
User Guide

AWS End User Messaging Push

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS End User Messaging Push User Guide

AWS End User Messaging Push: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS End User Messaging Push User Guide

Table of Contents

What is AWS End User Messaging Push? ... 1
Are you a first-time AWS End User Messaging Push user? .. 1
Features of AWS End User Messaging Push ... 1
Accessing AWS End User Messaging Push .. 2
Regional availability ... 3

Setting up an AWS account .. 4
Sign up for an AWS account .. 4
Create a user with administrative access .. 4

Getting started .. 7
Creating an application and enabling push channels ... 8

Contextual .. 8
Prerequisites .. 9
Procedure .. 9

Disabling push channels ... 11
Sending a push message ... 12

Additional resources .. 25
Receiving push notifications in your application .. 26

Setting up Swift Push Notifications ... 26
Working with APNs tokens ... 26

Set up Android push notifications .. 26
Setting up Flutter Push Notifications .. 27
Setting up React Native Push Notifications ... 27
Create an application .. 27
Handling push notifications ... 28

Deleting an application ... 29
Contextual .. 29
Procedure ... 29

Best practices ... 30
Sending a high volume of push notifications .. 30

Security .. 31
Data protection ... 32

Data encryption ... 33
Encryption in transit .. 33
Key management .. 33

iii

AWS End User Messaging Push User Guide

Inter-network traffic privacy .. 33
Identity and access management ... 34

Audience .. 35
Authenticating with identities .. 35
Managing access using policies .. 39
How AWS End User Messaging Push works with IAM ... 41
Identity-based policy examples ... 47
Troubleshooting .. 51

Compliance validation ... 53
Resilience .. 54
Infrastructure Security .. 55
Configuration and vulnerability analysis ... 55
Security best practices .. 55

Monitoring .. 57
Monitoring with CloudWatch ... 57
CloudTrail logs .. 58

AWS End User Messaging Push information in CloudTrail ... 58
Understanding AWS End User Messaging Push log file entries .. 59

AWS PrivateLink .. 60
Considerations ... 60
Create an interface endpoint .. 60
Create an endpoint policy .. 61

Quotas .. 63
Document history .. 64

iv

AWS End User Messaging Push User Guide

What is AWS End User Messaging Push?

Note

The Push notification features of Amazon Pinpoint are now called AWS End User
Messaging.

With AWS End User Messaging Push, you can engage users of your apps by sending push
notifications through a push notification channel. We support Apple Push Notification Service
(APNs), Firebase Cloud Messaging (FCM), Amazon Device Messaging (ADM), and Baidu Push.

Topics

• Are you a first-time AWS End User Messaging Push user?

• Features of AWS End User Messaging Push

• Accessing AWS End User Messaging Push

• Regional availability

Are you a first-time AWS End User Messaging Push user?

If you are a first-time user of AWS End User Messaging Push, we recommend that you begin by
reading the following sections:

• Setting up an AWS account

• Getting started with AWS End User Messaging Push

• Creating an application and enabling push channels

Features of AWS End User Messaging Push

You can send push notifications to your apps using separate channels for the following push
notification services:

• Firebase Cloud Messaging (FCM)

• Apple Push Notification service (APNs)

Are you a first-time AWS End User Messaging Push user? 1

AWS End User Messaging Push User Guide

Note

You can use APNs to send messages to iOS devices such as iPhones and iPads, as well as
to the Safari browser on macOS devices, such as Mac laptops and desktops.

• Baidu Cloud Push

• Amazon Device Messaging (ADM)

Accessing AWS End User Messaging Push

Briefly explain the different ways to gain access to the service, whether by console, CLI, or API.

You can manage AWS End User Messaging Push using the following interfaces:

AWS End User Messaging Push console

The web interface where you create and manage AWS End User Messaging Push resources. If
you've signed up for an AWS account, you can access the AWS End User Messaging Push console
from the AWS Management Console.

AWS Command Line Interface

Interact with AWS services using commands in your command line shell. The AWS Command
Line Interface is supported on Windows, macOS, and Linux. For more information about
the AWS CLI, see AWS Command Line Interface User Guide. You can find the AWS End User
Messaging Push commands in the AWS CLI Command Reference.

AWS SDKs

If you're a software developer that prefers to build applications using language-specific APIs
instead of submitting a request over HTTP or HTTPS, AWS provides libraries, sample code,
tutorials, and other resources. These libraries provide basic functions that automate tasks, such
as cryptographically signing your requests, retrying requests, and handling error responses.
These functions help make it more efficient for you to get started. For more information, see
Tools to Build on AWS.

Accessing AWS End User Messaging Push 2

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/
https://aws.amazon.com/developer/tools/

AWS End User Messaging Push User Guide

Regional availability

AWS End User Messaging Push is available in several AWS Regions in North America, Europe, Asia,
and Oceania. In each Region, AWS maintains multiple Availability Zones. These Availability Zones
are physically isolated from each other, but are united by private, low-latency, high-throughput,
and highly redundant network connections. These Availability Zones are used to provide very high
levels of availability and redundancy, while also minimizing latency.

To learn more about AWS Regions, see Specify which AWS Regions your account can use in
the Amazon Web Services General Reference. For a list of all the Regions where AWS End User
Messaging Push is currently available and the endpoint for each Region, see Endpoints and quotas
for Amazon Pinpoint API and AWS service endpoints in the Amazon Web Services General Reference.
To learn more about the number of Availability Zones that are available in each Region, see AWS
global infrastructure.

Regional availability 3

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/general/latest/gr/pinpoint.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#pinpoint_region
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

AWS End User Messaging Push User Guide

Setting up an AWS account

Before you can use AWS End User Messaging Push to send push notifications to your app, you first
have to obtain an AWS account with sufficient IAM permissions. This AWS account can also be used
for other services in the AWS ecosystem.

Topics

• Sign up for an AWS account

• Create a user with administrative access

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account 4

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/

AWS End User Messaging Push User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create a user with administrative access 5

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS End User Messaging Push User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 6

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS End User Messaging Push User Guide

Getting started with AWS End User Messaging Push

In order to set up AWS End User Messaging Push so that it can send push notifications to your
apps, you first have to provide the credentials that authorize AWS End User Messaging Push to
send messages to your app. The credentials that you provide depend on which push notification
system you use:

• For Apple Push Notification service (APN) credentials, see Obtain an encryption key and key ID
from Apple and Obtain a provider certificate from Apple in the Apple Developer documentation.

• For Firebase Cloud Messaging (FCM) credentials they can be obtained through the Firebase
console, see Firebase Cloud Messaging.

• For Baidu credentials, see Baidu.

• For Amazon Device Messaging (ADM) credentials, see Obtain Credentials.

7

https://developer.apple.com/documentation/usernotifications/establishing-a-token-based-connection-to-apns#Obtain-an-encryption-key-and-key-ID-from-Apple
https://developer.apple.com/documentation/usernotifications/establishing-a-token-based-connection-to-apns#Obtain-an-encryption-key-and-key-ID-from-Apple
https://developer.apple.com/documentation/usernotifications/establishing-a-certificate-based-connection-to-apns#Obtain-a-provider-certificate-from-Apple
https://firebase.google.com/docs/cloud-messaging
https://push.baidu.com/
https://developer.amazon.com/docs/adm/obtain-credentials.html

AWS End User Messaging Push User Guide

Creating an application and enabling push channels

Before you can use AWS End User Messaging Push to send push notifications, you first have to
create an application and enable the push notifications channel.

Contextual

Application

An application is a storage container for all of your AWS End User Messaging Push settings. The
application also stores your Amazon Pinpoint channels, campaigns, and journeys settings.

Key

A private signing key used by AWS End User Messaging Push to cryptographically sign APNs
authentication tokens. You obtain the signing key from your Apple developer account.

If you provide a signing key,AWS End User Messaging Push uses a token to authenticate with
APNs for every push notification that you send. With your signing key, you can send push
notifications to APNs production and sandbox environments.

Unlike certificates, your signing key doesn't expire. You only provide your key once, and you
don't need to renew it later. You can use the same signing key for multiple apps. For more
information, see Communicate with APNs using authentication tokens in Xcode Help.

Certificate

A TLS certificate that AWS End User Messaging Push uses to authenticate with APNs when
you send push notifications. An APNs certificate can support both production and sandbox
environments, or it can support only the sandbox environment. You obtain the certificate from
your Apple developer account.

A certificate expires after one year. When this happens, you must create a new certificate, which
you then provide to AWS End User Messaging Push to renew push notification deliveries. For
more information, see Communicate with APNs using a TLS certificate in Xcode Help.

Contextual 8

https://help.apple.com/developer-account/#/deva05921840
https://help.apple.com/developer-account/#/dev82a71386a

AWS End User Messaging Push User Guide

Prerequisites

Before you can use any push channel you need valid credentials for the push service. For more
information on obtaining credentials, see Getting started with AWS End User Messaging Push.

Procedure

Follow these directions to create an application and enable any of the push channels. To complete
this procedure you are only required to enter an application name. You can enable or disable any of
the push channels at a later time.

1. Open the AWS End User Messaging Push console at https://console.aws.amazon.com/push-
notifications/.

2. Choose Create application.

3. For Application name enter the name for your application.

4. (Optional) Follow this optional step to enable the Apple Push Notification service (APNs).

a. For Apple Push Notification service (APNs) select Enable.

b. For Default authentication type choose either:

i. If you choose Key credentials, provide the following information from your Apple
developer account. AWS End User Messaging Push requires this information to
construct authentication tokens.

• Key ID – The ID that's assigned to your signing key.

• Bundle identifier – The ID that's assigned to your iOS app.

• Team identifier – The ID that's assigned to your Apple developer account team.

• Authentication key – The .p8 file that you download from your Apple developer
account when you create an authentication key.

ii. If you choose Certificate credentials, provide the following information:

• SSL certificate – The .p12 file for your TLS certificate.

• Certificate password – If you assigned a password to your certificate, enter it here.

• Certificate type – Select the type of certificate to use.

5. (Optional) Follow this optional step to enable the Firebase Cloud Messaging (FCM).
Prerequisites 9

https://console.aws.amazon.com/push-notifications/
https://console.aws.amazon.com/push-notifications/

AWS End User Messaging Push User Guide

a. For Firebase Cloud Messaging (FCM) select Enable.

b. For Default authentication type choose either:

i. For Token credentials (recommended) choose Choose files and then choose your
service JSON file.

ii. For Key credentials enter your key in API key.

6. (Optional) Follow this optional step to enable the Baidu Cloud Push.

a. For Baidu Cloud Push select Enable.

b. For API key enter your API key.

c. For Secret key enter your secret key.

7. (Optional) Follow this optional step to enable the Amazon Device Messaging.

a. For Amazon Device Messaging select Enable.

b. For Client ID enter your client ID.

c. For Client secret enter your client secret.

8. Choose Create application.

Procedure 10

AWS End User Messaging Push User Guide

Disabling push channels

Follow these directions to disable any of the push channels.

1. Open the AWS End User Messaging Push console at https://console.aws.amazon.com/push-
notifications/.

2. Choose the application that contains your push credentials.

3. (Optional) For Apple Push Notification service (APNs) clear Enable.

4. (Optional) For Firebase Cloud Messaging (FCM) clear Enable.

5. (Optional) For Baidu Cloud Push clear Enable.

6. (Optional) For Amazon Device Messaging clear Enable.

7. Choose Save changes.

11

https://console.aws.amazon.com/push-notifications/
https://console.aws.amazon.com/push-notifications/

AWS End User Messaging Push User Guide

Sending a message

The AWS End User Messaging Push API can send transactional push notifications to specific
device identifiers. This section contains complete code examples that you can use to send push
notifications through the AWS End User Messaging Push API by using an AWS SDK.

You can use these examples to send push notifications through any push notification service that
AWS End User Messaging Push supports. Currently, AWS End User Messaging Push supports the
following channels: Firebase Cloud Messaging (FCM), Apple Push Notification Service (APNs), Baidu
Cloud Push, and Amazon Device Messaging (ADM).

For more code examples on endpoints, segments, and channels see Code examples.

Note

When you send push notifications through the Firebase Cloud Messaging (FCM) service, use
the service name GCM in your call to the AWS End User Messaging Push API. The Google
Cloud Messaging (GCM) service was discontinued by Google on April 10, 2018. However,
the AWS End User Messaging Push API uses the GCM service name for messages that it
sends through the FCM service in order to maintain compatibility with API code that was
written prior to the discontinuation of the GCM service.

GCM (AWS CLI)

The following example uses send-messages to send a GCM Push notification
with the AWS CLI. Replace token with the unique token of the device and
611e3e3cdd47474c9c1399a50example with your application identifier.

aws pinpoint send-messages \
--application-id 611e3e3cdd47474c9c1399a50example \
--message-request file://myfile.json \
--region us-west-2

Contents of myfile.json:
{
 "Addresses": {
 "token": {

12

https://docs.aws.amazon.com/pinpoint/latest/developerguide/service_code_examples.html
https://docs.aws.amazon.com/cli/latest/reference/pinpoint/send-messages.html

AWS End User Messaging Push User Guide

 "ChannelType" : 'GCM'
 }
 },
 "MessageConfiguration": {
 "GCMMessage": {
 "Action": "URL",
 "Body": "This is a sample message",
 "Priority": "normal",
 "SilentPush": True,
 "Title": "My sample message",
 "TimeToLive": 30,
 "Url": "https://www.example.com"
 }
 }
}

The following example uses send-messages to send a GCM Push notification, using all
legacy keys, with the AWS CLI. Replace token with the unique token of the device and
611e3e3cdd47474c9c1399a50example with your application identifier.

aws pinpoint send-messages \
--application-id 611e3e3cdd47474c9c1399a50example \
--message-request
'{
 "MessageConfiguration": {
 "GCMMessage":{
 "RawContent": "{\"notification\": {\n \"title\": \"string\",\n \"body\":
 \"string\",\n \"android_channel_id\": \"string\",\n \"body_loc_args\": [\n \"string
\"\n],\n \"body_loc_key\": \"string\",\n \"click_action\": \"string\",\n \"color\":
 \"string\",\n \"icon\": \"string\",\n \"sound\": \"string\",\n \"tag\": \"string
\",\n \"title_loc_args\": [\n \"string\"\n],\n \"title_loc_key\": \"string\"\n },
\"data\":{\"message\":\"hello in data\"} }",
 "TimeToLive" : 309744
 }
 },
 "Addresses": {
 "token": {
 "ChannelType":"GCM"
 }
 }
}'
\ --region us-east-1

13

https://docs.aws.amazon.com/cli/latest/reference/pinpoint/send-messages.html

AWS End User Messaging Push User Guide

The following example uses send-messages to send a GCM Push notification with FCMv1
message payload using the AWS CLI. Replace token with the unique token of the device and
611e3e3cdd47474c9c1399a50example with your application identifier.

aws pinpoint send-messages \
--application-id 6a2dafd84bec449ea75fb773f4c41fa1 \
--message-request
'{
 "MessageConfiguration": {
 "GCMMessage":{
 "RawContent": "{\n \"fcmV1Message\": \n {\n \"message\" :{\n \"notification
\": {\n \"title\": \"string\",\n \"body\": \"string\"\n },\n \"android\": {\n
 \"priority\": \"high\",\n \"notification\": {\n \"title\": \"string\",\n \"body
\": \"string\",\n \"icon\": \"string\",\n \"color\": \"string\",\n \"sound\":
 \"string\",\n \"tag\": \"string\",\n \"click_action\": \"string\",\n \"body_loc_key
\": \"string\",\n \"body_loc_args\": [\n \"string\"\n],\n \"title_loc_key
\": \"string\",\n \"title_loc_args\": [\n \"string\"\n],\n \"channel_id\":
 \"string\",\n \"ticker\": \"string\",\n \"sticky\": true,\n \"event_time\":
 \"2024-02-06T22:11:55Z\",\n \"local_only\": true,\n \"notification_priority\":
 \"PRIORITY_UNSPECIFIED\",\n \"default_sound\": false,\n \"default_vibrate_timings
\": true,\n \"default_light_settings\": false,\n \"vibrate_timings\": [\n \"22s
\"\n],\n \"visibility\": \"VISIBILITY_UNSPECIFIED\",\n \"notification_count\": 5,
\n \"light_settings\": {\n \"color\": {\n \"red\": 1,\n \"green\": 2,\n \"blue\":
 3,\n \"alpha\": 6\n },\n \"light_on_duration\": \"112s\",\n \"light_off_duration
\": \"1123s\"\n },\n \"image\": \"string\"\n },\n \"data\": {\n \"dataKey1\":
 \"priority message\",\n \"data_key_3\": \"priority message\",\n \"dataKey2\":
 \"priority message\",\n \"data_key_5\": \"priority message\"\n },\n \"ttl\":
 \"10023.32s\"\n },\n \"apns\": {\n \"payload\": {\n \"aps\": {\n \"alert\": {\n
 \"subtitle\": \"string\",\n \"title-loc-args\": [\n \"string\"\n],\n \"title-loc-
key\": \"string\",\n \"launch-image\": \"string\",\n \"subtitle-loc-key\": \"string
\",\n \"subtitle-loc-args\": [\n \"string\"\n],\n \"loc-args\": [\n \"string
\"\n],\n \"loc-key\": \"string\",\n \"title\": \"string\",\n \"body\": \"string
\"\n },\n \"thread-id\": \"string\",\n \"category\": \"string\",\n \"content-
available\": 1,\n \"mutable-content\": 1,\n \"target-content-id\": \"string\",\n
 \"interruption-level\": \"string\",\n \"relevance-score\": 25,\n \"filter-criteria
\": \"string\",\n \"stale-date\": 6483,\n \"content-state\": {},\n \"timestamp\":
 673634,\n \"dismissal-date\": 4,\n \"attributes-type\": \"string\",\n \"attributes
\": {},\n \"sound\": \"string\",\n \"badge\": 5\n }\n }\n },\n \"webpush\": {\n
 \"notification\": {\n \"permission\": \"granted\",\n \"maxActions\": 2,\n \"actions
\": [\n \"title\"\n],\n \"badge\": \"URL\",\n \"body\": \"Hello\",\n \"data\": {\n
 \"hello\": \"hey\"\n },\n \"dir\": \"auto\",\n \"icon\": \"icon\",\n \"image\":
 \"image\",\n \"lang\": \"string\",\n \"renotify\": false,\n \"requireInteraction\":
 true,\n \"silent\": false,\n \"tag\": \"tag\",\n \"timestamp\": 1707259524964,\n

14

https://docs.aws.amazon.com/cli/latest/reference/pinpoint/send-messages.html

AWS End User Messaging Push User Guide

 \"title\": \"hello\",\n \"vibrate\": [\n 100,\n 200,\n 300\n]\n },\n \"data\": {\n
 \"data1\": \"priority message\",\n \"data2\": \"priority message\",\n \"data12\":
 \"priority message\",\n \"data3\": \"priority message\"\n }\n },\n \"data\": {\n
 \"data7\": \"priority message\",\n \"data5\": \"priority message\",\n \"data8\":
 \"priority message\",\n \"data9\": \"priority message\"\n }\n }\n \n}\n}",
 "TimeToLive" : 309744
 }
 },
 "Addresses": {
 token: {
 "ChannelType":"GCM"
 }
 }
}'
\ --region us-east-1

if using ImageUrl field for GCM , pinpoint sends the field as data notification, with the key
being pinpoint.notification.imageUrl, which can prevent the image from being
rendered out of the box. Please use RawContent or add handling of the data keys such as
integrating your app with AWS Amplify.

Safari (AWS CLI)

You can use AWS End User Messaging Push to send messages to macOS computers that use
Apple's Safari web browser. To send a message to the Safari browser, you must specify the raw
message content, and you must include a specific attribute in the message payload. You can do
this by creating a push notification template with a raw message payload, or by specifying the
raw message content directly in a campaign message, in the Amazon Pinpoint User Guide.

Note

This special attribute is required for sending to macOS laptop and desktop computers
that use the Safari web browser. It isn't required for sending to iOS devices such as
iPhones and iPads.

To send a message to Safari web browsers, you must specify the raw message payload. The raw
message payload must include a url-args array within the aps object. The url-args array is
required in order to send push notifications to the Safari web browser. However, it is acceptable
for the array to contain a single, empty element.

15

https://docs.aws.amazon.com/pinpoint/latest/userguide/message-templates-creating-push.html#message-templates-creating-push-raw
https://docs.aws.amazon.com/pinpoint/latest/userguide/campaigns-message.html#campaigns-message-push

AWS End User Messaging Push User Guide

The following example uses send-messages to send a notification to the Safari web
browser with the AWS CLI. Replace token with the unique token of the device and
611e3e3cdd47474c9c1399a50example with your application identifier.

aws pinpoint send-messages \
--application-id 611e3e3cdd47474c9c1399a50example \
--message-request
'{
 "Addresses": {
 "token":
 {
 "ChannelType":"APNS"
 }
 },
 "MessageConfiguration": {
 "APNSMessage": {
 "RawContent":
 "{\"aps\": {\"alert\": { \"title\": \"Title of my message\", \"body\":
 \"This is a push notification for the Safari web browser.\"},\"content-available\":
 1,\"url-args\": [\"\"]}}"
 }
 }
}'
\ --region us-east-1

For more information about Safari push notifications, see Configuring Safari Push Notifications
on the Apple Developer website.

APNS (AWS CLI)

The following example uses send-messages to send a APNS Push notification with the AWS CLI.
Replace token with the unique token of the device, 611e3e3cdd47474c9c1399a50example
with your application identifier, and GAME_INVITATION with a unique identifier.

aws pinpoint send-messages \
--application-id 611e3e3cdd47474c9c1399a50example \
--message-request
'{
 "Addresses": {
 "token":
 {
 "ChannelType":"APNS"
 }

16

https://docs.aws.amazon.com/cli/latest/reference/pinpoint/send-messages.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NotificationProgrammingGuideForWebsites/PushNotifications/PushNotifications.html
https://docs.aws.amazon.com/cli/latest/reference/pinpoint/send-messages.html

AWS End User Messaging Push User Guide

 },
 "MessageConfiguration": {
 "APNSMessage": {
 "RawContent": "{\"aps\" : {\"alert\" : {\"title\" : \"Game Request\",
\"subtitle\" : \"Five Card Draw\",\"body\" : \"Bob wants to play poker\"},\"category
\" : \"GAME_INVITATION\"},\"gameID\" : \"12345678\"}"
 }
 }
}'
\ --region us-east-1

JavaScript (Node.js)

Use this example to send push notifications by using the AWS SDK for JavaScript in Node.js.
This example assumes that you've already installed and configured the SDK for JavaScript in
Node.js.

This example also assumes that you're using a shared credentials file to specify the Access Key
and Secret Access Key for an existing user. For more information, see Setting credentials in the
AWS SDK for JavaScript in Node.js Developer Guide.

'use strict';

const AWS = require('aws-sdk');

// The AWS Region that you want to use to send the message. For a list of
// AWS Regions where the API is available
const region = 'us-east-1';

// The title that appears at the top of the push notification.
var title = 'Test message sent from End User Messaging Push.';

// The content of the push notification.
var message = 'This is a sample message sent from End User Messaging Push by using
 the '
 + 'AWS SDK for JavaScript in Node.js';

// The application ID that you want to use when you send this
// message. Make sure that the push channel is enabled for the project that
// you choose.
var applicationId = 'ce796be37f32f178af652b26eexample';

// An object that contains the unique token of the device that you want to send

17

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/setting-credentials.html

AWS End User Messaging Push User Guide

// the message to, and the push service that you want to use to send the message.
var recipient = {
 'token': 'a0b1c2d3e4f5g6h7i8j9k0l1m2n3o4p5q6r7s8t9u0v1w2x3y4z5a6b7c8d8e9f0',
 'service': 'GCM'
 };

// The action that should occur when the recipient taps the message. Possible
// values are OPEN_APP (opens the app or brings it to the foreground),
// DEEP_LINK (opens the app to a specific page or interface), or URL (opens a
// specific URL in the device's web browser.)
var action = 'URL';

// This value is only required if you use the URL action. This variable contains
// the URL that opens in the recipient's web browser.
var url = 'https://www.example.com';

// The priority of the push notification. If the value is 'normal', then the
// delivery of the message is optimized for battery usage on the recipient's
// device, and could be delayed. If the value is 'high', then the notification is
// sent immediately, and might wake a sleeping device.
var priority = 'normal';

// The amount of time, in seconds, that the push notification service provider
// (such as FCM or APNS) should attempt to deliver the message before dropping
// it. Not all providers allow you specify a TTL value.
var ttl = 30;

// Boolean that specifies whether the notification is sent as a silent
// notification (a notification that doesn't display on the recipient's device).
var silent = false;

function CreateMessageRequest() {
 var token = recipient['token'];
 var service = recipient['service'];
 if (service == 'GCM') {
 var messageRequest = {
 'Addresses': {
 [token]: {
 'ChannelType' : 'GCM'
 }
 },
 'MessageConfiguration': {
 'GCMMessage': {
 'Action': action,

18

AWS End User Messaging Push User Guide

 'Body': message,
 'Priority': priority,
 'SilentPush': silent,
 'Title': title,
 'TimeToLive': ttl,
 'Url': url
 }
 }
 };
 } else if (service == 'APNS') {
 var messageRequest = {
 'Addresses': {
 [token]: {
 'ChannelType' : 'APNS'
 }
 },
 'MessageConfiguration': {
 'APNSMessage': {
 'Action': action,
 'Body': message,
 'Priority': priority,
 'SilentPush': silent,
 'Title': title,
 'TimeToLive': ttl,
 'Url': url
 }
 }
 };
 } else if (service == 'BAIDU') {
 var messageRequest = {
 'Addresses': {
 [token]: {
 'ChannelType' : 'BAIDU'
 }
 },
 'MessageConfiguration': {
 'BaiduMessage': {
 'Action': action,
 'Body': message,
 'SilentPush': silent,
 'Title': title,
 'TimeToLive': ttl,
 'Url': url
 }

19

AWS End User Messaging Push User Guide

 }
 };
 } else if (service == 'ADM') {
 var messageRequest = {
 'Addresses': {
 [token]: {
 'ChannelType' : 'ADM'
 }
 },
 'MessageConfiguration': {
 'ADMMessage': {
 'Action': action,
 'Body': message,
 'SilentPush': silent,
 'Title': title,
 'Url': url
 }
 }
 };
 }

 return messageRequest
}

function ShowOutput(data){
 if (data["MessageResponse"]["Result"][recipient["token"]]["DeliveryStatus"]
 == "SUCCESSFUL") {
 var status = "Message sent! Response information: ";
 } else {
 var status = "The message wasn't sent. Response information: ";
 }
 console.log(status);
 console.dir(data, { depth: null });
}

function SendMessage() {
 var token = recipient['token'];
 var service = recipient['service'];
 var messageRequest = CreateMessageRequest();

 // Specify that you're using a shared credentials file, and specify the
 // IAM profile to use.
 var credentials = new AWS.SharedIniFileCredentials({ profile: 'default' });
 AWS.config.credentials = credentials;

20

AWS End User Messaging Push User Guide

 // Specify the AWS Region to use.
 AWS.config.update({ region: region });

 //Create a new Pinpoint object.
 var pinpoint = new AWS.Pinpoint();
 var params = {
 "ApplicationId": applicationId,
 "MessageRequest": messageRequest
 };

 // Try to send the message.
 pinpoint.sendMessages(params, function(err, data) {
 if (err) console.log(err);
 else ShowOutput(data);
 });
}

SendMessage()

Python

Use this example to send push notifications by using the AWS SDK for Python (Boto3). This
example assumes that you've already installed and configured the SDK for Python (Boto3).

This example also assumes that you're using a shared credentials file to specify the Access Key
and Secret Access Key for an existing user. For more information, see Credentials in the AWS
SDK for Python (Boto3) API Reference.

import json
import boto3
from botocore.exceptions import ClientError

The AWS Region that you want to use to send the message. For a list of
AWS Regions where the API is available
region = "us-east-1"

The title that appears at the top of the push notification.
title = "Test message sent from End User Messaging Push."

The content of the push notification.
message = ("This is a sample message sent from End User Messaging Push by using the
 "

21

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/setting-credentials.html

AWS End User Messaging Push User Guide

 "AWS SDK for Python (Boto3).")

The application ID to use when you send this message.
Make sure that the push channel is enabled for the project or application
that you choose.
application_id = "ce796be37f32f178af652b26eexample"

A dictionary that contains the unique token of the device that you want to send
 the
message to, and the push service that you want to use to send the message.
recipient = {
 "token": "a0b1c2d3e4f5g6h7i8j9k0l1m2n3o4p5q6r7s8t9u0v1w2x3y4z5a6b7c8d8e9f0",
 "service": "GCM"
 }

The action that should occur when the recipient taps the message. Possible
values are OPEN_APP (opens the app or brings it to the foreground),
DEEP_LINK (opens the app to a specific page or interface), or URL (opens a
specific URL in the device's web browser.)
action = "URL"

This value is only required if you use the URL action. This variable contains
the URL that opens in the recipient's web browser.
url = "https://www.example.com"

The priority of the push notification. If the value is 'normal', then the
delivery of the message is optimized for battery usage on the recipient's
device, and could be delayed. If the value is 'high', then the notification is
sent immediately, and might wake a sleeping device.
priority = "normal"

The amount of time, in seconds, that the push notification service provider
(such as FCM or APNS) should attempt to deliver the message before dropping
it. Not all providers allow you specify a TTL value.
ttl = 30

Boolean that specifies whether the notification is sent as a silent
notification (a notification that doesn't display on the recipient's device).
silent = False

Set the MessageType based on the values in the recipient variable.
def create_message_request():

 token = recipient["token"]

22

AWS End User Messaging Push User Guide

 service = recipient["service"]

 if service == "GCM":
 message_request = {
 'Addresses': {
 token: {
 'ChannelType': 'GCM'
 }
 },
 'MessageConfiguration': {
 'GCMMessage': {
 'Action': action,
 'Body': message,
 'Priority' : priority,
 'SilentPush': silent,
 'Title': title,
 'TimeToLive': ttl,
 'Url': url
 }
 }
 }
 elif service == "APNS":
 message_request = {
 'Addresses': {
 token: {
 'ChannelType': 'APNS'
 }
 },
 'MessageConfiguration': {
 'APNSMessage': {
 'Action': action,
 'Body': message,
 'Priority' : priority,
 'SilentPush': silent,
 'Title': title,
 'TimeToLive': ttl,
 'Url': url
 }
 }
 }
 elif service == "BAIDU":
 message_request = {
 'Addresses': {
 token: {

23

AWS End User Messaging Push User Guide

 'ChannelType': 'BAIDU'
 }
 },
 'MessageConfiguration': {
 'BaiduMessage': {
 'Action': action,
 'Body': message,
 'SilentPush': silent,
 'Title': title,
 'TimeToLive': ttl,
 'Url': url
 }
 }
 }
 elif service == "ADM":
 message_request = {
 'Addresses': {
 token: {
 'ChannelType': 'ADM'
 }
 },
 'MessageConfiguration': {
 'ADMMessage': {
 'Action': action,
 'Body': message,
 'SilentPush': silent,
 'Title': title,
 'Url': url
 }
 }
 }
 else:
 message_request = None

 return message_request

Show a success or failure message, and provide the response from the API.
def show_output(response):
 if response['MessageResponse']['Result'][recipient["token"]]['DeliveryStatus']
 == "SUCCESSFUL":
 status = "Message sent! Response information:\n"
 else:
 status = "The message wasn't sent. Response information:\n"
 print(status, json.dumps(response,indent=4))

24

AWS End User Messaging Push User Guide

Send the message through the appropriate channel.
def send_message():

 token = recipient["token"]
 service = recipient["service"]
 message_request = create_message_request()

 client = boto3.client('pinpoint',region_name=region)

 try:
 response = client.send_messages(
 ApplicationId=application_id,
 MessageRequest=message_request
)
 except ClientError as e:
 print(e.response['Error']['Message'])
 else:
 show_output(response)

send_message()

Additional resources

• For more information on Push channel templates, see Creating push notification templates in the
Amazon Pinpoint User Guide.

Additional resources 25

https://docs.aws.amazon.com/pinpoint/latest/userguide/message-templates-creating-push.html

AWS End User Messaging Push User Guide

Receiving push notifications in your application

The following topics describe how to modify your Swift, Android, React Native, or Flutter app so
that it receives push notifications.

Topics

• Setting up Swift Push Notifications

• Setting up Android push notifications

• Setting up Flutter Push Notifications

• Setting up React Native Push Notifications

• Create an application in AWS End User Messaging Push

• Handling push notifications

Setting up Swift Push Notifications

Push notifications for iOS apps are sent using the Apple Push Notification service (APNs). Before
you can send push notifications to iOS devices, you must create an app ID on the Apple Developer
portal, and you must create the required certificates. You can find more information about
completing these steps in Setting up push notification services in the AWS Amplify documentation.

Working with APNs tokens

As a best practice, you should develop your app so that your customers' device tokens are
regenerated when the app is reinstalled.

If a recipient upgrades their device to a new major version of iOS (for example, from iOS 12 to iOS
13), and later reinstalls your app, the app generates a new token. If your app doesn't refresh the
token, the older token is used to send the notification. As a result, Apple Push Notification service
(APNs) rejects the notification, because the token is now invalid. When you attempt to send the
notification, you receive a message failure notification from APNs.

Setting up Android push notifications

Push notifications for Android apps are sent using Firebase Cloud Messaging (FCM), which replaces
Google Cloud Messaging (GCM). Before you can send push notifications to Android devices, you

Setting up Swift Push Notifications 26

https://docs.amplify.aws/lib/push-notifications/getting-started/q/platform/ios/

AWS End User Messaging Push User Guide

must obtain FCM credentials. You can then use those credentials to create an Android project and
launch a sample app that can receive push notifications. You can find more information about
completing these steps in the Push notifications section in the AWS Amplify documentation.

Setting up Flutter Push Notifications

Push notifications for Flutter apps are sent using Firebase Cloud Messaging (FCM) for Android,
and APNs for iOS. You can find more information about completing these steps in the Push
notifications section of the AWS Amplify Flutter documentation.

Setting up React Native Push Notifications

Push notifications for React Native apps are sent using Firebase Cloud Messaging (FCM) for
Android, and APNs for iOS. You can find more information about completing these steps in the
Push notifications section of the AWS Amplify JavaScript documentation.

Create an application in AWS End User Messaging Push

To start sending push notifications in AWS End User Messaging Push, you have to create an
application. Next, you have to enable the push notification channels that you want to use by
providing the appropriate credentials.

You can create new applications and set up push notification channels by using the AWS End User
Messaging Push console. For more information, see Creating an application and enabling push
channels.

You can also create and set up application by using the API, an AWS SDK, or the AWS Command
Line Interface (AWS CLI). To create an application, use the Apps resource. To configure push
notification channels, use the following resources:

• APNs channel to send messages to users of iOS devices by using the Apple Push Notification
service.

• ADM channel to send messages to users of Amazon Kindle Fire devices.

• Baidu channel to send messages to Baidu users.

• GCM channel to send messages to Android devices by using Firebase Cloud Messaging (FCM),
which replaces Google Cloud Messaging (GCM).

Setting up Flutter Push Notifications 27

https://docs.amplify.aws/lib/push-notifications/getting-started/q/platform/android/
https://docs.amplify.aws/gen1/flutter/build-a-backend/push-notifications/set-up-push-notifications/
https://docs.amplify.aws/gen1/react-native/build-a-backend/push-notifications/set-up-push-notifications/
https://docs.aws.amazon.com/pinpoint/latest/apireference/
https://aws.amazon.com/developer/tools/#sdk
https://docs.aws.amazon.com/cli/latest/reference/pinpoint/
https://docs.aws.amazon.com/cli/latest/reference/pinpoint/
https://docs.aws.amazon.com/pinpoint/latest/apireference/apps-application-id-channels-apns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/apps-application-id-channels-adm.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/apps-application-id-channels-baidu.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/apps-application-id-channels-gcm.html

AWS End User Messaging Push User Guide

Handling push notifications

After you obtain the credentials that are required to send push notifications, you can update your
application so that they're able to receive push notifications. For more information, see Push
notifications—Getting started in the AWS Amplify documentation.

Handling push notifications 28

https://docs.amplify.aws/lib/push-notifications/getting-started/
https://docs.amplify.aws/lib/push-notifications/getting-started/

AWS End User Messaging Push User Guide

Deleting an application

This procedure removes the application from your account and all resources in the application.

Contextual

Application

An application is a storage container for all of your AWS End User Messaging Push settings. The
application also stores your Amazon Pinpoint channels, campaigns, and journeys settings.

Procedure

1. Open the AWS End User Messaging Push console at https://console.aws.amazon.com/push-
notifications/.

2. Choose an application and then choose Delete.

3. In the Delete application window enter delete and then choose Delete.

Important

Any Amazon Pinpoint channels, campaigns, journeys, or segments are also deleted.

Contextual 29

https://console.aws.amazon.com/push-notifications/
https://console.aws.amazon.com/push-notifications/

AWS End User Messaging Push User Guide

Best practices

Even when you have your customers' best interests in mind, you may still encounter situations that
impact the deliverability of your messages. The following sections contain recommendations to
help ensure that your push communications reach your intended audience.

Sending a high volume of push notifications

Before you send a high volume of push notifications, make sure that your account is configured
to support your throughput requirements. By default, all accounts are configured to send 25,000
messages per second. If you need to be able to send more than 25,000 messages in one second,
you can request a quota increase. For more information, see Quotas for AWS End User Messaging
Push.

Make sure that your account is correctly configured with the credentials for each of the push
notification providers that you plan to use, such as FCM or APNs.

Finally, devise a way to handle exceptions. Each push notification service provides different
exception messages. For transactional sends, you receive a main status code of 200 for the API call,
with a per endpoint status code of 400 permanent failure if the corresponding platform token (for
example, FCM) or certificate (for example, APN) is determined to be invalid during message sends.

Sending a high volume of push notifications 30

AWS End User Messaging Push User Guide

Security in AWS End User Messaging Push

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS End User
Messaging Push, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS End User Messaging Push. The following topics show you how to configure AWS End
User Messaging Push to meet your security and compliance objectives. You also learn how to
use other AWS services that help you to monitor and secure your AWS End User Messaging Push
resources.

Topics

• Data protection in AWS End User Messaging Push

• Identity and access management for AWS End User Messaging Push

• Compliance validation for AWS End User Messaging Push

• Resilience in AWS End User Messaging Push

• Infrastructure Security in AWS End User Messaging Push

• Configuration and vulnerability analysis

• Security best practices

31

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS End User Messaging Push User Guide

Data protection in AWS End User Messaging Push

The AWS shared responsibility model applies to data protection in AWS End User Messaging Push.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS End User Messaging Push or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Data protection 32

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS End User Messaging Push User Guide

Data encryption

AWS End User Messaging Push data is encrypted in transit and at rest. When you submit data to
AWS End User Messaging Push, it encrypts the data as it receives and stores it. When you retrieve
data from AWS End User Messaging Push, it transmits the data to you by using current security
protocols.

Encryption at rest

AWS End User Messaging Push encrypts all the data that it stores for you. This includes
configuration data, user and endpoint data, analytics data, and any data that you add or import
into AWS End User Messaging Push. To encrypt your data, AWS End User Messaging Push uses
internal AWS Key Management Service (AWS KMS) keys that the service owns and maintains on
your behalf. We rotate these keys on a regular basis. For information about AWS KMS, see the AWS
Key Management Service Developer Guide.

Encryption in transit

AWS End User Messaging Push uses HTTPS and Transport Layer Security (TLS) 1.2 or later to
communicate with your clients and applications. To communicate with other AWS services, AWS
End User Messaging Push uses HTTPS and TLS 1.2. In addition, when you create and manage AWS
End User Messaging Push resources by using the console, an AWS SDK, or the AWS Command Line
Interface, all communications are secured using HTTPS and TLS 1.2.

Key management

To encrypt your AWS End User Messaging Push data, AWS End User Messaging Push uses internal
AWS KMS keys that the service owns and maintains on your behalf. We rotate these keys on a
regular basis. You can't provision and use your own AWS KMS or other keys to encrypt data that
you store in AWS End User Messaging Push.

Inter-network traffic privacy

Internetwork traffic privacy refers to securing connections and traffic between AWS End User
Messaging Push and your on-premises clients and applications, and between AWS End User
Messaging Push and other AWS resources in the same AWS Region. The following features and
practices can help you ensure internetwork traffic privacy for AWS End User Messaging Push.

Data encryption 33

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS End User Messaging Push User Guide

Traffic between AWS End User Messaging Push and on-premises clients and
applications

To establish a private connection between AWS End User Messaging Push and clients and
applications on your on-premises network, you can use AWS Direct Connect. This enables you to
link your network to an AWS Direct Connect location by using a standard, fiber-optic Ethernet
cable. One end of the cable is connected to your router. The other end is connected to an AWS
Direct Connect router. For more information, see What is AWS Direct Connect? in the AWS Direct
Connect User Guide.

To help secure access to AWS End User Messaging Push through published APIs, we recommend
that you comply with AWS End User Messaging Push requirements for API calls. AWS End User
Messaging Push requires clients to use Transport Layer Security (TLS) 1.2 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Diffie-Hellman Ephemeral (ECDHE). Most modern systems such as Java 7 and later
support these modes.

In addition, requests must be signed using an access key ID and a secret access key that's associated
with an AWS Identity and Access Management (IAM) principal for your AWS account. Alternatively,
you can use the AWS Security Token Service (AWS STS) to generate temporary security credentials
to sign requests.

Traffic between AWS End User Messaging Push and other AWS resources

To secure communications between AWS End User Messaging Push and other AWS resources in the
same AWS Region, AWS End User Messaging Push uses HTTPS and TLS 1.2 by default.

Identity and access management for AWS End User Messaging
Push

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS End User Messaging Push resources. IAM is an AWS
service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

Identity and access management 34

https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS End User Messaging Push User Guide

• Managing access using policies

• How AWS End User Messaging Push works with IAM

• Identity-based policy examples for AWS End User Messaging Push

• Troubleshooting AWS End User Messaging Push identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS End User Messaging Push.

Service user – If you use the AWS End User Messaging Push service to do your job, then your
administrator provides you with the credentials and permissions that you need. As you use more
AWS End User Messaging Push features to do your work, you might need additional permissions.
Understanding how access is managed can help you request the right permissions from your
administrator. If you cannot access a feature in AWS End User Messaging Push, see Troubleshooting
AWS End User Messaging Push identity and access.

Service administrator – If you're in charge of AWS End User Messaging Push resources at
your company, you probably have full access to AWS End User Messaging Push. It's your job to
determine which AWS End User Messaging Push features and resources your service users should
access. You must then submit requests to your IAM administrator to change the permissions of
your service users. Review the information on this page to understand the basic concepts of IAM.
To learn more about how your company can use IAM with AWS End User Messaging Push, see How
AWS End User Messaging Push works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS End User Messaging Push. To view example AWS
End User Messaging Push identity-based policies that you can use in IAM, see Identity-based policy
examples for AWS End User Messaging Push.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on

Audience 35

AWS End User Messaging Push User Guide

authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

Authenticating with identities 36

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS End User Messaging Push User Guide

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider

Authenticating with identities 37

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

AWS End User Messaging Push User Guide

(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile

Authenticating with identities 38

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS End User Messaging Push User Guide

that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 39

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS End User Messaging Push User Guide

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to

Managing access using policies 40

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS End User Messaging Push User Guide

any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS End User Messaging Push works with IAM

Before you use IAM to manage access to AWS End User Messaging Push, learn what IAM features
are available to use with AWS End User Messaging Push.

IAM features you can use with AWS End User Messaging Push

IAM feature AWS End User Messaging Push support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

How AWS End User Messaging Push works with IAM 41

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS End User Messaging Push User Guide

IAM feature AWS End User Messaging Push support

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how AWS End User Messaging Push and other AWS services work with
most IAM features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AWS End User Messaging Push

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS End User Messaging Push

To view examples of AWS End User Messaging Push identity-based policies, see Identity-based
policy examples for AWS End User Messaging Push.

Resource-based policies within AWS End User Messaging Push

Supports resource-based policies: Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified

How AWS End User Messaging Push works with IAM 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS End User Messaging Push User Guide

principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AWS End User Messaging Push

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS End User Messaging Push actions, see Actions Defined by AWS End User
Messaging Push in the Service Authorization Reference.

Policy actions in AWS End User Messaging Push use the following prefix before the action:

mobiletargeting

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "mobiletargeting:action1",
 "mobiletargeting:action2"

How AWS End User Messaging Push works with IAM 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AWS End User Messaging Push User Guide

]

To view examples of AWS End User Messaging Push identity-based policies, see Identity-based
policy examples for AWS End User Messaging Push.

Policy resources for AWS End User Messaging Push

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AWS End User Messaging Push resource types and their ARNs, see Resources Defined
by AWS End User Messaging Push in the Service Authorization Reference. To learn with which
actions you can specify the ARN of each resource, see Actions Defined by AWS End User Messaging
Push .

To view examples of AWS End User Messaging Push identity-based policies, see Identity-based
policy examples for AWS End User Messaging Push.

Policy condition keys for AWS End User Messaging Push

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use

How AWS End User Messaging Push works with IAM 44

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AWS End User Messaging Push User Guide

condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AWS End User Messaging Push condition keys, see Condition Keys for AWS End User
Messaging Push in the Service Authorization Reference. To learn with which actions and resources
you can use a condition key, see Actions Defined by AWS End User Messaging Push .

To view examples of AWS End User Messaging Push identity-based policies, see Identity-based
policy examples for AWS End User Messaging Push.

ACLs in AWS End User Messaging Push

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with AWS End User Messaging Push

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

How AWS End User Messaging Push works with IAM 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

AWS End User Messaging Push User Guide

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with AWS End User Messaging Push

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS End User Messaging Push

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made

How AWS End User Messaging Push works with IAM 46

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS End User Messaging Push User Guide

when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS End User Messaging Push

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AWS End User Messaging Push
functionality. Edit service roles only when AWS End User Messaging Push provides guidance
to do so.

Service-linked roles for AWS End User Messaging Push

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS End User Messaging Push

By default, users and roles don't have permission to create or modify AWS End User Messaging
Push resources. They also can't perform tasks by using the AWS Management Console, AWS
Command Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Identity-based policy examples 47

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS End User Messaging Push User Guide

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by AWS End User Messaging Push, including
the format of the ARNs for each of the resource types, see Actions, Resources, and Condition Keys
for AWS End User Messaging Push in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AWS End User Messaging Push console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS End User
Messaging Push resources in your account. These actions can incur costs for your AWS account.
When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies

Identity-based policy examples 48

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS End User Messaging Push User Guide

adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS End User Messaging Push console

To access the AWS End User Messaging Push console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the AWS End User Messaging Push
resources in your AWS account. If you create an identity-based policy that is more restrictive than
the minimum required permissions, the console won't function as intended for entities (users or
roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the AWS End User Messaging Push console, also attach
the AWSEndUserMessaging AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSEndUserMessaging",
 "Effect": "Allow",
 "Action": [
 "mobiletargeting:CreateApp",
 "mobiletargeting:GetApp",
 "mobiletargeting:GetApps",
 "mobiletargeting:DeleteApp",

Identity-based policy examples 49

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS End User Messaging Push User Guide

 "mobiletargeting:GetChannels",
 "mobiletargeting:GetApnsChannel",
 "mobiletargeting:GetApnsVoipChannel",
 "mobiletargeting:GetApnsVoipSandboxChannel",
 "mobiletargeting:GetApnsSandboxChannel",
 "mobiletargeting:GetAdmChannel",
 "mobiletargeting:GetBaiduChannel",
 "mobiletargeting:GetGcmChannel",
 "mobiletargeting:UpdateApnsChannel",
 "mobiletargeting:UpdateApnsVoipChannel",
 "mobiletargeting:UpdateApnsVoipSandboxChannel",
 "mobiletargeting:UpdateBaiduChannel",
 "mobiletargeting:UpdateGcmChannel",
 "mobiletargeting:UpdateAdmChannel"
],
 "Resource": [
 "*"
]
 }
]
}

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },

Identity-based policy examples 50

AWS End User Messaging Push User Guide

 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting AWS End User Messaging Push identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS End User Messaging Push and IAM.

Topics

• I am not authorized to perform an action in AWS End User Messaging Push

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS End User Messaging Push
resources

I am not authorized to perform an action in AWS End User Messaging Push

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
mobiletargeting:GetWidget permissions.

Troubleshooting 51

AWS End User Messaging Push User Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 mobiletargeting:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the mobiletargeting:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS End User Messaging Push.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS End User Messaging Push. However, the action requires the service
to have permissions that are granted by a service role. Mary does not have permissions to pass the
role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS End User
Messaging Push resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

Troubleshooting 52

AWS End User Messaging Push User Guide

To learn more, consult the following:

• To learn whether AWS End User Messaging Push supports these features, see How AWS End User
Messaging Push works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for AWS End User Messaging Push

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

Compliance validation 53

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/

AWS End User Messaging Push User Guide

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS End User Messaging Push

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS End User Messaging Push offers several features
to help support your data resiliency and backup needs.

Resilience 54

https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

AWS End User Messaging Push User Guide

Infrastructure Security in AWS End User Messaging Push

As a managed service, AWS End User Messaging Push is protected by the AWS global network
security procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access AWS End User Messaging Push through the network.
Clients must support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher
suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE
(Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support
these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Configuration and vulnerability analysis

As a managed service, AWS End User Messaging Push is protected by the AWS global network
security procedures that are described in the Amazon Web Services: Overview of security processes
whitepaper. This means that AWS manages and performs basic security tasks and procedures to
harden, patch, update, and otherwise maintain the underlying infrastructure for your account and
resources. These procedures have been reviewed and certified by the appropriate third parties.

Security best practices

Use AWS Identity and Access Management (IAM) accounts to control access to API operations,
especially operations that create, modify, or delete resources. For the API, such resources include
projects, campaigns and journeys.

• Create an individual user for each person who manages resources, including yourself. Don't use
AWS root credentials to manage resources.

• Grant each user the minimum set of permissions required to perform his or her duties.

• Use IAM groups to effectively manage permissions for multiple users.

• Rotate your IAM credentials regularly.

Infrastructure Security 55

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

AWS End User Messaging Push User Guide

For more information about security, see Security in AWS End User Messaging Push. For more
information about IAM, see AWS Identity and Access Management. For information on IAM best
practices, see IAM best practices.

Security best practices 56

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-set-up.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS End User Messaging Push User Guide

Monitoring AWS End User Messaging Push

Monitoring is an important part of maintaining the reliability, availability, and performance
of AWS End User Messaging Push and your other AWS solutions. AWS provides the following
monitoring tools to watch AWS End User Messaging Push, report when something is wrong, and
take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and and the applications you run on AWS
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• Amazon EventBridge can be used to automate your AWS services and respond automatically
to system events, such as application availability issues or resource changes. Events from AWS
services are delivered to EventBridge in near real time. You can write simple rules to indicate
which events are of interest to you and which automated actions to take when an event matches
a rule. For more information, see Amazon EventBridge User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Monitoring AWS End User Messaging Push with Amazon
CloudWatch

You can monitor AWS End User Messaging Push using CloudWatch, which collects raw data and
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that
you can access historical information and gain a better perspective on how your web application
or service is performing. You can also set alarms that watch for certain thresholds, and send

Monitoring with CloudWatch 57

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS End User Messaging Push User Guide

notifications or take actions when those thresholds are met. For more information, see the Amazon
CloudWatch User Guide.

For a list of metrics and dimensions, see Monitoring Amazon Pinpoint with CloudWatch in the
Amazon Pinpoint User Guide.

Logging AWS End User Messaging Push API calls using AWS
CloudTrail

AWS End User Messaging Push is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in AWS End User Messaging Push. CloudTrail
captures all API calls for AWS End User Messaging Push as events. The calls captured include calls
from the AWS End User Messaging Push console and code calls to the AWS End User Messaging
Push API operations. If you create a trail, you can enable continuous delivery of CloudTrail events
to an Amazon S3 bucket, including events for AWS End User Messaging Push. If you don't configure
a trail, you can still view the most recent events in the CloudTrail console in Event history. Using
the information collected by CloudTrail, you can determine the request that was made to AWS End
User Messaging Push, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS End User Messaging Push information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS End User Messaging Push, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for AWS End User
Messaging Push, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3
bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions. The
trail logs events from all Regions in the AWS partition and delivers the log files to the Amazon S3
bucket that you specify. Additionally, you can configure other AWS services to further analyze and
act upon the event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

CloudTrail logs 58

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/pinpoint/latest/userguide/monitoring-metrics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html

AWS End User Messaging Push User Guide

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All AWS End User Messaging Push actions are logged by CloudTrail and are documented in
the AWS End User Messaging Push API Reference. For example, calls to the GetAdmChannel,
UpdateApnsChannel and GetApnsVoipChannel actions generate entries in the CloudTrail log
files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding AWS End User Messaging Push log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Understanding AWS End User Messaging Push log file entries 59

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/push/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS End User Messaging Push User Guide

Access AWS End User Messaging Push using an interface
endpoint (AWS PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and AWS End User
Messaging Push. You can access AWS End User Messaging Push as if it were in your VPC, without
the use of an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Instances in your VPC don't need public IP addresses to access AWS End User Messaging Push.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for AWS End User Messaging Push.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for AWS End User Messaging Push

Before you set up an interface endpoint for AWS End User Messaging Push, review Considerations
in the AWS PrivateLink Guide.

AWS End User Messaging Push supports making calls to all of its API actions through the interface
endpoint.

VPC endpoint policies are not supported for AWS End User Messaging Push. By default, full access
to AWS End User Messaging Push is allowed through the interface endpoint. Alternatively, you can
associate a security group with the endpoint network interfaces to control traffic to AWS End User
Messaging Push through the interface endpoint.

Create an interface endpoint for AWS End User Messaging Push

You can create an interface endpoint for AWS End User Messaging Push using either the Amazon
VPC console or the AWS Command Line Interface (AWS CLI). For more information, see Create an
interface endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for AWS End User Messaging Push using the following service name:

Considerations 60

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

AWS End User Messaging Push User Guide

com.amazonaws.region.pinpoint

If you enable private DNS for the interface endpoint, you can make API requests to AWS End
User Messaging Push using its default Regional DNS name. For example, com.amazonaws.us-
east-1.pinpoint.

Create an endpoint policy for your interface endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to AWS End User Messaging Push through the interface
endpoint. To control the access allowed to AWS End User Messaging Push from your VPC, attach a
custom endpoint policy to the interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for AWS End User Messaging Push actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed AWS End User Messaging Push actions for all
principals on all resources.

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "mobiletargeting:CreateApp",
 "mobiletargeting:DeleteApp"
],
 "Resource":"*"
 }

Create an endpoint policy 61

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS End User Messaging Push User Guide

]
}

Create an endpoint policy 62

AWS End User Messaging Push User Guide

Quotas for AWS End User Messaging Push

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To view the quotas for AWS End User Messaging Push, open the Service Quotas console. In the
navigation pane, choose AWS services and select Amazon Pinpoint.

Your AWS account has the following quotas related to AWS End User Messaging Push.

Resource Default quota Eligible for increase

Maximum number of push
notifications that can be sent
per second in a campaign

25,000 notifications per
second

Yes, use the Service Quotas
console

Amazon Device Messaging
(ADM) message payload size

6 KB per message No

Apple Push Notification
service (APNs) message
payload size

4 KB per message No

APNs sandbox message
payload size

4 KB per message No

Baidu Cloud Push message
payload size

4 KB per message No

Firebase Cloud Messaging
(FCM) message payload size

4 KB per message No

63

https://console.aws.amazon.com/servicequotas/home
https://console.aws.amazon.com/servicequotas/home
https://console.aws.amazon.com/servicequotas/home

AWS End User Messaging Push User Guide

Document history for the AWS End User Messaging Push
User Guide

The following table describes the documentation releases for AWS End User Messaging Push.

Change Description Date

Initial release Initial release of the AWS End
User Messaging Push User
Guide

July 24, 2024

64

	AWS End User Messaging Push
	Table of Contents
	What is AWS End User Messaging Push?
	Are you a first-time AWS End User Messaging Push user?
	Features of AWS End User Messaging Push
	Accessing AWS End User Messaging Push
	Regional availability

	Setting up an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Getting started with AWS End User Messaging Push
	Creating an application and enabling push channels
	Contextual
	Prerequisites
	Procedure

	Disabling push channels
	Sending a message
	Additional resources

	Receiving push notifications in your application
	Setting up Swift Push Notifications
	Working with APNs tokens

	Setting up Android push notifications
	Setting up Flutter Push Notifications
	Setting up React Native Push Notifications
	Create an application in AWS End User Messaging Push
	Handling push notifications

	Deleting an application
	Contextual
	Procedure

	Best practices
	Sending a high volume of push notifications

	Security in AWS End User Messaging Push
	Data protection in AWS End User Messaging Push
	Data encryption
	Encryption at rest

	Encryption in transit
	Key management
	Inter-network traffic privacy
	Traffic between AWS End User Messaging Push and on-premises clients and applications
	Traffic between AWS End User Messaging Push and other AWS resources

	Identity and access management for AWS End User Messaging Push
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS End User Messaging Push works with IAM
	Identity-based policies for AWS End User Messaging Push
	Identity-based policy examples for AWS End User Messaging Push

	Resource-based policies within AWS End User Messaging Push
	Policy actions for AWS End User Messaging Push
	Policy resources for AWS End User Messaging Push
	Policy condition keys for AWS End User Messaging Push
	ACLs in AWS End User Messaging Push
	ABAC with AWS End User Messaging Push
	Using temporary credentials with AWS End User Messaging Push
	Cross-service principal permissions for AWS End User Messaging Push
	Service roles for AWS End User Messaging Push
	Service-linked roles for AWS End User Messaging Push

	Identity-based policy examples for AWS End User Messaging Push
	Policy best practices
	Using the AWS End User Messaging Push console
	Allow users to view their own permissions

	Troubleshooting AWS End User Messaging Push identity and access
	I am not authorized to perform an action in AWS End User Messaging Push
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS End User Messaging Push resources

	Compliance validation for AWS End User Messaging Push
	Resilience in AWS End User Messaging Push
	Infrastructure Security in AWS End User Messaging Push
	Configuration and vulnerability analysis
	Security best practices

	Monitoring AWS End User Messaging Push
	Monitoring AWS End User Messaging Push with Amazon CloudWatch
	Logging AWS End User Messaging Push API calls using AWS CloudTrail
	AWS End User Messaging Push information in CloudTrail
	Understanding AWS End User Messaging Push log file entries

	Access AWS End User Messaging Push using an interface endpoint (AWS PrivateLink)
	Considerations for AWS End User Messaging Push
	Create an interface endpoint for AWS End User Messaging Push
	Create an endpoint policy for your interface endpoint

	Quotas for AWS End User Messaging Push
	Document history for the AWS End User Messaging Push User Guide

