AWS CloudFormation templates and 
template bundles, we recommend you use dynamic references in your stack template.

Dynamic references provide a compact, powerful way for you to reference external values that 
are stored and managed in other services, such as the AWS Systems Manager Parameter Store or 
AWS Secrets Manager. When you use a dynamic reference, CloudFormation retrieves the value of 
the specified reference when necessary during stack and change set operations, and passes the 
value to the appropriate resource. However, CloudFormation never stores the actual reference 
value. For more information, see Using Dynamic References to Specify Template Values in the AWS 
CloudFormation User Guide.

Security best practices 371

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html


AWS Proton User Guide

AWS Secrets Manager helps you to securely encrypt, store, and retrieve credentials for your 
databases and other services. The AWS Systems Manager Parameter Store provides secure, 
hierarchical storage for configuration data management.

For more information on defining template parameters, see https://docs.aws.amazon.com/ 
AWSCloudFormation/latest/UserGuide/parameters-section-structure.html in the AWS 
CloudFormation User Guide.

Use encryption to protect sensitive data

Within AWS Proton, all customer data is encrypted by default using an AWS Proton owned key.

As a member of the platform team, you can provide a customer managed key to AWS Proton to 
encrypt and secure your sensitive data. Encrypt sensitive data at rest in your S3 bucket. For more 
information, see Data protection in AWS Proton.

Use AWS CloudTrail to view and log API calls

AWS CloudTrail tracks anyone making API calls in your AWS account. API calls are logged whenever 
anyone uses the AWS Proton API, the AWS Proton console or AWS Proton AWS CLI commands. 
Enable logging and specify an Amazon S3 bucket to store the logs. That way, if you need to, you 
can audit who made what AWS Proton call in your account. For more information, see Logging and 
monitoring in AWS Proton.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to 
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service 
impersonation can result in the confused deputy problem. Cross-service impersonation can occur 
when one service (the calling service) calls another service (the called service). The calling service 
can be manipulated to use its permissions to act on another customer's resources in a way it should 
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect 
your data for all services with service principals that have been given access to resources in your 
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context 
keys in resource policies to limit the permissions that AWS Proton gives another service to the 
resource. If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 

Use encryption to protect sensitive data 372

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount


AWS Proton User Guide

bucket ARN, you must use both global condition context keys to limit permissions. If you use 
both global condition context keys and the aws:SourceArn value contains the account ID, the
aws:SourceAccount value and the account in the aws:SourceArn value must use the same 
account ID when used in the same policy statement. Use aws:SourceArn if you want only one 
resource to be associated with the cross-service access. Use aws:SourceAccount if you want to 
allow any resource in that account to be associated with the cross-service use.

The value of aws:SourceArn must be a resource that AWS Proton stores.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know 
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws::proton:*:123456789012:environment/*.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in AWS Proton to prevent the confused deputy problem.

{ 
    "Version": "2012-10-17", 
    "Statement": { 
        "Sid": "ExampleProtonConfusedDeputyPreventionPolicy", 
        "Effect": "Allow", 
        "Principal": {"Service": "proton.amazonaws.com"}, 
        "Action": "sts:AssumeRole", 
        "Condition": { 
            "StringEquals": { 
                "aws:SourceAccount": "123456789012" 
            }, 
            "ArnLike": { 
                "aws:SourceArn": "arn:aws::proton:*:123456789012:environment/*" 
            } 
        } 
    }
}

CodeBuild provisioning custom Amazon VPC support

AWS Proton CodeBuild Provisioning executes arbitrary customer-supplied CLI commands in a 
CodeBuild project located in the AWS Proton Environment account. These commands typically 

Codebuild custom support 373



AWS Proton User Guide

manage resource susing an Infrastructure as Code (IaC) tool, such as CDK. If you have resources in 
a Amazon VPC, CodeBuild may not be able to access them. To enable this, CodeBuild supports the 
ability to run within a specific Amazon VPC. A few example uses cases include:

• Retrieve dependencies from self-hosted, internal artifact repositories, such as PyPI for Python,
Maven for Java, and npm for Node.js

• CodeBuild needs to access a Jenkins server in a particular Amazon VPC to register a pipeline.

• Access objects in an Amazon S3 bucket configured to allow access through an Amazon VPC 
endpoint only.

• Run integration tests from your build against data in an Amazon RDS database that's isolated on 
a private subnet.

For more information, see CodeBuild and VPC documentation.

If you want CodeBuild Provisioning to run in a custom VPC, AWS Proton provides a straightforward 
solution. First, you must add the VPC ID, subnets, and security groups to the environment 
template. Next, you enter those values into the environment spec. This will result in a CodeBuild 
project being created for you that targets a given VPC.

Updating the Environment Template

Schema

The VPC ID, subnets, and security groups need to be added to the template schema so they can 
exist in the environment spec.

An example schema.yaml:

schema: 
  format: 
    openapi: "3.0.0" 
  environment_input_type: "EnvironmentInputType" 
  types: 
    EnvironmentInputType: 
      type: object 
      properties: 
        codebuild_vpc_id: 
          type: string 
        codebuild_subnets: 

Updating the Environment Template 374

https://docs.aws.amazon.com/codebuild/latest/userguide/vpc-support.html#use-cases


AWS Proton User Guide

          type: array 
          items: 
            type: string 
        codebuild_security_groups: 
          type: array 
          items: 
            type: string

This adds three new properties that will be used by the manifest:

• codebuild_vpc_id

• codebuild_subnets

• codebuild_security_groups

Manifest

To configure Amazon VPC settings in CodeBuild, an optional property called
project_properties is available in the template manifest. Contents of project_properties
are added to the AWS CloudFormation stack that creates the CodeBuild project. This makes it 
possible to add not only Amazon VPC AWS CloudFormation properties, but also any supported
CodeBuild CloudFormation property, such as build timeout. The same data provided to proton-
inputs.json is made available to the values of project_properties.

Add this section to your manifest.yaml:

project_properties: 
          VpcConfig: 
            VpcId: "{{ environment.inputs.codebuild_vpc_id }}" 
            Subnets: "{{ environment.inputs.codebuild_subnets }}" 
            SecurityGroupIds: "{{ environment.inputs.codebuild_security_groups }}"

The following is what the resulting manifest.yaml may look like:

infrastructure: 
  templates: 
    - rendering_engine: codebuild 
      settings: 
        image: aws/codebuild/amazonlinux2-x86_64-standard:4.0 
        runtimes: 
          nodejs: 16 

Updating the Environment Template 375

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-codebuild-project-vpcconfig.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codebuild-project.html


AWS Proton User Guide

        provision: 
          - npm install 
          - npm run build 
          - npm run cdk bootstrap 
          - npm run cdk deploy -- --require-approval never 
        deprovision: 
          - npm install 
          - npm run build 
          - npm run cdk destroy -- --force 
        project_properties: 
          VpcConfig: 
            VpcId: "{{ environment.inputs.codebuild_vpc_id }}" 
            Subnets: "{{ environment.inputs.codebuild_subnets }}" 
            SecurityGroupIds: "{{ environment.inputs.codebuild_security_groups }}"

Creating the environment

When you create an environment with your CodeBuild Provisioning VPC-enabled template, you 
must provide the Amazon VPC ID, subnets, and security groups.

To get a list of all Amazon VPC IDs in your Region, run the following command:

aws ec2 describe-vpcs

To get a list of all the subnet IDs, run:

aws ec2 describe-subnets --filters "Name=vpc-id,Values=vpc-id"

Important

Only include private subnets. CodeBuild will fail if you provide public subnets. Public 
subnets have a default route to an Internet Gateway, while private subnets don't.

Run the following command to obtain the security group IDs. These IDs can also be obtained 
through the AWS Management Console:

aws ec2 describe-security-groups --filters "Name=vpc-id,Values=vpc-id"

The values will resemble:

Updating the Environment Template 376

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Internet_Gateway.html


AWS Proton User Guide

vpc-id: vpc-045ch35y28dec3a05
subnets: 
  - subnet-04029a82e6ae46968 
  - subnet-0f500a9294fc5f26a 
 security-groups: 
  - sg-03bc4c4ce32d67e8d

Ensuring CodeBuild permissions

Amazon VPC support requires certain permissions, such as the ability to create an Elastic Network 
Interface.

If the environment is being created in the console, enter these values during the environment 
creation wizard. If you want to programmatically create the environment, your spec.yaml looks 
like the following:

proton: EnvironmentSpec

spec: 
  codebuild_vpc_id: vpc-045ch35y28dec3a05
  codebuild_subnets: 
    - subnet-04029a82e6ae46968
    - subnet-0f500a9294fc5f26a
  codebuild_security_groups: 
    - sg-03bc4c4ce32d67e8d

Updating the Environment Template 377



AWS Proton User Guide

AWS Proton resources and tagging

AWS Proton resources that are assigned an Amazon Resource Name (ARN) include environment 
templates and their major and minor versions, service templates and their major and minor 
versions, environments, services, service instances, components, and repositories. You can tag these 
resources to help you organize and identify them. You can use tags to categorize resources by 
purpose, owner, environment, or other criteria. For more information, see  Tagging Strategies. To 
track and manage your AWS Proton resources, you can use the tagging features described in the 
following sections.

AWS tagging

You can assign metadata to your AWS resources in the form of tags. Each tag consists of a 
customer defined key and optional value. Tags can help you manage, identify, organize, search for, 
and filter resources.

Important

Do not add personally identifiable information (PII) or other confidential or sensitive 
information in tags. Tags are accessible to many AWS services, including billing. Tags are 
not intended to be used for private or sensitive data.

Each tag has two parts.

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• A tag value (optional) (for example, 111122223333 or Production). Like tag keys, tag values 
are case sensitive.

The following basic naming and usage requirements apply to tags.

• Each resource can have a maximum of 50 user created tags.

AWS tagging 378

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/


AWS Proton User Guide

Note

System created tags that begin with the aws: prefix are reserved for AWS use, and do 
not count against this limit. You can't edit or delete a tag that begins with the aws:
prefix.

• For each resource, each tag key must be unique, and each tag key can have only one value.

• The tag key must be a minimum of 1 and a maximum of 128 Unicode characters in UTF-8.

• The tag value must be a minimum of 1 and a maximum of 256 Unicode characters in UTF-8.

• Allowed characters in tags are letters, numbers, spaces representable in UTF-8, and the following 
characters:* _ . : / = + - @.

AWS Proton tagging

With AWS Proton, you can use both the tags that you create as well as the tags that AWS Proton 
automatically generates for you.

AWS Proton AWS managed tags

When you create an AWS Proton resource, AWS Proton automatically generates AWS managed tags 
for your new resource as shown in the following diagram. AWS managed tags later propagate to 
other AWS Proton resources that are based on your new resource. For example, managed tags from 
an environment template propagate to its versions, and managed tags from a service propagate to 
its service instances.

Note

AWS managed tags aren’t generated for environment account connections. For more 
information, see the section called “Account connections”.

AWS Proton tagging 379



AWS Proton User Guide

Tag propagation to provisioned resources

If provisioned resources, such as those defined in service and environment templates, support AWS 
tagging, the AWS managed tags propagate as customer managed tags to provisioned resources. 
These tags won't propagate to a provisioned resource that doesn't support AWS tagging.

AWS Proton applies tags to your resources by AWS Proton accounts, registered templates and 
deployed environments, as well as services and service instances as described in the following 
table. You can use AWS managed tags to view and manage your AWS Proton resources, but you 
can't modify them.

Tag propagation to provisioned resources 380



AWS Proton User Guide

AWS managed tag key Propagated customer 
managed key

Description

aws:proton:account proton:account The AWS account that creates 
and deploys AWS Proton 
resources.

aws:proton:template proton:template The ARN of a selected 
template.

aws:proton:environ 
ment

proton:environment The ARN of a selected 
environment.

aws:proton:service proton:service The ARN of a selected service.

aws:proton:service-
instance

proton:service-ins 
tance

The ARN of a selected service 
instance.

aws:proton:component proton:component The ARN of a selected 
component.

The following is an example of an AWS managed tag for an AWS Proton resource.

"aws:proton:template" = "arn:aws:proton:region-id:account-id:environment-template/env-
template"

The following is an example of a customer managed tag applied to a provisioned resource that was 
propagated from an AWS managed tag.

"proton:environment:database" = "arn:aws:proton:region-id:account-id:rds/env-db"

With AWS-managed provisioning, AWS Proton applies propagated tags directly to provisioned 
resources.

With self-managed provisioning, AWS Proton makes propagated tags available together with the 
rendered IaC files that it submits in the provisioning pull request (PR). Tags are provided in the 
string map variable proton_tags. We recommend that you make a reference to this variable in 

Tag propagation to provisioned resources 381



AWS Proton User Guide

your Terraform configuration to include AWS Proton tags in default_tags. This propagates AWS 
Proton tags to all provisioned resources.

The following example shows this method of tag propagation in an environment Terraform 
template.

Here's the proton_tags variable definition:

proton.environment.variables.tf:

variable "environment" { 
  type = object({ 
    inputs = map(string) 
    name = string 
  })
}

variable "proton_tags" { 
  type = map(string) 
  default = null
}

Here's how tag values are assigned to this variable:

proton.auto.tfvars.json:

{ 
  "environment": { 
    "name": "dev", 
    "inputs": { 
      "ssm_parameter_value": "MyNewParamValue" 
    } 
  } 

  "proton_tags" : { 
    "proton:account" : "123456789012", 
    "proton:template" : "arn:aws:proton:us-east-1:123456789012:environment-template/
fargate-env", 
    "proton:environment" : "arn:aws:proton:us-east-1:123456789012:environment/dev" 
  }
}

Tag propagation to provisioned resources 382



AWS Proton User Guide

And here's how you can add AWS Proton tags to your Terraform configuration so that they're 
added to provisioned resources:

# Configure the AWS Provider
provider "aws" { 
  region = var.aws_region 
   default_tags { 
    tags = var.proton_tags 
  }
}

Customer managed tags

Each AWS Proton resource has a maximum quota of 50 customer managed tags. Customer 
managed tags propagate to child AWS Proton resources in the same way that AWS managed tags 
do, except they don't propagate to existing AWS Proton resources or to provisioned resources. If 
you apply a new tag to an AWS Proton resource with existing child resources and you want the 
existing child resources to be tagged with the new tag, you need to tag each existing child resource 
manually, using the console or AWS CLI.

Create tags using the console and CLI

When you create an AWS Proton resource using the console, you're given the opportunity to create 
customer managed tags either on the first or second page of the create procedure as shown in the 
following console snapshot. Choose Add new tag, enter the key and value and proceed.

Customer managed tags 383



AWS Proton User Guide

After you create a new resource using the AWS Proton console, you can view its list of AWS 
managed and customer managed tags from the detail page.

Create or edit a tag

1. In the AWS Proton console, open an AWS Proton resource detail page where you can see a list 
of tags.

2. Choose Manage tags.

3. In the Manage tags page, you can view, create, remove and edit tags. You can’t modify the 
AWS managed tags listed at the top. However, you can add to and modify the customer 
managed tags with editing fields, listed after the AWS managed tags.

Choose Add new tag to create a new tag.

4. Enter a key and value for the new tag.

5. To edit a tag, enter a value in the tag value field for a selected key.

6. To delete a tag choose Remove for a selected tag.

7. When you have completed your changes, choose Save changes.

Create tags using the console and CLI 384

https://console.aws.amazon.com/proton/


AWS Proton User Guide

Create tags using the AWS Proton AWS CLI

You can view, create, remove and edit tags using the AWS Proton AWS CLI.

You can create or edit a tag for a resource as shown in the following example.

$ aws proton tag-resource \ 
    --resource-arn "arn:aws:proton:region-id:account-id:service-template/webservice" \ 
    --tags '[{"key":"mykey1","value":"myval1"},{"key":"mykey2","value":"myval2"}]'

You can remove a tag for a resource as shown in the next example.

$ aws proton untag-resource \ 
    --resource-arn "arn:aws:proton:region-id:account-id:service-template/webservice" \ 
    --tag-keys '["mykey1","mykey2"]'

You can list tags for a resource as shown in the final example.

$ aws proton list-tags-for-resource \ 
    --resource-arn "arn:aws:proton:region-id:account-id:service-template/webservice"

Create tags using the AWS Proton AWS CLI 385



AWS Proton User Guide

Troubleshooting AWS Proton

Learn to troubleshoot issues with AWS Proton.

Topics

• Deployment errors that reference AWS CloudFormation dynamic parameters

Deployment errors that reference AWS CloudFormation 
dynamic parameters

If you see deployment errors that reference your CloudFormation dynamic variables, verify that 
they are Jinja escaped. These errors can be caused by Jinja misinterpretation of your dynamic 
variables. The CloudFormation dynamic parameter syntax is very similar the Jinja syntax you use 
with your AWS Proton parameters.

Example CloudFormation dynamic variable syntax:

'{{resolve:secretsmanager:MySecret:SecretString:password:EXAMPLE1-90ab-
cdef-fedc-ba987EXAMPLE}}'.

Example AWS Proton parameter Jinja syntax:

'{{ service_instance.environment.outputs.env-outputs }}'.

To avoid these misinterpretation errors, Jinja escape your CloudFormation dynamic parameters as 
shown in the following examples.

This example is from the AWS CloudFormation User Guide. The AWS Secrets Manager secret-name 
and json-key segments can be used to retrieve the sign-in credentials stored in the secret.

MyRDSInstance: 
  Type: AWS::RDS::DBInstance 
  Properties: 
    DBName: 'MyRDSInstance' 
      AllocatedStorage: '20' 
      DBInstanceClass: db.t2.micro 
      Engine: mysql 
      MasterUsername: '{{resolve:secretsmanager:MyRDSSecret:SecretString:username}}' 

Deployment errors that reference AWS CloudFormation dynamic parameters 386

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://jinja.palletsprojects.com/en/2.11.x/templates/#escaping


AWS Proton User Guide

      MasterUserPassword: 
 '{{resolve:secretsmanager:MyRDSSecret:SecretString:password}}'

To escape the CloudFormation dynamic parameters you can use two different methods:

• Enclose a block between {% raw %} and {% endraw %}:

'{% raw %}'
MyRDSInstance: 
  Type: AWS::RDS::DBInstance 
  Properties: 
    DBName: 'MyRDSInstance' 
      AllocatedStorage: '20' 
      DBInstanceClass: db.t2.micro 
      Engine: mysql 
      MasterUsername: '{{resolve:secretsmanager:MyRDSSecret:SecretString:username}}' 
      MasterUserPassword: 
 '{{resolve:secretsmanager:MyRDSSecret:SecretString:password}}'
'{% endraw %}'

• Enclose a parameter between "{{ }}":

MyRDSInstance: 
  Type: AWS::RDS::DBInstance 
  Properties: 
    DBName: 'MyRDSInstance' 
      AllocatedStorage: '20' 
      DBInstanceClass: db.t2.micro 
      Engine: mysql 
      MasterUsername: 
 "{{ '{{resolve:secretsmanager:MyRDSSecret:SecretString:username}}' }}" 
      MasterUserPassword: 
 "{{ '{{resolve:secretsmanager:MyRDSSecret:SecretString:password}}' }}"

For information, see Jinja escaping.

Deployment errors that reference AWS CloudFormation dynamic parameters 387

https://jinja.palletsprojects.com/en/2.11.x/templates/#escaping


AWS Proton User Guide

AWS Proton quotas

The following table lists AWS Proton quotas. All values are per AWS account, per supported AWS 
Region.

Resource quota Default limit Adjustable?

Maximum size of template bundle 10 MB ☓ No

Maximum size of template manifest file 2 MB ☓ No

Maximum size of template schema file 2 MB ☓ No

Maximum size of each template file 2 MB ☓ No

Maximum length of each template name 100 
characters

☓ No

Maximum number of CloudFormation template files per 
bundle

1 ☓ No

Maximum number of registered templates per account, service 
and environment templates combined

1000 ✓ Yes

Maximum number of template versions registered per 
template

1000 ✓ Yes

Maximum number of files per CodeBuild Provisioning bundle 500 ☓ No

Maximum number of environments per account 1000 ✓ Yes

Maximum number of services per account 1000 ✓ Yes

Maximum number of service instances per service 20 ✓ Yes

Maximum number of components per account 1000 ✓ Yes

Maximum number of environment account connections per 
environment account

1000 ✓ Yes

388



AWS Proton User Guide

Document history

The following table describes the important changes to the documentation related to the 
latest release of AWS Proton and customer feedback. For notification about updates to this 
documentation, you can subscribe to an RSS feed.

• API version: 2020-07-20

Change Description Date

Managed policy update AWSProtonDeveloper 
Access  policy was updated.

April 25, 2024

Managed policy update AWSProtonFullAccess
policy was updated.

April 25, 2024

Managed policy update AWSProtonSyncServi 
ceRolePolicy  policy was 
updated.

April 25, 2024

Managed policy update AWSProtonCodeBuild 
ProvisioningServic 
eRolePolicy  policy was 
updated.

May 12, 2023

Service sync configurations. AWS Proton adds support for
service sync configurations.

March 31, 2023

CodeBuild AWS Proton adds support for
CodeBuild provisioning.

November 16, 2022

Managed policy update Added AWSProton 
CodeBuildProvision 
ingBasicAccess  policy 
that gives CodeBuild the 
permissions it needs to 

November 11, 2022

389

https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonDeveloperAccess
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonDeveloperAccess
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonFullAccess
https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html#service-linked-role-permissions-sync
https://docs.aws.amazon.com/proton/latest/userguide/using-service-linked-roles-sync.html#service-linked-role-permissions-sync
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonCodeBuildProvisioningServiceRolePolicy
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonCodeBuildProvisioningServiceRolePolicy
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonCodeBuildProvisioningServiceRolePolicy
https://docs.aws.amazon.com/proton/latest/userguide/ag-service-sync-configs.html
https://docs.aws.amazon.com/proton/latest/userguide/ag-infrastructure-tmp-files-codebuild.html
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonCodeBuildProvisioningBasicAccess
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonCodeBuildProvisioningBasicAccess
https://docs.aws.amazon.com/proton/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSProtonCodeBuildProvisioningBasicAccess


AWS Proton User Guide

run a build for AWS Proton 
CodeBuild Provisioning.

Terraform tag propagation Added Terraform tag 
propagation to the Tagging
chapter.

September 16, 2022

API migration guide Removed the pre-GA API 
migration guide.

August 12, 2022

AWS Proton objects Added a topic about AWS 
Proton objects and their 
relationship to other AWS and 
third-party objects. See AWS 
Proton objects.

July 29, 2022

Linked repository clarifica 
tions

Clarified the purpose of linked 
(registered) repositories and 
their usage across the guide.

July 18, 2022

Guide merge Merged the two separate 
administrator and user guides 
into a single guide, the AWS 
Proton User Guide.

June 30, 2022

Managed policy update Updated managed policies 
to provide access to new 
AWS Proton API operation 
s and to fix permission 
issues for some AWS Proton 
console operations. See AWS 
managed policies for AWS 
Proton.

June 20, 2022

Getting started with the CLI Updated Getting started 
with the AWS CLI with a new 
tutorial that uses the new 
template library.

June 14, 2022

390

resources.html
ag-works-objects.html
ag-works-objects.html
security-iam-awsmanpol.html
security-iam-awsmanpol.html
security-iam-awsmanpol.html
ag-getting-started-cli.html
ag-getting-started-cli.html


AWS Proton User Guide

Directly defined components Added the Components
chapter and made related 
modifications throughout the 
guide.

June 1, 2022

AWS Proton template library Added The AWS Proton 
template library topic.

May 6, 2022

Terraform general availability 
(GA)

Renamed pull request 
provisioning to self-managed 
provisioning. Added Provision 
ing methods topic.

March 23, 2022

Repository tagging Added support for tagging 
Repository resources. See
Create a link to your repositor 
y.

March 23, 2022

Documentation update Added environment account 
connection tagging.

November 26, 2021

Template syncs and Terraform 
preview

Added automated template 
versioning with the template 
sync feature for general 
availability and pull request 
provisioning with Terraform in 
preview. API migration guide 
back in.

November 24, 2021

Documentation updates Added EventBridge tutorial,
Getting started workflow,
How AWS Proton works, and
Template bundle section 
enhancements.

September 17, 2021

391

ag-components.html
ag-getting-started-templates.html
ag-getting-started-templates.html
ag-works-prov-methods.html
ag-works-prov-methods.html
ag-create-repo.html
ag-create-repo.html
ag-template-sync-configs.html
ag-template-sync-configs.html
ag-infrastructure-tmp-files.html
ag-infrastructure-tmp-files.html
event-tutorial-sns.html
ag-admin-workflow.html
ag-works.html
ag-template-authoring.html#ag-template-bundles


AWS Proton User Guide

AWS Proton console help 
panels release

Help panels added to the 
console. Console template 
version delete no longer 
deletes lower versions. The 
API migration guide has been 
removed.

September 8, 2021

AWS Proton general availabil 
ity (GA) release

Added cross account 
environments, EventBridge 
monitoring, IAM condition 
keys, idempotency support, 
and increased quotas.

June 9, 2021

Add and delete service 
instances for a service and 
use existing external infrastru 
cture for environments with 
AWS Proton

This public preview release 
includes updates that make 
it possible for you to add and 
delete service instances from 
a service, to use your existing 
external infrastructure in an 
AWS Proton environment
and to cancel environment, 
service instance and pipeline 
deployments. AWS Proton 
now supports PrivateLink. An 
additional deletion validatio 
n has been added to prevent 
a minor version from being 
mistakenly deleted while a 
resource is using it.

April 27, 2021

Tagging with AWS Proton Public preview release 2 
includes AWS Proton tagging
and the ability to launch 
services without a service 
pipeline.

March 5, 2021

392

ag-env-account-connections.html
ag-env-account-connections.html
monitoring.html
monitoring.html
security_iam_service-with-iam.html
security_iam_service-with-iam.html
ag-limits.html
ag-svc-update.html
ag-svc-update.html
ag-svc-update.html
template-create.html
template-create.html
template-create.html
infrastructure-security.html
resources.html
ag-create-svc.html
ag-create-svc.html


AWS Proton User Guide

Initial release Public preview release is now 
available in selected regions.

December 1, 2020

393



AWS Proton User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

394

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Proton
	Table of Contents
	What is AWS Proton?
	AWS Proton for platform teams
	AWS Proton for developers
	AWS Proton workflow

	Setting up
	Setting up with IAM
	Sign up for AWS
	Create an IAM user
	Setting up AWS Proton service roles

	Setting up with AWS Proton
	Setting up an Amazon S3 bucket
	Setting up an AWS CodeStar connection
	Setting up account CI/CD pipeline settings
	AWS-managed and CodeBuild-based provisioning—set up pipeline roles
	Self-managed provisioning—set up a pipeline repository

	Setting up the AWS CLI


	Getting started with AWS Proton
	Prerequisites
	Getting started workflow
	Getting started with the AWS Management Console
	Step 1: Open the AWS Proton console
	Step 2: Prepare to use the example templates
	Step 3: Create an environment template
	Step 4: Create a service template
	Step 5: Create an environment
	Step 6: Optional - Create a service and deploy an application
	Step 7: Clean up.

	Getting started with the AWS CLI
	Step 1: Register an environment template
	Step 2: Register a service template
	Step 3: Deploy an environment
	Step 4: Deploy a service [application developer]
	Step 5: Clean up (optional)

	The AWS Proton template library

	How AWS Proton works
	AWS Proton objects
	How AWS Proton provisions infrastructure
	How AWS-managed provisioning works
	Considerations for AWS-managed provisioning

	How CodeBuild provisioning works
	Considerations for CodeBuild provisioning

	How self-managed provisioning works
	Considerations for self-managed provisioning


	AWS Proton terminology

	Authoring templates and creating bundles for AWS Proton
	Template bundles
	AWS Proton parameters
	Parameter types
	Using AWS Proton parameters in your IaC files
	Environment CloudFormation IaC file parameter details and examples
	Define environment parameters
	Read parameter values in environment IaC files
	Example environment and service IaC files with parameters

	Service CloudFormation IaC file parameter details and examples
	Define service parameters
	Read parameter values in service IaC files
	Example service IaC file with parameters

	Component CloudFormation IaC file parameter details and examples
	Define component output parameters
	Read parameter values in component IaC files
	Example component and service IaC files with parameters

	Parameter filters for CloudFormation IaC files
	Format environment properties for Amazon ECS tasks
	Example

	Format environment properties for Lambda functions
	Example

	Extract IAM policy ARNs to include in IAM roles
	Example

	Sanitize property values
	Example

	Provide default values for nonexistent references
	Example


	CodeBuild provisioning parameter details and examples
	Input parameters
	Example: using the AWS CDK with CodeBuild provisioning

	Output parameters

	Terraform infrastructure as code (IaC) file parameter details and examples

	AWS Proton infrastructure as code files
	AWS CloudFormation IaC files
	Start with your own existing infrastructure as code files
	Example 1: CloudFormation IaC file
	Example 2: CloudFormation IaC file

	Bring your infrastructure as code to AWS Proton
	Example 3: AWS Proton environment infrastructure as code file
	Example 4: AWS Proton service instance IaC file
	Example 5: AWS Proton service pipeline IaC file


	CodeBuild provisioning template bundle
	Example: using the AWS CDK with CodeBuild provisioning
	Manifest
	Schema
	AWS CDK files
	Rendered input file


	Terraform IaC files
	Example 1: AWS Proton environment Terraform IaC file
	Compiled infrastructure as code
	Example 2: compiled IaC files for an environment named "dev".

	Repository paths


	Schema file
	Schema requirements for environment template bundles
	Schema requirements for service template bundles

	Wrap up template files for AWS Proton
	Environment template bundle wrap up
	Service template bundle wrap up

	Template bundle considerations

	AWS Proton templates
	Versioned templates
	Register and publish templates
	Register and publish environment templates
	Register and publish service templates

	View template data
	Update a template
	Delete templates
	Template sync configurations
	Pushing a commit to a synced template bundle
	Syncing service templates
	Template sync configuration considerations
	Create a template sync configuration
	Syncing service templates

	View template sync configuration details
	Edit a template sync configuration
	Delete a template sync configuration

	Service sync configurations
	AWS Proton OPS file
	Create a service sync configuration
	View configuration details for a service sync
	Edit a service sync configuration
	Delete a service sync configuration


	AWS Proton environments
	IAM Roles
	AWS Proton service role

	Create an environment
	Create and provision a standard environment in the same account
	Create an environment in one account and provision in another account
	Create and provision an environment using self-managed provisioning

	View environment data
	Update an environment
	Update an AWS managed provisioning environment
	Update a self-managed provisioning environment
	Cancel an environment deployment in progress

	Delete an environment
	Environment account connections
	Create an environment in one account and provision its infrastructure in another account
	Use the console or CLI to manage environment account connections

	Customer-managed environments
	How to use customer-managed environments

	CodeBuild provisioning role creation

	AWS Proton services
	Create a service
	What's in a service?
	Service templates
	Create a service

	View service data
	Edit a service
	Edit service description
	Edit a service to add or remove service instances
	Use the console or AWS CLI to add or remove service instances
	What happens when you add or remove service instances
	Tagging and service edits


	Delete a service
	View service instance data
	Update a service instance
	Update a service pipeline

	AWS Proton components
	How do components compare to other AWS Proton resources?
	Components in the AWS Proton console
	Components in the AWS Proton API and AWS CLI
	Component frequently asked questions
	Component states
	Component infrastructure as code files
	Using parameters with components
	Authoring robust IaC files

	Component AWS CloudFormation example
	Administrator steps
	Developer steps


	Using git repositories with AWS Proton
	Create a link to your repository
	View linked repository data
	Delete a repository link

	Monitoring AWS Proton
	Automate AWS Proton with EventBridge
	Event types
	AWS Proton event examples

	EventBridgeTutorial: Send Amazon Simple Notification Service alerts for AWS Proton service status changes
	Prerequisites
	Step 1: Create and subscribe to an Amazon SNS topic
	Step 2: Register an event rule
	Step 3: Test your event rule
	Step 4: Clean up

	Keep infrastructure up to date with the AWS Proton dashboard
	View the dashboard in the AWS Proton console
	Resources
	Deployment history



	Security in AWS Proton
	Identity and Access Management for AWS Proton
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Proton works with IAM
	Identity-based policies for AWS Proton
	Identity-based policy examples for AWS Proton

	Resource-based policies within AWS Proton
	Policy actions for AWS Proton
	Policy resources for AWS Proton
	Policy condition keys for AWS Proton
	Access control lists (ACLs) in AWS Proton
	Attribute-based access control (ABAC) with AWS Proton
	Using Temporary credentials with AWS Proton
	Cross-service principal permissions for AWS Proton
	Service roles for AWS Proton
	Service-linked roles for AWS Proton

	Policy examples for AWS Proton
	Identity-based policy examples for AWS Proton
	Policy best practices
	Links to Identity-based policy examples for AWS Proton

	AWS Proton IAM service role policy examples
	AWS Proton service role for provisioning using AWS CloudFormation
	AWS Proton service role policy example for AWS CloudFormation
	AWS Proton service trust policy
	Scoped down AWS-managed provisioning service role policy

	AWS Proton service role for CodeBuild provisioning
	AWS Proton service role policy example for CodeBuild
	AWS Proton CodeBuild trust policy

	AWS Proton pipeline service roles
	AWS Proton component role
	AWS Proton component role policy example
	AWS Proton component trust policy


	Condition-key based policy examples for AWS Proton

	AWS managed policies for AWS Proton
	AWS managed policy: AWSProtonFullAccess
	Permissions details

	AWS managed policy: AWSProtonDeveloperAccess
	Permissions details

	AWS managed policy: AWSProtonReadOnlyAccess
	Permissions details

	AWS managed policy: AWSProtonSyncServiceRolePolicy
	AWS managed policy: AWSProtonCodeBuildProvisioningBasicAccess
	Permissions details

	AWS managed policy: AWSProtonCodeBuildProvisioningServiceRolePolicy
	Permissions details

	AWS managed policy: AwsProtonServiceGitSyncServiceRolePolicy
	AWS Proton updates to AWS managed policies

	Using service-linked roles for AWS Proton
	Using roles for AWS Proton sync
	Service-linked role permissions for AWS Proton
	AWSProtonSyncServiceRolePolicy
	AwsProtonServiceGitSyncServiceRolePolicy

	Creating a service-linked role for AWS Proton
	Editing a service-linked role for AWS Proton
	Deleting a service-linked role for AWS Proton
	Supported regions for AWS Proton service-linked roles

	Using roles for CodeBuild-based provisioning
	Service-linked role permissions for AWS Proton
	AWSProtonCodeBuildProvisioningServiceRolePolicy

	Creating a service-linked role for AWS Proton
	Editing a service-linked role for AWS Proton
	Deleting a service-linked role for AWS Proton
	Manually delete the service-linked role

	Supported regions for AWS Proton service-linked roles


	Troubleshooting AWS Proton identity and access
	I am not authorized to perform an action in AWS Proton
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS Proton resources


	Configuration and vulnerability analysis in AWS Proton
	Data protection in AWS Proton
	Server side encryption at rest
	Encryption in transit
	AWS Proton encryption key management
	AWS Proton encryption context

	Infrastructure security in AWS Proton
	AWS Proton and interface VPC endpoints (AWS PrivateLink)
	Considerations for AWS Proton VPC endpoints
	Creating an interface VPC endpoint for AWS Proton
	Creating a VPC endpoint policy for AWS Proton


	Logging and monitoring in AWS Proton
	Resilience in AWS Proton
	AWS Proton backups

	Security best practices for AWS Proton
	Use IAM to control access
	Do not embed credentials in your templates and template bundles
	Use encryption to protect sensitive data
	Use AWS CloudTrail to view and log API calls

	Cross-service confused deputy prevention
	CodeBuild provisioning custom Amazon VPC support
	Updating the Environment Template


	AWS Proton resources and tagging
	AWS tagging
	AWS Proton tagging
	AWS Proton​ AWS managed tags
	Tag propagation to provisioned resources
	Customer managed tags
	Create tags using the console and CLI
	Create tags using the AWS Proton​ AWS CLI


	Troubleshooting AWS Proton
	Deployment errors that reference AWS CloudFormation dynamic parameters

	AWS Proton quotas
	Document history
	AWS Glossary

