
Developer Guide

AWS SDK for .NET

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK for .NET Developer Guide

AWS SDK for .NET: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS SDK for .NET Developer Guide

Table of Contents

What is the AWS SDK for .NET ... 1
About this version .. 1
Maintenance and support for SDK major versions .. 2
Common use cases ... 2
Additional topics in this section .. 2
Related AWS tools .. 2

Tools for Windows PowerShell and Tools for PowerShell Core ... 2
Toolkit for VS Code .. 3
Toolkit for Visual Studio .. 3
Toolkit for Azure DevOps .. 3

SDKs and Tools Reference .. 4
Additional resources ... 4

Get started ... 7
Install and configure your toolchain .. 7

Cross-platform development .. 8
Windows with Visual Studio and .NET Core .. 8
Next step ... 9

Configure SDK authentication ... 9
Enable and configure IAM Identity Center .. 9
Configure the SDK to use IAM Identity Center. .. 9
Start an AWS access portal session .. 11
Additional information .. 11

Take a quick tour ... 12
Simple cross-platform app ... 12
Simple Windows-based app ... 18
Next steps ... 24

Start a new project .. 24
Configure the AWS Region ... 25

Create a service client with a particular Region ... 25
Specify a Region for all service clients .. 27
Region resolution .. 28
Special information about the China (Beijing) Region .. 28
Special information about new AWS services .. 28

Install AWSSDK packages with NuGet ... 28

iii

AWS SDK for .NET Developer Guide

Using NuGet from the Command prompt or terminal ... 29
Using NuGet from Visual Studio Solution Explorer ... 30
Using NuGet from the Package Manager Console ... 30

Install AWSSDK assemblies without NuGet .. 31
Credential and profile resolution .. 33

Profile resolution .. 33
Using federated user account credentials ... 34
Specifying roles or temporary credentials .. 35
Using proxy credentials ... 35

Users and roles ... 36
Users and permission sets .. 36
Service roles ... 36

Advanced configuration .. 37
AWSSDK.Extensions.NETCore.Setup and IConfiguration .. 38
Configuring Other Application Parameters ... 42
Configuration Files Reference for AWS SDK for .NET .. 50

Using legacy credentials ... 62
Important warnings and guidance for credentials ... 63
Using the shared AWS credentials file ... 64
Using the SDK Store (Windows only) ... 67

SDK features .. 71
Asynchronous APIs ... 71
Retries and timeouts ... 73

Retries .. 73
Timeouts ... 75
Example ... 76

Paginators .. 76
Where do I find paginators? ... 77
What do paginators give me? .. 77
Synchronous vs. asynchronous pagination .. 77
Example ... 77
Additional considerations for paginators ... 81

Observability ... 82
Additional resources ... 83
Configure a TelemetryProvider ... 83
Metrics ... 85

iv

AWS SDK for .NET Developer Guide

Telemetry providers ... 87
Additional tools .. 88

AWS Deploy Tool .. 89
AWS Message Processing Framework for .NET ... 89

Advanced auth ... 90
Single sign-on ... 90

Prerequisites ... 91
Setting up an SSO profile ... 91
Generating and using SSO tokens .. 93
Additional resources ... 97
Tutorials .. 98
Tutorial: .NET application only ... 98
Tutorial: AWS CLI and .NET application ... 106

Deploy to AWS ... 115
Deploy from the .NET CLI .. 115
Deploy from the IDE toolkits .. 115
Use cases ... 116
ASP.NET Core apps .. 116
.NET Console apps ... 117
Blazor WebAssembly apps ... 118
AWS Lambda projects ... 118

Prerequisites .. 119
Available Lambda commands .. 119
Steps to deploy ... 120

Migrate your project ... 121
What's new .. 121
Supported platforms ... 124

.NET Core .. 124

.NET Standard 2.0 .. 124

.NET Framework 4.5 ... 124

.NET Framework 3.5 ... 124
Portable Class Library and Xamarin ... 125
Unity support .. 125
More information .. 125

Migrating to Version 3 .. 125
About the AWS SDK for .NET Versions .. 126

v

AWS SDK for .NET Developer Guide

Architecture Redesign for the SDK ... 126
Breaking Changes ... 126

Migrating to version 3.5 ... 128
What's changed for version 3.5 ... 128
Migrating synchronous code .. 130

Migrating to version 3.7 ... 131
Migrating from .NET Standard 1.3 ... 131

Work with AWS services ... 132
Code examples with guidance .. 132

AWS CloudFormation ... 133
Amazon Cognito ... 137
DynamoDB ... 145
Amazon EC2 ... 175
IAM ... 236
Amazon S3 ... 256
Amazon SNS .. 266
Amazon SQS .. 270

AWS Lambda ... 303
APIs .. 303
Prerequisites .. 303
Topics .. 303
Lambda Annotations .. 303

High-level libraries and frameworks .. 305
Message Processing Framework .. 306

AWS OpsWorks ... 327
APIs .. 328
Prerequisites .. 328

Other services and configuration ... 328
Code examples ... 329

ACM ... 331
Actions .. 331

API Gateway .. 335
Scenarios ... 336
AWS community contributions .. 336

Aurora ... 337
Basics ... 339

vi

AWS SDK for .NET Developer Guide

Actions .. 331
Scenarios ... 336

Auto Scaling .. 379
Basics ... 339
Actions .. 331
Scenarios ... 336

Amazon Bedrock .. 464
Actions .. 331

Amazon Bedrock Runtime .. 468
Scenarios ... 336
AI21 Labs Jurassic-2 .. 469
Amazon Titan Text ... 473
Anthropic Claude .. 480
Cohere Command ... 488
Meta Llama .. 498
Mistral AI .. 506

AWS CloudFormation .. 513
CloudWatch ... 516

Basics ... 339
Actions .. 331

CloudWatch Logs ... 571
Actions .. 331

Amazon Cognito Identity Provider ... 585
Actions .. 331
Scenarios ... 336

Amazon Comprehend ... 610
Actions .. 331
Scenarios ... 336

Amazon DocumentDB ... 621
Serverless examples ... 622

DynamoDB ... 625
Basics ... 339
Actions .. 331
Scenarios ... 336
Serverless examples ... 622
AWS community contributions .. 336

vii

AWS SDK for .NET Developer Guide

Amazon EC2 .. 722
Basics ... 339
Actions .. 331
Scenarios ... 336

Amazon ECS .. 847
Actions .. 331
Scenarios ... 336

Elastic Load Balancing - Version 2 ... 859
Actions .. 331
Scenarios ... 336

EventBridge ... 916
Basics ... 339
Actions .. 331

EventBridge Scheduler .. 957
Actions .. 331
Scenarios ... 336

AWS Glue ... 986
Basics ... 339
Actions .. 331

IAM .. 1018
Basics ... 339
Actions .. 331
Scenarios ... 336

Amazon Keyspaces .. 1114
Basics ... 339
Actions .. 331

Kinesis .. 1141
Actions .. 331
Serverless examples ... 622

AWS KMS ... 1159
Actions .. 331

Lambda .. 1171
Basics ... 339
Actions .. 331
Scenarios ... 336
Serverless examples ... 622

viii

AWS SDK for .NET Developer Guide

AWS community contributions .. 336
MediaConvert .. 1222

Actions .. 331
Amazon MSK .. 1232

Serverless examples ... 622
Organizations ... 1234

Actions .. 331
Amazon Pinpoint ... 1252

Actions .. 331
Amazon Polly .. 1259

Actions .. 331
Scenarios ... 336

Amazon RDS ... 1271
Basics ... 339
Actions .. 331
Scenarios ... 336
Serverless examples ... 622

Amazon RDS Data Service ... 1309
Scenarios ... 336

Amazon Rekognition ... 1310
Actions .. 331
Scenarios ... 336

Route 53 domain registration ... 1342
Basics ... 339
Actions .. 331

Amazon S3 .. 1368
Basics ... 339
Actions .. 331
Scenarios ... 336
Serverless examples ... 622

S3 Glacier .. 1521
Actions .. 331

SageMaker AI .. 1531
Actions .. 331
Scenarios ... 336

Secrets Manager .. 1565

ix

AWS SDK for .NET Developer Guide

Actions .. 331
Amazon SES .. 1568

Actions .. 331
Scenarios ... 336

Amazon SES API v2 .. 1582
Actions .. 331
Scenarios ... 336

Amazon SNS ... 1621
Actions .. 331
Scenarios ... 336
Serverless examples ... 622

Amazon SQS ... 1666
Actions .. 331
Scenarios ... 336
Serverless examples ... 622

Step Functions ... 1710
Basics ... 339
Actions .. 331

AWS STS .. 1737
Actions .. 331

Support .. 1740
Basics ... 339
Actions .. 331

Amazon Textract .. 1767
Scenarios ... 336

Amazon Transcribe .. 1768
Actions .. 331

Amazon Translate .. 1780
Actions .. 331
Scenarios ... 336

Security .. 1794
Data protection .. 1794
Identity and Access Management .. 1795

Audience ... 1796
Authenticating with identities ... 1796
Managing access using policies ... 1800

x

AWS SDK for .NET Developer Guide

How AWS services work with IAM .. 1802
Troubleshooting AWS identity and access .. 1802

Compliance Validation .. 1804
Resilience ... 1805
Infrastructure Security .. 1806
Enforcing a minimum TLS version ... 1807

.NET Core ... 1807

.NET Framework ... 1808
AWS Tools for PowerShell .. 1809
Xamarin .. 1810
Unity .. 1810
Browser (for Blazor WebAssembly) .. 1810

S3 Encryption Client Migration .. 1811
Migration Overview ... 1811
Update Existing Clients to V1-transitional Clients to Read New Formats 1812
Migrate V1-transitional Clients to V2 Clients to Write New Formats 1812
Update V2 Clients to No Longer Read V1 Formats .. 1816

Special considerations ... 1817
Obtaining AWSSDK assemblies .. 1817

Download and extract ZIP files ... 1817
Accessing credentials and profiles in an application .. 1818

Examples for class CredentialProfileStoreChain .. 1819
Examples for classes SharedCredentialsFile and AWSCredentialsFactory 1820

Unity support ... 1821
Xamarin support .. 1822

API reference ... 1823
About API reference versions .. 1823

Document history .. 1825

xi

AWS SDK for .NET Developer Guide

What is the AWS SDK for .NET

The AWS SDK for .NET makes it easier to build .NET applications that tap into cost-effective,
scalable, and reliable AWS services such as Amazon Simple Storage Service (Amazon S3) and
Amazon Elastic Compute Cloud (Amazon EC2). The SDK simplifies the use of AWS services by
providing a set of libraries that are consistent and familiar for .NET developers.

(OK, got it! I'm ready to set up and take a quick tour.)

About this version

Note

This documentation is for version 3.0 and later of the AWS SDK for .NET. It's mostly
centered around .NET Core and ASP.NET Core, but also contains information about .NET
Framework and ASP.NET 4.x. In addition to Windows and Visual Studio, it gives equal
consideration to cross-platform development.
For information about migrating, see Migrate your project.
To find deprecated content for earlier versions of the AWS SDK for .NET, see the following
item(s):

• AWS SDK for .NET (version 2, deprecated) Developer Guide

• Deprecated API references for the AWS SDK for .NET

About this version 1

samples/aws-sdk-net-v2-dg__deprecated-content.zip

AWS SDK for .NET Developer Guide

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the AWS SDKs and Tools Reference Guide:

• AWS SDKs and tools maintenance policy

• AWS SDKs and tools version support matrix

Common use cases

The AWS SDK for .NET helps you realize several compelling use cases, including the following:

• Manage users and roles with AWS Identity and Access Management (IAM).

• Access Amazon Simple Storage Service (Amazon S3) to create buckets and store objects.

• Manage Amazon Simple Notification Service (Amazon SNS) HTTP subscriptions to topics.

• Use the S3 transfer utility to transfer files to Amazon S3 from your Xamarin applications.

• Use Amazon Simple Queue Service (Amazon SQS) to process messages and workflows between
components in a system.

• Perform efficient Amazon S3 transfers by sending SQL statements to Amazon S3 Select.

• Create and launch Amazon EC2 instances, and configure and request Amazon EC2 spot instances.

Additional topics in this section

• AWS tools related to the AWS SDK for .NET

• AWS SDKs and Tools Reference Guide

• Additional resources

AWS tools related to the AWS SDK for .NET

Tools for Windows PowerShell and Tools for PowerShell Core

The AWS Tools for Windows PowerShell and AWS Tools for PowerShell Core are PowerShell
modules that are built on the functionality exposed by the AWS SDK for .NET. The AWS PowerShell

Maintenance and support for SDK major versions 2

https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/mobile/sdkforxamarin/developerguide/s3-integration-transferutility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK for .NET Developer Guide

tools enable you to script operations on your AWS resources from the PowerShell prompt.
Although the cmdlets are implemented using the service clients and methods from the SDK,
the cmdlets provide an idiomatic PowerShell experience for specifying parameters and handling
results.

To get started, see AWS Tools for Windows PowerShell.

Toolkit for VS Code

The AWS Toolkit for Visual Studio Code is a plugin for the Visual Studio Code (VS Code) editor. The
toolkit makes it easier for you to develop, debug, and deploy applications that use AWS.

With the toolkit, you can do such things as the following:

• Create serverless applications that contain AWS Lambda functions, and then deploy the
applications to an AWS CloudFormation stack.

• Work with Amazon EventBridge schemas.

• Use IntelliSense when working with Amazon ECS task-definition files.

• Visualize an AWS Cloud Development Kit (AWS CDK) application.

Toolkit for Visual Studio

The AWS Toolkit for Visual Studio is a plugin for the Visual Studio IDE that makes it easier for
you to develop, debug, and deploy .NET applications that use Amazon Web Services. The Toolkit
for Visual Studio provides Visual Studio templates for services such as Lambda and deployment
wizards for web applications and serverless applications. You can use the AWS Explorer to manage
Amazon EC2 instances, work with Amazon DynamoDB tables, publish messages to Amazon Simple
Notification Service (Amazon SNS) queues, and more, all within Visual Studio.

To get started, see Setting up the AWS Toolkit for Visual Studio.

Toolkit for Azure DevOps

The AWS Toolkit for Microsoft Azure DevOps adds tasks to easily enable build and release pipelines
in Azure DevOps and Azure DevOps Server to work with AWS services. You can work with Amazon
S3, AWS Elastic Beanstalk, AWS CodeDeploy, Lambda, AWS CloudFormation, Amazon Simple
Queue Service (Amazon SQS), and Amazon SNS. You can also run commands using the Windows
PowerShell module and the AWS Command Line Interface (AWS CLI).

Toolkit for VS Code 3

https://aws.amazon.com/powershell
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/setup.html

AWS SDK for .NET Developer Guide

To get started with the AWS Toolkit for Azure DevOps, see the AWS Toolkit for Microsoft Azure
DevOps User Guide.

AWS SDKs and Tools Reference Guide

The AWS SDKs and Tools Reference Guide contains information that's relevant and important for
many of the AWS SDKs and toolkits and the AWS CLI. The following are some examples of the
information that the reference contains:

• Information about the shared AWS config and credentials files and their location.

• Setting up AWS accounts, users, and roles

• Configuration and authentication settings reference

• AWS Common Runtime (CRT) libraries

• AWS SDKs and tools maintenance policy

• AWS SDKs and tools version support matrix

Additional resources

Supported services

The AWS SDK for .NET supports most AWS infrastructure products, and more services are added
frequently. For a list of the AWS services supported by the SDK, see the SDK README file.

Revision history

To find out what has changed in various releases, see the following:

• SDK change log

• What's new in the AWS SDK for .NET

• Document history

Home page for the AWS SDK for .NET

For more information about the AWS SDK for .NET, see the home page for the SDK at https://
aws.amazon.com/sdk-for-net/.

SDK reference documentation

SDKs and Tools Reference 4

https://docs.aws.amazon.com/vsts/latest/userguide/
https://docs.aws.amazon.com/vsts/latest/userguide/
https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html
https://docs.aws.amazon.com/sdkref/latest/guide/common-runtime.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html
https://github.com/aws/aws-sdk-net/blob/master/README.md
https://github.com/aws/aws-sdk-net/tree/master/changelogs
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-net/

AWS SDK for .NET Developer Guide

The SDK reference documentation gives you the ability to browse and search across all code
included with the SDK. It provides thorough documentation and usage examples. For more
information, see the AWS SDK for .NET API Reference.

AWS re:Post (formerly AWS forums)

Visit AWS re:Post, specifically the topic for the AWS SDK for .NET, to ask questions or provide
feedback about AWS. Each documentation page has a Try AWS re:Post link at the bottom of the
page that takes you to the associated re:Post topic. AWS engineers monitor the topics and respond
to questions, feedback, and issues.

If you're signed in to re:Post, you can also follow a topic. To follow the topic for the AWS SDK
for .NET, go to the All Topics page, find ".NET on AWS", and select the Follow button.

Toolkits

• AWS Toolkit for Visual Studio: If you use the Microsoft Visual Studio IDE, you should check out
the AWS Toolkit for Visual Studio User Guide.

• AWS Toolkit for Visual Studio Code: If you use the Microsoft Visual Studio IDE, you should check
out the AWS Toolkit for Visual Studio Code User Guide.

Helpful libraries, extensions and tools

Visit the aws/dotnet and aws/aws-sdk-net repositories on the GitHub website for links to libraries,
tools, and resources you can use to help build .NET applications and services on AWS.

The following are some examples:

• AWS .NET Configuration Extension for Systems Manager

• AWS Extensions .NET Core Setup

• AWS Logging .NET

• Amazon Cognito Authentication Extension Library

• AWS X-Ray SDK for .NET

Other resources

The following are other resources that might prove useful:

• Developer net

Additional resources 5

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://repost.aws/
https://repost.aws/topics/TAC3sZCeiYRViBUbM29z_2ZQ/net-on-aws
https://repost.aws/topics
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/
https://github.com/aws/dotnet
https://github.com/aws/aws-sdk-net
https://github.com/aws/aws-dotnet-extensions-configuration
https://github.com/aws/aws-sdk-net/tree/master/extensions/src/AWSSDK.Extensions.NETCore.Setup
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-sdk-net-extensions-cognito
https://github.com/aws/aws-xray-sdk-dotnet
https://aws.amazon.com/developer/language/net/

AWS SDK for .NET Developer Guide

• .NET Development Environment on the AWS Cloud - Quick Start Reference Deployment

• Hello, Cloud! blog

• AWS Whitepaper: Developing and Deploying .NET Applications on AWS

• AWS Microservice Extractor for .NET

• Porting Assistant for .NET

• AWS SDKs and Tools Reference Guide

Additional resources 6

https://aws-quickstart.github.io/quickstart-dotnet-devenvironment-setup/
https://davidpallmann.hashnode.dev/hello-cloud
https://docs.aws.amazon.com/whitepapers/latest/develop-deploy-dotnet-apps-on-aws/develop-deploy-dotnet-apps-on-aws.html
https://docs.aws.amazon.com/microservice-extractor/latest/userguide
https://docs.aws.amazon.com/portingassistant/latest/userguide
https://docs.aws.amazon.com/sdkref/latest/guide/

AWS SDK for .NET Developer Guide

Get started with the AWS SDK for .NET

To use the AWS SDK for .NET, you need to install your toolchain and configure a number of
essential things that your application needs to access AWS services. These include:

• An appropriate user account or role

• Authentication information for that user account or to assume that role

• Specification of the AWS Region

• AWSSDK packages or assemblies

Some of the topics in this section provide information about how to configure these essential
things.

Other topics in this section and other sections provide information about more advanced ways that
you can configure your project.

Topics

• Install and configure your toolchain

• Configure SDK authentication with AWS

• Take a quick tour of the AWS SDK for .NET

• Start a new project

• Configure the AWS Region

• Install AWSSDK packages with NuGet

• Install AWSSDK assemblies without NuGet

• Credential and profile resolution

• Additional information about users and roles

• Advanced configuration for your AWS SDK for .NET project

• Using legacy credentials

Install and configure your toolchain

To use the AWS SDK for .NET, you must have certain development tools installed.

Install and configure your toolchain 7

AWS SDK for .NET Developer Guide

Cross-platform development

The following are required for cross-platform .NET development on Windows, Linux, or macOS:

• Microsoft .NET Core SDK, version 2.1, 3.1, or later, which includes the .NET command line
interface (CLI) (dotnet) and the .NET Core runtime.

• A code editor or integrated development environment (IDE) that is appropriate for your
operating system and requirements. This is typically one that provides some support for .NET
Core.

Examples include Microsoft Visual Studio Code (VS Code), JetBrains Rider, and Microsoft Visual
Studio.

• (Optional) An AWS toolkit if one is available for the editor you chose and your operating system.

Examples include the AWS Toolkit for Visual Studio Code, AWS Toolkit for JetBrains, and AWS
Toolkit for Visual Studio.

Windows with Visual Studio and .NET Core

The following are required for development on Windows with Visual Studio and .NET Core:

• Microsoft Visual Studio

• Microsoft .NET Core 2.1, 3.1 or later

This is typically included by default when installing a recent version of Visual Studio.

• (Optional) The AWS Toolkit for Visual Studio, which is a plugin that provides a user interface for
managing your AWS resources and local profiles from Visual Studio. To install the toolkit, see
Setting up the AWS Toolkit for Visual Studio.

For more information, see the AWS Toolkit for Visual Studio User Guide.

Cross-platform development 8

https://learn.microsoft.com/en-us/dotnet/fundamentals/
https://code.visualstudio.com/
https://www.jetbrains.com/rider/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://visualstudio.microsoft.com/vs/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/

AWS SDK for .NET Developer Guide

Next step

Configure SDK authentication with AWS

Configure SDK authentication with AWS

You must establish how your code authenticates with AWS when developing with AWS services.
There are different ways in which you can configure programmatic access to AWS resources,
depending on the environment and the AWS access available to you.

To see various methods of authentication for the SDK, see Authentication and access in the AWS
SDKs and Tools Reference Guide.

This topic assumes that a new user is developing locally, has not been given a method of
authentication by their employer, and will be using AWS IAM Identity Center to obtain temporary
credentials. If your environment doesn't fall under these assumptions, some of the information in
this topic might not apply to you, or some of the information might have already been given to
you.

Configuring this environment requires several steps, which are summarized as follows:

1. Enable and configure IAM Identity Center

2. Configure the SDK to use IAM Identity Center.

3. Start an AWS access portal session

Enable and configure IAM Identity Center

To use IAM Identity Center, it must first be enabled and configured. To see details about how to
do this for the SDK, look at Step 1 in the topic for IAM Identity Center authentication in the AWS
SDKs and Tools Reference Guide. Specifically, follow any necessary instructions under I do not have
established access through IAM Identity Center.

Configure the SDK to use IAM Identity Center.

Information about how to configure the SDK to use IAM Identity Center is in Step 2 in the topic for
IAM Identity Center authentication in the AWS SDKs and Tools Reference Guide. After you complete
this configuration, your system should contain the following elements:

Next step 9

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

AWS SDK for .NET Developer Guide

• The AWS CLI, which you use to start an AWS access portal session before you run your
application.

• The shared AWS config file that contains a [default] profile with a set of configuration
values that can be referenced from the SDK. To find the location of this file, see Location of the
shared files in the AWS SDKs and Tools Reference Guide. The AWS SDK for .NET uses the profile's
SSO token provider to acquire credentials before sending requests to AWS. The sso_role_name
value, which is an IAM role connected to an IAM Identity Center permission set, should allow
access to the AWS services used in your application.

The following sample config file shows a default profile set up with SSO token provider. The
profile's sso_session setting refers to the named sso-session section. The sso-session
section contains settings to initiate an AWS access portal session.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

Important

If you're using AWS IAM Identity Center for authentication, your application must reference
the following NuGet packages so that SSO resolution can work:

• AWSSDK.SSO

• AWSSDK.SSOOIDC

Failure to reference these packages will result in a runtime exception.

Configure the SDK to use IAM Identity Center. 10

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html

AWS SDK for .NET Developer Guide

Start an AWS access portal session

Before running an application that accesses AWS services, you need an active AWS access portal
session for the SDK to use IAM Identity Center authentication to resolve credentials. Depending on
your configured session lengths, your access will eventually expire and the SDK will encounter an
authentication error. To sign in to the AWS access portal, run the following command in the AWS
CLI.

aws sso login

Since you have a default profile setup, you do not need to call the command with a --profile
option. If your SSO token provider configuration is using a named profile, the command is aws
sso login --profile named-profile.

To test if you already have an active session, run the following AWS CLI command.

aws sts get-caller-identity

The response to this command should report the IAM Identity Center account and permission set
configured in the shared config file.

Note

If you already have an active AWS access portal session and run aws sso login, you will
not be required to provide credentials.
The sign-in process might prompt you to allow the AWS CLI access to your data. Because
the AWS CLI is built on top of the SDK for Python, permission messages may contain
variations of the botocore name.

Additional information

• For additional information about using IAM Identity Center and SSO in a development
environment, see Single sign-on in the Advanced auth section. This information includes
alternative and more advanced methods, as well as tutorials that show you how to use these
methods.

• For more options on authentication for the SDK, such as the use of profiles and environment
variables, see the configuration chapter in the AWS SDKs and Tools Reference Guide.

Start an AWS access portal session 11

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html

AWS SDK for .NET Developer Guide

• To learn more about best practices, see Security best practices in IAM in the IAM User Guide.

• To create short-term AWS credentials, see Temporary Security Credentials in the IAM User Guide.

• To learn about other credential providers, see Standardized credential providers in the AWS SDKs
and Tools Reference Guide.

Take a quick tour of the AWS SDK for .NET

This section provides basic tutorials for developers who are new to the AWS SDK for .NET.

Note

Before you use these tutorials, you must have first installed your toolchain and configured
SDK authentication.

For information about developing software for specific AWS services along with code examples, see
Work with AWS services. For additional code examples, see AWS SDK for .NET code examples.

Topics

• Simple cross-platform application using the AWS SDK for .NET

• Simple Windows-based application using the AWS SDK for .NET

• Next steps

Simple cross-platform application using the AWS SDK for .NET

This tutorial uses the AWS SDK for .NET and .NET Core for cross-platform development. The
tutorial shows you how to use the SDK to list the Amazon S3 buckets that you own and, optionally,
create a bucket.

You'll perform this tutorial using cross-platform tools such as the .NET command line interface
(CLI). For other ways to configure your development environment, see Install and configure your
toolchain.

Required for cross-platform .NET development on Windows, Linux, or macOS:

• Microsoft .NET Core SDK, version 2.1, 3.1, or later, which includes the .NET command line
interface (CLI) (dotnet) and the .NET Core runtime.

Take a quick tour 12

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/
https://learn.microsoft.com/en-us/dotnet/fundamentals/

AWS SDK for .NET Developer Guide

• A code editor or integrated development environment (IDE) that is appropriate for your
operating system and requirements. This is typically one that provides some support for .NET
Core.

Examples include Microsoft Visual Studio Code (VS Code), JetBrains Rider, and Microsoft Visual
Studio.

Note

Before you use these tutorials, you must have first installed your toolchain and configured
SDK authentication.

Steps

• Create the project

• Create the code

• Run the application

• Cleanup

Create the project

1. Open the command prompt or terminal. Find or create an operating system folder under
which you can create a .NET project.

2. In that folder, run the following command to create the .NET project.

dotnet new console --name S3CreateAndList

3. Go to the newly created S3CreateAndList folder and run the following commands:

dotnet add package AWSSDK.S3
dotnet add package AWSSDK.SecurityToken
dotnet add package AWSSDK.SSO
dotnet add package AWSSDK.SSOOIDC

The preceding commands install the NuGet packages from the NuGet package manager.
Because we know exactly what NuGet packages we need for this tutorial, we can perform this

Simple cross-platform app 13

https://code.visualstudio.com/
https://www.jetbrains.com/rider/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://www.nuget.org/profiles/awsdotnet

AWS SDK for .NET Developer Guide

step now. It's also common that the required packages become known during development.
When this happens, a similar command can be run at that time.

Create the code

1. In the S3CreateAndList folder, find and open Program.cs in your code editor.

2. Replace the contents with the following code and save the file.

using System;
using System.Threading.Tasks;

// NuGet packages: AWSSDK.S3, AWSSDK.SecurityToken, AWSSDK.SSO, AWSSDK.SSOOIDC
using Amazon.Runtime;
using Amazon.Runtime.CredentialManagement;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace S3CreateAndList
{
 class Program
 {
 // This code is part of the quick tour in the developer guide.
 // See https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/quick-
start.html
 // for complete steps.
 // Requirements:
 // - An SSO profile in the SSO user's shared config file with sufficient
 privileges for
 // STS and S3 buckets.
 // - An active SSO Token.
 // If an active SSO token isn't available, the SSO user should do the
 following:
 // In a terminal, the SSO user must call "aws sso login".

 // Class members.
 static async Task Main(string[] args)
 {
 // Get SSO credentials from the information in the shared config file.
 // For this tutorial, the information is in the [default] profile.
 var ssoCreds = LoadSsoCredentials("default");

Simple cross-platform app 14

AWS SDK for .NET Developer Guide

 // Display the caller's identity.
 var ssoProfileClient = new AmazonSecurityTokenServiceClient(ssoCreds);
 Console.WriteLine($"\nSSO Profile:\n {await
 ssoProfileClient.GetCallerIdentityArn()}");

 // Create the S3 client is by using the SSO credentials obtained
 earlier.
 var s3Client = new AmazonS3Client(ssoCreds);

 // Parse the command line arguments for the bucket name.
 if (GetBucketName(args, out String bucketName))
 {
 // If a bucket name was supplied, create the bucket.
 // Call the API method directly
 try
 {
 Console.WriteLine($"\nCreating bucket {bucketName}...");
 var createResponse = await s3Client.PutBucketAsync(bucketName);
 Console.WriteLine($"Result:
 {createResponse.HttpStatusCode.ToString()}");
 }
 catch (Exception e)
 {
 Console.WriteLine("Caught exception when creating a bucket:");
 Console.WriteLine(e.Message);
 }
 }

 // Display a list of the account's S3 buckets.
 Console.WriteLine("\nGetting a list of your buckets...");
 var listResponse = await s3Client.ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {listResponse.Buckets.Count}");
 foreach (S3Bucket b in listResponse.Buckets)
 {
 Console.WriteLine(b.BucketName);
 }
 Console.WriteLine();
 }

 //
 // Method to parse the command line.
 private static Boolean GetBucketName(string[] args, out String bucketName)
 {

Simple cross-platform app 15

AWS SDK for .NET Developer Guide

 Boolean retval = false;
 bucketName = String.Empty;
 if (args.Length == 0)
 {
 Console.WriteLine("\nNo arguments specified. Will simply list your
 Amazon S3 buckets." +
 "\nIf you wish to create a bucket, supply a valid, globally
 unique bucket name.");
 bucketName = String.Empty;
 retval = false;
 }
 else if (args.Length == 1)
 {
 bucketName = args[0];
 retval = true;
 }
 else
 {
 Console.WriteLine("\nToo many arguments specified." +
 "\n\ndotnet_tutorials - A utility to list your Amazon S3 buckets
 and optionally create a new one." +
 "\n\nUsage: S3CreateAndList [bucket_name]" +
 "\n - bucket_name: A valid, globally unique bucket name." +
 "\n - If bucket_name isn't supplied, this utility simply lists
 your buckets.");
 Environment.Exit(1);
 }
 return retval;
 }

 //
 // Method to get SSO credentials from the information in the shared config
 file.
 static AWSCredentials LoadSsoCredentials(string profile)
 {
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials(profile, out var credentials))
 throw new Exception($"Failed to find the {profile} profile");
 return credentials;
 }
 }

 // Class to read the caller's identity.
 public static class Extensions

Simple cross-platform app 16

AWS SDK for .NET Developer Guide

 {
 public static async Task<string> GetCallerIdentityArn(this
 IAmazonSecurityTokenService stsClient)
 {
 var response = await stsClient.GetCallerIdentityAsync(new
 GetCallerIdentityRequest());
 return response.Arn;
 }
 }
}

Run the application

1. Run the following command.

dotnet run

2. Examine the output to see the number of Amazon S3 buckets that you own, if any, and their
names.

3. Choose a name for a new Amazon S3 bucket. Use "dotnet-quicktour-s3-1-cross-" as a base
and add something unique to it, such as a GUID or your name. Be sure to follow the rules for
bucket names, as described in Rules for bucket naming in the Amazon S3 User Guide.

4. Run the following command, replacing amzn-s3-demo-bucket with the name of the bucket
that you chose.

dotnet run amzn-s3-demo-bucket

5. Examine the output to see the new bucket that was created.

Cleanup

While performing this tutorial, you created some resources that you can choose to clean up at this
time.

• If you don't want to keep the bucket that the application created in an earlier step, delete it by
using the Amazon S3 console at https://console.aws.amazon.com/s3/.

• If you don't want to keep your .NET project, remove the S3CreateAndList folder from your
development environment.

Simple cross-platform app 17

https://docs.aws.amazon.com/AmazonS3/latest/userguide/BucketRestrictions.html#bucketnamingrules
https://docs.aws.amazon.com/AmazonS3/latest/userguide/
https://console.aws.amazon.com/s3/

AWS SDK for .NET Developer Guide

Where to go next

Go back to the quick-tour menu or go straight to the end of this quick tour.

Simple Windows-based application using the AWS SDK for .NET

This tutorial uses the AWS SDK for .NET on Windows with Visual Studio and .NET Core. The tutorial
shows you how to use the SDK to list the Amazon S3 buckets that you own and optionally create a
bucket.

You'll perform this tutorial on Windows using Visual Studio and .NET Core. For other ways to
configure your development environment, see Install and configure your toolchain.

Required for development on Windows with Visual Studio and .NET Core:

• Microsoft Visual Studio

• Microsoft .NET Core 2.1, 3.1 or later

This is typically included by default when installing a recent version of Visual Studio.

Note

Before you use these tutorials, you must have first installed your toolchain and configured
SDK authentication.

Steps

• Create the project

• Create the code

• Run the application

• Cleanup

Simple Windows-based app 18

https://docs.aws.amazon.com/AmazonS3/latest/userguide/
https://visualstudio.microsoft.com/vs/

AWS SDK for .NET Developer Guide

Create the project

1. Open Visual Studio and create a new project that uses the C# version of the Console App
template; that is, with description: "...for creating a command-line application that can run
on .NET...". Name the project S3CreateAndList.

Note

Don't choose the .NET Framework version of the console app template, or, if you do, be
sure to use .NET Framework 4.7.2 or later.

2. With the newly created project loaded, choose Tools, NuGet Package Manager, Manage
NuGet Packages for Solution.

3. Browse for the following NuGet packages and install them into the project: AWSSDK.S3,
AWSSDK.SecurityToken, AWSSDK.SSO, and AWSSDK.SSOOIDC

This process installs the NuGet packages from the NuGet package manager. Because we know
exactly what NuGet packages we need for this tutorial, we can perform this step now. It's also
common that the required packages become known during development. When this happens,
follow a similar process to install them at that time.

4. If you intend to run the application from the command prompt, open a command prompt
now and navigate to the folder that will contain the build output. This is typically something
like S3CreateAndList\S3CreateAndList\bin\Debug\net6.0, but will depend on your
environment.

Create the code

1. In the S3CreateAndList project, find and open Program.cs in the IDE.

2. Replace the contents with the following code and save the file.

using System;
using System.Threading.Tasks;

// NuGet packages: AWSSDK.S3, AWSSDK.SecurityToken, AWSSDK.SSO, AWSSDK.SSOOIDC
using Amazon.Runtime;
using Amazon.Runtime.CredentialManagement;
using Amazon.S3;
using Amazon.S3.Model;

Simple Windows-based app 19

https://www.nuget.org/profiles/awsdotnet

AWS SDK for .NET Developer Guide

using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace S3CreateAndList
{
 class Program
 {
 // This code is part of the quick tour in the developer guide.
 // See https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/quick-
start.html
 // for complete steps.
 // Requirements:
 // - An SSO profile in the SSO user's shared config file with sufficient
 privileges for
 // STS and S3 buckets.
 // - An active SSO Token.
 // If an active SSO token isn't available, the SSO user should do the
 following:
 // In a terminal, the SSO user must call "aws sso login".

 // Class members.
 static async Task Main(string[] args)
 {
 // Get SSO credentials from the information in the shared config file.
 // For this tutorial, the information is in the [default] profile.
 var ssoCreds = LoadSsoCredentials("default");

 // Display the caller's identity.
 var ssoProfileClient = new AmazonSecurityTokenServiceClient(ssoCreds);
 Console.WriteLine($"\nSSO Profile:\n {await
 ssoProfileClient.GetCallerIdentityArn()}");

 // Create the S3 client is by using the SSO credentials obtained
 earlier.
 var s3Client = new AmazonS3Client(ssoCreds);

 // Parse the command line arguments for the bucket name.
 if (GetBucketName(args, out String bucketName))
 {
 // If a bucket name was supplied, create the bucket.
 // Call the API method directly
 try
 {
 Console.WriteLine($"\nCreating bucket {bucketName}...");

Simple Windows-based app 20

AWS SDK for .NET Developer Guide

 var createResponse = await s3Client.PutBucketAsync(bucketName);
 Console.WriteLine($"Result:
 {createResponse.HttpStatusCode.ToString()}");
 }
 catch (Exception e)
 {
 Console.WriteLine("Caught exception when creating a bucket:");
 Console.WriteLine(e.Message);
 }
 }

 // Display a list of the account's S3 buckets.
 Console.WriteLine("\nGetting a list of your buckets...");
 var listResponse = await s3Client.ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {listResponse.Buckets.Count}");
 foreach (S3Bucket b in listResponse.Buckets)
 {
 Console.WriteLine(b.BucketName);
 }
 Console.WriteLine();
 }

 //
 // Method to parse the command line.
 private static Boolean GetBucketName(string[] args, out String bucketName)
 {
 Boolean retval = false;
 bucketName = String.Empty;
 if (args.Length == 0)
 {
 Console.WriteLine("\nNo arguments specified. Will simply list your
 Amazon S3 buckets." +
 "\nIf you wish to create a bucket, supply a valid, globally
 unique bucket name.");
 bucketName = String.Empty;
 retval = false;
 }
 else if (args.Length == 1)
 {
 bucketName = args[0];
 retval = true;
 }
 else
 {

Simple Windows-based app 21

AWS SDK for .NET Developer Guide

 Console.WriteLine("\nToo many arguments specified." +
 "\n\ndotnet_tutorials - A utility to list your Amazon S3 buckets
 and optionally create a new one." +
 "\n\nUsage: S3CreateAndList [bucket_name]" +
 "\n - bucket_name: A valid, globally unique bucket name." +
 "\n - If bucket_name isn't supplied, this utility simply lists
 your buckets.");
 Environment.Exit(1);
 }
 return retval;
 }

 //
 // Method to get SSO credentials from the information in the shared config
 file.
 static AWSCredentials LoadSsoCredentials(string profile)
 {
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials(profile, out var credentials))
 throw new Exception($"Failed to find the {profile} profile");
 return credentials;
 }
 }

 // Class to read the caller's identity.
 public static class Extensions
 {
 public static async Task<string> GetCallerIdentityArn(this
 IAmazonSecurityTokenService stsClient)
 {
 var response = await stsClient.GetCallerIdentityAsync(new
 GetCallerIdentityRequest());
 return response.Arn;
 }
 }
}

3. Build the application.

Note

If you're using an older version of Visual Studio, you might get a build error similar to
the following:

Simple Windows-based app 22

AWS SDK for .NET Developer Guide

"Feature 'async main' is not available in C# 7.0. Please use language version 7.1 or
greater."
If you get this error, set up your project to use a later version of the language. This is
typically done in the project properties, Build, Advanced.

Run the application

1. Run the application with no command line arguments. Do this either in the command prompt
(if you opened one earlier) or from the IDE.

2. Examine the output to see the number of Amazon S3 buckets that you own, if any, and their
names.

3. Choose a name for a new Amazon S3 bucket. Use "dotnet-quicktour-s3-1-winvs-" as a base
and add something unique to it, such as a GUID or your name. Be sure to follow the rules for
bucket names, as described in Rules for Bucket Naming in the Amazon S3 User Guide.

4. Run the application again, this time supplying the bucket name.

In the command line, replace amzn-s3-demo-bucket in the following command with the
name of the bucket that you chose.

S3CreateAndList amzn-s3-demo-bucket

Or, if you are running the application in the IDE, choose Project, S3CreateAndList Properties,
Debug and enter the bucket name there.

5. Examine the output to see the new bucket that was created.

Cleanup

While performing this tutorial, you created some resources that you can choose to clean up at this
time.

• If you don't want to keep the bucket that the application created in an earlier step, delete it by
using the Amazon S3 console at https://console.aws.amazon.com/s3/.

• If you don't want to keep your .NET project, remove the S3CreateAndList folder from your
development environment.

Simple Windows-based app 23

https://docs.aws.amazon.com/AmazonS3/latest/userguide/BucketRestrictions.html#bucketnamingrules
https://docs.aws.amazon.com/AmazonS3/latest/userguide/
https://console.aws.amazon.com/s3/

AWS SDK for .NET Developer Guide

Where to go next

Go back to the quick-tour menu or go straight to the end of this quick tour.

Next steps

Be sure to clean up any leftover resources that you created while performing these tutorials. These
might be AWS resources or resources in your development environment such as files and folders.

Now that you've toured the AWS SDK for .NET, you might want to start your project.

Start a new project

There are several techniques you can use to start a new project to access AWS services. The
following are some of those techniques:

• If you're new to .NET development on AWS or at least new to the AWS SDK for .NET, you can see
complete examples in Take a quick tour. It gives you an introduction to the SDK.

• You can start a basic project by using the .NET CLI. To see an example of this, open a command
prompt or terminal, create a folder or directory and navigate to it, and then enter the following.

dotnet new console --name [SOME-NAME]

An empty project is created to which you can add code and NuGet packages. For more
information, see the .NET Core guide.

To see a list of project templates, use the following: dotnet new --list

• The AWS Toolkit for Visual Studio includes C# project templates for a variety of AWS services.
After you install the toolkit in Visual Studio, you can access the templates while creating a new
project.

To see this, go to Working with AWS services in the AWS Toolkit for Visual Studio User Guide.
Several of the examples in that section create new projects.

• If you develop with Visual Studio on Windows but without the AWS Toolkit for Visual Studio, use
your typical techniques for creating a new project.

Next steps 24

https://learn.microsoft.com/en-us/dotnet/fundamentals/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/setup.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/working-with-services.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/

AWS SDK for .NET Developer Guide

To see an example, open Visual Studio and choose File, New, Project. Search for ".net core" and
choose the C# version of the Console App (.NET Core) or WPF App (.NET Core) template. An
empty project is created to which you can add code and NuGet packages.

You can find some examples of how to work with AWS services in Code examples with guidance.

Important

If you're using AWS IAM Identity Center for authentication, your application must reference
the following NuGet packages so that SSO resolution can work:

• AWSSDK.SSO

• AWSSDK.SSOOIDC

Failure to reference these packages will result in a runtime exception.

Configure the AWS Region

AWS Regions allow you to access AWS services that physically reside in a specific geographic
region. This can be useful for redundancy and to keep your data and applications running close to
where you and your users will access them.

To view the current list of all supported Regions and endpoints for each AWS service, see Service
endpoints and quotas in the AWS General Reference. To view a list of existing Regional endpoints,
see AWS service endpoints. To see detailed information about Regions, see Specify which AWS
Regions your account can use.

You can create an AWS service client that goes to a particular Region. You can also configure
your application with a Region that will be used for all AWS service clients. These two cases are
explained next.

Create a service client with a particular Region

You can specify the Region for any of the AWS service clients in your application. Setting the
Region in this way takes precedence over any global setting for that particular service client.

Configure the AWS Region 25

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

AWS SDK for .NET Developer Guide

Existing Region

This example shows you how to instantiate an Amazon EC2 client in an existing Region. It uses
defined RegionEndpoint fields.

using (AmazonEC2Client ec2Client = new AmazonEC2Client(RegionEndpoint.USWest2))
{
 // Make a request to EC2 in the us-west-2 Region using ec2Client
}

New Region using RegionEndpoint class

This example shows you how to construct a new Region endpoint by using
RegionEndpoint.GetBySystemName.

var newRegion = RegionEndpoint.GetBySystemName("us-west-new");
using (var ec2Client = new AmazonEC2Client(newRegion))
{
 // Make a request to EC2 in the new Region using ec2Client
}

New Region using the service client configuration class

This example shows you how to use the ServiceURL property of the service client configuration
class to specify the Region; in this case, using the AmazonEC2Config class.

This technique works even if the Region endpoint doesn't follow the regular Region endpoint
pattern.

var ec2ClientConfig = new AmazonEC2Config
{
 // Specify the endpoint explicitly
 ServiceURL = "https://ec2.us-west-new.amazonaws.com"
};

using (var ec2Client = new AmazonEC2Client(ec2ClientConfig))
{
 // Make a request to EC2 in the new Region using ec2Client
}

Create a service client with a particular Region 26

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TRegionEndpoint.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/MRegionEndpointGetBySystemNameString.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Config.html

AWS SDK for .NET Developer Guide

Specify a Region for all service clients

There are several ways you can specify a Region for all of the AWS service clients that your
application creates. This Region is used for service clients that aren't created with a particular
Region.

The AWS SDK for .NET looks for a Region value in the following order.

Profiles

Set in a profile that your application or the SDK has loaded. For more information, see Credential
and profile resolution.

Environment variables

Set in the AWS_REGION environment variable.

On Linux or macOS:

export AWS_REGION='us-west-2'

On Windows:

set AWS_REGION=us-west-2

Note

If you set this environment variable for the whole system (using export or setx), it affects
all SDKs and toolkits, not just the AWS SDK for .NET.

AWSConfigs class

Set as an AWSConfigs.AWSRegion property.

AWSConfigs.AWSRegion = "us-west-2";
using (var ec2Client = new AmazonEC2Client())
{
 // Make request to Amazon EC2 in us-west-2 Region using ec2Client
}

Specify a Region for all service clients 27

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

Region resolution

If none of the methods described above are used to specify an AWS Region, the AWS SDK for .NET
attempts to find a Region for the AWS service client to operate in.

Region resolution order

1. Application configuration files such as app.config and web.config.

2. Environment variables (AWS_REGION and AWS_DEFAULT_REGION).

3. A profile with the name specified by a value in AWSConfigs.AWSProfileName.

4. A profile with the name specified by the AWS_PROFILE environment variable.

5. The [default] profile.

6. Amazon EC2 instance metadata (if running on an EC2 instance).

If no Region is found, the SDK throws an exception stating that the AWS service client has no
configured Region.

Special information about the China (Beijing) Region

To use services in the China (Beijing) Region, you must have an account and credentials that are
specific to the China (Beijing) Region. Accounts and credentials for other AWS Regions won't
work for the China (Beijing) Region. Likewise, accounts and credentials for the China (Beijing)
Region won't work for other AWS Regions. For information about endpoints and protocols that are
available in the China (Beijing) Region, see Beijing Region Endpoints.

Special information about new AWS services

New AWS services can be launched initially in a few Regions and then supported in other Regions.
In these cases you don't need to install the latest SDK to access the new Regions for that service.
You can specify newly added Regions on a per-client basis or globally, as shown earlier.

Install AWSSDK packages with NuGet

NuGet is a package management system for the .NET platform. With NuGet, you can install the
AWSSDK packages, as well as several other extensions, to your project. For additional information,
see the aws/dotnet repository on the GitHub website.

Region resolution 28

https://docs.amazonaws.cn/en_us/aws/latest/userguide/endpoints-Beijing.html
https://www.nuget.org/
https://www.nuget.org/profiles/awsdotnet
https://github.com/aws/dotnet

AWS SDK for .NET Developer Guide

NuGet always has the most recent versions of the AWSSDK packages, as well as previous
versions. NuGet is aware of dependencies between packages and installs all required packages
automatically.

Warning

The list of NuGet packages might include one named simply "AWSSDK" (with no appended
identifier). Do NOT install this NuGet package; it is legacy and should not be used for new
projects.

Packages installed with NuGet are stored with your project instead of in a central location.
This enables you to install assembly versions specific to a given application without creating
compatibility issues for other applications. For more information about NuGet, see the NuGet
documentation.

Note

If you can't or aren't allowed to download and install NuGet packages on a per-project
basis, you can obtain the AWSSDK assemblies and store them locally (or on premises).
If this applies to you and you haven't already obtained the AWSSDK assemblies, see
Obtaining AWSSDK assemblies. To learn how to use the locally stored assemblies, see
Install AWSSDK assemblies without NuGet.

Using NuGet from the Command prompt or terminal

1. Go to the AWSSDK packages on NuGet and determine which packages you need in your
project; for example, AWSSDK.S3.

2. Copy the .NET CLI command from that package's webpage, as shown in the following example.

dotnet add package AWSSDK.S3 --version 3.3.110.19

3. In your project's directory, run that .NET CLI command. NuGet also installs any dependencies,
such as AWSSDK.Core.

Using NuGet from the Command prompt or terminal 29

https://learn.microsoft.com/en-us/nuget/
https://learn.microsoft.com/en-us/nuget/
https://www.nuget.org/profiles/awsdotnet
https://www.nuget.org/packages/AWSSDK.S3/
https://www.nuget.org/packages/AWSSDK.Core

AWS SDK for .NET Developer Guide

Note

If you want only the latest version of a NuGet package, you can exclude version information
from the command, as shown in the following example.
dotnet add package AWSSDK.S3

Using NuGet from Visual Studio Solution Explorer

1. In Solution Explorer, right-click your project, and then choose Manage NuGet Packages from
the context menu.

2. In the left pane of the NuGet Package Manager, choose Browse. You can then use the search
box to search for the package you want to install. NuGet also installs any dependencies, such
as AWSSDK.Core.

The following figure shows installation of the AWSSDK.S3 package.

Using NuGet from the Package Manager Console

In Visual Studio, choose Tools, NuGet Package Manager, Package Manager Console.

Using NuGet from Visual Studio Solution Explorer 30

https://www.nuget.org/packages/AWSSDK.Core

AWS SDK for .NET Developer Guide

You can install the AWSSDK packages you want from the Package Manager Console by using the
Install-Package command. For example, to install AWSSDK.S3, use the following command.

PM> Install-Package AWSSDK.S3

NuGet also installs any dependencies, such as AWSSDK.Core.

If you need to install an earlier version of a package, use the -Version option and specify the
package version you want, as shown in the following example.

PM> Install-Package AWSSDK.S3 -Version 3.3.106.6

For more information about Package Manager Console commands, see the PowerShell reference in
Microsoft's NuGet documentation.

Install AWSSDK assemblies without NuGet

This topic describes how you can use the AWSSDK assemblies that you obtained and stored locally
(or on premises) as described in Obtaining AWSSDK assemblies. This is not the recommended
method for handling SDK references, but is required in some environments.

Note

The recommended method for handling SDK references is to download and install just
the NuGet packages that each project needs. That method is described in Install AWSSDK
packages with NuGet.

To install AWSSDK assemblies

1. Create a folder in your project area for the required AWSSDK assemblies. As an example, you
might call this folder AwsAssemblies.

2. If you haven't already done so, obtain the AWSSDK assemblies, which places the assemblies in
some local download or installation folder. Copy the DLL files for the required assemblies from
that download folder into your project (into the AwsAssemblies folder, in our example).

Be sure to also copy any dependencies. You can find information about dependencies on the
GitHub website.

Install AWSSDK assemblies without NuGet 31

https://www.nuget.org/packages/AWSSDK.S3
https://www.nuget.org/packages/AWSSDK.Core
https://learn.microsoft.com/en-us/nuget/reference/powershell-reference
https://learn.microsoft.com/en-us/nuget/
https://github.com/aws/aws-sdk-net/blob/master/generator/ServiceModels/_sdk-versions.json

AWS SDK for .NET Developer Guide

3. Make reference to the required assemblies as follows.

Cross-platform development

1. Open your project's .csproj file and add an <ItemGroup> element.

2. In the <ItemGroup> element, add a <Reference> element with an Include
attribute for each required assembly.

For Amazon S3, for example, you would add the following lines to your project's
.csproj file.

On Linux and macOS:

<ItemGroup>
 <Reference Include="./AwsAssemblies/AWSSDK.Core.dll" />
 <Reference Include="./AwsAssemblies/AWSSDK.S3.dll" />
</ItemGroup>

On Windows:

<ItemGroup>
 <Reference Include="AwsAssemblies\AWSSDK.Core.dll" />
 <Reference Include="AwsAssemblies\AWSSDK.S3.dll" />
</ItemGroup>

3. Save you project's .csproj file.

Windows with Visual Studio and .NET Core

1. In Visual Studio, load your project and open Project, Add Reference.

2. Choose the Browse button on the bottom of the dialog box. Navigate to your project's
folder and the subfolder that you copied the required DLL files to (AwsAssemblies,
for example).

3. Select all the DLL files, choose Add, and choose OK.

4. Save your project.

Install AWSSDK assemblies without NuGet 32

AWS SDK for .NET Developer Guide

Credential and profile resolution

The AWS SDK for .NET searches for credentials in a certain order and uses the first available set for
the current application.

Credential search order

1. Credentials that are explicitly set on the AWS service client, as described in Accessing credentials
and profiles in an application.

Note

That topic is in the Special considerations section because it isn't the preferred method
for specifying credentials.

2. A credentials profile with the name specified by a value in AWSConfigs.AWSProfileName.

3. A credentials profile with the name specified by the AWS_PROFILE environment variable.

4. The [default] credentials profile.

5. SessionAWSCredentials that are created from the AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN environment variables, if they're all
non-empty.

6. BasicAWSCredentials that are created from the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables, if they're both non-empty.

7. The container credential provider.

8. Amazon EC2 instance metadata.

If your application is running on an Amazon EC2 instance, such as in a production environment, use
an IAM role as described in Granting access by using an IAM role. Otherwise, such as in prerelease
testing, store your credentials in a file that uses the AWS credentials file format that your web
application has access to on the server.

Profile resolution

With two different storage mechanisms for credentials, it's important to understand how to
configure the AWS SDK for .NET to use them. The AWSConfigs.AWSProfilesLocation property
controls how the AWS SDK for .NET finds credential profiles.

Credential and profile resolution 33

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html#properties
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSessionAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TBasicAWSCredentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-container-credentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

AWSProfilesLocation Profile resolution behavior

null (not set) or empty Search the SDK Store if the platform supports
it, and then search the shared AWS credentia
ls file in the default location. If the profile isn't
in either of those locations, search ~/.aws/co
nfig (Linux or macOS) or %USERPROFILE%
\.aws\config (Windows).

The path to a file in the AWS credentials file
format

Search only the specified file for a profile with
the specified name.

Using federated user account credentials

Applications that use the AWS SDK for .NET (AWSSDK.Core version 3.1.6.0 and later) can use
federated user accounts through Active Directory Federation Services (AD FS) to access AWS
services by using Security Assertion Markup Language (SAML).

Federated access support means users can authenticate using your Active Directory. Temporary
credentials are granted to the user automatically. These temporary credentials, which are valid for
one hour, are used when your application invokes AWS services. The SDK handles management
of the temporary credentials. For domain-joined user accounts, if your application makes a call
but the credentials have expired, the user is reauthenticated automatically and fresh credentials
are granted. (For non-domain-joined accounts, the user is prompted to enter credentials before
reauthentication.)

To use this support in your .NET application, you must first set up the role profile by using a
PowerShell cmdlet. To learn how, see the AWS Tools for Windows PowerShell documentation.

After you set up the role profile, reference the profile in your application. There are a number of
ways to do this, one of which is by using the AWSConfigs.AWSProfileName property in the same
way you would with other credential profiles.

The AWS Security Token Service assembly (AWSSDK.SecurityToken) provides the SAML support
to obtain AWS credentials. To use federated user account credentials, be sure this assembly is
available to your application.

Using federated user account credentials 34

https://www.nuget.org/packages/AWSSDK.Core/
https://docs.aws.amazon.com/powershell/latest/userguide/saml-pst.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://www.nuget.org/packages/AWSSDK.SecurityToken/

AWS SDK for .NET Developer Guide

Specifying roles or temporary credentials

For applications that run on Amazon EC2 instances, the most secure way to manage credentials is
to use IAM roles, as described in Granting access by using an IAM role.

For application scenarios in which the software executable is available to users outside your
organization, we recommend that you design the software to use temporary security credentials.
In addition to providing restricted access to AWS resources, these credentials have the benefit
of expiring after a specified period of time. For more information about temporary security
credentials, see the following:

• Temporary security credentials

• Amazon Cognito identity pools

Using proxy credentials

If your software communicates with AWS through a proxy, you can specify credentials for the
proxy by using the ProxyCredentials property of the Config class of a service. The Config
class of a service is typically part of the primary namespace for the service. Examples include
the following: AmazonCloudDirectoryConfig in the Amazon.CloudDirectory namespace and
AmazonGameLiftConfig in the Amazon.GameLift namespace.

For Amazon S3, for example, you could use code similar to the following, where
SecurelyStoredUserName and SecurelyStoredPassword are the proxy user name and
password specified in a NetworkCredential object.

AmazonS3Config config = new AmazonS3Config();
config.ProxyCredentials = new NetworkCredential(SecurelyStoredUserName,
 SecurelyStoredPassword);

Note

Earlier versions of the SDK used ProxyUsername and ProxyPassword, but these
properties are deprecated.

Specifying roles or temporary credentials 35

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudDirectory/TCloudDirectoryConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudDirectory/NCloudDirectory.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/TGameLiftConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/NGameLift.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Config.html
https://learn.microsoft.com/en-us/dotnet/api/system.net.networkcredential

AWS SDK for .NET Developer Guide

Additional information about users and roles

For doing .NET development on AWS or for running .NET applications on AWS, you need to have
some combination of users, permission sets, and service roles that are appropriate for these tasks.

The specific users, permission sets, and service roles that you create, and the way in which you
use them, will depend on the requirements of your applications. The following is some additional
information about why they might be used and how to create them.

Users and permission sets

Although it's possible to use an IAM user account with long-term credentials to access AWS
services, this is no longer a best practice and should be avoided. Even during development, it is a
best practice to create users and permission sets in AWS IAM Identity Center and use temporary
credentials provided by an identity source.

For development, you can use the user that you created or were given in Configure SDK
authentication. If you have appropriate AWS Management Console permissions, you can also
create different permission sets with least privilege for that user or create new users specifically
for development projects, providing permission sets with least privilege. The course of action you
choose, if any, depends on your circumstances.

For more information about these users and permissions sets and how to create them, see
Authentication and access in the AWS SDKs and Tools Reference Guide and Getting started in the
AWS IAM Identity Center User Guide.

Service roles

You can set up an AWS service role to access AWS services on behalf of users. This type of access
is appropriate if multiple people will be running your application remotely; for example, on an
Amazon EC2 instance that you have created for this purpose.

The process for creating a service role varies depending on the situation, but is essentially the
following.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles, and then choose Create role.

Users and roles 36

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS SDK for .NET Developer Guide

3. Choose AWS service, find and select EC2 (for example), and then choose the EC2 use case (for
example).

4. Choose Next: Permissions, and select the appropriate policies for the AWS services that your
application will use.

Warning

Do NOT choose the AdministratorAccess policy because that policy enables read and
write permissions to almost everything in your account.

5. Choose Next: Tags and enter any tags you want.

You can find information about tags in Control access using AWS resource tags in the IAM User
Guide.

6. Choose Next: Review and provide a Role name and Role description. Then choose Create
role.

You can find high-level information about IAM roles in Identities (users, groups, and roles) in the
IAM User Guide. Find detailed information about roles in that guide's IAM roles topic.

Additional information about roles

• Use IAM roles for tasks for Amazon Elastic Container Service (Amazon ECS) tasks.

• Use IAM roles for applications that are running on Amazon EC2 instances.

Advanced configuration for your AWS SDK for .NET project

The topics in this section contain information about additional configuration tasks and methods
that might be of interest to you.

Topics

• Using AWSSDK.Extensions.NETCore.Setup and the IConfiguration interface

• Configuring Other Application Parameters

• Configuration Files Reference for AWS SDK for .NET

Advanced configuration 37

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS SDK for .NET Developer Guide

Using AWSSDK.Extensions.NETCore.Setup and the IConfiguration
interface

(This topic was formerly titled, "Configuring the AWS SDK for .NET with .NET Core")

One of the biggest changes in .NET Core is the removal of ConfigurationManager and the
standard app.config and web.config files that were used with .NET Framework and ASP.NET
applications.

Configuration in .NET Core is based on key-value pairs established by configuration providers.
Configuration providers read configuration data into key-value pairs from a variety of configuration
sources, including command-line arguments, directory files, environment variables, and settings
files.

Note

For further information, see Configuration in ASP.NET Core.

To make it easy to use the AWS SDK for .NET with .NET Core, you can use the
AWSSDK.Extensions.NETCore.Setup NuGet package. Like many .NET Core libraries, it adds
extension methods to the IConfiguration interface to make getting the AWS configuration
seamless.

The source code for this package is on GitHub at https://github.com/aws/aws-sdk-net/tree/main/
extensions/src/AWSSDK.Extensions.NETCore.Setup.

Using AWSSDK.Extensions.NETCore.Setup

Suppose that you create an ASP.NET Core Model-View-Controller (MVC) application, which can be
accomplished with the ASP.NET Core Web Application template in Visual Studio or by running
dotnet new mvc ... in the .NET Core CLI. When you create such an application, the constructor
for Startup.cs handles configuration by reading in various input sources from configuration
providers such as appsettings.json.

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

AWSSDK.Extensions.NETCore.Setup and IConfiguration 38

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration
https://www.nuget.org/packages/AWSSDK.Extensions.NETCore.Setup/
https://github.com/aws/aws-sdk-net/tree/main/extensions/src/AWSSDK.Extensions.NETCore.Setup
https://github.com/aws/aws-sdk-net/tree/main/extensions/src/AWSSDK.Extensions.NETCore.Setup

AWS SDK for .NET Developer Guide

To use the Configuration object to get the AWS options, first add the
AWSSDK.Extensions.NETCore.Setup NuGet package. Then, add your options to the
configuration file as described next.

Notice that one of the files added to your project is appsettings.Development.json. This
corresponds to an EnvironmentName set to Development. During development, you put your
configuration in this file, which is only read during local testing. When you deploy an Amazon
EC2 instance that has EnvironmentName set to Production, this file is ignored and the AWS SDK
for .NET falls back to the IAM credentials and Region that are configured for the Amazon EC2
instance.

The following configuration settings show examples of the values you can add in the
appsettings.Development.json file in your project to supply AWS settings.

{
 "AWS": {
 "Profile": "local-test-profile",
 "Region": "us-west-2"
 },
 "SupportEmail": "TechSupport@example.com"
}

To access a setting in a CSHTML file, use the Configuration directive.

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<h1>Contact</h1>

<p>
 Support: @Configuration["SupportEmail"]

</p>

To access the AWS options set in the file from code, call the GetAWSOptions extension method
added to IConfiguration.

To construct a service client from these options, call CreateServiceClient. The following
example shows how to create an Amazon S3 service client. (Be sure to add the AWSSDK.S3 NuGet
package to your project.)

AWSSDK.Extensions.NETCore.Setup and IConfiguration 39

https://www.nuget.org/packages/AWSSDK.S3

AWS SDK for .NET Developer Guide

var options = Configuration.GetAWSOptions();
IAmazonS3 client = options.CreateServiceClient<IAmazonS3>();

You can also create multiple service clients with incompatible settings by using multiple entries
in the appsettings.Development.json file, as shown in the following examples where the
configuration for service1 includes the us-west-2 Region and the configuration for service2
includes the special endpoint URL.

{
 "service1": {
 "Profile": "default",
 "Region": "us-west-2"
 },
 "service2": {
 "Profile": "default",
 "ServiceURL": "URL"
 }
}

You can then get the options for a specific service by using the entry in the JSON file. For example,
to get the settings for service1 use the following.

var options = Configuration.GetAWSOptions("service1");

Allowed values in appsettings file

The following app configuration values can be set in the appsettings.Development.json
file. The field names must use the casing shown. For details on these settings, see the
AWS.Runtime.ClientConfig class.

• Region

• Profile

• ProfilesLocation

• SignatureVersion

• RegionEndpoint

• UseHttp

• ServiceURL

• AuthenticationRegion

AWSSDK.Extensions.NETCore.Setup and IConfiguration 40

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html

AWS SDK for .NET Developer Guide

• AuthenticationServiceName

• MaxErrorRetry

• LogResponse

• BufferSize

• ProgressUpdateInterval

• ResignRetries

• AllowAutoRedirect

• LogMetrics

• DisableLogging

• UseDualstackEndpoint

ASP.NET Core dependency injection

The AWSSDK.Extensions.NETCore.Setup NuGet package also integrates with a new dependency
injection system in ASP.NET Core. The ConfigureServices method in your application's
Startup class is where the MVC services are added. If the application is using Entity Framework,
this is also where that is initialized.

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
}

Note

Background on dependency injection in .NET Core is available on the .NET Core
documentation site.

The AWSSDK.Extensions.NETCore.Setup NuGet package adds new extension methods to
IServiceCollection that you can use to add AWS services to the dependency injection. The
following code shows you how to add the AWS options that are read from IConfiguration
to add Amazon S3 and DynamoDB to the list of services. (Be sure to add the AWSSDK.S3 and
AWSSDK.DynamoDBv2 NuGet packages to your project.)

AWSSDK.Extensions.NETCore.Setup and IConfiguration 41

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://www.nuget.org/packages/AWSSDK.S3
https://www.nuget.org/packages/AWSSDK.DynamoDBv2

AWS SDK for .NET Developer Guide

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddDefaultAWSOptions(Configuration.GetAWSOptions());
 services.AddAWSService<IAmazonS3>();
 services.AddAWSService<IAmazonDynamoDB>();
}

Now, if your MVC controllers use either IAmazonS3 or IAmazonDynamoDB as parameters in their
constructors, the dependency injection system passes in those services.

public class HomeController : Controller
{
 IAmazonS3 S3Client { get; set; }

 public HomeController(IAmazonS3 s3Client)
 {
 this.S3Client = s3Client;
 }

 ...

}

Configuring Other Application Parameters

Note

The information in this topic is specific to projects based on .NET Framework. The
App.config and Web.config files are not present by default in projects based on .NET
Core.

Open to view .NET Framework content

There are a number of application parameters that you can configure:

• AWSLogging

Configuring Other Application Parameters 42

AWS SDK for .NET Developer Guide

• AWSLogMetrics

• AWSRegion

• AWSResponseLogging

• AWS.DynamoDBContext.TableNamePrefix

• AWS.S3.UseSignatureVersion4

• AWSEndpointDefinition

• AWS Service-Generated Endpoints

These parameters can be configured in the application’s App.config or Web.config file.
Although you can also configure these with the AWS SDK for .NET API, we recommend you use the
application’s .config file. Both approaches are described here.

For more information about use of the <aws> element as described later in this topic, see
Configuration Files Reference for AWS SDK for .NET.

AWSLogging

Configures how the SDK should log events, if at all. For example, the recommended approach is to
use the <logging> element, which is a child element of the <aws> element:

<aws>
 <logging logTo="Log4Net"/>
</aws>

Alternatively:

<add key="AWSLogging" value="log4net"/>

The possible values are:

None

Turn off event logging. This is the default.

log4net

Log using log4net.

Configuring Other Application Parameters 43

AWS SDK for .NET Developer Guide

SystemDiagnostics

Log using the System.Diagnostics class.

You can set multiple values for the logTo attribute, separated by commas. The following example
sets both log4net and System.Diagnostics logging in the .config file:

<logging logTo="Log4Net, SystemDiagnostics"/>

Alternatively:

<add key="AWSLogging" value="log4net, SystemDiagnostics"/>

Alternatively, using the AWS SDK for .NET API, combine the values of the LoggingOptions
enumeration and set the AWSConfigs.Logging property:

AWSConfigs.Logging = LoggingOptions.Log4Net | LoggingOptions.SystemDiagnostics;

Changes to this setting take effect only for new AWS client instances.

AWSLogMetrics

Specifies whether or not the SDK should log performance metrics. To set the metrics logging
configuration in the .config file, set the logMetrics attribute value in the <logging> element,
which is a child element of the <aws> element:

<aws>
 <logging logMetrics="true"/>
</aws>

Alternatively, set the AWSLogMetrics key in the <appSettings> section:

<add key="AWSLogMetrics" value="true">

Alternatively, to set metrics logging with the AWS SDK for .NET API, set the AWSConfigs.LogMetrics
property:

AWSConfigs.LogMetrics = true;

Configuring Other Application Parameters 44

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TLoggingOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

This setting configures the default LogMetrics property for all clients/configs. Changes to this
setting take effect only for new AWS client instances.

AWSRegion

Configures the default AWS region for clients that have not explicitly specified a region. To set the
region in the .config file, the recommended approach is to set the region attribute value in the
aws element:

<aws region="us-west-2"/>

Alternatively, set the AWSRegion key in the <appSettings> section:

<add key="AWSRegion" value="us-west-2"/>

Alternatively, to set the region with the AWS SDK for .NET API, set the AWSConfigs.AWSRegion
property:

AWSConfigs.AWSRegion = "us-west-2";

For more information about creating an AWS client for a specific region, see AWS Region Selection.
Changes to this setting take effect only for new AWS client instances.

AWSResponseLogging

Configures when the SDK should log service responses. The possible values are:

Never

Never log service responses. This is the default.

Always

Always log service responses.

OnError

Only log service responses when an error occurs.

To set the service logging configuration in the .config file, the recommended approach is to set
the logResponses attribute value in the <logging> element, which is a child element of the
<aws> element:

Configuring Other Application Parameters 45

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

<aws>
 <logging logResponses="OnError"/>
</aws>

Alternatively, set the AWSResponseLogging key in the <appSettings> section:

<add key="AWSResponseLogging" value="OnError"/>

Alternatively, to set service logging with the AWS SDK for .NET API, set the
AWSConfigs.ResponseLogging property to one of the values of the ResponseLoggingOption
enumeration:

AWSConfigs.ResponseLogging = ResponseLoggingOption.OnError;

Changes to this setting take effect immediately.

AWS.DynamoDBContext.TableNamePrefix

Configures the default TableNamePrefix the DynamoDBContext will use if not manually
configured.

To set the table name prefix in the .config file, the recommended approach is to set the
tableNamePrefix attribute value in the <dynamoDBContext> element, which is a child element
of the <dynamoDB> element, which itself is a child element of the <aws> element:

<dynamoDBContext tableNamePrefix="Test-"/>

Alternatively, set the AWS.DynamoDBContext.TableNamePrefix key in the <appSettings>
section:

<add key="AWS.DynamoDBContext.TableNamePrefix" value="Test-"/>

Alternatively, to set the table name prefix with the AWS SDK for .NET API, set the
AWSConfigs.DynamoDBContextTableNamePrefix property:

AWSConfigs.DynamoDBContextTableNamePrefix = "Test-";

Changes to this setting will take effect only in newly constructed instances of
DynamoDBContextConfig and DynamoDBContext.

Configuring Other Application Parameters 46

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TResponseLoggingOption.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

AWS.S3.UseSignatureVersion4

Configures whether or not the Amazon S3 client should use signature version 4 signing with
requests.

To set signature version 4 signing for Amazon S3 in the .config file, the recommended approach
is to set the useSignatureVersion4 attribute of the <s3> element, which is a child element of
the <aws> element:

<aws>
 <s3 useSignatureVersion4="true"/>
</aws>

Alternatively, set the AWS.S3.UseSignatureVersion4 key to true in the <appSettings>
section:

<add key="AWS.S3.UseSignatureVersion4" value="true"/>

Alternatively, to set signature version 4 signing with the AWS SDK for .NET API, set the
AWSConfigs.S3UseSignatureVersion4 property to true:

AWSConfigs.S3UseSignatureVersion4 = true;

By default, this setting is false, but signature version 4 may be used by default in some cases
or with some regions. When the setting is true, signature version 4 will be used for all requests.
Changes to this setting take effect only for new Amazon S3 client instances.

AWSEndpointDefinition

Configures whether the SDK should use a custom configuration file that defines the regions and
endpoints.

To set the endpoint definition file in the .config file, we recommend setting the
endpointDefinition attribute value in the <aws> element.

<aws endpointDefinition="c:\config\endpoints.json"/>

Alternatively, you can set the AWSEndpointDefinition key in the <appSettings> section:

<add key="AWSEndpointDefinition" value="c:\config\endpoints.json"/>

Configuring Other Application Parameters 47

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

Alternatively, to set the endpoint definition file with the AWS SDK for .NET API, set the
AWSConfigs.EndpointDefinition property:

AWSConfigs.EndpointDefinition = @"c:\config\endpoints.json";

If no file name is provided, then a custom configuration file will not be used. Changes to this
setting take effect only for new AWS client instances. The endpoint.json file is available from
https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/endpoints.json.

AWS Service-Generated Endpoints

Some AWS services generate their own endpoints instead of consuming a region endpoint. Clients
for these services consume a service Url that is specific to that service and your resources. Two
examples of these services are Amazon CloudSearch and AWS IoT. The following examples show
how you can obtain the endpoints for those services.

Amazon CloudSearch Endpoints Example

The Amazon CloudSearch client is used for accessing the Amazon CloudSearch configuration
service. You use the Amazon CloudSearch configuration service to create, configure, and manage
search domains. To create a search domain, create a CreateDomainRequest object and provide the
DomainName property. Create an AmazonCloudSearchClient object by using the request object.
Call the CreateDomain method. The CreateDomainResponse object returned from the call contains
a DomainStatus property that has both the DocService and SearchService endpoints.
Create an AmazonCloudSearchDomainConfig object and use it to initialize DocService and
SearchService instances of the AmazonCloudSearchDomainClient class.

// Create domain and retrieve DocService and SearchService endpoints
DomainStatus domainStatus;
using (var searchClient = new AmazonCloudSearchClient())
{
 var request = new CreateDomainRequest
 {
 DomainName = "testdomain"
 };
 domainStatus = searchClient.CreateDomain(request).DomainStatus;
 Console.WriteLine(domainStatus.DomainName + " created");
}

// Test the DocService endpoint
var docServiceConfig = new AmazonCloudSearchDomainConfig

Configuring Other Application Parameters 48

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/endpoints.json
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/TCreateDomainRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/TCloudSearchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/MCloudSearchCreateDomainCreateDomainRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/TCreateDomainResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearchDomain/TCloudSearchDomainConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearchDomain/TCloudSearchDomainClient.html

AWS SDK for .NET Developer Guide

{
 ServiceURL = "https://" + domainStatus.DocService.Endpoint
};
using (var domainDocService = new AmazonCloudSearchDomainClient(docServiceConfig))
{
 Console.WriteLine("Amazon CloudSearchDomain DocService client instantiated using
 the DocService endpoint");
 Console.WriteLine("DocService endpoint = " + domainStatus.DocService.Endpoint);

 using (var docStream = new FileStream(@"C:\doc_source\XMLFile4.xml",
 FileMode.Open))
 {
 var upload = new UploadDocumentsRequest
 {
 ContentType = ContentType.ApplicationXml,
 Documents = docStream
 };
 domainDocService.UploadDocuments(upload);
 }
}

// Test the SearchService endpoint
var searchServiceConfig = new AmazonCloudSearchDomainConfig
{
 ServiceURL = "https://" + domainStatus.SearchService.Endpoint
};
using (var domainSearchService = new
 AmazonCloudSearchDomainClient(searchServiceConfig))
{
 Console.WriteLine("Amazon CloudSearchDomain SearchService client instantiated using
 the SearchService endpoint");
 Console.WriteLine("SearchService endpoint = " +
 domainStatus.SearchService.Endpoint);

 var searchReq = new SearchRequest
 {
 Query = "Gambardella",
 Sort = "_score desc",
 QueryParser = QueryParser.Simple
 };
 var searchResp = domainSearchService.Search(searchReq);
}

Configuring Other Application Parameters 49

AWS SDK for .NET Developer Guide

AWS IoT Endpoints Example

To obtain the endpoint for AWS IoT, create an AmazonIoTClient object and call the
DescribeEndPoint method. The returned DescribeEndPointResponse object contains the
EndpointAddress. Create an AmazonIotDataConfig object, set the ServiceURL property, and
use the object to instantiate the AmazonIotDataClient class.

string iotEndpointAddress;
using (var iotClient = new AmazonIoTClient())
{
 var endPointResponse = iotClient.DescribeEndpoint();
 iotEndpointAddress = endPointResponse.EndpointAddress;
}

var ioTdocServiceConfig = new AmazonIotDataConfig
{
 ServiceURL = "https://" + iotEndpointAddress
};
using (var dataClient = new AmazonIotDataClient(ioTdocServiceConfig))
{
 Console.WriteLine("AWS IoTData client instantiated using the endpoint from the
 IotClient");
}

Configuration Files Reference for AWS SDK for .NET

Note

The information in this topic is specific to projects based on .NET Framework. The
App.config and Web.config files are not present by default in projects based on .NET
Core.

Open to view .NET Framework content

You can use a .NET project's App.config or Web.config file to specify AWS settings, such
as AWS credentials, logging options, AWS service endpoints, and AWS regions, as well as some
settings for AWS services, such as Amazon DynamoDB, Amazon EC2, and Amazon S3. The following
information describes how to properly format an App.config or Web.config file to specify these
types of settings.

Configuration Files Reference for AWS SDK for .NET 50

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/TIoTClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/MIoTDescribeEndpointDescribeEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/TDescribeEndpointResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IotData/TIotDataConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IotData/TIotDataClient.html

AWS SDK for .NET Developer Guide

Note

Although you can continue to use the <appSettings> element in an App.config or
Web.config file to specify AWS settings, we recommend you use the <configSections>
and <aws> elements as described later in this topic. For more information about the
<appSettings> element, see the <appSettings> element examples in Configuring Your
AWS SDK for .NET Application.

Note

Although you can continue to use the following AWSConfigs class properties in a code file
to specify AWS settings, the following properties are deprecated and may not be supported
in future releases:

• DynamoDBContextTableNamePrefix

• EC2UseSignatureVersion4

• LoggingOptions

• LogMetrics

• ResponseLoggingOption

• S3UseSignatureVersion4

In general, we recommend that instead of using AWSConfigs class properties in a code
file to specify AWS settings, you should use the <configSections> and <aws> elements
in an App.config or Web.config file to specify AWS settings, as described later in this
topic. For more information about the preceding properties, see the AWSConfigs code
examples in Configuring Your AWS SDK for .NET Application.

Topics

• Declaring an AWS Settings Section

• Allowed Elements

• Elements Reference

Configuration Files Reference for AWS SDK for .NET 51

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET Developer Guide

Declaring an AWS Settings Section

You specify AWS settings in an App.config or Web.config file from within the <aws> element.
Before you can begin using the <aws> element, you must create a <section> element (which is a
child element of the <configSections> element) and set its name attribute to aws and its type
attribute to Amazon.AWSSection, AWSSDK.Core, as shown in the following example:

<?xml version="1.0"?>
<configuration>
 ...
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws>
 <!-- Add your desired AWS settings declarations here. -->
 </aws>
 ...
</configuration>

The Visual Studio Editor does not provide automatic code completion (IntelliSense) for the <aws>
element or its child elements.

To assist you in creating a correctly formatted version of the <aws> element, call the
Amazon.AWSConfigs.GenerateConfigTemplate method. This outputs a canonical version of
the <aws> element as a pretty-printed string, which you can adapt to your needs. The following
sections describe the <aws> element's attributes and child elements.

Allowed Elements

The following is a list of the logical relationships among the allowed elements in an
AWS settings section. You can generate the latest version of this list by calling the
Amazon.AWSConfigs.GenerateConfigTemplate method, which outputs a canonical version of
the <aws> element as a string you can adapt to your needs.

<aws
 endpointDefinition="string value"
 region="string value"
 profileName="string value"
 profilesLocation="string value">
 <logging
 logTo="None, Log4Net, SystemDiagnostics"

Configuration Files Reference for AWS SDK for .NET 52

AWS SDK for .NET Developer Guide

 logResponses="Never | OnError | Always"
 logMetrics="true | false"
 logMetricsFormat="Standard | JSON"
 logMetricsCustomFormatter="NameSpace.Class, Assembly" />
 <dynamoDB
 conversionSchema="V1 | V2">
 <dynamoDBContext
 tableNamePrefix="string value">
 <tableAliases>
 <alias
 fromTable="string value"
 toTable="string value" />
 </tableAliases>
 <map
 type="NameSpace.Class, Assembly"
 targetTable="string value">
 <property
 name="string value"
 attribute="string value"
 ignore="true | false"
 version="true | false"
 converter="NameSpace.Class, Assembly" />
 </map>
 </dynamoDBContext>
 </dynamoDB>
 <s3
 useSignatureVersion4="true | false" />
 <ec2
 useSignatureVersion4="true | false" />
 <proxy
 host="string value"
 port="1234"
 username="string value"
 password="string value" />
</aws>

Elements Reference

The following is a list of the elements that are allowed in an AWS settings section. For each
element, its allowed attributes and parent-child elements are listed.

Topics

• alias

Configuration Files Reference for AWS SDK for .NET 53

AWS SDK for .NET Developer Guide

• aws

• dynamoDB

• dynamoDBContext

• ec2

• logging

• map

• property

• proxy

• s3

alias

The <alias> element represents a single item in a collection of one or more from-table
to to-table mappings that specifies a different table than one configured for a type.
This element maps to an instance of the Amazon.Util.TableAlias class from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TableAliases property in the AWS SDK
for .NET. Remapping is done before applying a table name prefix.

This element can include the following attributes:

fromTable

The from-table portion of the from-table to to-table mapping. This attribute maps to the
Amazon.Util.TableAlias.FromTable property in the AWS SDK for .NET.

toTable

The to-table portion of the from-table to to-table mapping. This attribute maps to the
Amazon.Util.TableAlias.ToTable property in the AWS SDK for .NET.

The parent of the <alias> element is the <tableAliases> element.

The <alias> element contains no child elements.

The following is an example of the <alias> element in use:

<alias

Configuration Files Reference for AWS SDK for .NET 54

AWS SDK for .NET Developer Guide

 fromTable="Studio"
 toTable="Studios" />

aws

The <aws> element represents the top-most element in an AWS settings section. This element can
include the following attributes:

endpointDefinition

The absolute path to a custom configuration file that defines the AWS regions and endpoints to
use. This attribute maps to the Amazon.AWSConfigs.EndpointDefinition property in the
AWS SDK for .NET.

profileName

The profile name for stored AWS credentials that will be used to make service calls. This
attribute maps to the Amazon.AWSConfigs.AWSProfileName property in the AWS SDK
for .NET.

profilesLocation

The absolute path to the location of the credentials file shared with other AWS SDKs. By
default, the credentials file is stored in the .aws directory in the current user's home directory.
This attribute maps to the Amazon.AWSConfigs.AWSProfilesLocation property in the
AWS SDK for .NET.

region

The default AWS region ID for clients that have not explicitly specified a region. This attribute
maps to the Amazon.AWSConfigs.AWSRegion property in the AWS SDK for .NET.

The <aws> element has no parent element.

The <aws> element can include the following child elements:

• <dynamoDB>

• <ec2>

• <logging>

• <proxy>

Configuration Files Reference for AWS SDK for .NET 55

AWS SDK for .NET Developer Guide

• <s3>

The following is an example of the <aws> element in use:

<aws
 endpointDefinition="C:\Configs\endpoints.xml"
 region="us-west-2"
 profileName="development"
 profilesLocation="C:\Configs">
 <!-- ... -->
</aws>

dynamoDB

The <dynamoDB> element represents a collection of settings for Amazon DynamoDB. This element
can include the conversionSchema attribute, which represents the version to use for converting
between .NET and DynamoDB objects. Allowed values include V1 and V2. This attribute maps to
the Amazon.DynamoDBv2.DynamoDBEntryConversion class in the AWS SDK for .NET. For more
information, see DynamoDB Series - Conversion Schemas.

The parent of the <dynamoDB> element is the <aws> element.

The <dynamoDB> element can include the <dynamoDBContext> child element.

The following is an example of the <dynamoDB> element in use:

<dynamoDB
 conversionSchema="V2">
 <!-- ... -->
</dynamoDB>

dynamoDBContext

The <dynamoDBContext> element represents a collection of Amazon DynamoDB context-specific
settings. This element can include the tableNamePrefix attribute, which represents the default
table name prefix the DynamoDB context will use if it is not manually configured. This attribute
maps to the Amazon.Util.DynamoDBContextConfig.TableNamePrefix property from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TableNamePrefix property in the AWS
SDK for .NET. For more information, see Enhancements to the DynamoDB SDK.

The parent of the <dynamoDBContext> element is the <dynamoDB> element.

Configuration Files Reference for AWS SDK for .NET 56

http://blogs.aws.amazon.com/net/post/Tx2TCOGWG7ARUH5/DynamoDB-Series-Conversion-Schemas
http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK

AWS SDK for .NET Developer Guide

The <dynamoDBContext> element can include the following child elements:

• <alias> (one or more instances)

• <map> (one or more instances)

The following is an example of the <dynamoDBContext> element in use:

<dynamoDBContext
 tableNamePrefix="Test-">
 <!-- ... -->
</dynamoDBContext>

ec2

The <ec2> element represents a collection of Amazon EC2 settings. This element can include the
useSignatureVersion4 attribute, which specifies whether signature version 4 signing will be used
for all requests (true) or whether signature version 4 signing will not be used for all requests (false,
the default). This attribute maps to the Amazon.Util.EC2Config.UseSignatureVersion4
property from the Amazon.AWSConfigs.EC2Config.UseSignatureVersion4 property in the
AWS SDK for .NET.

The parent of the <ec2> element is the element.

The <ec2> element contains no child elements.

The following is an example of the <ec2> element in use:

<ec2
 useSignatureVersion4="true" />

logging

The <logging> element represents a collection of settings for response logging and performance
metrics logging. This element can include the following attributes:

logMetrics

Whether performance metrics will be logged for all clients and configurations (true); otherwise,
false. This attribute maps to the Amazon.Util.LoggingConfig.LogMetrics property from
the Amazon.AWSConfigs.LoggingConfig.LogMetrics property in the AWS SDK for .NET.

Configuration Files Reference for AWS SDK for .NET 57

AWS SDK for .NET Developer Guide

logMetricsCustomFormatter

The data type and assembly name of a custom formatter for logging metrics. This attribute
maps to the Amazon.Util.LoggingConfig.LogMetricsCustomFormatter property from
the Amazon.AWSConfigs.LoggingConfig.LogMetricsCustomFormatter property in the
AWS SDK for .NET.

logMetricsFormat

The format in which the logging metrics are presented (maps to the
Amazon.Util.LoggingConfig.LogMetricsFormat property from the
Amazon.AWSConfigs.LoggingConfig.LogMetricsFormat property in the AWS SDK
for .NET).

Allowed values include:

JSON

Use JSON format.

Standard

Use the default format.

logResponses

When to log service responses (maps to the Amazon.Util.LoggingConfig.LogResponses
property from the Amazon.AWSConfigs.LoggingConfig.LogResponses property in the
AWS SDK for .NET).

Allowed values include:

Always

Always log service responses.

Never

Never log service responses.

OnError

Only log service responses when there are errors.

logTo

Where to log to (maps to the LogTo property from the
Amazon.AWSConfigs.LoggingConfig.LogTo property in the AWS SDK for .NET).

Configuration Files Reference for AWS SDK for .NET 58

AWS SDK for .NET Developer Guide

Allowed values include one or more of:

Log4Net

Log to log4net.

None

Disable logging.

SystemDiagnostics

Log to System.Diagnostics.

The parent of the <logging> element is the <aws> element.

The <logging> element contains no child elements.

The following is an example of the <logging> element in use:

<logging
 logTo="SystemDiagnostics"
 logResponses="OnError"
 logMetrics="true"
 logMetricsFormat="JSON"
 logMetricsCustomFormatter="MyLib.Util.MyMetricsFormatter, MyLib" />

map

The <map> element represents a single item in a collection of type-to-table mappings
from .NET types to DynamoDB tables (maps to an instance of the TypeMapping class from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TypeMappings property in the AWS SDK
for .NET). For more information, see Enhancements to the DynamoDB SDK.

This element can include the following attributes:

targetTable

The DynamoDB table to which the mapping applies. This attribute maps to the
Amazon.Util.TypeMapping.TargetTable property in the AWS SDK for .NET.

type

The type and assembly name to which the mapping applies. This attribute maps to the
Amazon.Util.TypeMapping.Type property in the AWS SDK for .NET.

Configuration Files Reference for AWS SDK for .NET 59

http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK

AWS SDK for .NET Developer Guide

The parent of the <map> element is the <dynamoDBContext> element.

The <map> element can include one or more instances of the <property> child element.

The following is an example of the <map> element in use:

<map
 type="SampleApp.Models.Movie, SampleDLL"
 targetTable="Movies">
 <!-- ... -->
</map>

property

The <property> element represents a DynamoDB property. (This element maps to an instance of
the Amazon.Util.PropertyConfig class from the AddProperty method in the AWS SDK for .NET)
For more information, see Enhancements to the DynamoDB SDK and DynamoDB Attributes.

This element can include the following attributes:

attribute

The name of an attribute for the property, such as the name of a range key. This attribute maps
to the Amazon.Util.PropertyConfig.Attribute property in the AWS SDK for .NET.

converter

The type of converter that should be used for this property. This attribute maps to the
Amazon.Util.PropertyConfig.Converter property in the AWS SDK for .NET.

ignore

Whether the associated property should be ignored (true); otherwise, false. This attribute maps
to the Amazon.Util.PropertyConfig.Ignore property in the AWS SDK for .NET.

name

The name of the property. This attribute maps to the Amazon.Util.PropertyConfig.Name
property in the AWS SDK for .NET.

version

Whether this property should store the item version number (true); otherwise, false. This
attribute maps to the Amazon.Util.PropertyConfig.Version property in the AWS SDK
for .NET.

Configuration Files Reference for AWS SDK for .NET 60

http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DeclarativeTagsList.html

AWS SDK for .NET Developer Guide

The parent of the <property> element is the <map> element.

The <property> element contains no child elements.

The following is an example of the <property> element in use:

<property
 name="Rating"
 converter="SampleApp.Models.RatingConverter, SampleDLL" />

proxy

The <proxy> element represents settings for configuring a proxy for the AWS SDK for .NET to use.
This element can include the following attributes:

host

The host name or IP address of the proxy server. This attributes
maps to the Amazon.Util.ProxyConfig.Host property from the
Amazon.AWSConfigs.ProxyConfig.Host property in the AWS SDK for .NET.

password

The password to authenticate with the proxy server. This attributes maps
to the Amazon.Util.ProxyConfig.Password property from the
Amazon.AWSConfigs.ProxyConfig.Password property in the AWS SDK for .NET.

port

The port number of the proxy. This attributes maps to the Amazon.Util.ProxyConfig.Port
property from the Amazon.AWSConfigs.ProxyConfig.Port property in the AWS SDK
for .NET.

username

The user name to authenticate with the proxy server. This attributes
maps to the Amazon.Util.ProxyConfig.Username property from the
Amazon.AWSConfigs.ProxyConfig.Username property in the AWS SDK for .NET.

The parent of the <proxy> element is the <aws> element.

The <proxy> element contains no child elements.

Configuration Files Reference for AWS SDK for .NET 61

AWS SDK for .NET Developer Guide

The following is an example of the <proxy> element in use:

<proxy
 host="192.0.2.0"
 port="1234"
 username="My-Username-Here"
 password="My-Password-Here" />

s3

The <s3> element represents a collection of Amazon S3 settings. This element can include the
useSignatureVersion4 attribute, which specifies whether signature version 4 signing will be used for
all requests (true) or whether signature version 4 signing will not be used for all requests (false, the
default). This attribute maps to the Amazon.AWSConfigs.S3Config.UseSignatureVersion4
property in the AWS SDK for .NET.

The parent of the <s3> element is the <aws> element.

The <s3> element contains no child elements.

The following is an example of the <s3> element in use:

<s3 useSignatureVersion4="true" />

Using legacy credentials

The topics in this section provide information about using long-term or short-term credentials
without using AWS IAM Identity Center.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Note

The information in this topic is for circumstances where you need to obtain and manage
short-term or long-term credentials manually. For additional information about short-

Using legacy credentials 62

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS SDK for .NET Developer Guide

term and long-term credentials, see Other ways to authenticate in the AWS SDKs and Tools
Reference Guide.
For best security practices, use AWS IAM Identity Center, as described in Configure SDK
authentication.

Important warnings and guidance for credentials

Warnings for credentials

• Do NOT use your account's root credentials to access AWS resources. These credentials provide
unrestricted account access and are difficult to revoke.

• Do NOT put literal access keys or credential information in your application files. If you do, you
create a risk of accidentally exposing your credentials if, for example, you upload the project to a
public repository.

• Do NOT include files that contain credentials in your project area.

• Be aware that any credentials stored in the shared AWS credentials file, are stored in
plaintext.

Additional guidance for securely managing credentials

For a general discussion of how to securely manage AWS credentials, see AWS security credentials
in the AWS General Reference and Security best practices and use cases in the IAM User Guide. In
addition to those discussions, consider the following:

• Create additional users, such as users in IAM Identity Center, and use their credentials instead
of using your AWS root user credentials. Credentials for other users can be revoked if necessary
or are temporary by nature. In addition, you can apply a policy to each user for access to only
certain resources and actions and thereby take a stance of least-privilege permissions.

• Use IAM roles for tasks for Amazon Elastic Container Service (Amazon ECS) tasks.

• Use IAM roles for applications that are running on Amazon EC2 instances.

• Use temporary credentials or environment variables for applications that are available to users
outside your organization.

Important warnings and guidance for credentials 63

https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html
https://docs.aws.amazon.com/general/latest/gr/Welcome.html#aws-security-credentials
https://docs.aws.amazon.com/general/latest/gr/
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS SDK for .NET Developer Guide

Topics

• Using the shared AWS credentials file

• Using the SDK Store (Windows only)

Using the shared AWS credentials file

(Be sure to review the important warnings and guidance for credentials.)

One way to provide credentials for your applications is to create profiles in the shared AWS
credentials file and then store credentials in those profiles. This file can be used by the other AWS
SDKs. It can also be used by the AWS CLI, the AWS Tools for Windows PowerShell, and the AWS
toolkits for Visual Studio, JetBrains, and VS Code.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Note

The information in this topic is for circumstances where you need to obtain and manage
short-term or long-term credentials manually. For additional information about short-
term and long-term credentials, see Other ways to authenticate in the AWS SDKs and Tools
Reference Guide.
For best security practices, use AWS IAM Identity Center, as described in Configure SDK
authentication.

General information

By default, the shared AWS credentials file is located in the .aws directory within your home
directory and is named credentials; that is, ~/.aws/credentials (Linux or macOS) or
%USERPROFILE%\.aws\credentials (Windows). For information about alternative locations,
see Location of the shared files in the AWS SDKs and Tools Reference Guide. Also see Accessing
credentials and profiles in an application.

Using the shared AWS credentials file 64

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/overview.html

AWS SDK for .NET Developer Guide

The shared AWS credentials file is a plaintext file and follows a certain format. For information
about the format of AWS credentials files, see Format of the credentials file in the AWS SDKs and
Tools Reference Guide.

You can manage the profiles in the shared AWS credentials file in several ways.

• Use any text editor to create and update the shared AWS credentials file.

• Use the Amazon.Runtime.CredentialManagement namespace of the AWS SDK for .NET API, as
shown later in this topic.

• Use commands and procedures for the AWS Tools for PowerShell and the AWS toolkits for Visual
Studio, JetBrains, and VS Code.

• Use AWS CLI commands; for example, aws configure set aws_access_key_id and aws
configure set aws_secret_access_key.

Examples of profile management

The following sections show examples of profiles in the shared AWS credentials file. Some of the
examples show the result, which can be obtained through any of the credential-management
methods described earlier. Other examples show how to use a particular method.

The default profile

The shared AWS credentials file will almost always have a profile named default. This is where the
AWS SDK for .NET looks for credentials if no other profiles are defined.

The [default] profile typically looks something like the following.

[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Create a profile programmatically

This example shows you how to create a profile and save it to the shared AWS credentials file
programmatically. It uses the following classes of the Amazon.Runtime.CredentialManagement
namespace: CredentialProfileOptions, CredentialProfile, and SharedCredentialsFile.

using Amazon.Runtime.CredentialManagement;
...

Using the shared AWS credentials file 65

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-creds
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html

AWS SDK for .NET Developer Guide

// Do not include credentials in your code.
WriteProfile("my_new_profile", SecurelyStoredKeyID, SecurelyStoredSecretAccessKey);
...

void WriteProfile(string profileName, string keyId, string secret)
{
 Console.WriteLine($"Create the [{profileName}] profile...");
 var options = new CredentialProfileOptions
 {
 AccessKey = keyId,
 SecretKey = secret
 };
 var profile = new CredentialProfile(profileName, options);
 var sharedFile = new SharedCredentialsFile();
 sharedFile.RegisterProfile(profile);
}

Warning

Code such as this generally shouldn't be in your application. If you include it in your
application, take appropriate precautions to ensure that plaintext keys can't possibly be
seen in the code, over the network, or even in computer memory.

The following is the profile that's created by this example.

[my_new_profile]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Update an existing profile programmatically

This example shows you how to programmatically update the profile that was created earlier.
It uses the following classes of the Amazon.Runtime.CredentialManagement namespace:
CredentialProfile and SharedCredentialsFile. It also uses the RegionEndpoint class of the Amazon
namespace.

using Amazon.Runtime.CredentialManagement;
...

AddRegion("my_new_profile", RegionEndpoint.USWest2);

Using the shared AWS credentials file 66

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TRegionEndpoint.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/N.html

AWS SDK for .NET Developer Guide

...

void AddRegion(string profileName, RegionEndpoint region)
{
 var sharedFile = new SharedCredentialsFile();
 CredentialProfile profile;
 if (sharedFile.TryGetProfile(profileName, out profile))
 {
 profile.Region = region;
 sharedFile.RegisterProfile(profile);
 }
}

The following is the updated profile.

[my_new_profile]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
region=us-west-2

Note

You can also set the AWS Region in other locations and by using other methods. For more
information, see Configure the AWS Region.

Using the SDK Store (Windows only)

(Be sure to review the important warnings and guidelines.)

On Windows, the SDK Store is another place to create profiles and store encrypted credentials
for your AWS SDK for .NET application. It's located in %USERPROFILE%\AppData\Local
\AWSToolkit\RegisteredAccounts.json. You can use the SDK Store during development as
an alternative to the shared AWS credentials file.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

Using the SDK Store (Windows only) 67

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS SDK for .NET Developer Guide

Note

The information in this topic is for circumstances where you need to obtain and manage
short-term or long-term credentials manually. For additional information about short-
term and long-term credentials, see Other ways to authenticate in the AWS SDKs and Tools
Reference Guide.
For best security practices, use AWS IAM Identity Center, as described in Configure SDK
authentication.

General information

The SDK Store provides the following benefits:

• The credentials in the SDK Store are encrypted, and the SDK Store resides in the user's home
directory. This limits the risk of accidentally exposing your credentials.

• The SDK Store also provides credentials to the AWS Tools for Windows PowerShell and the AWS
Toolkit for Visual Studio.

SDK Store profiles are specific to a particular user on a particular host. You can't copy them to
other hosts or other users. This means that you can't reuse SDK Store profiles that are on your
development machine for other hosts or developer machines. It also means that you can't use SDK
Store profiles in production applications.

You can manage the profiles in the SDK Store in the following ways:

• Use the graphical user interface (GUI) in the AWS Toolkit for Visual Studio.

• Use the Amazon.Runtime.CredentialManagement namespace of the AWS SDK for .NET API, as
shown later in this topic.

• Use commands from the AWS Tools for Windows PowerShell; for example, Set-
AWSCredential and Remove-AWSCredentialProfile.

Examples of profile management

The following examples show you how to programmatically create and update a profile in the SDK
Store.

Using the SDK Store (Windows only) 68

https://docs.aws.amazon.com/sdkref/latest/guide/access-users.html
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html

AWS SDK for .NET Developer Guide

Create a profile programmatically

This example shows you how to create a profile and save it to the SDK Store programmatically.
It uses the following classes of the Amazon.Runtime.CredentialManagement namespace:
CredentialProfileOptions, CredentialProfile, and NetSDKCredentialsFile.

using Amazon.Runtime.CredentialManagement;
...

// Do not include credentials in your code.
WriteProfile("my_new_profile", SecurelyStoredKeyID, SecurelyStoredSecretAccessKey);
...

void WriteProfile(string profileName, string keyId, string secret)
{
 Console.WriteLine($"Create the [{profileName}] profile...");
 var options = new CredentialProfileOptions
 {
 AccessKey = keyId,
 SecretKey = secret
 };
 var profile = new CredentialProfile(profileName, options);
 var netSdkStore = new NetSDKCredentialsFile();
 netSdkStore.RegisterProfile(profile);
}

Warning

Code such as this generally shouldn't be in your application. If it's included in your
application, take appropriate precautions to ensure that plaintext keys can't possibly be
seen in the code, over the network, or even in computer memory.

The following is the profile that's created by this example.

"[generated GUID]" : {
 "AWSAccessKey" : "01000000D08...[etc., encrypted access key ID]",
 "AWSSecretKey" : "01000000D08...[etc., encrypted secret access key]",
 "ProfileType" : "AWS",
 "DisplayName" : "my_new_profile",
}

Using the SDK Store (Windows only) 69

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TNetSDKCredentialsFile.html

AWS SDK for .NET Developer Guide

Update an existing profile programmatically

This example shows you how to programmatically update the profile that was created earlier.
It uses the following classes of the Amazon.Runtime.CredentialManagement namespace:
CredentialProfile and NetSDKCredentialsFile. It also uses the RegionEndpoint class of the Amazon
namespace.

using Amazon.Runtime.CredentialManagement;
...

AddRegion("my_new_profile", RegionEndpoint.USWest2);
...

void AddRegion(string profileName, RegionEndpoint region)
{
 var netSdkStore = new NetSDKCredentialsFile();
 CredentialProfile profile;
 if (netSdkStore.TryGetProfile(profileName, out profile))
 {
 profile.Region = region;
 netSdkStore.RegisterProfile(profile);
 }
}

The following is the updated profile.

"[generated GUID]" : {
 "AWSAccessKey" : "01000000D08...[etc., encrypted access key ID]",
 "AWSSecretKey" : "01000000D08...[etc., encrypted secret access key]",
 "ProfileType" : "AWS",
 "DisplayName" : "my_new_profile",
 "Region" : "us-west-2"
}

Note

You can also set the AWS Region in other locations and by using other methods. For more
information, see Configure the AWS Region.

Using the SDK Store (Windows only) 70

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TNetSDKCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TRegionEndpoint.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/N.html

AWS SDK for .NET Developer Guide

Features of the AWS SDK for .NET

This section provides information about features of the AWS SDK for .NET that you might need to
consider when creating your applications.

Be sure you have set up your project first.

For information about developing software for specific AWS services along with code examples, see
Work with AWS services. For additional code examples, see AWS SDK for .NET code examples.

Topics

• AWS asynchronous APIs for .NET

• Retries and timeouts

• Paginators

• Observability

• Additional tools

AWS asynchronous APIs for .NET

The AWS SDK for .NET uses the Task-based Asynchronous Pattern (TAP) for its asynchronous
implementation. To learn more about the TAP, see Task-based Asynchronous Pattern (TAP) on
docs.microsoft.com.

This topic gives you an overview of how to use TAP in your calls to AWS service clients.

The asynchronous methods in the AWS SDK for .NET API are operations based on the Task class or
the Task<TResult> class. See docs.microsoft.com for information about these classes: Task class,
Task<TResult> class.

When these API methods are called in your code, they must be called within a function that is
declared with the async keyword, as shown in the following example.

static async Task Main(string[] args)
{
 ...
 // Call the function that contains the asynchronous API method.
 // Could also call the asynchronous API method directly from Main

Asynchronous APIs 71

https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

AWS SDK for .NET Developer Guide

 // because Main is declared async
 var response = await ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {response.Buckets.Count}");
 ...
}

// Async method to get a list of Amazon S3 buckets.
private static async Task<ListBucketsResponse> ListBucketsAsync()
{
 ...
 var response = await s3Client.ListBucketsAsync();
 return response;
}

As shown in the preceding code snippet, the preferred scope for the async declaration is the Main
function. Setting this async scope ensures that all calls to AWS service clients are required to
be asynchronous. If you can't declare Main to be asynchronous for some reason, you can use the
async keyword on functions other than Main and then call the API methods from there, as shown
in the following example.

static void Main(string[] args)
{
 ...
 Task<ListBucketsResponse> response = ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {response.Result.Buckets.Count}");
 ...
}

// Async method to get a list of Amazon S3 buckets.
private static async Task<ListBucketsResponse> ListBucketsAsync()
{
 ...
 var response = await s3Client.ListBucketsAsync();
 return response;
}

Notice the special Task<> syntax that's needed in Main when you use this pattern. In addition, you
must use the Result member of the response to get the data.

You can see full examples of asynchronous calls to AWS service clients in the Take a quick tour
section (Simple cross-platform app and Simple Windows-based app) and in Code examples with
guidance.

Asynchronous APIs 72

AWS SDK for .NET Developer Guide

Retries and timeouts

The AWS SDK for .NET enables you to configure the number of retries and the timeout values for
HTTP requests to AWS services. If the default values for retries and timeouts are not appropriate
for your application, you can adjust them for your specific requirements, but it is important to
understand how doing so will affect the behavior of your application.

To determine which values to use for retries and timeouts, consider the following:

• How should the AWS SDK for .NET and your application respond when network connectivity
degrades or an AWS service is unreachable? Do you want the call to fail fast, or is it appropriate
for the call to keep retrying on your behalf?

• Is your application a user-facing application or website that must be responsive, or is it a
background processing job that has more tolerance for increased latencies?

• Is the application deployed on a reliable network with low latency, or is it deployed at a remote
location with unreliable connectivity?

Retries

Overview

The AWS SDK for .NET can retry requests that fail due to server-side throttling or dropped
connections. There are two properties of service configuration classes that you can use to specify
the retry behavior of a service client. Service configuration classes inherit these properties from the
abstract Amazon.Runtime.ClientConfig class of the AWS SDK for .NET API Reference:

• RetryMode specifies one of three retry modes, which are defined in the
Amazon.Runtime.RequestRetryMode enumeration.

The default value for your application can be controlled by using the AWS_RETRY_MODE
environment variable or the retry_mode setting in the shared AWS config file.

• MaxErrorRetry specifies the number of retries allowed at the service client level; the SDK
retries the operation the specified number of times before failing and throwing an exception.

The default value for your application can be controlled by using the AWS_MAX_ATTEMPTS
environment variable or the max_attempts setting in the shared AWS config file.

Retries and timeouts 73

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TRequestRetryMode.html

AWS SDK for .NET Developer Guide

Detailed descriptions for these properties can be found in the abstract
Amazon.Runtime.ClientConfig class of the AWS SDK for .NET API Reference. Each value of
RetryMode corresponds by default to a particular value of MaxErrorRetry, as shown in the
following table.

RetryMode Corresponding MaxErrorR
etry (Amazon DynamoDB)

Corresponding MaxErrorR
etry (all others)

Legacy 10 4

Standard 10 2

Adaptive (experimental) 10 2

Behavior

When your application starts

When your application starts, default values for RetryMode and MaxErrorRetry are configured
by the SDK. These default values are used when you create a service client unless you specify other
values.

• If the properties aren't set in your environment, the default for RetryMode is configured as
Legacy and the default for MaxErrorRetry is configured with the corresponding value from the
preceding table.

• If the retry mode has been set in your environment, that value is used as the default for
RetryMode. The default for MaxErrorRetry is configured with the corresponding value from
the preceding table unless the value for maximum errors has also been set in your environment
(described next).

• If the value for maximum errors has been set in your environment, that value is used as the
default for MaxErrorRetry. Amazon DynamoDB is the exception to this rule; the default
DynamoDB value for MaxErrorRetry is always the value from the preceding table.

As your application runs

When you create a service client, you can use the default values for RetryMode and
MaxErrorRetry, as described earlier, or you can specify other values. To specify other

Retries 74

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/

AWS SDK for .NET Developer Guide

values, create and include a service configuration object such as AmazonDynamoDBConfig or
AmazonSQSConfig when you create the service client.

These values can't be changed for a service client after it has been created.

Considerations

When a retry occurs, the latency of your request is increased. You should configure your retries
based on your application limits for total request latency and error rates.

Timeouts

The AWS SDK for .NET enables you to configure the request timeout and socket read/write
timeout values at the service client level. These values are specified in the Timeout and the
ReadWriteTimeout properties of the abstract Amazon.Runtime.ClientConfig class. These values
are passed on as the Timeout and ReadWriteTimeout properties of the HttpWebRequest objects
created by the AWS service client object. By default, the Timeout value is 100 seconds and the
ReadWriteTimeout value is 300 seconds.

When your network has high latency, or conditions exist that cause an operation to be retried,
using long timeout values and a high number of retries can cause some SDK operations to seem
unresponsive.

Note

The version of the AWS SDK for .NET that targets the portable class library (PCL) uses the
HttpClient class instead of the HttpWebRequest class, and supports the Timeout property
only.

The following are the exceptions to the default timeout values. These values are overridden when
you explicitly set the timeout values.

• Timeout and ReadWriteTimeout are set to the maximum values if the method
being called uploads a stream, such as AmazonS3Client.PutObjectAsync(),
AmazonS3Client.UploadPartAsync(), AmazonGlacierClient.UploadArchiveAsync(), and so on.

• The versions of the AWS SDK for .NET that target .NET Framework set Timeout and
ReadWriteTimeout to the maximum values for all AmazonS3Client and AmazonGlacierClient
objects.

Timeouts 75

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/TDynamoDBConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://learn.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.timeout
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/MS3PutObjectAsyncPutObjectRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/MS3UploadPartAsyncUploadPartRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/MGlacierUploadArchiveAsyncUploadArchiveRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/TGlacierClient.html

AWS SDK for .NET Developer Guide

• The versions of the AWS SDK for .NET that target the portable class library (PCL) and .NET Core
set Timeout to the maximum value for all AmazonS3Client and AmazonGlacierClient objects.

Example

The following example shows you how to specify Standard retry mode, a maximum of 3 retries, a
timeout of 10 seconds, and a read/write timeout of 10 seconds (if applicable). The AmazonS3Client
constructor is given an AmazonS3Config object.

var s3Client = new AmazonS3Client(
 new AmazonS3Config
 {
 Timeout = TimeSpan.FromSeconds(10),
 // NOTE: The following property is obsolete for
 // versions of the AWS SDK for .NET that target .NET Core.
 ReadWriteTimeout = TimeSpan.FromSeconds(10),
 RetryMode = RequestRetryMode.Standard,
 MaxErrorRetry = 3
 });

Paginators

Some AWS services collect and store a large amount of data, which you can retrieve by using the
API calls of the AWS SDK for .NET. If the amount of data you want to retrieve becomes too large
for a single API call, you can break the results into more manageable pieces through the use of
pagination.

To enable you to perform pagination, the request and response objects for many service clients in
the SDK provide a continuation token (typically named NextToken). Some of these service clients
also provide paginators.

Paginators enable you to avoid the overhead of the continuation token, which might involve loops,
state variables, multiple API calls, and so on. When you use a paginator, you can retrieve data from
an AWS service through a single line of code, a foreach loop's declaration. If multiple API calls are
needed to retrieve the data, the paginator handles this for you.

Example 76

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/TGlacierClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Config.html

AWS SDK for .NET Developer Guide

Where do I find paginators?

Not all services provide paginators. One way to determine whether a service provides a paginator
for a particular API is to look at the definition of a service client class in the AWS SDK for .NET API
Reference.

For example, if you examine the definition for the AmazonCloudWatchLogsClient class, you see
a Paginators property. This is the property that provides a paginator for Amazon CloudWatch
Logs.

What do paginators give me?

Paginators contain properties that enable you to see full responses. They also typically contain one
or more properties that enable to you access the most interesting portions of the responses, which
we will call the key results.

For example, in the AmazonCloudWatchLogsClient mentioned earlier, the Paginator object
contains a Responses property with the full DescribeLogGroupsResponse object from the API call.
This Responses property contains, among other things, a collection of the log groups.

The Paginator object also contains one key result named LogGroups. This property holds just the
log groups portion of the response. Having this key result enables you to reduce and simplify your
code in many circumstances.

Synchronous vs. asynchronous pagination

Paginators provide both synchronous and asynchronous mechanisms for pagination. Synchronous
pagination is available in .NET Framework 4.7.2 (or later) projects. Asynchronous pagination is
available in .NET Core projects (.NET Core 3.1, .NET 5, and so on).

Because asynchronous operations and .NET Core are recommended, the example that comes
next shows you asynchronous pagination. Information about how to perform the same tasks
using synchronous pagination and .NET Framework 4.7.2 (or later) is shown after the example in
Additional considerations for paginators.

Example

The following example shows you how to use the AWS SDK for .NET to display a list of log groups.
For contrast, the example shows how to do this both with and without paginators. Before looking
at the full code, shown later, consider the following snippets.

Where do I find paginators? 77

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TCloudWatchLogsClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TDescribeLogGroupsResponse.html

AWS SDK for .NET Developer Guide

Getting CloudWatch log groups without paginators

 // Loop as many times as needed to get all the log groups
 var request = new DescribeLogGroupsRequest{Limit = LogGroupLimit};
 do
 {
 Console.WriteLine($"Getting up to {LogGroupLimit} log groups...");
 var response = await cwClient.DescribeLogGroupsAsync(request);
 foreach(var logGroup in response.LogGroups)
 {
 Console.WriteLine($"{logGroup.LogGroupName}");
 }
 request.NextToken = response.NextToken;
 } while(!string.IsNullOrEmpty(request.NextToken));

Getting CloudWatch log groups by using paginators

 // No need to loop to get all the log groups--the SDK does it for us behind the
 scenes
 var paginatorForLogGroups =
 cwClient.Paginators.DescribeLogGroups(new DescribeLogGroupsRequest());
 await foreach(var logGroup in paginatorForLogGroups.LogGroups)
 {
 Console.WriteLine(logGroup.LogGroupName);
 }

The results of these two snippets are exactly the same, so the advantage in using paginators can
clearly be seen.

Note

Before you try to build and run the full code, be sure you have set up your environment and
project.
You might also need the Microsoft.Bcl.AsyncInterfaces NuGet package because
asynchronous paginators use the IAsyncEnumerable interface.

Complete code

This section shows relevant references and the complete code for this example.

Example 78

https://www.nuget.org/packages/Microsoft.Bcl.AsyncInterfaces/

AWS SDK for .NET Developer Guide

SDK references

NuGet packages:

• AWSSDK.CloudWatch

Programming elements:

• Namespace Amazon.CloudWatch

Class AmazonCloudWatchLogsClient

• Namespace Amazon.CloudWatchLogs.Model

Class DescribeLogGroupsRequest

Class DescribeLogGroupsResponse

Class LogGroup

Full code

using System;
using System.Threading.Tasks;
using Amazon.CloudWatchLogs;
using Amazon.CloudWatchLogs.Model;

namespace CWGetLogGroups
{
 class Program
 {
 // A small limit for demonstration purposes
 private const int LogGroupLimit = 3;

 //
 // Main method
 static async Task Main(string[] args)
 {
 var cwClient = new AmazonCloudWatchLogsClient();
 await DisplayLogGroupsWithoutPaginators(cwClient);
 await DisplayLogGroupsWithPaginators(cwClient);
 }

Example 79

https://www.nuget.org/packages/AWSSDK.CloudWatch
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/NCloudWatch.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TCloudWatchLogsClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/NCloudWatchLogsModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TDescribeLogGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TDescribeLogGroupsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TLogGroup.html

AWS SDK for .NET Developer Guide

 //
 // Method to get CloudWatch log groups without paginators
 private static async Task DisplayLogGroupsWithoutPaginators(IAmazonCloudWatchLogs
 cwClient)
 {
 Console.WriteLine("\nGetting list of CloudWatch log groups without using
 paginators...");

 Console.WriteLine("--");

 // Loop as many times as needed to get all the log groups
 var request = new DescribeLogGroupsRequest{Limit = LogGroupLimit};
 do
 {
 Console.WriteLine($"Getting up to {LogGroupLimit} log groups...");
 DescribeLogGroupsResponse response = await
 cwClient.DescribeLogGroupsAsync(request);
 foreach(LogGroup logGroup in response.LogGroups)
 {
 Console.WriteLine($"{logGroup.LogGroupName}");
 }
 request.NextToken = response.NextToken;
 } while(!string.IsNullOrEmpty(request.NextToken));
 }

 //
 // Method to get CloudWatch log groups by using paginators
 private static async Task DisplayLogGroupsWithPaginators(IAmazonCloudWatchLogs
 cwClient)
 {
 Console.WriteLine("\nGetting list of CloudWatch log groups by using
 paginators...");

 Console.WriteLine("---");

 // Access the key results; i.e., the log groups
 // No need to loop to get all the log groups--the SDK does it for us behind the
 scenes
 Console.WriteLine("\nFrom the key results...");
 Console.WriteLine("------------------------");
 IDescribeLogGroupsPaginator paginatorForLogGroups =
 cwClient.Paginators.DescribeLogGroups(new DescribeLogGroupsRequest());

Example 80

AWS SDK for .NET Developer Guide

 await foreach(LogGroup logGroup in paginatorForLogGroups.LogGroups)
 {
 Console.WriteLine(logGroup.LogGroupName);
 }

 // Access the full response
 // Create a new paginator, do NOT reuse the one from above
 Console.WriteLine("\nFrom the full response...");
 Console.WriteLine("--------------------------");
 IDescribeLogGroupsPaginator paginatorForResponses =
 cwClient.Paginators.DescribeLogGroups(new DescribeLogGroupsRequest());
 await foreach(DescribeLogGroupsResponse response in
 paginatorForResponses.Responses)
 {
 Console.WriteLine($"Content length: {response.ContentLength}");
 Console.WriteLine($"HTTP result: {response.HttpStatusCode}");
 Console.WriteLine($"Metadata: {response.ResponseMetadata}");
 Console.WriteLine("Log groups:");
 foreach(LogGroup logGroup in response.LogGroups)
 {
 Console.WriteLine($"\t{logGroup.LogGroupName}");
 }
 }
 }
 }
}

Additional considerations for paginators

• Paginators can't be used more than once

If you need the results of a particular AWS paginator in multiple locations in your code,
you must not use a paginator object more than once. Instead, create a new paginator
each time you need it. This concept is shown in the preceding example code in the
DisplayLogGroupsWithPaginators method.

• Synchronous pagination

Synchronous pagination is available for .NET Framework 4.7.2 (or later) projects.

Additional considerations for paginators 81

AWS SDK for .NET Developer Guide

Warning

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET Framework
3.5 and will change the minimum .NET Framework version to 4.7.2. For more
information, see the blog post Important changes coming for .NET Framework 3.5 and
4.5 targets of the AWS SDK for .NET.

To see this, create a .NET Framework 4.7.2 (or later) project and copy the preceding code to it.
Then simply remove the await keyword from the two foreach paginator calls, as shown in the
following example.

/*await*/ foreach(var logGroup in paginatorForLogGroups.LogGroups)
{
 Console.WriteLine(logGroup.LogGroupName);
}

Build and run the project to see the same results you saw with asynchronous pagination.

Observability

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

Observability is the extent to which a system's current state can be inferred from the data it emits.
The data emitted is commonly referred to as telemetry.

The AWS SDK for .NET can provide two common telemetry signals, metrics and traces, as well as
logging. You can wire up a TelemetryProvider to send telemetry data to an observability backend
(such as AWS X-Ray or Amazon CloudWatch) and then act on it.

By default, telemetry signals are disabled in the SDK. This topic explains how to enable and
configure telemetry output.

Observability 82

https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TTelemetryProvider.html
https://docs.aws.amazon.com/xray/?icmpid=docs_homepage_devtools
https://docs.aws.amazon.com/cloudwatch/?icmpid=docs_homepage_mgmtgov

AWS SDK for .NET Developer Guide

Additional resources

For more information about enabling and using observability, see the following resources:

• OpenTelemetry

• The blog post Enhancing Observability in the AWS SDK for .NET with OpenTelemetry.

• Exporters for OpenTelemetry

• For examples of observability in the AWS Tools for PowerShell, see Observability in the Tools for
PowerShell User Guide.

Configure a TelemetryProvider

You can configure a TelemetryProvider in your application globally for all service clients or for
individual clients, as shown in the following examples. The the section called “Telemetry providers”
section contains information about telemetry implementations, including information about
implementations that are provided with the SDK.

Configure the default global telemetry provider

By default, every service client attempts to use the globally available telemetry provider. This way,
you can set the provider once, and all clients will use it. This should be done only once, before you
create any service clients.

The following code snippet shows you how to set the global telemetry provider. It then creates
an Amazon S3 service client and tries to perform an operation that fails. The code adds
both tracing and metrics to the application. This code uses the following NuGet packages:
OpenTelemetry.Exporter.Console and OpenTelemetry.Instrumentation.AWS, which is
currently in prerelease.

Note

If you're using AWS IAM Identity Center for authentication, be sure to also add
AWSSDK.SSO and AWSSDK.SSOOIDC.

using Amazon.S3;
using OpenTelemetry;

Additional resources 83

https://opentelemetry.io/
https://aws.amazon.com/blogs/developer/enhancing-observability-in-the-aws-sdk-for-net-with-opentelemetry/
https://opentelemetry.io/docs/languages/net/exporters/
https://docs.aws.amazon.com/powershell/latest/userguide/observability.html
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/

AWS SDK for .NET Developer Guide

using OpenTelemetry.Metrics;
using OpenTelemetry.Resources;
using OpenTelemetry.Trace;

Sdk.CreateTracerProviderBuilder()
 .ConfigureResource(e => e.AddService("DemoOtel"))
 .AddAWSInstrumentation()
 .AddConsoleExporter()
 .Build();

Sdk.CreateMeterProviderBuilder()
 .ConfigureResource(e => e.AddService("DemoOtel"))
 .AddAWSInstrumentation()
 .AddConsoleExporter()
 .Build();

var s3Client = new AmazonS3Client();

try
{
 var listBucketsResponse = await s3Client.ListBucketsAsync();
 // Attempt to delete a bucket that doesn't exist.
 var deleteBucketResponse = await s3Client.DeleteBucketAsync("amzn-s3-demo-bucket");
}
catch (Exception ex)
{
 Console.WriteLine(ex.Message);
}

Console.Read();

Configure a telemetry provider for a specific service client

You can configure an individual service client with a specific telemetry provider (other than
the global one). To do so, use the TelemetryProvider class of the Config object of a service
client constructor. For example, see AmazonS3Config and look for the TelemetryProvider
property. See the section called “Telemetry providers” for information about custom telemetry
implementations.

Topics

• Metrics

• Telemetry providers

Configure a TelemetryProvider 84

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Config.html

AWS SDK for .NET Developer Guide

Metrics

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The following table lists the telemetry metrics that the SDK emits. Configure a telemetry provider
to make the metrics observable.

What metrics are emitted?

Metric name Units Type Attributes Description

client.call.durati
on

s Histogramrpc.service,
rpc.method

Overall call duration (including
retries and time to send or receive
request and response body)

client.uptime s Histogramrpc.service The amount of time since a client
was created

client.ca
ll.attempts

{attempt}Monotonic
Counter

rpc.service,
rpc.method

The number of attempts for an
individual operation

client.call.errors {error} Monotonic
Counter

rpc.service,
rpc.method,
exception.type

The number of errors for an
operation

client.ca
ll.attemp
t_duration

s Histogramrpc.service,
rpc.method

The time it takes to connect to the
service, send the request, and get
back HTTP status code and headers
(including time queued waiting to be
sent)

client.call.resolv
e_endpoin
t_duration

s Histogramrpc.service,
rpc.method

The time it takes to resolve an
endpoint (endpoint resolver, not
DNS) for the request

Metrics 85

AWS SDK for .NET Developer Guide

Metric name Units Type Attributes Description

client.call.serial
ization_duration

s Histogramrpc.service,
rpc.method

The time it takes to serialize a
message body

client.call.deseri
alization
_duration

s Histogramrpc.service,
rpc.method

The time it takes to deserialize a
message body

client.call.auth.s
igning_duration

s Histogramrpc.service,
rpc.method

The time it takes to sign a request

client.call.auth.r
esolve_id
entity_duration

s Histogramrpc.service,
rpc.method

The time it takes to acquire an
identity (such as AWS credentials
or a bearer token) from an Identity
Provider

client.ht
tp.bytes_sent

By Monotonic
Counter

server.address The total number of bytes sent by
the HTTP client

client.ht
tp.bytes_
received

By Monotonic
Counter

server.address The total number of bytes received
by the HTTP client

Following are the column descriptions:

• Metric name–The name of the emitted metric.

• Units–The unit of measure for the metric. Units are given in the UCUM case sensitive ("c/s")
notation.

• Type–The type of instrument used to capture the metric.

• Attributes–The set of attributes (dimensions) emitted with the metric.

• Description–A description of what the metric is measuring.

Metrics 86

https://unitsofmeasure.org/ucum

AWS SDK for .NET Developer Guide

Telemetry providers

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The SDK provides an implementation of OpenTelemetry as a telemetry provider, which is described
in the next section.

If you have specific telemetry requirements, already have a telemetry solution in mind, or need
fine-grained control over how telemetry data is captured and processed, you can also implement
your own telemetry provider.

Register your own implementation with the TelemetryProvider class. The following is a simple
example of how to register your own TracerProvider and MeterProvider.

using Amazon;
using Amazon.Runtime.Telemetry;
using Amazon.Runtime.Telemetry.Metrics;
using Amazon.Runtime.Telemetry.Tracing;

public class CustomTracerProvider : TracerProvider
{
 // Implement custom tracing logic here
}
public class CustomMeterProvider : MeterProvider
{
 // Implement custom metrics logic here
}

// Register custom implementations
AWSConfigs.TelemetryProvider.RegisterTracerProvider(new CustomTracerProvider());
AWSConfigs.TelemetryProvider.RegisterMeterProvider(new CustomMeterProvider());

Topics

• Configure the OpenTelemetry-based telemetry provider

Telemetry providers 87

https://opentelemetry.io/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TTelemetryProvider.html

AWS SDK for .NET Developer Guide

Configure the OpenTelemetry-based telemetry provider

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS SDK for .NET includes an implementation of an OpenTelemetry-based telemetry provider.
For details about how to set this provider as the global telemetry provider, see Configure a
TelemetryProvider. To use this telemetry provider, you need the following resources in your
project:

• The OpenTelemetry.Instrumentation.AWS NuGet package. This package is currently in
prerelease.

• A telemetry exporter such as OTLP or Console. For more information, see Exporters in the
OpenTelemetry documentation.

The OpenTelemetry implementation included with the SDK can be configured to reduce
the amount of tracing for HTTPS requests, credentials, and compression. To do so, set the
SuppressDownstreamInstrumentation option to true, similar to the following:

Sdk.CreateTracerProviderBuilder()
 .ConfigureResource(e => e.AddService("DemoOtel"))
 .AddAWSInstrumentation(options => options.SuppressDownstreamInstrumentation = true)
 .AddConsoleExporter()
 .Build();

For additional information about this provider, see the blog post Enhancing Observability in the
AWS SDK for .NET with OpenTelemetry.

Additional tools

The following are some additional tools that you can use to ease the work of developing,
deploying, and maintaining your .NET applications.

Additional tools 88

https://www.nuget.org/packages/OpenTelemetry.Instrumentation.AWS
https://opentelemetry.io/docs/languages/net/exporters/
https://aws.amazon.com/blogs/developer/enhancing-observability-in-the-aws-sdk-for-net-with-opentelemetry/
https://aws.amazon.com/blogs/developer/enhancing-observability-in-the-aws-sdk-for-net-with-opentelemetry/

AWS SDK for .NET Developer Guide

AWS Deploy Tool

After you've developed your cloud-native .NET Core application on a development machine, you
can use the AWS Deploy Tool for the .NET CLI to more easily deploy your application to AWS.

For more information, see Deploy applications to AWS.

AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

If you're using services such as Amazon SQS, Amazon SNS or Amazon EventBridge, you might be
able to take advantage of the AWS Message Processing Framework for .NET. For more information,
see AWS Message Processing Framework for .NET.

AWS Deploy Tool 89

AWS SDK for .NET Developer Guide

Advanced authentication and authorization with the
AWS SDK for .NET
The topics in this section provide information about advanced techniques for authentication and
authorization in your AWS SDK for .NET application.

Topics

• Single sign-on with the AWS SDK for .NET

Single sign-on with the AWS SDK for .NET

AWS IAM Identity Center is a cloud-based single sign-on (SSO) service that makes it easy to
centrally manage SSO access to all of your AWS accounts and cloud applications. For full details,
see the IAM Identity Center User Guide.

If you're unfamiliar with how an SDK interacts with IAM Identity Center, see the following
information.

High-level pattern of interaction

At a high level, SDKs interact with IAM Identity Center in a manner similar to the following pattern:

1. IAM Identity Center is configured, typically through the IAM Identity Center console, and an
SSO user is invited to participate.

2. The shared AWS config file on the user's computer is updated with SSO information.

3. The user signs in through IAM Identity Center and is given short-term credentials for the AWS
Identity and Access Management (IAM) permissions that have been configured for them. This
sign-in can be initiated through a non-SDK tool like the AWS CLI, or programmatically through
a .NET application.

4. The user proceeds to do their work. When they run other applications that are using SSO, they
don't need to sign in again to open the applications.

The rest of this topic provides reference information for setting up and using AWS IAM Identity
Center. It provides supplemental and more advanced information than the basic SSO setup in
Configure SDK authentication. If you're new to SSO on AWS, you might want to look at that topic
first for fundamental information, and then at the following tutorials to see SSO in action:

Single sign-on 90

https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://console.aws.amazon.com/singlesignon

AWS SDK for .NET Developer Guide

• Tutorial: .NET application only

• Tutorial: AWS CLI and .NET application

This topic contains the following sections:

• Prerequisites

• Setting up an SSO profile

• Generating and using SSO tokens

• Additional resources

• Tutorials

Prerequisites

Before using IAM Identity Center, you must perform certain tasks, such as choosing an identity
source and configuring the relevant AWS accounts and applications. For additional information, see
the following:

• For general information about these tasks, see Getting started in the IAM Identity Center User
Guide.

• For specific task examples, see the list of tutorials at the end of this topic. However, be sure to
review the information in this topic before trying out the tutorials.

Setting up an SSO profile

After IAM Identity Center is configured in the relevant AWS account, a named profile for SSO must
be added to the user's shared AWS config file. This profile is used to connect to the AWS access
portal, which returns short-term credentials for the IAM permissions that have been configured for
the user.

The shared config file is typically named %USERPROFILE%\.aws\config in Windows and
~/.aws/config in Linux and macOS. You can use your preferred text editor to add a new profile
for SSO. Alternatively, you can use the aws configure sso command. For more information
about this command, see Configuring the AWS CLI to use IAM Identity Center in the AWS Command
Line Interface User Guide.

The new profile is similar to the following:

Prerequisites 91

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/using-the-portal.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/using-the-portal.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

AWS SDK for .NET Developer Guide

[profile my-sso-profile]
sso_start_url = https://my-sso-portal.awsapps.com/start
sso_region = us-west-2
sso_account_id = 123456789012
sso_role_name = SSOReadOnlyRole

The settings for the new profile are defined below. The first two settings define the AWS access
portal. The other two settings are a pair that, taken together, define the permissions that have
been configured for a user. All four settings are required.

sso_start_url

The URL that points to the organization's AWS access portal. To find this value, open the IAM
Identity Center console, choose Settings, and find portal URL.

sso_region

The AWS Region that contains the access portal host. This is the Region that was selected as
you enabled IAM Identity Center. It can be different from the Regions that you use for other
tasks.

For a complete list of the AWS Regions and their codes, see Regional Endpoints in the Amazon
Web Services General Reference.

sso_account_id

The ID of an AWS account that was added through the AWS Organizations service. To see the
list of available accounts, go to the IAM Identity Center console and open the AWS accounts
page. The account ID that you choose for this setting will correspond to the value that you plan
to give to the sso_role_name setting, which is shown next.

sso_role_name

The name of an IAM Identity Center permission set. This permission set defines the permissions
that a user is given through IAM Identity Center.

The following procedure is one way to find the value for this setting.

1. Go to the IAM Identity Center console and open the AWS accounts page.

2. Choose an account to display its details. The account you choose will be the one that
contains the SSO user or group that you want to give SSO permissions to.

Setting up an SSO profile 92

https://docs.aws.amazon.com/singlesignon/latest/userguide/using-the-portal.html
https://console.aws.amazon.com/singlesignon
https://console.aws.amazon.com/singlesignon
https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://console.aws.amazon.com/singlesignon
https://console.aws.amazon.com/singlesignon

AWS SDK for .NET Developer Guide

3. Look at the list of users and groups that are assigned to the account and find the user or
group of interest. The permission set that you specify in the sso_role_name setting is one
of the sets associated with this user or group.

When giving a value to this setting, use the name of the permission set, not the Amazon
Resource Name (ARN).

Permission sets have IAM policies and custom-permissions policies attached to them. For more
information, see Permission sets in the IAM Identity Center User Guide.

Generating and using SSO tokens

To use SSO, a user must first generate a temporary token and then use that token to access
appropriate AWS applications and resources. For .NET applications, you can use the following
methods to generate and use these temporary tokens:

• Create .NET applications that generate a token first, if necessary, and then use the token.

• Generate a token with the AWS CLI and then use the token in .NET applications.

These methods are described in the following sections and demonstrated in the tutorials.

Important

Your application must reference the following NuGet packages so that SSO resolution can
work:

• AWSSDK.SSO

• AWSSDK.SSOOIDC

Failure to reference these packages will result in a runtime exception.

.NET application only

This section shows you how to create a .NET application that generates a temporary SSO token, if
necessary, and then uses that token. For a full tutorial of this process, see Tutorial for SSO using
only .NET applications.

Generating and using SSO tokens 93

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsets.html

AWS SDK for .NET Developer Guide

Generate and use an SSO token programmatically

In addition to using the AWS CLI, you can also generate an SSO token programmatically.

To do this, your application creates an AWSCredentials object for the SSO profile, which loads
temporary credentials if any are available. Then, your application must cast the AWSCredentials
object to an SSOAWSCredentials object and set some Options properties, including a callback
method that is used to prompt the user for sign-in information, if necessary.

This method is shown in the following code snippet.

Important

Your application must reference the following NuGet packages so that SSO resolution can
work:

• AWSSDK.SSO

• AWSSDK.SSOOIDC

Failure to reference these packages will result in a runtime exception.

static AWSCredentials LoadSsoCredentials()
{
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials("my-sso-profile", out var credentials))
 throw new Exception("Failed to find the my-sso-profile profile");

 var ssoCredentials = credentials as SSOAWSCredentials;

 ssoCredentials.Options.ClientName = "Example-SSO-App";
 ssoCredentials.Options.SsoVerificationCallback = args =>
 {
 // Launch a browser window that prompts the SSO user to complete an SSO sign-
in.
 // This method is only invoked if the session doesn't already have a valid SSO
 token.
 // NOTE: Process.Start might not support launching a browser on macOS or Linux.
 If not,
 // use an appropriate mechanism on those systems instead.

Generating and using SSO tokens 94

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSSOAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSSOAWSCredentialsOptions.html

AWS SDK for .NET Developer Guide

 Process.Start(new ProcessStartInfo
 {
 FileName = args.VerificationUriComplete,
 UseShellExecute = true
 });
 };

 return ssoCredentials;
}

If an appropriate SSO token isn't available, the default browser window is launched and the
appropriate sign-in page is opened. For example, if you’re using IAM Identity Center as the Identity
source, the user sees a sign-in page similar to the following:

Generating and using SSO tokens 95

AWS SDK for .NET Developer Guide

Note

The text string that you provide for SSOAWSCredentials.Options.ClientName can't
have spaces. If the string does have spaces, you'll get a runtime exception.

Tutorial for SSO using only .NET applications

AWS CLI and .NET application

This section shows you how to generate a temporary SSO token by using the AWS CLI, and how to
use that token in an application. For a full tutorial of this process, see Tutorial for SSO using the
AWS CLI and .NET applications.

Generate an SSO token by using the AWS CLI

In addition to generating a temporary SSO token programmatically, you use the AWS CLI to
generate the token. The following information shows you how.

After the user creates an SSO-enabled profile as shown in a previous section, they run the aws sso
login command from the AWS CLI. They must be sure to include the --profile parameter with
the name of the SSO-enabled profile. This is shown in the following example:

aws sso login --profile my-sso-profile

If the user wants to generate a new temporary token after the current one expires, they can run the
same command again.

Use the generated SSO token in a .NET application

The following information shows you how to use a temporary token that has already been
generated.

Important

Your application must reference the following NuGet packages so that SSO resolution can
work:

• AWSSDK.SSO

• AWSSDK.SSOOIDC

Generating and using SSO tokens 96

AWS SDK for .NET Developer Guide

Failure to reference these packages will result in a runtime exception.

Your application creates an AWSCredentials object for the SSO profile, which loads the
temporary credentials generated earlier by the AWS CLI. This is similar to the methods shown in
Accessing credentials and profiles in an application and has the following form:

static AWSCredentials LoadSsoCredentials()
{
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials("my-sso-profile", out var credentials))
 throw new Exception("Failed to find the my-sso-profile profile");

 return credentials;
}

The AWSCredentials object is then passed to the constructor for a service client. For example:

var S3Client_SSO = new AmazonS3Client(LoadSsoCredentials());

Note

Using AWSCredentials to load temporary credentials isn't necessary if your application
has been built to use the [default] profile for SSO. In that case, the application
can create AWS service clients without parameters, similar to "var client = new
AmazonS3Client();".

Tutorial for SSO using the AWS CLI and .NET applications

Additional resources

For additional help, see the following resources.

• What is IAM Identity Center?

• Configuring the AWS CLI to use IAM Identity Center

• Using IAM Identity Center credentials in the AWS Toolkit for Visual Studio

Additional resources 97

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentials.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html#sso-configure-profile
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/sso-credentials.html

AWS SDK for .NET Developer Guide

Tutorials

Topics

• Tutorial for SSO using only .NET applications

• Tutorial for SSO using the AWS CLI and .NET applications

Tutorial for SSO using only .NET applications

This tutorial shows you how to enable SSO for a basic application and a test SSO user. It configures
the application to generate a temporary SSO token programmatically instead of using the AWS CLI.

This tutorial shows you a small portion of SSO functionality in the AWS SDK for .NET. For full
details about using IAM Identity Center with the AWS SDK for .NET, see the topic with background
information. In that topic, see especially the high-level description for this scenario in the
subsection called .NET application only.

Note

Several of the steps in this tutorial help you configure services like AWS Organizations
and IAM Identity Center. If you've already performed that configuration, or if you're only
interested in the code, you can skip to the section with the example code.

Prerequisites

• Configure your development environment if you haven't already done so. This is described in
sections like Install and configure your toolchain and Get started.

• Identify or create at least one AWS account that you can use to test SSO. For the purposes of this
tutorial, this is called the test AWS account or simply test account.

• Identify an SSO user who can test SSO for you. This is a person who will be using SSO and the
basic applications that you create. For this tutorial, that person might be you (the developer), or
someone else. We also recommend a setup in which the SSO user is working on a computer that
is not in your development environment. However, this isn't strictly necessary.

• The SSO user's computer must have a .NET framework installed that's compatible with the one
you used to set up your development environment.

Tutorials 98

AWS SDK for .NET Developer Guide

Set up AWS

This section shows you how to set up various AWS services for this tutorial.

To perform this setup, first sign in to the test AWS account as an administrator. Then, do the
following:

Amazon S3

Go to the Amazon S3 console and add some innocuous buckets. Later in this tutorial, the SSO user
will retrieve a list of these buckets.

AWS IAM

Go to the IAM console and add a few IAM users. If you give the IAM users permissions, limit the
permissions to a few innocuous read-only permissions. Later in this tutorial, the SSO user will
retrieve a list of these IAM users.

AWS Organizations

Go to the AWS Organizations console and enable Organizations. For more information, see
Creating an organization in the AWS Organizations User Guide.

This action adds the test AWS account to the organization as the management account. If you have
additional test accounts, you can invite them to join the organization, but doing so isn't necessary
for this tutorial.

IAM Identity Center

Go to the IAM Identity Center console and enable SSO. Perform email verification if necessary. For
more information, see Enable IAM Identity Center in the IAM Identity Center User Guide.

Then, perform the following configuration.

Configure IAM Identity Center

1. Go to the Settings page. Look for the "access portal URL" and record the value for later use in
the sso_start_url setting.

2. In the banner of the AWS Management Console, look for the AWS Region that was set when
you enabled SSO. This is the dropdown menu to the left of the AWS account ID. Record the
Region code for later use in the sso_region setting. This code will be similar to us-east-1.

3. Create an SSO user as follows:

Tutorial: .NET application only 99

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/iam/home#/users
https://console.aws.amazon.com/organizations/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_create.html
https://docs.aws.amazon.com/organizations/latest/userguide/
https://console.aws.amazon.com/singlesignon/
https://docs.aws.amazon.com/singlesignon/latest/userguide/step1.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/

AWS SDK for .NET Developer Guide

a. Go to the Users page.

b. Choose Add user and enter the user's Username, Email address, First name, and Last
name. Then, choose Next.

c. Choose Next on the page for groups, then review the information and choose Add user.

4. Create a group as follows:

a. Go to the Groups page.

b. Choose Create group and enter the group's Group name and Description.

c. In the Add users to group section, select the test SSO user that you created earlier. Then,
select Create group.

5. Create a permission set as follows:

a. Go to the Permission sets page and choose Create permission set.

b. Under Permission set type, select Custom permission set and choose Next.

c. Open Inline policy and enter the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

d. For this tutorial, enter SSOReadOnlyRole as the Permission set name. Add a Description
if you want and then choose Next.

e. Review the information and then choose Create.

f. Record the name of the permission set for later use in the sso_role_name setting.

6. Go to the AWS accounts page and choose the AWS account that you added to the organization
earlier.

Tutorial: .NET application only 100

AWS SDK for .NET Developer Guide

7. In the Overview section of that page, find the Account ID and record it for later use in the
sso_account_id setting.

8. Choose the Users and groups tab and then choose Assign users or groups.

9. On the Assign users and groups page, choose the Groups tab, select the group that you
created earlier, and choose Next.

10. Select the permission set that you created earlier and choose Next, then choose Submit. The
configuration takes a few moments.

Create example applications

Create the following applications. They will be run on the SSO user's computer.

List Amazon S3 buckets

Include NuGet packages AWSSDK.SSO and AWSSDK.SSOOIDC in addition to AWSSDK.S3 and
AWSSDK.SecurityToken.

using System;
using System.Threading.Tasks;
using System.Diagnostics;

// NuGet packages: AWSSDK.S3, AWSSDK.SecurityToken, AWSSDK.SSO, AWSSDK.SSOOIDC
using Amazon.Runtime;
using Amazon.Runtime.CredentialManagement;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace SSOExample.S3.Programmatic_login
{
 class Program
 {
 // Requirements:
 // - An SSO profile in the SSO user's shared config file.

 // Class members.
 private static string profile = "my-sso-profile";

 static async Task Main(string[] args)

Tutorial: .NET application only 101

AWS SDK for .NET Developer Guide

 {
 // Get SSO credentials from the information in the shared config file.
 var ssoCreds = LoadSsoCredentials(profile);

 // Display the caller's identity.
 var ssoProfileClient = new AmazonSecurityTokenServiceClient(ssoCreds);
 Console.WriteLine($"\nSSO Profile:\n {await
 ssoProfileClient.GetCallerIdentityArn()}");

 // Display a list of the account's S3 buckets.
 // The S3 client is created using the SSO credentials obtained earlier.
 var s3Client = new AmazonS3Client(ssoCreds);
 Console.WriteLine("\nGetting a list of your buckets...");
 var listResponse = await s3Client.ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {listResponse.Buckets.Count}");
 foreach (S3Bucket b in listResponse.Buckets)
 {
 Console.WriteLine(b.BucketName);
 }
 Console.WriteLine();
 }

 // Method to get SSO credentials from the information in the shared config
 file.
 static AWSCredentials LoadSsoCredentials(string profile)
 {
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials(profile, out var credentials))
 throw new Exception($"Failed to find the {profile} profile");

 var ssoCredentials = credentials as SSOAWSCredentials;

 ssoCredentials.Options.ClientName = "Example-SSO-App";
 ssoCredentials.Options.SsoVerificationCallback = args =>
 {
 // Launch a browser window that prompts the SSO user to complete an SSO
 login.
 // This method is only invoked if the session doesn't already have a
 valid SSO token.
 // NOTE: Process.Start might not support launching a browser on macOS
 or Linux. If not,
 // use an appropriate mechanism on those systems instead.
 Process.Start(new ProcessStartInfo
 {

Tutorial: .NET application only 102

AWS SDK for .NET Developer Guide

 FileName = args.VerificationUriComplete,
 UseShellExecute = true
 });
 };

 return ssoCredentials;
 }

 }

 // Class to read the caller's identity.
 public static class Extensions
 {
 public static async Task<string> GetCallerIdentityArn(this
 IAmazonSecurityTokenService stsClient)
 {
 var response = await stsClient.GetCallerIdentityAsync(new
 GetCallerIdentityRequest());
 return response.Arn;
 }
 }
}

List IAM users

Include NuGet packages AWSSDK.SSO and AWSSDK.SSOOIDC in addition to
AWSSDK.IdentityManagement and AWSSDK.SecurityToken.

using System;
using System.Threading.Tasks;
using System.Diagnostics;

// NuGet packages: AWSSDK.IdentityManagement, AWSSDK.SecurityToken, AWSSDK.SSO,
 AWSSDK.SSOOIDC
using Amazon.Runtime;
using Amazon.Runtime.CredentialManagement;
using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace SSOExample.IAM.Programmatic_login

Tutorial: .NET application only 103

AWS SDK for .NET Developer Guide

{
 class Program
 {
 // Requirements:
 // - An SSO profile in the SSO user's shared config file.

 // Class members.
 private static string profile = "my-sso-profile";

 static async Task Main(string[] args)
 {
 // Get SSO credentials from the information in the shared config file.
 var ssoCreds = LoadSsoCredentials(profile);

 // Display the caller's identity.
 var ssoProfileClient = new AmazonSecurityTokenServiceClient(ssoCreds);
 Console.WriteLine($"\nSSO Profile:\n {await
 ssoProfileClient.GetCallerIdentityArn()}");

 // Display a list of the account's IAM users.
 // The IAM client is created using the SSO credentials obtained earlier.
 var iamClient = new AmazonIdentityManagementServiceClient(ssoCreds);
 Console.WriteLine("\nGetting a list of IAM users...");
 var listResponse = await iamClient.ListUsersAsync();
 Console.WriteLine($"Number of IAM users: {listResponse.Users.Count}");
 foreach (User u in listResponse.Users)
 {
 Console.WriteLine(u.UserName);
 }
 Console.WriteLine();
 }

 // Method to get SSO credentials from the information in the shared config
 file.
 static AWSCredentials LoadSsoCredentials(string profile)
 {
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials(profile, out var credentials))
 throw new Exception($"Failed to find the {profile} profile");

 var ssoCredentials = credentials as SSOAWSCredentials;

 ssoCredentials.Options.ClientName = "Example-SSO-App";
 ssoCredentials.Options.SsoVerificationCallback = args =>

Tutorial: .NET application only 104

AWS SDK for .NET Developer Guide

 {
 // Launch a browser window that prompts the SSO user to complete an SSO
 login.
 // This method is only invoked if the session doesn't already have a
 valid SSO token.
 // NOTE: Process.Start might not support launching a browser on macOS
 or Linux. If not,
 // use an appropriate mechanism on those systems instead.
 Process.Start(new ProcessStartInfo
 {
 FileName = args.VerificationUriComplete,
 UseShellExecute = true
 });
 };

 return ssoCredentials;
 }

 }

 // Class to read the caller's identity.
 public static class Extensions
 {
 public static async Task<string> GetCallerIdentityArn(this
 IAmazonSecurityTokenService stsClient)
 {
 var response = await stsClient.GetCallerIdentityAsync(new
 GetCallerIdentityRequest());
 return response.Arn;
 }
 }
}

In addition to displaying lists of Amazon S3 buckets and IAM users, these applications display the
user identity ARN for the SSO-enabled profile, which is my-sso-profile in this tutorial.

These applications perform SSO sign-in tasks by providing a callback method in the Options
property of an SSOAWSCredentials object.

Instruct SSO user

Ask the SSO user to check their email and accept the SSO invitation. They are prompted to set a
password. The message might take a few minutes to arrive in the SSO user's inbox.

Tutorial: .NET application only 105

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSSOAWSCredentialsOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSSOAWSCredentials.html

AWS SDK for .NET Developer Guide

Give the SSO user the applications that you created earlier.

Then, have the SSO user do the following:

1. If the folder that contains the shared AWS config file doesn't exist, create it. If the folder
does exist and has a subfolder called .sso, delete that subfolder.

The location of this folder is typically %USERPROFILE%\.aws in Windows and ~/.aws in Linux
and macOS.

2. Create a shared AWS config file in that folder, if necessary, and add a profile to it as follows:

[default]
region = <default Region>

[profile my-sso-profile]
sso_start_url = <user portal URL recorded earlier>
sso_region = <Region code recorded earlier>
sso_account_id = <account ID recorded earlier>
sso_role_name = SSOReadOnlyRole

3. Run the Amazon S3 application.

4. In the resulting web sign-in page, sign in. Use the user name from the invitation message and
the password that was created in response to the message.

5. When sign-in is complete, the application displays the list of S3 buckets.

6. Run the IAM application. The application displays the list of IAM users. This is true even though
a second sign-in wasn't performed. The IAM application uses the temporary token that was
created earlier.

Cleanup

If you don't want to keep the resources that you created during this tutorial, clean them up. These
might be AWS resources or resources in your development environment such as files and folders.

Tutorial for SSO using the AWS CLI and .NET applications

This tutorial shows you how to enable SSO for a basic .NET application and a test SSO user. It uses
the AWS CLI to generate a temporary SSO token instead of generating it programmatically.

Tutorial: AWS CLI and .NET application 106

AWS SDK for .NET Developer Guide

This tutorial shows you a small portion of SSO functionality in the AWS SDK for .NET. For full
details about using IAM Identity Center with the AWS SDK for .NET, see the topic with background
information. In that topic, see especially the high-level description for this scenario in the
subsection called AWS CLI and .NET application.

Note

Several of the steps in this tutorial help you configure services like AWS Organizations and
IAM Identity Center. If you've already performed those configurations, or if you're only
interested in the code, you can skip to the section with the example code.

Prerequisites

• Configure your development environment if you haven't already done so. This is described in
sections like Install and configure your toolchain and Get started.

• Identify or create at least one AWS account that you can use to test SSO. For the purposes of this
tutorial, this is called the test AWS account or simply test account.

• Identify an SSO user who can test SSO for you. This is a person who will be using SSO and the
basic applications that you create. For this tutorial, that person might be you (the developer), or
someone else. We also recommend a setup in which the SSO user is working on a computer that
is not in your development environment. However, this isn't strictly necessary.

• The SSO user's computer must have a .NET framework installed that's compatible with the one
you used to set up your development environment.

• Be sure that the AWS CLI version 2 is installed on the SSO user's computer. You can check this by
running aws --version in a command prompt or terminal.

Set up AWS

This section shows you how to set up various AWS services for this tutorial.

To perform this setup, first sign in to the test AWS account as an administrator. Then, do the
following:

Tutorial: AWS CLI and .NET application 107

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS SDK for .NET Developer Guide

Amazon S3

Go to the Amazon S3 console and add some innocuous buckets. Later in this tutorial, the SSO user
will retrieve a list of these buckets.

AWS IAM

Go to the IAM console and add a few IAM users. If you give the IAM users permissions, limit the
permissions to a few innocuous read-only permissions. Later in this tutorial, the SSO user will
retrieve a list of these IAM users.

AWS Organizations

Go to the AWS Organizations console and enable Organizations. For more information, see
Creating an organization in the AWS Organizations User Guide.

This action adds the test AWS account to the organization as the management account. If you have
additional test accounts, you can invite them to join the organization, but doing so isn't necessary
for this tutorial.

IAM Identity Center

Go to the IAM Identity Center console and enable SSO. Perform email verification if necessary. For
more information, see Enable IAM Identity Center in the IAM Identity Center User Guide.

Then, perform the following configuration.

Configure IAM Identity Center

1. Go to the Settings page. Look for the "access portal URL" and record the value for later use in
the sso_start_url setting.

2. In the banner of the AWS Management Console, look for the AWS Region that was set when
you enabled SSO. This is the dropdown menu to the left of the AWS account ID. Record the
Region code for later use in the sso_region setting. This code will be similar to us-east-1.

3. Create an SSO user as follows:

a. Go to the Users page.

b. Choose Add user and enter the user's Username, Email address, First name, and Last
name. Then, choose Next.

c. Choose Next on the page for groups, then review the information and choose Add user.

Tutorial: AWS CLI and .NET application 108

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/iam/home#/users
https://console.aws.amazon.com/organizations/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_create.html
https://docs.aws.amazon.com/organizations/latest/userguide/
https://console.aws.amazon.com/singlesignon/
https://docs.aws.amazon.com/singlesignon/latest/userguide/step1.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/

AWS SDK for .NET Developer Guide

4. Create a group as follows:

a. Go to the Groups page.

b. Choose Create group and enter the group's Group name and Description.

c. In the Add users to group section, select the test SSO user that you created earlier. Then,
select Create group.

5. Create a permission set as follows:

a. Go to the Permission sets page and choose Create permission set.

b. Under Permission set type, select Custom permission set and choose Next.

c. Open Inline policy and enter the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

d. For this tutorial, enter SSOReadOnlyRole as the Permission set name. Add a Description
if you want and then choose Next.

e. Review the information and then choose Create.

f. Record the name of the permission set for later use in the sso_role_name setting.

6. Go to the AWS accounts page and choose the AWS account that you added to the organization
earlier.

7. In the Overview section of that page, find the Account ID and record it for later use in the
sso_account_id setting.

8. Choose the Users and groups tab and then choose Assign users or groups.

9. On the Assign users and groups page, choose the Groups tab, select the group that you
created earlier, and choose Next.

Tutorial: AWS CLI and .NET application 109

AWS SDK for .NET Developer Guide

10. Select the permission set that you created earlier and choose Next, then choose Submit. The
configuration takes a few moments.

Create example applications

Create the following applications. They will be run on the SSO user's computer.

List Amazon S3 buckets

Include NuGet packages AWSSDK.SSO and AWSSDK.SSOOIDC in addition to AWSSDK.S3 and
AWSSDK.SecurityToken.

using System;
using System.Threading.Tasks;

// NuGet packages: AWSSDK.S3, AWSSDK.SecurityToken, AWSSDK.SSO, AWSSDK.SSOOIDC
using Amazon.Runtime;
using Amazon.Runtime.CredentialManagement;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace SSOExample.S3.CLI_login
{
 class Program
 {
 // Requirements:
 // - An SSO profile in the SSO user's shared config file.
 // - An active SSO Token.
 // If an active SSO token isn't available, the SSO user should do the
 following:
 // In a terminal, the SSO user must call "aws sso login --profile my-sso-
profile".

 // Class members.
 private static string profile = "my-sso-profile";
 static async Task Main(string[] args)
 {
 // Get SSO credentials from the information in the shared config file.
 var ssoCreds = LoadSsoCredentials(profile);

 // Display the caller's identity.

Tutorial: AWS CLI and .NET application 110

AWS SDK for .NET Developer Guide

 var ssoProfileClient = new AmazonSecurityTokenServiceClient(ssoCreds);
 Console.WriteLine($"\nSSO Profile:\n {await
 ssoProfileClient.GetCallerIdentityArn()}");

 // Display a list of the account's S3 buckets.
 // The S3 client is created using the SSO credentials obtained earlier.
 var s3Client = new AmazonS3Client(ssoCreds);
 Console.WriteLine("\nGetting a list of your buckets...");
 var listResponse = await s3Client.ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {listResponse.Buckets.Count}");
 foreach (S3Bucket b in listResponse.Buckets)
 {
 Console.WriteLine(b.BucketName);
 }
 Console.WriteLine();
 }

 // Method to get SSO credentials from the information in the shared config
 file.
 static AWSCredentials LoadSsoCredentials(string profile)
 {
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials(profile, out var credentials))
 throw new Exception($"Failed to find the {profile} profile");
 return credentials;
 }
 }

 // Class to read the caller's identity.
 public static class Extensions
 {
 public static async Task<string> GetCallerIdentityArn(this
 IAmazonSecurityTokenService stsClient)
 {
 var response = await stsClient.GetCallerIdentityAsync(new
 GetCallerIdentityRequest());
 return response.Arn;
 }
 }
}

Tutorial: AWS CLI and .NET application 111

AWS SDK for .NET Developer Guide

List IAM users

Include NuGet packages AWSSDK.SSO and AWSSDK.SSOOIDC in addition to
AWSSDK.IdentityManagement and AWSSDK.SecurityToken.

using System;
using System.Threading.Tasks;

// NuGet packages: AWSSDK.IdentityManagement, AWSSDK.SecurityToken, AWSSDK.SSO,
 AWSSDK.SSOOIDC
using Amazon.Runtime;
using Amazon.Runtime.CredentialManagement;
using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace SSOExample.IAM.CLI_login
{
 class Program
 {
 // Requirements:
 // - An SSO profile in the SSO user's shared config file.
 // - An active SSO Token.
 // If an active SSO token isn't available, the SSO user should do the
 following:
 // In a terminal, the SSO user must call "aws sso login --profile my-sso-
profile".

 // Class members.
 private static string profile = "my-sso-profile";
 static async Task Main(string[] args)
 {
 // Get SSO credentials from the information in the shared config file.
 var ssoCreds = LoadSsoCredentials(profile);

 // Display the caller's identity.
 var ssoProfileClient = new AmazonSecurityTokenServiceClient(ssoCreds);
 Console.WriteLine($"\nSSO Profile:\n {await
 ssoProfileClient.GetCallerIdentityArn()}");

 // Display a list of the account's IAM users.
 // The IAM client is created using the SSO credentials obtained earlier.
 var iamClient = new AmazonIdentityManagementServiceClient(ssoCreds);

Tutorial: AWS CLI and .NET application 112

AWS SDK for .NET Developer Guide

 Console.WriteLine("\nGetting a list of IAM users...");
 var listResponse = await iamClient.ListUsersAsync();
 Console.WriteLine($"Number of IAM users: {listResponse.Users.Count}");
 foreach (User u in listResponse.Users)
 {
 Console.WriteLine(u.UserName);
 }
 Console.WriteLine();
 }

 // Method to get SSO credentials from the information in the shared config
 file.
 static AWSCredentials LoadSsoCredentials(string profile)
 {
 var chain = new CredentialProfileStoreChain();
 if (!chain.TryGetAWSCredentials(profile, out var credentials))
 throw new Exception($"Failed to find the {profile} profile");
 return credentials;
 }
 }

 // Class to read the caller's identity.
 public static class Extensions
 {
 public static async Task<string> GetCallerIdentityArn(this
 IAmazonSecurityTokenService stsClient)
 {
 var response = await stsClient.GetCallerIdentityAsync(new
 GetCallerIdentityRequest());
 return response.Arn;
 }
 }
}

In addition to displaying lists of Amazon S3 buckets and IAM users, these applications display the
user identity ARN for the SSO-enabled profile, which is my-sso-profile in this tutorial.

Instruct SSO user

Ask the SSO user to check their email and accept the SSO invitation. They are prompted to set a
password. The message might take a few minutes to arrive in the SSO user's inbox.

Give the SSO user the applications that you created earlier.

Tutorial: AWS CLI and .NET application 113

AWS SDK for .NET Developer Guide

Then, have the SSO user do the following:

1. If the folder that contains the shared AWS config file doesn't exist, create it. If the folder
does exist and has a subfolder called .sso, delete that subfolder.

The location of this folder is typically %USERPROFILE%\.aws in Windows and ~/.aws in Linux
and macOS.

2. Create a shared AWS config file in that folder, if necessary, and add a profile to it as follows:

[default]
region = <default Region>

[profile my-sso-profile]
sso_start_url = <user portal URL recorded earlier>
sso_region = <Region code recorded earlier>
sso_account_id = <account ID recorded earlier>
sso_role_name = SSOReadOnlyRole

3. Run the Amazon S3 application. A runtime exception appears.

4. Run the following AWS CLI command:

aws sso login --profile my-sso-profile

5. In the resulting web sign-in page, sign in. Use the user name from the invitation message and
the password that was created in response to the message.

6. Run the Amazon S3 application again. The application now displays the list of S3 buckets.

7. Run the IAM application. The application displays the list of IAM users. This is true even though
a second sign-in wasn't performed. The IAM application uses the temporary token that was
created earlier.

Cleanup

If you don't want to keep the resources that you created during this tutorial, clean them up. These
might be AWS resources or resources in your development environment such as files and folders.

Tutorial: AWS CLI and .NET application 114

AWS SDK for .NET Developer Guide

Deploy applications to AWS

After you've developed your cloud-native .NET Core application or service on a development
machine, you'll want to deploy it to AWS. You can do this by using the AWS Management Console
or certain services like AWS CloudFormation or AWS Cloud Development Kit (AWS CDK). You can
also use AWS tools that have been created for the purpose of deployment. By using these tools,
you can do the following.

Deploy from the .NET CLI

You can use the following AWS tools for .NET CLI to deploy your applications to AWS:

• AWS Deploy Tool for .NET CLI - Supports deployments to AWS App Runner, Amazon Elastic
Container Service (Amazon ECS) , and AWS Elastic Beanstalk.

• AWS Lambda Tools for .NET CLI - Supports deployments of AWS Lambda projects.

Deploy from the IDE toolkits

You can use AWS toolkits to deploy your applications directly from the IDE of your choice:

• AWS Toolkit for Visual Studio

Note

The "Publish to AWS" feature in the toolkit exposes the same functionality as the AWS
Deploy Tool for .NET CLI. To learn more, go to Publish to AWS in the AWS Toolkit for
Visual Studio User Guide.

• AWS Toolkit for JetBrains

See Work with AWS Serverless Applications and Work with AWS App Runner.

• AWS Toolkit for VS Code

See Working with serverless applications and Using AWS App Runner.

• AWS Toolkit for Azure DevOps

Deploy from the .NET CLI 115

https://aws.github.io/aws-dotnet-deploy/
https://aws.amazon.com/apprunner/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/elasticbeanstalk/
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/deployment-chapt.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/publish-experience.html
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/key-tasks.html#key-tasks-sam
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/key-tasks.html#key-tasks-app-runner
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/serverless-apps.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/using-apprunner.html
https://docs.aws.amazon.com/vsts/latest/userguide/tutorial-eb.html

AWS SDK for .NET Developer Guide

Use cases

The following sections contain use case scenarios for certain types of applications, including
information about how you would use the .NET CLI to deploy those applications.

• ASP.NET Core apps

• .NET Console apps

• Blazor WebAssembly apps

• AWS Lambda projects

ASP.NET Core apps

The AWS Deploy Tool for the .NET CLI helps you deploy your ASP.NET applications and guides you
through a deployment process. It's an interactive tooling for the .NET CLI that helps deploy .NET
applications with minimum AWS knowledge.

The Deploy Tool has the following capabilities:

• Compute recommendations for your application - Get the compute recommendations and
learn which AWS compute is best suited for your application.

• Dockerfile generation - The tool generates a Dockerfile if needed, or uses an existing Dockerfile.

• Auto packaging and deployment – The tool builds the deployment artifacts, provisions the
infrastructure by using a generated AWS CDK deployment project, and deploys your application
to the chosen AWS compute.

• Repeatable and shareable deployments – You can generate and modify AWS CDK deployment
projects to fit your specific use case. You can also version control your projects and share them
with your team for repeatable deployments.

• Help with learning AWS CDK for .NET - The tool helps you gradually learn the underlying AWS
tools that it is built on, such as the AWS CDK.

The AWS Deploy Tool supports deploying ASP.NET Core applications to the following AWS services:

• Amazon ECS Service using AWS Fargate - Supports deployments of web applications to
Amazon Elastic Container Service (Amazon ECS) with compute power managed by an AWS
Fargate serverless compute engine.

Use cases 116

https://aws.github.io/aws-dotnet-deploy/
https://aws.github.io/aws-dotnet-deploy/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

AWS SDK for .NET Developer Guide

• AWS App Runner - Supports deployments to a fully managed service that makes it easy for
developers to deploy containerized web applications and APIs at scale. No prior infrastructure
experience is required.

• AWS Elastic Beanstalk - Supports deployments to a service that makes it easy for developers
to deploy web applications and APIs to a fully managed environment at scale. No prior
infrastructure experience is required.

To learn more, see the tool overview. To get started from there, navigate to Documentation,
Getting started, and choose How to install for installation instructions.

.NET Console apps

The AWS Deploy Tool for the .NET CLI helps you deploy your .NET Console applications as a service
or a scheduled task as a container image on Linux and guides you through a deployment process.
If your application doesn't have a Dockerfile, the tool automatically generates it. Otherwise, an
existing Dockerfile is used.

The Deploy Tool has the following capabilities:

• Compute recommendations for your application - Get the compute recommendations and
learn which AWS compute is best suited for your application.

• Dockerfile generation - The tool generates a Dockerfile if needed, or uses an existing Dockerfile.

• Auto packaging and deployment – The tool builds the deployment artifacts, provisions the
infrastructure by using a generated AWS CDK deployment project, and deploys your application
to the chosen AWS compute.

• Repeatable and shareable deployments – You can generate and modify AWS CDK deployment
projects to fit your specific use case. You can also version control your projects and share them
with your team for repeatable deployments.

• Help with learning AWS CDK for .NET - The tool helps you gradually learn the underlying AWS
tools that it is built on, such as the AWS CDK.

The AWS Deploy Tool supports deploying .NET Console applications to the following AWS services:

• Amazon ECS Service using AWS Fargate - Supports deployments of .NET applications as a
service (for example, a background processor) to Amazon Elastic Container Service (Amazon ECS)
with compute power managed by AWS Fargate serverless compute engine.

.NET Console apps 117

https://aws.amazon.com/apprunner/
https://aws.amazon.com/elasticbeanstalk/
https://aws.github.io/aws-dotnet-deploy/
https://aws.github.io/aws-dotnet-deploy/docs/getting-started/installation/
https://aws.github.io/aws-dotnet-deploy/
https://aws.github.io/aws-dotnet-deploy/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

AWS SDK for .NET Developer Guide

• Amazon ECS Scheduled Task using AWS Fargate - Supports deployments of .NET applications
as a scheduled task (for example, end-of-day process) to Amazon ECS with compute power
managed by AWS Fargate serverless compute engine.

To learn more, see the tool overview. To get started from there, navigate to Documentation,
Getting started, and choose How to install for installation instructions.

Blazor WebAssembly apps

The AWS Deploy Tool for the .NET CLI helps you host your Blazor WebAssembly application in
Amazon S3, using Amazon CloudFront for content network delivery. Your app is deployed to an
S3 bucket for web hosting. The tool creates and configures an S3 bucket, and then uploads your
Blazor application to the bucket.

The Deploy Tool has the following capabilities:

• Auto packaging and deployment – The tool builds the deployment artifacts, provisions the
infrastructure by using a generated AWS CDK deployment project, and deploys your application
to the chosen AWS compute.

• Repeatable and shareable deployments – You can generate and modify AWS CDK deployment
projects to fit your specific use case. You can also version control your projects and share them
with your team for repeatable deployments.

• Help with learning AWS CDK for .NET - The tool helps you gradually learn the underlying AWS
tools that it is built on, such as the AWS CDK.

To learn more, see the tool overview. To get started from there, navigate to Documentation,
Getting started, and choose How to install for installation instructions.

AWS Lambda projects

AWS Lambda is a compute service that lets you run code without provisioning or managing
servers. It runs your code on a high availability compute infrastructure and performs all of the
administration of the compute resources. For more information about Lambda, see What is AWS
Lambda? in the AWS Lambda Developer Guide.

You can deploy Lambda functions by using the .NET command line interface (CLI).

Blazor WebAssembly apps 118

https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://aws.github.io/aws-dotnet-deploy/
https://aws.github.io/aws-dotnet-deploy/docs/getting-started/installation/
https://aws.github.io/aws-dotnet-deploy/
https://aws.github.io/aws-dotnet-deploy/
https://aws.github.io/aws-dotnet-deploy/docs/getting-started/installation/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

AWS SDK for .NET Developer Guide

Topics

• Prerequisites

• Available Lambda commands

• Steps to deploy

Prerequisites

Before you start using the .NET CLI to deploy Lambda functions, you must meet the following
prerequisites:

• Confirm that you have the .NET CLI installed. For example: dotnet --version. If needed, go to
https://dotnet.microsoft.com/download to install it.

• Set up the .NET CLI to work with Lambda. For a description of how to do so, see .NET Core CLI in
the AWS Lambda Developer Guide. In that procedure, the following is the deployment command:

dotnet lambda deploy-function MyFunction --function-role role

If you're not sure how to create an IAM role for this exercise, don't include the --function-
role role part. The tool will help you create a new role.

Available Lambda commands

To list the Lambda commands that are available through the .NET CLI, open a command prompt
or terminal and enter dotnet lambda --help. The command output will be similar to the
following:

Amazon Lambda Tools for .NET applications
Project Home: https://github.com/aws/aws-extensions-for-dotnet-cli, https://github.com/
aws/aws-lambda-dotnet

Commands to deploy and manage AWS Lambda functions:

 deploy-function Command to deploy the project to AWS Lambda
 ...
 (etc.)

To get help on individual commands execute:

Prerequisites 119

https://dotnet.microsoft.com/download
https://docs.aws.amazon.com/lambda/latest/dg/csharp-package-cli.html

AWS SDK for .NET Developer Guide

 dotnet lambda help <command>

The output lists all the commands that are currently available.

Steps to deploy

The following instructions assume that you've created an AWS Lambda .NET project. For the
purposes of this procedure, the project is named DotNetCoreLambdaTest.

1. Open a command prompt or terminal, and navigate to the folder containing your .NET Lambda
project file.

2. Enter dotnet lambda deploy-function.

3. If prompted, enter the AWS Region (the Region to which your Lambda function will be
deployed).

4. When prompted, enter the name of the function to deploy, for example,
DotNetCoreLambdaTest. It can be the name of a function that already exists in your AWS
account or one that hasn't been deployed there yet.

5. When prompted, select or create the IAM role that Lambda will assume when executing the
function.

After successful completion, the message New Lambda function created is displayed.

Executing publish command
...
(etc.)
New Lambda function created

If you deploy a function that already exists in your account, the deploy function asks only for the
AWS Region (if necessary). In this case, the command output ends with Updating code for
existing function.

After your Lambda function is deployed, it's ready to use. For more information, see Examples of
How to Use AWS Lambda.

Lambda automatically monitors Lambda functions for you and reports metrics through
Amazon CloudWatch. To monitor and troubleshoot your Lambda function, see Monitoring and
troubleshooting Lambda applications.

Steps to deploy 120

https://docs.aws.amazon.com/lambda/latest/dg/use-cases.html
https://docs.aws.amazon.com/lambda/latest/dg/use-cases.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html

AWS SDK for .NET Developer Guide

Migrate your project for the AWS SDK for .NET

This section provides information about migration tasks that might apply to you, and instructions
about how to perform those tasks.

Topics

• What's new in the AWS SDK for .NET

• Platforms supported by the AWS SDK for .NET

• Migrating to Version 3 of the AWS SDK for .NET

• Migrating to version 3.5 of the AWS SDK for .NET

• Migrating to version 3.7 of the AWS SDK for .NET

• Migrating from .NET Standard 1.3

What's new in the AWS SDK for .NET

See the product page at https://aws.amazon.com/sdk-for-net/ for high-level information about
new developments related to the AWS SDK for .NET.

The following is what's new in the AWS SDK for .NET.

January 15, 2025: New default behavior for integrity protection

Beginning with version 3.7.412.0 of the AWS SDK for .NET, the SDK provides default integrity
protections by automatically calculating a CRC32 checksum for uploads. For more information, see
the announcement on GitHub at https://github.com/aws/aws-sdk-net/issues/3610. The SDK also
provides global settings for data integrity protections that you can set externally, which you can
read about in Data Integrity Protections in the AWS SDKs and Tools Reference Guide.

November 15, 2024: Preview 4 release for version 4

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

Version 4 of the AWS SDK for .NET is an evolutionary change that will modernize the SDK as well as
resolve technical debt and address customer feedback that requires breaking changes. Preview 4 of

What's new 121

https://aws.amazon.com/sdk-for-net/
https://github.com/aws/aws-sdk-net/issues/3610
https://docs.aws.amazon.com/sdkref/latest/guide/feature-dataintegrity.html
https://docs.aws.amazon.com/sdkref/latest/guide/

AWS SDK for .NET Developer Guide

version 4 has been released. For more information about this preview and to try it out, see the blog
post Preview 4 of AWS SDK for .NET V4 and the V4 Development Tracker issue in GitHub.

September 13, 2024: Preview release for observability

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

Observability is the extent to which a system's current state can be inferred from the data it
emits. Observability has been added to the AWS SDK for .NET, including an implementation of a
telemetry provider.

August 16, 2024: Preview 1 release for version 4

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS SDK for .NET Version 4 is an evolutionary change that will modernize the SDK as well as
resolve technical debt and address customer feedback that requires breaking changes. Version 4
have been released as a first preview. For more information about this preview and to try it out, see
the blog post Preview 1 of AWS SDK for .NET V4 and the V4 Development Tracker issue in GitHub.

March 28, 2024: Prerelease of the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET is an AWS-native framework that simplifies the
development of .NET message-processing applications that use AWS services such as Amazon
Simple Queue Service (SQS), Amazon Simple Notification Service (SNS), and Amazon EventBridge.

February 23, 2024: Added support for .NET 8

What's new 122

https://aws.amazon.com/blogs/developer/preview-4-of-aws-sdk-for-net-v4/
https://github.com/aws/aws-sdk-net/issues/3362
https://aws.amazon.com/blogs/developer/preview-1-of-aws-sdk-for-net-v4/
https://github.com/aws/aws-sdk-net/issues/3362

AWS SDK for .NET Developer Guide

Support for .NET 8 was added to the AWS SDK for .NET. Use the latest NuGet packages or the
assemblies that support .NET 8 and later. You can find additional information about this support,
including support for Lambda in the blog post .NET 8 Support on AWS.

February 18, 2024: Upcoming changes to .NET Framework support

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET Framework 3.5 and
will change the minimum .NET Framework version to 4.7.2. For more information, see the blog
post Important changes coming for .NET Framework 3.5 and 4.5 targets of the AWS SDK for .NET.

2023-07-17: The AWS Lambda Annotations framework has been released for general
availability

The AWS Lambda Annotations framework makes the experience of writing Lambda functions in C#
feel more natural for .NET developers by using C# source generator technology. It is now generally
available.

2023-07-15: The Distributed Cache Provider for DynamoDB has been released in preview

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The Distributed Cache Provider library enables Amazon DynamoDB to be used as the storage for
ASP.NET Core's distributed cache framework. For more information, see the blog post Introducing
the AWS .NET Distributed Cache Provider for DynamoDB (Preview) and the GitHub repository.

2022-07-13: The AWS Deploy Tool has been released

The AWS Deploy Tool has been released. This tool is an interactive tooling for the .NET CLI and the
AWS Toolkit for Visual Studio that helps deploy .NET applications with minimum AWS knowledge,
and with the fewest clicks or commands. For more information, see Deploy applications to AWS.

2020-08-24: Version 3.5 of the SDK has been released

• Standardized the .NET experience by transitioning support for all non-Framework variations of
the SDK to .NET Standard 2.0. See Migrating to version 3.5 for more information.

• Added paginators to many service clients, which make pagination of API results more convenient.
For more information, see Paginators.

What's new 123

https://www.nuget.org/packages?q=awssdk
https://aws.amazon.com/blogs/compute/introducing-the-net-8-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/dotnet/net-8-support-on-aws/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/introducing-the-aws-net-distributed-cache-provider-for-dynamodb-preview/
https://aws.amazon.com/blogs/developer/introducing-the-aws-net-distributed-cache-provider-for-dynamodb-preview/
https://github.com/awslabs/aws-dotnet-distributed-cache-provider

AWS SDK for .NET Developer Guide

Platforms supported by the AWS SDK for .NET

The AWS SDK for .NET provides distinct groups of assemblies for developers to target different
platforms. However, not all SDK functionality is the same on each of these platforms. This topic
describes the differences in support for each platform.

.NET Core

The AWS SDK for .NET supports applications written for .NET Core (.NET Core 3.1, .NET 5, .NET
6, and so on). AWS service clients only support asynchronous calling patterns in .NET core. This
also affects many of the high level abstractions built on top of service clients, like the Amazon S3
TransferUtility, which will only support asynchronous calls in the .NET Core environment.

.NET Standard 2.0

Non-Framework variations of the AWS SDK for .NET comply with .NET Standard 2.0. The AWS SDK
for .NET provides only asynchronous methods for applications written against .NET Standard.

.NET Framework 4.5

Warning

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET Framework
3.5 and will change the minimum .NET Framework version to 4.7.2. For more information,
see the blog post Important changes coming for .NET Framework 3.5 and 4.5 targets of the
AWS SDK for .NET.

This version of the AWS SDK for .NET is compiled against .NET Framework 4.5 and runs in the .NET
4.0 runtime. AWS service clients support synchronous and asynchronous calling patterns and use
the async and await keywords introduced in C# 5.0.

.NET Framework 3.5

Warning

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET Framework
3.5 and will change the minimum .NET Framework version to 4.7.2. For more information,

Supported platforms 124

https://learn.microsoft.com/en-us/dotnet/standard/net-standard
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://learn.microsoft.com/en-us/previous-versions/hh191443(v=vs.140)
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29#Versions

AWS SDK for .NET Developer Guide

see the blog post Important changes coming for .NET Framework 3.5 and 4.5 targets of the
AWS SDK for .NET.

This version of the AWS SDK for .NET is compiled against .NET Framework 3.5, and runs in either
the .NET 2.0 or .NET 4.0 runtime. AWS service clients support synchronous and asynchronous
calling patterns and use the older Begin and End pattern.

Note

The AWS SDK for .NET is not Federal Information Processing Standard (FIPS) compliant
when used by applications built against version 2.0 of the CLR. For details on how you can
substitute a FIPS compliant implementation in that environment, refer to CryptoConfig on
the Microsoft blog and the CLR Security team's HMACSHA256 class (HMACSHA256Cng) in
Security.Cryptography.dll.

Portable Class Library and Xamarin

The AWS SDK for .NET also contains a Portable Class Library implementation. The Portable Class
Library implementation can target multiple platforms, including Universal Windows Platform
(UWP) and Xamarin on iOS and Android. See the Mobile SDK for .NET and Xamarin for more
details. AWS service clients only support asynchronous calling patterns.

Unity support

For information about Unity support, see Special considerations for Unity support.

More information

Migrating to version 3.5 of the AWS SDK for .NET

Migrating to Version 3 of the AWS SDK for .NET

This topic describes changes in version 3 of the AWS SDK for .NET and how to migrate your code to
this version of the SDK.

Portable Class Library and Xamarin 125

https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://learn.microsoft.com/en-us/archive/blogs/shawnfa/cryptoconfig
https://github.com/MicrosoftArchive/clrsecurity/
https://docs.aws.amazon.com/mobile/sdkforxamarin/developerguide/Welcome.html

AWS SDK for .NET Developer Guide

About the AWS SDK for .NET Versions

The AWS SDK for .NET, originally released in November 2009, was designed for .NET Framework
2.0. Since that release, .NET has improved with .NET Framework 4.0 and .NET Framework 4.5, and
added new target platforms: WinRT and Windows Phone.

AWS SDK for .NET version 2 was updated to take advantage of the new features of the .NET
platform and to target WinRT and Windows Phone.

AWS SDK for .NET version 3 has been updated to make the assemblies modular.

Architecture Redesign for the SDK

The entire version 3 of the AWS SDK for .NET is redesigned to be modular. Each service is now
implemented in its own assembly, instead of in one global assembly. You no longer have to add
the entire AWS SDK for .NET to your application. You can now add assemblies only for the AWS
services your application uses.

Breaking Changes

The following sections describe changes to version 3 of the AWS SDK for .NET.

AWSClientFactory Removed

The Amazon.AWSClientFactory class was removed. Now, to create a service client, use the
constructor of the service client. For example, to create an AmazonEC2Client:

var ec2Client = new Amazon.EC2.AmazonEC2Client();

Amazon.Runtime.AssumeRoleAWSCredentials Removed

The Amazon.Runtime.AssumeRoleAWSCredentials class was removed
because it was in a core namespace but had a dependency on the AWS Security
Token Service, and because it has been obsolete in the SDK for some time. Use the
Amazon.SecurityToken.AssumeRoleAWSCredentials class instead.

SetACL Method Removed from S3Link

The S3Link class is part of the Amazon.DynamoDBv2 package and is used for storing objects in
Amazon S3 that are references in a DynamoDB item. This is a useful feature, but we didn’t want

About the AWS SDK for .NET Versions 126

AWS SDK for .NET Developer Guide

to create a compile dependency on the Amazon.S3 package for DynamoDB. Consequently, we
simplified the exposed Amazon.S3 methods from the S3Link class, replacing the SetACL method
with the MakeS3ObjectPublic method. For more control over the access control list (ACL) on the
object, use the Amazon.S3 package directly.

Removal of Obsolete Result Classes

For most services in the AWS SDK for .NET, operations return a response object that contains
metadata for the operation, such as the request ID and a result object. Having a separate response
and result class was redundant and created extra typing for developers. In version 2 of the AWS
SDK for .NET, we put all the information in the result class into the response class. We also marked
the result classes obsolete to discourage their use. In version 3 of the AWS SDK for .NET, we
removed these obsolete result classes to help reduce the SDK’s size.

AWS Config Section Changes

It is possible to do advanced configuration of the AWS SDK for .NET through the App.config or
Web.config file. You do this through an <aws> config section like the following, which references
the SDK assembly name.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK"/>
 </configSections>
 <aws region="us-west-2">
 <logging logTo="Log4Net"/>
 </aws>
</configuration>

In version 3 of the AWS SDK for .NET, the AWSSDK assembly no longer exists. We put the common
code into the AWSSDK.Core assembly. As a result, you will need to change the references to the
AWSSDK assembly in your App.config or Web.config file to the AWSSDK.Core assembly, as
follows.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws region="us-west-2">

Breaking Changes 127

AWS SDK for .NET Developer Guide

 <logging logTo="Log4Net"/>
 </aws>
</configuration>

You can also manipulate the config settings with the Amazon.AWSConfigs class. In
version 3 of the AWS SDK for .NET, we moved the config settings for DynamoDB from the
Amazon.AWSConfigs class to the Amazon.AWSConfigsDynamoDB class.

Migrating to version 3.5 of the AWS SDK for .NET

Version 3.5 of the AWS SDK for .NET further standardizes the .NET experience by transitioning
support for all non-Framework variations of the SDK to .NET Standard 2.0. Depending on your
environment and code base, to take advantage of version 3.5 features, you might need to perform
certain migration work.

This topic describes the changes in version 3.5 and possible work that you might need to do to
migrate your environment or code from version 3.

What's changed for version 3.5

The following describes what has or hasn't changed in the AWS SDK for .NET version 3.5.

.NET Framework and .NET Core

Support for .NET Framework and .NET Core has not changed.

Xamarin

Xamarin projects (new and existing) must target .NET Standard 2.0. See .NET Standard 2.0 Support
in Xamarin.Forms and .NET implementation support.

Unity

Unity apps must target .NET Standard 2.0 or .NET 4.x profiles using Unity 2018.1 or later. For more
information, see .NET profile support. In addition, if you're using IL2CPP to build, you must disable
code stripping by adding a link.xml file, as described in Referencing the AWS SDK for .NET Standard
2.0 from Unity, Xamarin, or UWP. After you port your code to one of the recommended code bases,
your Unity app can access all of the services offered by the SDK.

Migrating to version 3.5 128

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/internals/net-standard
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/internals/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://docs.unity3d.com/2020.1/Documentation/Manual/dotnetProfileSupport.html
https://aws.amazon.com/blogs/developer/referencing-the-aws-sdk-for-net-standard-2-0-from-unity-xamarin-or-uwp
https://aws.amazon.com/blogs/developer/referencing-the-aws-sdk-for-net-standard-2-0-from-unity-xamarin-or-uwp

AWS SDK for .NET Developer Guide

Because Unity supports .NET Standard 2.0, the AWSSDK.Core package of the SDK version 3.5
no longer has Unity-specific code, including some higher-level functionality. To provide a better
transition, all of the legacy Unity code is available for reference in the aws/aws-sdk-unity-net
GitHub repository. If you find missing functionality that impacts your use of AWS with Unity, you
can file a feature request at https://github.com/aws/dotnet/issues.

Also see Special considerations for Unity support.

Universal Windows Platform (UWP)

Target your UWP application to version 16299 or later (Fall Creators update, version 1709, released
October 2017).

Windows Phone and Silverlight

Version 3.5 of the AWS SDK for .NET does not support these platforms because Microsoft is no
longer actively developing them. For more information, see the following:

• Windows 10 Mobile end of support

• Silverlight end of support

Legacy portable class libraries (profile-based PCLs)

Consider retargeting your library to .NET Standard. For more information, see Comparison to
Portable Class Libraries from Microsoft.

Amazon Cognito Sync Manager and Amazon Mobile Analytics Manager

High-level abstractions that ease the use of Amazon Cognito Sync and Amazon Mobile Analytics
are removed from version 3.5 of the AWS SDK for .NET. AWS AppSync is the preferred replacement
for Amazon Cognito Sync. Amazon Pinpoint is the preferred replacement for Amazon Mobile
Analytics.

If your code is affected by the lack of higher-level library code for AWS AppSync and Amazon
Pinpoint, you can record your interest in one or both of the following GitHub issues: https://
github.com/aws/dotnet/issues/20 and https://github.com/aws/dotnet/issues/19. You can also
obtain the libraries for Amazon Cognito Sync Manager and Amazon Mobile Analytics Manager from
the following GitHub repositories: aws/amazon-cognito-sync-manager-net and aws/aws-mobile-
analytics-manager-net.

What's changed for version 3.5 129

https://github.com/aws/aws-sdk-unity-net
https://github.com/aws/dotnet/issues
https://docs.microsoft.com/en-us/windows/uwp/updates-and-versions/choose-a-uwp-version
https://support.microsoft.com/en-us/help/4485197/windows-10-mobile-end-of-support-faq
https://support.microsoft.com/en-us/help/4511036/silverlight-end-of-support
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#comparison-to-portable-class-libraries
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#comparison-to-portable-class-libraries
https://github.com/aws/dotnet/issues/20
https://github.com/aws/dotnet/issues/20
https://github.com/aws/dotnet/issues/19
https://github.com/aws/amazon-cognito-sync-manager-net
https://github.com/aws/aws-mobile-analytics-manager-net
https://github.com/aws/aws-mobile-analytics-manager-net

AWS SDK for .NET Developer Guide

Migrating synchronous code

Version 3.5 of the AWS SDK for .NET supports both .NET Framework and .NET Standard
(through .NET Core versions like .NET core 3.1, .NET 5, and so on). Variations of the SDK that
comply with .NET Standard provide only asynchronous methods, so if you want to take advantage
of .NET Standard, you must change synchronous code so that it runs asynchronously.

The following code snippets show how you might change synchronous code into asynchronous
code. The code in these snippets is used to display the number of Amazon S3 buckets.

The original code calls ListBuckets.

private static ListBucketsResponse MyListBuckets()
{
 var s3Client = new AmazonS3Client();
 var response = s3Client.ListBuckets();
 return response;
}

// From the calling function
ListBucketsResponse response = MyListBuckets();
Console.WriteLine($"Number of buckets: {response.Buckets.Count}");

To use version 3.5 of the SDK, call ListBucketsAsync instead.

private static async Task<ListBucketsResponse> MyListBuckets()
{
 var s3Client = new AmazonS3Client();
 var response = await s3Client.ListBucketsAsync();
 return response;
}

// From an **asynchronous** calling function
ListBucketsResponse response = await MyListBuckets();
Console.WriteLine($"Number of buckets: {response.Buckets.Count}");

// OR From a **synchronous** calling function
Task<ListBucketsResponse> response = MyListBuckets();
Console.WriteLine($"Number of buckets: {response.Result.Buckets.Count}");

Migrating synchronous code 130

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/MS3ListBuckets.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/MS3ListBucketsAsyncCancellationToken.html

AWS SDK for .NET Developer Guide

Migrating to version 3.7 of the AWS SDK for .NET

As of version 3.7, the AWS SDK for .NET no longer supports .NET Standard 1.3.

For information about migrating from .NET Standard 1.3, see Migrating from .NET Standard 1.3.

Migrating from .NET Standard 1.3

On June 27 2019 Microsoft ended support for .NET Core 1.0 and .NET Core 1.1 versions. Following
this announcement, AWS ended support for .NET Standard 1.3 on the AWS SDK for .NET on
December 31, 2020.

AWS continued to provide service updates and security fixes on the AWS SDK for .NET
targeting .NET Standard 1.3 until October 1, 2020. After that date, the .NET Standard 1.3 target
went into Maintenance mode, which meant that no new updates were released; AWS applied
critical bug fixes and security patches only.

On December 31, 2020, support for .NET Standard 1.3 on the AWS SDK for .NET came to its end of
life. After that date no bug fixes or security patches were applied. Artifacts built with that target
remain available for download on NuGet.

What you need to do

• If you're running applications using .NET Framework, you're not affected.

• If you're running applications using .NET Core 2.0 or higher, you're not affected.

• If you're running applications using .NET Core 1.0 or .NET Core 1.1, migrate your applications to
a newer version of .NET Core by following Microsoft migration instructions. We recommend a
minimum of .NET Core 3.1.

• If you're running business critical applications that cannot be upgraded at this time, you can
continue using your current version of AWS SDK for .NET.

If you have questions or concerns, contact AWS Support.

Migrating to version 3.7 131

https://devblogs.microsoft.com/dotnet/net-core-1-0-and-1-1-will-reach-end-of-life-on-june-27-2019/
https://docs.microsoft.com/en-us/dotnet/core/migration/
https://console.aws.amazon.com/support

AWS SDK for .NET Developer Guide

Work with AWS services in the AWS SDK for .NET

The following sections contain examples, tutorials, tasks, and guides that show you how to use the
AWS SDK for .NET to work with AWS services. These examples and tutorials rely on an API that the
AWS SDK for .NET provides. To see what classes and methods are available in the API, see the AWS
SDK for .NET API Reference.

If you're new to the AWS SDK for .NET, you might want to check out the Take a quick tour topic
first. It gives you an introduction to the SDK.

You can find more code examples in the AWS Code Examples Repository and the awslabs
repository on GitHub.

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

• Code examples with guidance for the AWS SDK for .NET

• Using AWS Lambda for compute service

• High-level libraries and frameworks for the AWS SDK for .NET

• Programming AWS OpsWorks to Work with stacks and applications

• Support for other AWS services and configuration

Code examples with guidance for the AWS SDK for .NET

The following sections contain code examples and provide guidance for the examples. They can
help you learn how to use the AWS SDK for .NET to work with AWS services.

If you're new to the AWS SDK for .NET, you might want to check out the Take a quick tour topic
first. It gives you an introduction to the SDK.

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

• Accessing AWS CloudFormation with the AWS SDK for .NET

Code examples with guidance 132

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://github.com/awslabs/aws-sdk-net-samples
https://github.com/awslabs/aws-sdk-net-samples

AWS SDK for .NET Developer Guide

• Authenticating users with Amazon Cognito

• Using Amazon DynamoDB NoSQL databases

• Working with Amazon EC2

• Accessing AWS Identity and Access Management (IAM) with the AWS SDK for .NET

• Using Amazon Simple Storage Service Internet storage

• Sending Notifications From the Cloud Using Amazon Simple Notification Service

• Messaging using Amazon SQS

Accessing AWS CloudFormation with the AWS SDK for .NET

The AWS SDK for .NET supports AWS CloudFormation, which creates and provisions AWS
infrastructure deployments predictably and repeatedly.

APIs

The AWS SDK for .NET provides APIs for AWS CloudFormation clients. The APIs enable you to
work with AWS CloudFormation features such as templates and stacks. This section contains
a small number of examples that show you the patterns you can follow when working with
these APIs. To view the full set of APIs, see the AWS SDK for .NET API Reference (and scroll to
"Amazon.CloudFormation").

The AWS CloudFormation APIs are provided by the AWSSDK.CloudFormation package.

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

Topics

• Listing AWS resources using AWS CloudFormation

Listing AWS resources using AWS CloudFormation

This example shows you how to use the AWS SDK for .NET to list the resources in AWS
CloudFormation stacks. The example uses the low-level API. The application takes no arguments,

AWS CloudFormation 133

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://www.nuget.org/packages/AWSSDK.CloudFormation/

AWS SDK for .NET Developer Guide

but simply gathers information for all stacks that are accessible to the user's credentials and then
displays information about those stacks.

SDK references

NuGet packages:

• AWSSDK.CloudFormation

Programming elements:

• Namespace Amazon.CloudFormation

Class AmazonCloudFormationClient

• Namespace Amazon.CloudFormation.Model

Class ICloudFormationPaginatorFactory.DescribeStacks

Class DescribeStackResourcesRequest

Class DescribeStackResourcesResponse

Class Stack

Class StackResource

Class Tag

using Amazon.CloudFormation;
using Amazon.CloudFormation.Model;
using Amazon.Runtime;

namespace CloudFormationActions;

public static class HelloCloudFormation
{
 public static IAmazonCloudFormation _amazonCloudFormation;

 static async Task Main(string[] args)
 {
 // Create the CloudFormation client

AWS CloudFormation 134

https://www.nuget.org/packages/AWSSDK.CloudFormation/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/NCloudFormation.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/TCloudFormationClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/NCloudFormationModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/MICloudFormationPaginatorFactoryDescribeStacksDescribeStacksRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/TDescribeStackResourcesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/TDescribeStackResourcesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/TStack.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/TStackResource.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/TTag.html

AWS SDK for .NET Developer Guide

 _amazonCloudFormation = new AmazonCloudFormationClient();
 Console.WriteLine($"\nIn Region:
 {_amazonCloudFormation.Config.RegionEndpoint}");

 // List the resources for each stack
 await ListResources();
 }

 /// <summary>
 /// Method to list stack resources and other information.
 /// </summary>
 /// <returns>True if successful.</returns>
 public static async Task<bool> ListResources()
 {
 try
 {
 Console.WriteLine("Getting CloudFormation stack information...");

 // Get all stacks using the stack paginator.
 var paginatorForDescribeStacks =
 _amazonCloudFormation.Paginators.DescribeStacks(
 new DescribeStacksRequest());
 await foreach (Stack stack in paginatorForDescribeStacks.Stacks)
 {
 // Basic information for each stack

 Console.WriteLine("\n--");
 Console.WriteLine($"\nStack: {stack.StackName}");
 Console.WriteLine($" Status: {stack.StackStatus.Value}");
 Console.WriteLine($" Created: {stack.CreationTime}");

 // The tags of each stack (etc.)
 if (stack.Tags.Count > 0)
 {
 Console.WriteLine(" Tags:");
 foreach (Tag tag in stack.Tags)
 Console.WriteLine($" {tag.Key}, {tag.Value}");
 }

 // The resources of each stack
 DescribeStackResourcesResponse responseDescribeResources =
 await _amazonCloudFormation.DescribeStackResourcesAsync(
 new DescribeStackResourcesRequest
 {

AWS CloudFormation 135

AWS SDK for .NET Developer Guide

 StackName = stack.StackName
 });
 if (responseDescribeResources.StackResources.Count > 0)
 {
 Console.WriteLine(" Resources:");
 foreach (StackResource resource in responseDescribeResources
 .StackResources)
 Console.WriteLine(
 $" {resource.LogicalResourceId}:
 {resource.ResourceStatus}");
 }
 }

 Console.WriteLine("\n--");
 return true;
 }
 catch (AmazonCloudFormationException ex)
 {
 Console.WriteLine("Unable to get stack information:\n" + ex.Message);
 return false;
 }
 catch (AmazonServiceException ex)
 {
 if (ex.Message.Contains("Unable to get IAM security credentials"))
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine("If you are usnig SSO, be sure to install" +
 " the AWSSDK.SSO and AWSSDK.SSOOIDC packages.");
 }
 else
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }

 return false;
 }
 catch (ArgumentNullException ex)
 {
 if (ex.Message.Contains("Options property cannot be empty: ClientName"))
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine("If you are using SSO, have you logged in?");
 }

AWS CloudFormation 136

AWS SDK for .NET Developer Guide

 else
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }

 return false;
 }
 }

Authenticating users with Amazon Cognito

Note

The information in this topic is specific to projects based on .NET Framework and the AWS
SDK for .NET version 3.3 and earlier.

Using Amazon Cognito Identity, you can create unique identities for your users and authenticate
them for secure access to your AWS resources such as Amazon S3 or Amazon DynamoDB. Amazon
Cognito Identity supports public identity providers such as Amazon, Facebook, Twitter/Digits,
Google, or any OpenID Connect-compatible provider as well as unauthenticated identities. Amazon
Cognito also supports developer authenticated identities, which let you register and authenticate
users using your own backend authentication process, while still using Amazon Cognito Sync to
synchronize user data and access AWS resources.

For more information on Amazon Cognito, see the Amazon Cognito Developer Guide.

The following code examples show how to easily use Amazon Cognito Identity. The Credentials
provider example shows how to create and authenticate user identities. The CognitoAuthentication
extension library example shows how to use the CognitoAuthentication extension library to
authenticate Amazon Cognito user pools.

Topics

• Amazon Cognito credentials provider

• Amazon CognitoAuthentication extension library examples

Amazon Cognito 137

https://aws.amazon.com/blogs/mobile/amazon-cognito-announcing-developer-authenticated-identities/
https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/cognito/latest/developerguide/

AWS SDK for .NET Developer Guide

Amazon Cognito credentials provider

Note

The information in this topic is specific to projects based on .NET Framework and the AWS
SDK for .NET version 3.3 and earlier.

Amazon.CognitoIdentity.CognitoAWSCredentials, found in the AWSSDK.CognitoIdentity
NuGet package, is a credentials object that uses Amazon Cognito and the AWS Security Token
Service (AWS STS) to retrieve credentials to make AWS calls.

The first step in setting up CognitoAWSCredentials is to create an “identity pool”. (An identity
pool is a store of user identity information that is specific to your account. The information is
retrievable across client platforms, devices, and operating systems, so that if a user starts using the
app on a phone and later switches to a tablet, the persisted app information is still available for
that user. You can create a new identity pool from the Amazon Cognito console. If you are using
the console, it will also provide you the other pieces of information you need:

• Your account number- A 12-digit number, such as 123456789012, that is unique to your account.

• The unauthenticated role ARN- A role that unauthenticated users will assume. For example, this
role can provide read-only permissions to your data.

• The authenticated role ARN- A role that authenticated users will assume. This role can provide
more extensive permissions to your data.

Set up CognitoAWSCredentials

The following code example shows how to set up CognitoAWSCredentials, which you can then
use to make a call to Amazon S3 as an unauthenticated user. This enables you to make calls with
just a minimum amount of data required to authenticate the user. User permissions are controlled
by the role, so you can configure access as you need.

CognitoAWSCredentials credentials = new CognitoAWSCredentials(
 accountId, // Account number
 identityPoolId, // Identity pool ID
 unAuthRoleArn, // Role for unauthenticated users
 null, // Role for authenticated users, not set
 region);

Amazon Cognito 138

https://www.nuget.org/packages/AWSSDK.CognitoIdentity/

AWS SDK for .NET Developer Guide

using (var s3Client = new AmazonS3Client(credentials))
{
 s3Client.ListBuckets();
}

Use AWS as an unauthenticated user

The following code example shows how you can start using AWS as an unauthenticated user, then
authenticate through Facebook and update the credentials to use Facebook credentials. Using this
approach, you can grant different capabilities to authenticated users via the authenticated role. For
instance, you might have a phone application that permits users to view content anonymously, but
allows them to post if they are logged on with one or more of the configured providers.

CognitoAWSCredentials credentials = new CognitoAWSCredentials(
 accountId, identityPoolId,
 unAuthRoleArn, // Role for unauthenticated users
 authRoleArn, // Role for authenticated users
 region);
using (var s3Client = new AmazonS3Client(credentials))
{
 // Initial use will be unauthenticated
 s3Client.ListBuckets();

 // Authenticate user through Facebook
 string facebookToken = GetFacebookAuthToken();

 // Add Facebook login to credentials. This clears the current AWS credentials
 // and retrieves new AWS credentials using the authenticated role.
 credentials.AddLogin("graph.facebook.com", facebookAccessToken);

 // This call is performed with the authenticated role and credentials
 s3Client.ListBuckets();
}

The CognitoAWSCredentials object provides even more functionality if you use it
with the AmazonCognitoSyncClient that is part of the AWS SDK for .NET. If you're
using both AmazonCognitoSyncClient and CognitoAWSCredentials, you don't
have to specify the IdentityPoolId and IdentityId properties when making calls
with the AmazonCognitoSyncClient. These properties are automatically filled in from
CognitoAWSCredentials. The next code example illustrates this, as well as an event that notifies
you whenever the IdentityId for CognitoAWSCredentials changes. The IdentityId can

Amazon Cognito 139

AWS SDK for .NET Developer Guide

change in some cases, such as when changing from an unauthenticated user to an authenticated
one.

CognitoAWSCredentials credentials = GetCognitoAWSCredentials();

// Log identity changes
credentials.IdentityChangedEvent += (sender, args) =>
{
 Console.WriteLine("Identity changed: [{0}] => [{1}]", args.OldIdentityId,
 args.NewIdentityId);
};

using (var syncClient = new AmazonCognitoSyncClient(credentials))
{
 var result = syncClient.ListRecords(new ListRecordsRequest
 {
 DatasetName = datasetName
 // No need to specify these properties
 //IdentityId = "...",
 //IdentityPoolId = "..."
 });
}

Amazon CognitoAuthentication extension library examples

Note

The information in this topic is specific to projects based on .NET Framework and the AWS
SDK for .NET version 3.3 and earlier.

The CognitoAuthentication extension library, found in the
Amazon.Extensions.CognitoAuthentication NuGet package, simplifies the authentication process of
Amazon Cognito user pools for .NET Core and Xamarin developers. The library is built on top of the
Amazon Cognito Identity provider API to create and send user authentication API calls.

Using the CognitoAuthentication extension library

Amazon Cognito has some built-in AuthFlow and ChallengeName values for a standard
authentication flow to validate username and password through the Secure Remote Password

Amazon Cognito 140

https://www.nuget.org/packages/Amazon.Extensions.CognitoAuthentication/

AWS SDK for .NET Developer Guide

(SRP). For more information about authentication flow, see Amazon Cognito User Pool
Authentication Flow.

The following examples require these using statements:

// Required for all examples
using System;
using Amazon;
using Amazon.CognitoIdentity;
using Amazon.CognitoIdentityProvider;
using Amazon.Extensions.CognitoAuthentication;
using Amazon.Runtime;
// Required for the GetS3BucketsAsync example
using Amazon.S3;
using Amazon.S3.Model;

Use basic authentication

Create an AmazonCognitoIdentityProviderClient using AnonymousAWSCredentials, which do
not require signed requests. You do not need to supply a region, the underlying code calls
FallbackRegionFactory.GetRegionEndpoint() if a region is not provided. Create
CognitoUserPool and CognitoUser objects. Call the StartWithSrpAuthAsync method with
an InitiateSrpAuthRequest that contains the user password.

public static async void GetCredsAsync()
{
 AmazonCognitoIdentityProviderClient provider =
 new AmazonCognitoIdentityProviderClient(new
 Amazon.Runtime.AnonymousAWSCredentials());
 CognitoUserPool userPool = new CognitoUserPool("poolID", "clientID", provider);
 CognitoUser user = new CognitoUser("username", "clientID", userPool, provider);
 InitiateSrpAuthRequest authRequest = new InitiateSrpAuthRequest()
 {
 Password = "userPassword"
 };

 AuthFlowResponse authResponse = await
 user.StartWithSrpAuthAsync(authRequest).ConfigureAwait(false);
 accessToken = authResponse.AuthenticationResult.AccessToken;

}

Amazon Cognito 141

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CognitoIdentityProvider/TCognitoIdentityProviderClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAnonymousAWSCredentials.html

AWS SDK for .NET Developer Guide

Authenticate with challenges

Continuing the authentication flow with challenges, such as with NewPasswordRequired and Multi-
Factor Authentication (MFA), is also simpler. The only requirements are the CognitoAuthentication
objects, user's password for SRP, and the necessary information for the next challenge, which is
acquired after prompting the user to enter it. The following code shows one way to check the
challenge type and get the appropriate responses for MFA and NewPasswordRequired challenges
during the authentication flow.

Do a basic authentication request as before, and await an AuthFlowResponse.
When the response is received loop through the returned AuthenticationResult
object. If the ChallengeName type is NEW_PASSWORD_REQUIRED, call the
RespondToNewPasswordRequiredAsync method.

public static async void GetCredsChallengesAsync()
{
 AmazonCognitoIdentityProviderClient provider =
 new AmazonCognitoIdentityProviderClient(new
 Amazon.Runtime.AnonymousAWSCredentials());
 CognitoUserPool userPool = new CognitoUserPool("poolID", "clientID", provider);
 CognitoUser user = new CognitoUser("username", "clientID", userPool, provider);
 InitiateSrpAuthRequest authRequest = new InitiateSrpAuthRequest(){
 Password = "userPassword"
 };

 AuthFlowResponse authResponse = await
 user.StartWithSrpAuthAsync(authRequest).ConfigureAwait(false);

 while (authResponse.AuthenticationResult == null)
 {
 if (authResponse.ChallengeName == ChallengeNameType.NEW_PASSWORD_REQUIRED)
 {
 Console.WriteLine("Enter your desired new password:");
 string newPassword = Console.ReadLine();

 authResponse = await user.RespondToNewPasswordRequiredAsync(new
 RespondToNewPasswordRequiredRequest()
 {
 SessionID = authResponse.SessionID,
 NewPassword = newPassword
 });
 accessToken = authResponse.AuthenticationResult.AccessToken;

Amazon Cognito 142

AWS SDK for .NET Developer Guide

 }
 else if (authResponse.ChallengeName == ChallengeNameType.SMS_MFA)
 {
 Console.WriteLine("Enter the MFA Code sent to your device:");
 string mfaCode = Console.ReadLine();

 AuthFlowResponse mfaResponse = await user.RespondToSmsMfaAuthAsync(new
 RespondToSmsMfaRequest()
 {
 SessionID = authResponse.SessionID,
 MfaCode = mfaCode

 }).ConfigureAwait(false);
 accessToken = authResponse.AuthenticationResult.AccessToken;
 }
 else
 {
 Console.WriteLine("Unrecognized authentication challenge.");
 accessToken = "";
 break;
 }
 }

 if (authResponse.AuthenticationResult != null)
 {
 Console.WriteLine("User successfully authenticated.");
 }
 else
 {
 Console.WriteLine("Error in authentication process.");
 }

}

Use AWS resources after authentication

Once a user is authenticated using the CognitoAuthentication library, the next step is to allow the
user to access the appropriate AWS resources. To do this you must create an identity pool through
the Amazon Cognito Federated Identities console. By specifying the Amazon Cognito user pool
you created as a provider, using its poolID and clientID, you can allow your Amazon Cognito user
pool users to access AWS resources connected to your account. You can also specify different roles
to enable both unauthenticated and authenticated users to access different resources. You can

Amazon Cognito 143

AWS SDK for .NET Developer Guide

change these rules in the IAM console, where you can add or remove permissions in the Action
field of the role's attached policy. Then, using the appropriate identity pool, user pool, and Amazon
Cognito user information, you can make calls to different AWS resources. The following example
shows a user authenticated with SRP accessing the different Amazon S3 buckets permitted by the
associated identity pool's role

public async void GetS3BucketsAsync()
{
 var provider = new AmazonCognitoIdentityProviderClient(new
 AnonymousAWSCredentials());
 CognitoUserPool userPool = new CognitoUserPool("poolID", "clientID", provider);
 CognitoUser user = new CognitoUser("username", "clientID", userPool, provider);

 string password = "userPassword";

 AuthFlowResponse context = await user.StartWithSrpAuthAsync(new
 InitiateSrpAuthRequest()
 {
 Password = password
 }).ConfigureAwait(false);

 CognitoAWSCredentials credentials =
 user.GetCognitoAWSCredentials("identityPoolID", RegionEndpoint.<
 YourIdentityPoolRegion >);

 using (var client = new AmazonS3Client(credentials))
 {
 ListBucketsResponse response =
 await client.ListBucketsAsync(new
 ListBucketsRequest()).ConfigureAwait(false);

 foreach (S3Bucket bucket in response.Buckets)
 {
 Console.WriteLine(bucket.BucketName);
 }
 }
}

More authentication options

In addition to SRP, NewPasswordRequired, and MFA, the CognitoAuthentication extension library
offers an easier authentication flow for:

Amazon Cognito 144

AWS SDK for .NET Developer Guide

• Custom - Initiate with a call to StartWithCustomAuthAsync(InitiateCustomAuthRequest
customRequest)

• RefreshToken - Initiate with a call to
StartWithRefreshTokenAuthAsync(InitiateRefreshTokenAuthRequest
refreshTokenRequest)

• RefreshTokenSRP - Initiate with a call to
StartWithRefreshTokenAuthAsync(InitiateRefreshTokenAuthRequest
refreshTokenRequest)

• AdminNoSRP - Initiate with a call to
StartWithAdminNoSrpAuthAsync(InitiateAdminNoSrpAuthRequest
adminAuthRequest)

Call the appropriate method depending on the flow you want. Then continue prompting the user
with challenges as they are presented in the AuthFlowResponse objects of each method call. Also
call the appropriate response method, such as RespondToSmsMfaAuthAsync for MFA challenges
and RespondToCustomAuthAsync for custom challenges.

Using Amazon DynamoDB NoSQL databases

Note

The programming models in these topics are present in both .NET Framework and .NET
(Core), but the calling conventions differ, whether synchronous or asynchronous.

The AWS SDK for .NET supports Amazon DynamoDB, which is a fast NoSQL database service
offered by AWS. The SDK provides three programming models for communicating with DynamoDB:
the low-level model, the document model, and the object persistence model.

The following information introduces these models and their APIs, provides examples for how and
when to use them, and gives you links to additional DynamoDB programming resources in the AWS
SDK for .NET.

Topics

• Low-Level Model

• Document Model

DynamoDB 145

AWS SDK for .NET Developer Guide

• Object Persistence Model

• More information

• Using Expressions with Amazon DynamoDB and the AWS SDK for .NET

• JSON support in Amazon DynamoDB

Low-Level Model

The low-level programming model wraps direct calls to the DynamoDB service. You access this
model through the Amazon.DynamoDBv2 namespace.

Of the three models, the low-level model requires you to write the most code. For example, you
must convert .NET data types to their equivalents in DynamoDB. However, this model gives you
access to the most features.

The following examples show you how to use the low-level model to create a table, modify a table,
and insert items into a table in DynamoDB.

Creating a Table

In the following example, you create a table by using the CreateTable method of the
AmazonDynamoDBClient class. The CreateTable method uses an instance of the
CreateTableRequest class that contains characteristics such as required item attribute names,
primary key definition, and throughput capacity. The CreateTable method returns an instance of
the CreateTableResponse class.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();

Console.WriteLine("Getting list of tables");
List<string> currentTables = client.ListTables().TableNames;
Console.WriteLine("Number of tables: " + currentTables.Count);
if (!currentTables.Contains("AnimalsInventory"))
{
 var request = new CreateTableRequest
 {
 TableName = "AnimalsInventory",
 AttributeDefinitions = new List<AttributeDefinition>
 {

DynamoDB 146

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/NDynamoDBv2.html

AWS SDK for .NET Developer Guide

 new AttributeDefinition
 {
 AttributeName = "Id",
 // "S" = string, "N" = number, and so on.
 AttributeType = "N"
 },
 new AttributeDefinition
 {
 AttributeName = "Type",
 AttributeType = "S"
 }
 },
 KeySchema = new List<KeySchemaElement>
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 // "HASH" = hash key, "RANGE" = range key.
 KeyType = "HASH"
 },
 new KeySchemaElement
 {
 AttributeName = "Type",
 KeyType = "RANGE"
 },
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 },
 };

 var response = client.CreateTable(request);

 Console.WriteLine("Table created with request ID: " +
 response.ResponseMetadata.RequestId);
}

Verifying That a Table is Ready to Modify

Before you can change or modify a table, the table has to be ready for modification. The following
example shows how to use the low-level model to verify that a table in DynamoDB is ready. In

DynamoDB 147

AWS SDK for .NET Developer Guide

this example, the target table to check is referenced through the DescribeTable method of
the AmazonDynamoDBClient class. Every five seconds, the code checks the value of the table’s
TableStatus property. When the status is set to ACTIVE, the table is ready to be modified.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var status = "";

do
{
 // Wait 5 seconds before checking (again).
 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(5));

 try
 {
 var response = client.DescribeTable(new DescribeTableRequest
 {
 TableName = "AnimalsInventory"
 });

 Console.WriteLine("Table = {0}, Status = {1}",
 response.Table.TableName,
 response.Table.TableStatus);

 status = response.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found.
 }

} while (status != TableStatus.ACTIVE);

Inserting an Item into a Table

In the following example, you use the low-level model to insert two items into a table in
DynamoDB. Each item is inserted through the PutItem method of the AmazonDynamoDBClient
class, using an instance of the PutItemRequest class. Each of the two instances of the

DynamoDB 148

AWS SDK for .NET Developer Guide

PutItemRequest class takes the name of the table that the items will be inserted in, with a series
of item attribute values.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();

var request1 = new PutItemRequest
{
 TableName = "AnimalsInventory",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "1" }},
 { "Type", new AttributeValue { S = "Dog" }},
 { "Name", new AttributeValue { S = "Fido" }}
 }
};

var request2 = new PutItemRequest
{
 TableName = "AnimalsInventory",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "2" }},
 { "Type", new AttributeValue { S = "Cat" }},
 { "Name", new AttributeValue { S = "Patches" }}
 }
};

client.PutItem(request1);
client.PutItem(request2);

Document Model

The document programming model provides an easier way to work with data in DynamoDB. This
model is specifically intended for accessing tables and items in tables. You access this model
through the Amazon.DynamoDBv2.DocumentModel namespace.

Compared to the low-level programming model, the document model is easier to code against
DynamoDB data. For example, you don’t have to convert as many .NET data types to their
equivalents in DynamoDB. However, this model doesn’t provide access to as many features as the

DynamoDB 149

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/NDynamoDBv2DocumentModel.html

AWS SDK for .NET Developer Guide

low-level programming model. For example, you can use this model to create, retrieve, update, and
delete items in tables. However, to create the tables, you must use the low-level model. Compared
to the object persistence model, this model requires you to write more code to store, load, and
query .NET objects.

For more information about the DynamoDB document programming model, see .NET: Document
model in the Amazon DynamoDB Developer Guide.

The following sections provide information about how to create a representation of the desired
DynamoDB table, and examples about how to use the document model to insert items into tables
and get items from tables.

Create a representation of the table

To perform data operations using the document model, you must first create an instance of the
Table class that represents a specific table. There are two primary ways to do this.

LoadTable method

The first mechanism is to use one of the static LoadTable methods of the Table class, similar to
the following example:

var client = new AmazonDynamoDBClient();
Table table = Table.LoadTable(client, "Reply");

Note

While this mechanism works, under certain conditions, it can sometimes lead to additional
latency or deadlocks due to cold-start and thread-pool behaviors. For more information
about these behaviors, see the blog post Improved DynamoDB Initialization Patterns for
the AWS SDK for .NET.

TableBuilder

An alternative mechanism, the TableBuilder class, was introduced in version 3.7.203 of the
AWSSDK.DynamoDBv2 NuGet package. This mechanism can address the behaviors mentioned
above by removing certain implicit method calls; specifically, the DescribeTable method. This
mechanism is used in a manner similar to the following example:

DynamoDB 150

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/TTable.html
https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/TTableBuilder.html
https://www.nuget.org/packages/AWSSDK.DynamoDBv2/3.7.203
https://www.nuget.org/packages/AWSSDK.DynamoDBv2/3.7.203

AWS SDK for .NET Developer Guide

var client = new AmazonDynamoDBClient();
var table = new TableBuilder(client, "Reply")
 .AddHashKey("Id", DynamoDBEntryType.String)
 .AddRangeKey("ReplyDateTime", DynamoDBEntryType.String)
 .AddGlobalSecondaryIndex("PostedBy-Message-index", "Author",
 DynamoDBEntryType.String, "Message", DynamoDBEntryType.String)
 .Build();

For more information about this alternative mechanism, see again the blog post Improved
DynamoDB Initialization Patterns for the AWS SDK for .NET.

Inserting an item into a table

In the following example, a reply is inserted into the Reply table through the PutItemAsync
method of the Table class. The PutItemAsync method takes an instance of the Document class;
the Document class is simply a collection of initialized attributes.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DocumentModel;

// Create a representation of the "Reply" table
// by using one of the mechanisms described previously.

// Then, add a reply to the table.
var newReply = new Document();
newReply["Id"] = Guid.NewGuid().ToString();
newReply["ReplyDateTime"] = DateTime.UtcNow;
newReply["PostedBy"] = "Author1";
newReply["Message"] = "Thank you!";

await table.PutItemAsync(newReply);

Getting an item from a table

In the following example, a reply is retrieved through the GetItemAsync method of the Table
class. To determine the reply to get, the GetItemAsync method uses the hash-and-range primary
key of the target reply.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DocumentModel;

// Create a representation of the "Reply" table

DynamoDB 151

https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/

AWS SDK for .NET Developer Guide

// by using one of the mechanisms described previously.

// Then, get a reply from the table
// where "guid" is the hash key and "datetime" is the range key.
var reply = await table.GetItemAsync(guid, datetime);
Console.WriteLine("Id = " + reply["Id"]);
Console.WriteLine("ReplyDateTime = " + reply["ReplyDateTime"]);
Console.WriteLine("PostedBy = " + reply["PostedBy"]);
Console.WriteLine("Message = " + reply["Message"]);

The preceding example implicitly converts the table values to strings for the WriteLine method.
You can do explicit conversions by using the various "As[type]" methods of the DynamoDBEntry
class. For example, you can explicitly convert the value for Id from a Primitive data type to a
GUID through the AsGuid() method:

var guid = reply["Id"].AsGuid();

Object Persistence Model

The object persistence programming model is specifically designed for storing,
loading, and querying .NET objects in DynamoDB. You access this model through the
Amazon.DynamoDBv2.DataModel namespace.

Of the three models, the object persistence model is the easiest to code against whenever you are
storing, loading, or querying DynamoDB data. For example, you work with DynamoDB data types
directly. However, this model provides access only to operations that store, load, and query .NET
objects in DynamoDB. For example, you can use this model to create, retrieve, update, and delete
items in tables. However, you must first create your tables using the low-level model, and then use
this model to map your .NET classes to the tables.

For more information about the DynamoDB object persistence programming model, see .NET:
Object persistence model in the Amazon DynamoDB Developer Guide.

The following examples show you how to define a .NET class that represents a DynamoDB item,
use an instance of the .NET class to insert an item into a DynamoDB table, and use an instance of
the .NET class to get an item from the table.

Defining a .NET class that represents an item in a table

In the following example of a class definition, the DynamoDBTable attribute specifies the table
name, while the DynamoDBHashKey and DynamoDBRangeKey attributes model the table's hash-

DynamoDB 152

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/NDynamoDBv2DataModel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

AWS SDK for .NET Developer Guide

and-range primary key. The DynamoDBGlobalSecondaryIndexHashKey attribute is defined so
that a query for replies by a specific author can be constructed.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;

[DynamoDBTable("Reply")]
public class Reply
{
 [DynamoDBHashKey]
 public string Id { get; set; }

 [DynamoDBRangeKey(StoreAsEpoch = false)]
 public DateTime ReplyDateTime { get; set; }

 [DynamoDBGlobalSecondaryIndexHashKey("PostedBy-Message-Index",
 AttributeName ="PostedBy")]
 public string Author { get; set; }

 [DynamoDBGlobalSecondaryIndexRangeKey("PostedBy-Message-Index")]
 public string Message { get; set; }
}

Creating a context for the object persistence model

To use the object persistence programming model for DynamoDB, you must create a context,
which provides a connection to DynamoDB and enables you to access tables, perform various
operations, and run queries.

Basic context

The following example shows how to create the most basic context.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client);

Context with DisableFetchingTableMetadata property

DynamoDB 153

AWS SDK for .NET Developer Guide

The following example shows how you might additionally set the
DisableFetchingTableMetadata property of the DynamoDBContextConfig class to prevent
implicit calls to the DescribeTable method.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client, new DynamoDBContextConfig
{
 DisableFetchingTableMetadata = true
});

If the DisableFetchingTableMetadata property is set to false (the default), as shown in
the first example, you can omit attributes that describe the key and index structure of table items
from the Reply class. These attributes will instead be inferred through an implicit call to the
DescribeTable method. If DisableFetchingTableMetadata is set to true, as shown in the
second example, methods of the object persistence model such as SaveAsync and QueryAsync
rely entirely on the attributes defined in the Reply class. In this case, a call to the DescribeTable
method doesn't occur.

Note

Under certain conditions, calls to the DescribeTable method can sometimes lead to
additional latency or deadlocks due to cold-start and thread-pool behaviors. For this
reason, it is sometimes advantageous to avoid calls to that method.
For more information about these behaviors, see the blog post Improved DynamoDB
Initialization Patterns for the AWS SDK for .NET.

Using an instance of the .NET class to insert an item into a table

In this example, an item is inserted through the SaveAsync method of the DynamoDBContext
class, which takes an initialized instance of the .NET class that represents the item.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;

// Create an appropriate context for the object persistence programming model,

DynamoDB 154

https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/

AWS SDK for .NET Developer Guide

// examples of which have been described earlier.

// Create an object that represents the new item.
var reply = new Reply()
{
 Id = Guid.NewGuid().ToString(),
 ReplyDateTime = DateTime.UtcNow,
 Author = "Author1",
 Message = "Thank you!"
};

// Insert the item into the table.
await context.SaveAsync<Reply>(reply, new DynamoDBOperationConfig
{
 IndexName = "PostedBy-Message-index"
});

Using an instance of a .NET class to get items from a table

In this example, a query is created to find all the records of "Author1" by using the QueryAsync
method of the DynamoDBContext class. Then, items are retrieved through the query's
GetNextSetAsync method.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;

// Create an appropriate context for the object persistence programming model,
// examples of which have been described earlier.

// Construct a query that finds all replies by a specific author.
var query = context.QueryAsync<Reply>("Author1", new DynamoDBOperationConfig
{
 IndexName = "PostedBy-Message-index"
});

// Display the result.
var set = await query.GetNextSetAsync();
foreach (var item in set)
{
 Console.WriteLine("Id = " + item.Id);
 Console.WriteLine("ReplyDateTime = " + item.ReplyDateTime);
 Console.WriteLine("PostedBy = " + item.Author);
 Console.WriteLine("Message = " + item.Message);

DynamoDB 155

AWS SDK for .NET Developer Guide

}

Additional information about the object persistence model

The examples and explanations shown above sometimes include a property of the
DynamoDBContext class called DisableFetchingTableMetadata. This property, which
was introduced in version 3.7.203 of the AWSSDK.DynamoDBv2 NuGet package, allows you to
avoid certain conditions that might cause additional latency or deadlocks due to cold-start and
thread-pool behaviors. For more information, see the blog post Improved DynamoDB Initialization
Patterns for the AWS SDK for .NET.

The following is some additional information about this property.

• This property can be set globally in your app.config or web.config file if you're using .NET
Framework.

• This property can be set globally by using the AWSConfigsDynamoDB class, as shown in the
following example.

// Set the DisableFetchingTableMetadata property globally
// before constructing any context objects.
AWSConfigsDynamoDB.Context.DisableFetchingTableMetadata = true;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client);

• In some cases, you can't add DynamoDB attributes to a .NET class; for example, if the
class is defined in a dependency. In such cases, it's possible to still take advantage of the
DisableFetchingTableMetadata property. To do so, use the TableBuilder class in
addition to the DisableFetchingTableMetadata property. The TableBuilder class was
also introduced in version 3.7.203 of the AWSSDK.DynamoDBv2 NuGet package.

// Set the DisableFetchingTableMetadata property globally
// before constructing any context objects.
AWSConfigsDynamoDB.Context.DisableFetchingTableMetadata = true;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client);

var table = new TableBuilder(client, "Reply")
 .AddHashKey("Id", DynamoDBEntryType.String)
 .AddRangeKey("ReplyDateTime", DynamoDBEntryType.String)

DynamoDB 156

https://www.nuget.org/packages/AWSSDK.DynamoDBv2/3.7.203
https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/improved-dynamodb-initialization-patterns-for-the-aws-sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigsDynamoDB.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/TTableBuilder.html
https://www.nuget.org/packages/AWSSDK.DynamoDBv2/3.7.203

AWS SDK for .NET Developer Guide

 .AddGlobalSecondaryIndex("PostedBy-Message-index", "Author",
 DynamoDBEntryType.String,
 "Message", DynamoDBEntryType.String)
 .Build();

// This registers the "Reply" table we constructed via the builder.
context.RegisterTableDefinition(table);

// Now operations like this will work,
// even if the Reply class was not annotated with this index.
var query = context.QueryAsync<Reply>("Author1", new DynamoDBOperationConfig()
{
 IndexName = "PostedBy-Message-index"
});

More information

Using the AWS SDK for .NET to program DynamoDB information and examples**

• DynamoDB APIs

• DynamoDB Series Kickoff

• DynamoDB Series - Document Model

• DynamoDB Series - Conversion Schemas

• DynamoDB Series - Object Persistence Model

• DynamoDB Series - Expressions

• Using Expressions with Amazon DynamoDB and the AWS SDK for .NET

• JSON support in Amazon DynamoDB

Low-Level model information and examples

• Working with Tables Using the AWS SDK for .NET Low-Level API

• Working with Items Using the AWS SDK for .NET Low-Level API

• Querying Tables Using the AWS SDK for .NET Low-Level API

• Scanning Tables Using the AWS SDK for .NET Low-Level API

• Working with Local Secondary Indexes Using the AWS SDK for .NET Low-Level API

• Working with Global Secondary Indexes Using the AWS SDK for .NET Low-Level API

DynamoDB 157

http://blogs.aws.amazon.com/net/post/Tx17SQHVEMW8MXC/DynamoDB-APIs
http://blogs.aws.amazon.com/net/post/Tx2XQOCY08QMTKO/DynamoDB-Series-Kickoff
http://blogs.aws.amazon.com/net/post/Tx2R0WG46GQI1JI/DynamoDB-Series-Document-Model
http://blogs.aws.amazon.com/net/post/Tx2TCOGWG7ARUH5/DynamoDB-Series-Conversion-Schemas
http://blogs.aws.amazon.com/net/post/Tx20L86FLMBW51P/DynamoDB-Series-Object-Persistence-Model
http://blogs.aws.amazon.com/net/post/TxZQM7VA9AUZ9L/DynamoDB-Series-Expressions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetWorkingWithTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetQuerying.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetScanning.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSILowLevelDotNet.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSILowLevelDotNet.html

AWS SDK for .NET Developer Guide

Document model information and examples

• DynamoDB Data Types

• DynamoDBEntry

• .NET: Document Model

Object persistence model information and examples

• .NET: Object Persistence Model

Using Expressions with Amazon DynamoDB and the AWS SDK for .NET

Note

The information in this topic is specific to projects based on .NET Framework and the AWS
SDK for .NET version 3.3 and earlier.

The following code examples demonstrate how to use the AWS SDK for .NET to program
DynamoDB with expressions. Expressions denote the attributes you want to read from an item in
a DynamoDB table. You also use expressions when writing an item, to indicate any conditions that
must be met (also known as a conditional update) and how the attributes are to be updated. Some
update examples are replacing the attribute with a new value, or adding new data to a list or a
map. For more information, see Reading and Writing Items Using Expressions.

Topics

• Sample Data

• Get a Single Item by Using Expressions and the Item’s Primary Key

• Get Multiple Items by Using Expressions and the Table’s Primary Key

• Get Multiple Items by Using Expressions and Other Item Attributes

• Print an Item

• Create or Replace an Item by Using Expressions

• Update an Item by Using Expressions

• Delete an Item by Using Expressions

• More Info

DynamoDB 158

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html#DataModel.DataTypes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TDynamoDBv2DocumentModelDynamoDBEntry.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html

AWS SDK for .NET Developer Guide

Sample Data

The code examples in this topic rely on the following two example items in a DynamoDB
table named ProductCatalog. These items describe information about product entries in a
fictitious bicycle store catalog. These items are based on the example provided in Case Study: A
ProductCatalog Item. The data type descriptors such as BOOL, L, M, N, NS, S, and SS correspond to
those in the JSON Data Format.

{
 "Id": {
 "N": "205"
 },
 "Title": {
 "S": "20-Bicycle 205"
 },
 "Description": {
 "S": "205 description"
 },
 "BicycleType": {
 "S": "Hybrid"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "500"
 },
 "Gender": {
 "S": "B"
 },
 "Color": {
 "SS": [
 "Red",
 "Black"
]
 },
 "ProductCategory": {
 "S": "Bike"
 },
 "InStock": {
 "BOOL": true
 },
 "QuantityOnHand": {

DynamoDB 159

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.CaseStudy.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.CaseStudy.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html

AWS SDK for .NET Developer Guide

 "N": "1"
 },
 "RelatedItems": {
 "NS": [
 "341",
 "472",
 "649"
]
 },
 "Pictures": {
 "L": [
 {
 "M": {
 "FrontView": {
 "S": "http://example/products/205_front.jpg"
 }
 }
 },
 {
 "M": {
 "RearView": {
 "S": "http://example/products/205_rear.jpg"
 }
 }
 },
 {
 "M": {
 "SideView": {
 "S": "http://example/products/205_left_side.jpg"
 }
 }
 }
]
 },
 "ProductReviews": {
 "M": {
 "FiveStar": {
 "SS": [
 "Excellent! Can't recommend it highly enough! Buy it!",
 "Do yourself a favor and buy this."
]
 },
 "OneStar": {
 "SS": [

DynamoDB 160

AWS SDK for .NET Developer Guide

 "Terrible product! Do not buy this."
]
 }
 }
 }
},
{
 "Id": {
 "N": "301"
 },
 "Title": {
 "S": "18-Bicycle 301"
 },
 "Description": {
 "S": "301 description"
 },
 "BicycleType": {
 "S": "Road"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "185"
 },
 "Gender": {
 "S": "F"
 },
 "Color": {
 "SS": [
 "Blue",
 "Silver"
]
 },
 "ProductCategory": {
 "S": "Bike"
 },
 "InStock": {
 "BOOL": true
 },
 "QuantityOnHand": {
 "N": "3"
 },
 "RelatedItems": {

DynamoDB 161

AWS SDK for .NET Developer Guide

 "NS": [
 "801",
 "822",
 "979"
]
 },
 "Pictures": {
 "L": [
 {
 "M": {
 "FrontView": {
 "S": "http://example/products/301_front.jpg"
 }
 }
 },
 {
 "M": {
 "RearView": {
 "S": "http://example/products/301_rear.jpg"
 }
 }
 },
 {
 "M": {
 "SideView": {
 "S": "http://example/products/301_left_side.jpg"
 }
 }
 }
]
 },
 "ProductReviews": {
 "M": {
 "FiveStar": {
 "SS": [
 "My daughter really enjoyed this bike!"
]
 },
 "ThreeStar": {
 "SS": [
 "This bike was okay, but I would have preferred it in my color.",
 "Fun to ride."
]
 }

DynamoDB 162

AWS SDK for .NET Developer Guide

 }
 }
}

Get a Single Item by Using Expressions and the Item’s Primary Key

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.GetItem
method and a set of expressions to get and then print the item that has an Id of 205. Only the
following attributes of the item are returned: Id, Title, Description, Color, RelatedItems,
Pictures, and ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new GetItemRequest
{
 TableName = "ProductCatalog",
 ProjectionExpression = "Id, Title, Description, Color, #ri, Pictures, #pr",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#ri", "RelatedItems" }
 },
 Key = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "205" } }
 },
};
var response = client.GetItem(request);

// PrintItem() is a custom function.
PrintItem(response.Item);

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent
the ProductReviews attribute and the placeholder #ri to represent the RelatedItems
attribute. The call to PrintItem refers to a custom function as described in Print an Item.

DynamoDB 163

AWS SDK for .NET Developer Guide

Get Multiple Items by Using Expressions and the Table’s Primary Key

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.Query
method and a set of expressions to get and then print the item that has an Id of 301, but only if
the value of Price is greater than 150. Only the following attributes of the item are returned: Id,
Title, and all of the ThreeStar attributes in ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new QueryRequest
{
 TableName = "ProductCatalog",
 KeyConditions = new Dictionary<string,Condition>
 {
 { "Id", new Condition()
 {
 ComparisonOperator = ComparisonOperator.EQ,
 AttributeValueList = new List<AttributeValue>
 {
 new AttributeValue { N = "301" }
 }
 }
 }
 },
 ProjectionExpression = "Id, Title, #pr.ThreeStar",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#p", "Price" }
 },
 ExpressionAttributeValues = new Dictionary<string,AttributeValue>
 {
 { ":val", new AttributeValue { N = "150" } }
 },
 FilterExpression = "#p > :val"
};
var response = client.Query(request);

foreach (var item in response.Items)
{
 // Write out the first page of an item's attribute keys and values.

DynamoDB 164

AWS SDK for .NET Developer Guide

 // PrintItem() is a custom function.
 PrintItem(item);
 Console.WriteLine("=====");
}

In the preceding example, the ProjectionExpression property specifies the attributes
to be returned. The ExpressionAttributeNames property specifies the placeholder
#pr to represent the ProductReviews attribute and the placeholder #p to represent the
Price attribute. #pr.ThreeStar specifies to return only the ThreeStar attribute. The
ExpressionAttributeValues property specifies the placeholder :val to represent the value
150. The FilterExpression property specifies that #p (Price) must be greater than :val
(150). The call to PrintItem refers to a custom function as described in Print an Item.

Get Multiple Items by Using Expressions and Other Item Attributes

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.Scan
method and a set of expressions to get and then print all items that have a ProductCategory of
Bike. Only the following attributes of the item are returned: Id, Title, and all of the attributes in
ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new ScanRequest
{
 TableName = "ProductCatalog",
 ProjectionExpression = "Id, Title, #pr",
 ExpressionAttributeValues = new Dictionary<string,AttributeValue>
 {
 { ":catg", new AttributeValue { S = "Bike" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#pc", "ProductCategory" }
 },
 FilterExpression = "#pc = :catg",
};
var response = client.Scan(request);

foreach (var item in response.Items)

DynamoDB 165

AWS SDK for .NET Developer Guide

{
 // Write out the first page/scan of an item's attribute keys and values.
 // PrintItem() is a custom function.
 PrintItem(item);
 Console.WriteLine("=====");
}

In the preceding example, the ProjectionExpression property specifies the attributes
to be returned. The ExpressionAttributeNames property specifies the placeholder #pr
to represent the ProductReviews attribute and the placeholder #pc to represent the
ProductCategory attribute. The ExpressionAttributeValues property specifies the
placeholder :catg to represent the value Bike. The FilterExpression property specifies that
#pc (ProductCategory) must be equal to :catg (Bike). The call to PrintItem refers to a
custom function as described in Print an Item.

Print an Item

The following example shows how to print an item’s attributes and values. This example is used in
the preceding examples that show how to Get a Single Item by Using Expressions and the Item’s
Primary Key, Get Multiple Items by Using Expressions and the Table’s Primary Key, and Get Multiple
Items by Using Expressions and Other Item Attributes.

// using Amazon.DynamoDBv2.Model;

// Writes out an item's attribute keys and values.
public static void PrintItem(Dictionary<string, AttributeValue> attrs)
{
 foreach (KeyValuePair<string, AttributeValue> kvp in attrs)
 {
 Console.Write(kvp.Key + " = ");
 PrintValue(kvp.Value);
 }
}

// Writes out just an attribute's value.
public static void PrintValue(AttributeValue value)
{
 // Binary attribute value.
 if (value.B != null)
 {
 Console.Write("Binary data");
 }

DynamoDB 166

AWS SDK for .NET Developer Guide

 // Binary set attribute value.
 else if (value.BS.Count > 0)
 {
 foreach (var bValue in value.BS)
 {
 Console.Write("\n Binary data");
 }
 }
 // List attribute value.
 else if (value.L.Count > 0)
 {
 foreach (AttributeValue attr in value.L)
 {
 PrintValue(attr);
 }
 }
 // Map attribute value.
 else if (value.M.Count > 0)
 {
 Console.Write("\n");
 PrintItem(value.M);
 }
 // Number attribute value.
 else if (value.N != null)
 {
 Console.Write(value.N);
 }
 // Number set attribute value.
 else if (value.NS.Count > 0)
 {
 Console.Write("{0}", string.Join("\n", value.NS.ToArray()));
 }
 // Null attribute value.
 else if (value.NULL)
 {
 Console.Write("Null");
 }
 // String attribute value.
 else if (value.S != null)
 {
 Console.Write(value.S);
 }
 // String set attribute value.
 else if (value.SS.Count > 0)

DynamoDB 167

AWS SDK for .NET Developer Guide

 {
 Console.Write("{0}", string.Join("\n", value.SS.ToArray()));
 }
 // Otherwise, boolean value.
 else
 {
 Console.Write(value.BOOL);
 }

 Console.Write("\n");
}

In the preceding example, each attribute value has several data-type-specific properties that can
be evaluated to determine the correct format to print the attribute. These properties include B,
BOOL, BS, L, M, N, NS, NULL, S, and SS, which correspond to those in the JSON Data Format. For
properties such as B, N, NULL, and S, if the corresponding property is not null, then the attribute
is of the corresponding non-null data type. For properties such as BS, L, M, NS, and SS, if Count
is greater than zero, then the attribute is of the corresponding non-zero-value data type. If all of
the attribute’s data-type-specific properties are either null or the Count equals zero, then the
attribute corresponds to the BOOL data type.

Create or Replace an Item by Using Expressions

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.PutItem
method and a set of expressions to update the item that has a Title of 18-Bicycle 301. If the
item doesn’t already exist, a new item is added.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new PutItemRequest
{
 TableName = "ProductCatalog",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":product", new AttributeValue { S = "18-Bicycle 301" } }
 },

DynamoDB 168

DataFormat.html

AWS SDK for .NET Developer Guide

 ConditionExpression = "#title = :product",
 // CreateItemData() is a custom function.
 Item = CreateItemData()
};
client.PutItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies
the placeholder :product to represent the value 18-Bicycle 301. The ConditionExpression
property specifies that #title (Title) must be equal to :product (18-Bicycle 301). The call
to CreateItemData refers to the following custom function:

// using Amazon.DynamoDBv2.Model;

// Provides a sample item that can be added to a table.
public static Dictionary<string, AttributeValue> CreateItemData()
{
 var itemData = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } },
 { "Title", new AttributeValue { S = "18\" Girl's Bike" } },
 { "BicycleType", new AttributeValue { S = "Road" } },
 { "Brand" , new AttributeValue { S = "Brand-Company C" } },
 { "Color", new AttributeValue { SS = new List<string>{ "Blue", "Silver" } } },
 { "Description", new AttributeValue { S = "301 description" } },
 { "Gender", new AttributeValue { S = "F" } },
 { "InStock", new AttributeValue { BOOL = true } },
 { "Pictures", new AttributeValue { L = new List<AttributeValue>{
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "FrontView", new AttributeValue { S = "http://example/
products/301_front.jpg" } } } } },
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "RearView", new AttributeValue {S = "http://example/
products/301_rear.jpg" } } } } },
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "SideView", new AttributeValue { S = "http://example/
products/301_left_side.jpg" } } } } }
 } } },
 { "Price", new AttributeValue { N = "185" } },
 { "ProductCategory", new AttributeValue { S = "Bike" } },
 { "ProductReviews", new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "FiveStar", new AttributeValue { SS = new List<string>{
 "My daughter really enjoyed this bike!" } } },

DynamoDB 169

AWS SDK for .NET Developer Guide

 { "OneStar", new AttributeValue { SS = new List<string>{
 "Fun to ride.",
 "This bike was okay, but I would have preferred it in my color." } } }
 } } },
 { "QuantityOnHand", new AttributeValue { N = "3" } },
 { "RelatedItems", new AttributeValue { NS = new List<string>{ "979", "822",
 "801" } } }
 };

 return itemData;
}

In the preceding example, an example item with sample data is returned to the caller. A series of
attributes and corresponding values are constructed, using data types such as BOOL, L, M, N, NS, S,
and SS, which correspond to those in the JSON Data Format.

Update an Item by Using Expressions

The following example features the
Amazon.DynamoDBv2.AmazonDynamoDBClient.UpdateItem method and a set of expressions
to change the Title to 18" Girl's Bike for the item with Id of 301.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new UpdateItemRequest
{
 TableName = "ProductCatalog",
 Key = new Dictionary<string,AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":newproduct", new AttributeValue { S = "18\" Girl's Bike" } }
 },
 UpdateExpression = "SET #title = :newproduct"
};

DynamoDB 170

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html

AWS SDK for .NET Developer Guide

client.UpdateItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property
specifies the placeholder :newproduct to represent the value 18" Girl's Bike. The
UpdateExpression property specifies to change #title (Title) to :newproduct (18"
Girl's Bike).

Delete an Item by Using Expressions

The following example features the
Amazon.DynamoDBv2.AmazonDynamoDBClient.DeleteItem method and a set of expressions
to delete the item with Id of 301, but only if the item’s Title is 18-Bicycle 301.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new DeleteItemRequest
{
 TableName = "ProductCatalog",
 Key = new Dictionary<string,AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":product", new AttributeValue { S = "18-Bicycle 301" } }
 },
 ConditionExpression = "#title = :product"
};
client.DeleteItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies
the placeholder :product to represent the value 18-Bicycle 301. The ConditionExpression
property specifies that #title (Title) must equal :product (18-Bicycle 301).

DynamoDB 171

AWS SDK for .NET Developer Guide

More Info

For more information and code examples, see:

• DynamoDB Series - Expressions

• Accessing Item Attributes with Projection Expressions

• Using Placeholders for Attribute Names and Values

• Specifying Conditions with Condition Expressions

• Modifying Items and Attributes with Update Expressions

• Working with Items Using the AWS SDK for .NET Low-Level API

• Querying Tables Using the AWS SDK for .NET Low-Level API

• Scanning Tables Using the AWS SDK for .NET Low-Level API

• Working with Local Secondary Indexes Using the AWS SDK for .NET Low-Level API

• Working with Global Secondary Indexes Using the AWS SDK for .NET Low-Level API

JSON support in Amazon DynamoDB

Note

The information in this topic is specific to projects based on .NET Framework and the AWS
SDK for .NET version 3.3 and earlier.

The AWS SDK for .NET supports JSON data when working with Amazon DynamoDB. This enables
you to more easily get JSON-formatted data from, and insert JSON documents into, DynamoDB
tables.

Topics

• Get Data from a DynamoDB Table in JSON Format

• Insert JSON Format Data into a DynamoDB Table

• DynamoDB Data Type Conversions to JSON

• More Info

DynamoDB 172

http://blogs.aws.amazon.com/net/post/TxZQM7VA9AUZ9L/DynamoDB-Series-Expressions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ExpressionPlaceholders.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetQuerying.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetScanning.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSILowLevelDotNet.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSILowLevelDotNet.html

AWS SDK for .NET Developer Guide

Get Data from a DynamoDB Table in JSON Format

The following example shows how to get data from a DynamoDB table in JSON format:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = table.GetItem(3, "Horse");

var jsonText = item.ToJson();
Console.Write(jsonText);

// Output:
// {"Name":"Shadow","Type":"Horse","Id":3}

var jsonPrettyText = item.ToJsonPretty();
Console.WriteLine(jsonPrettyText);

// Output:
// {
// "Name" : "Shadow",
// "Type" : "Horse",
// "Id" : 3
// }

In the preceding example, the ToJson method of the Document class converts an item from
the table into a JSON-formatted string. The item is retrieved through the GetItem method of
the Table class. To determine the item to get, in this example, the GetItem method uses the
hash-and-range primary key of the target item. To determine the table to get the item from, the
LoadTable method of the Table class uses an instance of the AmazonDynamoDBClient class
and the name of the target table in DynamoDB.

Insert JSON Format Data into a DynamoDB Table

The following example shows how to use JSON format to insert an item into a DynamoDB table:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");

DynamoDB 173

AWS SDK for .NET Developer Guide

var jsonText = "{\"Id\":6,\"Type\":\"Bird\",\"Name\":\"Tweety\"}";
var item = Document.FromJson(jsonText);

table.PutItem(item);

In the preceding example, the FromJson method of the Document class converts a JSON-
formatted string into an item. The item is inserted into the table through the PutItem method
of the Table class, which uses the instance of the Document class that contains the item. To
determine the table to insert the item into, the LoadTable method of the Table class is called,
specifying an instance of the AmazonDynamoDBClient class and the name of the target table in
DynamoDB.

DynamoDB Data Type Conversions to JSON

Whenever you call the ToJson method of the Document class, and then on the resulting
JSON data you call the FromJson method to convert the JSON data back into an instance of a
Document class, some DynamoDB data types will not be converted as expected. Specifically:

• DynamoDB sets (the SS, NS, and BS types) will be converted to JSON arrays.

• DynamoDB binary scalars and sets (the B and BS types) will be converted to base64-encoded
JSON strings or lists of strings.

In this scenario, you must call the DecodeBase64Attributes method of the Document class
to replace the base64-encoded JSON data with the correct binary representation. The following
example replaces a base64-encoded binary scalar item attribute in an instance of a Document
class, named Picture, with the correct binary representation. This example also does the same
for a base64-encoded binary set item attribute in the same instance of the Document class,
named RelatedPictures:

item.DecodeBase64Attributes("Picture", "RelatedPictures");

More Info

For more information and examples of programming JSON with DynamoDB with the AWS SDK
for .NET, see:

• DynamoDB JSON Support

• Amazon DynamoDB Update - JSON, Expanded Free Tier, Flexible Scaling, Larger Items

DynamoDB 174

https://aws.amazon.com/blogs/developer/dynamodb-json-support/
https://aws.amazon.com/blogs/aws/dynamodb-update-json-and-more/

AWS SDK for .NET Developer Guide

Working with Amazon EC2

The AWS SDK for .NET supports Amazon EC2, which is a web service that provides resizable
computing capacity. You use this computing capacity to build and host your software systems.

APIs

The AWS SDK for .NET provides APIs for Amazon EC2 clients. The APIs enable you to work with EC2
features such as security groups and key pairs. The APIs also enable you to control Amazon EC2
instances. This section contains a small number of examples that show you the patterns you can
follow when working with these APIs. To view the full set of APIs, see the AWS SDK for .NET API
Reference (and scroll to "Amazon.EC2").

The Amazon EC2 APIs are provided by the AWSSDK.EC2 NuGet package.

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

About the examples

The examples in this section show you how to work with Amazon EC2 clients and manage Amazon
EC2 instances.

The EC2 Spot Instance tutorial shows you how to request Amazon EC2 Spot Instances. Spot
Instances enable you to access unused EC2 capacity for less than the On-Demand price.

Topics

• Working with security groups in Amazon EC2

• Working with Amazon EC2 key pairs

• Seeing your Amazon EC2 Regions and Availability Zones

• Working with Amazon EC2 instances

• Amazon EC2 Spot Instance tutorial

Working with security groups in Amazon EC2

In Amazon EC2, a security group acts as a virtual firewall that controls the network traffic for one
or more EC2 instances. By default, EC2 associates your instances with a security group that allows

Amazon EC2 175

https://docs.aws.amazon.com/ec2/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://www.nuget.org/packages/AWSSDK.EC2

AWS SDK for .NET Developer Guide

no inbound traffic. You can create a security group that allows your EC2 instances to accept certain
traffic. For example, if you need to connect to an EC2 Windows instance, you must configure the
security group to allow RDP traffic.

To read more about security groups see Amazon EC2 security groups in the Amazon EC2 User
Guide.

Warning

EC2-Classic was retired on August 15, 2022. We recommend that you migrate from EC2-
Classic to a VPC. For more information, see the blog post EC2-Classic Networking is Retiring
– Here's How to Prepare.

For information about the APIs and prerequisites, see the parent section (Working with Amazon
EC2).

Topics

• Enumerating security groups

• Creating security groups

• Updating security groups

Enumerating security groups

This example shows you how to use the AWS SDK for .NET to enumerate security groups. If you
supply an Amazon Virtual Private Cloud ID, the application enumerates the security groups for that
particular VPC. Otherwise, the application simply displays a list of all available security groups.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Enumerate security groups

• Complete code

• Additional considerations

Amazon EC2 176

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS SDK for .NET Developer Guide

Enumerate security groups

The following snippet enumerates your security groups. It enumerates all groups or the groups for
a particular VPC if one is given.

The example at the end of this topic shows this snippet in use.

 //
 // Method to enumerate the security groups
 private static async Task EnumerateGroups(IAmazonEC2 ec2Client, string vpcID)
 {
 // A request object, in case we need it.
 var request = new DescribeSecurityGroupsRequest();

 // Put together the properties, if needed
 if(!string.IsNullOrEmpty(vpcID))
 {
 // We have a VPC ID. Find the security groups for just that VPC.
 Console.WriteLine($"\nGetting security groups for VPC {vpcID}...\n");
 request.Filters.Add(new Filter
 {
 Name = "vpc-id",
 Values = new List<string>() { vpcID }
 });
 }

 // Get the list of security groups
 DescribeSecurityGroupsResponse response =
 await ec2Client.DescribeSecurityGroupsAsync(request);

 // Display the list of security groups.
 foreach (SecurityGroup item in response.SecurityGroups)
 {
 Console.WriteLine("Security group: " + item.GroupId);
 Console.WriteLine("\tGroupId: " + item.GroupId);
 Console.WriteLine("\tGroupName: " + item.GroupName);
 Console.WriteLine("\tVpcId: " + item.VpcId);
 Console.WriteLine();
 }
 }

Amazon EC2 177

AWS SDK for .NET Developer Guide

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class DescribeSecurityGroupsRequest

Class DescribeSecurityGroupsResponse

Class Filter

Class SecurityGroup

The Code

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2EnumerateSecGroups
{
 class Program
 {
 static async Task Main(string[] args)
 {
 // Parse the command line
 string vpcID = string.Empty;
 if(args.Length == 0)

Amazon EC2 178

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSecurityGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSecurityGroupsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TFilter.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSecurityGroup.html

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine("\nEC2EnumerateSecGroups [vpc_id]");
 Console.WriteLine(" vpc_id - The ID of the VPC for which you want to see
 security groups.");
 Console.WriteLine("\nSince you specified no arguments, showing all available
 security groups.");
 }
 else
 {
 vpcID = args[0];
 }

 if(vpcID.StartsWith("vpc-") || string.IsNullOrEmpty(vpcID))
 {
 // Create an EC2 client object
 var ec2Client = new AmazonEC2Client();

 // Enumerate the security groups
 await EnumerateGroups(ec2Client, vpcID);
 }
 else
 {
 Console.WriteLine("Could not find a valid VPC ID in the command-line
 arguments:");
 Console.WriteLine($"{args[0]}");
 }
 }

 //
 // Method to enumerate the security groups
 private static async Task EnumerateGroups(IAmazonEC2 ec2Client, string vpcID)
 {
 // A request object, in case we need it.
 var request = new DescribeSecurityGroupsRequest();

 // Put together the properties, if needed
 if(!string.IsNullOrEmpty(vpcID))
 {
 // We have a VPC ID. Find the security groups for just that VPC.
 Console.WriteLine($"\nGetting security groups for VPC {vpcID}...\n");
 request.Filters.Add(new Filter
 {
 Name = "vpc-id",

Amazon EC2 179

AWS SDK for .NET Developer Guide

 Values = new List<string>() { vpcID }
 });
 }

 // Get the list of security groups
 DescribeSecurityGroupsResponse response =
 await ec2Client.DescribeSecurityGroupsAsync(request);

 // Display the list of security groups.
 foreach (SecurityGroup item in response.SecurityGroups)
 {
 Console.WriteLine("Security group: " + item.GroupId);
 Console.WriteLine("\tGroupId: " + item.GroupId);
 Console.WriteLine("\tGroupName: " + item.GroupName);
 Console.WriteLine("\tVpcId: " + item.VpcId);
 Console.WriteLine();
 }
 }
 }
}

Additional considerations

• Notice for the VPC case that the filter is constructed with the Name part of the name-value
pair set to "vpc-id". This name comes from the description for the Filters property of the
DescribeSecurityGroupsRequest class.

• To get the complete list of your security groups, you can also use DescribeSecurityGroupsAsync
with no parameters.

• You can verify the results by checking the list of security groups in the Amazon EC2 console.

Creating security groups

This example shows you how to use the AWS SDK for .NET to create a security group. You can
provide the ID of an existing VPC to create a security group for EC2 in a VPC. If you don't supply
such an ID, the new security group will be for EC2-Classic if your AWS account supports this.

If you don't supply a VPC ID and your AWS account doesn't support EC2-Classic, the new security
group will belong to the default VPC of your account.

Amazon EC2 180

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSecurityGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSecurityGroupsAsyncCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSecurityGroupsAsyncCancellationToken.html
https://console.aws.amazon.com/ec2/v2/home#SecurityGroups

AWS SDK for .NET Developer Guide

Warning

EC2-Classic was retired on August 15, 2022. We recommend that you migrate from EC2-
Classic to a VPC. For more information, see the blog post EC2-Classic Networking is Retiring
– Here's How to Prepare.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Find existing security groups

• Create a security group

• Complete code

Find existing security groups

The following snippet searches for existing security groups with the given name in the given VPC.

The example at the end of this topic shows this snippet in use.

 //
 // Method to determine if a security group with the specified name
 // already exists in the VPC
 private static async Task<List<SecurityGroup>> FindSecurityGroups(
 IAmazonEC2 ec2Client, string groupName, string vpcID)
 {
 var request = new DescribeSecurityGroupsRequest();
 request.Filters.Add(new Filter{
 Name = "group-name",
 Values = new List<string>() { groupName }
 });
 if(!string.IsNullOrEmpty(vpcID))
 request.Filters.Add(new Filter{
 Name = "vpc-id",
 Values = new List<string>() { vpcID }
 });

 var response = await ec2Client.DescribeSecurityGroupsAsync(request);
 return response.SecurityGroups;

Amazon EC2 181

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK for .NET Developer Guide

 }

Create a security group

The following snippet creates a new security group if a group with that name doesn't exist in the
given VPC. If no VPC is given and one or more groups with that name exist, the snippet simply
returns the list of groups.

The example at the end of this topic shows this snippet in use.

 //
 // Method to create a new security group (either EC2-Classic or EC2-VPC)
 // If vpcID is empty, the security group will be for EC2-Classic
 private static async Task<List<SecurityGroup>> CreateSecurityGroup(
 IAmazonEC2 ec2Client, string groupName, string vpcID)
 {
 // See if one or more security groups with that name
 // already exist in the given VPC. If so, return the list of them.
 var securityGroups = await FindSecurityGroups(ec2Client, groupName, vpcID);
 if (securityGroups.Count > 0)
 {
 Console.WriteLine(
 $"\nOne or more security groups with name {groupName} already exist.\n");
 return securityGroups;
 }

 // If the security group doesn't already exists, create it.
 var createRequest = new CreateSecurityGroupRequest{
 GroupName = groupName
 };
 if(string.IsNullOrEmpty(vpcID))
 {
 createRequest.Description = "My .NET example security group for EC2-Classic";
 }
 else
 {
 createRequest.VpcId = vpcID;
 createRequest.Description = "My .NET example security group for EC2-VPC";
 }
 CreateSecurityGroupResponse createResponse =
 await ec2Client.CreateSecurityGroupAsync(createRequest);

 // Return the new security group

Amazon EC2 182

AWS SDK for .NET Developer Guide

 DescribeSecurityGroupsResponse describeResponse =
 await ec2Client.DescribeSecurityGroupsAsync(new DescribeSecurityGroupsRequest{
 GroupIds = new List<string>() { createResponse.GroupId }
 });
 return describeResponse.SecurityGroups;
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class CreateSecurityGroupRequest

Class CreateSecurityGroupResponse

Class DescribeSecurityGroupsRequest

Class DescribeSecurityGroupsResponse

Class Filter

Class SecurityGroup

The code

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Amazon.EC2;

Amazon EC2 183

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateSecurityGroupResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSecurityGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSecurityGroupsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TFilter.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSecurityGroup.html

AWS SDK for .NET Developer Guide

using Amazon.EC2.Model;

namespace EC2CreateSecGroup
{
 // =
 = = =
 // Class to create a security group
 class Program
 {
 private const int MaxArgs = 2;

 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)
 {
 PrintHelp();
 return;
 }
 if(parsedArgs.Count > MaxArgs)
 CommandLine.ErrorExit("\nThe number of command-line arguments is incorrect." +
 "\nRun the command with no arguments to see help.");

 // Get the application arguments from the parsed list
 var groupName = CommandLine.GetArgument(parsedArgs, null, "-g", "--group-name");
 var vpcID = CommandLine.GetArgument(parsedArgs, null, "-v", "--vpc-id");
 if(string.IsNullOrEmpty(groupName))
 CommandLine.ErrorExit("\nYou must supply a name for the new group." +
 "\nRun the command with no arguments to see help.");
 if(!string.IsNullOrEmpty(vpcID) && !vpcID.StartsWith("vpc-"))
 CommandLine.ErrorExit($"\nNot a valid VPC ID: {vpcID}");

 // groupName has a value and vpcID either has a value or is null (which is fine)
 // Create the new security group and display information about it
 var securityGroups =
 await CreateSecurityGroup(new AmazonEC2Client(), groupName, vpcID);
 Console.WriteLine("Information about the security group(s):");
 foreach(var group in securityGroups)
 {
 Console.WriteLine($"\nGroupName: {group.GroupName}");
 Console.WriteLine($"GroupId: {group.GroupId}");
 Console.WriteLine($"Description: {group.Description}");
 Console.WriteLine($"VpcId (if any): {group.VpcId}");

Amazon EC2 184

AWS SDK for .NET Developer Guide

 }
 }

 //
 // Method to create a new security group (either EC2-Classic or EC2-VPC)
 // If vpcID is empty, the security group will be for EC2-Classic
 private static async Task<List<SecurityGroup>> CreateSecurityGroup(
 IAmazonEC2 ec2Client, string groupName, string vpcID)
 {
 // See if one or more security groups with that name
 // already exist in the given VPC. If so, return the list of them.
 var securityGroups = await FindSecurityGroups(ec2Client, groupName, vpcID);
 if (securityGroups.Count > 0)
 {
 Console.WriteLine(
 $"\nOne or more security groups with name {groupName} already exist.\n");
 return securityGroups;
 }

 // If the security group doesn't already exists, create it.
 var createRequest = new CreateSecurityGroupRequest{
 GroupName = groupName
 };
 if(string.IsNullOrEmpty(vpcID))
 {
 createRequest.Description = "Security group for .NET code example (no VPC
 specified)";
 }
 else
 {
 createRequest.VpcId = vpcID;
 createRequest.Description = "Security group for .NET code example (VPC: " +
 vpcID + ")";
 }
 CreateSecurityGroupResponse createResponse =
 await ec2Client.CreateSecurityGroupAsync(createRequest);

 // Return the new security group
 DescribeSecurityGroupsResponse describeResponse =
 await ec2Client.DescribeSecurityGroupsAsync(new DescribeSecurityGroupsRequest{
 GroupIds = new List<string>() { createResponse.GroupId }
 });
 return describeResponse.SecurityGroups;

Amazon EC2 185

AWS SDK for .NET Developer Guide

 }

 //
 // Method to determine if a security group with the specified name
 // already exists in the VPC
 private static async Task<List<SecurityGroup>> FindSecurityGroups(
 IAmazonEC2 ec2Client, string groupName, string vpcID)
 {
 var request = new DescribeSecurityGroupsRequest();
 request.Filters.Add(new Filter{
 Name = "group-name",
 Values = new List<string>() { groupName }
 });
 if(!string.IsNullOrEmpty(vpcID))
 request.Filters.Add(new Filter{
 Name = "vpc-id",
 Values = new List<string>() { vpcID }
 });

 var response = await ec2Client.DescribeSecurityGroupsAsync(request);
 return response.SecurityGroups;
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: EC2CreateSecGroup -g <group-name> [-v <vpc-id>]" +
 "\n -g, --group-name: The name you would like the new security group to have."
 +
 "\n -v, --vpc-id: The ID of a VPC to which the new security group will
 belong." +
 "\n If vpc-id isn't present, the security group will be" +
 "\n for EC2-Classic (if your AWS account supports this)" +
 "\n or will use the default VCP for EC2-VPC.");
 }
 }

 // =
 = = =

Amazon EC2 186

AWS SDK for .NET Developer Guide

 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

Amazon EC2 187

AWS SDK for .NET Developer Guide

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Updating security groups

This example shows you how to use the AWS SDK for .NET to add a rule to a security group. In
particular, the example adds a rule to allow inbound traffic on a given TCP port, which can be used,
for example, for remote connections to an EC2 instance. The application takes the ID of an existing
security group, an IP address (or address range) in CIDR format, and optionally a TCP port number.
It then adds an inbound rule to the given security group.

Amazon EC2 188

AWS SDK for .NET Developer Guide

Note

To use this example, you need an IP address (or address range) in CIDR format. See
Additional considerations at this end of this topic for methods to obtain the IP address of
your local computer.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Add an inbound rule

• Complete code

• Additional considerations

Add an inbound rule

The following snippet adds an inbound rule to a security group for a particular IP address (or
range) and TCP port.

The example at the end of this topic shows this snippet in use.

 //
 // Method that adds a TCP ingress rule to a security group
 private static async Task AddIngressRule(
 IAmazonEC2 eC2Client, string groupID, string ipAddress, int port)
 {
 // Create an object to hold the request information for the rule.
 // It uses an IpPermission object to hold the IP information for the rule.
 var ingressRequest = new AuthorizeSecurityGroupIngressRequest{
 GroupId = groupID};
 ingressRequest.IpPermissions.Add(new IpPermission{
 IpProtocol = "tcp",
 FromPort = port,
 ToPort = port,
 Ipv4Ranges = new List<IpRange>() { new IpRange { CidrIp = ipAddress } }
 });

 // Create the inbound rule for the security group
 AuthorizeSecurityGroupIngressResponse responseIngress =

Amazon EC2 189

AWS SDK for .NET Developer Guide

 await eC2Client.AuthorizeSecurityGroupIngressAsync(ingressRequest);
 Console.WriteLine($"\nNew RDP rule was written in {groupID} for {ipAddress}.");
 Console.WriteLine($"Result: {responseIngress.HttpStatusCode}");
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class AuthorizeSecurityGroupIngressRequest

Class AuthorizeSecurityGroupIngressResponse

Class IpPermission

Class IpRange

The code

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2AddRuleForRDP
{
 // =
 = = =

Amazon EC2 190

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAuthorizeSecurityGroupIngressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAuthorizeSecurityGroupIngressResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIpPermission.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIpRange.html

AWS SDK for .NET Developer Guide

 // Class to add a rule that allows inbound traffic on TCP a port
 class Program
 {
 private const int DefaultPort = 3389;

 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)
 {
 PrintHelp();
 return;
 }

 // Get the application arguments from the parsed list
 var groupID = CommandLine.GetArgument(parsedArgs, null, "-g", "--group-id");
 var ipAddress = CommandLine.GetArgument(parsedArgs, null, "-i", "--ip-address");
 var portStr = CommandLine.GetArgument(parsedArgs, DefaultPort.ToString(), "-p",
 "--port");
 if(string.IsNullOrEmpty(ipAddress))
 CommandLine.ErrorExit("\nYou must supply an IP address in CIDR format.");
 if(string.IsNullOrEmpty(groupID) || !groupID.StartsWith("sg-"))
 CommandLine.ErrorExit("\nThe ID for a security group is missing or
 incorrect.");
 if(int.Parse(portStr) == 0)
 CommandLine.ErrorExit($"\nThe given TCP port number, {portStr}, isn't
 allowed.");

 // Add a rule to the given security group that allows
 // inbound traffic on a TCP port
 await AddIngressRule(
 new AmazonEC2Client(), groupID, ipAddress, int.Parse(portStr));
 }

 //
 // Method that adds a TCP ingress rule to a security group
 private static async Task AddIngressRule(
 IAmazonEC2 eC2Client, string groupID, string ipAddress, int port)
 {
 // Create an object to hold the request information for the rule.
 // It uses an IpPermission object to hold the IP information for the rule.
 var ingressRequest = new AuthorizeSecurityGroupIngressRequest{

Amazon EC2 191

AWS SDK for .NET Developer Guide

 GroupId = groupID};
 ingressRequest.IpPermissions.Add(new IpPermission{
 IpProtocol = "tcp",
 FromPort = port,
 ToPort = port,
 Ipv4Ranges = new List<IpRange>() { new IpRange { CidrIp = ipAddress } }
 });

 // Create the inbound rule for the security group
 AuthorizeSecurityGroupIngressResponse responseIngress =
 await eC2Client.AuthorizeSecurityGroupIngressAsync(ingressRequest);
 Console.WriteLine($"\nNew RDP rule was written in {groupID} for {ipAddress}.");
 Console.WriteLine($"Result: {responseIngress.HttpStatusCode}");
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: EC2AddRuleForRDP -g <group-id> -i <ip-address> [-p <port>]" +
 "\n -g, --group-id: The ID of the security group to which you want to add the
 inbound rule." +
 "\n -i, --ip-address: An IP address or address range in CIDR format." +
 "\n -p, --port: The TCP port number. Defaults to 3389.");
 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:

Amazon EC2 192

AWS SDK for .NET Developer Guide

 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.

Amazon EC2 193

AWS SDK for .NET Developer Guide

 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Additional considerations

• If you don't supply a port number, the application defaults to port 3389. This is the port for
Windows RDP, which enables you to connect to an EC2 instance running Windows. If you're
launching an EC2 instance running Linux, you can use TCP port 22 (SSH) instead.

• Notice that the example sets IpProtocol to "tcp". The values for IpProtocol can be found in
the description for the IpProtocol property of the IpPermission class.

• You might want the IP address of your local computer when you use this example. The following
are some of the ways in which you can obtain the address.

• If your local computer (from which you will connect to your EC2 instance) has a static
public IP address, you can use a service to get that address. One such service is http://
checkip.amazonaws.com/. To read more about authorizing inbound traffic, see Add rules to a
security group and Security group rules for different use cases in the Amazon EC2 User Guide.

• Another way to obtain the IP address of your local computer is to use the Amazon EC2 console.

Amazon EC2 194

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIpPermission.html
http://checkip.amazonaws.com/
http://checkip.amazonaws.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://console.aws.amazon.com/ec2/v2/home#SecurityGroups

AWS SDK for .NET Developer Guide

Select one of your security groups, select the Inbound rules tab, and choose Edit inbound
rules. In an inbound rule, open the drop-down menu in the Source column and choose My IP
to see the IP address of your local computer in CIDR format. Be sure to Cancel the operation.

• You can verify the results of this example by examining the list of security groups in the Amazon
EC2 console.

Working with Amazon EC2 key pairs

Amazon EC2 uses public–key cryptography to encrypt and decrypt login information. Public–key
cryptography uses a public key to encrypt data, and then the recipient uses the private key to
decrypt the data. The public and private keys are known as a key pair. If you want to log into an
EC2 instance, you must specify a key pair when you launch it, and then provide the private key of
the pair when you connect to it.

When you launch an EC2 instance, you can create a key pair for it or use one that you've already
used when launching other instances. To read more about Amazon EC2 key pairs, see Working with
Amazon EC2 key pairs in the Amazon EC2 User Guide.

For information about the APIs and prerequisites, see the parent section (Working with Amazon
EC2).

Topics

• Creating and displaying key pairs

• Deleting key pairs

Creating and displaying key pairs

This example shows you how to use the AWS SDK for .NET to create a key pair. The application
takes the name for the new key pair and the name of a PEM file (with a ".pem" extension). It creates
the keypair, writes the private key to the PEM file, and then displays all available key pairs. If you
provide no command-line arguments, the application simply displays all available key pairs.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

Amazon EC2 195

https://console.aws.amazon.com/ec2/v2/home#SecurityGroups
https://console.aws.amazon.com/ec2/v2/home#SecurityGroups
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS SDK for .NET Developer Guide

• Create the key pair

• Display available key pairs

• Complete code

• Additional considerations

Create the key pair

The following snippet creates a key pair and then stores the private key to the given PEM file.

The example at the end of this topic shows this snippet in use.

 //
 // Method to create a key pair and save the key material in a PEM file
 private static async Task CreateKeyPair(
 IAmazonEC2 ec2Client, string keyPairName, string pemFileName)
 {
 // Create the key pair
 CreateKeyPairResponse response =
 await ec2Client.CreateKeyPairAsync(new CreateKeyPairRequest{
 KeyName = keyPairName
 });
 Console.WriteLine($"\nCreated new key pair: {response.KeyPair.KeyName}");

 // Save the private key in a PEM file
 using (var s = new FileStream(pemFileName, FileMode.Create))
 using (var writer = new StreamWriter(s))
 {
 writer.WriteLine(response.KeyPair.KeyMaterial);
 }
 }

Display available key pairs

The following snippet displays a list of the available key pairs.

The example at the end of this topic shows this snippet in use.

 //
 // Method to show the key pairs that are available
 private static async Task EnumerateKeyPairs(IAmazonEC2 ec2Client)
 {

Amazon EC2 196

AWS SDK for .NET Developer Guide

 DescribeKeyPairsResponse response = await ec2Client.DescribeKeyPairsAsync();
 Console.WriteLine("Available key pairs:");
 foreach (KeyPairInfo item in response.KeyPairs)
 Console.WriteLine($" {item.KeyName}");
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class CreateKeyPairRequest

Class CreateKeyPairResponse

Class DescribeKeyPairsResponse

Class KeyPairInfo

The code

using System;
using System.Threading.Tasks;
using System.IO;
using Amazon.EC2;
using Amazon.EC2.Model;
using System.Collections.Generic;

namespace EC2CreateKeyPair
{

Amazon EC2 197

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateKeyPairResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeKeyPairsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TKeyPairInfo.html

AWS SDK for .NET Developer Guide

 // =
 = = =
 // Class to create and store a key pair
 class Program
 {
 static async Task Main(string[] args)
 {
 // Create the EC2 client
 var ec2Client = new AmazonEC2Client();

 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)
 {
 // In the case of no command-line arguments,
 // just show help and the existing key pairs
 PrintHelp();
 Console.WriteLine("\nNo arguments specified.");
 Console.Write(
 "Do you want to see a list of the existing key pairs? ((y) or n): ");
 string response = Console.ReadLine();
 if((string.IsNullOrEmpty(response)) || (response.ToLower() == "y"))
 await EnumerateKeyPairs(ec2Client);
 return;
 }

 // Get the application arguments from the parsed list
 string keyPairName =
 CommandLine.GetArgument(parsedArgs, null, "-k", "--keypair-name");
 string pemFileName =
 CommandLine.GetArgument(parsedArgs, null, "-p", "--pem-filename");
 if(string.IsNullOrEmpty(keyPairName))
 CommandLine.ErrorExit("\nNo key pair name specified." +
 "\nRun the command with no arguments to see help.");
 if(string.IsNullOrEmpty(pemFileName) || !pemFileName.EndsWith(".pem"))
 CommandLine.ErrorExit("\nThe PEM filename is missing or incorrect." +
 "\nRun the command with no arguments to see help.");

 // Create the key pair
 await CreateKeyPair(ec2Client, keyPairName, pemFileName);
 await EnumerateKeyPairs(ec2Client);
 }

Amazon EC2 198

AWS SDK for .NET Developer Guide

 //
 // Method to create a key pair and save the key material in a PEM file
 private static async Task CreateKeyPair(
 IAmazonEC2 ec2Client, string keyPairName, string pemFileName)
 {
 // Create the key pair
 CreateKeyPairResponse response =
 await ec2Client.CreateKeyPairAsync(new CreateKeyPairRequest{
 KeyName = keyPairName
 });
 Console.WriteLine($"\nCreated new key pair: {response.KeyPair.KeyName}");

 // Save the private key in a PEM file
 using (var s = new FileStream(pemFileName, FileMode.Create))
 using (var writer = new StreamWriter(s))
 {
 writer.WriteLine(response.KeyPair.KeyMaterial);
 }
 }

 //
 // Method to show the key pairs that are available
 private static async Task EnumerateKeyPairs(IAmazonEC2 ec2Client)
 {
 DescribeKeyPairsResponse response = await ec2Client.DescribeKeyPairsAsync();
 Console.WriteLine("Available key pairs:");
 foreach (KeyPairInfo item in response.KeyPairs)
 Console.WriteLine($" {item.KeyName}");
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: EC2CreateKeyPair -k <keypair-name> -p <pem-filename>" +
 "\n -k, --keypair-name: The name you want to assign to the key pair." +
 "\n -p, --pem-filename: The name of the PEM file to create, with a \".pem\"
 extension.");
 }
 }

Amazon EC2 199

AWS SDK for .NET Developer Guide

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;

Amazon EC2 200

AWS SDK for .NET Developer Guide

 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Additional considerations

• After you run the example, you can see the new key pair in the Amazon EC2 console.

• When you create a key pair, you must save the private key that is returned because you can't
retrieve the private key later.

Amazon EC2 201

https://console.aws.amazon.com/ec2/#KeyPairs

AWS SDK for .NET Developer Guide

Deleting key pairs

This example shows you how to use the AWS SDK for .NET to delete a key pair. The application
takes the name of a key pair. It deletes the key pair and then displays all available key pairs. If you
provide no command-line arguments, the application simply displays all available key pairs.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Delete the key pair

• Display available key pairs

• Complete code

Delete the key pair

The following snippet deletes a key pair.

The example at the end of this topic shows this snippet in use.

 //
 // Method to delete a key pair
 private static async Task DeleteKeyPair(IAmazonEC2 ec2Client, string keyName)
 {
 await ec2Client.DeleteKeyPairAsync(new DeleteKeyPairRequest{
 KeyName = keyName});
 Console.WriteLine($"\nKey pair {keyName} has been deleted (if it existed).");
 }

Display available key pairs

The following snippet displays a list of the available key pairs.

The example at the end of this topic shows this snippet in use.

 //
 // Method to show the key pairs that are available
 private static async Task EnumerateKeyPairs(IAmazonEC2 ec2Client)
 {
 DescribeKeyPairsResponse response = await ec2Client.DescribeKeyPairsAsync();
 Console.WriteLine("Available key pairs:");

Amazon EC2 202

AWS SDK for .NET Developer Guide

 foreach (KeyPairInfo item in response.KeyPairs)
 Console.WriteLine($" {item.KeyName}");
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class DeleteKeyPairRequest

Class DescribeKeyPairsResponse

Class KeyPairInfo

The code

using System;
using System.Threading.Tasks;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2DeleteKeyPair
{
 class Program
 {
 static async Task Main(string[] args)
 {
 // Create the EC2 client
 var ec2Client = new AmazonEC2Client();

Amazon EC2 203

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDeleteKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeKeyPairsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TKeyPairInfo.html

AWS SDK for .NET Developer Guide

 if(args.Length == 1)
 {
 // Delete a key pair (if it exists)
 await DeleteKeyPair(ec2Client, args[0]);

 // Display the key pairs that are left
 await EnumerateKeyPairs(ec2Client);
 }
 else
 {
 Console.WriteLine("\nUsage: EC2DeleteKeyPair keypair-name");
 Console.WriteLine(" keypair-name - The name of the key pair you want to
 delete.");
 Console.WriteLine("\nNo arguments specified.");
 Console.Write(
 "Do you want to see a list of the existing key pairs? ((y) or n): ");
 string response = Console.ReadLine();
 if((string.IsNullOrEmpty(response)) || (response.ToLower() == "y"))
 await EnumerateKeyPairs(ec2Client);
 }
 }

 //
 // Method to delete a key pair
 private static async Task DeleteKeyPair(IAmazonEC2 ec2Client, string keyName)
 {
 await ec2Client.DeleteKeyPairAsync(new DeleteKeyPairRequest{
 KeyName = keyName});
 Console.WriteLine($"\nKey pair {keyName} has been deleted (if it existed).");
 }

 //
 // Method to show the key pairs that are available
 private static async Task EnumerateKeyPairs(IAmazonEC2 ec2Client)
 {
 DescribeKeyPairsResponse response = await ec2Client.DescribeKeyPairsAsync();
 Console.WriteLine("Available key pairs:");
 foreach (KeyPairInfo item in response.KeyPairs)
 Console.WriteLine($" {item.KeyName}");
 }
 }

Amazon EC2 204

AWS SDK for .NET Developer Guide

}

Seeing your Amazon EC2 Regions and Availability Zones

Amazon EC2 is hosted in multiple locations worldwide. These locations are composed of Regions
and Availability Zones. Each Region is a separate geographic area that has multiple, isolated
locations known as Availability Zones.

To read more about Regions and Availability Zones, see Regions and Zones in the Amazon EC2 User
Guide.

This example shows you how to use the AWS SDK for .NET to get details about the Regions
and Availability Zones related to an EC2 client. The application displays lists of the Regions and
Availability Zones available to an EC2 client.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class DescribeAvailabilityZonesResponse

Class DescribeRegionsResponse

Class AvailabilityZone

Class Region

using System;
using System.Threading.Tasks;
using Amazon.EC2;
using Amazon.EC2.Model;

Amazon EC2 205

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeAvailabilityZonesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeRegionsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAvailabilityZone.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRegion.html

AWS SDK for .NET Developer Guide

namespace EC2RegionsAndZones
{
 class Program
 {
 static async Task Main(string[] args)
 {
 Console.WriteLine(
 "Finding the Regions and Availability Zones available to an EC2 client...");

 // Create the EC2 client
 var ec2Client = new AmazonEC2Client();

 // Display the Regions and Availability Zones
 await DescribeRegions(ec2Client);
 await DescribeAvailabilityZones(ec2Client);
 }

 //
 // Method to display Regions
 private static async Task DescribeRegions(IAmazonEC2 ec2Client)
 {
 Console.WriteLine("\nRegions that are enabled for the EC2 client:");
 DescribeRegionsResponse response = await ec2Client.DescribeRegionsAsync();
 foreach (Region region in response.Regions)
 Console.WriteLine(region.RegionName);
 }

 //
 // Method to display Availability Zones
 private static async Task DescribeAvailabilityZones(IAmazonEC2 ec2Client)
 {
 Console.WriteLine("\nAvailability Zones for the EC2 client's region:");
 DescribeAvailabilityZonesResponse response =
 await ec2Client.DescribeAvailabilityZonesAsync();
 foreach (AvailabilityZone az in response.AvailabilityZones)
 Console.WriteLine(az.ZoneName);
 }
 }
}

Amazon EC2 206

AWS SDK for .NET Developer Guide

Working with Amazon EC2 instances

You can use the AWS SDK for .NET to control Amazon EC2 instances with operations such as create,
start, and terminate. The topics in this section provide some examples of how to do this. To read
more about EC2 instances, see Amazon EC2 instances in the Amazon EC2 User Guide.

For information about the APIs and prerequisites, see the parent section (Working with Amazon
EC2).

Topics

• Launching an Amazon EC2 instance

• Terminating an Amazon EC2 instance

Launching an Amazon EC2 instance

This example shows you how to use the AWS SDK for .NET to launch one or more identically
configured Amazon EC2 instances from the same Amazon Machine Image (AMI). Using several
inputs that you supply, the application launches an EC2 instance and then monitors the instance
until it's out of the "Pending" state.

When your EC2 instance is running, you can connect to it remotely, as described in (optional)
Connect to the instance.

Warning

EC2-Classic was retired on August 15, 2022. We recommend that you migrate from EC2-
Classic to a VPC. For more information, see the blog post EC2-Classic Networking is Retiring
– Here's How to Prepare.

The following sections provide snippets and other information for this example. The complete code
for the example is shown after the snippets, and can be built and run as is.

Topics

• Gather what you need

• Launch an instance

• Monitor the instance

Amazon EC2 207

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK for .NET Developer Guide

• Complete code

• Additional considerations

• (optional) Connect to the instance

• Clean up

Gather what you need

To launch an EC2 instance, you'll need several things.

• A VPC where the instance will be launched. If it'll be a Windows instance and you'll be connecting
to it through RDP, the VPC will most likely need to have an internet gateway attached to it, as
well as an entry for the internet gateway in the route table. For more information, see Internet
gateways in the Amazon VPC User Guide.

• The ID of an existing subnet in the VPC where the instance will be launched. An easy way
to find or create this is to sign in to the Amazon VPC console, but you can also obtain it
programmatically by using the CreateSubnetAsync and DescribeSubnetsAsync methods.

Note

If you don't supply this parameter, the new instance is launched in the default VPC for
your account.

• The ID of an existing security group that belongs to the VPC where the instance will be launched.
For more information, see Working with security groups in Amazon EC2.

• If you want to connect to the new instance, the security group mentioned earlier must have
an appropriate inbound rule that allows SSH traffic on port 22 (Linux instance) or RDP traffic
on port 3389 (Windows instance). For information about how to do this see Updating security
groups, including the Additional considerations near the end of that topic.

• The Amazon Machine Image (AMI) that will be used to create the instance. For information about
AMIs, see Amazon Machine Images (AMIs) in the Amazon EC2 User Guide. In particular, see Find
an AMI and Shared AMIs.

Amazon EC2 208

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://console.aws.amazon.com/vpc/home#subnets
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateSubnetAsyncCreateSubnetRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSubnetsAsyncDescribeSubnetsRequestCancellationToken.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sharing-amis.html

AWS SDK for .NET Developer Guide

• The name of an existing EC2 key pair, which is used to connect to the new instance. For more
information, see Working with Amazon EC2 key pairs.

• The name of the PEM file that contains the private key of the EC2 key pair mentioned earlier. The
PEM file is used when you connect remotely to the instance.

Launch an instance

The following snippet launches an EC2 instance.

The example near the end of this topic shows this snippet in use.

 //
 // Method to launch the instances
 // Returns a list with the launched instance IDs
 private static async Task<List<string>> LaunchInstances(
 IAmazonEC2 ec2Client, RunInstancesRequest requestLaunch)
 {
 var instanceIds = new List<string>();
 RunInstancesResponse responseLaunch =
 await ec2Client.RunInstancesAsync(requestLaunch);

 Console.WriteLine("\nNew instances have been created.");
 foreach (Instance item in responseLaunch.Reservation.Instances)
 {
 instanceIds.Add(item.InstanceId);
 Console.WriteLine($" New instance: {item.InstanceId}");
 }

 return instanceIds;
 }

Monitor the instance

The following snippet monitors the instance until it's out of the "Pending" state.

The example near the end of this topic shows this snippet in use.

See the InstanceState class for the valid values of the Instance.State.Code property.

 //
 // Method to wait until the instances are running (or at least not pending)

Amazon EC2 209

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstanceState.html

AWS SDK for .NET Developer Guide

 private static async Task CheckState(IAmazonEC2 ec2Client, List<string>
 instanceIds)
 {
 Console.WriteLine(
 "\nWaiting for the instances to start." +
 "\nPress any key to stop waiting. (Response might be slightly delayed.)");

 int numberRunning;
 DescribeInstancesResponse responseDescribe;
 var requestDescribe = new DescribeInstancesRequest{
 InstanceIds = instanceIds};

 // Check every couple of seconds
 int wait = 2000;
 while(true)
 {
 // Get and check the status for each of the instances to see if it's past
 pending.
 // Once all instances are past pending, break out.
 // (For this example, we are assuming that there is only one reservation.)
 Console.Write(".");
 numberRunning = 0;
 responseDescribe = await ec2Client.DescribeInstancesAsync(requestDescribe);
 foreach(Instance i in responseDescribe.Reservations[0].Instances)
 {
 // Check the lower byte of State.Code property
 // Code == 0 is the pending state
 if((i.State.Code & 255) > 0) numberRunning++;
 }
 if(numberRunning == responseDescribe.Reservations[0].Instances.Count)
 break;

 // Wait a bit and try again (unless the user wants to stop waiting)
 Thread.Sleep(wait);
 if(Console.KeyAvailable)
 break;
 }

 Console.WriteLine("\nNo more instances are pending.");
 foreach(Instance i in responseDescribe.Reservations[0].Instances)
 {
 Console.WriteLine($"For {i.InstanceId}:");
 Console.WriteLine($" VPC ID: {i.VpcId}");
 Console.WriteLine($" Instance state: {i.State.Name}");

Amazon EC2 210

AWS SDK for .NET Developer Guide

 Console.WriteLine($" Public IP address: {i.PublicIpAddress}");
 Console.WriteLine($" Public DNS name: {i.PublicDnsName}");
 Console.WriteLine($" Key pair name: {i.KeyName}");
 }
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

Class InstanceType

• Namespace Amazon.EC2.Model

Class DescribeInstancesRequest

Class DescribeInstancesResponse

Class Instance

Class InstanceNetworkInterfaceSpecification

Class RunInstancesRequest

Class RunInstancesResponse

The code

using System;
using System.Threading;
using System.Threading.Tasks;

Amazon EC2 211

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstanceType.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeInstancesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstance.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstanceNetworkInterfaceSpecification.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesResponse.html

AWS SDK for .NET Developer Guide

using System.Collections.Generic;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2LaunchInstance
{
 // =
 = = =
 // Class to launch an EC2 instance
 class Program
 {
 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)
 {
 PrintHelp();
 return;
 }

 // Get the application arguments from the parsed list
 string groupID =
 CommandLine.GetArgument(parsedArgs, null, "-g", "--group-id");
 string ami =
 CommandLine.GetArgument(parsedArgs, null, "-a", "--ami-id");
 string keyPairName =
 CommandLine.GetArgument(parsedArgs, null, "-k", "--keypair-name");
 string subnetID =
 CommandLine.GetArgument(parsedArgs, null, "-s", "--subnet-id");
 if((string.IsNullOrEmpty(groupID) || !groupID.StartsWith("sg-"))
 || (string.IsNullOrEmpty(ami) || !ami.StartsWith("ami-"))
 || (string.IsNullOrEmpty(keyPairName))
 || (!string.IsNullOrEmpty(subnetID) && !subnetID.StartsWith("subnet-")))
 CommandLine.ErrorExit(
 "\nOne or more of the required arguments is missing or incorrect." +
 "\nRun the command with no arguments to see help.");

 // Create an EC2 client
 var ec2Client = new AmazonEC2Client();

 // Create an object with the necessary properties
 RunInstancesRequest request = GetRequestData(groupID, ami, keyPairName,
 subnetID);

Amazon EC2 212

AWS SDK for .NET Developer Guide

 // Launch the instances and wait for them to start running
 var instanceIds = await LaunchInstances(ec2Client, request);
 await CheckState(ec2Client, instanceIds);
 }

 //
 // Method to put together the properties needed to launch the instance.
 private static RunInstancesRequest GetRequestData(
 string groupID, string ami, string keyPairName, string subnetID)
 {
 // Common properties
 var groupIDs = new List<string>() { groupID };
 var request = new RunInstancesRequest()
 {
 // The first three of these would be additional command-line arguments or
 similar.
 InstanceType = InstanceType.T1Micro,
 MinCount = 1,
 MaxCount = 1,
 ImageId = ami,
 KeyName = keyPairName
 };

 // Properties specifically for EC2 in a VPC.
 if(!string.IsNullOrEmpty(subnetID))
 {
 request.NetworkInterfaces =
 new List<InstanceNetworkInterfaceSpecification>() {
 new InstanceNetworkInterfaceSpecification() {
 DeviceIndex = 0,
 SubnetId = subnetID,
 Groups = groupIDs,
 AssociatePublicIpAddress = true
 }
 };
 }

 // Properties specifically for EC2-Classic
 else
 {
 request.SecurityGroupIds = groupIDs;
 }

Amazon EC2 213

AWS SDK for .NET Developer Guide

 return request;
 }

 //
 // Method to launch the instances
 // Returns a list with the launched instance IDs
 private static async Task<List<string>> LaunchInstances(
 IAmazonEC2 ec2Client, RunInstancesRequest requestLaunch)
 {
 var instanceIds = new List<string>();
 RunInstancesResponse responseLaunch =
 await ec2Client.RunInstancesAsync(requestLaunch);

 Console.WriteLine("\nNew instances have been created.");
 foreach (Instance item in responseLaunch.Reservation.Instances)
 {
 instanceIds.Add(item.InstanceId);
 Console.WriteLine($" New instance: {item.InstanceId}");
 }

 return instanceIds;
 }

 //
 // Method to wait until the instances are running (or at least not pending)
 private static async Task CheckState(IAmazonEC2 ec2Client, List<string>
 instanceIds)
 {
 Console.WriteLine(
 "\nWaiting for the instances to start." +
 "\nPress any key to stop waiting. (Response might be slightly delayed.)");

 int numberRunning;
 DescribeInstancesResponse responseDescribe;
 var requestDescribe = new DescribeInstancesRequest{
 InstanceIds = instanceIds};

 // Check every couple of seconds
 int wait = 2000;
 while(true)
 {

Amazon EC2 214

AWS SDK for .NET Developer Guide

 // Get and check the status for each of the instances to see if it's past
 pending.
 // Once all instances are past pending, break out.
 // (For this example, we are assuming that there is only one reservation.)
 Console.Write(".");
 numberRunning = 0;
 responseDescribe = await ec2Client.DescribeInstancesAsync(requestDescribe);
 foreach(Instance i in responseDescribe.Reservations[0].Instances)
 {
 // Check the lower byte of State.Code property
 // Code == 0 is the pending state
 if((i.State.Code & 255) > 0) numberRunning++;
 }
 if(numberRunning == responseDescribe.Reservations[0].Instances.Count)
 break;

 // Wait a bit and try again (unless the user wants to stop waiting)
 Thread.Sleep(wait);
 if(Console.KeyAvailable)
 break;
 }

 Console.WriteLine("\nNo more instances are pending.");
 foreach(Instance i in responseDescribe.Reservations[0].Instances)
 {
 Console.WriteLine($"For {i.InstanceId}:");
 Console.WriteLine($" VPC ID: {i.VpcId}");
 Console.WriteLine($" Instance state: {i.State.Name}");
 Console.WriteLine($" Public IP address: {i.PublicIpAddress}");
 Console.WriteLine($" Public DNS name: {i.PublicDnsName}");
 Console.WriteLine($" Key pair name: {i.KeyName}");
 }
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: EC2LaunchInstance -g <group-id> -a <ami-id> -k <keypair-name> [-s
 <subnet-id>]" +
 "\n -g, --group-id: The ID of the security group." +
 "\n -a, --ami-id: The ID of an Amazon Machine Image." +

Amazon EC2 215

AWS SDK for .NET Developer Guide

 "\n -k, --keypair-name - The name of a key pair." +
 "\n -s, --subnet-id: The ID of a subnet. Required only for EC2 in a VPC.");
 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

Amazon EC2 216

AWS SDK for .NET Developer Guide

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Amazon EC2 217

AWS SDK for .NET Developer Guide

Additional considerations

• When checking the state of an EC2 instance, you can add a filter to the Filter property of
the DescribeInstancesRequest object. Using this technique, you can limit the request to certain
instances; for example, instances with a particular user-specified tag.

• For brevity, some properties were given typical values. Any or all of these properties can instead
be determined programmatically or by user input.

• The values you can use for the MinCount and MaxCount properties of the RunInstancesRequest
object are determined by the target Availability Zone and the maximum number of instances
you’re allowed for the instance type. For more information, see How many instances can I run in
Amazon EC2 in the Amazon EC2 General FAQ.

• If you want to use a different instance type than this example, there are several instance types
to choose from. For more information see Amazon EC2 instance types in the Amazon EC2 User
Guide. Also see Instance Type Details and Instance Type Explorer.

• You can also attach an IAM role to an instance when you launch it. To do so, create an
IamInstanceProfileSpecification object whose Name property is set to the name of an IAM role.
Then add that object to the IamInstanceProfile property of the RunInstancesRequest object.

Note

To launch an EC2 instance that has an IAM role attached, an IAM user's configuration
must include certain permissions. For more information about the required permissions,
see the Grant a user permission to pass an IAM role to an instance in the Amazon EC2
User Guide.

(optional) Connect to the instance

After an instance is running, you can connect to it remotely by using the appropriate remote client.
For both Linux and Windows instances, you need the instance's public IP address or public DNS
name. You also need the following.

For Linux instances

Amazon EC2 218

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-explorer/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIamInstanceProfileSpecification.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#permission-to-pass-iam-roles
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS SDK for .NET Developer Guide

You can use an SSH client to connect to your Linux instance. Make sure that the security group
you used when you launched the instance allows SSH traffic on port 22, as described in Updating
security groups.

You also need the private portion of the key pair you used to launch the instance; that is, the PEM
file.

For more information, see Connect to your Linux instance in the Amazon EC2 User Guide.

For Windows instances

You can use an RDP client to connect to your instance. Make sure that the security group you used
when you launched the instance allows RDP traffic on port 3389, as described in Updating security
groups.

You also need the Administrator password. You can obtain this by using the following example
code, which requires the instance ID and the private portion of the key pair used to launch the
instance; that is, the PEM file.

For more information, see Connect to your Windows instance in the Amazon EC2 User Guide.

Warning

This example code returns the plaintext Administrator password for your instance.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class GetPasswordDataRequest

Amazon EC2 219

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connecting_to_windows_instance.html
https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TGetPasswordDataRequest.html

AWS SDK for .NET Developer Guide

Class GetPasswordDataResponse

The code

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2GetWindowsPassword
{
 // =
 = = =
 // Class to get the Administrator password of a Windows EC2 instance
 class Program
 {
 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)
 {
 PrintHelp();
 return;
 }

 // Get the application arguments from the parsed list
 string instanceID =
 CommandLine.GetArgument(parsedArgs, null, "-i", "--instance-id");
 string pemFileName =
 CommandLine.GetArgument(parsedArgs, null, "-p", "--pem-filename");
 if((string.IsNullOrEmpty(instanceID) || !instanceID.StartsWith("i-"))
 || (string.IsNullOrEmpty(pemFileName) || !pemFileName.EndsWith(".pem")))
 CommandLine.ErrorExit(
 "\nOne or more of the required arguments is missing or incorrect." +
 "\nRun the command with no arguments to see help.");

 // Create the EC2 client
 var ec2Client = new AmazonEC2Client();

Amazon EC2 220

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TGetPasswordDataResponse.html

AWS SDK for .NET Developer Guide

 // Get and display the password
 string password = await GetPassword(ec2Client, instanceID, pemFileName);
 Console.WriteLine($"\nPassword: {password}");
 }

 //
 // Method to get the administrator password of a Windows EC2 instance
 private static async Task<string> GetPassword(
 IAmazonEC2 ec2Client, string instanceID, string pemFilename)
 {
 string password = string.Empty;
 GetPasswordDataResponse response =
 await ec2Client.GetPasswordDataAsync(new GetPasswordDataRequest{
 InstanceId = instanceID});
 if(response.PasswordData != null)
 {
 password = response.GetDecryptedPassword(File.ReadAllText(pemFilename));
 }
 else
 {
 Console.WriteLine($"\nThe password is not available for instance
 {instanceID}.");
 Console.WriteLine($"If this is a Windows instance, the password might not be
 ready.");
 }
 return password;
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: EC2GetWindowsPassword -i <instance-id> -p pem-filename" +
 "\n -i, --instance-id: The name of the EC2 instance." +
 "\n -p, --pem-filename: The name of the PEM file with the private key.");
 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.

Amazon EC2 221

AWS SDK for .NET Developer Guide

 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;

Amazon EC2 222

AWS SDK for .NET Developer Guide

 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Clean up

When you no longer need your EC2 instance, be sure to terminate it, as described in Terminating an
Amazon EC2 instance.

Terminating an Amazon EC2 instance

When you no longer need one or more of your Amazon EC2 instances, you can terminate them.

This example shows you how to use the AWS SDK for .NET to terminate EC2 instances. It takes an
instance ID as input.

Amazon EC2 223

AWS SDK for .NET Developer Guide

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

• Namespace Amazon.EC2

Class AmazonEC2Client

• Namespace Amazon.EC2.Model

Class TerminateInstancesRequest

Class TerminateInstancesResponse

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2TerminateInstance
{
 class Program
 {
 static async Task Main(string[] args)
 {
 if((args.Length == 1) && (args[0].StartsWith("i-")))
 {
 // Terminate the instance
 var ec2Client = new AmazonEC2Client();
 await TerminateInstance(ec2Client, args[0]);
 }
 else
 {
 Console.WriteLine("\nCommand-line argument missing or incorrect.");
 Console.WriteLine("\nUsage: EC2TerminateInstance instance-ID");
 Console.WriteLine(" instance-ID - The EC2 instance you want to terminate.");
 return;

Amazon EC2 224

https://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TTerminateInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TTerminateInstancesResponse.html

AWS SDK for .NET Developer Guide

 }
 }

 //
 // Method to terminate an EC2 instance
 private static async Task TerminateInstance(IAmazonEC2 ec2Client, string
 instanceID)
 {
 var request = new TerminateInstancesRequest{
 InstanceIds = new List<string>() { instanceID }};
 TerminateInstancesResponse response =
 await ec2Client.TerminateInstancesAsync(new TerminateInstancesRequest{
 InstanceIds = new List<string>() { instanceID }
 });
 foreach (InstanceStateChange item in response.TerminatingInstances)
 {
 Console.WriteLine("Terminated instance: " + item.InstanceId);
 Console.WriteLine("Instance state: " + item.CurrentState.Name);
 }
 }
 }
}

After you run the example, it's a good idea to sign in to the Amazon EC2 console to verify that the
EC2 instance has been terminated.

Amazon EC2 Spot Instance tutorial

This tutorial shows you how to use the AWS SDK for .NET to manage Amazon EC2 Spot Instances.

Overview

Spot Instances enable you to request unused Amazon EC2 capacity for less than the On-Demand
price. This can significantly lower your EC2 costs for applications that can be interrupted.

The following is a high-level summary of how Spot Instances are requested and used.

1. Create a Spot Instance request, specifying the maximum price you are willing to pay.

2. When the request is fulfilled, run the instance as you would any other Amazon EC2 instance.

3. Run the instance as long as you want and then terminate it, unless the Spot Price changes such
that the instance is terminated for you.

Amazon EC2 225

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/v2/home#Instances

AWS SDK for .NET Developer Guide

4. Clean up the Spot Instance request when you no longer need it so that Spot Instances are no
longer created.

This has been a very high level overview of Spot Instances. To gain a better understanding of Spot
Instances, see Spot Instances in the Amazon EC2 User Guide.

About this tutorial

As you follow this tutorial, you use the AWS SDK for .NET to do the following:

• Create a Spot Instance request

• Determine when the Spot Instance request has been fulfilled

• Cancel the Spot Instance request

• Terminate associated instances

The following sections provide snippets and other information for this example. The complete code
for the example is shown after the snippets, and can be built and run as is.

Topics

• Prerequisites

• Gather what you need

• Creating a Spot Instance request

• Determine the state of your Spot Instance request

• Clean up your Spot Instance requests

• Clean up your Spot Instances

• Complete code

• Additional considerations

Prerequisites

For information about the APIs and prerequisites, see the parent section (Working with Amazon
EC2).

Gather what you need

To create a Spot Instance request, you'll need several things.

Amazon EC2 226

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS SDK for .NET Developer Guide

• The number of instances and their instance type. There are several instance types to choose
from. For more information, see Amazon EC2 instance types in the Amazon EC2 User Guide. Also
see Instance Type Details and Instance Type Explorer.

The default number for this tutorial is 1.

• The Amazon Machine Image (AMI) that will be used to create the instance. For information about
AMIs, see Amazon Machine Images (AMIs) in the Amazon EC2 User Guide. In particular, see Find
an AMI and Shared AMIs.

• The maximum price that you're willing to pay per instance hour. You can see the prices for all
instance types (for both On-Demand Instances and Spot Instances) on the Amazon EC2 pricing
page. The default price for this tutorial is explained later.

• If you want to connect remotely to an instance, a security group with the appropriate
configuration and resources. This is described in Working with security groups in Amazon EC2
and the information about gathering what you need and connecting to an instance in Launching
an Amazon EC2 instance. For simplicity, this tutorial uses the security group named default that
all newer AWS accounts have.

There are many ways to approach requesting Spot Instances. The following are common strategies:

• Make requests that are sure to cost less than on-demand pricing.

• Make requests based on the value of the resulting computation.

• Make requests so as to acquire computing capacity as quickly as possible.

The following explanations refer to the Spot Instance pricing history in the Amazon EC2 User
Guide.

Reduce cost below On-Demand

You have a batch processing job that will take a number of hours or days to run. However, you are
flexible with respect to when it starts and ends. You want to see if you can complete it for less than
the cost of On-Demand Instances.

Amazon EC2 227

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-explorer/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sharing-amis.html
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS SDK for .NET Developer Guide

You examine the Spot Price history for instance types by using either the Amazon EC2 console or
the Amazon EC2 API. After you've analyzed the price history for your desired instance type in a
given Availability Zone, you have two alternative approaches for your request:

• Specify a request at the upper end of the range of Spot Prices, which are still below the On-
Demand price, anticipating that your one-time Spot Instance request would most likely be
fulfilled and run for enough consecutive compute time to complete the job.

• Specify a request at the lower end of the price range, and plan to combine many instances
launched over time through a persistent request. The instances would run long enough, in
aggregate, to complete the job at an even lower total cost.

Pay no more than the value of the result

You have a data processing job to run. You understand the value of the job's results well enough to
know how much they're worth in terms of computing costs.

After you've analyzed the Spot Price history for your instance type, you choose a price at which the
cost of the computing time is no more than the value of the job's results. You create a persistent
request and allow it to run intermittently as the Spot Price fluctuates at or below your request.

Acquire computing capacity quickly

You have an unanticipated, short-term need for additional capacity that's not available through
On-Demand Instances. After you've analyzed the Spot Price history for your instance type, you
choose a price above the highest historical price to greatly improve the likelihood that your request
will be fulfilled quickly and continue computing until it's complete.

After you have gathered what you need and chosen a strategy, you are ready to request a Spot
Instance. For this tutorial the default maximum spot-instance price is set to be the same as the
On-Demand price (which is $0.003 for this tutorial). Setting the price in this way maximizes the
chances that the request will be fulfilled.

Creating a Spot Instance request

The following snippet shows you how to create a Spot Instance request with the elements you
gathered earlier.

The example at the end of this topic shows this snippet in use.

 //

Amazon EC2 228

AWS SDK for .NET Developer Guide

 // Method to create a Spot Instance request
 private static async Task<SpotInstanceRequest> CreateSpotInstanceRequest(
 IAmazonEC2 ec2Client, string amiId, string securityGroupName,
 InstanceType instanceType, string spotPrice, int instanceCount)
 {
 var launchSpecification = new LaunchSpecification{
 ImageId = amiId,
 InstanceType = instanceType
 };
 launchSpecification.SecurityGroups.Add(securityGroupName);
 var request = new RequestSpotInstancesRequest{
 SpotPrice = spotPrice,
 InstanceCount = instanceCount,
 LaunchSpecification = launchSpecification
 };

 RequestSpotInstancesResponse result =
 await ec2Client.RequestSpotInstancesAsync(request);
 return result.SpotInstanceRequests[0];
 }

The important value returned from this method is the Spot Instance request ID, which is contained
in the SpotInstanceRequestId member of the returned SpotInstanceRequest object.

Note

You will be charged for any Spot Instances that are launched. To avoid unnecessary costs be
sure to cancel any requests and terminate any instances.

Determine the state of your Spot Instance request

The following snippet shows you how to get information about your Spot Instance request. You
can use that information to make certain decisions in your code, such as whether to continue
waiting for a Spot Instance request to be fulfilled.

The example at the end of this topic shows this snippet in use.

 //
 // Method to get information about a Spot Instance request, including the status,
 // instance ID, etc.
 // It gets the information for a specific request (as opposed to all requests).

Amazon EC2 229

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSpotInstanceRequest.html

AWS SDK for .NET Developer Guide

 private static async Task<SpotInstanceRequest> GetSpotInstanceRequestInfo(
 IAmazonEC2 ec2Client, string requestId)
 {
 var describeRequest = new DescribeSpotInstanceRequestsRequest();
 describeRequest.SpotInstanceRequestIds.Add(requestId);

 DescribeSpotInstanceRequestsResponse describeResponse =
 await ec2Client.DescribeSpotInstanceRequestsAsync(describeRequest);
 return describeResponse.SpotInstanceRequests[0];
 }

The method returns information about the Spot Instance request such as the instance ID, it's state,
and the status code. For more information about the status codes for Spot Instance requests, see
Spot request status in the Amazon EC2 User Guide.

Clean up your Spot Instance requests

When you no longer need to request Spot Instances, it's important to cancel any outstanding
requests to prevent those requests from being re-fulfilled. The following snippet shows you how to
cancel a Spot Instance request.

The example at the end of this topic shows this snippet in use.

 //
 // Method to cancel a Spot Instance request
 private static async Task CancelSpotInstanceRequest(
 IAmazonEC2 ec2Client, string requestId)
 {
 var cancelRequest = new CancelSpotInstanceRequestsRequest();
 cancelRequest.SpotInstanceRequestIds.Add(requestId);

 await ec2Client.CancelSpotInstanceRequestsAsync(cancelRequest);
 }

Clean up your Spot Instances

To avoid unnecessary costs, it's important that you terminate any instances that were started from
Spot Instance requests; simply canceling Spot Instance requests will not terminate your instances,
which means that you'll continue to be charged for them. The following snippet shows you how to
terminate an instance after you obtain the instance identifier for an active Spot Instance.

The example at the end of this topic shows this snippet in use.

Amazon EC2 230

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-bid-status.html#spot-instance-bid-status-understand
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS SDK for .NET Developer Guide

 //
 // Method to terminate a Spot Instance
 private static async Task TerminateSpotInstance(
 IAmazonEC2 ec2Client, string requestId)
 {
 var describeRequest = new DescribeSpotInstanceRequestsRequest();
 describeRequest.SpotInstanceRequestIds.Add(requestId);

 // Retrieve the Spot Instance request to check for running instances.
 DescribeSpotInstanceRequestsResponse describeResponse =
 await ec2Client.DescribeSpotInstanceRequestsAsync(describeRequest);

 // If there are any running instances, terminate them
 if((describeResponse.SpotInstanceRequests[0].Status.Code
 == "request-canceled-and-instance-running")
 || (describeResponse.SpotInstanceRequests[0].State ==
 SpotInstanceState.Active))
 {
 TerminateInstancesResponse response =
 await ec2Client.TerminateInstancesAsync(new TerminateInstancesRequest{
 InstanceIds = new List<string>(){
 describeResponse.SpotInstanceRequests[0].InstanceId } });
 foreach (InstanceStateChange item in response.TerminatingInstances)
 {
 Console.WriteLine($"\n Terminated instance: {item.InstanceId}");
 Console.WriteLine($" Instance state: {item.CurrentState.Name}\n");
 }
 }
 }

Complete code

The following code example calls the methods described earlier to create and cancel a Spot
Instance request and terminate a Spot Instance.

SDK references

NuGet packages:

• AWSSDK.EC2

Programming elements:

Amazon EC2 231

https://www.nuget.org/packages/AWSSDK.EC2

AWS SDK for .NET Developer Guide

• Namespace Amazon.EC2

Class AmazonEC2Client

Class InstanceType

• Namespace Amazon.EC2.Model

Class CancelSpotInstanceRequestsRequest

Class DescribeSpotInstanceRequestsRequest

Class DescribeSpotInstanceRequestsResponse

Class InstanceStateChange

Class LaunchSpecification

Class RequestSpotInstancesRequest

Class RequestSpotInstancesResponse

Class SpotInstanceRequest

Class TerminateInstancesRequest

Class TerminateInstancesResponse

The code

using System;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Generic;
using Amazon.EC2;
using Amazon.EC2.Model;

namespace EC2SpotInstanceRequests
{
 class Program
 {
 static async Task Main(string[] args)

Amazon EC2 232

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstanceType.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/NEC2Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCancelSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSpotInstanceRequestsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstanceStateChange.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TLaunchSpecification.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRequestSpotInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRequestSpotInstancesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSpotInstanceRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TTerminateInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TTerminateInstancesResponse.html

AWS SDK for .NET Developer Guide

 {
 // Some default values.
 // These could be made into command-line arguments instead.
 var instanceType = InstanceType.T1Micro;
 string securityGroupName = "default";
 string spotPrice = "0.003";
 int instanceCount = 1;

 // Parse the command line arguments
 if((args.Length != 1) || (!args[0].StartsWith("ami-")))
 {
 Console.WriteLine("\nUsage: EC2SpotInstanceRequests ami");
 Console.WriteLine(" ami: the Amazon Machine Image to use for the Spot
 Instances.");
 return;
 }

 // Create the Amazon EC2 client.
 var ec2Client = new AmazonEC2Client();

 // Create the Spot Instance request and record its ID
 Console.WriteLine("\nCreating spot instance request...");
 var req = await CreateSpotInstanceRequest(
 ec2Client, args[0], securityGroupName, instanceType, spotPrice, instanceCount);
 string requestId = req.SpotInstanceRequestId;

 // Wait for an EC2 Spot Instance to become active
 Console.WriteLine(
 $"Waiting for Spot Instance request with ID {requestId} to become active...");
 int wait = 1;
 var start = DateTime.Now;
 while(true)
 {
 Console.Write(".");

 // Get and check the status to see if the request has been fulfilled.
 var requestInfo = await GetSpotInstanceRequestInfo(ec2Client, requestId);
 if(requestInfo.Status.Code == "fulfilled")
 {
 Console.WriteLine($"\nSpot Instance request {requestId} " +
 $"has been fulfilled by instance {requestInfo.InstanceId}.\n");
 break;
 }

Amazon EC2 233

AWS SDK for .NET Developer Guide

 // Wait a bit and try again, longer each time (1, 2, 4, ...)
 Thread.Sleep(wait);
 wait = wait * 2;
 }

 // Show the user how long it took to fulfill the Spot Instance request.
 TimeSpan span = DateTime.Now.Subtract(start);
 Console.WriteLine($"That took {span.TotalMilliseconds} milliseconds");

 // Perform actions here as needed.
 // For this example, simply wait for the user to hit a key.
 // That gives them a chance to look at the EC2 console to see
 // the running instance if they want to.
 Console.WriteLine("Press any key to start the cleanup...");
 Console.ReadKey(true);

 // Cancel the request.
 // Do this first to make sure that the request can't be re-fulfilled
 // once the Spot Instance has been terminated.
 Console.WriteLine("Canceling Spot Instance request...");
 await CancelSpotInstanceRequest(ec2Client, requestId);

 // Terminate the Spot Instance that's running.
 Console.WriteLine("Terminating the running Spot Instance...");
 await TerminateSpotInstance(ec2Client, requestId);

 Console.WriteLine("Done. Press any key to exit...");
 Console.ReadKey(true);
 }

 //
 // Method to create a Spot Instance request
 private static async Task<SpotInstanceRequest> CreateSpotInstanceRequest(
 IAmazonEC2 ec2Client, string amiId, string securityGroupName,
 InstanceType instanceType, string spotPrice, int instanceCount)
 {
 var launchSpecification = new LaunchSpecification{
 ImageId = amiId,
 InstanceType = instanceType
 };
 launchSpecification.SecurityGroups.Add(securityGroupName);
 var request = new RequestSpotInstancesRequest{
 SpotPrice = spotPrice,

Amazon EC2 234

AWS SDK for .NET Developer Guide

 InstanceCount = instanceCount,
 LaunchSpecification = launchSpecification
 };

 RequestSpotInstancesResponse result =
 await ec2Client.RequestSpotInstancesAsync(request);
 return result.SpotInstanceRequests[0];
 }

 //
 // Method to get information about a Spot Instance request, including the status,
 // instance ID, etc.
 // It gets the information for a specific request (as opposed to all requests).
 private static async Task<SpotInstanceRequest> GetSpotInstanceRequestInfo(
 IAmazonEC2 ec2Client, string requestId)
 {
 var describeRequest = new DescribeSpotInstanceRequestsRequest();
 describeRequest.SpotInstanceRequestIds.Add(requestId);

 DescribeSpotInstanceRequestsResponse describeResponse =
 await ec2Client.DescribeSpotInstanceRequestsAsync(describeRequest);
 return describeResponse.SpotInstanceRequests[0];
 }

 //
 // Method to cancel a Spot Instance request
 private static async Task CancelSpotInstanceRequest(
 IAmazonEC2 ec2Client, string requestId)
 {
 var cancelRequest = new CancelSpotInstanceRequestsRequest();
 cancelRequest.SpotInstanceRequestIds.Add(requestId);

 await ec2Client.CancelSpotInstanceRequestsAsync(cancelRequest);
 }

 //
 // Method to terminate a Spot Instance
 private static async Task TerminateSpotInstance(
 IAmazonEC2 ec2Client, string requestId)
 {
 var describeRequest = new DescribeSpotInstanceRequestsRequest();

Amazon EC2 235

AWS SDK for .NET Developer Guide

 describeRequest.SpotInstanceRequestIds.Add(requestId);

 // Retrieve the Spot Instance request to check for running instances.
 DescribeSpotInstanceRequestsResponse describeResponse =
 await ec2Client.DescribeSpotInstanceRequestsAsync(describeRequest);

 // If there are any running instances, terminate them
 if((describeResponse.SpotInstanceRequests[0].Status.Code
 == "request-canceled-and-instance-running")
 || (describeResponse.SpotInstanceRequests[0].State ==
 SpotInstanceState.Active))
 {
 TerminateInstancesResponse response =
 await ec2Client.TerminateInstancesAsync(new TerminateInstancesRequest{
 InstanceIds = new List<string>(){
 describeResponse.SpotInstanceRequests[0].InstanceId } });
 foreach (InstanceStateChange item in response.TerminatingInstances)
 {
 Console.WriteLine($"\n Terminated instance: {item.InstanceId}");
 Console.WriteLine($" Instance state: {item.CurrentState.Name}\n");
 }
 }
 }
 }
}

Additional considerations

• After you run the tutorial, it's a good idea to sign in to the Amazon EC2 console to verify that the
Spot Instance request has been canceled and that the Spot Instance has been terminated.

Accessing AWS Identity and Access Management (IAM) with the AWS
SDK for .NET

The AWS SDK for .NET supports AWS Identity and Access Management, which is a web service that
enables AWS customers to manage users and user permissions in AWS.

An AWS Identity and Access Management (IAM) user is an entity that you create in AWS. The entity
represents a person or application that interacts with AWS. For more information about IAM users,
see IAM Users and IAM and STS Limits in the IAM User Guide.

IAM 236

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/home#SpotInstances:
https://console.aws.amazon.com/ec2/v2/home#Instances
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

AWS SDK for .NET Developer Guide

You grant permissions to a user by creating an IAM policy. The policy contains a policy document
that lists the actions that a user can perform and the resources those actions can affect. For more
information about IAM policies, see Policies and Permissions in the IAM User Guide.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

APIs

The AWS SDK for .NET provides APIs for IAM clients. The APIs enable you to work with IAM features
such as users, roles, and access keys.

This section contains a small number of examples that show you the patterns you can follow when
working with these APIs. To view the full set of APIs, see the AWS SDK for .NET API Reference (and
scroll to "Amazon.IdentityManagement").

This section also contains an example that shows you how to attach an IAM role to Amazon EC2
instances to make managing credentials easier.

The IAM APIs are provided by the AWSSDK.IdentityManagement NuGet package.

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

Topics

• Creating IAM managed policies from JSON

• Display the policy document of an IAM managed policy

• Granting access by using an IAM role

IAM 237

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://www.nuget.org/packages/AWSSDK.IdentityManagement

AWS SDK for .NET Developer Guide

Creating IAM managed policies from JSON

This example shows you how to use the AWS SDK for .NET to create an IAM managed policy from
a given policy document in JSON. The application creates an IAM client object, reads the policy
document from a file, and then creates the policy.

Note

For an example policy document in JSON, see the additional considerations at the end of
this topic.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Create the policy

• Complete code

• Additional considerations

Create the policy

The following snippet creates an IAM managed policy with the given name and policy document.

The example at the end of this topic shows this snippet in use.

 //
 // Method to create an IAM policy from a JSON file
 private static async Task<CreatePolicyResponse> CreateManagedPolicy(
 IAmazonIdentityManagementService iamClient, string policyName, string
 jsonFilename)
 {
 return await iamClient.CreatePolicyAsync(new CreatePolicyRequest{
 PolicyName = policyName,
 PolicyDocument = File.ReadAllText(jsonFilename)});
 }

Complete code

This section shows relevant references and the complete code for this example.

IAM 238

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS SDK for .NET Developer Guide

SDK references

NuGet packages:

• AWSSDK.IdentityManagement

Programming elements:

• Namespace Amazon.IdentityManagement

Class AmazonIdentityManagementServiceClient

• Namespace Amazon.IdentityManagement.Model

Class CreatePolicyRequest

Class CreatePolicyResponse

The code

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;

namespace IamCreatePolicyFromJson
{
 // =
 = = =
 // Class to create an IAM policy with a given policy document
 class Program
 {
 private const int MaxArgs = 2;

 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if((parsedArgs.Count == 0) || (parsedArgs.Count > MaxArgs))
 {
 PrintHelp();

IAM 239

https://www.nuget.org/packages/AWSSDK.IdentityManagement
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAM.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAMModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreatePolicyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreatePolicyResponse.html

AWS SDK for .NET Developer Guide

 return;
 }

 // Get the application arguments from the parsed list
 string policyName =
 CommandLine.GetArgument(parsedArgs, null, "-p", "--policy-name");
 string policyFilename =
 CommandLine.GetArgument(parsedArgs, null, "-j", "--json-filename");
 if(string.IsNullOrEmpty(policyName)
 || (string.IsNullOrEmpty(policyFilename) || !
policyFilename.EndsWith(".json")))
 CommandLine.ErrorExit(
 "\nOne or more of the required arguments is missing or incorrect." +
 "\nRun the command with no arguments to see help.");

 // Create an IAM service client
 var iamClient = new AmazonIdentityManagementServiceClient();

 // Create the new policy
 var response = await CreateManagedPolicy(iamClient, policyName, policyFilename);
 Console.WriteLine($"\nPolicy {response.Policy.PolicyName} has been created.");
 Console.WriteLine($" Arn: {response.Policy.Arn}");
 }

 //
 // Method to create an IAM policy from a JSON file
 private static async Task<CreatePolicyResponse> CreateManagedPolicy(
 IAmazonIdentityManagementService iamClient, string policyName, string
 jsonFilename)
 {
 return await iamClient.CreatePolicyAsync(new CreatePolicyRequest{
 PolicyName = policyName,
 PolicyDocument = File.ReadAllText(jsonFilename)});
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: IamCreatePolicyFromJson -p <policy-name> -j <json-filename>" +
 "\n -p, --policy-name: The name you want the new policy to have." +

IAM 240

AWS SDK for .NET Developer Guide

 "\n -j, --json-filename: The name of the JSON file with the policy
 document.");
 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

IAM 241

AWS SDK for .NET Developer Guide

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

IAM 242

AWS SDK for .NET Developer Guide

Additional considerations

• The following is an example policy document that you can copy into a JSON file and use as input
for this application:

{
 "Version" : "2012-10-17",
 "Id" : "DotnetTutorialPolicy",
 "Statement" : [
 {
 "Sid" : "DotnetTutorialPolicyS3",
 "Effect" : "Allow",
 "Action" : [
 "s3:Get*",
 "s3:List*"
],
 "Resource" : "*"
 },
 {
 "Sid" : "DotnetTutorialPolicyPolly",
 "Effect": "Allow",
 "Action": [
 "polly:DescribeVoices",
 "polly:SynthesizeSpeech"
],
 "Resource": "*"
 }
]
}

• You can verify that the policy was created by looking in the IAM console. In the Filter policies
drop-down list, select Customer managed. Delete the policy when you no longer need it.

• For more information about policy creation, see Creating IAM policies and the IAM JSON policy
reference in the IAM User Guide

IAM 243

https://console.aws.amazon.com/iam/home#/policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS SDK for .NET Developer Guide

Display the policy document of an IAM managed policy

This example shows you how to use the AWS SDK for .NET to display a policy document. The
application creates an IAM client object, finds the default version of the given IAM managed policy,
and then displays the policy document in JSON.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Find the default version

• Display the policy document

• Complete code

Find the default version

The following snippet finds the default version of the given IAM policy.

The example at the end of this topic shows this snippet in use.

 //
 // Method to determine the default version of an IAM policy
 // Returns a string with the version
 private static async Task<string> GetDefaultVersion(
 IAmazonIdentityManagementService iamClient, string policyArn)
 {
 // Retrieve all the versions of this policy
 string defaultVersion = string.Empty;
 ListPolicyVersionsResponse reponseVersions =
 await iamClient.ListPolicyVersionsAsync(new ListPolicyVersionsRequest{
 PolicyArn = policyArn});

 // Find the default version
 foreach(PolicyVersion version in reponseVersions.Versions)
 {
 if(version.IsDefaultVersion)
 {
 defaultVersion = version.VersionId;
 break;
 }
 }

IAM 244

AWS SDK for .NET Developer Guide

 return defaultVersion;
 }

Display the policy document

The following snippet displays the policy document in JSON of the given IAM policy.

The example at the end of this topic shows this snippet in use.

 //
 // Method to retrieve and display the policy document of an IAM policy
 private static async Task ShowPolicyDocument(
 IAmazonIdentityManagementService iamClient, string policyArn, string
 defaultVersion)
 {
 // Retrieve the policy document of the default version
 GetPolicyVersionResponse responsePolicy =
 await iamClient.GetPolicyVersionAsync(new GetPolicyVersionRequest{
 PolicyArn = policyArn,
 VersionId = defaultVersion});

 // Display the policy document (in JSON)
 Console.WriteLine($"Version {defaultVersion} of the policy (in JSON format):");
 Console.WriteLine(
 $"{HttpUtility.UrlDecode(responsePolicy.PolicyVersion.Document)}");
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.IdentityManagement

Programming elements:

• Namespace Amazon.IdentityManagement

Class AmazonIdentityManagementServiceClient

IAM 245

https://www.nuget.org/packages/AWSSDK.IdentityManagement
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAM.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html

AWS SDK for .NET Developer Guide

• Namespace Amazon.IdentityManagement.Model

Class GetPolicyVersionRequest

Class GetPolicyVersionResponse

Class ListPolicyVersionsRequest

Class ListPolicyVersionsResponse

Class PolicyVersion

The code

using System;
using System.Web;
using System.Threading.Tasks;
using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;

namespace IamDisplayPolicyJson
{
 class Program
 {
 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 if(args.Length != 1)
 {
 Console.WriteLine("\nUsage: IamDisplayPolicyJson policy-arn");
 Console.WriteLine(" policy-arn: The ARN of the policy to retrieve.");
 return;
 }
 if(!args[0].StartsWith("arn:"))
 {
 Console.WriteLine("\nCould not find policy ARN in the command-line
 arguments:");
 Console.WriteLine($"{args[0]}");
 return;
 }

 // Create an IAM service client
 var iamClient = new AmazonIdentityManagementServiceClient();

IAM 246

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAMModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TGetPolicyVersionRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TGetPolicyVersionResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListPolicyVersionsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListPolicyVersionsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TPolicyVersion.html

AWS SDK for .NET Developer Guide

 // Retrieve and display the policy document of the given policy
 string defaultVersion = await GetDefaultVersion(iamClient, args[0]);
 if(string.IsNullOrEmpty(defaultVersion))
 Console.WriteLine($"Could not find the default version for policy {args[0]}.");
 else
 await ShowPolicyDocument(iamClient, args[0], defaultVersion);
 }

 //
 // Method to determine the default version of an IAM policy
 // Returns a string with the version
 private static async Task<string> GetDefaultVersion(
 IAmazonIdentityManagementService iamClient, string policyArn)
 {
 // Retrieve all the versions of this policy
 string defaultVersion = string.Empty;
 ListPolicyVersionsResponse reponseVersions =
 await iamClient.ListPolicyVersionsAsync(new ListPolicyVersionsRequest{
 PolicyArn = policyArn});

 // Find the default version
 foreach(PolicyVersion version in reponseVersions.Versions)
 {
 if(version.IsDefaultVersion)
 {
 defaultVersion = version.VersionId;
 break;
 }
 }

 return defaultVersion;
 }

 //
 // Method to retrieve and display the policy document of an IAM policy
 private static async Task ShowPolicyDocument(
 IAmazonIdentityManagementService iamClient, string policyArn, string
 defaultVersion)
 {
 // Retrieve the policy document of the default version
 GetPolicyVersionResponse responsePolicy =

IAM 247

AWS SDK for .NET Developer Guide

 await iamClient.GetPolicyVersionAsync(new GetPolicyVersionRequest{
 PolicyArn = policyArn,
 VersionId = defaultVersion});

 // Display the policy document (in JSON)
 Console.WriteLine($"Version {defaultVersion} of the policy (in JSON format):");
 Console.WriteLine(
 $"{HttpUtility.UrlDecode(responsePolicy.PolicyVersion.Document)}");
 }
 }
}

Granting access by using an IAM role

This tutorial shows you how to use the AWS SDK for .NET to enable IAM roles on Amazon EC2
instances.

Overview

All requests to AWS must be cryptographically signed by using credentials issued by AWS.
Therefore, you need a strategy to manage credentials for applications that run on Amazon EC2
instances. You have to distribute, store, and rotate these credentials securely, but also keep them
accessible to the applications.

With IAM roles, you can effectively manage these credentials. You create an IAM role and configure
it with the permissions that an application requires, and then attach that role to an EC2 instance.
To read more about the benefits of using IAM roles, see IAM roles for Amazon EC2 in the Amazon
EC2 User Guide. Also see the information about IAM Roles in the IAM User Guide.

For an application that is built using the AWS SDK for .NET, when the application constructs a client
object for an AWS service, the object searches for credentials from several potential sources. The
order in which it searches is shown in Credential and profile resolution.

If the client object doesn't find credentials from any other source, it retrieves temporary credentials
that have the same permissions as those that have been configured into the IAM role and are in
the metadata of the EC2 instance. These credentials are used to make calls to AWS from the client
object.

IAM 248

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS SDK for .NET Developer Guide

About this tutorial

As you follow this tutorial, you use the AWS SDK for .NET (and other tools) to launch an Amazon
EC2 instance with an IAM role attached, and then see an application on the instance using the
permissions of the IAM role.

Topics

• Create a sample Amazon S3 application

• Create an IAM role

• Launch an EC2 instance and attach the IAM role

• Connect to the EC2 instance

• Run the sample application on the EC2 instance

• Clean up

Create a sample Amazon S3 application

This sample application retrieves an object from Amazon S3. To run the application, you need the
following:

• An Amazon S3 bucket that contains a text file.

• AWS credentials on your development machine that allow you to access to the bucket.

For information about creating an Amazon S3 bucket and uploading an object, see the Amazon
Simple Storage Service User Guide. For information about AWS credentials, see Configure SDK
authentication with AWS.

Create a .NET Core project with the following code. Then test the application on your development
machine.

Note

On your development machine, the .NET Core Runtime is installed, which enables you to
run the application without publishing it. When you create an EC2 instance later in this
tutorial, you can choose to install the .NET Core Runtime on the instance. This gives you a
similar experience and a smaller file transfer.

IAM 249

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/

AWS SDK for .NET Developer Guide

However, you can also choose not to install the .NET Core Runtime on the instance. If you
choose this course of action, you must publish the application so that all dependencies are
included when you transfer it to the instance.

SDK references

NuGet packages:

• AWSSDK.S3

Programming elements:

• Namespace Amazon.S3

Class AmazonS3Client

• Namespace Amazon.S3.Model

Class GetObjectResponse

The code

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
using Amazon.S3;
using Amazon.S3.Model;

namespace S3GetTextItem
{
 // =
 = = =
 // Class to retrieve a text file from an S3 bucket and write it to a local file
 class Program
 {
 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)

IAM 250

https://www.nuget.org/packages/AWSSDK.S3
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/NS3.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/NS3Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TGetObjectResponse.html

AWS SDK for .NET Developer Guide

 {
 PrintHelp();
 return;
 }

 // Get the application arguments from the parsed list
 string bucket =
 CommandLine.GetArgument(parsedArgs, null, "-b", "--bucket-name");
 string item =
 CommandLine.GetArgument(parsedArgs, null, "-t", "--text-object");
 string outFile =
 CommandLine.GetArgument(parsedArgs, null, "-o", "--output-filename");
 if(string.IsNullOrEmpty(bucket)
 || string.IsNullOrEmpty(item)
 || string.IsNullOrEmpty(outFile))
 CommandLine.ErrorExit(
 "\nOne or more of the required arguments is missing or incorrect." +
 "\nRun the command with no arguments to see help.");

 // Create the S3 client object and get the file object from the bucket.
 var response = await GetObject(new AmazonS3Client(), bucket, item);

 // Write the contents of the file object to the given output file.
 var reader = new StreamReader(response.ResponseStream);
 string contents = reader.ReadToEnd();
 using (var s = new FileStream(outFile, FileMode.Create))
 using (var writer = new StreamWriter(s))
 writer.WriteLine(contents);
 }

 //
 // Method to get an object from an S3 bucket.
 private static async Task<GetObjectResponse> GetObject(
 IAmazonS3 s3Client, string bucket, string item)
 {
 Console.WriteLine($"Retrieving {item} from bucket {bucket}.");
 return await s3Client.GetObjectAsync(bucket, item);
 }

 //
 // Command-line help
 private static void PrintHelp()

IAM 251

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine(
 "\nUsage: S3GetTextItem -b <bucket-name> -t <text-object> -o <output-filename>"
 +
 "\n -b, --bucket-name: The name of the S3 bucket." +
 "\n -t, --text-object: The name of the text object in the bucket." +
 "\n -o, --output-filename: The name of the file to write the text to.");
 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?

IAM 252

AWS SDK for .NET Developer Guide

 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

IAM 253

AWS SDK for .NET Developer Guide

}

If you want, you can temporarily remove the credentials you use on your development machine to
see how the application responds. (But be sure to restore the credentials when you're finished.)

Create an IAM role

Create an IAM role that has the appropriate permissions to access Amazon S3.

1. Open the IAM console.

2. In the navigation pane, choose Roles, and then choose Create Role.

3. Select AWS service, find and choose EC2, and choose Next: Permissions.

4. Under Attach permissions policies, find and select AmazonS3ReadOnlyAccess. Review the
policy if you want to, and then choose Next: Tags.

5. Add tags if you want and then choose Next: Review.

6. Type a name and description for the role, and then choose Create role. Remember this name
because you'll need it when you launch your EC2 instance.

Launch an EC2 instance and attach the IAM role

Launch an EC2 instance with the IAM role you created previously. You can do so in the following
ways.

• Using the EC2 console

To launch an instance by using the EC2 console, see Launch an instance using the new launch
instance wizard in the Amazon EC2 User Guide.

As you look through the launch page, you should at least expand the Advanced details pane so
that you can specify the IAM role you created earlier in IAM instance profile.

• Using the AWS SDK for .NET

For information about this, see Launching an Amazon EC2 instance, including the Additional
considerations near the end of that topic.

IAM 254

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS SDK for .NET Developer Guide

To launch an EC2 instance that has an IAM role attached, an IAM user's configuration must include
certain permissions. For more information about the required permissions, see Grant a user
permission to pass an IAM role to an instance in the Amazon EC2 User Guide.

Connect to the EC2 instance

Connect to the EC2 instance so that you can transfer the sample application to it and then run the
application. You'll need the file that contains the private portion of the key pair you used to launch
the instance; that is, the PEM file.

For information about connecting to an instance, see Connect to your Linux instance or Connect to
your Windows instance in the Amazon EC2 User Guide. When you connect, do so in such a way that
you can transfer files from your development machine to your instance.

If you're using Visual Studio on Windows, you can also connect to the instance by using the Toolkit
for Visual Studio. For more information, see Connecting to an Amazon EC2 Instance in the AWS
Toolkit for Visual Studio User Guide.

Run the sample application on the EC2 instance

1. Copy the application files from your local drive to your instance.

Which files you transfer depends on how you built the application and whether your instance
has the .NET Core Runtime installed. For information about how to transfer files to your
instance, see Connect to your Linux instance (see the appropriate sub-section) or Transfer files
to Windows instances in the Amazon EC2 User Guide.

2. Start the application and verify that it runs with the same results as on your development
machine.

3. Verify that the application uses the credentials provided by the IAM role.

a. Open the Amazon EC2 console.

b. Select the instance and detach the IAM role through Actions, Instance Settings, Attach/
Replace IAM Role.

c. Run the application again and see that it returns an authorization error.

Clean up

When you are finished with this tutorial, and if you no longer want the EC2 instance you created,
be sure to terminate the instance to avoid unwanted cost. You can do so in the Amazon EC2

IAM 255

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#permission-to-pass-iam-roles
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#permission-to-pass-iam-roles
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-ec2-ami.html#connect-ec2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instanceWindowsFileTransfer.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instanceWindowsFileTransfer.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS SDK for .NET Developer Guide

console or programmatically, as described in Terminating an Amazon EC2 instance. If you want to,
you can also delete other resources that you created for this tutorial. These might include an IAM
role, an EC2 keypair and PEM file, a security group, etc.

Using Amazon Simple Storage Service Internet storage

The AWS SDK for .NET supports Amazon S3, which is storage for the Internet. It is designed to
make web-scale computing easier for developers.

APIs

The AWS SDK for .NET provides APIs for Amazon S3 clients. The APIs enable you to work with
Amazon S3 resources such as buckets and items. To view the full set of APIs for Amazon S3, see the
following:

• AWS SDK for .NET API Reference (and scroll to "Amazon.S3").

• Amazon.Extensions.S3.Encryption documentation

The Amazon S3 APIs are provided by the following NuGet packages:

• AWSSDK.S3

• Amazon.Extensions.S3.Encryption

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Examples in this document

The following topics in this document show you how to use the AWS SDK for .NET to work with
Amazon S3.

• Using KMS keys for S3 encryption

Examples in other documents

The following links to the Amazon S3 Developer Guide provide additional examples of how to use
the AWS SDK for .NET to work with Amazon S3.

Amazon S3 256

https://console.aws.amazon.com/ec2/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.html
https://www.nuget.org/packages/AWSSDK.S3
https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption
https://docs.aws.amazon.com/AmazonS3/latest/dev/

AWS SDK for .NET Developer Guide

Note

Although these examples and additional programming considerations were created for
Version 3 of the AWS SDK for .NET using .NET Framework, they are also viable for later
versions of the AWS SDK for .NET using .NET Core. Small adjustments in the code are
sometimes necessary.

Amazon S3 programming examples

• Managing ACLs

• Creating a Bucket

• Upload an Object

• Multipart Upload with the High-Level API (Amazon.S3.Transfer.TransferUtility)

• Multipart Upload with the Low-Level API

• Listing Objects

• Listing Keys

• Get an Object

• Copy an Object

• Copy an Object with the Multipart Upload API

• Deleting an Object

• Deleting Multiple Objects

• Restore an Object

• Configure a Bucket for Notifications

• Manage an Object’s Lifecycle

• Generate a Pre-signed Object URL

• Managing Websites

• Enabling Cross-Origin Resource Sharing (CORS)

Additional programming considerations

• Using the AWS SDK for .NET for Amazon S3 Programming

Amazon S3 257

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-using-dot-net-sdk.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-location-example.html#create-bucket-get-location-dotnet
https://docs.aws.amazon.com/AmazonS3/latest/dev/UploadObjSingleOpNET.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TTransferUtility.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/usingHLmpuDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/usingLLmpuDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/list-obj-version-enabled-bucket.html#list-obj-version-enabled-bucket-sdk-examples
https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingObjectKeysUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/RetrievingObjectUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/CopyingObjectUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/CopyingObjctsUsingLLNetMPUapi.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/DeletingOneObjectUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/DeletingMultipleObjectsUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/restore-object-dotnet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ways-to-add-notification-config-to-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/manage-lifecycle-using-dot-net.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURLDotNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ConfigWebSiteDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ManageCorsUsingDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingTheMPDotNetAPI.html

AWS SDK for .NET Developer Guide

• Making Requests Using IAM User Temporary Credentials

• Making Requests Using Federated User Temporary Credentials

• Specifying Server-Side Encryption

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys

Using AWS KMS keys for Amazon S3 encryption in the AWS SDK for .NET

This example shows you how to use AWS Key Management Service keys to encrypt Amazon
S3 objects. The application creates a customer master key (CMK) and uses it to create an
AmazonS3EncryptionClientV2 object for client-side encryption. The application uses that client to
create an encrypted object from a given text file in an existing Amazon S3 bucket. It then decrypts
the object and displays its contents.

Warning

A similar class called AmazonS3EncryptionClient is deprecated and is less secure
than the AmazonS3EncryptionClientV2 class. To migrate existing code that uses
AmazonS3EncryptionClient, see S3 Encryption Client Migration.

Topics

• Create encryption materials

• Create and encrypt an Amazon S3 object

• Complete code

• Additional considerations

Create encryption materials

The following snippet creates an EncryptionMaterials object that contains a KMS key ID.

The example at the end of this topic shows this snippet in use.

 // Create a customer master key (CMK) and store the result
 CreateKeyResponse createKeyResponse =
 await new AmazonKeyManagementServiceClient().CreateKeyAsync(new
 CreateKeyRequest());

Amazon S3 258

https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationTokenDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingDotNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/sse-c-using-dot-net-sdk.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.AmazonS3EncryptionClientV2.html

AWS SDK for .NET Developer Guide

 var kmsEncryptionContext = new Dictionary<string, string>();
 var kmsEncryptionMaterials = new EncryptionMaterialsV2(
 createKeyResponse.KeyMetadata.KeyId, KmsType.KmsContext, kmsEncryptionContext);

Create and encrypt an Amazon S3 object

The following snippet creates an AmazonS3EncryptionClientV2 object that uses the encryption
materials created earlier. It then uses the client to create and encrypt a new Amazon S3 object.

The example at the end of this topic shows this snippet in use.

 //
 // Method to create and encrypt an object in an S3 bucket
 static async Task<GetObjectResponse> CreateAndRetrieveObjectAsync(
 EncryptionMaterialsV2 materials, string bucketName,
 string fileName, string itemName)
 {
 // CryptoStorageMode.ObjectMetadata is required for KMS EncryptionMaterials
 var config = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
 {
 StorageMode = CryptoStorageMode.ObjectMetadata
 };
 var s3EncClient = new AmazonS3EncryptionClientV2(config, materials);

 // Create, encrypt, and put the object
 await s3EncClient.PutObjectAsync(new PutObjectRequest
 {
 BucketName = bucketName,
 Key = itemName,
 ContentBody = File.ReadAllText(fileName)
 });

 // Get, decrypt, and return the object
 return await s3EncClient.GetObjectAsync(new GetObjectRequest
 {
 BucketName = bucketName,
 Key = itemName
 });
 }

Complete code

This section shows relevant references and the complete code for this example.

Amazon S3 259

AWS SDK for .NET Developer Guide

SDK references

NuGet packages:

• Amazon.Extensions.S3.Encryption

Programming elements:

• Namespace Amazon.Extensions.S3.Encryption

Class AmazonS3EncryptionClientV2

Class AmazonS3CryptoConfigurationV2

Class CryptoStorageMode

Class EncryptionMaterialsV2

• Namespace Amazon.Extensions.S3.Encryption.Primitives

Class KmsType

• Namespace Amazon.S3.Model

Class GetObjectRequest

Class GetObjectResponse

Class PutObjectRequest

• Namespace Amazon.KeyManagementService

Class AmazonKeyManagementServiceClient

• Namespace Amazon.KeyManagementService.Model

Class CreateKeyRequest

Class CreateKeyResponse

The code

using System;
using System.Collections.Generic;

Amazon S3 260

https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.AmazonS3EncryptionClientV2.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.AmazonS3CryptoConfigurationV2.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.CryptoStorageMode.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.EncryptionMaterialsV2.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.Primitives.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.Primitives.KmsType.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/NS3Model.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TGetObjectRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TGetObjectResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TPutObjectRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/NKeyManagementService.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/NKeyManagementServiceModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/TCreateKeyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/TCreateKeyResponse.html

AWS SDK for .NET Developer Guide

using System.IO;
using System.Threading.Tasks;
using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;
using Amazon.S3.Model;
using Amazon.KeyManagementService;
using Amazon.KeyManagementService.Model;

namespace KmsS3Encryption
{
 // =
 = = =
 // Class to store text in an encrypted S3 object.
 class Program
 {
 private const int MaxArgs = 3;

 public static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if((parsedArgs.Count == 0) || (parsedArgs.Count > MaxArgs))
 {
 PrintHelp();
 return;
 }

 // Get the application arguments from the parsed list
 string bucketName =
 CommandLine.GetArgument(parsedArgs, null, "-b", "--bucket-name");
 string fileName =
 CommandLine.GetArgument(parsedArgs, null, "-f", "--file-name");
 string itemName =
 CommandLine.GetArgument(parsedArgs, null, "-i", "--item-name");
 if(string.IsNullOrEmpty(bucketName) || (string.IsNullOrEmpty(fileName)))
 CommandLine.ErrorExit(
 "\nOne or more of the required arguments is missing or incorrect." +
 "\nRun the command with no arguments to see help.");
 if(!File.Exists(fileName))
 CommandLine.ErrorExit($"\nThe given file {fileName} doesn't exist.");
 if(string.IsNullOrEmpty(itemName))
 itemName = Path.GetFileName(fileName);

 // Create a customer master key (CMK) and store the result

Amazon S3 261

AWS SDK for .NET Developer Guide

 CreateKeyResponse createKeyResponse =
 await new AmazonKeyManagementServiceClient().CreateKeyAsync(new
 CreateKeyRequest());
 var kmsEncryptionContext = new Dictionary<string, string>();
 var kmsEncryptionMaterials = new EncryptionMaterialsV2(
 createKeyResponse.KeyMetadata.KeyId, KmsType.KmsContext, kmsEncryptionContext);

 // Create the object in the bucket, then display the content of the object
 var putObjectResponse =
 await CreateAndRetrieveObjectAsync(kmsEncryptionMaterials, bucketName,
 fileName, itemName);
 Stream stream = putObjectResponse.ResponseStream;
 StreamReader reader = new StreamReader(stream);
 Console.WriteLine(reader.ReadToEnd());
 }

 //
 // Method to create and encrypt an object in an S3 bucket
 static async Task<GetObjectResponse> CreateAndRetrieveObjectAsync(
 EncryptionMaterialsV2 materials, string bucketName,
 string fileName, string itemName)
 {
 // CryptoStorageMode.ObjectMetadata is required for KMS EncryptionMaterials
 var config = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
 {
 StorageMode = CryptoStorageMode.ObjectMetadata
 };
 var s3EncClient = new AmazonS3EncryptionClientV2(config, materials);

 // Create, encrypt, and put the object
 await s3EncClient.PutObjectAsync(new PutObjectRequest
 {
 BucketName = bucketName,
 Key = itemName,
 ContentBody = File.ReadAllText(fileName)
 });

 // Get, decrypt, and return the object
 return await s3EncClient.GetObjectAsync(new GetObjectRequest
 {
 BucketName = bucketName,
 Key = itemName
 });

Amazon S3 262

AWS SDK for .NET Developer Guide

 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: KmsS3Encryption -b <bucket-name> -f <file-name> [-i <item-name>]" +
 "\n -b, --bucket-name: The name of an existing S3 bucket." +
 "\n -f, --file-name: The name of a text file with content to encrypt and store
 in S3." +
 "\n -i, --item-name: The name you want to use for the item." +
 "\n If item-name isn't given, file-name will be used.");
 }

 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {

Amazon S3 263

AWS SDK for .NET Developer Guide

 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)

Amazon S3 264

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Additional considerations

• You can check the results of this example. To do so, go to the Amazon S3 console and open the
bucket you provided to the application. Then find the new object, download it, and open it in a
text editor.

• The AmazonS3EncryptionClientV2 class implements the same interface as the
standard AmazonS3Client class. This makes it easier to port your code to the
AmazonS3EncryptionClientV2 class so that encryption and decryption happen automatically
and transparently in the client.

• One advantage of using an AWS KMS key as your master key is that you don't need to store
and manage your own master keys; this is done by AWS. A second advantage is that the
AmazonS3EncryptionClientV2 class of the AWS SDK for .NET is interoperable with the
AmazonS3EncryptionClientV2 class of the AWS SDK for Java. This means you can encrypt
with the AWS SDK for Java and decrypt with the AWS SDK for .NET, and vice versa.

Note

The AmazonS3EncryptionClientV2 class of the AWS SDK for .NET supports
KMS master keys only when run in metadata mode. The instruction file mode of the
AmazonS3EncryptionClientV2 class of the AWS SDK for .NET is incompatible with
the AmazonS3EncryptionClientV2 class of the AWS SDK for Java.

• For more information about client-side encryption with the AmazonS3EncryptionClientV2
class, and how envelope encryption works, see Client Side Data Encryption with AWS SDK
for .NET and Amazon S3.

Amazon S3 265

https://console.aws.amazon.com/s3
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.AmazonS3EncryptionClientV2.html
https://aws.amazon.com/blogs/developer/client-side-data-encryption-with-aws-sdk-for-net-and-amazon-s3/
https://aws.amazon.com/blogs/developer/client-side-data-encryption-with-aws-sdk-for-net-and-amazon-s3/

AWS SDK for .NET Developer Guide

Sending Notifications From the Cloud Using Amazon Simple
Notification Service

Note

The information in this topic is specific to projects based on .NET Framework and the AWS
SDK for .NET version 3.3 and earlier.

The AWS SDK for .NET supports Amazon Simple Notification Service (Amazon SNS), which is a web
service that enables applications, end users, and devices to instantly send notifications from the
cloud. For more information, see Amazon SNS.

Listing Your Amazon SNS Topics

The following example shows how to list your Amazon SNS topics, the subscriptions
to each topic, and the attributes for each topic. This example uses the default
AmazonSimpleNotificationServiceClient.

// using Amazon.SimpleNotificationService;
// using Amazon.SimpleNotificationService.Model;

var client = new AmazonSimpleNotificationServiceClient();
var request = new ListTopicsRequest();
var response = new ListTopicsResponse();

do
{
 response = client.ListTopics(request);

 foreach (var topic in response.Topics)
 {
 Console.WriteLine("Topic: {0}", topic.TopicArn);

 var subs = client.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest
 {
 TopicArn = topic.TopicArn
 });

 var ss = subs.Subscriptions;

Amazon SNS 266

https://aws.amazon.com/sns/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SNS/TSNSClient.html

AWS SDK for .NET Developer Guide

 if (ss.Any())
 {
 Console.WriteLine(" Subscriptions:");

 foreach (var sub in ss)
 {
 Console.WriteLine(" {0}", sub.SubscriptionArn);
 }
 }

 var attrs = client.GetTopicAttributes(
 new GetTopicAttributesRequest
 {
 TopicArn = topic.TopicArn
 }).Attributes;

 if (attrs.Any())
 {
 Console.WriteLine(" Attributes:");

 foreach (var attr in attrs)
 {
 Console.WriteLine(" {0} = {1}", attr.Key, attr.Value);
 }
 }

 Console.WriteLine();
 }

 request.NextToken = response.NextToken;

} while (!string.IsNullOrEmpty(response.NextToken));

Sending a Message to an Amazon SNS Topic

The following example shows how to send a message to an Amazon SNS topic. The example takes
one argument, the ARN of the Amazon SNS topic.

using System;
using System.Linq;
using System.Threading.Tasks;

Amazon SNS 267

AWS SDK for .NET Developer Guide

using Amazon;
using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SnsSendMessage
{
 class Program
 {
 static void Main(string[] args)
 {
 /* Topic ARNs must be in the correct format:
 * arn:aws:sns:REGION:ACCOUNT_ID:NAME
 *
 * where:
 * REGION is the region in which the topic is created, such as us-
west-2
 * ACCOUNT_ID is your (typically) 12-character account ID
 * NAME is the name of the topic
 */
 string topicArn = args[0];
 string message = "Hello at " + DateTime.Now.ToShortTimeString();

 var client = new AmazonSimpleNotificationServiceClient(region:
 Amazon.RegionEndpoint.USWest2);

 var request = new PublishRequest
 {
 Message = message,
 TopicArn = topicArn
 };

 try
 {
 var response = client.Publish(request);

 Console.WriteLine("Message sent to topic:");
 Console.WriteLine(message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Caught exception publishing request:");
 Console.WriteLine(ex.Message);
 }
 }

Amazon SNS 268

AWS SDK for .NET Developer Guide

 }
}

See the complete example, including information on how to build and run the example from the
command line, on GitHub.

Sending an SMS Message to a Phone Number

The following example shows how to send an SMS message to a telephone number. The example
takes one argument, the telephone number, which must be in either of the two formats described
in the comments.

using System;
using System.Linq;
using System.Threading.Tasks;
using Amazon;
using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SnsPublish
{
 class Program
 {
 static void Main(string[] args)
 {
 // US phone numbers must be in the correct format:
 // +1 (nnn) nnn-nnnn OR +1nnnnnnnnnn
 string number = args[0];
 string message = "Hello at " + DateTime.Now.ToShortTimeString();

 var client = new AmazonSimpleNotificationServiceClient(region:
 Amazon.RegionEndpoint.USWest2);
 var request = new PublishRequest
 {
 Message = message,
 PhoneNumber = number
 };

 try
 {
 var response = client.Publish(request);

 Console.WriteLine("Message sent to " + number + ":");

Amazon SNS 269

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/.dotnet/example_code_legacy/SNS/SnsSendMessage.cs

AWS SDK for .NET Developer Guide

 Console.WriteLine(message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Caught exception publishing request:");
 Console.WriteLine(ex.Message);
 }
 }
 }
}

See the complete example, including information on how to build and run the example from the
command line, on GitHub.

Messaging using Amazon SQS

The AWS SDK for .NET supports Amazon Simple Queue Service (Amazon SQS), which is a message
queuing service that handles messages or workflows between components in a system.

Amazon SQS queues provide a mechanism that enables you to send, store, and receive messages
between software components such as microservices, distributed systems, and serverless
applications. This enables you to decouple such components and frees you from the need to design
and operate your own messaging system. For information about how queues and messages work in
Amazon SQS, see Amazon SQS tutorials and Basic Amazon SQS architecture in the Amazon Simple
Queue Service Developer Guide.

Important

Due to the distributed nature of queues, Amazon SQS can't guarantee that you'll receive
messages in the precise order they're sent. If you need to preserve message order, use an
Amazon SQS FIFO queue.

APIs

The AWS SDK for .NET provides APIs for Amazon SQS clients. The APIs enable you to work with
Amazon SQS features such as queues and messages. This section contains a small number of
examples that show you the patterns you can follow when working with these APIs. To view the full
set of APIs, see the AWS SDK for .NET API Reference (and scroll to "Amazon.SQS").

Amazon SQS 270

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/.dotnet/example_code_legacy/SNS/SnsPublish.cs
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-other-tutorials.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-basic-architecture.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/

AWS SDK for .NET Developer Guide

The Amazon SQS APIs are provided by the AWSSDK.SQS NuGet package.

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

Topics

• Creating Amazon SQS queues

• Updating Amazon SQS queues

• Deleting Amazon SQS queues

• Sending Amazon SQS messages

• Receiving Amazon SQS messages

Creating Amazon SQS queues

This example shows you how to use the AWS SDK for .NET to create an Amazon SQS queue. The
application creates a dead-letter queue if you don't supply the ARN for one. It then creates a
standard message queue, which includes a dead-letter queue (the one you supplied or the one that
was created).

If you don't supply any command-line arguments, the application simply shows information about
all existing queues.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Show existing queues

• Create the queue

• Get a queue's ARN

• Complete code

• Additional considerations

Amazon SQS 271

https://www.nuget.org/packages/AWSSDK.SQS
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html

AWS SDK for .NET Developer Guide

Show existing queues

The following snippet shows a list of the existing queues in the SQS client's region and the
attributes of each queue.

The example at the end of this topic shows this snippet in use.

 //
 // Method to show a list of the existing queues
 private static async Task ShowQueues(IAmazonSQS sqsClient)
 {
 ListQueuesResponse responseList = await sqsClient.ListQueuesAsync("");
 Console.WriteLine();
 foreach(string qUrl in responseList.QueueUrls)
 {
 // Get and show all attributes. Could also get a subset.
 await ShowAllAttributes(sqsClient, qUrl);
 }
 }

 //
 // Method to show all attributes of a queue
 private static async Task ShowAllAttributes(IAmazonSQS sqsClient, string qUrl)
 {
 var attributes = new List<string>{ QueueAttributeName.All };
 GetQueueAttributesResponse responseGetAtt =
 await sqsClient.GetQueueAttributesAsync(qUrl, attributes);
 Console.WriteLine($"Queue: {qUrl}");
 foreach(var att in responseGetAtt.Attributes)
 Console.WriteLine($"\t{att.Key}: {att.Value}");
 }

Create the queue

The following snippet creates a queue. The snippet includes the use of a dead-letter queue, but a
dead-letter queue isn't necessarily required for your queues.

The example at the end of this topic shows this snippet in use.

 //
 // Method to create a queue. Returns the queue URL.
 private static async Task<string> CreateQueue(
 IAmazonSQS sqsClient, string qName, string deadLetterQueueUrl=null,

Amazon SQS 272

AWS SDK for .NET Developer Guide

 string maxReceiveCount=null, string receiveWaitTime=null)
 {
 var attrs = new Dictionary<string, string>();

 // If a dead-letter queue is given, create a message queue
 if(!string.IsNullOrEmpty(deadLetterQueueUrl))
 {
 attrs.Add(QueueAttributeName.ReceiveMessageWaitTimeSeconds, receiveWaitTime);
 attrs.Add(QueueAttributeName.RedrivePolicy,
 $"{{\"deadLetterTargetArn\":\"{await GetQueueArn(sqsClient,
 deadLetterQueueUrl)}\"," +
 $"\"maxReceiveCount\":\"{maxReceiveCount}\"}}");
 // Add other attributes for the message queue such as VisibilityTimeout
 }

 // If no dead-letter queue is given, create one of those instead
 //else
 //{
 // // Add attributes for the dead-letter queue as needed
 // attrs.Add();
 //}

 // Create the queue
 CreateQueueResponse responseCreate = await sqsClient.CreateQueueAsync(
 new CreateQueueRequest{QueueName = qName, Attributes = attrs});
 return responseCreate.QueueUrl;
 }

Get a queue's ARN

The following snippet gets the ARN of the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //
 // Method to get the ARN of a queue
 private static async Task<string> GetQueueArn(IAmazonSQS sqsClient, string qUrl)
 {
 GetQueueAttributesResponse responseGetAtt = await
 sqsClient.GetQueueAttributesAsync(
 qUrl, new List<string>{QueueAttributeName.QueueArn});
 return responseGetAtt.QueueARN;
 }

Amazon SQS 273

AWS SDK for .NET Developer Guide

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.SQS

Programming elements:

• Namespace Amazon.SQS

Class AmazonSQSClient

Class QueueAttributeName

• Namespace Amazon.SQS.Model

Class CreateQueueRequest

Class CreateQueueResponse

Class GetQueueAttributesResponse

Class ListQueuesResponse

The code

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSCreateQueue
{
 // =
 = = =
 // Class to create a queue
 class Program
 {

Amazon SQS 274

https://www.nuget.org/packages/AWSSDK.SQS
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQS.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TQueueAttributeName.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TCreateQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TCreateQueueResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TGetQueueAttributesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TListQueuesResponse.html

AWS SDK for .NET Developer Guide

 private const string MaxReceiveCount = "10";
 private const string ReceiveMessageWaitTime = "2";
 private const int MaxArgs = 3;

 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count > MaxArgs)
 CommandLine.ErrorExit(
 "\nToo many command-line arguments.\nRun the command with no arguments to see
 help.");

 // Create the Amazon SQS client
 var sqsClient = new AmazonSQSClient();

 // In the case of no command-line arguments, just show help and the existing
 queues
 if(parsedArgs.Count == 0)
 {
 PrintHelp();
 Console.WriteLine("\nNo arguments specified.");
 Console.Write("Do you want to see a list of the existing queues? ((y) or n):
 ");
 string response = Console.ReadLine();
 if((string.IsNullOrEmpty(response)) || (response.ToLower() == "y"))
 await ShowQueues(sqsClient);
 return;
 }

 // Get the application arguments from the parsed list
 string queueName =
 CommandLine.GetArgument(parsedArgs, null, "-q", "--queue-name");
 string deadLetterQueueUrl =
 CommandLine.GetArgument(parsedArgs, null, "-d", "--dead-letter-queue");
 string maxReceiveCount =
 CommandLine.GetArgument(parsedArgs, MaxReceiveCount, "-m", "--max-receive-
count");
 string receiveWaitTime =
 CommandLine.GetArgument(parsedArgs, ReceiveMessageWaitTime, "-w", "--wait-
time");

 if(string.IsNullOrEmpty(queueName))
 CommandLine.ErrorExit(

Amazon SQS 275

AWS SDK for .NET Developer Guide

 "\nYou must supply a queue name.\nRun the command with no arguments to see
 help.");

 // If a dead-letter queue wasn't given, create one
 if(string.IsNullOrEmpty(deadLetterQueueUrl))
 {
 Console.WriteLine("\nNo dead-letter queue was specified. Creating one...");
 deadLetterQueueUrl = await CreateQueue(sqsClient, queueName + "__dlq");
 Console.WriteLine($"Your new dead-letter queue:");
 await ShowAllAttributes(sqsClient, deadLetterQueueUrl);
 }

 // Create the message queue
 string messageQueueUrl = await CreateQueue(
 sqsClient, queueName, deadLetterQueueUrl, maxReceiveCount, receiveWaitTime);
 Console.WriteLine($"Your new message queue:");
 await ShowAllAttributes(sqsClient, messageQueueUrl);
 }

 //
 // Method to show a list of the existing queues
 private static async Task ShowQueues(IAmazonSQS sqsClient)
 {
 ListQueuesResponse responseList = await sqsClient.ListQueuesAsync("");
 Console.WriteLine();
 foreach(string qUrl in responseList.QueueUrls)
 {
 // Get and show all attributes. Could also get a subset.
 await ShowAllAttributes(sqsClient, qUrl);
 }
 }

 //
 // Method to create a queue. Returns the queue URL.
 private static async Task<string> CreateQueue(
 IAmazonSQS sqsClient, string qName, string deadLetterQueueUrl=null,
 string maxReceiveCount=null, string receiveWaitTime=null)
 {
 var attrs = new Dictionary<string, string>();

 // If a dead-letter queue is given, create a message queue
 if(!string.IsNullOrEmpty(deadLetterQueueUrl))

Amazon SQS 276

AWS SDK for .NET Developer Guide

 {
 attrs.Add(QueueAttributeName.ReceiveMessageWaitTimeSeconds, receiveWaitTime);
 attrs.Add(QueueAttributeName.RedrivePolicy,
 $"{{\"deadLetterTargetArn\":\"{await GetQueueArn(sqsClient,
 deadLetterQueueUrl)}\"," +
 $"\"maxReceiveCount\":\"{maxReceiveCount}\"}}");
 // Add other attributes for the message queue such as VisibilityTimeout
 }

 // If no dead-letter queue is given, create one of those instead
 //else
 //{
 // // Add attributes for the dead-letter queue as needed
 // attrs.Add();
 //}

 // Create the queue
 CreateQueueResponse responseCreate = await sqsClient.CreateQueueAsync(
 new CreateQueueRequest{QueueName = qName, Attributes = attrs});
 return responseCreate.QueueUrl;
 }

 //
 // Method to get the ARN of a queue
 private static async Task<string> GetQueueArn(IAmazonSQS sqsClient, string qUrl)
 {
 GetQueueAttributesResponse responseGetAtt = await
 sqsClient.GetQueueAttributesAsync(
 qUrl, new List<string>{QueueAttributeName.QueueArn});
 return responseGetAtt.QueueARN;
 }

 //
 // Method to show all attributes of a queue
 private static async Task ShowAllAttributes(IAmazonSQS sqsClient, string qUrl)
 {
 var attributes = new List<string>{ QueueAttributeName.All };
 GetQueueAttributesResponse responseGetAtt =
 await sqsClient.GetQueueAttributesAsync(qUrl, attributes);
 Console.WriteLine($"Queue: {qUrl}");
 foreach(var att in responseGetAtt.Attributes)
 Console.WriteLine($"\t{att.Key}: {att.Value}");

Amazon SQS 277

AWS SDK for .NET Developer Guide

 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine(
 "\nUsage: SQSCreateQueue -q <queue-name> [-d <dead-letter-queue>]" +
 " [-m <max-receive-count>] [-w <wait-time>]" +
 "\n -q, --queue-name: The name of the queue you want to create." +
 "\n -d, --dead-letter-queue: The URL of an existing queue to be used as the
 dead-letter queue."+
 "\n If this argument isn't supplied, a new dead-letter queue will be
 created." +
 "\n -m, --max-receive-count: The value for maxReceiveCount in the RedrivePolicy
 of the queue." +
 $"\n Default is {MaxReceiveCount}." +
 "\n -w, --wait-time: The value for ReceiveMessageWaitTimeSeconds of the queue
 for long polling." +
 $"\n Default is {ReceiveMessageWaitTime}.");
 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",

Amazon SQS 278

AWS SDK for .NET Developer Guide

 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else
 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)

Amazon SQS 279

AWS SDK for .NET Developer Guide

 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Additional considerations

• Your queue name must be composed of alphanumeric characters, hyphens, and underscores.

• Queue names and queue URLs are case-sensitive

• If you need the queue URL but only have the queue name, use one of the
AmazonSQSClient.GetQueueUrlAsync methods.

• For information about the various queue attributes you can set, see CreateQueueRequest in the
AWS SDK for .NET API Reference or SetQueueAttributes in the Amazon Simple Queue Service API
Reference.

• This example specifies long polling for all messages on the queue that you create. This is done by
using the ReceiveMessageWaitTimeSeconds attribute.

You can also specify long polling during a call to the ReceiveMessageAsync methods of the
AmazonSQSClient class. For more information, see Receiving Amazon SQS messages.

For information about short polling versus long polling, see Short and long polling in the
Amazon Simple Queue Service Developer Guide.

Amazon SQS 280

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TCreateQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html

AWS SDK for .NET Developer Guide

• A dead letter queue is one that other (source) queues can target for messages that aren't
processed successfully. For more information, see Amazon SQS dead-letter queues in the
Amazon Simple Queue Service Developer Guide.

• You can also see the list of queues and the results of this example in the Amazon SQS console.

Updating Amazon SQS queues

This example shows you how to use the AWS SDK for .NET to update an Amazon SQS queue. After
some checks, the application updates the given attribute with the given value, and then shows all
attributes for the queue.

If only the queue URL is included in the command-line arguments, the application simply shows all
attributes for the queue.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Show queue attributes

• Validate attribute name

• Update queue attribute

• Complete code

• Additional considerations

Show queue attributes

The following snippet shows the attributes of the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //
 // Method to show all attributes of a queue
 private static async Task ShowAllAttributes(IAmazonSQS sqsClient, string qUrl)
 {
 GetQueueAttributesResponse responseGetAtt =
 await sqsClient.GetQueueAttributesAsync(qUrl,
 new List<string>{ QueueAttributeName.All });

Amazon SQS 281

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://console.aws.amazon.com/sqs

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Queue: {qUrl}");
 foreach(var att in responseGetAtt.Attributes)
 Console.WriteLine($"\t{att.Key}: {att.Value}");
 }

Validate attribute name

The following snippet validates the name of the attribute being updated.

The example at the end of this topic shows this snippet in use.

 //
 // Method to check the name of the attribute
 private static bool ValidAttribute(string attribute)
 {
 var attOk = false;
 var qAttNameType = typeof(QueueAttributeName);
 List<string> qAttNamefields = new List<string>();
 foreach(var field in qAttNameType.GetFields())
 qAttNamefields.Add(field.Name);
 foreach(var name in qAttNamefields)
 if(attribute == name) { attOk = true; break; }
 return attOk;
 }

Update queue attribute

The following snippet updates an attribute of the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //
 // Method to update a queue attribute
 private static async Task UpdateAttribute(
 IAmazonSQS sqsClient, string qUrl, string attribute, string value)
 {
 await sqsClient.SetQueueAttributesAsync(qUrl,
 new Dictionary<string, string>{{attribute, value}});
 }

Complete code

This section shows relevant references and the complete code for this example.

Amazon SQS 282

AWS SDK for .NET Developer Guide

SDK references

NuGet packages:

• AWSSDK.SQS

Programming elements:

• Namespace Amazon.SQS

Class AmazonSQSClient

Class QueueAttributeName

• Namespace Amazon.SQS.Model

Class GetQueueAttributesResponse

The code

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSUpdateQueue
{
 // =
 = = =
 // Class to update a queue
 class Program
 {
 private const int MaxArgs = 3;
 private const int InvalidArgCount = 2;

 static async Task Main(string[] args)
 {
 // Parse the command line and show help if necessary
 var parsedArgs = CommandLine.Parse(args);
 if(parsedArgs.Count == 0)
 {
 PrintHelp();

Amazon SQS 283

https://www.nuget.org/packages/AWSSDK.SQS
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQS.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TQueueAttributeName.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TGetQueueAttributesResponse.html

AWS SDK for .NET Developer Guide

 return;
 }
 if((parsedArgs.Count > MaxArgs) || (parsedArgs.Count == InvalidArgCount))
 CommandLine.ErrorExit("\nThe number of command-line arguments is incorrect." +
 "\nRun the command with no arguments to see help.");

 // Get the application arguments from the parsed list
 var qUrl = CommandLine.GetArgument(parsedArgs, null, "-q");
 var attribute = CommandLine.GetArgument(parsedArgs, null, "-a");
 var value = CommandLine.GetArgument(parsedArgs, null, "-v", "--value");

 if(string.IsNullOrEmpty(qUrl))
 CommandLine.ErrorExit("\nYou must supply at least a queue URL." +
 "\nRun the command with no arguments to see help.");

 // Create the Amazon SQS client
 var sqsClient = new AmazonSQSClient();

 // In the case of one command-line argument, just show the attributes for the
 queue
 if(parsedArgs.Count == 1)
 await ShowAllAttributes(sqsClient, qUrl);

 // Otherwise, attempt to update the given queue attribute with the given value
 else
 {
 // Check to see if the attribute is valid
 if(ValidAttribute(attribute))
 {
 // Perform the update and then show all the attributes of the queue
 await UpdateAttribute(sqsClient, qUrl, attribute, value);
 await ShowAllAttributes(sqsClient, qUrl);
 }
 else
 {
 Console.WriteLine($"\nThe given attribute name, {attribute}, isn't valid.");
 }
 }
 }

 //
 // Method to show all attributes of a queue
 private static async Task ShowAllAttributes(IAmazonSQS sqsClient, string qUrl)

Amazon SQS 284

AWS SDK for .NET Developer Guide

 {
 GetQueueAttributesResponse responseGetAtt =
 await sqsClient.GetQueueAttributesAsync(qUrl,
 new List<string>{ QueueAttributeName.All });
 Console.WriteLine($"Queue: {qUrl}");
 foreach(var att in responseGetAtt.Attributes)
 Console.WriteLine($"\t{att.Key}: {att.Value}");
 }

 //
 // Method to check the name of the attribute
 private static bool ValidAttribute(string attribute)
 {
 var attOk = false;
 var qAttNameType = typeof(QueueAttributeName);
 List<string> qAttNamefields = new List<string>();
 foreach(var field in qAttNameType.GetFields())
 qAttNamefields.Add(field.Name);
 foreach(var name in qAttNamefields)
 if(attribute == name) { attOk = true; break; }
 return attOk;
 }

 //
 // Method to update a queue attribute
 private static async Task UpdateAttribute(
 IAmazonSQS sqsClient, string qUrl, string attribute, string value)
 {
 await sqsClient.SetQueueAttributesAsync(qUrl,
 new Dictionary<string, string>{{attribute, value}});
 }

 //
 // Command-line help
 private static void PrintHelp()
 {
 Console.WriteLine("\nUsage: SQSUpdateQueue -q queue_url [-a attribute -v
 value]");
 Console.WriteLine(" -q: The URL of the queue you want to update.");
 Console.WriteLine(" -a: The name of the attribute to update.");
 Console.WriteLine(" -v, --value: The value to assign to the attribute.");

Amazon SQS 285

AWS SDK for .NET Developer Guide

 }
 }

 // =
 = = =
 // Class that represents a command line on the console or terminal.
 // (This is the same for all examples. When you have seen it once, you can ignore
 it.)
 static class CommandLine
 {
 //
 // Method to parse a command line of the form: "--key value" or "-k value".
 //
 // Parameters:
 // - args: The command-line arguments passed into the application by the system.
 //
 // Returns:
 // A Dictionary with string Keys and Values.
 //
 // If a key is found without a matching value, Dictionary.Value is set to the key
 // (including the dashes).
 // If a value is found without a matching key, Dictionary.Key is set to "--NoKeyN",
 // where "N" represents sequential numbers.
 public static Dictionary<string,string> Parse(string[] args)
 {
 var parsedArgs = new Dictionary<string,string>();
 int i = 0, n = 0;
 while(i < args.Length)
 {
 // If the first argument in this iteration starts with a dash it's an option.
 if(args[i].StartsWith("-"))
 {
 var key = args[i++];
 var value = key;

 // Check to see if there's a value that goes with this option?
 if((i < args.Length) && (!args[i].StartsWith("-"))) value = args[i++];
 parsedArgs.Add(key, value);
 }

 // If the first argument in this iteration doesn't start with a dash, it's a
 value
 else

Amazon SQS 286

AWS SDK for .NET Developer Guide

 {
 parsedArgs.Add("--NoKey" + n.ToString(), args[i++]);
 n++;
 }
 }

 return parsedArgs;
 }

 //
 // Method to get an argument from the parsed command-line arguments
 //
 // Parameters:
 // - parsedArgs: The Dictionary object returned from the Parse() method (shown
 above).
 // - defaultValue: The default string to return if the specified key isn't in
 parsedArgs.
 // - keys: An array of keys to look for in parsedArgs.
 public static string GetArgument(
 Dictionary<string,string> parsedArgs, string defaultReturn, params string[] keys)
 {
 string retval = null;
 foreach(var key in keys)
 if(parsedArgs.TryGetValue(key, out retval)) break;
 return retval ?? defaultReturn;
 }

 //
 // Method to exit the application with an error.
 public static void ErrorExit(string msg, int code=1)
 {
 Console.WriteLine("\nError");
 Console.WriteLine(msg);
 Environment.Exit(code);
 }
 }

}

Additional considerations

• To update the RedrivePolicy attribute, you must quote the entire value and escape the
quotes for the key/value pairs, as appropriate for you operating system.

Amazon SQS 287

AWS SDK for .NET Developer Guide

On Windows, for example, the value is constructed in a manner similar to the following:

"{\"deadLetterTargetArn\":\"DEAD_LETTER-QUEUE-ARN\",\"maxReceiveCount\":\"10\"}"

Deleting Amazon SQS queues

This example shows you how to use the AWS SDK for .NET to delete an Amazon SQS queue. The
application deletes the queue, waits for up to a given amount of time for the queue to be gone,
and then shows a list of the remaining queues.

If you don't supply any command-line arguments, the application simply shows a list of the
existing queues.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Delete the queue

• Wait for the queue to be gone

• Show a list of existing queues

• Complete code

• Additional considerations

Delete the queue

The following snippet deletes the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //
 // Method to delete an SQS queue
 private static async Task DeleteQueue(IAmazonSQS sqsClient, string qUrl)
 {
 Console.WriteLine($"Deleting queue {qUrl}...");
 await sqsClient.DeleteQueueAsync(qUrl);
 Console.WriteLine($"Queue {qUrl} has been deleted.");
 }

Amazon SQS 288

AWS SDK for .NET Developer Guide

Wait for the queue to be gone

The following snippet waits for the deletion process to finish, which might take 60 seconds.

The example at the end of this topic shows this snippet in use.

 //
 // Method to wait up to a given number of seconds
 private static async Task Wait(
 IAmazonSQS sqsClient, int numSeconds, string qUrl)
 {
 Console.WriteLine($"Waiting for up to {numSeconds} seconds.");
 Console.WriteLine("Press any key to stop waiting. (Response might be slightly
 delayed.)");
 for(int i=0; i<numSeconds; i++)
 {
 Console.Write(".");
 Thread.Sleep(1000);
 if(Console.KeyAvailable) break;

 // Check to see if the queue is gone yet
 var found = false;
 ListQueuesResponse responseList = await sqsClient.ListQueuesAsync("");
 foreach(var url in responseList.QueueUrls)
 {
 if(url == qUrl)
 {
 found = true;
 break;
 }
 }
 if(!found) break;
 }
 }

Show a list of existing queues

The following snippet shows a list of the existing queues in the SQS client's region.

The example at the end of this topic shows this snippet in use.

 //
 // Method to show a list of the existing queues
 private static async Task ListQueues(IAmazonSQS sqsClient)

Amazon SQS 289

AWS SDK for .NET Developer Guide

 {
 ListQueuesResponse responseList = await sqsClient.ListQueuesAsync("");
 Console.WriteLine("\nList of queues:");
 foreach(var qUrl in responseList.QueueUrls)
 Console.WriteLine($"- {qUrl}");
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.SQS

Programming elements:

• Namespace Amazon.SQS

Class AmazonSQSClient

• Namespace Amazon.SQS.Model

Class ListQueuesResponse

The code

using System;
using System.Threading;
using System.Threading.Tasks;
using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSDeleteQueue
{
 // =
 = = =
 // Class to update a queue
 class Program
 {
 private const int TimeToWait = 60;

Amazon SQS 290

https://www.nuget.org/packages/AWSSDK.SQS
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQS.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TListQueuesResponse.html

AWS SDK for .NET Developer Guide

 static async Task Main(string[] args)
 {
 // Create the Amazon SQS client
 var sqsClient = new AmazonSQSClient();

 // If no command-line arguments, just show a list of the queues
 if(args.Length == 0)
 {
 Console.WriteLine("\nUsage: SQSCreateQueue queue_url");
 Console.WriteLine(" queue_url - The URL of the queue you want to delete.");
 Console.WriteLine("\nNo arguments specified.");
 Console.Write("Do you want to see a list of the existing queues? ((y) or n):
 ");
 var response = Console.ReadLine();
 if((string.IsNullOrEmpty(response)) || (response.ToLower() == "y"))
 await ListQueues(sqsClient);
 return;
 }

 // If given a queue URL, delete that queue
 if(args[0].StartsWith("https://sqs."))
 {
 // Delete the queue
 await DeleteQueue(sqsClient, args[0]);
 // Wait for a little while because it takes a while for the queue to disappear
 await Wait(sqsClient, TimeToWait, args[0]);
 // Show a list of the remaining queues
 await ListQueues(sqsClient);
 }
 else
 {
 Console.WriteLine("The command-line argument isn't a queue URL:");
 Console.WriteLine($"{args[0]}");
 }
 }

 //
 // Method to delete an SQS queue
 private static async Task DeleteQueue(IAmazonSQS sqsClient, string qUrl)
 {
 Console.WriteLine($"Deleting queue {qUrl}...");
 await sqsClient.DeleteQueueAsync(qUrl);

Amazon SQS 291

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Queue {qUrl} has been deleted.");
 }

 //
 // Method to wait up to a given number of seconds
 private static async Task Wait(
 IAmazonSQS sqsClient, int numSeconds, string qUrl)
 {
 Console.WriteLine($"Waiting for up to {numSeconds} seconds.");
 Console.WriteLine("Press any key to stop waiting. (Response might be slightly
 delayed.)");
 for(int i=0; i<numSeconds; i++)
 {
 Console.Write(".");
 Thread.Sleep(1000);
 if(Console.KeyAvailable) break;

 // Check to see if the queue is gone yet
 var found = false;
 ListQueuesResponse responseList = await sqsClient.ListQueuesAsync("");
 foreach(var url in responseList.QueueUrls)
 {
 if(url == qUrl)
 {
 found = true;
 break;
 }
 }
 if(!found) break;
 }
 }

 //
 // Method to show a list of the existing queues
 private static async Task ListQueues(IAmazonSQS sqsClient)
 {
 ListQueuesResponse responseList = await sqsClient.ListQueuesAsync("");
 Console.WriteLine("\nList of queues:");
 foreach(var qUrl in responseList.QueueUrls)
 Console.WriteLine($"- {qUrl}");
 }
 }

Amazon SQS 292

AWS SDK for .NET Developer Guide

}

Additional considerations

• The DeleteQueueAsync API call doesn't check to see if the queue you're deleting is being used
as a dead-letter queue. A more sophisticated procedure could check for this.

• You can also see the list of queues and the results of this example in the Amazon SQS console.

Sending Amazon SQS messages

This example shows you how to use the AWS SDK for .NET to send messages to an Amazon
SQS queue, which you can create programmatically or by using the Amazon SQS console. The
application sends a single message to the queue and then a batch of messages. The application
then waits for user input, which can be additional messages to send to the queue or a request to
exit the application.

This example and the next example about receiving messages can be used together to see message
flow in Amazon SQS.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Send a message

• Send a batch of messages

• Delete all messages from the queue

• Complete code

• Additional considerations

Send a message

The following snippet sends a message to the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //

Amazon SQS 293

https://console.aws.amazon.com/sqs
https://console.aws.amazon.com/sqs

AWS SDK for .NET Developer Guide

 // Method to put a message on a queue
 // Could be expanded to include message attributes, etc., in a SendMessageRequest
 private static async Task SendMessage(
 IAmazonSQS sqsClient, string qUrl, string messageBody)
 {
 SendMessageResponse responseSendMsg =
 await sqsClient.SendMessageAsync(qUrl, messageBody);
 Console.WriteLine($"Message added to queue\n {qUrl}");
 Console.WriteLine($"HttpStatusCode: {responseSendMsg.HttpStatusCode}");
 }

Send a batch of messages

The following snippet sends a batch of messages to the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //
 // Method to put a batch of messages on a queue
 // Could be expanded to include message attributes, etc.,
 // in the SendMessageBatchRequestEntry objects
 private static async Task SendMessageBatch(
 IAmazonSQS sqsClient, string qUrl, List<SendMessageBatchRequestEntry> messages)
 {
 Console.WriteLine($"\nSending a batch of messages to queue\n {qUrl}");
 SendMessageBatchResponse responseSendBatch =
 await sqsClient.SendMessageBatchAsync(qUrl, messages);
 // Could test responseSendBatch.Failed here
 foreach(SendMessageBatchResultEntry entry in responseSendBatch.Successful)
 Console.WriteLine($"Message {entry.Id} successfully queued.");
 }

Delete all messages from the queue

The following snippet deletes all messages from the queue identified by the given queue URL. This
is also known as purging the queue.

The example at the end of this topic shows this snippet in use.

 //
 // Method to delete all messages from the queue
 private static async Task DeleteAllMessages(IAmazonSQS sqsClient, string qUrl)
 {

Amazon SQS 294

AWS SDK for .NET Developer Guide

 Console.WriteLine($"\nPurging messages from queue\n {qUrl}...");
 PurgeQueueResponse responsePurge = await sqsClient.PurgeQueueAsync(qUrl);
 Console.WriteLine($"HttpStatusCode: {responsePurge.HttpStatusCode}");
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.SQS

Programming elements:

• Namespace Amazon.SQS

Class AmazonSQSClient

• Namespace Amazon.SQS.Model

Class PurgeQueueResponse

Class SendMessageBatchResponse

Class SendMessageResponse

Class SendMessageBatchRequestEntry

Class SendMessageBatchResultEntry

The code

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSSendMessages
{

Amazon SQS 295

https://www.nuget.org/packages/AWSSDK.SQS
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQS.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TPurgeQueueResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageBatchResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageBatchRequestEntry.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageBatchResultEntry.html

AWS SDK for .NET Developer Guide

 // =
 = = =
 // Class to send messages to a queue
 class Program
 {
 // Some example messages to send to the queue
 private const string JsonMessage = "{\"product\":[{\"name\":\"Product A\",\"price
\": \"32\"},{\"name\": \"Product B\",\"price\": \"27\"}]}";
 private const string XmlMessage = "<products><product name=\"Product A\" price=
\"32\" /><product name=\"Product B\" price=\"27\" /></products>";
 private const string CustomMessage = "||product|Product A|32||product|Product B|
27||";
 private const string TextMessage = "Just a plain text message.";

 static async Task Main(string[] args)
 {
 // Do some checks on the command-line
 if(args.Length == 0)
 {
 Console.WriteLine("\nUsage: SQSSendMessages queue_url");
 Console.WriteLine(" queue_url - The URL of an existing SQS queue.");
 return;
 }
 if(!args[0].StartsWith("https://sqs."))
 {
 Console.WriteLine("\nThe command-line argument isn't a queue URL:");
 Console.WriteLine($"{args[0]}");
 return;
 }

 // Create the Amazon SQS client
 var sqsClient = new AmazonSQSClient();

 // (could verify that the queue exists)
 // Send some example messages to the given queue
 // A single message
 await SendMessage(sqsClient, args[0], JsonMessage);

 // A batch of messages
 var batchMessages = new List<SendMessageBatchRequestEntry>{
 new SendMessageBatchRequestEntry("xmlMsg", XmlMessage),
 new SendMessageBatchRequestEntry("customeMsg", CustomMessage),
 new SendMessageBatchRequestEntry("textMsg", TextMessage)};
 await SendMessageBatch(sqsClient, args[0], batchMessages);

Amazon SQS 296

AWS SDK for .NET Developer Guide

 // Let the user send their own messages or quit
 await InteractWithUser(sqsClient, args[0]);

 // Delete all messages that are still in the queue
 await DeleteAllMessages(sqsClient, args[0]);
 }

 //
 // Method to put a message on a queue
 // Could be expanded to include message attributes, etc., in a SendMessageRequest
 private static async Task SendMessage(
 IAmazonSQS sqsClient, string qUrl, string messageBody)
 {
 SendMessageResponse responseSendMsg =
 await sqsClient.SendMessageAsync(qUrl, messageBody);
 Console.WriteLine($"Message added to queue\n {qUrl}");
 Console.WriteLine($"HttpStatusCode: {responseSendMsg.HttpStatusCode}");
 }

 //
 // Method to put a batch of messages on a queue
 // Could be expanded to include message attributes, etc.,
 // in the SendMessageBatchRequestEntry objects
 private static async Task SendMessageBatch(
 IAmazonSQS sqsClient, string qUrl, List<SendMessageBatchRequestEntry> messages)
 {
 Console.WriteLine($"\nSending a batch of messages to queue\n {qUrl}");
 SendMessageBatchResponse responseSendBatch =
 await sqsClient.SendMessageBatchAsync(qUrl, messages);
 // Could test responseSendBatch.Failed here
 foreach(SendMessageBatchResultEntry entry in responseSendBatch.Successful)
 Console.WriteLine($"Message {entry.Id} successfully queued.");
 }

 //
 // Method to get input from the user
 // They can provide messages to put in the queue or exit the application
 private static async Task InteractWithUser(IAmazonSQS sqsClient, string qUrl)
 {
 string response;

Amazon SQS 297

AWS SDK for .NET Developer Guide

 while (true)
 {
 // Get the user's input
 Console.WriteLine("\nType a message for the queue or \"exit\" to quit:");
 response = Console.ReadLine();
 if(response.ToLower() == "exit") break;

 // Put the user's message in the queue
 await SendMessage(sqsClient, qUrl, response);
 }
 }

 //
 // Method to delete all messages from the queue
 private static async Task DeleteAllMessages(IAmazonSQS sqsClient, string qUrl)
 {
 Console.WriteLine($"\nPurging messages from queue\n {qUrl}...");
 PurgeQueueResponse responsePurge = await sqsClient.PurgeQueueAsync(qUrl);
 Console.WriteLine($"HttpStatusCode: {responsePurge.HttpStatusCode}");
 }
 }
}

Additional considerations

• For information about various limitations on messages, including the allowed characters, see
Quotas related to messages in the Amazon Simple Queue Service Developer Guide.

• Messages stay in queues until they are deleted or the queue is purged. When a message has been
received by an application, it won't be visible in the queue even though it still exists in the queue.
For more information about visibility timeouts, see Amazon SQS visibility timeout.

• In additional to the message body, you can also add attributes to messages. For more
information, see Message metadata.

Receiving Amazon SQS messages

This example shows you how to use the AWS SDK for .NET to receive messages from an Amazon
SQS queue, which you can create programmatically or by using the Amazon SQS console. The

Amazon SQS 298

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-quotas.html#quotas-messages
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-message-metadata.html
https://console.aws.amazon.com/sqs

AWS SDK for .NET Developer Guide

application reads a single message from the queue, processes the message (in this case, displays
the message body on the console), and then deletes the message from the queue. The application
repeats these steps until the user types a key on the keyboard.

This example and the previous example about sending messages can be used together to see
message flow in Amazon SQS.

The following sections provide snippets of this example. The complete code for the example is
shown after that, and can be built and run as is.

Topics

• Receive a message

• Delete a message

• Complete code

• Additional considerations

Receive a message

The following snippet receives a message from the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

 //
 // Method to read a message from the given queue
 // In this example, it gets one message at a time
 private static async Task<ReceiveMessageResponse> GetMessage(
 IAmazonSQS sqsClient, string qUrl, int waitTime=0)
 {
 return await sqsClient.ReceiveMessageAsync(new ReceiveMessageRequest{
 QueueUrl=qUrl,
 MaxNumberOfMessages=MaxMessages,
 WaitTimeSeconds=waitTime
 // (Could also request attributes, set visibility timeout, etc.)
 });
 }

Delete a message

The following snippet deletes a message from the queue identified by the given queue URL.

The example at the end of this topic shows this snippet in use.

Amazon SQS 299

AWS SDK for .NET Developer Guide

 //
 // Method to delete a message from a queue
 private static async Task DeleteMessage(
 IAmazonSQS sqsClient, Message message, string qUrl)
 {
 Console.WriteLine($"\nDeleting message {message.MessageId} from queue...");
 await sqsClient.DeleteMessageAsync(qUrl, message.ReceiptHandle);
 }

Complete code

This section shows relevant references and the complete code for this example.

SDK references

NuGet packages:

• AWSSDK.SQS

Programming elements:

• Namespace Amazon.SQS

Class AmazonSQSClient

• Namespace Amazon.SQS.Model

Class ReceiveMessageRequest

Class ReceiveMessageResponse

The code

using System;
using System.Threading.Tasks;
using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSReceiveMessages
{
 class Program
 {

Amazon SQS 300

https://www.nuget.org/packages/AWSSDK.SQS
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQS.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TReceiveMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TReceiveMessageResponse.html

AWS SDK for .NET Developer Guide

 private const int MaxMessages = 1;
 private const int WaitTime = 2;
 static async Task Main(string[] args)
 {
 // Do some checks on the command-line
 if(args.Length == 0)
 {
 Console.WriteLine("\nUsage: SQSReceiveMessages queue_url");
 Console.WriteLine(" queue_url - The URL of an existing SQS queue.");
 return;
 }
 if(!args[0].StartsWith("https://sqs."))
 {
 Console.WriteLine("\nThe command-line argument isn't a queue URL:");
 Console.WriteLine($"{args[0]}");
 return;
 }

 // Create the Amazon SQS client
 var sqsClient = new AmazonSQSClient();

 // (could verify that the queue exists)
 // Read messages from the queue and perform appropriate actions
 Console.WriteLine($"Reading messages from queue\n {args[0]}");
 Console.WriteLine("Press any key to stop. (Response might be slightly
 delayed.)");
 do
 {
 var msg = await GetMessage(sqsClient, args[0], WaitTime);
 if(msg.Messages.Count != 0)
 {
 if(ProcessMessage(msg.Messages[0]))
 await DeleteMessage(sqsClient, msg.Messages[0], args[0]);
 }
 } while(!Console.KeyAvailable);
 }

 //
 // Method to read a message from the given queue
 // In this example, it gets one message at a time
 private static async Task<ReceiveMessageResponse> GetMessage(
 IAmazonSQS sqsClient, string qUrl, int waitTime=0)
 {

Amazon SQS 301

AWS SDK for .NET Developer Guide

 return await sqsClient.ReceiveMessageAsync(new ReceiveMessageRequest{
 QueueUrl=qUrl,
 MaxNumberOfMessages=MaxMessages,
 WaitTimeSeconds=waitTime
 // (Could also request attributes, set visibility timeout, etc.)
 });
 }

 //
 // Method to process a message
 // In this example, it simply prints the message
 private static bool ProcessMessage(Message message)
 {
 Console.WriteLine($"\nMessage body of {message.MessageId}:");
 Console.WriteLine($"{message.Body}");
 return true;
 }

 //
 // Method to delete a message from a queue
 private static async Task DeleteMessage(
 IAmazonSQS sqsClient, Message message, string qUrl)
 {
 Console.WriteLine($"\nDeleting message {message.MessageId} from queue...");
 await sqsClient.DeleteMessageAsync(qUrl, message.ReceiptHandle);
 }
 }
}

Additional considerations

• To specify long polling, this example uses the WaitTimeSeconds property for each call to the
ReceiveMessageAsync method.

You can also specify long polling for all messages on a queue by using the
ReceiveMessageWaitTimeSeconds attribute when creating or updating the queue.

For information about short polling versus long polling, see Short and long polling in the
Amazon Simple Queue Service Developer Guide.

Amazon SQS 302

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html

AWS SDK for .NET Developer Guide

• During message processing, you can use the receipt handle to change the message visibility
timeout. For information about how to do this, see the ChangeMessageVisibilityAsync
methods of the AmazonSQSClient class.

• Calling the DeleteMessageAsync method unconditionally removes the message from the
queue, regardless of the visibility timeout setting.

Using AWS Lambda for compute service

The AWS SDK for .NET supports AWS Lambda, which lets you run code without provisioning or
managing servers. For more information, see the AWS Lambda product page and the AWS Lambda
Developer Guide, particularly the section for Working with C#.

APIs

The AWS SDK for .NET provides APIs for AWS Lambda. The APIs enable you to work with Lambda
features such as functions, triggers, and events. To view the full set of APIs, see Lambda in the AWS
SDK for .NET API Reference.

The Lambda APIs are provided by NuGet packages.

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

Topics

• Using annotations to write AWS Lambda functions

Using annotations to write AWS Lambda functions

When writing Lambda functions, you sometimes need to write a large amount of handler code and
update AWS CloudFormation templates, among other tasks. Lambda Annotations is a framework
to help ease these burdens for .NET 6 Lambda functions, thereby making the experience of writing
Lambda feel more natural in C#.

AWS Lambda 303

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-csharp.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-concepts.html#gettingstarted-concepts-function
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-concepts.html#gettingstarted-concepts-trigger
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-concepts.html#gettingstarted-concepts-event
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Lambda/NLambda.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://www.nuget.org/packages?page=2&q=aws%20lambda&sortBy=relevance

AWS SDK for .NET Developer Guide

As an example of the benefit of using the Lambda Annotations framework, consider the following
snippets of code that add two numbers.

Without Lambda Annotations

public class Functions
{
 public APIGatewayProxyResponse LambdaMathPlus(APIGatewayProxyRequest request,
 ILambdaContext context)
 {
 if (!request.PathParameters.TryGetValue("x", out var xs))
 {
 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.BadRequest
 };
 }
 if (!request.PathParameters.TryGetValue("y", out var ys))
 {
 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.BadRequest
 };
 }

 var x = int.Parse(xs);
 var y = int.Parse(ys);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = (x + y).ToString(),
 Headers = new Dictionary<string, string> { { "Content-Type", "text/
plain" } }
 };
 }
}

With Lambda Annotations

public class Functions
{
 [LambdaFunction]

Lambda Annotations 304

AWS SDK for .NET Developer Guide

 [RestApi("/plus/{x}/{y}")]
 public int Plus(int x, int y)
 {
 return x + y;
 }
}

As is shown in the example, Lambda Annotations can remove the need for certain boiler plate
code.

For details about how to use the framework as well as additional information, see the following
resources:

• The GitHub README for documentation on the APIs and attributes of Lambda Annotations.

• The blog post for Lambda Annotations.

• The Amazon.Lambda.Annotations NuGet package.

• The Photo Asset Management project on GitHub. Specifically, see the PamApiAnnotations folder
and references to Lambda Annotations in the project README.

High-level libraries and frameworks for the AWS SDK for .NET

The following sections contain information about high-level libraries and frameworks that aren't
part of the core SDK functionality. These libraries and frameworks use the core SDK functionality to
create features that ease certain tasks.

If you're new to the AWS SDK for .NET, you might want to check out the Take a quick tour topic
first. It gives you an introduction to the SDK.

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Topics

• AWS Message Processing Framework for .NET

High-level libraries and frameworks 305

https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.Annotations/README.md
https://aws.amazon.com/blogs/developer/net-lambda-annotations-framework/
https://www.nuget.org/packages/Amazon.Lambda.Annotations
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager/PamApiAnnotations
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/dotnetv3/cross-service/PhotoAssetManager/README.md

AWS SDK for .NET Developer Guide

AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET is an AWS-native framework that simplifies
the development of .NET message processing applications that use AWS services such as Amazon
Simple Queue Service (SQS), Amazon Simple Notification Service (SNS), and Amazon EventBridge.
The framework reduces the amount of boiler-plate code developers need to write, allowing you
to focus on your business logic when publishing and consuming messages. For details about how
the framework can simplify your development, see the blog post Introducing the AWS Message
Processing Framework for .NET (Preview). The first part in particular provides a demonstration that
shows the difference between using low-level API calls and using the framework.

The Message Processing Framework supports the following activities and features:

• Sending messages to SQS and publishing events to SNS and EventBridge.

• Receiving and handling messages from SQS by using a long-running poller, which is typically
used in background services. This includes managing the visibility timeout while a message is
being handled to prevent other clients from processing it.

• Handling messages in AWS Lambda functions.

• FIFO (first-in-first-out) SQS queues and SNS topics.

• OpenTelemetry for logging.

For details about these activities and features see the Features section of the blog post and the
topics listed below.

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Additional resources

• The AWS.Messaging package on NuGet.org.

• The API reference.

• The README file in the GitHub repo at https://github.com/awslabs/aws-dotnet-messaging

Message Processing Framework 306

https://aws.amazon.com/blogs/developer/introducing-the-aws-message-processing-framework-for-net-preview/
https://aws.amazon.com/blogs/developer/introducing-the-aws-message-processing-framework-for-net-preview/
https://aws.amazon.com/blogs/developer/introducing-the-aws-message-processing-framework-for-net-preview/
https://www.nuget.org/packages/AWS.Messaging/
https://www.nuget.org/
https://awslabs.github.io/aws-dotnet-messaging/
https://github.com/awslabs/aws-dotnet-messaging

AWS SDK for .NET Developer Guide

• .NET dependency injection from Microsoft.

• .NET Generic Host from Microsoft.

Topics

• Get started with the AWS Message Processing Framework for .NET

• Publish messages with the AWS Message Processing Framework for .NET

• Consume messages with the AWS Message Processing Framework for .NET

• Using FIFO with the AWS Message Processing Framework for .NET

• Logging and Open Telemetry for the AWS Message Processing Framework for .NET

• Customize the AWS Message Processing Framework for .NET

• Security for the AWS Message Processing Framework for .NET

Get started with the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

This topic provides information that will help you get started using the Message Processing
Framework. In addition to prerequisite and configuration information, a tutorial is provided that
shows you how to implement a common scenario.

Prerequisites and configuration

• The credentials you provide for your application must have appropriate permissions for the
messaging service and operations that it uses. For more information, see the security topics for
SQS, SNS, and EventBridge in their respective developer guides.

• To use the AWS Message Processing Framework for .NET, you must add the AWS.Messaging
NuGet package to your project. For example:

dotnet add package AWS.Messaging

Message Processing Framework 307

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/generic-host
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/security-iam.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-iam.html
https://www.nuget.org/packages/AWS.Messaging

AWS SDK for .NET Developer Guide

• The framework integrates with .NET's dependency injection (DI) service container. You can
configure the framework during your application's startup by calling AddAWSMessageBus to add
it to the DI container.

var builder = WebApplication.CreateBuilder(args);

// Register the AWS Message Processing Framework for .NET
builder.Services.AddAWSMessageBus(builder =>
{
 // Register that you'll publish messages of type ChatMessage to an existing queue
 builder.AddSQSPublisher<ChatMessage>("https://sqs.us-
west-2.amazonaws.com/012345678910/MyAppProd");
});

Tutorial

This tutorial demonstrates how to use the AWS Message Processing Framework for .NET. It creates
two applications: an ASP.NET Core Minimal API that sends messages to an Amazon SQS queue
when it receives a request at an API endpoint, and a long-running console application that polls for
these messages and handles them.

• The instructions in this tutorial favor the .NET CLI, but you can perform this tutorial by using
either cross-platform tools such as the .NET CLI or Microsoft Visual Studio. For information about
tools, see Install and configure your toolchain.

• This tutorial assumes that you're using your [default] profile for credentials. It also assumes
that short-term credentials are available with appropriate permissions for sending and receiving
Amazon SQS messages. For more information, see Configure SDK authentication with AWS and
the security topics for SQS.

Note

By running this tutorial, you might incur costs for SQS messaging.

Steps

• Create an SQS queue

• Create and run the publishing application

Message Processing Framework 308

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-authentication-and-access-control.html

AWS SDK for .NET Developer Guide

• Create and run the handling application

• Cleanup

Create an SQS queue

This tutorial requires an SQS queue to send messages to and receive messages from. A queue
can be created by using one of the following commands for the AWS CLI or the AWS Tools
for PowerShell. Take note of the queue URL that is returned so that you can specify it in the
framework configuration that follows.

AWS CLI

aws sqs create-queue --queue-name DemoQueue

AWS Tools for PowerShell

New-SQSQueue -QueueName DemoQueue

Create and run the publishing application

Use the following procedure to create and run the publishing application.

1. Open a command prompt or terminal. Find or create an operating system folder under which
you can create a .NET project.

2. In that folder, run the following command to create the .NET project.

dotnet new webapi --name Publisher

3. Navigate into the new project's folder. Add a dependency on the AWS Message Processing
Framework for .NET.

cd Publisher
dotnet add package AWS.Messaging

Message Processing Framework 309

AWS SDK for .NET Developer Guide

Note

If you're using AWS IAM Identity Center for authentication, be sure to also add
AWSSDK.SSO and AWSSDK.SSOOIDC.

4. Replace the code in Program.cs with the following code.

using AWS.Messaging;
using Microsoft.AspNetCore.Mvc;
using Publisher;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/
swashbuckle.
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

// Configure the AWS Message Processing Framework for .NET.
builder.Services.AddAWSMessageBus(builder =>
{
 // Check for input SQS URL.
 // The SQS URL should be passed as a command line argument or set in the Debug
 launch profile.
 if ((args.Length == 1) && (args[0].Contains("https://sqs.")))
 {
 // Register that you'll publish messages of type GreetingMessage:
 // 1. To a specified queue.
 // 2. Using the message identifier "greetingMessage", which will be used
 // by handlers to route the message to the appropriate handler.
 builder.AddSQSPublisher<GreetingMessage>(args[0], "greetingMessage");
 }
 // You can map additional message types to queues or topics here as well.
});
var app = builder.Build();

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{

Message Processing Framework 310

AWS SDK for .NET Developer Guide

 app.UseSwagger();
 app.UseSwaggerUI();
}

app.UseHttpsRedirection();

// Create an API Endpoint that receives GreetingMessage objects
// from the caller and then sends them as an SQS message.
app.MapPost("/greeting", async ([FromServices] IMessagePublisher publisher,
 Publisher.GreetingMessage message) =>
 {
 return await PostGreeting(message, publisher);
 })
.WithName("SendGreeting")
.WithOpenApi();

app.Run();

public partial class Program
{
 /// <summary>
 /// Endpoint for posting a greeting message.
 /// </summary>
 /// <param name="greetingMessage">The greeting message.</param>
 /// <param name="messagePublisher">The message publisher.</param>
 /// <returns>Async task result.</returns>
 public static async Task<IResult> PostGreeting(GreetingMessage greetingMessage,
 IMessagePublisher messagePublisher)
 {
 if (greetingMessage.SenderName == null || greetingMessage.Greeting == null)
 {
 return Results.BadRequest();
 }

 // Publish the message to the queue configured above.
 await messagePublisher.PublishAsync(greetingMessage);

 return Results.Ok();
 }
}

namespace Publisher
{
 /// <summary>

Message Processing Framework 311

AWS SDK for .NET Developer Guide

 /// This class represents the message contents.
 /// </summary>
 public class GreetingMessage
 {
 public string? SenderName { get; set; }
 public string? Greeting { get; set; }
 }
}

5. Run the following command. This should open a browser window with the Swagger UI, which
allows you to explore and test your API.

dotnet watch run <queue URL created earlier>

6. Open the /greeting endpoint and choose Try it out.

7. Specify senderName and greeting values for the message, and choose Execute. This invokes
your API, which sends the SQS message.

Create and run the handling application

Use the following procedure to create and run the handling application.

1. Open a command prompt or terminal. Find or create an operating system folder under which
you can create a .NET project.

2. In that folder, run the following command to create the .NET project.

dotnet new console --name Handler

3. Navigate into the new project's folder. Add a dependency on the AWS Message Processing
Framework for .NET. Also add the Microsoft.Extensions.Hosting package, which allows
you to configure the framework through the .NET Generic Host.

cd Handler
dotnet add package AWS.Messaging
dotnet add package Microsoft.Extensions.Hosting

Message Processing Framework 312

https://learn.microsoft.com/en-us/dotnet/core/extensions/generic-host

AWS SDK for .NET Developer Guide

Note

If you're using AWS IAM Identity Center for authentication, be sure to also add
AWSSDK.SSO and AWSSDK.SSOOIDC.

4. Replace the code in Program.cs with the following code.

using AWS.Messaging;
using Handler;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

var builder = Host.CreateDefaultBuilder(args);

builder.ConfigureServices(services =>
{
 // Register the AWS Message Processing Framework for .NET.
 services.AddAWSMessageBus(builder =>
 {
 // Check for input SQS URL.
 // The SQS URL should be passed as a command line argument or set in the
 Debug launch profile.
 if ((args.Length == 1) && (args[0].Contains("https://sqs.")))
 {
 // Register you'll poll the following queue.
 builder.AddSQSPoller(args[0]);

 // And that messages of type "greetingMessage" should be:
 // 1. Deserialized as GreetingMessage objects.
 // 2. Which are then passed to GreetingMessageHandler.
 builder.AddMessageHandler<GreetingMessageHandler,
 GreetingMessage>("greetingMessage");

 }
 // You can add additional message handlers here, using different message
 types.
 });
});

var host = builder.Build();
await host.RunAsync();

Message Processing Framework 313

AWS SDK for .NET Developer Guide

namespace Handler
{
 /// <summary>
 /// This class represents the message contents.
 /// </summary>
 public class GreetingMessage
 {
 public string? SenderName { get; set; }
 public string? Greeting { get; set; }
 }

 /// <summary>
 /// This handler is invoked each time you receive the message.
 /// </summary>
 public class GreetingMessageHandler : IMessageHandler<GreetingMessage>
 {
 public Task<MessageProcessStatus> HandleAsync(
 MessageEnvelope<GreetingMessage> messageEnvelope,
 CancellationToken token = default)
 {
 Console.WriteLine(
 $"Received message {messageEnvelope.Message.Greeting} from
 {messageEnvelope.Message.SenderName}");
 return Task.FromResult(MessageProcessStatus.Success());
 }
 }
}

5. Run the following command. This starts a long-running poller.

dotnet run <queue URL created earlier>

Shortly after startup the application will receive the message that was sent in the first part of
this tutorial and log the following message:

Received message {greeting} from {senderName}

6. Press Ctrl+C to stop the poller.

Message Processing Framework 314

AWS SDK for .NET Developer Guide

Cleanup

Use one of the following commands for the AWS CLI or the AWS Tools for PowerShell to delete the
queue.

AWS CLI

aws sqs delete-queue --queue-url "<queue URL created earlier>"

AWS Tools for PowerShell

Remove-SQSQueue -QueueUrl "<queue URL created earlier>"

Publish messages with the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET supports publishing one or more message types,
processing one or more message types, or doing both in the same application.

The following code shows a configuration for an application that is publishing different message
types to different AWS services.

var builder = WebApplication.CreateBuilder(args);

// Register the AWS Message Processing Framework for .NET
builder.Services.AddAWSMessageBus(builder =>
{
 // Register that you'll send messages of type ChatMessage to an existing queue
 builder.AddSQSPublisher<ChatMessage>("https://sqs.us-
west-2.amazonaws.com/012345678910/MyAppProd");

 // Register that you'll publish messages of type OrderInfo to an existing SNS topic
 builder.AddSNSPublisher<OrderInfo>("arn:aws:sns:us-west-2:012345678910:MyAppProd");

 // Register that you'll publish messages of type FoodItem to an existing
 EventBridge bus

Message Processing Framework 315

AWS SDK for .NET Developer Guide

 builder.AddEventBridgePublisher<FoodItem>("arn:aws:events:us-
west-2:012345678910:event-bus/default");
});

Once you have registered the framework during startup, inject the generic IMessagePublisher
into your code. Call its PublishAsync method to publish any of the message types that were
configured above. The generic publisher will determine the destination to route the message to
based on its type.

In the following example, an ASP.NET MVC controller receives both ChatMessage messages
and OrderInfo events from users, and then publishes them to Amazon SQS and Amazon SNS
respectively. Both message types can be published using the generic publisher that was configured
above.

[ApiController]
[Route("[controller]")]
public class PublisherController : ControllerBase
{
 private readonly IMessagePublisher _messagePublisher;

 public PublisherController(IMessagePublisher messagePublisher)
 {
 _messagePublisher = messagePublisher;
 }

 [HttpPost("chatmessage", Name = "Chat Message")]
 public async Task<IActionResult> PublishChatMessage([FromBody] ChatMessage message)
 {
 // Perform business and validation logic on the ChatMessage here.
 if (message == null)
 {
 return BadRequest("A chat message was not submitted. Unable to forward to
 the message queue.");
 }
 if (string.IsNullOrEmpty(message.MessageDescription))
 {
 return BadRequest("The MessageDescription cannot be null or empty.");
 }

 // Send the ChatMessage to SQS, using the generic publisher.
 await _messagePublisher.PublishAsync(message);

Message Processing Framework 316

AWS SDK for .NET Developer Guide

 return Ok();
 }

 [HttpPost("order", Name = "Order")]
 public async Task<IActionResult> PublishOrder([FromBody] OrderInfo message)
 {
 if (message == null)
 {
 return BadRequest("An order was not submitted.");
 }

 // Publish the OrderInfo to SNS, using the generic publisher.
 await _messagePublisher.PublishAsync(message);

 return Ok();
 }
}

In order to route a message to the appropriate handling logic, the framework uses metadata called
the message type identifier. By default, this is the full name of the message's .NET type, including
its assembly name. If you're both sending and handling messages, this mechanism works well if
you share the definition of your message objects across projects. However, if the messages are
redefined in different namespaces, or if you're exchanging messages with other frameworks or
programming languages, then you might need to override the message type identifier.

var builder = Host.CreateDefaultBuilder(args);

builder.ConfigureServices(services =>
{
 // Register the AWS Message Processing Framework for .NET
 services.AddAWSMessageBus(builder =>
 {
 // Register that you'll publish messages of type GreetingMessage to an existing
 queue
 builder.AddSQSPublisher<GreetingMessage>("https://sqs.us-
west-2.amazonaws.com/012345678910/MyAppProd", "greetingMessage");
 });
});

Message Processing Framework 317

AWS SDK for .NET Developer Guide

Service-specific publishers

The example shown above uses the generic IMessagePublisher, which can publish to any
supported AWS service based on the configured message type. The framework also provides
service-specific publishers for Amazon SQS, Amazon SNS and Amazon EventBridge. These specific
publishers expose options that only apply to that service, and can be injected using the types
ISQSPublisher, ISNSPublisher, and IEventBridgePublisher.

For example, when sending messages to an SQS FIFO queue, you must set the appropriate
message group ID. The following code shows the ChatMessage example again, but now using an
ISQSPublisher to set SQS-specific options.

public class PublisherController : ControllerBase
{
 private readonly ISQSPublisher _sqsPublisher;

 public PublisherController(ISQSPublisher sqsPublisher)
 {
 _sqsPublisher = sqsPublisher;
 }

 [HttpPost("chatmessage", Name = "Chat Message")]
 public async Task<IActionResult> PublishChatMessage([FromBody] ChatMessage message)
 {
 // Perform business and validation logic on the ChatMessage here
 if (message == null)
 {
 return BadRequest("A chat message was not submitted. Unable to forward to
 the message queue.");
 }
 if (string.IsNullOrEmpty(message.MessageDescription))
 {
 return BadRequest("The MessageDescription cannot be null or empty.");
 }

 // Send the ChatMessage to SQS using the injected ISQSPublisher, with SQS-
specific options
 await _sqsPublisher.SendAsync(message, new SQSOptions
 {
 DelaySeconds = <delay-in-seconds>,
 MessageAttributes = <message-attributes>,
 MessageDeduplicationId = <message-deduplication-id>,
 MessageGroupId = <message-group-id>

Message Processing Framework 318

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-key-terms.html

AWS SDK for .NET Developer Guide

 });

 return Ok();
 }
}

The same can be done for SNS and EventBridge, using ISNSPublisher and
IEventBridgePublisher respectively.

await _snsPublisher.PublishAsync(message, new SNSOptions
{
 Subject = <subject>,
 MessageAttributes = <message-attributes>,
 MessageDeduplicationId = <message-deduplication-id>,
 MessageGroupId = <message-group-id>
});

await _eventBridgePublisher.PublishAsync(message, new EventBridgeOptions
{
 DetailType = <detail-type>,
 Resources = <resources>,
 Source = <source>,
 Time = <time>,
 TraceHeader = <trace-header>
});

By default, messages of a given type are sent to the destination that is configured in advance.
However, you can override the destination for a single message using the message-specific
publishers. You can also override the underlying AWS SDK for .NET client that is used to publish
the message, which can be useful in multi-tenant applications where you need to change roles or
credentials, depending on the destination.

await _sqsPublisher.SendAsync(message, new SQSOptions
{
 OverrideClient = <override IAmazonSQS client>,
 QueueUrl = <override queue URL>
});

Message Processing Framework 319

AWS SDK for .NET Developer Guide

Consume messages with the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET allows you to consume messages that have
been published by using the framework or one of the messaging services. The messages can be
consumed in a variety of ways, some of which are described below.

Message Handlers

To consume messages, implement a message handler using the IMessageHandler interface
for each message type you wish to process. The mapping between message types and message
handlers is configured in the project startup.

await Host.CreateDefaultBuilder(args)
 .ConfigureServices(services =>
 {
 // Register the AWS Message Processing Framework for .NET
 services.AddAWSMessageBus(builder =>
 {
 // Register an SQS Queue that the framework will poll for messages.
 // NOTE: The URL given below is an example. Use the appropriate URL for
 your SQS Queue.
 builder.AddSQSPoller("https://sqs.us-west-2.amazonaws.com/012345678910/
MyAppProd");

 // Register all IMessageHandler implementations with the message type they
 should process.
 // Here messages that match our ChatMessage .NET type will be handled by
 our ChatMessageHandler
 builder.AddMessageHandler<ChatMessageHandler, ChatMessage>();
 });
 })
 .Build()
 .RunAsync();

The following code shows a sample message handler for a ChatMessage message.

public class ChatMessageHandler : IMessageHandler<ChatMessage>

Message Processing Framework 320

AWS SDK for .NET Developer Guide

{
 public Task<MessageProcessStatus> HandleAsync(MessageEnvelope<ChatMessage>
 messageEnvelope, CancellationToken token = default)
 {
 // Add business and validation logic here.
 if (messageEnvelope == null)
 {
 return Task.FromResult(MessageProcessStatus.Failed());
 }

 if (messageEnvelope.Message == null)
 {
 return Task.FromResult(MessageProcessStatus.Failed());
 }

 ChatMessage message = messageEnvelope.Message;

 Console.WriteLine($"Message Description: {message.MessageDescription}");

 // Return success so the framework will delete the message from the queue.
 return Task.FromResult(MessageProcessStatus.Success());
 }
}

The outer MessageEnvelope contains metadata used by the framework. Its message property is
the message type (in this case ChatMessage).

You can return MessageProcessStatus.Success() to indicate that the message was processed
successfully and the framework will delete the message from the Amazon SQS queue. When
returning MessageProcessStatus.Failed(), the message will remain in the queue where it
can be processed again or moved to a dead-letter queue, if configured.

Handling Messages in a Long-Running Process

You can call AddSQSPoller with an SQS queue URL to start a long-running BackgroundService
that will continuously poll the queue and process messages.

await Host.CreateDefaultBuilder(args)
 .ConfigureServices(services =>
 {
 // Register the AWS Message Processing Framework for .NET
 services.AddAWSMessageBus(builder =>

Message Processing Framework 321

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice

AWS SDK for .NET Developer Guide

 {
 // Register an SQS Queue that the framework will poll for messages.
 // NOTE: The URL given below is an example. Use the appropriate URL for
 your SQS Queue.
 builder.AddSQSPoller("https://sqs.us-west-2.amazonaws.com/012345678910/
MyAppProd", options =>
 {
 // The maximum number of messages from this queue that the framework
 will process concurrently on this client.
 options.MaxNumberOfConcurrentMessages = 10;

 // The duration each call to SQS will wait for new messages.
 options.WaitTimeSeconds = 20;
 });

 // Register all IMessageHandler implementations with the message type they
 should process.
 builder.AddMessageHandler<ChatMessageHandler, ChatMessage>();
 });
 })
 .Build()
 .RunAsync();

Configuring the SQS Message Poller

The SQS message poller can be configured by the SQSMessagePollerOptions when calling
AddSQSPoller.

• MaxNumberOfConcurrentMessages - The maximum number of messages from the queue to
process concurrently. The default value is 10.

• WaitTimeSeconds - The duration (in seconds) for which the ReceiveMessage SQS call waits
for a message to arrive in the queue before returning. If a message is available, the call returns
sooner than WaitTimeSeconds. The default value is 20.

Message Visibility Timeout Handling

SQS messages have a visibility timeout period. When one consumer begins handling a given
message, it remains in the queue but is hidden from other consumers to avoid processing it more
than once. If the message is not handled and deleted before becoming visible again, another
consumer might attempt to handle the same message.

Message Processing Framework 322

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html

AWS SDK for .NET Developer Guide

The framework will track and attempt to extend the visibility timeout for messages that it is
currently handling. You can configure this behavior on the SQSMessagePollerOptions when
calling AddSQSPoller.

• VisibilityTimeout - The duration in seconds that received messages are hidden from
subsequent retrieve requests. The default value is 30.

• VisibilityTimeoutExtensionThreshold - When a message's visibility timeout is within
this many seconds of expiring, the framework will extend the visibility timeout (by another
VisibilityTimeout seconds). The default value is 5.

• VisibilityTimeoutExtensionHeartbeatInterval - How often
in seconds that the framework will check for messages that are within
VisibilityTimeoutExtensionThreshold seconds of expiring, and then extend their
visibility timeout. The default value is 1.

In the following example, the framework will check every 1 second for messages that are still
being handled. For those messages within 5 seconds of becoming visible again, the framework will
automatically extend the visibility timeout of each message by another 30 seconds.

// NOTE: The URL given below is an example. Use the appropriate URL for your SQS Queue.
builder.AddSQSPoller("https://sqs.us-west-2.amazonaws.com/012345678910/MyAppProd",
 options =>
{
 options.VisibilityTimeout = 30;
 options.VisibilityTimeoutExtensionThreshold = 5;
 VisibilityTimeoutExtensionHeartbeatInterval = 1;
});

Handling messages in AWS Lambda functions

You can use the AWS Message Processing Framework for .NET with SQS's integration with Lambda.
This is provided by the AWS.Messaging.Lambda package. Refer to its README to get started.

Using FIFO with the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

Message Processing Framework 323

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://github.com/awslabs/aws-dotnet-messaging/blob/main/src/AWS.Messaging.Lambda/README.md

AWS SDK for .NET Developer Guide

For use cases where message ordering and message deduplication are critical, the AWS Message
Processing Framework for .NET supports first-in-first-out (FIFO) Amazon SQS queues and Amazon
SNS topics.

Publishing

When publishing messages to a FIFO queue or topic, you must set the message group ID, which
specifies the group that the message belongs to. Messages within a group are processed in order.
You can set this on the SQS-specific and SNS-specific message publishers.

await _sqsPublisher.PublishAsync(message, new SQSOptions
{
 MessageDeduplicationId = <message-deduplication-id>,
 MessageGroupId = <message-group-id>
});

Subscribing

When handling messages from a FIFO queue, the framework handles messages within a given
message group in the order in which they were received for each ReceiveMessages call. The
framework enters this mode of operation automatically when configured with a queue ending in
.fifo.

await Host.CreateDefaultBuilder(args)
 .ConfigureServices(services =>
 {
 // Register the AWS Message Processing Framework for .NET.
 services.AddAWSMessageBus(builder =>
 {
 // Because this is a FIFO queue, the framework automatically handles these
 messages in order.
 builder.AddSQSPoller("https://sqs.us-west-2.amazonaws.com/012345678910/
MPF.fifo");
 builder.AddMessageHandler<OrderMessageHandler, OrderMessage>();
 });
 })
 .Build()
 .RunAsync();

Message Processing Framework 324

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html

AWS SDK for .NET Developer Guide

Logging and Open Telemetry for the AWS Message Processing Framework
for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET is instrumented for OpenTelemetry to log
traces for each message that is published or handled by the framework. This is provided by the
AWS.Messaging.Telemetry.OpenTelemetry package. Refer to its README to get started.

Note

For security information related to logging, see Security for the AWS Message Processing
Framework for .NET.

Customize the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET builds, sends, and handles messages in three
different "layers":

1. At the outermost layer, the framework builds the AWS-native request or response specific to a
service. With Amazon SQS for example, it builds SendMessage requests, and works with the
Message objects that are defined by the service.

2. Inside the SQS request and response, the framework sets the MessageBody element
(or Message for Amazon SNS or Detail for Amazon EventBridge) to a JSON-formatted
CloudEvent. This contains metadata set by the framework that is accessible on the
MessageEnvelope object when handling a message.

3. At the innermost layer, the data attribute inside the CloudEvent JSON object contains a JSON
serialization of the .NET object that was sent or received as the message.

Message Processing Framework 325

https://opentelemetry.io/docs/concepts/signals/traces/
https://www.nuget.org/packages/AWS.Messaging.Telemetry.OpenTelemetry
https://github.com/awslabs/aws-dotnet-messaging/blob/main/src/AWS.Messaging.Telemetry.OpenTelemetry/README.md
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Message.html
https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/formats/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/formats/json-format.md

AWS SDK for .NET Developer Guide

{
 "id":"b02f156b-0f02-48cf-ae54-4fbbe05cffba",
 "source":"/aws/messaging",
 "specversion":"1.0",
 "type":"Publisher.Models.ChatMessage",
 "time":"2023-11-21T16:36:02.8957126+00:00",
 "data":"<the ChatMessage object serialized as JSON>"
}

You can customize how the message envelope is configured and read:

• "id" uniquely identifies the message. By default it is set to a new GUID, but this can be
overridden by implementing your own IMessageIdGenerator and injecting that into the DI
container.

• "type" controls how the message is routed to handlers. By default this uses the full
name of the .NET type that corresponds to the message. You can override this via the
messageTypeIdentifier parameter when mapping the message type to the destination via
AddSQSPublisher, AddSNSPublisher, or AddEventBridgePublisher.

• "source" indicates which system or server sent the message.

• This will be the function name if publishing from AWS Lambda, the cluster name and task
ARN if on Amazon ECS, the instance ID if on Amazon EC2, otherwise a fallback value of /aws/
messaging.

• You can override this via AddMessageSource or AddMessageSourceSuffix on the
MessageBusBuilder.

• "time" set to the current DateTime in UTC. This can be overridden by implementing your own
IDateTimeHandler and injecting that into the DI container.

• "data" contains a JSON representation of the .NET object that was sent or received as the
message:

• ConfigureSerializationOptions on MessageBusBuilder allows you to configure
the System.Text.Json.JsonSerializerOptions that will be used when serializing and
deserializing the message.

• To inject additional attributes or transform the message envelope once the framework
builds it, you can implement ISerializationCallback and register that via
AddSerializationCallback on MessageBusBuilder.

Message Processing Framework 326

https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializeroptions

AWS SDK for .NET Developer Guide

Security for the AWS Message Processing Framework for .NET

Note

This is prerelease documentation for a feature in preview release. It is subject to change.

The AWS Message Processing Framework for .NET relies on the AWS SDK for .NET for
communicating with AWS. For more information about security in the AWS SDK for .NET, see
Security for this AWS Product or Service.

For security purposes, the framework doesn't log data messages sent by the user.
If you want to enable this functionality for debugging purposes, you need to call
EnableDataMessageLogging() in the Message Bus as follows:

builder.Services.AddAWSMessageBus(bus =>
{
 builder.EnableDataMessageLogging();
});

If you discover a potential security issue, refer to the security policy for reporting information.

Programming AWS OpsWorks to Work with stacks and
applications

Warning

AWS OpsWorks is reaching End of Life and is not accepting new customers. Existing
customers will be unaffected until March or May of 2024, depending on what services they
are using, at which time the service will become unavailable. To prepare for this transition,
we recommend that existing customers migrate to other solutions as soon as possible. For
more information, see the OpsWorks product page.

The AWS SDK for .NET supports AWS OpsWorks, which provides a simple and flexible way to create
and manage stacks and applications. With AWS OpsWorks, you can provision AWS resources,
manage their configuration, deploy applications to those resources, and monitor their health. For
more information, see the OpsWorks product page and the AWS OpsWorks User Guide.

AWS OpsWorks 327

https://github.com/awslabs/aws-dotnet-messaging/security/policy
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/
https://docs.aws.amazon.com/opsworks/latest/userguide/

AWS SDK for .NET Developer Guide

APIs

The AWS SDK for .NET provides APIs for AWS OpsWorks. The APIs enable you to work with AWS
OpsWorks features such as stacks with their layers, instances, and apps. To view the full set of APIs,
see the AWS SDK for .NET API Reference (and scroll to "Amazon.OpsWorks").

The AWS OpsWorks APIs are provided by the AWSSDK.OpsWorks NuGet package.

Prerequisites

Before you begin, be sure you have set up your environment and project. Also review the
information in SDK features.

Support for other AWS services and configuration

The AWS SDK for .NET supports AWS services in addition to those described in the preceding
sections. For information about the APIs for all supported services, see the AWS SDK for .NET API
Reference.

In addition to the namespaces for individual AWS services, the AWS SDK for .NET also provides the
following APIs:

Area Description Resources

AWS Support Programmatic access to AWS
Support cases and Trusted
Advisor features.

See Amazon.AWSSupport and
Amazon.AWSSupport.Model.

General Helper classes and enumerati
ons.

See Amazon and Amazon.Util.

APIs 328

https://docs.aws.amazon.com/opsworks/latest/userguide/workingstacks.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workingapps.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://www.nuget.org/packages/AWSSDK.OpsWorks
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/AWSSupport/NAWSSupport.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/AWSSupport/NAWSSupportModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/N.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Util/NUtil.html

AWS SDK for .NET Developer Guide

AWS SDK for .NET code examples

The code examples in this topic show you how to use the AWS SDK for .NET with AWS.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Some services contain additional example categories that show how to leverage libraries or
functions specific to the service.

Services

• ACM examples using AWS SDK for .NET

• API Gateway examples using AWS SDK for .NET

• Aurora examples using AWS SDK for .NET

• Auto Scaling examples using AWS SDK for .NET

• Amazon Bedrock examples using AWS SDK for .NET

• Amazon Bedrock Runtime examples using AWS SDK for .NET

• AWS CloudFormation examples using AWS SDK for .NET

• CloudWatch examples using AWS SDK for .NET

• CloudWatch Logs examples using AWS SDK for .NET

• Amazon Cognito Identity Provider examples using AWS SDK for .NET

• Amazon Comprehend examples using AWS SDK for .NET

• Amazon DocumentDB examples using AWS SDK for .NET

• DynamoDB examples using AWS SDK for .NET

• Amazon EC2 examples using AWS SDK for .NET

• Amazon ECS examples using AWS SDK for .NET

• Elastic Load Balancing - Version 2 examples using AWS SDK for .NET

• EventBridge examples using AWS SDK for .NET

329

AWS SDK for .NET Developer Guide

• EventBridge Scheduler examples using AWS SDK for .NET

• AWS Glue examples using AWS SDK for .NET

• IAM examples using AWS SDK for .NET

• Amazon Keyspaces examples using AWS SDK for .NET

• Kinesis examples using AWS SDK for .NET

• AWS KMS examples using AWS SDK for .NET

• Lambda examples using AWS SDK for .NET

• MediaConvert examples using AWS SDK for .NET

• Amazon MSK examples using AWS SDK for .NET

• Organizations examples using AWS SDK for .NET

• Amazon Pinpoint examples using AWS SDK for .NET

• Amazon Polly examples using AWS SDK for .NET

• Amazon RDS examples using AWS SDK for .NET

• Amazon RDS Data Service examples using AWS SDK for .NET

• Amazon Rekognition examples using AWS SDK for .NET

• Route 53 domain registration examples using AWS SDK for .NET

• Amazon S3 examples using AWS SDK for .NET

• S3 Glacier examples using AWS SDK for .NET

• SageMaker AI examples using AWS SDK for .NET

• Secrets Manager examples using AWS SDK for .NET

• Amazon SES examples using AWS SDK for .NET

• Amazon SES API v2 examples using AWS SDK for .NET

• Amazon SNS examples using AWS SDK for .NET

• Amazon SQS examples using AWS SDK for .NET

• Step Functions examples using AWS SDK for .NET

• AWS STS examples using AWS SDK for .NET

• Support examples using AWS SDK for .NET

• Amazon Textract examples using AWS SDK for .NET

• Amazon Transcribe examples using AWS SDK for .NET

• Amazon Translate examples using AWS SDK for .NET

330

AWS SDK for .NET Developer Guide

ACM examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with ACM.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

DescribeCertificate

The following code example shows how to use DescribeCertificate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.CertificateManager;
using Amazon.CertificateManager.Model;

namespace DescribeCertificate
{
 class DescribeCertificate
 {
 // The following example retrieves and displays the metadata for a
 // certificate using the AWS Certificate Manager (ACM) service.

ACM 331

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ACM#code-examples

AWS SDK for .NET Developer Guide

 // Specify your AWS Region (an example Region is shown).
 private static readonly RegionEndpoint ACMRegion = RegionEndpoint.USEast1;
 private static AmazonCertificateManagerClient _client;

 static void Main(string[] args)
 {
 _client = new
 Amazon.CertificateManager.AmazonCertificateManagerClient(ACMRegion);

 var describeCertificateReq = new DescribeCertificateRequest();
 // The ARN used here is just an example. Replace it with the ARN of
 // a certificate that exists on your account.
 describeCertificateReq.CertificateArn =
 "arn:aws:acm:us-
east-1:123456789012:certificate/8cfd7dae-9b6a-2d07-92bc-1c309EXAMPLE";

 var certificateDetailResp =
 DescribeCertificateResponseAsync(client: _client, request:
 describeCertificateReq);
 var certificateDetail = certificateDetailResp.Result.Certificate;

 if (certificateDetail is not null)
 {
 DisplayCertificateDetails(certificateDetail);
 }
 }

 /// <summary>
 /// Displays detailed metadata about a certificate retrieved
 /// using the ACM service.
 /// </summary>
 /// <param name="certificateDetail">The object that contains details
 /// returned from the call to DescribeCertificateAsync.</param>
 static void DisplayCertificateDetails(CertificateDetail certificateDetail)
 {
 Console.WriteLine("\nCertificate Details: ");
 Console.WriteLine($"Certificate Domain:
 {certificateDetail.DomainName}");
 Console.WriteLine($"Certificate Arn:
 {certificateDetail.CertificateArn}");
 Console.WriteLine($"Certificate Subject: {certificateDetail.Subject}");
 Console.WriteLine($"Certificate Status: {certificateDetail.Status}");
 foreach (var san in certificateDetail.SubjectAlternativeNames)

Actions 332

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Certificate SubjectAlternativeName: {san}");
 }
 }

 /// <summary>
 /// Retrieves the metadata associated with the ACM service certificate.
 /// </summary>
 /// <param name="client">An AmazonCertificateManagerClient object
 /// used to call DescribeCertificateResponse.</param>
 /// <param name="request">The DescribeCertificateRequest object that
 /// will be passed to the method call.</param>
 /// <returns></returns>
 static async Task<DescribeCertificateResponse>
 DescribeCertificateResponseAsync(
 AmazonCertificateManagerClient client, DescribeCertificateRequest
 request)
 {
 var response = new DescribeCertificateResponse();

 try
 {
 response = await client.DescribeCertificateAsync(request);
 }
 catch (InvalidArnException)
 {
 Console.WriteLine($"Error: The ARN specified is invalid.");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Error: The specified certificate could not be
 found.");
 }

 return response;
 }
 }

}

• For API details, see DescribeCertificate in AWS SDK for .NET API Reference.

Actions 333

https://docs.aws.amazon.com/goto/DotNetSDKV3/acm-2015-12-08/DescribeCertificate

AWS SDK for .NET Developer Guide

ListCertificates

The following code example shows how to use ListCertificates.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.CertificateManager;
using Amazon.CertificateManager.Model;

namespace ListCertificates
{
 // The following example retrieves and displays a list of the
 // certificates defined for the default account using the AWS
 // Certificate Manager (ACM) service.
 class ListCertificates
 {
 // Specify your AWS Region (an example Region is shown).

 private static readonly RegionEndpoint ACMRegion = RegionEndpoint.USEast1;
 private static AmazonCertificateManagerClient _client;

 static void Main(string[] args)
 {
 _client = new AmazonCertificateManagerClient(ACMRegion);
 var certificateList = ListCertificatesResponseAsync(client: _client);

 Console.WriteLine("Certificate Summary List\n");

 foreach (var certificate in
 certificateList.Result.CertificateSummaryList)
 {
 Console.WriteLine($"Certificate Domain: {certificate.DomainName}");

Actions 334

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ACM#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Certificate ARN:
 {certificate.CertificateArn}\n");
 }
 }

 /// <summary>
 /// Retrieves a list of the certificates defined in this Region.
 /// </summary>
 /// <param name="client">The ACM client object passed to the
 /// ListCertificateResAsync method call.</param>
 /// <param name="request"></param>
 /// <returns>The ListCertificatesResponse.</returns>
 static async Task<ListCertificatesResponse> ListCertificatesResponseAsync(
 AmazonCertificateManagerClient client)
 {
 var request = new ListCertificatesRequest();

 var response = await client.ListCertificatesAsync(request);
 return response;
 }
 }
}

• For API details, see ListCertificates in AWS SDK for .NET API Reference.

API Gateway examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with API Gateway.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

AWS community contributions are examples that were created and are maintained by multiple
teams across AWS. To provide feedback, use the mechanism provided in the linked repositories.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

API Gateway 335

https://docs.aws.amazon.com/goto/DotNetSDKV3/acm-2015-12-08/ListCertificates

AWS SDK for .NET Developer Guide

• Scenarios

• AWS community contributions

Scenarios

Create a serverless application to manage photos

The following code example shows how to create a serverless application that lets users manage
photos using labels.

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

AWS community contributions

Build and test a serverless application

The following code example shows how to build and test a serverless application using API
Gateway with Lambda and DynamoDB

AWS SDK for .NET

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the .NET SDK.

Scenarios 336

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

AWS SDK for .NET Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Aurora examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Aurora.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Aurora

The following code examples show how to get started using Aurora.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.RDS;

Aurora 337

https://github.com/aws-samples/serverless-dotnet-demo
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

using Amazon.RDS.Model;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

namespace AuroraActions;

public static class HelloAurora
{
 static async Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the
 // Amazon Relational Database Service (Amazon RDS).
 // Use your AWS profile name, or leave it blank to use the default profile.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRDS>()
).Build();

 // Now the client is available for injection. Fetching it directly here for
 example purposes only.
 var rdsClient = host.Services.GetRequiredService<IAmazonRDS>();

 // You can use await and any of the async methods to get a response.
 var response = await rdsClient.DescribeDBClustersAsync(new
 DescribeDBClustersRequest { IncludeShared = true });
 Console.WriteLine($"Hello Amazon RDS Aurora! Let's list some clusters in
 this account:");
 foreach (var cluster in response.DBClusters)
 {
 Console.WriteLine($"\tCluster: database: {cluster.DatabaseName}
 identifier: {cluster.DBClusterIdentifier}.");
 }
 }
}

• For API details, see DescribeDBClusters in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Aurora 338

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusters

AWS SDK for .NET Developer Guide

• Scenarios

Basics

Learn the basics

The following code example shows how to:

• Create a custom Aurora DB cluster parameter group and set parameter values.

• Create a DB cluster that uses the parameter group.

• Create a DB instance that contains a database.

• Take a snapshot of the DB cluster, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

using Amazon.RDS;
using Amazon.RDS.Model;
using AuroraActions;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

namespace AuroraScenario;

/// <summary>
/// Scenario for Amazon Aurora examples.
/// </summary>
public class AuroraScenario
{

Basics 339

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. Return a list of the available DB engine families for Aurora MySql using the
 DescribeDBEngineVersionsAsync method.
 2. Select an engine family and create a custom DB cluster parameter group using
 the CreateDBClusterParameterGroupAsync method.
 3. Get the parameter group using the DescribeDBClusterParameterGroupsAsync
 method.
 4. Get some parameters in the group using the DescribeDBClusterParametersAsync
 method.
 5. Parse and display some parameters in the group.
 6. Modify the auto_increment_offset and auto_increment_increment parameters
 using the ModifyDBClusterParameterGroupAsync method.
 7. Get and display the updated parameters using the
 DescribeDBClusterParametersAsync method with a source of "user".
 8. Get a list of allowed engine versions using the
 DescribeDBEngineVersionsAsync method.
 9. Create an Aurora DB cluster that contains a MySql database and uses the
 parameter group.
 using the CreateDBClusterAsync method.
 10. Wait for the DB cluster to be ready using the DescribeDBClustersAsync
 method.
 11. Display and select from a list of instance classes available for the
 selected engine and version
 using the paginated DescribeOrderableDBInstanceOptions method.
 12. Create a database instance in the cluster using the CreateDBInstanceAsync
 method.
 13. Wait for the DB instance to be ready using the DescribeDBInstances method.
 14. Display the connection endpoint string for the new DB cluster.
 15. Create a snapshot of the DB cluster using the CreateDBClusterSnapshotAsync
 method.
 16. Wait for DB snapshot to be ready using the DescribeDBClusterSnapshotsAsync
 method.
 17. Delete the DB instance using the DeleteDBInstanceAsync method.
 18. Delete the DB cluster using the DeleteDBClusterAsync method.
 19. Wait for DB cluster to be deleted using the DescribeDBClustersAsync methods.
 20. Delete the cluster parameter group using the
 DeleteDBClusterParameterGroupAsync.
 */

 private static readonly string sepBar = new('-', 80);

Basics 340

AWS SDK for .NET Developer Guide

 private static AuroraWrapper auroraWrapper = null!;
 private static ILogger logger = null!;
 private static readonly string engine = "aurora-mysql";
 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon Relational Database Service
 (Amazon RDS).
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRDS>()
 .AddTransient<AuroraWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 }).CreateLogger<AuroraScenario>();

 auroraWrapper = host.Services.GetRequiredService<AuroraWrapper>();

 Console.WriteLine(sepBar);
 Console.WriteLine(
 "Welcome to the Amazon Aurora: get started with DB clusters example.");
 Console.WriteLine(sepBar);

 DBClusterParameterGroup parameterGroup = null!;
 DBCluster? newCluster = null;
 DBInstance? newInstance = null;

 try
 {
 var parameterGroupFamily = await ChooseParameterGroupFamilyAsync();

 parameterGroup = await
 CreateDBParameterGroupAsync(parameterGroupFamily);

 var parameters = await
 DescribeParametersInGroupAsync(parameterGroup.DBClusterParameterGroupName,

Basics 341

AWS SDK for .NET Developer Guide

 new List<string> { "auto_increment_offset",
 "auto_increment_increment" });

 await ModifyParametersAsync(parameterGroup.DBClusterParameterGroupName,
 parameters);

 await
 DescribeUserSourceParameters(parameterGroup.DBClusterParameterGroupName);

 var engineVersionChoice = await
 ChooseDBEngineVersionAsync(parameterGroupFamily);

 var newClusterIdentifier = "Example-Cluster-" + DateTime.Now.Ticks;

 newCluster = await CreateNewCluster
 (
 parameterGroup,
 engine,
 engineVersionChoice.EngineVersion,
 newClusterIdentifier
);

 var instanceClassChoice = await ChooseDBInstanceClass(engine,
 engineVersionChoice.EngineVersion);

 var newInstanceIdentifier = "Example-Instance-" + DateTime.Now.Ticks;

 newInstance = await CreateNewInstance(
 newClusterIdentifier,
 engine,
 engineVersionChoice.EngineVersion,
 instanceClassChoice.DBInstanceClass,
 newInstanceIdentifier
);

 DisplayConnectionString(newCluster!);
 await CreateSnapshot(newCluster!);
 await CleanupResources(newInstance, newCluster, parameterGroup);

 Console.WriteLine("Scenario complete.");
 Console.WriteLine(sepBar);
 }
 catch (Exception ex)

Basics 342

AWS SDK for .NET Developer Guide

 {
 await CleanupResources(newInstance, newCluster, parameterGroup);
 logger.LogError(ex, "There was a problem executing the scenario.");
 }
 }

 /// <summary>
 /// Choose the Aurora DB parameter group family from a list of available
 options.
 /// </summary>
 /// <returns>The selected parameter group family.</returns>
 public static async Task<string> ChooseParameterGroupFamilyAsync()
 {
 Console.WriteLine(sepBar);
 // 1. Get a list of available engines.
 var engines = await
 auroraWrapper.DescribeDBEngineVersionsForEngineAsync(engine);

 Console.WriteLine($"1. The following is a list of available DB parameter
 group families for engine {engine}:");

 var parameterGroupFamilies =
 engines.GroupBy(e => e.DBParameterGroupFamily).ToList();
 for (var i = 1; i <= parameterGroupFamilies.Count; i++)
 {
 var parameterGroupFamily = parameterGroupFamilies[i - 1];
 // List the available parameter group families.
 Console.WriteLine(
 $"\t{i}. Family: {parameterGroupFamily.Key}");
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > parameterGroupFamilies.Count)
 {
 Console.WriteLine("2. Select an available DB parameter group family by
 entering a number from the preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }
 var parameterGroupFamilyChoice = parameterGroupFamilies[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return parameterGroupFamilyChoice.Key;
 }

Basics 343

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Create and get information on a DB parameter group.
 /// </summary>
 /// <param name="dbParameterGroupFamily">The DBParameterGroupFamily for the new
 DB parameter group.</param>
 /// <returns>The new DBParameterGroup.</returns>
 public static async Task<DBClusterParameterGroup>
 CreateDBParameterGroupAsync(string dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"2. Create new DB parameter group with family
 {dbParameterGroupFamily}:");

 var parameterGroup = await
 auroraWrapper.CreateCustomClusterParameterGroupAsync(
 dbParameterGroupFamily,
 "ExampleParameterGroup-" + DateTime.Now.Ticks,
 "New example parameter group");

 var groupInfo =
 await
 auroraWrapper.DescribeCustomDBClusterParameterGroupAsync(parameterGroup.DBClusterParameterGroupName);

 Console.WriteLine(
 $"3. New DB parameter group created: \n\t{groupInfo?.Description}, \n
\tARN {groupInfo?.DBClusterParameterGroupName}");
 Console.WriteLine(sepBar);
 return parameterGroup;
 }

 /// <summary>
 /// Get and describe parameters from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">The name of the DBParameterGroup.</param>
 /// <param name="parameterNames">Optional specific names of parameters to
 describe.</param>
 /// <returns>The list of requested parameters.</returns>
 public static async Task<List<Parameter>> DescribeParametersInGroupAsync(string
 parameterGroupName, List<string>? parameterNames = null)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("4. Get some parameters from the group.");
 Console.WriteLine(sepBar);

Basics 344

AWS SDK for .NET Developer Guide

 var parameters =
 await
 auroraWrapper.DescribeDBClusterParametersInGroupAsync(parameterGroupName);

 var matchingParameters =
 parameters.Where(p => parameterNames == null ||
 parameterNames.Contains(p.ParameterName)).ToList();

 Console.WriteLine("5. Parameter information:");
 matchingParameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);

 return matchingParameters;
 }

 /// <summary>
 /// Modify a parameter from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <param name="parameters">The parameters to modify.</param>
 /// <returns>Async task.</returns>
 public static async Task ModifyParametersAsync(string parameterGroupName,
 List<Parameter> parameters)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("6. Modify some parameters in the group.");

 await auroraWrapper.ModifyIntegerParametersInGroupAsync(parameterGroupName,
 parameters);

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Describe the user source parameters in the group.
 /// </summary>
 /// <param name="parameterGroupName">The name of the DBParameterGroup.</param>
 /// <returns>Async task.</returns>

Basics 345

AWS SDK for .NET Developer Guide

 public static async Task DescribeUserSourceParameters(string parameterGroupName)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("7. Describe updated user source parameters in the
 group.");

 var parameters =
 await
 auroraWrapper.DescribeDBClusterParametersInGroupAsync(parameterGroupName, "user");

 parameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Choose a DB engine version.
 /// </summary>
 /// <param name="dbParameterGroupFamily">DB parameter group family for engine
 choice.</param>
 /// <returns>The selected engine version.</returns>
 public static async Task<DBEngineVersion> ChooseDBEngineVersionAsync(string
 dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 // Get a list of allowed engines.
 var allowedEngines =
 await auroraWrapper.DescribeDBEngineVersionsForEngineAsync(engine,
 dbParameterGroupFamily);

 Console.WriteLine($"Available DB engine versions for parameter group family
 {dbParameterGroupFamily}:");
 int i = 1;
 foreach (var version in allowedEngines)
 {
 Console.WriteLine(
 $"\t{i}. {version.DBEngineVersionDescription}.");
 i++;
 }

Basics 346

AWS SDK for .NET Developer Guide

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedEngines.Count)
 {
 Console.WriteLine("8. Select an available DB engine version by entering
 a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var engineChoice = allowedEngines[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return engineChoice;
 }

 /// <summary>
 /// Create a new RDS DB cluster.
 /// </summary>
 /// <param name="parameterGroup">Parameter group to use for the DB cluster.</
param>
 /// <param name="engineName">Engine to use for the DB cluster.</param>
 /// <param name="engineVersion">Engine version to use for the DB cluster.</
param>
 /// <param name="clusterIdentifier">Cluster identifier to use for the DB
 cluster.</param>
 /// <returns>The new DB cluster.</returns>
 public static async Task<DBCluster?> CreateNewCluster(DBClusterParameterGroup
 parameterGroup,
 string engineName, string engineVersion, string clusterIdentifier)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"9. Create a new DB cluster with identifier
 {clusterIdentifier}.");

 DBCluster newCluster;
 var clusters = await auroraWrapper.DescribeDBClustersPagedAsync();
 var isClusterCreated = clusters.Any(i => i.DBClusterIdentifier ==
 clusterIdentifier);

 if (isClusterCreated)
 {
 Console.WriteLine("Cluster already created.");
 newCluster = clusters.First(i => i.DBClusterIdentifier ==
 clusterIdentifier);

Basics 347

AWS SDK for .NET Developer Guide

 }
 else
 {
 Console.WriteLine("Enter an admin username:");
 var username = Console.ReadLine();

 Console.WriteLine("Enter an admin password:");
 var password = Console.ReadLine();

 newCluster = await auroraWrapper.CreateDBClusterWithAdminAsync(
 "ExampleDatabase",
 clusterIdentifier,
 parameterGroup.DBClusterParameterGroupName,
 engineName,
 engineVersion,
 username!,
 password!
);

 Console.WriteLine("10. Waiting for DB cluster to be ready...");
 while (newCluster.Status != "available")
 {
 Console.Write(".");
 Thread.Sleep(5000);
 clusters = await
 auroraWrapper.DescribeDBClustersPagedAsync(clusterIdentifier);
 newCluster = clusters.First();
 }
 }

 Console.WriteLine(sepBar);
 return newCluster;
 }

 /// <summary>
 /// Choose a DB instance class for a particular engine and engine version.
 /// </summary>
 /// <param name="engine">DB engine for DB instance choice.</param>
 /// <param name="engineVersion">DB engine version for DB instance choice.</
param>
 /// <returns>The selected orderable DB instance option.</returns>
 public static async Task<OrderableDBInstanceOption> ChooseDBInstanceClass(string
 engine, string engineVersion)
 {

Basics 348

AWS SDK for .NET Developer Guide

 Console.WriteLine(sepBar);
 // Get a list of allowed DB instance classes.
 var allowedInstances =
 await auroraWrapper.DescribeOrderableDBInstanceOptionsPagedAsync(engine,
 engineVersion);

 Console.WriteLine($"Available DB instance classes for engine {engine} and
 version {engineVersion}:");
 int i = 1;

 foreach (var instance in allowedInstances)
 {
 Console.WriteLine(
 $"\t{i}. Instance class: {instance.DBInstanceClass} (storage type
 {instance.StorageType})");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedInstances.Count)
 {
 Console.WriteLine("11. Select an available DB instance class by entering
 a number from the preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var instanceChoice = allowedInstances[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return instanceChoice;
 }

 /// <summary>
 /// Create a new DB instance.
 /// </summary>
 /// <param name="engineName">Engine to use for the DB instance.</param>
 /// <param name="engineVersion">Engine version to use for the DB instance.</
param>
 /// <param name="instanceClass">Instance class to use for the DB instance.</
param>
 /// <param name="instanceIdentifier">Instance identifier to use for the DB
 instance.</param>
 /// <returns>The new DB instance.</returns>

Basics 349

AWS SDK for .NET Developer Guide

 public static async Task<DBInstance?> CreateNewInstance(
 string clusterIdentifier,
 string engineName,
 string engineVersion,
 string instanceClass,
 string instanceIdentifier)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"12. Create a new DB instance with identifier
 {instanceIdentifier}.");
 bool isInstanceReady = false;
 DBInstance newInstance;
 var instances = await auroraWrapper.DescribeDBInstancesPagedAsync();
 isInstanceReady = instances.FirstOrDefault(i =>
 i.DBInstanceIdentifier == instanceIdentifier)?.DBInstanceStatus ==
 "available";

 if (isInstanceReady)
 {
 Console.WriteLine("Instance already created.");
 newInstance = instances.First(i => i.DBInstanceIdentifier ==
 instanceIdentifier);
 }
 else
 {

 newInstance = await auroraWrapper.CreateDBInstanceInClusterAsync(
 clusterIdentifier,
 instanceIdentifier,
 engineName,
 engineVersion,
 instanceClass
);

 Console.WriteLine("13. Waiting for DB instance to be ready...");
 while (!isInstanceReady)
 {
 Console.Write(".");
 Thread.Sleep(5000);
 instances = await
 auroraWrapper.DescribeDBInstancesPagedAsync(instanceIdentifier);
 isInstanceReady = instances.FirstOrDefault()?.DBInstanceStatus ==
 "available";
 newInstance = instances.First();

Basics 350

AWS SDK for .NET Developer Guide

 }
 }

 Console.WriteLine(sepBar);
 return newInstance;
 }

 /// <summary>
 /// Display a connection string for an Amazon RDS DB cluster.
 /// </summary>
 /// <param name="cluster">The DB cluster to use to get a connection string.</
param>
 public static void DisplayConnectionString(DBCluster cluster)
 {
 Console.WriteLine(sepBar);
 // Display the connection string.
 Console.WriteLine("14. New DB cluster connection string: ");
 Console.WriteLine(
 $"\n{engine} -h {cluster.Endpoint} -P {cluster.Port} "
 + $"-u {cluster.MasterUsername} -p [YOUR PASSWORD]\n");

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Create a snapshot from an Amazon RDS DB cluster.
 /// </summary>
 /// <param name="cluster">DB cluster to use when creating a snapshot.</param>
 /// <returns>The snapshot object.</returns>
 public static async Task<DBClusterSnapshot> CreateSnapshot(DBCluster cluster)
 {
 Console.WriteLine(sepBar);
 // Create a snapshot.
 Console.WriteLine($"15. Creating snapshot from DB cluster
 {cluster.DBClusterIdentifier}.");
 var snapshot = await auroraWrapper.CreateClusterSnapshotByIdentifierAsync(
 cluster.DBClusterIdentifier,
 "ExampleSnapshot-" + DateTime.Now.Ticks);

 // Wait for the snapshot to be available.
 bool isSnapshotReady = false;

 Console.WriteLine($"16. Waiting for snapshot to be ready...");
 while (!isSnapshotReady)

Basics 351

AWS SDK for .NET Developer Guide

 {
 Console.Write(".");
 Thread.Sleep(5000);
 var snapshots =
 await
 auroraWrapper.DescribeDBClusterSnapshotsByIdentifierAsync(cluster.DBClusterIdentifier);
 isSnapshotReady = snapshots.FirstOrDefault()?.Status == "available";
 snapshot = snapshots.First();
 }

 Console.WriteLine(
 $"Snapshot {snapshot.DBClusterSnapshotIdentifier} status is
 {snapshot.Status}.");
 Console.WriteLine(sepBar);
 return snapshot;
 }

 /// <summary>
 /// Clean up resources from the scenario.
 /// </summary>
 /// <param name="newInstance">The instance to clean up.</param>
 /// <param name="newCluster">The cluster to clean up.</param>
 /// <param name="parameterGroup">The parameter group to clean up.</param>
 /// <returns>Async Task.</returns>
 private static async Task CleanupResources(
 DBInstance? newInstance,
 DBCluster? newCluster,
 DBClusterParameterGroup? parameterGroup)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 if (newInstance is not null && GetYesNoResponse($"\tClean up instance
 {newInstance.DBInstanceIdentifier}? (y/n)"))
 {
 // Delete the DB instance.
 Console.WriteLine($"17. Deleting the DB instance
 {newInstance.DBInstanceIdentifier}.");
 await
 auroraWrapper.DeleteDBInstanceByIdentifierAsync(newInstance.DBInstanceIdentifier);
 }

 if (newCluster is not null && GetYesNoResponse($"\tClean up cluster
 {newCluster.DBClusterIdentifier}? (y/n)"))

Basics 352

AWS SDK for .NET Developer Guide

 {
 // Delete the DB cluster.
 Console.WriteLine($"18. Deleting the DB cluster
 {newCluster.DBClusterIdentifier}.");
 await
 auroraWrapper.DeleteDBClusterByIdentifierAsync(newCluster.DBClusterIdentifier);

 // Wait for the DB cluster to delete.
 Console.WriteLine($"19. Waiting for the DB cluster to delete...");
 bool isClusterDeleted = false;

 while (!isClusterDeleted)
 {
 Console.Write(".");
 Thread.Sleep(5000);
 var cluster = await auroraWrapper.DescribeDBClustersPagedAsync();
 isClusterDeleted = cluster.All(i => i.DBClusterIdentifier !=
 newCluster.DBClusterIdentifier);
 }

 Console.WriteLine("DB cluster deleted.");
 }

 if (parameterGroup is not null && GetYesNoResponse($"\tClean up parameter
 group? (y/n)"))
 {
 Console.WriteLine($"20. Deleting the DB parameter group
 {parameterGroup.DBClusterParameterGroupName}.");
 await
 auroraWrapper.DeleteClusterParameterGroupByNameAsync(parameterGroup.DBClusterParameterGroupName);
 Console.WriteLine("Parameter group deleted.");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);

Basics 353

AWS SDK for .NET Developer Guide

 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

Wrapper methods that are called by the scenario to manage Aurora actions.

using Amazon.RDS;
using Amazon.RDS.Model;

namespace AuroraActions;

/// <summary>
/// Wrapper for the Amazon Aurora cluster client operations.
/// </summary>
public class AuroraWrapper
{
 private readonly IAmazonRDS _amazonRDS;
 public AuroraWrapper(IAmazonRDS amazonRDS)
 {
 _amazonRDS = amazonRDS;
 }

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">The name of the engine.</param>
 /// <param name="parameterGroupFamily">Optional parameter group family name.</
param>
 /// <returns>A list of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>>
 DescribeDBEngineVersionsForEngineAsync(string engine,
 string? parameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,
 DBParameterGroupFamily = parameterGroupFamily

Basics 354

AWS SDK for .NET Developer Guide

 });
 return response.DBEngineVersions;
 }

 /// <summary>
 /// Create a custom cluster parameter group.
 /// </summary>
 /// <param name="parameterGroupFamily">The family of the parameter group.</
param>
 /// <param name="groupName">The name for the new parameter group.</param>
 /// <param name="description">A description for the new parameter group.</param>
 /// <returns>The new parameter group object.</returns>
 public async Task<DBClusterParameterGroup>
 CreateCustomClusterParameterGroupAsync(
 string parameterGroupFamily,
 string groupName,
 string description)
 {
 var request = new CreateDBClusterParameterGroupRequest
 {
 DBParameterGroupFamily = parameterGroupFamily,
 DBClusterParameterGroupName = groupName,
 Description = description,
 };

 var response = await _amazonRDS.CreateDBClusterParameterGroupAsync(request);
 return response.DBClusterParameterGroup;
 }

 /// <summary>
 /// Describe the cluster parameters in a parameter group.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <param name="source">The optional name of the source filter.</param>
 /// <returns>The collection of parameters.</returns>
 public async Task<List<Parameter>>
 DescribeDBClusterParametersInGroupAsync(string groupName, string? source = null)
 {
 var paramList = new List<Parameter>();

 DescribeDBClusterParametersResponse response;
 var request = new DescribeDBClusterParametersRequest
 {
 DBClusterParameterGroupName = groupName,

Basics 355

AWS SDK for .NET Developer Guide

 Source = source,
 };

 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClusterParametersAsync(request);
 paramList.AddRange(response.Parameters);

 request.Marker = response.Marker;
 }
 while (response.Marker is not null);

 return paramList;
 }

 /// <summary>
 /// Get the description of a DB cluster parameter group by name.
 /// </summary>
 /// <param name="name">The name of the DB parameter group to describe.</param>
 /// <returns>The parameter group description.</returns>
 public async Task<DBClusterParameterGroup?>
 DescribeCustomDBClusterParameterGroupAsync(string name)
 {
 var response = await _amazonRDS.DescribeDBClusterParameterGroupsAsync(
 new DescribeDBClusterParameterGroupsRequest()
 {
 DBClusterParameterGroupName = name
 });
 return response.DBClusterParameterGroups.FirstOrDefault();
 }

 /// <summary>
 /// Modify the specified integer parameters with new values from user input.
 /// </summary>
 /// <param name="groupName">The group name for the parameters.</param>
 /// <param name="parameters">The list of integer parameters to modify.</param>
 /// <param name="newValue">Optional int value to set for parameters.</param>
 /// <returns>The name of the group that was modified.</returns>
 public async Task<string> ModifyIntegerParametersInGroupAsync(string groupName,
 List<Parameter> parameters, int newValue = 0)
 {
 foreach (var p in parameters)
 {

Basics 356

AWS SDK for .NET Developer Guide

 if (p.IsModifiable && p.DataType == "integer")
 {
 while (newValue == 0)
 {
 Console.WriteLine(
 $"Enter a new value for {p.ParameterName} from the allowed
 values {p.AllowedValues} ");

 var choice = Console.ReadLine();
 int.TryParse(choice, out newValue);
 }

 p.ParameterValue = newValue.ToString();
 }
 }

 var request = new ModifyDBClusterParameterGroupRequest
 {
 Parameters = parameters,
 DBClusterParameterGroupName = groupName,
 };

 var result = await _amazonRDS.ModifyDBClusterParameterGroupAsync(request);
 return result.DBClusterParameterGroupName;
 }

 /// <summary>
 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptionsPagedAsync(string engine, string engineVersion)
 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,

Basics 357

AWS SDK for .NET Developer Guide

 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

 /// <summary>
 /// Delete a particular parameter group by name.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteClusterParameterGroupByNameAsync(string groupName)
 {
 var request = new DeleteDBClusterParameterGroupRequest
 {
 DBClusterParameterGroupName = groupName,
 };

 var response = await _amazonRDS.DeleteDBClusterParameterGroupAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create a new cluster and database.
 /// </summary>
 /// <param name="dbName">The name of the new database.</param>
 /// <param name="clusterIdentifier">The identifier of the cluster.</param>
 /// <param name="parameterGroupName">The name of the parameter group.</param>
 /// <param name="dbEngine">The engine to use for the new cluster.</param>
 /// <param name="dbEngineVersion">The version of the engine to use.</param>
 /// <param name="adminName">The admin username.</param>
 /// <param name="adminPassword">The primary admin password.</param>
 /// <returns>The cluster object.</returns>
 public async Task<DBCluster> CreateDBClusterWithAdminAsync(
 string dbName,
 string clusterIdentifier,
 string parameterGroupName,
 string dbEngine,
 string dbEngineVersion,

Basics 358

AWS SDK for .NET Developer Guide

 string adminName,
 string adminPassword)
 {
 var request = new CreateDBClusterRequest
 {
 DatabaseName = dbName,
 DBClusterIdentifier = clusterIdentifier,
 DBClusterParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword,
 };

 var response = await _amazonRDS.CreateDBClusterAsync(request);
 return response.DBCluster;
 }

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstancesPagedAsync(string?
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

 /// <summary>
 /// Returns a list of DB clusters.
 /// </summary>

Basics 359

AWS SDK for .NET Developer Guide

 /// <param name="dbInstanceIdentifier">Optional name of a specific DB cluster.</
param>
 /// <returns>List of DB clusters.</returns>
 public async Task<List<DBCluster>> DescribeDBClustersPagedAsync(string?
 dbClusterIdentifier = null)
 {
 var results = new List<DBCluster>();

 DescribeDBClustersResponse response;
 DescribeDBClustersRequest request = new DescribeDBClustersRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };
 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClustersAsync(request);
 results.AddRange(response.DBClusters);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

 /// <summary>
 /// Create an Amazon Relational Database Service (Amazon RDS) DB instance
 /// with a particular set of properties. Use the action DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstanceInClusterAsync(
 string dbClusterIdentifier,
 string dbInstanceIdentifier,
 string dbEngine,
 string dbEngineVersion,
 string instanceClass)
 {
 // When creating the instance within a cluster, do not specify the name or
 size.

Basics 360

AWS SDK for .NET Developer Guide

 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass
 });

 return response.DBInstance;
 }

 /// <summary>
 /// Create a snapshot of a cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBClusterSnapshot>
 CreateClusterSnapshotByIdentifierAsync(string dbClusterIdentifier, string
 snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBClusterSnapshotAsync(
 new CreateDBClusterSnapshotRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBClusterSnapshotIdentifier = snapshotIdentifier,
 });

 return response.DBClusterSnapshot;
 }

 /// <summary>
 /// Return a list of DB snapshots for a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBClusterSnapshot>>
 DescribeDBClusterSnapshotsByIdentifierAsync(string dbClusterIdentifier)
 {
 var results = new List<DBClusterSnapshot>();

 DescribeDBClusterSnapshotsResponse response;

Basics 361

AWS SDK for .NET Developer Guide

 DescribeDBClusterSnapshotsRequest request = new
 DescribeDBClusterSnapshotsRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };
 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClusterSnapshotsAsync(request);
 results.AddRange(response.DBClusterSnapshots);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

 /// <summary>
 /// Delete a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>DB cluster object.</returns>
 public async Task<DBCluster> DeleteDBClusterByIdentifierAsync(string
 dbClusterIdentifier)
 {
 var response = await _amazonRDS.DeleteDBClusterAsync(
 new DeleteDBClusterRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 SkipFinalSnapshot = true
 });

 return response.DBCluster;
 }

 /// <summary>
 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstanceByIdentifierAsync(string
 dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()

Basics 362

AWS SDK for .NET Developer Guide

 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

Actions

CreateDBCluster

The following code example shows how to use CreateDBCluster.

Actions 363

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBCluster
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterSnapshot
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBCluster
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBClusterParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameterGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameters
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterSnapshots
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusters
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBClusterParameterGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a new cluster and database.
 /// </summary>
 /// <param name="dbName">The name of the new database.</param>
 /// <param name="clusterIdentifier">The identifier of the cluster.</param>
 /// <param name="parameterGroupName">The name of the parameter group.</param>
 /// <param name="dbEngine">The engine to use for the new cluster.</param>
 /// <param name="dbEngineVersion">The version of the engine to use.</param>
 /// <param name="adminName">The admin username.</param>
 /// <param name="adminPassword">The primary admin password.</param>
 /// <returns>The cluster object.</returns>
 public async Task<DBCluster> CreateDBClusterWithAdminAsync(
 string dbName,
 string clusterIdentifier,
 string parameterGroupName,
 string dbEngine,
 string dbEngineVersion,
 string adminName,
 string adminPassword)
 {
 var request = new CreateDBClusterRequest
 {
 DatabaseName = dbName,
 DBClusterIdentifier = clusterIdentifier,
 DBClusterParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword,
 };

 var response = await _amazonRDS.CreateDBClusterAsync(request);
 return response.DBCluster;
 }

Actions 364

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

• For API details, see CreateDBCluster in AWS SDK for .NET API Reference.

CreateDBClusterParameterGroup

The following code example shows how to use CreateDBClusterParameterGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a custom cluster parameter group.
 /// </summary>
 /// <param name="parameterGroupFamily">The family of the parameter group.</
param>
 /// <param name="groupName">The name for the new parameter group.</param>
 /// <param name="description">A description for the new parameter group.</param>
 /// <returns>The new parameter group object.</returns>
 public async Task<DBClusterParameterGroup>
 CreateCustomClusterParameterGroupAsync(
 string parameterGroupFamily,
 string groupName,
 string description)
 {
 var request = new CreateDBClusterParameterGroupRequest
 {
 DBParameterGroupFamily = parameterGroupFamily,
 DBClusterParameterGroupName = groupName,
 Description = description,
 };

 var response = await _amazonRDS.CreateDBClusterParameterGroupAsync(request);
 return response.DBClusterParameterGroup;
 }

Actions 365

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

• For API details, see CreateDBClusterParameterGroup in AWS SDK for .NET API Reference.

CreateDBClusterSnapshot

The following code example shows how to use CreateDBClusterSnapshot.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a snapshot of a cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBClusterSnapshot>
 CreateClusterSnapshotByIdentifierAsync(string dbClusterIdentifier, string
 snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBClusterSnapshotAsync(
 new CreateDBClusterSnapshotRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBClusterSnapshotIdentifier = snapshotIdentifier,
 });

 return response.DBClusterSnapshot;
 }

• For API details, see CreateDBClusterSnapshot in AWS SDK for .NET API Reference.

CreateDBInstance

The following code example shows how to use CreateDBInstance.

Actions 366

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterSnapshot

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an Amazon Relational Database Service (Amazon RDS) DB instance
 /// with a particular set of properties. Use the action DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstanceInClusterAsync(
 string dbClusterIdentifier,
 string dbInstanceIdentifier,
 string dbEngine,
 string dbEngineVersion,
 string instanceClass)
 {
 // When creating the instance within a cluster, do not specify the name or
 size.
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass
 });

 return response.DBInstance;
 }

Actions 367

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

• For API details, see CreateDBInstance in AWS SDK for .NET API Reference.

DeleteDBCluster

The following code example shows how to use DeleteDBCluster.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>DB cluster object.</returns>
 public async Task<DBCluster> DeleteDBClusterByIdentifierAsync(string
 dbClusterIdentifier)
 {
 var response = await _amazonRDS.DeleteDBClusterAsync(
 new DeleteDBClusterRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 SkipFinalSnapshot = true
 });

 return response.DBCluster;
 }

• For API details, see DeleteDBCluster in AWS SDK for .NET API Reference.

DeleteDBClusterParameterGroup

The following code example shows how to use DeleteDBClusterParameterGroup.

Actions 368

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBCluster

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular parameter group by name.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteClusterParameterGroupByNameAsync(string groupName)
 {
 var request = new DeleteDBClusterParameterGroupRequest
 {
 DBClusterParameterGroupName = groupName,
 };

 var response = await _amazonRDS.DeleteDBClusterParameterGroupAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for .NET API Reference.

DeleteDBInstance

The following code example shows how to use DeleteDBInstance.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 369

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstanceByIdentifierAsync(string
 dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }

• For API details, see DeleteDBInstance in AWS SDK for .NET API Reference.

DescribeDBClusterParameterGroups

The following code example shows how to use DescribeDBClusterParameterGroups.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the description of a DB cluster parameter group by name.
 /// </summary>
 /// <param name="name">The name of the DB parameter group to describe.</param>
 /// <returns>The parameter group description.</returns>
 public async Task<DBClusterParameterGroup?>
 DescribeCustomDBClusterParameterGroupAsync(string name)
 {
 var response = await _amazonRDS.DescribeDBClusterParameterGroupsAsync(

Actions 370

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 new DescribeDBClusterParameterGroupsRequest()
 {
 DBClusterParameterGroupName = name
 });
 return response.DBClusterParameterGroups.FirstOrDefault();
 }

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for .NET API Reference.

DescribeDBClusterParameters

The following code example shows how to use DescribeDBClusterParameters.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe the cluster parameters in a parameter group.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <param name="source">The optional name of the source filter.</param>
 /// <returns>The collection of parameters.</returns>
 public async Task<List<Parameter>>
 DescribeDBClusterParametersInGroupAsync(string groupName, string? source = null)
 {
 var paramList = new List<Parameter>();

 DescribeDBClusterParametersResponse response;
 var request = new DescribeDBClusterParametersRequest
 {
 DBClusterParameterGroupName = groupName,
 Source = source,
 };

 // Get the full list if there are multiple pages.
 do

Actions 371

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 {
 response = await _amazonRDS.DescribeDBClusterParametersAsync(request);
 paramList.AddRange(response.Parameters);

 request.Marker = response.Marker;
 }
 while (response.Marker is not null);

 return paramList;
 }

• For API details, see DescribeDBClusterParameters in AWS SDK for .NET API Reference.

DescribeDBClusterSnapshots

The following code example shows how to use DescribeDBClusterSnapshots.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Return a list of DB snapshots for a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBClusterSnapshot>>
 DescribeDBClusterSnapshotsByIdentifierAsync(string dbClusterIdentifier)
 {
 var results = new List<DBClusterSnapshot>();

 DescribeDBClusterSnapshotsResponse response;
 DescribeDBClusterSnapshotsRequest request = new
 DescribeDBClusterSnapshotsRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };

Actions 372

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClusterSnapshotsAsync(request);
 results.AddRange(response.DBClusterSnapshots);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

• For API details, see DescribeDBClusterSnapshots in AWS SDK for .NET API Reference.

DescribeDBClusters

The following code example shows how to use DescribeDBClusters.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Returns a list of DB clusters.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB cluster.</
param>
 /// <returns>List of DB clusters.</returns>
 public async Task<List<DBCluster>> DescribeDBClustersPagedAsync(string?
 dbClusterIdentifier = null)
 {
 var results = new List<DBCluster>();

 DescribeDBClustersResponse response;
 DescribeDBClustersRequest request = new DescribeDBClustersRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };

Actions 373

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClustersAsync(request);
 results.AddRange(response.DBClusters);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

• For API details, see DescribeDBClusters in AWS SDK for .NET API Reference.

DescribeDBEngineVersions

The following code example shows how to use DescribeDBEngineVersions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">The name of the engine.</param>
 /// <param name="parameterGroupFamily">Optional parameter group family name.</
param>
 /// <returns>A list of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>>
 DescribeDBEngineVersionsForEngineAsync(string engine,
 string? parameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,

Actions 374

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 DBParameterGroupFamily = parameterGroupFamily
 });
 return response.DBEngineVersions;
 }

• For API details, see DescribeDBEngineVersions in AWS SDK for .NET API Reference.

DescribeDBInstances

The following code example shows how to use DescribeDBInstances.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstancesPagedAsync(string?
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;

Actions 375

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 }

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

DescribeOrderableDBInstanceOptions

The following code example shows how to use DescribeOrderableDBInstanceOptions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptionsPagedAsync(string engine, string engineVersion)
 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);

Actions 376

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 }
 return results;
 }

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for .NET API Reference.

ModifyDBClusterParameterGroup

The following code example shows how to use ModifyDBClusterParameterGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Modify the specified integer parameters with new values from user input.
 /// </summary>
 /// <param name="groupName">The group name for the parameters.</param>
 /// <param name="parameters">The list of integer parameters to modify.</param>
 /// <param name="newValue">Optional int value to set for parameters.</param>
 /// <returns>The name of the group that was modified.</returns>
 public async Task<string> ModifyIntegerParametersInGroupAsync(string groupName,
 List<Parameter> parameters, int newValue = 0)
 {
 foreach (var p in parameters)
 {
 if (p.IsModifiable && p.DataType == "integer")
 {
 while (newValue == 0)
 {
 Console.WriteLine(
 $"Enter a new value for {p.ParameterName} from the allowed
 values {p.AllowedValues} ");

 var choice = Console.ReadLine();
 int.TryParse(choice, out newValue);

Actions 377

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

AWS SDK for .NET Developer Guide

 }

 p.ParameterValue = newValue.ToString();
 }
 }

 var request = new ModifyDBClusterParameterGroupRequest
 {
 Parameters = parameters,
 DBClusterParameterGroupName = groupName,
 };

 var result = await _amazonRDS.ModifyDBClusterParameterGroupAsync(request);
 return result.DBClusterParameterGroupName;
 }

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for .NET API Reference.

Scenarios

Create an Aurora Serverless work item tracker

The following code example shows how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

AWS SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work items in
an Amazon Aurora database and emails reports by using Amazon Simple Email Service (Amazon
SES). This example uses a front end built with React.js to interact with a RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Scenarios 378

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker

AWS SDK for .NET Developer Guide

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Auto Scaling examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Auto Scaling.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Auto Scaling

The following code examples show how to get started using Auto Scaling.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace AutoScalingActions;

Auto Scaling 379

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

using Amazon.AutoScaling;

public class HelloAutoScaling
{
 /// <summary>
 /// Hello Amazon EC2 Auto Scaling. List EC2 Auto Scaling groups.
 /// </summary>
 /// <param name="args"></param>
 /// <returns>Async Task.</returns>
 static async Task Main(string[] args)
 {
 var client = new AmazonAutoScalingClient();

 Console.WriteLine("Welcome to Amazon EC2 Auto Scaling.");
 Console.WriteLine("Let's get a description of your Auto Scaling groups.");

 var response = await client.DescribeAutoScalingGroupsAsync();

 response.AutoScalingGroups.ForEach(autoScalingGroup =>
 {

 Console.WriteLine($"{autoScalingGroup.AutoScalingGroupName}\t{autoScalingGroup.AvailabilityZones}");
 });

 if (response.AutoScalingGroups.Count == 0)
 {
 Console.WriteLine("Sorry, you don't have any Amazon EC2 Auto Scaling
 groups.");
 }
 }
}

• For API details, see DescribeAutoScalingGroups in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

• Scenarios

Auto Scaling 380

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups

AWS SDK for .NET Developer Guide

Basics

Learn the basics

The following code example shows how to:

• Create an Amazon EC2 Auto Scaling group with a launch template and Availability Zones, and
get information about running instances.

• Enable Amazon CloudWatch metrics collection.

• Update the group's desired capacity and wait for an instance to start.

• Terminate an instance in the group.

• List scaling activities that occur in response to user requests and capacity changes.

• Get statistics for CloudWatch metrics, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

global using Amazon.AutoScaling;
global using Amazon.AutoScaling.Model;
global using Amazon.CloudWatch;
global using AutoScalingActions;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

using Amazon.EC2;
using Microsoft.Extensions.Configuration;
using Host = Microsoft.Extensions.Hosting.Host;

namespace AutoScalingBasics;

Basics 381

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

public class AutoScalingBasics
{

 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EC2 Auto Scaling, Amazon
 // CloudWatch, and Amazon EC2.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonAutoScaling>()
 .AddAWSService<IAmazonCloudWatch>()
 .AddAWSService<IAmazonEC2>()
 .AddTransient<AutoScalingWrapper>()
 .AddTransient<CloudWatchWrapper>()
 .AddTransient<EC2Wrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 var autoScalingWrapper =
 host.Services.GetRequiredService<AutoScalingWrapper>();
 var cloudWatchWrapper =
 host.Services.GetRequiredService<CloudWatchWrapper>();
 var ec2Wrapper = host.Services.GetRequiredService<EC2Wrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 var imageId = configuration["ImageId"];
 var instanceType = configuration["InstanceType"];
 var launchTemplateName = configuration["LaunchTemplateName"];

Basics 382

AWS SDK for .NET Developer Guide

 launchTemplateName += Guid.NewGuid().ToString();

 // The name of the Auto Scaling group.
 var groupName = configuration["GroupName"];

 uiWrapper.DisplayTitle("Auto Scaling Basics");
 uiWrapper.DisplayAutoScalingBasicsDescription();

 // Create the launch template and save the template Id to use when deleting
 the
 // launch template at the end of the application.
 var launchTemplateId = await ec2Wrapper.CreateLaunchTemplateAsync(imageId!,
 instanceType!, launchTemplateName);

 // Confirm that the template was created by asking for a description of it.
 await ec2Wrapper.DescribeLaunchTemplateAsync(launchTemplateName);

 uiWrapper.PressEnter();

 var availabilityZones = await ec2Wrapper.ListAvailabilityZonesAsync();

 Console.WriteLine($"Creating an Auto Scaling group named {groupName}.");
 await autoScalingWrapper.CreateAutoScalingGroupAsync(
 groupName!,
 launchTemplateName,
 availabilityZones.First().ZoneName);

 // Keep checking the details of the new group until its lifecycle state
 // is "InService".
 Console.WriteLine($"Waiting for the Auto Scaling group to be active.");

 List<AutoScalingInstanceDetails> instanceDetails;

 do
 {
 instanceDetails = await
 autoScalingWrapper.DescribeAutoScalingInstancesAsync(groupName!);
 }
 while (instanceDetails.Count <= 0);

 Console.WriteLine($"Auto scaling group {groupName} successfully created.");
 Console.WriteLine($"{instanceDetails.Count} instances were created for the
 group.");

Basics 383

AWS SDK for .NET Developer Guide

 // Display the details of the Auto Scaling group.
 instanceDetails.ForEach(detail =>
 {
 Console.WriteLine($"Group name: {detail.AutoScalingGroupName}");
 });

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Metrics collection");
 Console.WriteLine($"Enable metrics collection for {groupName}");
 await autoScalingWrapper.EnableMetricsCollectionAsync(groupName!);

 // Show the metrics that are collected for the group.

 // Update the maximum size of the group to three instances.
 Console.WriteLine("--- Update the Auto Scaling group to increase max size to
 3 ---");
 int maxSize = 3;
 await autoScalingWrapper.UpdateAutoScalingGroupAsync(groupName!,
 launchTemplateName, maxSize);

 Console.WriteLine("--- Describe all Auto Scaling groups to show the current
 state of the group ---");
 var groups = await
 autoScalingWrapper.DescribeAutoScalingGroupsAsync(groupName!);

 uiWrapper.DisplayGroupDetails(groups!);

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Describe account limits");
 await autoScalingWrapper.DescribeAccountLimitsAsync();

 uiWrapper.WaitABit(60, "Waiting for the resources to be ready.");

 uiWrapper.DisplayTitle("Set desired capacity");
 int desiredCapacity = 2;
 await autoScalingWrapper.SetDesiredCapacityAsync(groupName!,
 desiredCapacity);

 Console.WriteLine("Get the two instance Id values");

 // Empty the group before getting the details again.
 groups!.Clear();

Basics 384

AWS SDK for .NET Developer Guide

 groups = await
 autoScalingWrapper.DescribeAutoScalingGroupsAsync(groupName!);
 if (groups is not null)
 {
 foreach (AutoScalingGroup group in groups)
 {
 Console.WriteLine($"The group name is
 {group.AutoScalingGroupName}");
 Console.WriteLine($"The group ARN is {group.AutoScalingGroupARN}");
 var instances = group.Instances;
 foreach (Amazon.AutoScaling.Model.Instance instance in instances)
 {
 Console.WriteLine($"The instance id is {instance.InstanceId}");
 Console.WriteLine($"The lifecycle state is
 {instance.LifecycleState}");
 }
 }
 }

 uiWrapper.DisplayTitle("Scaling Activities");
 Console.WriteLine("Let's list the scaling activities that have occurred for
 the group.");
 var activities = await
 autoScalingWrapper.DescribeScalingActivitiesAsync(groupName!);
 if (activities is not null)
 {
 activities.ForEach(activity =>
 {
 Console.WriteLine($"The activity Id is {activity.ActivityId}");
 Console.WriteLine($"The activity details are {activity.Details}");
 });
 }

 // Display the Amazon CloudWatch metrics that have been collected.
 var metrics = await cloudWatchWrapper.GetCloudWatchMetricsAsync(groupName!);
 Console.WriteLine($"Metrics collected for {groupName}:");
 metrics.ForEach(metric =>
 {
 Console.Write($"Metric name: {metric.MetricName}\t");
 Console.WriteLine($"Namespace: {metric.Namespace}");
 });

 var dataPoints = await
 cloudWatchWrapper.GetMetricStatisticsAsync(groupName!);

Basics 385

AWS SDK for .NET Developer Guide

 Console.WriteLine("Details for the metrics collected:");
 dataPoints.ForEach(detail =>
 {
 Console.WriteLine(detail);
 });

 // Disable metrics collection.
 Console.WriteLine("Disabling the collection of metrics for {groupName}.");
 var success = await
 autoScalingWrapper.DisableMetricsCollectionAsync(groupName!);

 if (success)
 {
 Console.WriteLine($"Successfully stopped metrics collection for
 {groupName}.");
 }
 else
 {
 Console.WriteLine($"Could not stop metrics collection for
 {groupName}.");
 }

 // Terminate all instances in the group.
 uiWrapper.DisplayTitle("Terminating Auto Scaling instances");
 Console.WriteLine("Now terminating all instances in the Auto Scaling
 group.");

 if (groups is not null)
 {
 groups.ForEach(group =>
 {
 // Only delete instances in the AutoScaling group we created.
 if (group.AutoScalingGroupName == groupName)
 {
 group.Instances.ForEach(async instance =>
 {
 await
 autoScalingWrapper.TerminateInstanceInAutoScalingGroupAsync(instance.InstanceId);
 });
 }
 });
 }

 // After all instances are terminated, delete the group.

Basics 386

AWS SDK for .NET Developer Guide

 uiWrapper.DisplayTitle("Clean up resources");
 Console.WriteLine("Deleting the Auto Scaling group.");
 await autoScalingWrapper.DeleteAutoScalingGroupAsync(groupName!);

 // Delete the launch template.
 var deletedLaunchTemplateName = await
 ec2Wrapper.DeleteLaunchTemplateAsync(launchTemplateId);

 if (deletedLaunchTemplateName == launchTemplateName)
 {
 Console.WriteLine("Successfully deleted the launch template.");
 }

 Console.WriteLine("The demo is now concluded.");
 }
}

namespace AutoScalingBasics;

/// <summary>
/// A class to provide user interface methods for the EC2 AutoScaling Basics
/// scenario.
/// </summary>
public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Describe the steps in the EC2 AutoScaling Basics scenario.
 /// </summary>
 public void DisplayAutoScalingBasicsDescription()
 {
 Console.WriteLine("This code example performs the following operations:");
 Console.WriteLine(" 1. Creates an Amazon EC2 launch template.");
 Console.WriteLine(" 2. Creates an Auto Scaling group.");
 Console.WriteLine(" 3. Shows the details of the new Auto Scaling group");
 Console.WriteLine(" to show that only one instance was created.");
 Console.WriteLine(" 4. Enables metrics collection.");
 Console.WriteLine(" 5. Updates the Auto Scaling group to increase the");
 Console.WriteLine(" capacity to three.");
 Console.WriteLine(" 6. Describes Auto Scaling groups again to show the");
 Console.WriteLine(" current state of the group.");
 Console.WriteLine(" 7. Changes the desired capacity of the Auto Scaling");

Basics 387

AWS SDK for .NET Developer Guide

 Console.WriteLine(" group to use an additional instance.");
 Console.WriteLine(" 8. Shows that there are now instances in the group.");
 Console.WriteLine(" 9. Lists the scaling activities that have occurred for
 the group.");
 Console.WriteLine("10. Displays the Amazon CloudWatch metrics that have");
 Console.WriteLine(" been collected.");
 Console.WriteLine("11. Disables metrics collection.");
 Console.WriteLine("12. Terminates all instances in the Auto Scaling
 group.");
 Console.WriteLine("13. Deletes the Auto Scaling group.");
 Console.WriteLine("14. Deletes the Amazon EC2 launch template.");
 PressEnter();
 }

 /// <summary>
 /// Display information about the Amazon Ec2 AutoScaling groups passed
 /// in the list of AutoScalingGroup objects.
 /// </summary>
 /// <param name="groups">A list of AutoScalingGroup objects.</param>
 public void DisplayGroupDetails(List<AutoScalingGroup> groups)
 {
 if (groups is null)
 return;

 groups.ForEach(group =>
 {
 Console.WriteLine($"Group name:\t{group.AutoScalingGroupName}");
 Console.WriteLine($"Group created:\t{group.CreatedTime}");
 Console.WriteLine($"Maximum number of instances:\t{group.MaxSize}");
 Console.WriteLine($"Desired number of instances:
\t{group.DesiredCapacity}");
 });
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

Basics 388

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }
}

Basics 389

AWS SDK for .NET Developer Guide

Define functions that are called by the scenario to manage launch templates and metrics. These
functions wrap Auto Scaling, Amazon EC2, and CloudWatch actions.

namespace AutoScalingActions;

using Amazon.AutoScaling;
using Amazon.AutoScaling.Model;

/// <summary>
/// A class that includes methods to perform Amazon EC2 Auto Scaling
/// actions.
/// </summary>
public class AutoScalingWrapper
{
 private readonly IAmazonAutoScaling _amazonAutoScaling;

 /// <summary>
 /// Constructor for the AutoScalingWrapper class.
 /// </summary>
 /// <param name="amazonAutoScaling">The injected Amazon EC2 Auto Scaling
 client.</param>
 public AutoScalingWrapper(IAmazonAutoScaling amazonAutoScaling)
 {
 _amazonAutoScaling = amazonAutoScaling;
 }

 /// <summary>
 /// Create a new Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name to use for the new Auto Scaling
 /// group.</param>
 /// <param name="launchTemplateName">The name of the Amazon EC2 Auto Scaling
 /// launch template to use to create instances in the group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateAutoScalingGroupAsync(
 string groupName,
 string launchTemplateName,
 string availabilityZone)
 {

Basics 390

AWS SDK for .NET Developer Guide

 var templateSpecification = new LaunchTemplateSpecification
 {
 LaunchTemplateName = launchTemplateName,
 };

 var zoneList = new List<string>
 {
 availabilityZone,
 };

 var request = new CreateAutoScalingGroupRequest
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = zoneList,
 LaunchTemplate = templateSpecification,
 MaxSize = 6,
 MinSize = 1
 };

 var response = await
 _amazonAutoScaling.CreateAutoScalingGroupAsync(request);
 Console.WriteLine($"{groupName} Auto Scaling Group created");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Retrieve information about Amazon EC2 Auto Scaling quotas to the
 /// active AWS account.
 /// </summary>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DescribeAccountLimitsAsync()
 {
 var response = await _amazonAutoScaling.DescribeAccountLimitsAsync();
 Console.WriteLine("The maximum number of Auto Scaling groups is " +
 response.MaxNumberOfAutoScalingGroups);
 Console.WriteLine("The current number of Auto Scaling groups is " +
 response.NumberOfAutoScalingGroups);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Basics 391

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Retrieve a list of the Amazon EC2 Auto Scaling activities for an
 /// Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of Amazon EC2 Auto Scaling activities.</returns>
 public async Task<List<Amazon.AutoScaling.Model.Activity>>
 DescribeScalingActivitiesAsync(
 string groupName)
 {
 var scalingActivitiesRequest = new DescribeScalingActivitiesRequest
 {
 AutoScalingGroupName = groupName,
 MaxRecords = 10,
 };

 var response = await
 _amazonAutoScaling.DescribeScalingActivitiesAsync(scalingActivitiesRequest);
 return response.Activities;
 }

 /// <summary>
 /// Get data about the instances in an Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of Amazon EC2 Auto Scaling details.</returns>
 public async Task<List<AutoScalingInstanceDetails>>
 DescribeAutoScalingInstancesAsync(
 string groupName)
 {
 var groups = await DescribeAutoScalingGroupsAsync(groupName);
 var instanceIds = new List<string>();
 groups!.ForEach(group =>
 {
 if (group.AutoScalingGroupName == groupName)
 {
 group.Instances.ForEach(instance =>
 {
 instanceIds.Add(instance.InstanceId);
 });

Basics 392

AWS SDK for .NET Developer Guide

 }
 });

 var scalingGroupsRequest = new DescribeAutoScalingInstancesRequest
 {
 MaxRecords = 10,
 InstanceIds = instanceIds,
 };

 var response = await
 _amazonAutoScaling.DescribeAutoScalingInstancesAsync(scalingGroupsRequest);
 var instanceDetails = response.AutoScalingInstances;

 return instanceDetails;
 }

 /// <summary>
 /// Retrieve a list of information about Amazon EC2 Auto Scaling groups.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of Amazon EC2 Auto Scaling groups.</returns>
 public async Task<List<AutoScalingGroup>?> DescribeAutoScalingGroupsAsync(
 string groupName)
 {
 var groupList = new List<string>
 {
 groupName,
 };

 var request = new DescribeAutoScalingGroupsRequest
 {
 AutoScalingGroupNames = groupList,
 };

 var response = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(request);
 var groups = response.AutoScalingGroups;

 return groups;
 }

Basics 393

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAutoScalingGroupAsync(
 string groupName)
 {
 var deleteAutoScalingGroupRequest = new DeleteAutoScalingGroupRequest
 {
 AutoScalingGroupName = groupName,
 ForceDelete = true,
 };

 var response = await
 _amazonAutoScaling.DeleteAutoScalingGroupAsync(deleteAutoScalingGroupRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"You successfully deleted {groupName}");
 return true;
 }

 Console.WriteLine($"Couldn't delete {groupName}.");
 return false;
 }

 /// <summary>
 /// Disable the collection of metric data for an Amazon EC2 Auto Scaling
 /// group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the operation.</returns>
 public async Task<bool> DisableMetricsCollectionAsync(string groupName)
 {
 var request = new DisableMetricsCollectionRequest
 {
 AutoScalingGroupName = groupName,
 };

Basics 394

AWS SDK for .NET Developer Guide

 var response = await
 _amazonAutoScaling.DisableMetricsCollectionAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Enable the collection of metric data for an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> EnableMetricsCollectionAsync(string groupName)
 {
 var listMetrics = new List<string>
 {
 "GroupMaxSize",
 };

 var collectionRequest = new EnableMetricsCollectionRequest
 {
 AutoScalingGroupName = groupName,
 Metrics = listMetrics,
 Granularity = "1Minute",
 };

 var response = await
 _amazonAutoScaling.EnableMetricsCollectionAsync(collectionRequest);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Set the desired capacity of an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <param name="desiredCapacity">The desired capacity for the Auto
 /// Scaling group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> SetDesiredCapacityAsync(
 string groupName,
 int desiredCapacity)
 {
 var capacityRequest = new SetDesiredCapacityRequest
 {

Basics 395

AWS SDK for .NET Developer Guide

 AutoScalingGroupName = groupName,
 DesiredCapacity = desiredCapacity,
 };

 var response = await
 _amazonAutoScaling.SetDesiredCapacityAsync(capacityRequest);
 Console.WriteLine($"You have set the DesiredCapacity to
 {desiredCapacity}.");

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Terminate all instances in the Auto Scaling group in preparation for
 /// deleting the group.
 /// </summary>
 /// <param name="instanceId">The instance Id of the instance to terminate.</
param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the operation.</returns>
 public async Task<bool> TerminateInstanceInAutoScalingGroupAsync(
 string instanceId)
 {
 var request = new TerminateInstanceInAutoScalingGroupRequest
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false,
 };

 var response = await
 _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"You have terminated the instance: {instanceId}");
 return true;
 }

 Console.WriteLine($"Could not terminate {instanceId}");
 return false;
 }

Basics 396

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Update the capacity of an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <param name="launchTemplateName">The name of the EC2 launch template.</
param>
 /// <param name="maxSize">The maximum number of instances that can be
 /// created for the Auto Scaling group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateAutoScalingGroupAsync(
 string groupName,
 string launchTemplateName,
 int maxSize)
 {
 var templateSpecification = new LaunchTemplateSpecification
 {
 LaunchTemplateName = launchTemplateName,
 };

 var groupRequest = new UpdateAutoScalingGroupRequest
 {
 MaxSize = maxSize,
 AutoScalingGroupName = groupName,
 LaunchTemplate = templateSpecification,
 };

 var response = await
 _amazonAutoScaling.UpdateAutoScalingGroupAsync(groupRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"You successfully updated the Auto Scaling group
 {groupName}.");
 return true;
 }
 else
 {
 return false;
 }
 }

}

namespace AutoScalingActions;

Basics 397

AWS SDK for .NET Developer Guide

using Amazon.EC2;
using Amazon.EC2.Model;

public class EC2Wrapper
{
 private readonly IAmazonEC2 _amazonEc2;

 /// <summary>
 /// Constructor for the EC2Wrapper class.
 /// </summary>
 /// <param name="amazonEc2">The injected Amazon EC2 client.</param>
 public EC2Wrapper(IAmazonEC2 amazonEc2)
 {
 _amazonEc2 = amazonEc2;
 }

 /// <summary>
 /// Create a new Amazon EC2 launch template.
 /// </summary>
 /// <param name="imageId">The image Id to use for instances launched
 /// using the Amazon EC2 launch template.</param>
 /// <param name="instanceType">The type of EC2 instances to create.</param>
 /// <param name="launchTemplateName">The name of the launch template.</param>
 /// <returns>Returns the TemplateID of the new launch template.</returns>
 public async Task<string> CreateLaunchTemplateAsync(
 string imageId,
 string instanceType,
 string launchTemplateName)
 {
 var request = new CreateLaunchTemplateRequest
 {
 LaunchTemplateData = new RequestLaunchTemplateData
 {
 ImageId = imageId,
 InstanceType = instanceType,
 },
 LaunchTemplateName = launchTemplateName,
 };

 var response = await _amazonEc2.CreateLaunchTemplateAsync(request);

 return response.LaunchTemplate.LaunchTemplateId;
 }

Basics 398

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an Amazon EC2 launch template.
 /// </summary>
 /// <param name="launchTemplateId">The TemplateId of the launch template to
 /// delete.</param>
 /// <returns>The name of the EC2 launch template that was deleted.</returns>
 public async Task<string> DeleteLaunchTemplateAsync(string launchTemplateId)
 {
 var request = new DeleteLaunchTemplateRequest
 {
 LaunchTemplateId = launchTemplateId,
 };

 var response = await _amazonEc2.DeleteLaunchTemplateAsync(request);
 return response.LaunchTemplate.LaunchTemplateName;
 }

 /// <summary>
 /// Retrieve information about an EC2 launch template.
 /// </summary>
 /// <param name="launchTemplateName">The name of the EC2 launch template.</
param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the operation.</returns>
 public async Task<bool> DescribeLaunchTemplateAsync(string launchTemplateName)
 {
 var request = new DescribeLaunchTemplatesRequest
 {
 LaunchTemplateNames = new List<string> { launchTemplateName, },
 };

 var response = await _amazonEc2.DescribeLaunchTemplatesAsync(request);

 if (response.LaunchTemplates is not null)
 {
 response.LaunchTemplates.ForEach(template =>
 {
 Console.Write($"{template.LaunchTemplateName}\t");
 Console.WriteLine(template.LaunchTemplateId);
 });

 return true;
 }

Basics 399

AWS SDK for .NET Developer Guide

 return false;
 }

 /// <summary>
 /// Retrieve the availability zones for the current region.
 /// </summary>
 /// <returns>A collection of availability zones.</returns>
 public async Task<List<AvailabilityZone>> ListAvailabilityZonesAsync()
 {
 var response = await _amazonEc2.DescribeAvailabilityZonesAsync(
 new DescribeAvailabilityZonesRequest());

 return response.AvailabilityZones;
 }
}

namespace AutoScalingActions;

using Amazon.CloudWatch;
using Amazon.CloudWatch.Model;

/// <summary>
/// Contains methods to access Amazon CloudWatch metrics for the
/// Amazon EC2 Auto Scaling basics scenario.
/// </summary>
public class CloudWatchWrapper
{
 private readonly IAmazonCloudWatch _amazonCloudWatch;

 /// <summary>
 /// Constructor for the CloudWatchWrapper.
 /// </summary>
 /// <param name="amazonCloudWatch">The injected CloudWatch client.</param>
 public CloudWatchWrapper(IAmazonCloudWatch amazonCloudWatch)
 {
 _amazonCloudWatch = amazonCloudWatch;
 }

 /// <summary>
 /// Retrieve the metrics information collection for the Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>

Basics 400

AWS SDK for .NET Developer Guide

 /// <returns>A list of Metrics collected for the Auto Scaling group.</returns>
 public async Task<List<Amazon.CloudWatch.Model.Metric>>
 GetCloudWatchMetricsAsync(string groupName)
 {
 var filter = new DimensionFilter
 {
 Name = "AutoScalingGroupName",
 Value = $"{groupName}",
 };

 var request = new ListMetricsRequest
 {
 MetricName = "AutoScalingGroupName",
 Dimensions = new List<DimensionFilter> { filter },
 Namespace = "AWS/AutoScaling",
 };

 var response = await _amazonCloudWatch.ListMetricsAsync(request);

 return response.Metrics;
 }

 /// <summary>
 /// Retrieve the metric data collected for an Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of data points.</returns>
 public async Task<List<Datapoint>> GetMetricStatisticsAsync(string groupName)
 {
 var metricDimensions = new List<Dimension>
 {
 new Dimension
 {
 Name = "AutoScalingGroupName",
 Value = $"{groupName}",
 },
 };

 // The start time will be yesterday.
 var startTime = DateTime.UtcNow.AddDays(-1);

 var request = new GetMetricStatisticsRequest
 {

Basics 401

AWS SDK for .NET Developer Guide

 MetricName = "AutoScalingGroupName",
 Dimensions = metricDimensions,
 Namespace = "AWS/AutoScaling",
 Period = 60, // 60 seconds.
 Statistics = new List<string>() { "Minimum" },
 StartTimeUtc = startTime,
 EndTimeUtc = DateTime.UtcNow,
 };

 var response = await _amazonCloudWatch.GetMetricStatisticsAsync(request);

 return response.Datapoints;
 }

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateAutoScalingGroup

• DeleteAutoScalingGroup

• DescribeAutoScalingGroups

• DescribeAutoScalingInstances

• DescribeScalingActivities

• DisableMetricsCollection

• EnableMetricsCollection

• SetDesiredCapacity

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Actions

AttachLoadBalancerTargetGroups

The following code example shows how to use AttachLoadBalancerTargetGroups.

Actions 402

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeScalingActivities
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DisableMetricsCollection
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/EnableMetricsCollection
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/SetDesiredCapacity
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 /// The
 /// </summary>
 /// <param name="autoScalingGroupName">The name of the Auto Scaling group.</
param>
 /// <param name="targetGroupArn">The Arn for the target group.</param>
 /// <returns>Async task.</returns>
 public async Task AttachLoadBalancerToGroup(string autoScalingGroupName, string
 targetGroupArn)
 {
 await _amazonAutoScaling.AttachLoadBalancerTargetGroupsAsync(
 new AttachLoadBalancerTargetGroupsRequest()
 {
 AutoScalingGroupName = autoScalingGroupName,
 TargetGroupARNs = new List<string>() { targetGroupArn }
 });
 }

• For API details, see AttachLoadBalancerTargetGroups in AWS SDK for .NET API Reference.

CreateAutoScalingGroup

The following code example shows how to use CreateAutoScalingGroup.

Actions 403

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a new Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name to use for the new Auto Scaling
 /// group.</param>
 /// <param name="launchTemplateName">The name of the Amazon EC2 Auto Scaling
 /// launch template to use to create instances in the group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateAutoScalingGroupAsync(
 string groupName,
 string launchTemplateName,
 string availabilityZone)
 {
 var templateSpecification = new LaunchTemplateSpecification
 {
 LaunchTemplateName = launchTemplateName,
 };

 var zoneList = new List<string>
 {
 availabilityZone,
 };

 var request = new CreateAutoScalingGroupRequest
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = zoneList,
 LaunchTemplate = templateSpecification,
 MaxSize = 6,
 MinSize = 1
 };

Actions 404

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

 var response = await
 _amazonAutoScaling.CreateAutoScalingGroupAsync(request);
 Console.WriteLine($"{groupName} Auto Scaling Group created");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see CreateAutoScalingGroup in AWS SDK for .NET API Reference.

DeleteAutoScalingGroup

The following code example shows how to use DeleteAutoScalingGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Update the minimum size of an Auto Scaling group to zero, terminate all instances in the group,
and delete the group.

 /// <summary>
 /// Try to terminate an instance by its Id.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task TryTerminateInstanceById(string instanceId)
 {
 var stopping = false;
 Console.WriteLine($"Stopping {instanceId}...");
 while (!stopping)
 {
 try
 {
 await _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(
 new TerminateInstanceInAutoScalingGroupRequest()
 {
 InstanceId = instanceId,

Actions 405

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 ShouldDecrementDesiredCapacity = false
 });
 stopping = true;
 }
 catch (ScalingActivityInProgressException)
 {
 Console.WriteLine($"Scaling activity in progress for {instanceId}.
 Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 /// waits and retries until the group is successfully deleted.
 /// </summary>
 /// <param name="groupName">The name of the group to try to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TryDeleteGroupByName(string groupName)
 {
 var stopped = false;
 while (!stopped)
 {
 try
 {
 await _amazonAutoScaling.DeleteAutoScalingGroupAsync(
 new DeleteAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName
 });
 stopped = true;
 }
 catch (Exception e)
 when ((e is ScalingActivityInProgressException)
 || (e is Amazon.AutoScaling.Model.ResourceInUseException))
 {
 Console.WriteLine($"Some instances are still running. Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

Actions 406

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Terminate instances and delete the Auto Scaling group by name.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TerminateAndDeleteAutoScalingGroupWithName(string groupName)
 {
 var describeGroupsResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { groupName }
 });
 if (describeGroupsResponse.AutoScalingGroups.Any())
 {
 // Update the size to 0.
 await _amazonAutoScaling.UpdateAutoScalingGroupAsync(
 new UpdateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 MinSize = 0
 });
 var group = describeGroupsResponse.AutoScalingGroups[0];
 foreach (var instance in group.Instances)
 {
 await TryTerminateInstanceById(instance.InstanceId);
 }

 await TryDeleteGroupByName(groupName);
 }
 else
 {
 Console.WriteLine($"No groups found with name {groupName}.");
 }
 }

 /// <summary>
 /// Delete an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>

Actions 407

AWS SDK for .NET Developer Guide

 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAutoScalingGroupAsync(
 string groupName)
 {
 var deleteAutoScalingGroupRequest = new DeleteAutoScalingGroupRequest
 {
 AutoScalingGroupName = groupName,
 ForceDelete = true,
 };

 var response = await
 _amazonAutoScaling.DeleteAutoScalingGroupAsync(deleteAutoScalingGroupRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"You successfully deleted {groupName}");
 return true;
 }

 Console.WriteLine($"Couldn't delete {groupName}.");
 return false;
 }

• For API details, see DeleteAutoScalingGroup in AWS SDK for .NET API Reference.

DescribeAutoScalingGroups

The following code example shows how to use DescribeAutoScalingGroups.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get data about the instances in an Amazon EC2 Auto Scaling group.

Actions 408

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of Amazon EC2 Auto Scaling details.</returns>
 public async Task<List<AutoScalingInstanceDetails>>
 DescribeAutoScalingInstancesAsync(
 string groupName)
 {
 var groups = await DescribeAutoScalingGroupsAsync(groupName);
 var instanceIds = new List<string>();
 groups!.ForEach(group =>
 {
 if (group.AutoScalingGroupName == groupName)
 {
 group.Instances.ForEach(instance =>
 {
 instanceIds.Add(instance.InstanceId);
 });
 }
 });

 var scalingGroupsRequest = new DescribeAutoScalingInstancesRequest
 {
 MaxRecords = 10,
 InstanceIds = instanceIds,
 };

 var response = await
 _amazonAutoScaling.DescribeAutoScalingInstancesAsync(scalingGroupsRequest);
 var instanceDetails = response.AutoScalingInstances;

 return instanceDetails;
 }

• For API details, see DescribeAutoScalingGroups in AWS SDK for .NET API Reference.

DescribeAutoScalingInstances

The following code example shows how to use DescribeAutoScalingInstances.

Actions 409

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get data about the instances in an Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of Amazon EC2 Auto Scaling details.</returns>
 public async Task<List<AutoScalingInstanceDetails>>
 DescribeAutoScalingInstancesAsync(
 string groupName)
 {
 var groups = await DescribeAutoScalingGroupsAsync(groupName);
 var instanceIds = new List<string>();
 groups!.ForEach(group =>
 {
 if (group.AutoScalingGroupName == groupName)
 {
 group.Instances.ForEach(instance =>
 {
 instanceIds.Add(instance.InstanceId);
 });
 }
 });

 var scalingGroupsRequest = new DescribeAutoScalingInstancesRequest
 {
 MaxRecords = 10,
 InstanceIds = instanceIds,
 };

 var response = await
 _amazonAutoScaling.DescribeAutoScalingInstancesAsync(scalingGroupsRequest);
 var instanceDetails = response.AutoScalingInstances;

Actions 410

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

 return instanceDetails;
 }

• For API details, see DescribeAutoScalingInstances in AWS SDK for .NET API Reference.

DescribeScalingActivities

The following code example shows how to use DescribeScalingActivities.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve a list of the Amazon EC2 Auto Scaling activities for an
 /// Amazon EC2 Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Amazon EC2 Auto Scaling group.</
param>
 /// <returns>A list of Amazon EC2 Auto Scaling activities.</returns>
 public async Task<List<Amazon.AutoScaling.Model.Activity>>
 DescribeScalingActivitiesAsync(
 string groupName)
 {
 var scalingActivitiesRequest = new DescribeScalingActivitiesRequest
 {
 AutoScalingGroupName = groupName,
 MaxRecords = 10,
 };

 var response = await
 _amazonAutoScaling.DescribeScalingActivitiesAsync(scalingActivitiesRequest);
 return response.Activities;
 }

Actions 411

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DescribeScalingActivities in AWS SDK for .NET API Reference.

DisableMetricsCollection

The following code example shows how to use DisableMetricsCollection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Disable the collection of metric data for an Amazon EC2 Auto Scaling
 /// group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the operation.</returns>
 public async Task<bool> DisableMetricsCollectionAsync(string groupName)
 {
 var request = new DisableMetricsCollectionRequest
 {
 AutoScalingGroupName = groupName,
 };

 var response = await
 _amazonAutoScaling.DisableMetricsCollectionAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DisableMetricsCollection in AWS SDK for .NET API Reference.

Actions 412

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeScalingActivities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DisableMetricsCollection

AWS SDK for .NET Developer Guide

EnableMetricsCollection

The following code example shows how to use EnableMetricsCollection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Enable the collection of metric data for an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> EnableMetricsCollectionAsync(string groupName)
 {
 var listMetrics = new List<string>
 {
 "GroupMaxSize",
 };

 var collectionRequest = new EnableMetricsCollectionRequest
 {
 AutoScalingGroupName = groupName,
 Metrics = listMetrics,
 Granularity = "1Minute",
 };

 var response = await
 _amazonAutoScaling.EnableMetricsCollectionAsync(collectionRequest);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see EnableMetricsCollection in AWS SDK for .NET API Reference.

Actions 413

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/EnableMetricsCollection

AWS SDK for .NET Developer Guide

SetDesiredCapacity

The following code example shows how to use SetDesiredCapacity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Set the desired capacity of an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <param name="desiredCapacity">The desired capacity for the Auto
 /// Scaling group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> SetDesiredCapacityAsync(
 string groupName,
 int desiredCapacity)
 {
 var capacityRequest = new SetDesiredCapacityRequest
 {
 AutoScalingGroupName = groupName,
 DesiredCapacity = desiredCapacity,
 };

 var response = await
 _amazonAutoScaling.SetDesiredCapacityAsync(capacityRequest);
 Console.WriteLine($"You have set the DesiredCapacity to
 {desiredCapacity}.");

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see SetDesiredCapacity in AWS SDK for .NET API Reference.

Actions 414

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/SetDesiredCapacity

AWS SDK for .NET Developer Guide

TerminateInstanceInAutoScalingGroup

The following code example shows how to use TerminateInstanceInAutoScalingGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Terminate all instances in the Auto Scaling group in preparation for
 /// deleting the group.
 /// </summary>
 /// <param name="instanceId">The instance Id of the instance to terminate.</
param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the operation.</returns>
 public async Task<bool> TerminateInstanceInAutoScalingGroupAsync(
 string instanceId)
 {
 var request = new TerminateInstanceInAutoScalingGroupRequest
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false,
 };

 var response = await
 _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"You have terminated the instance: {instanceId}");
 return true;
 }

 Console.WriteLine($"Could not terminate {instanceId}");
 return false;
 }

Actions 415

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

• For API details, see TerminateInstanceInAutoScalingGroup in AWS SDK for .NET API Reference.

UpdateAutoScalingGroup

The following code example shows how to use UpdateAutoScalingGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Update the capacity of an Auto Scaling group.
 /// </summary>
 /// <param name="groupName">The name of the Auto Scaling group.</param>
 /// <param name="launchTemplateName">The name of the EC2 launch template.</
param>
 /// <param name="maxSize">The maximum number of instances that can be
 /// created for the Auto Scaling group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateAutoScalingGroupAsync(
 string groupName,
 string launchTemplateName,
 int maxSize)
 {
 var templateSpecification = new LaunchTemplateSpecification
 {
 LaunchTemplateName = launchTemplateName,
 };

 var groupRequest = new UpdateAutoScalingGroupRequest
 {
 MaxSize = maxSize,
 AutoScalingGroupName = groupName,
 LaunchTemplate = templateSpecification,
 };

Actions 416

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/AutoScaling#code-examples

AWS SDK for .NET Developer Guide

 var response = await
 _amazonAutoScaling.UpdateAutoScalingGroupAsync(groupRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"You successfully updated the Auto Scaling group
 {groupName}.");
 return true;
 }
 else
 {
 return false;
 }
 }

• For API details, see UpdateAutoScalingGroup in AWS SDK for .NET API Reference.

Scenarios

Build and manage a resilient service

The following code example shows how to create a load-balanced web service that returns book,
movie, and song recommendations. The example shows how the service responds to failures, and
how to restructure the service for more resilience when failures occur.

• Use an Amazon EC2 Auto Scaling group to create Amazon Elastic Compute Cloud (Amazon EC2)
instances based on a launch template and to keep the number of instances in a specified range.

• Handle and distribute HTTP requests with Elastic Load Balancing.

• Monitor the health of instances in an Auto Scaling group and forward requests only to healthy
instances.

• Run a Python web server on each EC2 instance to handle HTTP requests. The web server
responds with recommendations and health checks.

• Simulate a recommendation service with an Amazon DynamoDB table.

• Control web server response to requests and health checks by updating AWS Systems Manager
parameters.

Scenarios 417

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

 static async Task Main(string[] args)
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 // Set up dependency injection for the AWS services.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonDynamoDB>()
 .AddAWSService<IAmazonElasticLoadBalancingV2>()
 .AddAWSService<IAmazonSimpleSystemsManagement>()
 .AddAWSService<IAmazonAutoScaling>()
 .AddAWSService<IAmazonEC2>()
 .AddTransient<AutoScalerWrapper>()
 .AddTransient<ElasticLoadBalancerWrapper>()
 .AddTransient<SmParameterWrapper>()
 .AddTransient<Recommendations>()
 .AddSingleton<IConfiguration>(_configuration)
)
 .Build();

 ServicesSetup(host);

Scenarios 418

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService#code-examples

AWS SDK for .NET Developer Guide

 ResourcesSetup();

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Resilient Architecture Example
 Scenario.");
 Console.WriteLine(new string('-', 80));
 await Deploy(true);

 Console.WriteLine("Now let's begin the scenario.");
 Console.WriteLine(new string('-', 80));
 await Demo(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Finally, let's clean up our resources.");
 Console.WriteLine(new string('-', 80));

 await DestroyResources(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resilient Architecture Example Scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await DestroyResources(true);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Setup any common resources, also used for integration testing.
 /// </summary>
 public static void ResourcesSetup()
 {
 _httpClient = new HttpClient();
 }

 /// <summary>

Scenarios 419

AWS SDK for .NET Developer Guide

 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _elasticLoadBalancerWrapper =
 host.Services.GetRequiredService<ElasticLoadBalancerWrapper>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 _recommendations = host.Services.GetRequiredService<Recommendations>();
 _autoScalerWrapper = host.Services.GetRequiredService<AutoScalerWrapper>();
 _smParameterWrapper =
 host.Services.GetRequiredService<SmParameterWrapper>();
 }

 /// <summary>
 /// Deploy necessary resources for the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Deploy(bool interactive)
 {
 var protocol = "HTTP";
 var port = 80;
 var sshPort = 22;

 Console.WriteLine(
 "\nFor this demo, we'll use the AWS SDK for .NET to create several AWS
 resources\n" +
 "to set up a load-balanced web service endpoint and explore some ways to
 make it resilient\n" +
 "against various kinds of failures.\n\n" +
 "Some of the resources create by this demo are:\n");

 Console.WriteLine(
 "\t* A DynamoDB table that the web service depends on to provide book,
 movie, and song recommendations.");
 Console.WriteLine(
 "\t* An EC2 launch template that defines EC2 instances that each contain
 a Python web server.");
 Console.WriteLine(
 "\t* An EC2 Auto Scaling group that manages EC2 instances across several
 Availability Zones.");
 Console.WriteLine(

Scenarios 420

AWS SDK for .NET Developer Guide

 "\t* An Elastic Load Balancing (ELB) load balancer that targets the Auto
 Scaling group to distribute requests.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to start deploying
 resources.");
 if (interactive)
 Console.ReadLine();

 // Create and populate the DynamoDB table.
 var databaseTableName = _configuration["databaseName"];
 var recommendationsPath = Path.Join(_configuration["resourcePath"],
 "recommendations_objects.json");
 Console.WriteLine($"Creating and populating a DynamoDB table named
 {databaseTableName}.");
 await _recommendations.CreateDatabaseWithName(databaseTableName);
 await _recommendations.PopulateDatabase(databaseTableName,
 recommendationsPath);
 Console.WriteLine(new string('-', 80));

 // Create the EC2 Launch Template.

 Console.WriteLine(
 $"Creating an EC2 launch template that runs 'server_startup_script.sh'
 when an instance starts.\n"
 + "\nThis script starts a Python web server defined in the `server.py`
 script. The web server\n"
 + "listens to HTTP requests on port 80 and responds to requests to '/'
 and to '/healthcheck'.\n"
 + "For demo purposes, this server is run as the root user. In
 production, the best practice is to\n"
 + "run a web server, such as Apache, with least-privileged
 credentials.");
 Console.WriteLine(
 "\nThe template also defines an IAM policy that each instance uses to
 assume a role that grants\n"
 + "permissions to access the DynamoDB recommendation table and Systems
 Manager parameters\n"
 + "that control the flow of the demo.");

 var startupScriptPath = Path.Join(_configuration["resourcePath"],
 "server_startup_script.sh");
 var instancePolicyPath = Path.Join(_configuration["resourcePath"],
 "instance_policy.json");

Scenarios 421

AWS SDK for .NET Developer Guide

 await _autoScalerWrapper.CreateTemplate(startupScriptPath,
 instancePolicyPath);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "Creating an EC2 Auto Scaling group that maintains three EC2 instances,
 each in a different\n"
 + "Availability Zone.\n");
 var zones = await _autoScalerWrapper.DescribeAvailabilityZones();
 await _autoScalerWrapper.CreateGroupOfSize(3, _autoScalerWrapper.GroupName,
 zones);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "At this point, you have EC2 instances created. Once each instance
 starts, it listens for\n"
 + "HTTP requests. You can see these instances in the console or continue
 with the demo.\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("Creating variables that control the flow of the demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine(
 "\nCreating an Elastic Load Balancing target group and load balancer.
 The target group\n"
 + "defines how the load balancer connects to instances. The load
 balancer provides a\n"
 + "single endpoint where clients connect and dispatches requests to
 instances in the group.");

 var defaultVpc = await _autoScalerWrapper.GetDefaultVpc();
 var subnets = await
 _autoScalerWrapper.GetAllVpcSubnetsForZones(defaultVpc.VpcId, zones);
 var subnetIds = subnets.Select(s => s.SubnetId).ToList();
 var targetGroup = await
 _elasticLoadBalancerWrapper.CreateTargetGroupOnVpc(_elasticLoadBalancerWrapper.TargetGroupName,
 protocol, port, defaultVpc.VpcId);

Scenarios 422

AWS SDK for .NET Developer Guide

 await
 _elasticLoadBalancerWrapper.CreateLoadBalancerAndListener(_elasticLoadBalancerWrapper.LoadBalancerName,
 subnetIds, targetGroup);
 await
 _autoScalerWrapper.AttachLoadBalancerToGroup(_autoScalerWrapper.GroupName,
 targetGroup.TargetGroupArn);
 Console.WriteLine("\nVerifying access to the load balancer endpoint...");
 var endPoint = await
 _elasticLoadBalancerWrapper.GetEndpointForLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 var loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);

 if (!loadBalancerAccess)
 {
 Console.WriteLine("\nCouldn't connect to the load balancer, verifying
 that the port is open...");

 var ipString = await _httpClient.GetStringAsync("https://
checkip.amazonaws.com");
 ipString = ipString.Trim();

 var defaultSecurityGroup = await
 _autoScalerWrapper.GetDefaultSecurityGroupForVpc(defaultVpc);
 var portIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, port, ipString);
 var sshPortIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, sshPort,
 ipString);

 if (!portIsOpen)
 {
 Console.WriteLine(
 "\nFor this example to work, the default security group for your
 default VPC must\n"
 + "allows access from this computer. You can either add it
 automatically from this\n"
 + "example or add it yourself using the AWS Management Console.
\n");

 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound traffic from your computer's IP address?"))
 {

Scenarios 423

AWS SDK for .NET Developer Guide

 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, port, ipString);
 }
 }

 if (!sshPortIsOpen)
 {
 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound SSH traffic for debugging from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, sshPort,
 ipString);
 }
 }
 loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);
 }

 if (loadBalancerAccess)
 {
 Console.WriteLine("Your load balancer is ready. You can access it by
 browsing to:");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 else
 {
 Console.WriteLine(
 "\nCouldn't get a successful response from the load balancer
 endpoint. Troubleshoot by\n"
 + "manually verifying that your VPC and security group are
 configured correctly and that\n"
 + "you can successfully make a GET request to the load balancer
 endpoint:\n");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue with the
 demo.");
 if (interactive)
 Console.ReadLine();
 return true;
 }

Scenarios 424

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Demonstrate the steps of the scenario.
 /// </summary>
 /// <param name="interactive">True to run as an interactive scenario.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> Demo(bool interactive)
 {
 var ssmOnlyPolicy = Path.Join(_configuration["resourcePath"],
 "ssm_only_policy.json");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resetting parameters to starting values for demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine("\nThis part of the demonstration shows how to toggle
 different parts of the system\n" +
 "to create situations where the web service fails, and
 shows how using a resilient\n" +
 "architecture can keep the web service running in spite of
 these failures.");
 Console.WriteLine(new string('-', 88));
 Console.WriteLine("At the start, the load balancer endpoint returns
 recommendations and reports that all targets are healthy.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine($"The web service running on the EC2 instances gets
 recommendations by querying a DynamoDB table.\n" +
 $"The table name is contained in a Systems Manager
 parameter named '{_smParameterWrapper.TableParameter}'.\n" +
 $"To simulate a failure of the recommendation service,
 let's set this parameter to name a non-existent table.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");
 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a failure code. But, the service reports as\n" +
 "healthy to the load balancer because shallow health
 checks don't check for failure of the recommendation service.");
 if (interactive)
 await DemoActionChoices();

Scenarios 425

AWS SDK for .NET Developer Guide

 Console.WriteLine("Instead of failing when the recommendation service fails,
 the web service can return a static response.");
 Console.WriteLine("While this is not a perfect solution, it presents the
 customer with a somewhat better experience than failure.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.FailureResponseParameter,
 "static");

 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a static response.");
 Console.WriteLine("The service still reports as healthy because health
 checks are still shallow.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Let's reinstate the recommendation service.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 _smParameterWrapper.TableName);
 Console.WriteLine(
 "\nLet's also substitute bad credentials for one of the instances in the
 target group so that it can't\n" +
 "access the DynamoDB recommendation table.\n"
);
 await _autoScalerWrapper.CreateInstanceProfileWithName(
 _autoScalerWrapper.BadCredsPolicyName,
 _autoScalerWrapper.BadCredsRoleName,
 _autoScalerWrapper.BadCredsProfileName,
 ssmOnlyPolicy,
 new List<string> { "AmazonSSMManagedInstanceCore" }
);
 var instances = await
 _autoScalerWrapper.GetInstancesByGroupName(_autoScalerWrapper.GroupName);
 var badInstanceId = instances.First();
 var instanceProfile = await
 _autoScalerWrapper.GetInstanceProfile(badInstanceId);
 Console.WriteLine(
 $"Replacing the profile for instance {badInstanceId} with a profile that
 contains\n" +
 "bad credentials...\n"
);
 await _autoScalerWrapper.ReplaceInstanceProfile(
 badInstanceId,

Scenarios 426

AWS SDK for .NET Developer Guide

 _autoScalerWrapper.BadCredsProfileName,
 instanceProfile.AssociationId
);
 Console.WriteLine(
 "Now, sending a GET request to the load balancer endpoint returns either
 a recommendation or a static response,\n" +
 "depending on which instance is selected by the load balancer.\n"
);
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nLet's implement a deep health check. For this demo, a
 deep health check tests whether");
 Console.WriteLine("the web service can access the DynamoDB table that it
 depends on for recommendations. Note that");
 Console.WriteLine("the deep health check is only for ELB routing and not for
 Auto Scaling instance health.");
 Console.WriteLine("This kind of deep health check is not recommended for
 Auto Scaling instance health, because it");
 Console.WriteLine("risks accidental termination of all instances in the Auto
 Scaling group when a dependent service fails.");

 Console.WriteLine("\nBy implementing deep health checks, the load balancer
 can detect when one of the instances is failing");
 Console.WriteLine("and take that instance out of rotation.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.HealthCheckParameter,
 "deep");

 Console.WriteLine($"\nNow, checking target health indicates that the
 instance with bad credentials ({badInstanceId})");
 Console.WriteLine("is unhealthy. Note that it might take a minute or two for
 the load balancer to detect the unhealthy");
 Console.WriteLine("instance. Sending a GET request to the load balancer
 endpoint always returns a recommendation, because");
 Console.WriteLine("the load balancer takes unhealthy instances out of its
 rotation.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nBecause the instances in this demo are controlled by an
 auto scaler, the simplest way to fix an unhealthy");

Scenarios 427

AWS SDK for .NET Developer Guide

 Console.WriteLine("instance is to terminate it and let the auto scaler start
 a new instance to replace it.");

 await _autoScalerWrapper.TryTerminateInstanceById(badInstanceId);

 Console.WriteLine($"\nEven while the instance is terminating and the new
 instance is starting, sending a GET");
 Console.WriteLine("request to the web service continues to get a successful
 recommendation response because");
 Console.WriteLine("starts and reports as healthy, it is included in the load
 balancing rotation.");
 Console.WriteLine("Note that terminating and replacing an instance typically
 takes several minutes, during which time you");
 Console.WriteLine("can see the changing health check status until the new
 instance is running and healthy.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nIf the recommendation service fails now, deep health
 checks mean all instances report as unhealthy.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");

 Console.WriteLine($"\nWhen all instances are unhealthy, the load balancer
 continues to route requests even to");
 Console.WriteLine("unhealthy instances, allowing them to fail open and
 return a static response rather than fail");
 Console.WriteLine("closed and report failure to the customer.");

 if (interactive)
 await DemoActionChoices();
 await _smParameterWrapper.Reset();

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="interactive">True to ask the user for cleanup.</param>

Scenarios 428

AWS SDK for .NET Developer Guide

 /// <returns>Async task.</returns>
 public static async Task<bool> DestroyResources(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "To keep things tidy and to avoid unwanted charges on your account, we
 can clean up all AWS resources\n" +
 "that were created for this demo."
);

 if (!interactive || GetYesNoResponse("Do you want to clean up all demo
 resources? (y/n) "))
 {
 await
 _elasticLoadBalancerWrapper.DeleteLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 await
 _elasticLoadBalancerWrapper.DeleteTargetGroupByName(_elasticLoadBalancerWrapper.TargetGroupName);
 await
 _autoScalerWrapper.TerminateAndDeleteAutoScalingGroupWithName(_autoScalerWrapper.GroupName);
 await
 _autoScalerWrapper.DeleteKeyPairByName(_autoScalerWrapper.KeyPairName);
 await
 _autoScalerWrapper.DeleteTemplateByName(_autoScalerWrapper.LaunchTemplateName);
 await _autoScalerWrapper.DeleteInstanceProfile(
 _autoScalerWrapper.BadCredsProfileName,
 _autoScalerWrapper.BadCredsRoleName
);
 await
 _recommendations.DestroyDatabaseByName(_recommendations.TableName);
 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you might
 incur unexpected charges."
);
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

Scenarios 429

AWS SDK for .NET Developer Guide

Create a class that wraps Auto Scaling and Amazon EC2 actions.

/// <summary>
/// Encapsulates Amazon EC2 Auto Scaling and EC2 management methods.
/// </summary>
public class AutoScalerWrapper
{
 private readonly IAmazonAutoScaling _amazonAutoScaling;
 private readonly IAmazonEC2 _amazonEc2;
 private readonly IAmazonSimpleSystemsManagement _amazonSsm;
 private readonly IAmazonIdentityManagementService _amazonIam;
 private readonly ILogger<AutoScalerWrapper> _logger;

 private readonly string _instanceType = "";
 private readonly string _amiParam = "";
 private readonly string _launchTemplateName = "";
 private readonly string _groupName = "";
 private readonly string _instancePolicyName = "";
 private readonly string _instanceRoleName = "";
 private readonly string _instanceProfileName = "";
 private readonly string _badCredsProfileName = "";
 private readonly string _badCredsRoleName = "";
 private readonly string _badCredsPolicyName = "";
 private readonly string _keyPairName = "";

 public string GroupName => _groupName;
 public string KeyPairName => _keyPairName;
 public string LaunchTemplateName => _launchTemplateName;
 public string InstancePolicyName => _instancePolicyName;
 public string BadCredsProfileName => _badCredsProfileName;
 public string BadCredsRoleName => _badCredsRoleName;
 public string BadCredsPolicyName => _badCredsPolicyName;

 /// <summary>
 /// Constructor for the AutoScalerWrapper.
 /// </summary>
 /// <param name="amazonAutoScaling">The injected AutoScaling client.</param>
 /// <param name="amazonEc2">The injected EC2 client.</param>
 /// <param name="amazonIam">The injected IAM client.</param>
 /// <param name="amazonSsm">The injected SSM client.</param>
 public AutoScalerWrapper(
 IAmazonAutoScaling amazonAutoScaling,
 IAmazonEC2 amazonEc2,
 IAmazonSimpleSystemsManagement amazonSsm,

Scenarios 430

AWS SDK for .NET Developer Guide

 IAmazonIdentityManagementService amazonIam,
 IConfiguration configuration,
 ILogger<AutoScalerWrapper> logger)
 {
 _amazonAutoScaling = amazonAutoScaling;
 _amazonEc2 = amazonEc2;
 _amazonSsm = amazonSsm;
 _amazonIam = amazonIam;
 _logger = logger;

 var prefix = configuration["resourcePrefix"];
 _instanceType = configuration["instanceType"];
 _amiParam = configuration["amiParam"];

 _launchTemplateName = prefix + "-template";
 _groupName = prefix + "-group";
 _instancePolicyName = prefix + "-pol";
 _instanceRoleName = prefix + "-role";
 _instanceProfileName = prefix + "-prof";
 _badCredsPolicyName = prefix + "-bc-pol";
 _badCredsRoleName = prefix + "-bc-role";
 _badCredsProfileName = prefix + "-bc-prof";
 _keyPairName = prefix + "-key-pair";
 }

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with a
 specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to the
 role.</param>
 /// <returns>The Arn of the profile.</returns>
 public async Task<string> CreateInstanceProfileWithName(
 string policyName,
 string roleName,
 string profileName,

Scenarios 431

AWS SDK for .NET Developer Guide

 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.
 await foreach (var policy in policiesPaginator.Policies)
 {
 if (policy.PolicyName.Equals(policyName))
 {

Scenarios 432

AWS SDK for .NET Developer Guide

 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");
 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = assumeRoleDoc,
 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

 string profileArn = "";
 try
 {
 var profileCreateResponse = await _amazonIam.CreateInstanceProfileAsync(

Scenarios 433

AWS SDK for .NET Developer Guide

 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;
 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

 /// <summary>
 /// Create a new key pair and save the file.
 /// </summary>
 /// <param name="newKeyPairName">The name of the new key pair.</param>
 /// <returns>Async task.</returns>
 public async Task CreateKeyPair(string newKeyPairName)
 {
 try
 {
 var keyResponse = await _amazonEc2.CreateKeyPairAsync(
 new CreateKeyPairRequest() { KeyName = newKeyPairName });
 await File.WriteAllTextAsync($"{newKeyPairName}.pem",
 keyResponse.KeyPair.KeyMaterial);
 Console.WriteLine($"Created key pair {newKeyPairName}.");
 }
 catch (AlreadyExistsException)

Scenarios 434

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine("Key pair already exists.");
 }
 }

 /// <summary>
 /// Delete the key pair and file by name.
 /// </summary>
 /// <param name="deleteKeyPairName">The key pair to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteKeyPairByName(string deleteKeyPairName)
 {
 try
 {
 await _amazonEc2.DeleteKeyPairAsync(
 new DeleteKeyPairRequest() { KeyName = deleteKeyPairName });
 File.Delete($"{deleteKeyPairName}.pem");
 }
 catch (FileNotFoundException)
 {
 Console.WriteLine($"Key pair {deleteKeyPairName} not found.");
 }
 }

 /// <summary>
 /// Creates an Amazon EC2 launch template to use with Amazon EC2 Auto Scaling.
 /// The launch template specifies a Bash script in its user data field that runs
 after
 /// the instance is started. This script installs the Python packages and starts
 a Python
 /// web server on the instance.
 /// </summary>
 /// <param name="startupScriptPath">The path to a Bash script file that is
 run.</param>
 /// <param name="instancePolicyPath">The path to a permissions policy to create
 and attach to the profile.</param>
 /// <returns>The template object.</returns>
 public async Task<Amazon.EC2.Model.LaunchTemplate> CreateTemplate(string
 startupScriptPath, string instancePolicyPath)
 {
 try
 {
 await CreateKeyPair(_keyPairName);

Scenarios 435

AWS SDK for .NET Developer Guide

 await CreateInstanceProfileWithName(_instancePolicyName,
 _instanceRoleName,
 _instanceProfileName, instancePolicyPath);

 var startServerText = await File.ReadAllTextAsync(startupScriptPath);
 var plainTextBytes =
 System.Text.Encoding.UTF8.GetBytes(startServerText);

 var amiLatest = await _amazonSsm.GetParameterAsync(
 new GetParameterRequest() { Name = _amiParam });
 var amiId = amiLatest.Parameter.Value;
 var launchTemplateResponse = await _amazonEc2.CreateLaunchTemplateAsync(
 new CreateLaunchTemplateRequest()
 {
 LaunchTemplateName = _launchTemplateName,
 LaunchTemplateData = new RequestLaunchTemplateData()
 {
 InstanceType = _instanceType,
 ImageId = amiId,
 IamInstanceProfile =
 new

 LaunchTemplateIamInstanceProfileSpecificationRequest()
 {
 Name = _instanceProfileName
 },
 KeyName = _keyPairName,
 UserData = System.Convert.ToBase64String(plainTextBytes)
 }
 });
 return launchTemplateResponse.LaunchTemplate;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.AlreadyExistsException")
 {
 _logger.LogError($"Could not create the template, the name
 {_launchTemplateName} already exists. " +
 $"Please try again with a unique name.");
 }

 throw;
 }

Scenarios 436

AWS SDK for .NET Developer Guide

 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get a list of Availability Zones in the AWS Region of the Amazon EC2 Client.
 /// </summary>
 /// <returns>A list of availability zones.</returns>
 public async Task<List<string>> DescribeAvailabilityZones()
 {
 try
 {
 var zoneResponse = await _amazonEc2.DescribeAvailabilityZonesAsync(
 new DescribeAvailabilityZonesRequest());
 return zoneResponse.AvailabilityZones.Select(z => z.ZoneName).ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 _logger.LogError($"An Amazon EC2 error occurred while listing
 availability zones.: {ec2Exception.Message}");
 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while listing availability zones.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Create an EC2 Auto Scaling group of a specified size and name.
 /// </summary>
 /// <param name="groupSize">The size for the group.</param>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="availabilityZones">The availability zones for the group.</
param>
 /// <returns>Async task.</returns>
 public async Task CreateGroupOfSize(int groupSize, string groupName,
 List<string> availabilityZones)

Scenarios 437

AWS SDK for .NET Developer Guide

 {
 try
 {
 await _amazonAutoScaling.CreateAutoScalingGroupAsync(
 new CreateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = availabilityZones,
 LaunchTemplate =
 new Amazon.AutoScaling.Model.LaunchTemplateSpecification()
 {
 LaunchTemplateName = _launchTemplateName,
 Version = "$Default"
 },
 MaxSize = groupSize,
 MinSize = groupSize
 });
 Console.WriteLine($"Created EC2 Auto Scaling group {groupName} with size
 {groupSize}.");
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine($"EC2 Auto Scaling group {groupName} already
 exists.");
 }
 }

 /// <summary>
 /// Get the default VPC for the account.
 /// </summary>
 /// <returns>The default VPC object.</returns>
 public async Task<Vpc> GetDefaultVpc()
 {
 try
 {
 var vpcResponse = await _amazonEc2.DescribeVpcsAsync(
 new DescribeVpcsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("is-default", new List<string>() { "true" })
 }
 });
 return vpcResponse.Vpcs[0];

Scenarios 438

AWS SDK for .NET Developer Guide

 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "UnauthorizedOperation")
 {
 _logger.LogError(ec2Exception, $"You do not have the necessary
 permissions to describe VPCs.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the vpcs.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get all the subnets for a Vpc in a set of availability zones.
 /// </summary>
 /// <param name="vpcId">The Id of the Vpc.</param>
 /// <param name="availabilityZones">The list of availability zones.</param>
 /// <returns>The collection of subnet objects.</returns>
 public async Task<List<Subnet>> GetAllVpcSubnetsForZones(string vpcId,
 List<string> availabilityZones)
 {
 try
 {
 var subnets = new List<Subnet>();
 var subnetPaginator = _amazonEc2.Paginators.DescribeSubnets(
 new DescribeSubnetsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("vpc-id", new List<string>() { vpcId }),
 new("availability-zone", availabilityZones),
 new("default-for-az", new List<string>() { "true" })
 }
 });

 // Get the entire list using the paginator.
 await foreach (var subnet in subnetPaginator.Subnets)

Scenarios 439

AWS SDK for .NET Developer Guide

 {
 subnets.Add(subnet);
 }

 return subnets;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidVpcID.NotFound")
 {
 _logger.LogError(ec2Exception, $"The specified VPC ID {vpcId} does
 not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the subnets.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Delete a launch template by name.
 /// </summary>
 /// <param name="templateName">The name of the template to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTemplateByName(string templateName)
 {
 try
 {
 await _amazonEc2.DeleteLaunchTemplateAsync(
 new DeleteLaunchTemplateRequest()
 {
 LaunchTemplateName = templateName
 });
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.NotFoundException")
 {

Scenarios 440

AWS SDK for .NET Developer Guide

 _logger.LogError(
 $"Could not delete the template, the name {_launchTemplateName}
 was not found.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while deleting the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the role,
 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)
 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });
 var attachedPolicies = await _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn

Scenarios 441

AWS SDK for .NET Developer Guide

 });
 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

 /// <summary>
 /// Gets data about the instances in an EC2 Auto Scaling group by its group
 name.
 /// </summary>
 /// <param name="group">The name of the auto scaling group.</param>
 /// <returns>A collection of instance Ids.</returns>
 public async Task<IEnumerable<string>> GetInstancesByGroupName(string group)
 {
 var instanceResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { group }
 });
 var instanceIds = instanceResponse.AutoScalingGroups.SelectMany(
 g => g.Instances.Select(i => i.InstanceId));
 return instanceIds;
 }

 /// <summary>
 /// Get the instance profile association data for an instance.
 /// </summary>
 /// <param name="instanceId">The Id of the instance.</param>

Scenarios 442

AWS SDK for .NET Developer Guide

 /// <returns>Instance profile associations data.</returns>
 public async Task<IamInstanceProfileAssociation> GetInstanceProfile(string
 instanceId)
 {
 try
 {
 var response = await
 _amazonEc2.DescribeIamInstanceProfileAssociationsAsync(
 new DescribeIamInstanceProfileAssociationsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("instance-id", new List<string>() { instanceId })
 },
 });
 return response.IamInstanceProfileAssociations[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile is
 replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate with
 the specified instance.</param>

Scenarios 443

AWS SDK for .NET Developer Guide

 /// <param name="associationId">The Id of the existing profile association for
 the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 try
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()
 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });
 // Allow time before resetting.
 Thread.Sleep(25000);

 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(25000);
 var instanceReady = false;
 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }
 Console.WriteLine("Waiting for instance to be running.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);
 Console.WriteLine("Instance ready.");

Scenarios 444

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {
 "commands",
 new List<string>() { "cd / && sudo python3 server.py
 80" }
 }
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while replacing the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Try to terminate an instance by its Id.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task TryTerminateInstanceById(string instanceId)
 {
 var stopping = false;
 Console.WriteLine($"Stopping {instanceId}...");
 while (!stopping)

Scenarios 445

AWS SDK for .NET Developer Guide

 {
 try
 {
 await _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(
 new TerminateInstanceInAutoScalingGroupRequest()
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false
 });
 stopping = true;
 }
 catch (ScalingActivityInProgressException)
 {
 Console.WriteLine($"Scaling activity in progress for {instanceId}.
 Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 /// waits and retries until the group is successfully deleted.
 /// </summary>
 /// <param name="groupName">The name of the group to try to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TryDeleteGroupByName(string groupName)
 {
 var stopped = false;
 while (!stopped)
 {
 try
 {
 await _amazonAutoScaling.DeleteAutoScalingGroupAsync(
 new DeleteAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName
 });
 stopped = true;
 }
 catch (Exception e)
 when ((e is ScalingActivityInProgressException)
 || (e is Amazon.AutoScaling.Model.ResourceInUseException))

Scenarios 446

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Some instances are still running. Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Terminate instances and delete the Auto Scaling group by name.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TerminateAndDeleteAutoScalingGroupWithName(string groupName)
 {
 var describeGroupsResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { groupName }
 });
 if (describeGroupsResponse.AutoScalingGroups.Any())
 {
 // Update the size to 0.
 await _amazonAutoScaling.UpdateAutoScalingGroupAsync(
 new UpdateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 MinSize = 0
 });
 var group = describeGroupsResponse.AutoScalingGroups[0];
 foreach (var instance in group.Instances)
 {
 await TryTerminateInstanceById(instance.InstanceId);
 }

 await TryDeleteGroupByName(groupName);
 }
 else
 {
 Console.WriteLine($"No groups found with name {groupName}.");
 }
 }

Scenarios 447

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Get the default security group for a specified Vpc.
 /// </summary>
 /// <param name="vpc">The Vpc to search.</param>
 /// <returns>The default security group.</returns>
 public async Task<SecurityGroup> GetDefaultSecurityGroupForVpc(Vpc vpc)
 {
 var groupResponse = await _amazonEc2.DescribeSecurityGroupsAsync(
 new DescribeSecurityGroupsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("group-name", new List<string>() { "default" }),
 new ("vpc-id", new List<string>() { vpc.VpcId })
 }
 });
 return groupResponse.SecurityGroups[0];
 }

 /// <summary>
 /// Verify the default security group of a Vpc allows ingress from the calling
 computer.
 /// This can be done by allowing ingress from this computer's IP address.
 /// In some situations, such as connecting from a corporate network, you must
 instead specify
 /// a prefix list Id. You can also temporarily open the port to any IP address
 while running this example.
 /// If you do, be sure to remove public access when you're done.
 /// </summary>
 /// <param name="vpc">The group to check.</param>
 /// <param name="port">The port to verify.</param>
 /// <param name="ipAddress">This computer's IP address.</param>
 /// <returns>True if the ip address is allowed on the group.</returns>
 public bool VerifyInboundPortForGroup(SecurityGroup group, int port, string
 ipAddress)
 {
 var portIsOpen = false;
 foreach (var ipPermission in group.IpPermissions)
 {
 if (ipPermission.FromPort == port)
 {
 foreach (var ipRange in ipPermission.Ipv4Ranges)
 {
 var cidr = ipRange.CidrIp;

Scenarios 448

AWS SDK for .NET Developer Guide

 if (cidr.StartsWith(ipAddress) || cidr == "0.0.0.0/0")
 {
 portIsOpen = true;
 }
 }

 if (ipPermission.PrefixListIds.Any())
 {
 portIsOpen = true;
 }

 if (!portIsOpen)
 {
 Console.WriteLine("The inbound rule does not appear to be open
 to either this computer's IP\n" +
 "address, to all IP addresses (0.0.0.0/0), or
 to a prefix list ID.");
 }
 else
 {
 break;
 }
 }
 }

 return portIsOpen;
 }

 /// <summary>
 /// Add an ingress rule to the specified security group that allows access on
 the
 /// specified port from the specified IP address.
 /// </summary>
 /// <param name="groupId">The Id of the security group to modify.</param>
 /// <param name="port">The port to open.</param>
 /// <param name="ipAddress">The IP address to allow access.</param>
 /// <returns>Async task.</returns>
 public async Task OpenInboundPort(string groupId, int port, string ipAddress)
 {
 await _amazonEc2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest()
 {
 GroupId = groupId,
 IpPermissions = new List<IpPermission>()

Scenarios 449

AWS SDK for .NET Developer Guide

 {
 new IpPermission()
 {
 FromPort = port,
 ToPort = port,
 IpProtocol = "tcp",
 Ipv4Ranges = new List<IpRange>()
 {
 new IpRange() { CidrIp = $"{ipAddress}/32" }
 }
 }
 }
 });
 }

 /// <summary>
 /// Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 /// The
 /// </summary>
 /// <param name="autoScalingGroupName">The name of the Auto Scaling group.</
param>
 /// <param name="targetGroupArn">The Arn for the target group.</param>
 /// <returns>Async task.</returns>
 public async Task AttachLoadBalancerToGroup(string autoScalingGroupName, string
 targetGroupArn)
 {
 await _amazonAutoScaling.AttachLoadBalancerTargetGroupsAsync(
 new AttachLoadBalancerTargetGroupsRequest()
 {
 AutoScalingGroupName = autoScalingGroupName,
 TargetGroupARNs = new List<string>() { targetGroupArn }
 });
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {

Scenarios 450

AWS SDK for .NET Developer Guide

 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEc2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }
}

Create a class that wraps Elastic Load Balancing actions.

/// <summary>
/// Encapsulates Elastic Load Balancer actions.
/// </summary>
public class ElasticLoadBalancerWrapper
{
 private readonly IAmazonElasticLoadBalancingV2 _amazonElasticLoadBalancingV2;
 private string? _endpoint = null;
 private readonly string _targetGroupName = "";
 private readonly string _loadBalancerName = "";
 HttpClient _httpClient = new();

 public string TargetGroupName => _targetGroupName;
 public string LoadBalancerName => _loadBalancerName;

 /// <summary>
 /// Constructor for the Elastic Load Balancer wrapper.

Scenarios 451

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="amazonElasticLoadBalancingV2">The injected load balancing v2
 client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public ElasticLoadBalancerWrapper(
 IAmazonElasticLoadBalancingV2 amazonElasticLoadBalancingV2,
 IConfiguration configuration)
 {
 _amazonElasticLoadBalancingV2 = amazonElasticLoadBalancingV2;
 var prefix = configuration["resourcePrefix"];
 _targetGroupName = prefix + "-tg";
 _loadBalancerName = prefix + "-lb";
 }

 /// <summary>
 /// Get the HTTP Endpoint of a load balancer by its name.
 /// </summary>
 /// <param name="loadBalancerName">The name of the load balancer.</param>
 /// <returns>The HTTP endpoint.</returns>
 public async Task<string> GetEndpointForLoadBalancerByName(string
 loadBalancerName)
 {
 if (_endpoint == null)
 {
 var endpointResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { loadBalancerName }
 });
 _endpoint = endpointResponse.LoadBalancers[0].DNSName;
 }

 return _endpoint;
 }

 /// <summary>
 /// Return the GET response for an endpoint as text.
 /// </summary>
 /// <param name="endpoint">The endpoint for the request.</param>
 /// <returns>The request response.</returns>
 public async Task<string> GetEndPointResponse(string endpoint)
 {
 var endpointResponse = await _httpClient.GetAsync($"http://{endpoint}");

Scenarios 452

AWS SDK for .NET Developer Guide

 var textResponse = await endpointResponse.Content.ReadAsStringAsync();
 return textResponse!;
 }

 /// <summary>
 /// Get the target health for a group by name.
 /// </summary>
 /// <param name="groupName">The name of the group.</param>
 /// <returns>The collection of health descriptions.</returns>
 public async Task<List<TargetHealthDescription>>
 CheckTargetHealthForGroup(string groupName)
 {
 List<TargetHealthDescription> result = null!;
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });
 var healthResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetHealthAsync(
 new DescribeTargetHealthRequest()
 {
 TargetGroupArn =
 groupResponse.TargetGroups[0].TargetGroupArn
 });
 ;
 result = healthResponse.TargetHealthDescriptions;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine($"Target group {groupName} not found.");
 }
 return result;
 }

 /// <summary>
 /// Create an Elastic Load Balancing target group. The target group specifies
 how the load balancer forwards
 /// requests to instances in the group and how instance health is checked.
 ///

Scenarios 453

AWS SDK for .NET Developer Guide

 /// To speed up this demo, the health check is configured with shortened times
 and lower thresholds. In production,
 /// you might want to decrease the sensitivity of your health checks to avoid
 unwanted failures.
 /// </summary>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="protocol">The protocol, such as HTTP.</param>
 /// <param name="port">The port to use to forward requests, such as 80.</param>
 /// <param name="vpcId">The Id of the Vpc in which the load balancer exists.</
param>
 /// <returns>The new TargetGroup object.</returns>
 public async Task<TargetGroup> CreateTargetGroupOnVpc(string groupName,
 ProtocolEnum protocol, int port, string vpcId)
 {
 var createResponse = await
 _amazonElasticLoadBalancingV2.CreateTargetGroupAsync(
 new CreateTargetGroupRequest()
 {
 Name = groupName,
 Protocol = protocol,
 Port = port,
 HealthCheckPath = "/healthcheck",
 HealthCheckIntervalSeconds = 10,
 HealthCheckTimeoutSeconds = 5,
 HealthyThresholdCount = 2,
 UnhealthyThresholdCount = 2,
 VpcId = vpcId
 });
 var targetGroup = createResponse.TargetGroups[0];
 return targetGroup;
 }

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>
 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {

Scenarios 454

AWS SDK for .NET Developer Guide

 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)
 {
 try
 {
 var describeResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,
 DefaultActions = new List<Action>()
 {
 new Action()

Scenarios 455

AWS SDK for .NET Developer Guide

 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

 /// <summary>
 /// Verify this computer can successfully send a GET request to the
 /// load balancer endpoint.
 /// </summary>
 /// <param name="endpoint">The endpoint to check.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> VerifyLoadBalancerEndpoint(string endpoint)
 {
 var success = false;
 var retries = 3;
 while (!success && retries > 0)
 {
 try
 {
 var endpointResponse = await _httpClient.GetAsync($"http://
{endpoint}");
 Console.WriteLine($"Response: {endpointResponse.StatusCode}.");

 if (endpointResponse.IsSuccessStatusCode)
 {
 success = true;
 }
 else
 {
 retries = 0;
 }
 }
 catch (HttpRequestException)
 {
 Console.WriteLine("Connection error, retrying...");
 retries--;
 Thread.Sleep(10000);
 }
 }

Scenarios 456

AWS SDK for .NET Developer Guide

 return success;
 }

 /// <summary>
 /// Delete a load balancer by its specified name.
 /// </summary>
 /// <param name="name">The name of the load balancer to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteLoadBalancerByName(string name)
 {
 try
 {
 var describeLoadBalancerResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });
 var lbArn =
 describeLoadBalancerResponse.LoadBalancers[0].LoadBalancerArn;
 await _amazonElasticLoadBalancingV2.DeleteLoadBalancerAsync(
 new DeleteLoadBalancerRequest()
 {
 LoadBalancerArn = lbArn
 }
);
 }
 catch (LoadBalancerNotFoundException)
 {
 Console.WriteLine($"Load balancer {name} not found.");
 }
 }

 /// <summary>
 /// Delete a TargetGroup by its specified name.
 /// </summary>
 /// <param name="groupName">Name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTargetGroupByName(string groupName)
 {
 var done = false;
 while (!done)
 {
 try

Scenarios 457

AWS SDK for .NET Developer Guide

 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });

 var targetArn = groupResponse.TargetGroups[0].TargetGroupArn;
 await _amazonElasticLoadBalancingV2.DeleteTargetGroupAsync(
 new DeleteTargetGroupRequest() { TargetGroupArn = targetArn });
 Console.WriteLine($"Deleted load balancing target group
 {groupName}.");
 done = true;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine(
 $"Target group {groupName} not found, could not delete.");
 done = true;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine("Target group not yet released, waiting...");
 Thread.Sleep(10000);
 }
 }
 }
}

Create a class that uses DynamoDB to simulate a recommendation service.

/// <summary>
/// Encapsulates a DynamoDB table to use as a service that recommends books, movies,
 and songs.
/// </summary>
public class Recommendations
{
 private readonly IAmazonDynamoDB _amazonDynamoDb;
 private readonly DynamoDBContext _context;
 private readonly string _tableName;

Scenarios 458

AWS SDK for .NET Developer Guide

 public string TableName => _tableName;

 /// <summary>
 /// Constructor for the Recommendations service.
 /// </summary>
 /// <param name="amazonDynamoDb">The injected DynamoDb client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public Recommendations(IAmazonDynamoDB amazonDynamoDb, IConfiguration
 configuration)
 {
 _amazonDynamoDb = amazonDynamoDb;
 _context = new DynamoDBContext(_amazonDynamoDb);
 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Create the DynamoDb table with a specified name.
 /// </summary>
 /// <param name="tableName">The name for the table.</param>
 /// <returns>True when ready.</returns>
 public async Task<bool> CreateDatabaseWithName(string tableName)
 {
 try
 {
 Console.Write($"Creating table {tableName}...");
 var createRequest = new CreateTableRequest()
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition()
 {
 AttributeName = "MediaType",
 AttributeType = ScalarAttributeType.S
 },
 new AttributeDefinition()
 {
 AttributeName = "ItemId",
 AttributeType = ScalarAttributeType.N
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement()

Scenarios 459

AWS SDK for .NET Developer Guide

 {
 AttributeName = "MediaType",
 KeyType = KeyType.HASH
 },
 new KeySchemaElement()
 {
 AttributeName = "ItemId",
 KeyType = KeyType.RANGE
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 5
 }
 };
 await _amazonDynamoDb.CreateTableAsync(createRequest);

 // Wait until the table is ACTIVE and then report success.
 Console.Write("\nWaiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = tableName
 };

 TableStatus status;
 do
 {
 Thread.Sleep(2000);

 var describeTableResponse = await
 _amazonDynamoDb.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine($"Table {tableName} already exists.");

Scenarios 460

AWS SDK for .NET Developer Guide

 return false;
 }
 }

 /// <summary>
 /// Populate the database table with data from a specified path.
 /// </summary>
 /// <param name="databaseTableName">The name of the table.</param>
 /// <param name="recommendationsPath">The path of the recommendations data.</
param>
 /// <returns>Async task.</returns>
 public async Task PopulateDatabase(string databaseTableName, string
 recommendationsPath)
 {
 var recommendationsText = await File.ReadAllTextAsync(recommendationsPath);
 var records =
 JsonSerializer.Deserialize<RecommendationModel[]>(recommendationsText);
 var batchWrite = _context.CreateBatchWrite<RecommendationModel>();

 foreach (var record in records!)
 {
 batchWrite.AddPutItem(record);
 }

 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Delete the recommendation table by name.
 /// </summary>
 /// <param name="tableName">The name of the recommendation table.</param>
 /// <returns>Async task.</returns>
 public async Task DestroyDatabaseByName(string tableName)
 {
 try
 {
 await _amazonDynamoDb.DeleteTableAsync(
 new DeleteTableRequest() { TableName = tableName });
 Console.WriteLine($"Table {tableName} was deleted.");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Table {tableName} not found");
 }

Scenarios 461

AWS SDK for .NET Developer Guide

 }
}

Create a class that wraps Systems Manager actions.

/// <summary>
/// Encapsulates Systems Manager parameter operations. This example uses these
 parameters
/// to drive the demonstration of resilient architecture, such as failure of a
 dependency or
/// how the service responds to a health check.
/// </summary>
public class SmParameterWrapper
{
 private readonly IAmazonSimpleSystemsManagement _amazonSimpleSystemsManagement;

 private readonly string _tableParameter = "doc-example-resilient-architecture-
table";
 private readonly string _failureResponseParameter = "doc-example-resilient-
architecture-failure-response";
 private readonly string _healthCheckParameter = "doc-example-resilient-
architecture-health-check";
 private readonly string _tableName = "";

 public string TableParameter => _tableParameter;
 public string TableName => _tableName;
 public string HealthCheckParameter => _healthCheckParameter;
 public string FailureResponseParameter => _failureResponseParameter;

 /// <summary>
 /// Constructor for the SmParameterWrapper.
 /// </summary>
 /// <param name="amazonSimpleSystemsManagement">The injected Simple Systems
 Management client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public SmParameterWrapper(IAmazonSimpleSystemsManagement
 amazonSimpleSystemsManagement, IConfiguration configuration)
 {
 _amazonSimpleSystemsManagement = amazonSimpleSystemsManagement;
 _tableName = configuration["databaseName"]!;
 }

Scenarios 462

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Reset the Systems Manager parameters to starting values for the demo.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task Reset()
 {
 await this.PutParameterByName(_tableParameter, _tableName);
 await this.PutParameterByName(_failureResponseParameter, "none");
 await this.PutParameterByName(_healthCheckParameter, "shallow");
 }

 /// <summary>
 /// Set the value of a named Systems Manager parameter.
 /// </summary>
 /// <param name="name">The name of the parameter.</param>
 /// <param name="value">The value to set.</param>
 /// <returns>Async task.</returns>
 public async Task PutParameterByName(string name, string value)
 {
 await _amazonSimpleSystemsManagement.PutParameterAsync(
 new PutParameterRequest() { Name = name, Value = value, Overwrite =
 true });
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

Scenarios 463

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer

AWS SDK for .NET Developer Guide

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Amazon Bedrock examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Bedrock.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon Bedrock

The following code examples show how to get started using Amazon Bedrock.

Amazon Bedrock 464

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSubnets
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon;
using Amazon.Bedrock;
using Amazon.Bedrock.Model;

namespace ListFoundationModelsExample
{
 /// <summary>
 /// This example shows how to list foundation models.
 /// </summary>
 internal class HelloBedrock
 {
 /// <summary>
 /// Main method to call the ListFoundationModelsAsync method.
 /// </summary>
 /// <param name="args"> The command line arguments. </param>
 static async Task Main(string[] args)
 {
 // Specify a region endpoint where Amazon Bedrock is available. For a
 list of supported region see https://docs.aws.amazon.com/bedrock/latest/userguide/
what-is-bedrock.html#bedrock-regions
 AmazonBedrockClient bedrockClient = new(RegionEndpoint.USWest2);

 await ListFoundationModelsAsync(bedrockClient);

 }

 /// <summary>
 /// List foundation models.
 /// </summary>
 /// <param name="bedrockClient"> The Amazon Bedrock client. </param>
 private static async Task ListFoundationModelsAsync(AmazonBedrockClient
 bedrockClient)
 {

Amazon Bedrock 465

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine("List foundation models with no filter");

 try
 {
 ListFoundationModelsResponse response = await
 bedrockClient.ListFoundationModelsAsync(new ListFoundationModelsRequest()
 {
 });

 if (response?.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 foreach (var fm in response.ModelSummaries)
 {
 WriteToConsole(fm);
 }
 }
 else
 {
 Console.WriteLine("Something wrong happened");
 }
 }
 catch (AmazonBedrockException e)
 {
 Console.WriteLine(e.Message);
 }
 }

 /// <summary>
 /// Write the foundation model summary to console.
 /// </summary>
 /// <param name="foundationModel"> The foundation model summary to write to
 console. </param>
 private static void WriteToConsole(FoundationModelSummary foundationModel)
 {
 Console.WriteLine($"{foundationModel.ModelId}, Customization:
 {String.Join(", ", foundationModel.CustomizationsSupported)}, Stream:
 {foundationModel.ResponseStreamingSupported}, Input: {String.Join(",
 ", foundationModel.InputModalities)}, Output: {String.Join(", ",
 foundationModel.OutputModalities)}");
 }
 }
}

Amazon Bedrock 466

AWS SDK for .NET Developer Guide

• For API details, see ListFoundationModels in AWS SDK for .NET API Reference.

Topics

• Actions

Actions

ListFoundationModels

The following code example shows how to use ListFoundationModels.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

List the available Bedrock foundation models.

 /// <summary>
 /// List foundation models.
 /// </summary>
 /// <param name="bedrockClient"> The Amazon Bedrock client. </param>
 private static async Task ListFoundationModelsAsync(AmazonBedrockClient
 bedrockClient)
 {
 Console.WriteLine("List foundation models with no filter");

 try
 {
 ListFoundationModelsResponse response = await
 bedrockClient.ListFoundationModelsAsync(new ListFoundationModelsRequest()
 {
 });

Actions 467

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-2023-04-20/ListFoundationModels
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock#code-examples

AWS SDK for .NET Developer Guide

 if (response?.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 foreach (var fm in response.ModelSummaries)
 {
 WriteToConsole(fm);
 }
 }
 else
 {
 Console.WriteLine("Something wrong happened");
 }
 }
 catch (AmazonBedrockException e)
 {
 Console.WriteLine(e.Message);
 }
 }

• For API details, see ListFoundationModels in AWS SDK for .NET API Reference.

Amazon Bedrock Runtime examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Bedrock Runtime.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Scenarios

• AI21 Labs Jurassic-2

• Amazon Titan Text

• Anthropic Claude

• Cohere Command

Amazon Bedrock Runtime 468

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-2023-04-20/ListFoundationModels

AWS SDK for .NET Developer Guide

• Meta Llama

• Mistral AI

Scenarios

Create a playground application to interact with Amazon Bedrock foundation models

The following code example shows how to create playgrounds to interact with Amazon Bedrock
foundation models through different modalities.

AWS SDK for .NET

.NET Foundation Model (FM) Playground is a .NET MAUI Blazor sample application that
showcases how to use Amazon Bedrock from C# code. This example shows how .NET and C#
developers can use Amazon Bedrock to build generative AI-enabled applications. You can test
and interact with Amazon Bedrock foundation models by using the following four playgrounds:

• A text playground.

• A chat playground.

• A voice chat playground.

• An image playground.

The example also lists and displays the foundation models you have access to and their
characteristics. For source code and deployment instructions, see the project in GitHub.

Services used in this example

• Amazon Bedrock Runtime

AI21 Labs Jurassic-2

Converse

The following code example shows how to send a text message to AI21 Labs Jurassic-2, using
Bedrock's Converse API.

Scenarios 469

https://github.com/build-on-aws/dotnet-fm-playground

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to AI21 Labs Jurassic-2, using Bedrock's Converse API.

// Use the Converse API to send a text message to AI21 Labs Jurassic-2.

using System;
using System.Collections.Generic;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Jurassic-2 Mid.
var modelId = "ai21.j2-mid-v1";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {

AI21 Labs Jurassic-2 470

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseAsync(request);

 // Extract and print the response text.
 string responseText = response?.Output?.Message?.Content?[0]?.Text ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see Converse in AWS SDK for .NET API Reference.

InvokeModel

The following code example shows how to send a text message to AI21 Labs Jurassic-2, using the
Invoke Model API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to AI21 Labs Jurassic-2.

AI21 Labs Jurassic-2 471

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/Converse
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Jurassic-2 Mid.
var modelId = "ai21.j2-mid-v1";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = userMessage,
 maxTokens = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

 // Extract and print the response text.
 var responseText = modelResponse["completions"]?[0]?["data"]?["text"] ?? "";
 Console.WriteLine(responseText);

AI21 Labs Jurassic-2 472

AWS SDK for .NET Developer Guide

}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

Amazon Titan Text

Converse

The following code example shows how to send a text message to Amazon Titan Text, using
Bedrock's Converse API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Amazon Titan Text, using Bedrock's Converse API.

// Use the Converse API to send a text message to Amazon Titan Text.

using System;
using System.Collections.Generic;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Titan Text Premier.
var modelId = "amazon.titan-text-premier-v1:0";

Amazon Titan Text 473

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseAsync(request);

 // Extract and print the response text.
 string responseText = response?.Output?.Message?.Content?[0]?.Text ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see Converse in AWS SDK for .NET API Reference.

Amazon Titan Text 474

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/Converse

AWS SDK for .NET Developer Guide

ConverseStream

The following code example shows how to send a text message to Amazon Titan Text, using
Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Amazon Titan Text, using Bedrock's Converse API and process the
response stream in real-time.

// Use the Converse API to send a text message to Amazon Titan Text
// and print the response stream.

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Titan Text Premier.
var modelId = "amazon.titan-text-premier-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseStreamRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {

Amazon Titan Text 475

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var chunk in response.Stream.AsEnumerable())
 {
 if (chunk is ContentBlockDeltaEvent)
 {
 Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text);
 }
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see ConverseStream in AWS SDK for .NET API Reference.

InvokeModel

The following code example shows how to send a text message to Amazon Titan Text, using the
Invoke Model API.

Amazon Titan Text 476

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/ConverseStream

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Amazon Titan Text.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Titan Text Premier.
var modelId = "amazon.titan-text-premier-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 inputText = userMessage,
 textGenerationConfig = new
 {
 maxTokenCount = 512,
 temperature = 0.5
 }
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{

Amazon Titan Text 477

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

 // Extract and print the response text.
 var responseText = modelResponse["results"]?[0]?["outputText"] ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

InvokeModelWithResponseStream

The following code example shows how to send a text message to Amazon Titan Text models,
using the Invoke Model API, and print the response stream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

Amazon Titan Text 478

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Use the native inference API to send a text message to Amazon Titan Text
// and print the response stream.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Titan Text Premier.
var modelId = "amazon.titan-text-premier-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 inputText = userMessage,
 textGenerationConfig = new
 {
 maxTokenCount = 512,
 temperature = 0.5
 }
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelWithResponseStreamRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.

Amazon Titan Text 479

AWS SDK for .NET Developer Guide

 var streamingResponse = await
 client.InvokeModelWithResponseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var item in streamingResponse.Body)
 {
 var chunk = JsonSerializer.Deserialize<JsonObject>((item as
 PayloadPart).Bytes);
 var text = chunk["outputText"] ?? "";
 Console.Write(text);
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModelWithResponseStream in AWS SDK for .NET API Reference.

Anthropic Claude

Converse

The following code example shows how to send a text message to Anthropic Claude, using
Bedrock's Converse API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Anthropic Claude, using Bedrock's Converse API.

// Use the Converse API to send a text message to Anthropic Claude.

using System;

Anthropic Claude 480

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModelWithResponseStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

using System.Collections.Generic;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Claude 3 Haiku.
var modelId = "anthropic.claude-3-haiku-20240307-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseAsync(request);

 // Extract and print the response text.
 string responseText = response?.Output?.Message?.Content?[0]?.Text ?? "";
 Console.WriteLine(responseText);

Anthropic Claude 481

AWS SDK for .NET Developer Guide

}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see Converse in AWS SDK for .NET API Reference.

ConverseStream

The following code example shows how to send a text message to Anthropic Claude, using
Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Anthropic Claude, using Bedrock's Converse API and process the
response stream in real-time.

// Use the Converse API to send a text message to Anthropic Claude
// and print the response stream.

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Claude 3 Haiku.
var modelId = "anthropic.claude-3-haiku-20240307-v1:0";

Anthropic Claude 482

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/Converse
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseStreamRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var chunk in response.Stream.AsEnumerable())
 {
 if (chunk is ContentBlockDeltaEvent)
 {
 Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text);
 }
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;

Anthropic Claude 483

AWS SDK for .NET Developer Guide

}

• For API details, see ConverseStream in AWS SDK for .NET API Reference.

InvokeModel

The following code example shows how to send a text message to Anthropic Claude, using the
Invoke Model API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Anthropic Claude.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Claude 3 Haiku.
var modelId = "anthropic.claude-3-haiku-20240307-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.

Anthropic Claude 484

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/ConverseStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

var nativeRequest = JsonSerializer.Serialize(new
{
 anthropic_version = "bedrock-2023-05-31",
 max_tokens = 512,
 temperature = 0.5,
 messages = new[]
 {
 new { role = "user", content = userMessage }
 }
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

 // Extract and print the response text.
 var responseText = modelResponse["content"]?[0]?["text"] ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

Anthropic Claude 485

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel

AWS SDK for .NET Developer Guide

InvokeModelWithResponseStream

The following code example shows how to send a text message to Anthropic Claude models, using
the Invoke Model API, and print the response stream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Anthropic Claude
// and print the response stream.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Claude 3 Haiku.
var modelId = "anthropic.claude-3-haiku-20240307-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 anthropic_version = "bedrock-2023-05-31",
 max_tokens = 512,
 temperature = 0.5,
 messages = new[]

Anthropic Claude 486

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 {
 new { role = "user", content = userMessage }
 }
});

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new InvokeModelWithResponseStreamRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var streamingResponse = await
 client.InvokeModelWithResponseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var item in streamingResponse.Body)
 {
 var chunk = JsonSerializer.Deserialize<JsonObject>((item as
 PayloadPart).Bytes);
 var text = chunk["delta"]?["text"] ?? "";
 Console.Write(text);
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModelWithResponseStream in AWS SDK for .NET API Reference.

Anthropic Claude 487

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModelWithResponseStream

AWS SDK for .NET Developer Guide

Cohere Command

Converse

The following code example shows how to send a text message to Cohere Command, using
Bedrock's Converse API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Cohere Command, using Bedrock's Converse API.

// Use the Converse API to send a text message to Cohere Command.

using System;
using System.Collections.Generic;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Command R.
var modelId = "cohere.command-r-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message

Cohere Command 488

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseAsync(request);

 // Extract and print the response text.
 string responseText = response?.Output?.Message?.Content?[0]?.Text ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see Converse in AWS SDK for .NET API Reference.

ConverseStream

The following code example shows how to send a text message to Cohere Command, using
Bedrock's Converse API and process the response stream in real-time.

Cohere Command 489

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/Converse

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Cohere Command, using Bedrock's Converse API and process the
response stream in real-time.

// Use the Converse API to send a text message to Cohere Command
// and print the response stream.

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Command R.
var modelId = "cohere.command-r-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseStreamRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }

Cohere Command 490

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var chunk in response.Stream.AsEnumerable())
 {
 if (chunk is ContentBlockDeltaEvent)
 {
 Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text);
 }
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see ConverseStream in AWS SDK for .NET API Reference.

InvokeModel: Command R and R+

The following code example shows how to send a text message to Cohere Command R and R+,
using the Invoke Model API.

Cohere Command 491

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/ConverseStream

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Cohere Command R.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Command R.
var modelId = "cohere.command-r-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 message = userMessage,
 max_tokens = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"

Cohere Command 492

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

 // Extract and print the response text.
 var responseText = modelResponse["text"] ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

InvokeModel: Command and Command Light

The following code example shows how to send a text message to Cohere Command, using the
Invoke Model API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Cohere Command.

using System;

Cohere Command 493

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Command Light.
var modelId = "cohere.command-light-text-v14";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = userMessage,
 max_tokens = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

 // Extract and print the response text.
 var responseText = modelResponse["generations"]?[0]?["text"] ?? "";
 Console.WriteLine(responseText);
}

Cohere Command 494

AWS SDK for .NET Developer Guide

catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

InvokeModelWithResponseStream: Command R and R+

The following code example shows how to send a text message to Cohere Command, using the
Invoke Model API with a response stream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Cohere Command R
// and print the response stream.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Command R.
var modelId = "cohere.command-r-v1:0";

Cohere Command 495

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 message = userMessage,
 max_tokens = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelWithResponseStreamRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var streamingResponse = await
 client.InvokeModelWithResponseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var item in streamingResponse.Body)
 {
 var chunk = JsonSerializer.Deserialize<JsonObject>((item as
 PayloadPart).Bytes);
 var text = chunk["text"] ?? "";
 Console.Write(text);
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

Cohere Command 496

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel

AWS SDK for .NET Developer Guide

InvokeModelWithResponseStream: Command and Command Light

The following code example shows how to send a text message to Cohere Command, using the
Invoke Model API with a response stream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Cohere Command
// and print the response stream.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Command Light.
var modelId = "cohere.command-light-text-v14";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = userMessage,
 max_tokens = 512,
 temperature = 0.5
});

Cohere Command 497

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelWithResponseStreamRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var streamingResponse = await
 client.InvokeModelWithResponseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var item in streamingResponse.Body)
 {
 var chunk = JsonSerializer.Deserialize<JsonObject>((item as
 PayloadPart).Bytes);
 var text = chunk["generations"]?[0]?["text"] ?? "";
 Console.Write(text);
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

Meta Llama

Converse

The following code example shows how to send a text message to Meta Llama, using Bedrock's
Converse API.

Meta Llama 498

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Meta Llama, using Bedrock's Converse API.

// Use the Converse API to send a text message to Meta Llama.

using System;
using System.Collections.Generic;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Llama 3 8b Instruct.
var modelId = "meta.llama3-8b-instruct-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {

Meta Llama 499

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseAsync(request);

 // Extract and print the response text.
 string responseText = response?.Output?.Message?.Content?[0]?.Text ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see Converse in AWS SDK for .NET API Reference.

ConverseStream

The following code example shows how to send a text message to Meta Llama, using Bedrock's
Converse API and process the response stream in real-time.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Meta Llama, using Bedrock's Converse API and process the response
stream in real-time.

// Use the Converse API to send a text message to Meta Llama

Meta Llama 500

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/Converse
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// and print the response stream.

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Llama 3 8b Instruct.
var modelId = "meta.llama3-8b-instruct-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseStreamRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseStreamAsync(request);

Meta Llama 501

AWS SDK for .NET Developer Guide

 // Extract and print the streamed response text in real-time.
 foreach (var chunk in response.Stream.AsEnumerable())
 {
 if (chunk is ContentBlockDeltaEvent)
 {
 Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text);
 }
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see ConverseStream in AWS SDK for .NET API Reference.

InvokeModel: Llama 3

The following code example shows how to send a text message to Meta Llama 3, using the Invoke
Model API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Meta Llama 3.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;

Meta Llama 502

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/ConverseStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USWest2);

// Set the model ID, e.g., Llama 3 70b Instruct.
var modelId = "meta.llama3-70b-instruct-v1:0";

// Define the prompt for the model.
var prompt = "Describe the purpose of a 'hello world' program in one line.";

// Embed the prompt in Llama 2's instruction format.
var formattedPrompt = $@"
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
{prompt}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = formattedPrompt,
 max_gen_len = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

Meta Llama 503

AWS SDK for .NET Developer Guide

 // Extract and print the response text.
 var responseText = modelResponse["generation"] ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

InvokeModelWithResponseStream: Llama 3

The following code example shows how to send a text message to Meta Llama 3, using the Invoke
Model API, and print the response stream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Meta Llama 3
// and print the response stream.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USWest2);

Meta Llama 504

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Set the model ID, e.g., Llama 3 70b Instruct.
var modelId = "meta.llama3-70b-instruct-v1:0";

// Define the prompt for the model.
var prompt = "Describe the purpose of a 'hello world' program in one line.";

// Embed the prompt in Llama 2's instruction format.
var formattedPrompt = $@"
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
{prompt}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = formattedPrompt,
 max_gen_len = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelWithResponseStreamRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var streamingResponse = await
 client.InvokeModelWithResponseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var item in streamingResponse.Body)
 {
 var chunk = JsonSerializer.Deserialize<JsonObject>((item as
 PayloadPart).Bytes);
 var text = chunk["generation"] ?? "";
 Console.Write(text);

Meta Llama 505

AWS SDK for .NET Developer Guide

 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModelWithResponseStream in AWS SDK for .NET API Reference.

Mistral AI

Converse

The following code example shows how to send a text message to Mistral, using Bedrock's
Converse API.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Mistral, using Bedrock's Converse API.

// Use the Converse API to send a text message to Mistral.

using System;
using System.Collections.Generic;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Mistral Large.
var modelId = "mistral.mistral-large-2402-v1:0";

Mistral AI 506

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModelWithResponseStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {
 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseAsync(request);

 // Extract and print the response text.
 string responseText = response?.Output?.Message?.Content?[0]?.Text ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see Converse in AWS SDK for .NET API Reference.

Mistral AI 507

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/Converse

AWS SDK for .NET Developer Guide

ConverseStream

The following code example shows how to send a text message to Mistral, using Bedrock's
Converse API and process the response stream in real-time.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send a text message to Mistral, using Bedrock's Converse API and process the response stream
in real-time.

// Use the Converse API to send a text message to Mistral
// and print the response stream.

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Mistral Large.
var modelId = "mistral.mistral-large-2402-v1:0";

// Define the user message.
var userMessage = "Describe the purpose of a 'hello world' program in one line.";

// Create a request with the model ID, the user message, and an inference
 configuration.
var request = new ConverseStreamRequest
{
 ModelId = modelId,
 Messages = new List<Message>
 {

Mistral AI 508

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 new Message
 {
 Role = ConversationRole.User,
 Content = new List<ContentBlock> { new ContentBlock { Text =
 userMessage } }
 }
 },
 InferenceConfig = new InferenceConfiguration()
 {
 MaxTokens = 512,
 Temperature = 0.5F,
 TopP = 0.9F
 }
};

try
{
 // Send the request to the Bedrock Runtime and wait for the result.
 var response = await client.ConverseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var chunk in response.Stream.AsEnumerable())
 {
 if (chunk is ContentBlockDeltaEvent)
 {
 Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text);
 }
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see ConverseStream in AWS SDK for .NET API Reference.

InvokeModel

The following code example shows how to send a text message to Mistral models, using the Invoke
Model API.

Mistral AI 509

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/ConverseStream

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Mistral.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Mistral Large.
var modelId = "mistral.mistral-large-2402-v1:0";

// Define the prompt for the model.
var prompt = "Describe the purpose of a 'hello world' program in one line.";

// Embed the prompt in Mistral's instruction format.
var formattedPrompt = $"<s>[INST] {prompt} [/INST]";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = formattedPrompt,
 max_tokens = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelRequest()
{

Mistral AI 510

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.
 var response = await client.InvokeModelAsync(request);

 // Decode the response body.
 var modelResponse = await JsonNode.ParseAsync(response.Body);

 // Extract and print the response text.
 var responseText = modelResponse["outputs"]?[0]?["text"] ?? "";
 Console.WriteLine(responseText);
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModel in AWS SDK for .NET API Reference.

InvokeModelWithResponseStream

The following code example shows how to send a text message to Mistral AI models, using the
Invoke Model API, and print the response stream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

Mistral AI 511

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Bedrock-runtime#code-examples

AWS SDK for .NET Developer Guide

// Use the native inference API to send a text message to Mistral
// and print the response stream.

using System;
using System.IO;
using System.Text.Json;
using System.Text.Json.Nodes;
using Amazon;
using Amazon.BedrockRuntime;
using Amazon.BedrockRuntime.Model;

// Create a Bedrock Runtime client in the AWS Region you want to use.
var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1);

// Set the model ID, e.g., Mistral Large.
var modelId = "mistral.mistral-large-2402-v1:0";

// Define the prompt for the model.
var prompt = "Describe the purpose of a 'hello world' program in one line.";

// Embed the prompt in Mistral's instruction format.
var formattedPrompt = $"<s>[INST] {prompt} [/INST]";

//Format the request payload using the model's native structure.
var nativeRequest = JsonSerializer.Serialize(new
{
 prompt = formattedPrompt,
 max_tokens = 512,
 temperature = 0.5
});

// Create a request with the model ID and the model's native request payload.
var request = new InvokeModelWithResponseStreamRequest()
{
 ModelId = modelId,
 Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)),
 ContentType = "application/json"
};

try
{
 // Send the request to the Bedrock Runtime and wait for the response.

Mistral AI 512

AWS SDK for .NET Developer Guide

 var streamingResponse = await
 client.InvokeModelWithResponseStreamAsync(request);

 // Extract and print the streamed response text in real-time.
 foreach (var item in streamingResponse.Body)
 {
 var chunk = JsonSerializer.Deserialize<JsonObject>((item as
 PayloadPart).Bytes);
 var text = chunk["outputs"]?[0]?["text"] ?? "";
 Console.Write(text);
 }
}
catch (AmazonBedrockRuntimeException e)
{
 Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}");
 throw;
}

• For API details, see InvokeModelWithResponseStream in AWS SDK for .NET API Reference.

AWS CloudFormation examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with AWS CloudFormation.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello AWS CloudFormation

The following code example shows how to get started using AWS CloudFormation.

AWS CloudFormation 513

https://docs.aws.amazon.com/goto/DotNetSDKV3/bedrock-runtime-2023-09-30/InvokeModelWithResponseStream

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.CloudFormation;
using Amazon.CloudFormation.Model;
using Amazon.Runtime;

namespace CloudFormationActions;

public static class HelloCloudFormation
{
 public static IAmazonCloudFormation _amazonCloudFormation;

 static async Task Main(string[] args)
 {
 // Create the CloudFormation client
 _amazonCloudFormation = new AmazonCloudFormationClient();
 Console.WriteLine($"\nIn Region:
 {_amazonCloudFormation.Config.RegionEndpoint}");

 // List the resources for each stack
 await ListResources();
 }

 /// <summary>
 /// Method to list stack resources and other information.
 /// </summary>
 /// <returns>True if successful.</returns>
 public static async Task<bool> ListResources()
 {
 try
 {
 Console.WriteLine("Getting CloudFormation stack information...");

 // Get all stacks using the stack paginator.
 var paginatorForDescribeStacks =
 _amazonCloudFormation.Paginators.DescribeStacks(

AWS CloudFormation 514

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudFormation#code-examples

AWS SDK for .NET Developer Guide

 new DescribeStacksRequest());
 await foreach (Stack stack in paginatorForDescribeStacks.Stacks)
 {
 // Basic information for each stack

 Console.WriteLine("\n--");
 Console.WriteLine($"\nStack: {stack.StackName}");
 Console.WriteLine($" Status: {stack.StackStatus.Value}");
 Console.WriteLine($" Created: {stack.CreationTime}");

 // The tags of each stack (etc.)
 if (stack.Tags.Count > 0)
 {
 Console.WriteLine(" Tags:");
 foreach (Tag tag in stack.Tags)
 Console.WriteLine($" {tag.Key}, {tag.Value}");
 }

 // The resources of each stack
 DescribeStackResourcesResponse responseDescribeResources =
 await _amazonCloudFormation.DescribeStackResourcesAsync(
 new DescribeStackResourcesRequest
 {
 StackName = stack.StackName
 });
 if (responseDescribeResources.StackResources.Count > 0)
 {
 Console.WriteLine(" Resources:");
 foreach (StackResource resource in responseDescribeResources
 .StackResources)
 Console.WriteLine(
 $" {resource.LogicalResourceId}:
 {resource.ResourceStatus}");
 }
 }

 Console.WriteLine("\n--");
 return true;
 }
 catch (AmazonCloudFormationException ex)
 {
 Console.WriteLine("Unable to get stack information:\n" + ex.Message);
 return false;
 }

AWS CloudFormation 515

AWS SDK for .NET Developer Guide

 catch (AmazonServiceException ex)
 {
 if (ex.Message.Contains("Unable to get IAM security credentials"))
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine("If you are usnig SSO, be sure to install" +
 " the AWSSDK.SSO and AWSSDK.SSOOIDC packages.");
 }
 else
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }

 return false;
 }
 catch (ArgumentNullException ex)
 {
 if (ex.Message.Contains("Options property cannot be empty: ClientName"))
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine("If you are using SSO, have you logged in?");
 }
 else
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }

 return false;
 }
 }

• For API details, see DescribeStackResources in AWS SDK for .NET API Reference.

CloudWatch examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with CloudWatch.

Basics are code examples that show you how to perform the essential operations within a service.

CloudWatch 516

https://docs.aws.amazon.com/goto/DotNetSDKV3/cloudformation-2010-05-15/DescribeStackResources

AWS SDK for .NET Developer Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello CloudWatch

The following code examples show how to get started using CloudWatch.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.CloudWatch;
using Amazon.CloudWatch.Model;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

namespace CloudWatchActions;

public static class HelloCloudWatch
{
 static async Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the Amazon CloudWatch service.
 // Use your AWS profile name, or leave it blank to use the default profile.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonCloudWatch>()
).Build();

 // Now the client is available for injection.
 var cloudWatchClient =
 host.Services.GetRequiredService<IAmazonCloudWatch>();

CloudWatch 517

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 // You can use await and any of the async methods to get a response.
 var metricNamespace = "AWS/Billing";
 var response = await cloudWatchClient.ListMetricsAsync(new
 ListMetricsRequest
 {
 Namespace = metricNamespace
 });
 Console.WriteLine($"Hello Amazon CloudWatch! Following are some metrics
 available in the {metricNamespace} namespace:");
 Console.WriteLine();
 foreach (var metric in response.Metrics.Take(5))
 {
 Console.WriteLine($"\tMetric: {metric.MetricName}");
 Console.WriteLine($"\tNamespace: {metric.Namespace}");
 Console.WriteLine($"\tDimensions: {string.Join(", ",
 metric.Dimensions.Select(m => $"{m.Name}:{m.Value}"))}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListMetrics in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

• List CloudWatch namespaces and metrics.

• Get statistics for a metric and for estimated billing.

• Create and update a dashboard.

• Create and add data to a metric.

• Create and trigger an alarm, then view alarm history.

Basics 518

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/ListMetrics

AWS SDK for .NET Developer Guide

• Add an anomaly detector.

• Get a metric image, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

public class CloudWatchScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 To enable billing metrics and statistics for this example, make sure billing
 alerts are enabled for your account:
 https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
monitor_estimated_charges_with_cloudwatch.html#turning_on_billing_metrics

 This .NET example performs the following tasks:
 1. List and select a CloudWatch namespace.
 2. List and select a CloudWatch metric.
 3. Get statistics for a CloudWatch metric.
 4. Get estimated billing statistics for the last week.
 5. Create a new CloudWatch dashboard with two metrics.
 6. List current CloudWatch dashboards.
 7. Create a CloudWatch custom metric and add metric data.
 8. Add the custom metric to the dashboard.
 9. Create a CloudWatch alarm for the custom metric.
 10. Describe current CloudWatch alarms.
 11. Get recent data for the custom metric.
 12. Add data to the custom metric to trigger the alarm.
 13. Wait for an alarm state.
 14. Get history for the CloudWatch alarm.
 15. Add an anomaly detector.
 16. Describe current anomaly detectors.

Basics 519

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 17. Get and display a metric image.
 18. Clean up resources.
 */

 private static ILogger logger = null!;
 private static CloudWatchWrapper _cloudWatchWrapper = null!;
 private static IConfiguration _configuration = null!;
 private static readonly List<string> _statTypes = new List<string>
 { "SampleCount", "Average", "Sum", "Minimum", "Maximum" };
 private static SingleMetricAnomalyDetector? anomalyDetector = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonCloudWatch>()
 .AddTransient<CloudWatchWrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<CloudWatchScenario>();

 _cloudWatchWrapper = host.Services.GetRequiredService<CloudWatchWrapper>();

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon CloudWatch example scenario.");
 Console.WriteLine(new string('-', 80));

 try
 {

Basics 520

AWS SDK for .NET Developer Guide

 var selectedNamespace = await SelectNamespace();
 var selectedMetric = await SelectMetric(selectedNamespace);
 await GetAndDisplayMetricStatistics(selectedNamespace, selectedMetric);
 await GetAndDisplayEstimatedBilling();
 await CreateDashboardWithMetrics();
 await ListDashboards();
 await CreateNewCustomMetric();
 await AddMetricToDashboard();
 await CreateMetricAlarm();
 await DescribeAlarms();
 await GetCustomMetricData();
 await AddMetricDataForAlarm();
 await CheckForMetricAlarm();
 await GetAlarmHistory();
 anomalyDetector = await AddAnomalyDetector();
 await DescribeAnomalyDetectors();
 await GetAndOpenMetricImage();
 await CleanupResources();
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 await CleanupResources();
 }

 }

 /// <summary>
 /// Select a namespace.
 /// </summary>
 /// <returns>The selected namespace.</returns>
 private static async Task<string> SelectNamespace()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"1. Select a CloudWatch Namespace from a list of
 Namespaces.");
 var metrics = await _cloudWatchWrapper.ListMetrics();
 // Get a distinct list of namespaces.
 var namespaces = metrics.Select(m => m.Namespace).Distinct().ToList();
 for (int i = 0; i < namespaces.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {namespaces[i]}");
 }

Basics 521

AWS SDK for .NET Developer Guide

 var namespaceChoiceNumber = 0;
 while (namespaceChoiceNumber < 1 || namespaceChoiceNumber >
 namespaces.Count)
 {
 Console.WriteLine(
 "Select a namespace by entering a number from the preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out namespaceChoiceNumber);
 }

 var selectedNamespace = namespaces[namespaceChoiceNumber - 1];

 Console.WriteLine(new string('-', 80));

 return selectedNamespace;
 }

 /// <summary>
 /// Select a metric from a namespace.
 /// </summary>
 /// <param name="metricNamespace">The namespace for metrics.</param>
 /// <returns>The metric name.</returns>
 private static async Task<Metric> SelectMetric(string metricNamespace)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"2. Select a CloudWatch metric from a namespace.");

 var namespaceMetrics = await
 _cloudWatchWrapper.ListMetrics(metricNamespace);

 for (int i = 0; i < namespaceMetrics.Count && i < 15; i++)
 {
 var dimensionsWithValues = namespaceMetrics[i].Dimensions
 .Where(d => !string.Equals("None", d.Value));
 Console.WriteLine($"\t{i + 1}. {namespaceMetrics[i].MetricName} " +
 $"{string.Join(", :", dimensionsWithValues.Select(d =>
 d.Value))}");
 }

 var metricChoiceNumber = 0;
 while (metricChoiceNumber < 1 || metricChoiceNumber >
 namespaceMetrics.Count)
 {
 Console.WriteLine(

Basics 522

AWS SDK for .NET Developer Guide

 "Select a metric by entering a number from the preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out metricChoiceNumber);
 }

 var selectedMetric = namespaceMetrics[metricChoiceNumber - 1];

 Console.WriteLine(new string('-', 80));

 return selectedMetric;
 }

 /// <summary>
 /// Get and display metric statistics for a specific metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace for metrics.</param>
 /// <param name="metric">The CloudWatch metric.</param>
 /// <returns>Async task.</returns>
 private static async Task GetAndDisplayMetricStatistics(string metricNamespace,
 Metric metric)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"3. Get CloudWatch metric statistics for the last day.");

 for (int i = 0; i < _statTypes.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_statTypes[i]}");
 }

 var statisticChoiceNumber = 0;
 while (statisticChoiceNumber < 1 || statisticChoiceNumber >
 _statTypes.Count)
 {
 Console.WriteLine(
 "Select a metric statistic by entering a number from the preceding
 list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out statisticChoiceNumber);
 }

 var selectedStatistic = _statTypes[statisticChoiceNumber - 1];
 var statisticsList = new List<string> { selectedStatistic };

Basics 523

AWS SDK for .NET Developer Guide

 var metricStatistics = await
 _cloudWatchWrapper.GetMetricStatistics(metricNamespace, metric.MetricName,
 statisticsList, metric.Dimensions, 1, 60);

 if (!metricStatistics.Any())
 {
 Console.WriteLine($"No {selectedStatistic} statistics found for {metric}
 in namespace {metricNamespace}.");
 }

 metricStatistics = metricStatistics.OrderBy(s => s.Timestamp).ToList();
 for (int i = 0; i < metricStatistics.Count && i < 10; i++)
 {
 var metricStat = metricStatistics[i];
 var statValue =
 metricStat.GetType().GetProperty(selectedStatistic)!.GetValue(metricStat, null);
 Console.WriteLine($"\t{i + 1}. Timestamp
 {metricStatistics[i].Timestamp:G} {selectedStatistic}: {statValue}");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get and display estimated billing statistics.
 /// </summary>
 /// <param name="metricNamespace">The namespace for metrics.</param>
 /// <param name="metric">The CloudWatch metric.</param>
 /// <returns>Async task.</returns>
 private static async Task GetAndDisplayEstimatedBilling()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"4. Get CloudWatch estimated billing for the last
 week.");

 var billingStatistics = await SetupBillingStatistics();

 for (int i = 0; i < billingStatistics.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. Timestamp
 {billingStatistics[i].Timestamp:G} : {billingStatistics[i].Maximum}");
 }

 Console.WriteLine(new string('-', 80));

Basics 524

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Get billing statistics using a call to a wrapper class.
 /// </summary>
 /// <returns>A collection of billing statistics.</returns>
 private static async Task<List<Datapoint>> SetupBillingStatistics()
 {
 // Make a request for EstimatedCharges with a period of one day for the past
 seven days.
 var billingStatistics = await _cloudWatchWrapper.GetMetricStatistics(
 "AWS/Billing",
 "EstimatedCharges",
 new List<string>() { "Maximum" },
 new List<Dimension>() { new Dimension { Name = "Currency", Value =
 "USD" } },
 7,
 86400);

 billingStatistics = billingStatistics.OrderBy(n => n.Timestamp).ToList();

 return billingStatistics;
 }

 /// <summary>
 /// Create a dashboard with metrics.
 /// </summary>
 /// <param name="metricNamespace">The namespace for metrics.</param>
 /// <param name="metric">The CloudWatch metric.</param>
 /// <returns>Async task.</returns>
 private static async Task CreateDashboardWithMetrics()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"5. Create a new CloudWatch dashboard with metrics.");
 var dashboardName = _configuration["dashboardName"];
 var newDashboard = new DashboardModel();
 _configuration.GetSection("dashboardExampleBody").Bind(newDashboard);
 var newDashboardString = JsonSerializer.Serialize(
 newDashboard,
 new JsonSerializerOptions
 {
 DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull
 });
 var validationMessages =

Basics 525

AWS SDK for .NET Developer Guide

 await _cloudWatchWrapper.PutDashboard(dashboardName,
 newDashboardString);

 Console.WriteLine(validationMessages.Any() ? $"\tValidation messages:" :
 null);
 for (int i = 0; i < validationMessages.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {validationMessages[i].Message}");
 }
 Console.WriteLine($"\tDashboard {dashboardName} was created.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List dashboards.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListDashboards()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"6. List the CloudWatch dashboards in the current
 account.");

 var dashboards = await _cloudWatchWrapper.ListDashboards();

 for (int i = 0; i < dashboards.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {dashboards[i].DashboardName}");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Create and add data for a new custom metric.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CreateNewCustomMetric()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"7. Create and add data for a new custom metric.");

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];

Basics 526

AWS SDK for .NET Developer Guide

 var customData = await PutRandomMetricData(customMetricName,
 customMetricNamespace);

 var valuesString = string.Join(',', customData.Select(d => d.Value));
 Console.WriteLine($"\tAdded metric values for for metric {customMetricName}:
 \n\t{valuesString}");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Add some metric data using a call to a wrapper class.
 /// </summary>
 /// <param name="customMetricName">The metric name.</param>
 /// <param name="customMetricNamespace">The metric namespace.</param>
 /// <returns></returns>
 private static async Task<List<MetricDatum>> PutRandomMetricData(string
 customMetricName,
 string customMetricNamespace)
 {
 List<MetricDatum> customData = new List<MetricDatum>();
 Random rnd = new Random();

 // Add 10 random values up to 100, starting with a timestamp 15 minutes in
 the past.
 var utcNowMinus15 = DateTime.UtcNow.AddMinutes(-15);
 for (int i = 0; i < 10; i++)
 {
 var metricValue = rnd.Next(0, 100);
 customData.Add(
 new MetricDatum
 {
 MetricName = customMetricName,
 Value = metricValue,
 TimestampUtc = utcNowMinus15.AddMinutes(i)
 }
);
 }

 await _cloudWatchWrapper.PutMetricData(customMetricNamespace, customData);
 return customData;
 }

Basics 527

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Add the custom metric to the dashboard.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task AddMetricToDashboard()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"8. Add the new custom metric to the dashboard.");

 var dashboardName = _configuration["dashboardName"];

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];

 var validationMessages = await SetupDashboard(customMetricNamespace,
 customMetricName, dashboardName);

 Console.WriteLine(validationMessages.Any() ? $"\tValidation messages:" :
 null);
 for (int i = 0; i < validationMessages.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {validationMessages[i].Message}");
 }
 Console.WriteLine($"\tDashboard {dashboardName} updated with metric
 {customMetricName}.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up a dashboard using a call to the wrapper class.
 /// </summary>
 /// <param name="customMetricNamespace">The metric namespace.</param>
 /// <param name="customMetricName">The metric name.</param>
 /// <param name="dashboardName">The name of the dashboard.</param>
 /// <returns>A list of validation messages.</returns>
 private static async Task<List<DashboardValidationMessage>> SetupDashboard(
 string customMetricNamespace, string customMetricName, string dashboardName)
 {
 // Get the dashboard model from configuration.
 var newDashboard = new DashboardModel();
 _configuration.GetSection("dashboardExampleBody").Bind(newDashboard);

Basics 528

AWS SDK for .NET Developer Guide

 // Add a new metric to the dashboard.
 newDashboard.Widgets.Add(new Widget
 {
 Height = 8,
 Width = 8,
 Y = 8,
 X = 0,
 Type = "metric",
 Properties = new Properties
 {
 Metrics = new List<List<object>>
 { new() { customMetricNamespace, customMetricName } },
 View = "timeSeries",
 Region = "us-east-1",
 Stat = "Sum",
 Period = 86400,
 YAxis = new YAxis { Left = new Left { Min = 0, Max = 100 } },
 Title = "Custom Metric Widget",
 LiveData = true,
 Sparkline = true,
 Trend = true,
 Stacked = false,
 SetPeriodToTimeRange = false
 }
 });

 var newDashboardString = JsonSerializer.Serialize(newDashboard,
 new JsonSerializerOptions
 { DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull });
 var validationMessages =
 await _cloudWatchWrapper.PutDashboard(dashboardName,
 newDashboardString);

 return validationMessages;
 }

 /// <summary>
 /// Create a CloudWatch alarm for the new metric.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CreateMetricAlarm()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"9. Create a CloudWatch alarm for the new metric.");

Basics 529

AWS SDK for .NET Developer Guide

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];

 var alarmName = _configuration["exampleAlarmName"];
 var accountId = _configuration["accountId"];
 var region = _configuration["region"];
 var emailTopic = _configuration["emailTopic"];
 var alarmActions = new List<string>();

 if (GetYesNoResponse(
 $"\tAdd an email action for topic {emailTopic} to alarm {alarmName}?
 (y/n)"))
 {
 _cloudWatchWrapper.AddEmailAlarmAction(accountId, region, emailTopic,
 alarmActions);
 }

 await _cloudWatchWrapper.PutMetricEmailAlarm(
 "Example metric alarm",
 alarmName,
 ComparisonOperator.GreaterThanOrEqualToThreshold,
 customMetricName,
 customMetricNamespace,
 100,
 alarmActions);

 Console.WriteLine($"\tAlarm {alarmName} added for metric
 {customMetricName}.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Describe Alarms.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task DescribeAlarms()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"10. Describe CloudWatch alarms in the current
 account.");

 var alarms = await _cloudWatchWrapper.DescribeAlarms();
 alarms = alarms.OrderByDescending(a => a.StateUpdatedTimestamp).ToList();

Basics 530

AWS SDK for .NET Developer Guide

 for (int i = 0; i < alarms.Count && i < 10; i++)
 {
 var alarm = alarms[i];
 Console.WriteLine($"\t{i + 1}. {alarm.AlarmName}");
 Console.WriteLine($"\tState: {alarm.StateValue} for {alarm.MetricName}
 {alarm.ComparisonOperator} {alarm.Threshold}");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get the recent data for the metric.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task GetCustomMetricData()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"11. Get current data for new custom metric.");

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];
 var accountId = _configuration["accountId"];

 var query = new List<MetricDataQuery>
 {
 new MetricDataQuery
 {
 AccountId = accountId,
 Id = "m1",
 Label = "Custom Metric Data",
 MetricStat = new MetricStat
 {
 Metric = new Metric
 {
 MetricName = customMetricName,
 Namespace = customMetricNamespace,
 },
 Period = 1,
 Stat = "Maximum"
 }
 }
 };

Basics 531

AWS SDK for .NET Developer Guide

 var metricData = await _cloudWatchWrapper.GetMetricData(
 20,
 true,
 DateTime.UtcNow.AddMinutes(1),
 20,
 query);

 for (int i = 0; i < metricData.Count; i++)
 {
 for (int j = 0; j < metricData[i].Values.Count; j++)
 {
 Console.WriteLine(
 $"\tTimestamp {metricData[i].Timestamps[j]:G} Value:
 {metricData[i].Values[j]}");
 }
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Add metric data to trigger an alarm.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task AddMetricDataForAlarm()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"12. Add metric data to the custom metric to trigger an
 alarm.");

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];
 var nowUtc = DateTime.UtcNow;
 List<MetricDatum> customData = new List<MetricDatum>
 {
 new MetricDatum
 {
 MetricName = customMetricName,
 Value = 101,
 TimestampUtc = nowUtc.AddMinutes(-2)
 },
 new MetricDatum
 {

Basics 532

AWS SDK for .NET Developer Guide

 MetricName = customMetricName,
 Value = 101,
 TimestampUtc = nowUtc.AddMinutes(-1)
 },
 new MetricDatum
 {
 MetricName = customMetricName,
 Value = 101,
 TimestampUtc = nowUtc
 }
 };
 var valuesString = string.Join(',', customData.Select(d => d.Value));
 Console.WriteLine($"\tAdded metric values for for metric {customMetricName}:
 \n\t{valuesString}");
 await _cloudWatchWrapper.PutMetricData(customMetricNamespace, customData);

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Check for a metric alarm using the DescribeAlarmsForMetric action.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CheckForMetricAlarm()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"13. Checking for an alarm state.");

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];
 var hasAlarm = false;
 var retries = 10;
 while (!hasAlarm && retries > 0)
 {
 var alarms = await
 _cloudWatchWrapper.DescribeAlarmsForMetric(customMetricNamespace,
 customMetricName);
 hasAlarm = alarms.Any(a => a.StateValue == StateValue.ALARM);
 retries--;
 Thread.Sleep(20000);
 }

 Console.WriteLine(hasAlarm
 ? $"\tAlarm state found for {customMetricName}."

Basics 533

AWS SDK for .NET Developer Guide

 : $"\tNo Alarm state found for {customMetricName} after 10 retries.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get history for an alarm.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task GetAlarmHistory()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"14. Get alarm history.");

 var exampleAlarmName = _configuration["exampleAlarmName"];

 var alarmHistory = await
 _cloudWatchWrapper.DescribeAlarmHistory(exampleAlarmName, 2);

 for (int i = 0; i < alarmHistory.Count; i++)
 {
 var history = alarmHistory[i];
 Console.WriteLine($"\t{i + 1}. {history.HistorySummary}, time
 {history.Timestamp:g}");
 }
 if (!alarmHistory.Any())
 {
 Console.WriteLine($"\tNo alarm history data found for
 {exampleAlarmName}.");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Add an anomaly detector.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<SingleMetricAnomalyDetector> AddAnomalyDetector()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"15. Add an anomaly detector.");

 var customMetricNamespace = _configuration["customMetricNamespace"];

Basics 534

AWS SDK for .NET Developer Guide

 var customMetricName = _configuration["customMetricName"];

 var detector = new SingleMetricAnomalyDetector
 {
 MetricName = customMetricName,
 Namespace = customMetricNamespace,
 Stat = "Maximum"
 };
 await _cloudWatchWrapper.PutAnomalyDetector(detector);
 Console.WriteLine($"\tAdded anomaly detector for metric
 {customMetricName}.");

 Console.WriteLine(new string('-', 80));
 return detector;
 }

 /// <summary>
 /// Describe anomaly detectors.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task DescribeAnomalyDetectors()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"16. Describe anomaly detectors in the current
 account.");

 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];

 var detectors = await
 _cloudWatchWrapper.DescribeAnomalyDetectors(customMetricNamespace,
 customMetricName);

 for (int i = 0; i < detectors.Count; i++)
 {
 var detector = detectors[i];
 Console.WriteLine($"\t{i + 1}.
 {detector.SingleMetricAnomalyDetector.MetricName}, state {detector.StateValue}");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>

Basics 535

AWS SDK for .NET Developer Guide

 /// Fetch and open a metrics image for a CloudWatch metric and namespace.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task GetAndOpenMetricImage()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("17. Get a metric image from CloudWatch.");

 Console.WriteLine($"\tGetting Image data for custom metric.");
 var customMetricNamespace = _configuration["customMetricNamespace"];
 var customMetricName = _configuration["customMetricName"];

 var memoryStream = await
 _cloudWatchWrapper.GetTimeSeriesMetricImage(customMetricNamespace,
 customMetricName, "Maximum", 10);
 var file = _cloudWatchWrapper.SaveMetricImage(memoryStream, "MetricImages");

 ProcessStartInfo info = new ProcessStartInfo();

 Console.WriteLine($"\tFile saved as {Path.GetFileName(file)}.");
 Console.WriteLine($"\tPress enter to open the image.");
 Console.ReadLine();
 info.FileName = Path.Combine("ms-photos://", file);
 info.UseShellExecute = true;
 info.CreateNoWindow = true;
 info.Verb = string.Empty;

 Process.Start(info);

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Clean up created resources.
 /// </summary>
 /// <param name="metricNamespace">The namespace for metrics.</param>
 /// <param name="metric">The CloudWatch metric.</param>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"18. Clean up resources.");

 var dashboardName = _configuration["dashboardName"];

Basics 536

AWS SDK for .NET Developer Guide

 if (GetYesNoResponse($"\tDelete dashboard {dashboardName}? (y/n)"))
 {
 Console.WriteLine($"\tDeleting dashboard.");
 var dashboardList = new List<string> { dashboardName };
 await _cloudWatchWrapper.DeleteDashboards(dashboardList);
 }

 var alarmName = _configuration["exampleAlarmName"];
 if (GetYesNoResponse($"\tDelete alarm {alarmName}? (y/n)"))
 {
 Console.WriteLine($"\tCleaning up alarms.");
 var alarms = new List<string> { alarmName };
 await _cloudWatchWrapper.DeleteAlarms(alarms);
 }

 if (GetYesNoResponse($"\tDelete anomaly detector? (y/n)") &&
 anomalyDetector != null)
 {
 Console.WriteLine($"\tCleaning up anomaly detector.");

 await _cloudWatchWrapper.DeleteAnomalyDetector(
 anomalyDetector);
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
}

Basics 537

AWS SDK for .NET Developer Guide

Wrapper methods used by the scenario for CloudWatch actions.

/// <summary>
/// Wrapper class for Amazon CloudWatch methods.
/// </summary>
public class CloudWatchWrapper
{
 private readonly IAmazonCloudWatch _amazonCloudWatch;
 private readonly ILogger<CloudWatchWrapper> _logger;

 /// <summary>
 /// Constructor for the CloudWatch wrapper.
 /// </summary>
 /// <param name="amazonCloudWatch">The injected CloudWatch client.</param>
 /// <param name="logger">The injected logger for the wrapper.</param>
 public CloudWatchWrapper(IAmazonCloudWatch amazonCloudWatch,
 ILogger<CloudWatchWrapper> logger)

 {
 _logger = logger;
 _amazonCloudWatch = amazonCloudWatch;
 }

 /// <summary>
 /// List metrics available, optionally within a namespace.
 /// </summary>
 /// <param name="metricNamespace">Optional CloudWatch namespace to use when
 listing metrics.</param>
 /// <param name="filter">Optional dimension filter.</param>
 /// <param name="metricName">Optional metric name filter.</param>
 /// <returns>The list of metrics.</returns>
 public async Task<List<Metric>> ListMetrics(string? metricNamespace = null,
 DimensionFilter? filter = null, string? metricName = null)
 {
 var results = new List<Metric>();
 var paginateMetrics = _amazonCloudWatch.Paginators.ListMetrics(
 new ListMetricsRequest
 {
 Namespace = metricNamespace,
 Dimensions = filter != null ? new List<DimensionFilter> { filter } :
 null,
 MetricName = metricName
 });
 // Get the entire list using the paginator.

Basics 538

AWS SDK for .NET Developer Guide

 await foreach (var metric in paginateMetrics.Metrics)
 {
 results.Add(metric);
 }

 return results;
 }

 /// <summary>
 /// Wrapper to get statistics for a specific CloudWatch metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricName">The name of the metric.</param>
 /// <param name="statistics">The list of statistics to include.</param>
 /// <param name="dimensions">The list of dimensions to include.</param>
 /// <param name="days">The number of days in the past to include.</param>
 /// <param name="period">The period for the data.</param>
 /// <returns>A list of DataPoint objects for the statistics.</returns>
 public async Task<List<Datapoint>> GetMetricStatistics(string metricNamespace,
 string metricName, List<string> statistics, List<Dimension> dimensions, int
 days, int period)
 {
 var metricStatistics = await _amazonCloudWatch.GetMetricStatisticsAsync(
 new GetMetricStatisticsRequest()
 {
 Namespace = metricNamespace,
 MetricName = metricName,
 Dimensions = dimensions,
 Statistics = statistics,
 StartTimeUtc = DateTime.UtcNow.AddDays(-days),
 EndTimeUtc = DateTime.UtcNow,
 Period = period
 });

 return metricStatistics.Datapoints;
 }

 /// <summary>
 /// Wrapper to create or add to a dashboard with metrics.
 /// </summary>
 /// <param name="dashboardName">The name for the dashboard.</param>
 /// <param name="dashboardBody">The metric data in JSON for the dashboard.</
param>
 /// <returns>A list of validation messages for the dashboard.</returns>

Basics 539

AWS SDK for .NET Developer Guide

 public async Task<List<DashboardValidationMessage>> PutDashboard(string
 dashboardName,
 string dashboardBody)
 {
 // Updating a dashboard replaces all contents.
 // Best practice is to include a text widget indicating this dashboard was
 created programmatically.
 var dashboardResponse = await _amazonCloudWatch.PutDashboardAsync(
 new PutDashboardRequest()
 {
 DashboardName = dashboardName,
 DashboardBody = dashboardBody
 });

 return dashboardResponse.DashboardValidationMessages;
 }

 /// <summary>
 /// Get information on a dashboard.
 /// </summary>
 /// <param name="dashboardName">The name of the dashboard.</param>
 /// <returns>A JSON object with dashboard information.</returns>
 public async Task<string> GetDashboard(string dashboardName)
 {
 var dashboardResponse = await _amazonCloudWatch.GetDashboardAsync(
 new GetDashboardRequest()
 {
 DashboardName = dashboardName
 });

 return dashboardResponse.DashboardBody;
 }

 /// <summary>
 /// Get a list of dashboards.
 /// </summary>
 /// <returns>A list of DashboardEntry objects.</returns>
 public async Task<List<DashboardEntry>> ListDashboards()
 {
 var results = new List<DashboardEntry>();
 var paginateDashboards = _amazonCloudWatch.Paginators.ListDashboards(
 new ListDashboardsRequest());

Basics 540

AWS SDK for .NET Developer Guide

 // Get the entire list using the paginator.
 await foreach (var data in paginateDashboards.DashboardEntries)
 {
 results.Add(data);
 }

 return results;
 }

 /// <summary>
 /// Wrapper to add metric data to a CloudWatch metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricData">A data object for the metric data.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutMetricData(string metricNamespace,
 List<MetricDatum> metricData)
 {
 var putDataResponse = await _amazonCloudWatch.PutMetricDataAsync(
 new PutMetricDataRequest()
 {
 MetricData = metricData,
 Namespace = metricNamespace,
 });

 return putDataResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get an image for a metric graphed over time.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metric">The name of the metric.</param>
 /// <param name="stat">The name of the stat to chart.</param>
 /// <param name="period">The period to use for the chart.</param>
 /// <returns>A memory stream for the chart image.</returns>
 public async Task<MemoryStream> GetTimeSeriesMetricImage(string metricNamespace,
 string metric, string stat, int period)
 {
 var metricImageWidget = new
 {
 title = "Example Metric Graph",
 view = "timeSeries",
 stacked = false,

Basics 541

AWS SDK for .NET Developer Guide

 period = period,
 width = 1400,
 height = 600,
 metrics = new List<List<object>>
 { new() { metricNamespace, metric, new { stat } } }
 };

 var metricImageWidgetString = JsonSerializer.Serialize(metricImageWidget);
 var imageResponse = await _amazonCloudWatch.GetMetricWidgetImageAsync(
 new GetMetricWidgetImageRequest()
 {
 MetricWidget = metricImageWidgetString
 });

 return imageResponse.MetricWidgetImage;
 }

 /// <summary>
 /// Save a metric image to a file.
 /// </summary>
 /// <param name="memoryStream">The MemoryStream for the metric image.</param>
 /// <param name="metricName">The name of the metric.</param>
 /// <returns>The path to the file.</returns>
 public string SaveMetricImage(MemoryStream memoryStream, string metricName)
 {
 var metricFileName = $"{metricName}_{DateTime.Now.Ticks}.png";
 using var sr = new StreamReader(memoryStream);
 // Writes the memory stream to a file.
 File.WriteAllBytes(metricFileName, memoryStream.ToArray());
 var filePath = Path.Join(AppDomain.CurrentDomain.BaseDirectory,
 metricFileName);
 return filePath;
 }

 /// <summary>
 /// Get data for CloudWatch metrics.
 /// </summary>
 /// <param name="minutesOfData">The number of minutes of data to include.</
param>
 /// <param name="useDescendingTime">True to return the data descending by
 time.</param>
 /// <param name="endDateUtc">The end date for the data, in UTC.</param>
 /// <param name="maxDataPoints">The maximum data points to include.</param>
 /// <param name="dataQueries">Optional data queries to include.</param>

Basics 542

AWS SDK for .NET Developer Guide

 /// <returns>A list of the requested metric data.</returns>
 public async Task<List<MetricDataResult>> GetMetricData(int minutesOfData, bool
 useDescendingTime, DateTime? endDateUtc = null,
 int maxDataPoints = 0, List<MetricDataQuery>? dataQueries = null)
 {
 var metricData = new List<MetricDataResult>();
 // If no end time is provided, use the current time for the end time.
 endDateUtc ??= DateTime.UtcNow;
 var timeZoneOffset =
 TimeZoneInfo.Local.GetUtcOffset(endDateUtc.Value.ToLocalTime());
 var startTimeUtc = endDateUtc.Value.AddMinutes(-minutesOfData);
 // The timezone string should be in the format +0000, so use the timezone
 offset to format it correctly.
 var timeZoneString = $"{timeZoneOffset.Hours:D2}
{timeZoneOffset.Minutes:D2}";
 var paginatedMetricData = _amazonCloudWatch.Paginators.GetMetricData(
 new GetMetricDataRequest()
 {
 StartTimeUtc = startTimeUtc,
 EndTimeUtc = endDateUtc.Value,
 LabelOptions = new LabelOptions { Timezone = timeZoneString },
 ScanBy = useDescendingTime ? ScanBy.TimestampDescending :
 ScanBy.TimestampAscending,
 MaxDatapoints = maxDataPoints,
 MetricDataQueries = dataQueries,
 });

 await foreach (var data in paginatedMetricData.MetricDataResults)
 {
 metricData.Add(data);
 }
 return metricData;
 }

 /// <summary>
 /// Add a metric alarm to send an email when the metric passes a threshold.
 /// </summary>
 /// <param name="alarmDescription">A description of the alarm.</param>
 /// <param name="alarmName">The name for the alarm.</param>
 /// <param name="comparison">The type of comparison to use.</param>
 /// <param name="metricName">The name of the metric for the alarm.</param>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="threshold">The threshold value for the alarm.</param>

Basics 543

AWS SDK for .NET Developer Guide

 /// <param name="alarmActions">Optional actions to execute when in an alarm
 state.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutMetricEmailAlarm(string alarmDescription, string
 alarmName, ComparisonOperator comparison,
 string metricName, string metricNamespace, double threshold, List<string>
 alarmActions = null!)
 {
 try
 {
 var putEmailAlarmResponse = await _amazonCloudWatch.PutMetricAlarmAsync(
 new PutMetricAlarmRequest()
 {
 AlarmActions = alarmActions,
 AlarmDescription = alarmDescription,
 AlarmName = alarmName,
 ComparisonOperator = comparison,
 Threshold = threshold,
 Namespace = metricNamespace,
 MetricName = metricName,
 EvaluationPeriods = 1,
 Period = 10,
 Statistic = new Statistic("Maximum"),
 DatapointsToAlarm = 1,
 TreatMissingData = "ignore"
 });
 return putEmailAlarmResponse.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (LimitExceededException lex)
 {
 _logger.LogError(lex, $"Unable to add alarm {alarmName}. Alarm quota has
 already been reached.");
 }

 return false;
 }

 /// <summary>
 /// Add specific email actions to a list of action strings for a CloudWatch
 alarm.
 /// </summary>
 /// <param name="accountId">The AccountId for the alarm.</param>
 /// <param name="region">The region for the alarm.</param>

Basics 544

AWS SDK for .NET Developer Guide

 /// <param name="emailTopicName">An Amazon Simple Notification Service (SNS)
 topic for the alarm email.</param>
 /// <param name="alarmActions">Optional list of existing alarm actions to append
 to.</param>
 /// <returns>A list of string actions for an alarm.</returns>
 public List<string> AddEmailAlarmAction(string accountId, string region,
 string emailTopicName, List<string>? alarmActions = null)
 {
 alarmActions ??= new List<string>();
 var snsAlarmAction = $"arn:aws:sns:{region}:{accountId}:{emailTopicName}";
 alarmActions.Add(snsAlarmAction);
 return alarmActions;
 }

 /// <summary>
 /// Describe the current alarms, optionally filtered by state.
 /// </summary>
 /// <param name="stateValue">Optional filter for alarm state.</param>
 /// <returns>The list of alarm data.</returns>
 public async Task<List<MetricAlarm>> DescribeAlarms(StateValue? stateValue =
 null)
 {
 List<MetricAlarm> alarms = new List<MetricAlarm>();
 var paginatedDescribeAlarms = _amazonCloudWatch.Paginators.DescribeAlarms(
 new DescribeAlarmsRequest()
 {
 StateValue = stateValue
 });

 await foreach (var data in paginatedDescribeAlarms.MetricAlarms)
 {
 alarms.Add(data);
 }
 return alarms;
 }

 /// <summary>
 /// Describe the current alarms for a specific metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricName">The name of the metric.</param>
 /// <returns>The list of alarm data.</returns>
 public async Task<List<MetricAlarm>> DescribeAlarmsForMetric(string
 metricNamespace, string metricName)

Basics 545

AWS SDK for .NET Developer Guide

 {
 var alarmsResult = await _amazonCloudWatch.DescribeAlarmsForMetricAsync(
 new DescribeAlarmsForMetricRequest()
 {
 Namespace = metricNamespace,
 MetricName = metricName
 });

 return alarmsResult.MetricAlarms;
 }

 /// <summary>
 /// Describe the history of an alarm for a number of days in the past.
 /// </summary>
 /// <param name="alarmName">The name of the alarm.</param>
 /// <param name="historyDays">The number of days in the past.</param>
 /// <returns>The list of alarm history data.</returns>
 public async Task<List<AlarmHistoryItem>> DescribeAlarmHistory(string alarmName,
 int historyDays)
 {
 List<AlarmHistoryItem> alarmHistory = new List<AlarmHistoryItem>();
 var paginatedAlarmHistory =
 _amazonCloudWatch.Paginators.DescribeAlarmHistory(
 new DescribeAlarmHistoryRequest()
 {
 AlarmName = alarmName,
 EndDateUtc = DateTime.UtcNow,
 HistoryItemType = HistoryItemType.StateUpdate,
 StartDateUtc = DateTime.UtcNow.AddDays(-historyDays)
 });

 await foreach (var data in paginatedAlarmHistory.AlarmHistoryItems)
 {
 alarmHistory.Add(data);
 }
 return alarmHistory;
 }

 /// <summary>
 /// Delete a list of alarms from CloudWatch.
 /// </summary>
 /// <param name="alarmNames">A list of names of alarms to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteAlarms(List<string> alarmNames)

Basics 546

AWS SDK for .NET Developer Guide

 {
 var deleteAlarmsResult = await _amazonCloudWatch.DeleteAlarmsAsync(
 new DeleteAlarmsRequest()
 {
 AlarmNames = alarmNames
 });

 return deleteAlarmsResult.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Disable the actions for a list of alarms from CloudWatch.
 /// </summary>
 /// <param name="alarmNames">A list of names of alarms.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DisableAlarmActions(List<string> alarmNames)
 {
 var disableAlarmActionsResult = await
 _amazonCloudWatch.DisableAlarmActionsAsync(
 new DisableAlarmActionsRequest()
 {
 AlarmNames = alarmNames
 });

 return disableAlarmActionsResult.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Enable the actions for a list of alarms from CloudWatch.
 /// </summary>
 /// <param name="alarmNames">A list of names of alarms.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableAlarmActions(List<string> alarmNames)
 {
 var enableAlarmActionsResult = await
 _amazonCloudWatch.EnableAlarmActionsAsync(
 new EnableAlarmActionsRequest()
 {
 AlarmNames = alarmNames
 });

 return enableAlarmActionsResult.HttpStatusCode == HttpStatusCode.OK;
 }

Basics 547

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Add an anomaly detector for a single metric.
 /// </summary>
 /// <param name="anomalyDetector">A single metric anomaly detector.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutAnomalyDetector(SingleMetricAnomalyDetector
 anomalyDetector)
 {
 var putAlarmDetectorResult = await
 _amazonCloudWatch.PutAnomalyDetectorAsync(
 new PutAnomalyDetectorRequest()
 {
 SingleMetricAnomalyDetector = anomalyDetector
 });

 return putAlarmDetectorResult.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Describe anomaly detectors for a metric and namespace.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricName">The metric of the anomaly detectors.</param>
 /// <returns>The list of detectors.</returns>
 public async Task<List<AnomalyDetector>> DescribeAnomalyDetectors(string
 metricNamespace, string metricName)
 {
 List<AnomalyDetector> detectors = new List<AnomalyDetector>();
 var paginatedDescribeAnomalyDetectors =
 _amazonCloudWatch.Paginators.DescribeAnomalyDetectors(
 new DescribeAnomalyDetectorsRequest()
 {
 MetricName = metricName,
 Namespace = metricNamespace
 });

 await foreach (var data in
 paginatedDescribeAnomalyDetectors.AnomalyDetectors)
 {
 detectors.Add(data);
 }

 return detectors;
 }

Basics 548

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete a single metric anomaly detector.
 /// </summary>
 /// <param name="anomalyDetector">The anomaly detector to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteAnomalyDetector(SingleMetricAnomalyDetector
 anomalyDetector)
 {
 var deleteAnomalyDetectorResponse = await
 _amazonCloudWatch.DeleteAnomalyDetectorAsync(
 new DeleteAnomalyDetectorRequest()
 {
 SingleMetricAnomalyDetector = anomalyDetector
 });

 return deleteAnomalyDetectorResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete a list of CloudWatch dashboards.
 /// </summary>
 /// <param name="dashboardNames">List of dashboard names to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteDashboards(List<string> dashboardNames)
 {
 var deleteDashboardsResponse = await
 _amazonCloudWatch.DeleteDashboardsAsync(
 new DeleteDashboardsRequest()
 {
 DashboardNames = dashboardNames
 });

 return deleteDashboardsResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• DeleteAlarms

• DeleteAnomalyDetector

• DeleteDashboards

Basics 549

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DeleteAlarms
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DeleteAnomalyDetector
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DeleteDashboards

AWS SDK for .NET Developer Guide

• DescribeAlarmHistory

• DescribeAlarms

• DescribeAlarmsForMetric

• DescribeAnomalyDetectors

• GetMetricData

• GetMetricStatistics

• GetMetricWidgetImage

• ListMetrics

• PutAnomalyDetector

• PutDashboard

• PutMetricAlarm

• PutMetricData

Actions

DeleteAlarms

The following code example shows how to use DeleteAlarms.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a list of alarms from CloudWatch.
 /// </summary>
 /// <param name="alarmNames">A list of names of alarms to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteAlarms(List<string> alarmNames)
 {
 var deleteAlarmsResult = await _amazonCloudWatch.DeleteAlarmsAsync(
 new DeleteAlarmsRequest()

Actions 550

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAlarmHistory
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAlarms
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAlarmsForMetric
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAnomalyDetectors
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetMetricData
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetMetricStatistics
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetMetricWidgetImage
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/ListMetrics
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutAnomalyDetector
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutDashboard
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutMetricAlarm
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutMetricData
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 {
 AlarmNames = alarmNames
 });

 return deleteAlarmsResult.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteAlarms in AWS SDK for .NET API Reference.

DeleteAnomalyDetector

The following code example shows how to use DeleteAnomalyDetector.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a single metric anomaly detector.
 /// </summary>
 /// <param name="anomalyDetector">The anomaly detector to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteAnomalyDetector(SingleMetricAnomalyDetector
 anomalyDetector)
 {
 var deleteAnomalyDetectorResponse = await
 _amazonCloudWatch.DeleteAnomalyDetectorAsync(
 new DeleteAnomalyDetectorRequest()
 {
 SingleMetricAnomalyDetector = anomalyDetector
 });

 return deleteAnomalyDetectorResponse.HttpStatusCode == HttpStatusCode.OK;
 }

Actions 551

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DeleteAlarms
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DeleteAnomalyDetector in AWS SDK for .NET API Reference.

DeleteDashboards

The following code example shows how to use DeleteDashboards.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a list of CloudWatch dashboards.
 /// </summary>
 /// <param name="dashboardNames">List of dashboard names to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteDashboards(List<string> dashboardNames)
 {
 var deleteDashboardsResponse = await
 _amazonCloudWatch.DeleteDashboardsAsync(
 new DeleteDashboardsRequest()
 {
 DashboardNames = dashboardNames
 });

 return deleteDashboardsResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteDashboards in AWS SDK for .NET API Reference.

DescribeAlarmHistory

The following code example shows how to use DescribeAlarmHistory.

Actions 552

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DeleteAnomalyDetector
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DeleteDashboards

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe the history of an alarm for a number of days in the past.
 /// </summary>
 /// <param name="alarmName">The name of the alarm.</param>
 /// <param name="historyDays">The number of days in the past.</param>
 /// <returns>The list of alarm history data.</returns>
 public async Task<List<AlarmHistoryItem>> DescribeAlarmHistory(string alarmName,
 int historyDays)
 {
 List<AlarmHistoryItem> alarmHistory = new List<AlarmHistoryItem>();
 var paginatedAlarmHistory =
 _amazonCloudWatch.Paginators.DescribeAlarmHistory(
 new DescribeAlarmHistoryRequest()
 {
 AlarmName = alarmName,
 EndDateUtc = DateTime.UtcNow,
 HistoryItemType = HistoryItemType.StateUpdate,
 StartDateUtc = DateTime.UtcNow.AddDays(-historyDays)
 });

 await foreach (var data in paginatedAlarmHistory.AlarmHistoryItems)
 {
 alarmHistory.Add(data);
 }
 return alarmHistory;
 }

• For API details, see DescribeAlarmHistory in AWS SDK for .NET API Reference.

DescribeAlarms

The following code example shows how to use DescribeAlarms.

Actions 553

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAlarmHistory

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe the current alarms, optionally filtered by state.
 /// </summary>
 /// <param name="stateValue">Optional filter for alarm state.</param>
 /// <returns>The list of alarm data.</returns>
 public async Task<List<MetricAlarm>> DescribeAlarms(StateValue? stateValue =
 null)
 {
 List<MetricAlarm> alarms = new List<MetricAlarm>();
 var paginatedDescribeAlarms = _amazonCloudWatch.Paginators.DescribeAlarms(
 new DescribeAlarmsRequest()
 {
 StateValue = stateValue
 });

 await foreach (var data in paginatedDescribeAlarms.MetricAlarms)
 {
 alarms.Add(data);
 }
 return alarms;
 }

• For API details, see DescribeAlarms in AWS SDK for .NET API Reference.

DescribeAlarmsForMetric

The following code example shows how to use DescribeAlarmsForMetric.

Actions 554

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAlarms

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe the current alarms for a specific metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricName">The name of the metric.</param>
 /// <returns>The list of alarm data.</returns>
 public async Task<List<MetricAlarm>> DescribeAlarmsForMetric(string
 metricNamespace, string metricName)
 {
 var alarmsResult = await _amazonCloudWatch.DescribeAlarmsForMetricAsync(
 new DescribeAlarmsForMetricRequest()
 {
 Namespace = metricNamespace,
 MetricName = metricName
 });

 return alarmsResult.MetricAlarms;
 }

• For API details, see DescribeAlarmsForMetric in AWS SDK for .NET API Reference.

DescribeAnomalyDetectors

The following code example shows how to use DescribeAnomalyDetectors.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 555

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAlarmsForMetric
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Describe anomaly detectors for a metric and namespace.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricName">The metric of the anomaly detectors.</param>
 /// <returns>The list of detectors.</returns>
 public async Task<List<AnomalyDetector>> DescribeAnomalyDetectors(string
 metricNamespace, string metricName)
 {
 List<AnomalyDetector> detectors = new List<AnomalyDetector>();
 var paginatedDescribeAnomalyDetectors =
 _amazonCloudWatch.Paginators.DescribeAnomalyDetectors(
 new DescribeAnomalyDetectorsRequest()
 {
 MetricName = metricName,
 Namespace = metricNamespace
 });

 await foreach (var data in
 paginatedDescribeAnomalyDetectors.AnomalyDetectors)
 {
 detectors.Add(data);
 }

 return detectors;
 }

• For API details, see DescribeAnomalyDetectors in AWS SDK for .NET API Reference.

DisableAlarmActions

The following code example shows how to use DisableAlarmActions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 556

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DescribeAnomalyDetectors
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Disable the actions for a list of alarms from CloudWatch.
 /// </summary>
 /// <param name="alarmNames">A list of names of alarms.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DisableAlarmActions(List<string> alarmNames)
 {
 var disableAlarmActionsResult = await
 _amazonCloudWatch.DisableAlarmActionsAsync(
 new DisableAlarmActionsRequest()
 {
 AlarmNames = alarmNames
 });

 return disableAlarmActionsResult.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DisableAlarmActions in AWS SDK for .NET API Reference.

EnableAlarmActions

The following code example shows how to use EnableAlarmActions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Enable the actions for a list of alarms from CloudWatch.
 /// </summary>
 /// <param name="alarmNames">A list of names of alarms.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableAlarmActions(List<string> alarmNames)
 {
 var enableAlarmActionsResult = await
 _amazonCloudWatch.EnableAlarmActionsAsync(

Actions 557

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/DisableAlarmActions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 new EnableAlarmActionsRequest()
 {
 AlarmNames = alarmNames
 });

 return enableAlarmActionsResult.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see EnableAlarmActions in AWS SDK for .NET API Reference.

GetDashboard

The following code example shows how to use GetDashboard.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information on a dashboard.
 /// </summary>
 /// <param name="dashboardName">The name of the dashboard.</param>
 /// <returns>A JSON object with dashboard information.</returns>
 public async Task<string> GetDashboard(string dashboardName)
 {
 var dashboardResponse = await _amazonCloudWatch.GetDashboardAsync(
 new GetDashboardRequest()
 {
 DashboardName = dashboardName
 });

 return dashboardResponse.DashboardBody;
 }

Actions 558

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/EnableAlarmActions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

• For API details, see GetDashboard in AWS SDK for .NET API Reference.

GetMetricData

The following code example shows how to use GetMetricData.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get data for CloudWatch metrics.
 /// </summary>
 /// <param name="minutesOfData">The number of minutes of data to include.</
param>
 /// <param name="useDescendingTime">True to return the data descending by
 time.</param>
 /// <param name="endDateUtc">The end date for the data, in UTC.</param>
 /// <param name="maxDataPoints">The maximum data points to include.</param>
 /// <param name="dataQueries">Optional data queries to include.</param>
 /// <returns>A list of the requested metric data.</returns>
 public async Task<List<MetricDataResult>> GetMetricData(int minutesOfData, bool
 useDescendingTime, DateTime? endDateUtc = null,
 int maxDataPoints = 0, List<MetricDataQuery>? dataQueries = null)
 {
 var metricData = new List<MetricDataResult>();
 // If no end time is provided, use the current time for the end time.
 endDateUtc ??= DateTime.UtcNow;
 var timeZoneOffset =
 TimeZoneInfo.Local.GetUtcOffset(endDateUtc.Value.ToLocalTime());
 var startTimeUtc = endDateUtc.Value.AddMinutes(-minutesOfData);
 // The timezone string should be in the format +0000, so use the timezone
 offset to format it correctly.
 var timeZoneString = $"{timeZoneOffset.Hours:D2}
{timeZoneOffset.Minutes:D2}";
 var paginatedMetricData = _amazonCloudWatch.Paginators.GetMetricData(
 new GetMetricDataRequest()
 {

Actions 559

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetDashboard
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 StartTimeUtc = startTimeUtc,
 EndTimeUtc = endDateUtc.Value,
 LabelOptions = new LabelOptions { Timezone = timeZoneString },
 ScanBy = useDescendingTime ? ScanBy.TimestampDescending :
 ScanBy.TimestampAscending,
 MaxDatapoints = maxDataPoints,
 MetricDataQueries = dataQueries,
 });

 await foreach (var data in paginatedMetricData.MetricDataResults)
 {
 metricData.Add(data);
 }
 return metricData;
 }

• For API details, see GetMetricData in AWS SDK for .NET API Reference.

GetMetricStatistics

The following code example shows how to use GetMetricStatistics.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get billing statistics using a call to a wrapper class.
 /// </summary>
 /// <returns>A collection of billing statistics.</returns>
 private static async Task<List<Datapoint>> SetupBillingStatistics()
 {
 // Make a request for EstimatedCharges with a period of one day for the past
 seven days.
 var billingStatistics = await _cloudWatchWrapper.GetMetricStatistics(
 "AWS/Billing",

Actions 560

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetMetricData
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 "EstimatedCharges",
 new List<string>() { "Maximum" },
 new List<Dimension>() { new Dimension { Name = "Currency", Value =
 "USD" } },
 7,
 86400);

 billingStatistics = billingStatistics.OrderBy(n => n.Timestamp).ToList();

 return billingStatistics;
 }

 /// <summary>
 /// Wrapper to get statistics for a specific CloudWatch metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricName">The name of the metric.</param>
 /// <param name="statistics">The list of statistics to include.</param>
 /// <param name="dimensions">The list of dimensions to include.</param>
 /// <param name="days">The number of days in the past to include.</param>
 /// <param name="period">The period for the data.</param>
 /// <returns>A list of DataPoint objects for the statistics.</returns>
 public async Task<List<Datapoint>> GetMetricStatistics(string metricNamespace,
 string metricName, List<string> statistics, List<Dimension> dimensions, int
 days, int period)
 {
 var metricStatistics = await _amazonCloudWatch.GetMetricStatisticsAsync(
 new GetMetricStatisticsRequest()
 {
 Namespace = metricNamespace,
 MetricName = metricName,
 Dimensions = dimensions,
 Statistics = statistics,
 StartTimeUtc = DateTime.UtcNow.AddDays(-days),
 EndTimeUtc = DateTime.UtcNow,
 Period = period
 });

 return metricStatistics.Datapoints;
 }

• For API details, see GetMetricStatistics in AWS SDK for .NET API Reference.

Actions 561

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetMetricStatistics

AWS SDK for .NET Developer Guide

GetMetricWidgetImage

The following code example shows how to use GetMetricWidgetImage.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get an image for a metric graphed over time.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metric">The name of the metric.</param>
 /// <param name="stat">The name of the stat to chart.</param>
 /// <param name="period">The period to use for the chart.</param>
 /// <returns>A memory stream for the chart image.</returns>
 public async Task<MemoryStream> GetTimeSeriesMetricImage(string metricNamespace,
 string metric, string stat, int period)
 {
 var metricImageWidget = new
 {
 title = "Example Metric Graph",
 view = "timeSeries",
 stacked = false,
 period = period,
 width = 1400,
 height = 600,
 metrics = new List<List<object>>
 { new() { metricNamespace, metric, new { stat } } }
 };

 var metricImageWidgetString = JsonSerializer.Serialize(metricImageWidget);
 var imageResponse = await _amazonCloudWatch.GetMetricWidgetImageAsync(
 new GetMetricWidgetImageRequest()
 {
 MetricWidget = metricImageWidgetString
 });

 return imageResponse.MetricWidgetImage;

Actions 562

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Save a metric image to a file.
 /// </summary>
 /// <param name="memoryStream">The MemoryStream for the metric image.</param>
 /// <param name="metricName">The name of the metric.</param>
 /// <returns>The path to the file.</returns>
 public string SaveMetricImage(MemoryStream memoryStream, string metricName)
 {
 var metricFileName = $"{metricName}_{DateTime.Now.Ticks}.png";
 using var sr = new StreamReader(memoryStream);
 // Writes the memory stream to a file.
 File.WriteAllBytes(metricFileName, memoryStream.ToArray());
 var filePath = Path.Join(AppDomain.CurrentDomain.BaseDirectory,
 metricFileName);
 return filePath;
 }

• For API details, see GetMetricWidgetImage in AWS SDK for .NET API Reference.

ListDashboards

The following code example shows how to use ListDashboards.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of dashboards.
 /// </summary>
 /// <returns>A list of DashboardEntry objects.</returns>
 public async Task<List<DashboardEntry>> ListDashboards()
 {
 var results = new List<DashboardEntry>();
 var paginateDashboards = _amazonCloudWatch.Paginators.ListDashboards(

Actions 563

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/GetMetricWidgetImage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 new ListDashboardsRequest());
 // Get the entire list using the paginator.
 await foreach (var data in paginateDashboards.DashboardEntries)
 {
 results.Add(data);
 }

 return results;
 }

• For API details, see ListDashboards in AWS SDK for .NET API Reference.

ListMetrics

The following code example shows how to use ListMetrics.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List metrics available, optionally within a namespace.
 /// </summary>
 /// <param name="metricNamespace">Optional CloudWatch namespace to use when
 listing metrics.</param>
 /// <param name="filter">Optional dimension filter.</param>
 /// <param name="metricName">Optional metric name filter.</param>
 /// <returns>The list of metrics.</returns>
 public async Task<List<Metric>> ListMetrics(string? metricNamespace = null,
 DimensionFilter? filter = null, string? metricName = null)
 {
 var results = new List<Metric>();
 var paginateMetrics = _amazonCloudWatch.Paginators.ListMetrics(
 new ListMetricsRequest
 {
 Namespace = metricNamespace,

Actions 564

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/ListDashboards
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 Dimensions = filter != null ? new List<DimensionFilter> { filter } :
 null,
 MetricName = metricName
 });
 // Get the entire list using the paginator.
 await foreach (var metric in paginateMetrics.Metrics)
 {
 results.Add(metric);
 }

 return results;
 }

• For API details, see ListMetrics in AWS SDK for .NET API Reference.

PutAnomalyDetector

The following code example shows how to use PutAnomalyDetector.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Add an anomaly detector for a single metric.
 /// </summary>
 /// <param name="anomalyDetector">A single metric anomaly detector.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutAnomalyDetector(SingleMetricAnomalyDetector
 anomalyDetector)
 {
 var putAlarmDetectorResult = await
 _amazonCloudWatch.PutAnomalyDetectorAsync(
 new PutAnomalyDetectorRequest()
 {
 SingleMetricAnomalyDetector = anomalyDetector
 });

Actions 565

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/ListMetrics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 return putAlarmDetectorResult.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see PutAnomalyDetector in AWS SDK for .NET API Reference.

PutDashboard

The following code example shows how to use PutDashboard.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Set up a dashboard using a call to the wrapper class.
 /// </summary>
 /// <param name="customMetricNamespace">The metric namespace.</param>
 /// <param name="customMetricName">The metric name.</param>
 /// <param name="dashboardName">The name of the dashboard.</param>
 /// <returns>A list of validation messages.</returns>
 private static async Task<List<DashboardValidationMessage>> SetupDashboard(
 string customMetricNamespace, string customMetricName, string dashboardName)
 {
 // Get the dashboard model from configuration.
 var newDashboard = new DashboardModel();
 _configuration.GetSection("dashboardExampleBody").Bind(newDashboard);

 // Add a new metric to the dashboard.
 newDashboard.Widgets.Add(new Widget
 {
 Height = 8,
 Width = 8,
 Y = 8,
 X = 0,
 Type = "metric",

Actions 566

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutAnomalyDetector
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 Properties = new Properties
 {
 Metrics = new List<List<object>>
 { new() { customMetricNamespace, customMetricName } },
 View = "timeSeries",
 Region = "us-east-1",
 Stat = "Sum",
 Period = 86400,
 YAxis = new YAxis { Left = new Left { Min = 0, Max = 100 } },
 Title = "Custom Metric Widget",
 LiveData = true,
 Sparkline = true,
 Trend = true,
 Stacked = false,
 SetPeriodToTimeRange = false
 }
 });

 var newDashboardString = JsonSerializer.Serialize(newDashboard,
 new JsonSerializerOptions
 { DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull });
 var validationMessages =
 await _cloudWatchWrapper.PutDashboard(dashboardName,
 newDashboardString);

 return validationMessages;
 }

 /// <summary>
 /// Wrapper to create or add to a dashboard with metrics.
 /// </summary>
 /// <param name="dashboardName">The name for the dashboard.</param>
 /// <param name="dashboardBody">The metric data in JSON for the dashboard.</
param>
 /// <returns>A list of validation messages for the dashboard.</returns>
 public async Task<List<DashboardValidationMessage>> PutDashboard(string
 dashboardName,
 string dashboardBody)
 {
 // Updating a dashboard replaces all contents.
 // Best practice is to include a text widget indicating this dashboard was
 created programmatically.
 var dashboardResponse = await _amazonCloudWatch.PutDashboardAsync(
 new PutDashboardRequest()

Actions 567

AWS SDK for .NET Developer Guide

 {
 DashboardName = dashboardName,
 DashboardBody = dashboardBody
 });

 return dashboardResponse.DashboardValidationMessages;
 }

• For API details, see PutDashboard in AWS SDK for .NET API Reference.

PutMetricAlarm

The following code example shows how to use PutMetricAlarm.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Add a metric alarm to send an email when the metric passes a threshold.
 /// </summary>
 /// <param name="alarmDescription">A description of the alarm.</param>
 /// <param name="alarmName">The name for the alarm.</param>
 /// <param name="comparison">The type of comparison to use.</param>
 /// <param name="metricName">The name of the metric for the alarm.</param>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="threshold">The threshold value for the alarm.</param>
 /// <param name="alarmActions">Optional actions to execute when in an alarm
 state.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutMetricEmailAlarm(string alarmDescription, string
 alarmName, ComparisonOperator comparison,
 string metricName, string metricNamespace, double threshold, List<string>
 alarmActions = null!)
 {
 try

Actions 568

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutDashboard
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 {
 var putEmailAlarmResponse = await _amazonCloudWatch.PutMetricAlarmAsync(
 new PutMetricAlarmRequest()
 {
 AlarmActions = alarmActions,
 AlarmDescription = alarmDescription,
 AlarmName = alarmName,
 ComparisonOperator = comparison,
 Threshold = threshold,
 Namespace = metricNamespace,
 MetricName = metricName,
 EvaluationPeriods = 1,
 Period = 10,
 Statistic = new Statistic("Maximum"),
 DatapointsToAlarm = 1,
 TreatMissingData = "ignore"
 });
 return putEmailAlarmResponse.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (LimitExceededException lex)
 {
 _logger.LogError(lex, $"Unable to add alarm {alarmName}. Alarm quota has
 already been reached.");
 }

 return false;
 }

 /// <summary>
 /// Add specific email actions to a list of action strings for a CloudWatch
 alarm.
 /// </summary>
 /// <param name="accountId">The AccountId for the alarm.</param>
 /// <param name="region">The region for the alarm.</param>
 /// <param name="emailTopicName">An Amazon Simple Notification Service (SNS)
 topic for the alarm email.</param>
 /// <param name="alarmActions">Optional list of existing alarm actions to append
 to.</param>
 /// <returns>A list of string actions for an alarm.</returns>
 public List<string> AddEmailAlarmAction(string accountId, string region,
 string emailTopicName, List<string>? alarmActions = null)
 {
 alarmActions ??= new List<string>();
 var snsAlarmAction = $"arn:aws:sns:{region}:{accountId}:{emailTopicName}";

Actions 569

AWS SDK for .NET Developer Guide

 alarmActions.Add(snsAlarmAction);
 return alarmActions;
 }

• For API details, see PutMetricAlarm in AWS SDK for .NET API Reference.

PutMetricData

The following code example shows how to use PutMetricData.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Add some metric data using a call to a wrapper class.
 /// </summary>
 /// <param name="customMetricName">The metric name.</param>
 /// <param name="customMetricNamespace">The metric namespace.</param>
 /// <returns></returns>
 private static async Task<List<MetricDatum>> PutRandomMetricData(string
 customMetricName,
 string customMetricNamespace)
 {
 List<MetricDatum> customData = new List<MetricDatum>();
 Random rnd = new Random();

 // Add 10 random values up to 100, starting with a timestamp 15 minutes in
 the past.
 var utcNowMinus15 = DateTime.UtcNow.AddMinutes(-15);
 for (int i = 0; i < 10; i++)
 {
 var metricValue = rnd.Next(0, 100);
 customData.Add(
 new MetricDatum

Actions 570

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutMetricAlarm
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatch#code-examples

AWS SDK for .NET Developer Guide

 {
 MetricName = customMetricName,
 Value = metricValue,
 TimestampUtc = utcNowMinus15.AddMinutes(i)
 }
);
 }

 await _cloudWatchWrapper.PutMetricData(customMetricNamespace, customData);
 return customData;
 }

 /// <summary>
 /// Wrapper to add metric data to a CloudWatch metric.
 /// </summary>
 /// <param name="metricNamespace">The namespace of the metric.</param>
 /// <param name="metricData">A data object for the metric data.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutMetricData(string metricNamespace,
 List<MetricDatum> metricData)
 {
 var putDataResponse = await _amazonCloudWatch.PutMetricDataAsync(
 new PutMetricDataRequest()
 {
 MetricData = metricData,
 Namespace = metricNamespace,
 });

 return putDataResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see PutMetricData in AWS SDK for .NET API Reference.

CloudWatch Logs examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with CloudWatch Logs.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

CloudWatch Logs 571

https://docs.aws.amazon.com/goto/DotNetSDKV3/monitoring-2010-08-01/PutMetricData

AWS SDK for .NET Developer Guide

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

AssociateKmsKey

The following code example shows how to use AssociateKmsKey.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to associate an AWS Key Management Service (AWS KMS) key with
 /// an Amazon CloudWatch Logs log group.
 /// </summary>
 public class AssociateKmsKey
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();

 string kmsKeyId = "arn:aws:kms:us-west-2:<account-
number>:key/7c9eccc2-38cb-4c4f-9db3-766ee8dd3ad4";

Actions 572

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 string groupName = "cloudwatchlogs-example-loggroup";

 var request = new AssociateKmsKeyRequest
 {
 KmsKeyId = kmsKeyId,
 LogGroupName = groupName,
 };

 var response = await client.AssociateKmsKeyAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully associated KMS key ID: {kmsKeyId}
 with log group: {groupName}.");
 }
 else
 {
 Console.WriteLine("Could not make the association between:
 {kmsKeyId} and {groupName}.");
 }
 }
 }

• For API details, see AssociateKmsKey in AWS SDK for .NET API Reference.

CancelExportTask

The following code example shows how to use CancelExportTask.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;

Actions 573

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/AssociateKmsKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to cancel an Amazon CloudWatch Logs export task.
 /// </summary>
 public class CancelExportTask
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();
 string taskId = "exampleTaskId";

 var request = new CancelExportTaskRequest
 {
 TaskId = taskId,
 };

 var response = await client.CancelExportTaskAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"{taskId} successfully canceled.");
 }
 else
 {
 Console.WriteLine($"{taskId} could not be canceled.");
 }
 }
 }

• For API details, see CancelExportTask in AWS SDK for .NET API Reference.

CreateExportTask

The following code example shows how to use CreateExportTask.

Actions 574

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CancelExportTask

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to create an Export Task to export the contents of the Amazon
 /// CloudWatch Logs to the specified Amazon Simple Storage Service (Amazon S3)
 /// bucket.
 /// </summary>
 public class CreateExportTask
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();
 string taskName = "export-task-example";
 string logGroupName = "cloudwatchlogs-example-loggroup";
 string destination = "amzn-s3-demo-bucket";
 var fromTime = 1437584472382;
 var toTime = 1437584472833;

 var request = new CreateExportTaskRequest
 {
 From = fromTime,
 To = toTime,
 TaskName = taskName,
 LogGroupName = logGroupName,
 Destination = destination,
 };

Actions 575

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 var response = await client.CreateExportTaskAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"The task, {taskName} with ID: " +
 $"{response.TaskId} has been created
 successfully.");
 }
 }
 }

• For API details, see CreateExportTask in AWS SDK for .NET API Reference.

CreateLogGroup

The following code example shows how to use CreateLogGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to create an Amazon CloudWatch Logs log group.
 /// </summary>
 public class CreateLogGroup
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client

Actions 576

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CreateExportTask
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 // constructor.
 var client = new AmazonCloudWatchLogsClient();

 string logGroupName = "cloudwatchlogs-example-loggroup";

 var request = new CreateLogGroupRequest
 {
 LogGroupName = logGroupName,
 };

 var response = await client.CreateLogGroupAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully create log group with ID:
 {logGroupName}.");
 }
 else
 {
 Console.WriteLine("Could not create log group.");
 }
 }
 }

• For API details, see CreateLogGroup in AWS SDK for .NET API Reference.

CreateLogStream

The following code example shows how to use CreateLogStream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;

Actions 577

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CreateLogGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to create an Amazon CloudWatch Logs stream for a CloudWatch
 /// log group.
 /// </summary>
 public class CreateLogStream
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();
 string logGroupName = "cloudwatchlogs-example-loggroup";
 string logStreamName = "cloudwatchlogs-example-logstream";

 var request = new CreateLogStreamRequest
 {
 LogGroupName = logGroupName,
 LogStreamName = logStreamName,
 };

 var response = await client.CreateLogStreamAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"{logStreamName} successfully created for
 {logGroupName}.");
 }
 else
 {
 Console.WriteLine("Could not create stream.");
 }
 }
 }

• For API details, see CreateLogStream in AWS SDK for .NET API Reference.

Actions 578

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/CreateLogStream

AWS SDK for .NET Developer Guide

DeleteLogGroup

The following code example shows how to use DeleteLogGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Uses the Amazon CloudWatch Logs Service to delete an existing
 /// CloudWatch Logs log group.
 /// </summary>
 public class DeleteLogGroup
 {
 public static async Task Main()
 {
 var client = new AmazonCloudWatchLogsClient();
 string logGroupName = "cloudwatchlogs-example-loggroup";

 var request = new DeleteLogGroupRequest
 {
 LogGroupName = logGroupName,
 };

 var response = await client.DeleteLogGroupAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully deleted CloudWatch log group,
 {logGroupName}.");
 }
 }
 }

Actions 579

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DeleteLogGroup in AWS SDK for .NET API Reference.

DescribeExportTasks

The following code example shows how to use DescribeExportTasks.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Shows how to retrieve a list of information about Amazon CloudWatch
 /// Logs export tasks.
 /// </summary>
 public class DescribeExportTasks
 {
 public static async Task Main()
 {
 // This client object will be associated with the same AWS Region
 // as the default user on this system. If you need to use a
 // different AWS Region, pass it as a parameter to the client
 // constructor.
 var client = new AmazonCloudWatchLogsClient();

 var request = new DescribeExportTasksRequest
 {
 Limit = 5,
 };

 var response = new DescribeExportTasksResponse();

Actions 580

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/DeleteLogGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 do
 {
 response = await client.DescribeExportTasksAsync(request);
 response.ExportTasks.ForEach(t =>
 {
 Console.WriteLine($"{t.TaskName} with ID: {t.TaskId} has status:
 {t.Status}");
 });
 }
 while (response.NextToken is not null);
 }
 }

• For API details, see DescribeExportTasks in AWS SDK for .NET API Reference.

DescribeLogGroups

The following code example shows how to use DescribeLogGroups.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.CloudWatchLogs;
 using Amazon.CloudWatchLogs.Model;

 /// <summary>
 /// Retrieves information about existing Amazon CloudWatch Logs log groups
 /// and displays the information on the console.
 /// </summary>
 public class DescribeLogGroups
 {
 public static async Task Main()
 {

Actions 581

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/DescribeExportTasks
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/CloudWatchLogs#code-examples

AWS SDK for .NET Developer Guide

 // Creates a CloudWatch Logs client using the default
 // user. If you need to work with resources in another
 // AWS Region than the one defined for the default user,
 // pass the AWS Region as a parameter to the client constructor.
 var client = new AmazonCloudWatchLogsClient();

 bool done = false;
 string newToken = null;

 var request = new DescribeLogGroupsRequest
 {
 Limit = 5,
 };

 DescribeLogGroupsResponse response;

 do
 {
 if (newToken is not null)
 {
 request.NextToken = newToken;
 }

 response = await client.DescribeLogGroupsAsync(request);

 response.LogGroups.ForEach(lg =>
 {
 Console.WriteLine($"{lg.LogGroupName} is associated with the
 key: {lg.KmsKeyId}.");
 Console.WriteLine($"Created on: {lg.CreationTime.Date.Date}");
 Console.WriteLine($"Date for this group will be stored for:
 {lg.RetentionInDays} days.\n");
 });

 if (response.NextToken is null)
 {
 done = true;
 }
 else
 {
 newToken = response.NextToken;
 }
 }
 while (!done);

Actions 582

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see DescribeLogGroups in AWS SDK for .NET API Reference.

StartLiveTail

The following code example shows how to use StartLiveTail.

AWS SDK for .NET

Include the required files.

using Amazon;
using Amazon.CloudWatchLogs;
using Amazon.CloudWatchLogs.Model;

Start the Live Tail session.

 var client = new AmazonCloudWatchLogsClient();
 var request = new StartLiveTailRequest
 {
 LogGroupIdentifiers = logGroupIdentifiers,
 LogStreamNames = logStreamNames,
 LogEventFilterPattern = filterPattern,
 };

 var response = await client.StartLiveTailAsync(request);

 // Catch if request fails
 if (response.HttpStatusCode != System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine("Failed to start live tail session");
 return;
 }

You can handle the events from the Live Tail session in two ways:

Actions 583

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/DescribeLogGroups

AWS SDK for .NET Developer Guide

 /* Method 1
 * 1). Asynchronously loop through the event stream
 * 2). Set a timer to dispose the stream and stop the Live Tail session
 at the end.
 */
 var eventStream = response.ResponseStream;
 var task = Task.Run(() =>
 {
 foreach (var item in eventStream)
 {
 if (item is LiveTailSessionUpdate liveTailSessionUpdate)
 {
 foreach (var sessionResult in
 liveTailSessionUpdate.SessionResults)
 {
 Console.WriteLine("Message : {0}",
 sessionResult.Message);
 }
 }
 if (item is LiveTailSessionStart)
 {
 Console.WriteLine("Live Tail session started");
 }
 // On-stream exceptions are processed here
 if (item is CloudWatchLogsEventStreamException)
 {
 Console.WriteLine($"ERROR: {item}");
 }
 }
 });
 // Close the stream to stop the session after a timeout
 if (!task.Wait(TimeSpan.FromSeconds(10))){
 eventStream.Dispose();
 Console.WriteLine("End of line");
 }

 /* Method 2
 * 1). Add event handlers to each event variable
 * 2). Start processing the stream and wait for a timeout using
 AutoResetEvent
 */
 AutoResetEvent endEvent = new AutoResetEvent(false);

Actions 584

AWS SDK for .NET Developer Guide

 var eventStream = response.ResponseStream;
 using (eventStream) // automatically disposes the stream to stop the
 session after execution finishes
 {
 eventStream.SessionStartReceived += (sender, e) =>
 {
 Console.WriteLine("LiveTail session started");
 };
 eventStream.SessionUpdateReceived += (sender, e) =>
 {
 foreach (LiveTailSessionLogEvent logEvent in
 e.EventStreamEvent.SessionResults){
 Console.WriteLine("Message: {0}", logEvent.Message);
 }
 };
 // On-stream exceptions are captured here
 eventStream.ExceptionReceived += (sender, e) =>
 {
 Console.WriteLine($"ERROR: {e.EventStreamException.Message}");
 };

 eventStream.StartProcessing();
 // Stream events for this amount of time.
 endEvent.WaitOne(TimeSpan.FromSeconds(10));
 Console.WriteLine("End of line");
 }

• For API details, see StartLiveTail in AWS SDK for .NET API Reference.

Amazon Cognito Identity Provider examples using AWS SDK
for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Cognito Identity Provider.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Amazon Cognito Identity Provider 585

https://docs.aws.amazon.com/goto/DotNetSDKV3/logs-2014-03-28/StartLiveTail

AWS SDK for .NET Developer Guide

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

AdminGetUser

The following code example shows how to use AdminGetUser.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the specified user from an Amazon Cognito user pool with administrator
 access.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="poolId">The Id of the Amazon Cognito user pool.</param>
 /// <returns>Async task.</returns>
 public async Task<UserStatusType> GetAdminUserAsync(string userName, string
 poolId)
 {
 AdminGetUserRequest userRequest = new AdminGetUserRequest
 {
 Username = userName,
 UserPoolId = poolId,
 };

 var response = await _cognitoService.AdminGetUserAsync(userRequest);

 Console.WriteLine($"User status {response.UserStatus}");

Actions 586

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 return response.UserStatus;
 }

• For API details, see AdminGetUser in AWS SDK for .NET API Reference.

AdminInitiateAuth

The following code example shows how to use AdminInitiateAuth.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Initiate an admin auth request.
 /// </summary>
 /// <param name="clientId">The client ID to use.</param>
 /// <param name="userPoolId">The ID of the user pool.</param>
 /// <param name="userName">The username to authenticate.</param>
 /// <param name="password">The user's password.</param>
 /// <returns>The session to use in challenge-response.</returns>
 public async Task<string> AdminInitiateAuthAsync(string clientId, string
 userPoolId, string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var request = new AdminInitiateAuthRequest
 {
 ClientId = clientId,
 UserPoolId = userPoolId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 };

Actions 587

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminGetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 var response = await _cognitoService.AdminInitiateAuthAsync(request);
 return response.Session;
 }

• For API details, see AdminInitiateAuth in AWS SDK for .NET API Reference.

AdminRespondToAuthChallenge

The following code example shows how to use AdminRespondToAuthChallenge.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Respond to an admin authentication challenge.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="clientId">The client ID.</param>
 /// <param name="mfaCode">The multi-factor authentication code.</param>
 /// <param name="session">The current application session.</param>
 /// <param name="clientId">The user pool ID.</param>
 /// <returns>The result of the authentication response.</returns>
 public async Task<AuthenticationResultType> AdminRespondToAuthChallengeAsync(
 string userName,
 string clientId,
 string mfaCode,
 string session,
 string userPoolId)
 {
 Console.WriteLine("SOFTWARE_TOKEN_MFA challenge is generated");

 var challengeResponses = new Dictionary<string, string>();
 challengeResponses.Add("USERNAME", userName);
 challengeResponses.Add("SOFTWARE_TOKEN_MFA_CODE", mfaCode);

Actions 588

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminInitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 var respondToAuthChallengeRequest = new AdminRespondToAuthChallengeRequest
 {
 ChallengeName = ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ClientId = clientId,
 ChallengeResponses = challengeResponses,
 Session = session,
 UserPoolId = userPoolId,
 };

 var response = await
 _cognitoService.AdminRespondToAuthChallengeAsync(respondToAuthChallengeRequest);
 Console.WriteLine($"Response to Authentication
 {response.AuthenticationResult.TokenType}");
 return response.AuthenticationResult;
 }

• For API details, see AdminRespondToAuthChallenge in AWS SDK for .NET API Reference.

AssociateSoftwareToken

The following code example shows how to use AssociateSoftwareToken.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get an MFA token to authenticate the user with the authenticator.
 /// </summary>
 /// <param name="session">The session name.</param>
 /// <returns>The session name.</returns>
 public async Task<string> AssociateSoftwareTokenAsync(string session)
 {
 var softwareTokenRequest = new AssociateSoftwareTokenRequest

Actions 589

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 {
 Session = session,
 };

 var tokenResponse = await
 _cognitoService.AssociateSoftwareTokenAsync(softwareTokenRequest);
 var secretCode = tokenResponse.SecretCode;

 Console.WriteLine($"Use the following secret code to set up the
 authenticator: {secretCode}");

 return tokenResponse.Session;
 }

• For API details, see AssociateSoftwareToken in AWS SDK for .NET API Reference.

ConfirmDevice

The following code example shows how to use ConfirmDevice.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Initiates and confirms tracking of the device.
 /// </summary>
 /// <param name="accessToken">The user's access token.</param>
 /// <param name="deviceKey">The key of the device from Amazon Cognito.</param>
 /// <param name="deviceName">The device name.</param>
 /// <returns></returns>
 public async Task<bool> ConfirmDeviceAsync(string accessToken, string deviceKey,
 string deviceName)
 {
 var request = new ConfirmDeviceRequest
 {

Actions 590

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AssociateSoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 AccessToken = accessToken,
 DeviceKey = deviceKey,
 DeviceName = deviceName
 };

 var response = await _cognitoService.ConfirmDeviceAsync(request);
 return response.UserConfirmationNecessary;
 }

• For API details, see ConfirmDevice in AWS SDK for .NET API Reference.

ConfirmSignUp

The following code example shows how to use ConfirmSignUp.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Confirm that the user has signed up.
 /// </summary>
 /// <param name="clientId">The Id of this application.</param>
 /// <param name="code">The confirmation code sent to the user.</param>
 /// <param name="userName">The username.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ConfirmSignupAsync(string clientId, string code, string
 userName)
 {
 var signUpRequest = new ConfirmSignUpRequest
 {
 ClientId = clientId,
 ConfirmationCode = code,
 Username = userName,
 };

Actions 591

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmDevice
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 var response = await _cognitoService.ConfirmSignUpAsync(signUpRequest);
 if (response.HttpStatusCode == HttpStatusCode.OK)
 {
 Console.WriteLine($"{userName} was confirmed");
 return true;
 }
 return false;
 }

• For API details, see ConfirmSignUp in AWS SDK for .NET API Reference.

InitiateAuth

The following code example shows how to use InitiateAuth.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Initiate authorization.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The name of the user who is authenticating.</param>
 /// <param name="password">The password for the user who is authenticating.</
param>
 /// <returns>The response from the initiate auth request.</returns>
 public async Task<InitiateAuthResponse> InitiateAuthAsync(string clientId,
 string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var authRequest = new InitiateAuthRequest

Actions 592

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmSignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 {
 ClientId = clientId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.InitiateAuthAsync(authRequest);
 Console.WriteLine($"Result Challenge is : {response.ChallengeName}");

 return response;
 }

• For API details, see InitiateAuth in AWS SDK for .NET API Reference.

ListUserPools

The following code example shows how to use ListUserPools.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List the Amazon Cognito user pools for an account.
 /// </summary>
 /// <returns>A list of UserPoolDescriptionType objects.</returns>
 public async Task<List<UserPoolDescriptionType>> ListUserPoolsAsync()
 {
 var userPools = new List<UserPoolDescriptionType>();

 var userPoolsPaginator = _cognitoService.Paginators.ListUserPools(new
 ListUserPoolsRequest());

 await foreach (var response in userPoolsPaginator.Responses)
 {
 userPools.AddRange(response.UserPools);
 }

Actions 593

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/InitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 return userPools;
 }

• For API details, see ListUserPools in AWS SDK for .NET API Reference.

ListUsers

The following code example shows how to use ListUsers.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of users for the Amazon Cognito user pool.
 /// </summary>
 /// <param name="userPoolId">The user pool ID.</param>
 /// <returns>A list of users.</returns>
 public async Task<List<UserType>> ListUsersAsync(string userPoolId)
 {
 var request = new ListUsersRequest
 {
 UserPoolId = userPoolId
 };

 var users = new List<UserType>();

 var usersPaginator = _cognitoService.Paginators.ListUsers(request);
 await foreach (var response in usersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

Actions 594

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ListUsers in AWS SDK for .NET API Reference.

ResendConfirmationCode

The following code example shows how to use ResendConfirmationCode.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Send a new confirmation code to a user.
 /// </summary>
 /// <param name="clientId">The Id of the client application.</param>
 /// <param name="userName">The username of user who will receive the code.</
param>
 /// <returns>The delivery details.</returns>
 public async Task<CodeDeliveryDetailsType> ResendConfirmationCodeAsync(string
 clientId, string userName)
 {
 var codeRequest = new ResendConfirmationCodeRequest
 {
 ClientId = clientId,
 Username = userName,
 };

 var response = await
 _cognitoService.ResendConfirmationCodeAsync(codeRequest);

 Console.WriteLine($"Method of delivery is
 {response.CodeDeliveryDetails.DeliveryMedium}");

 return response.CodeDeliveryDetails;
 }

Actions 595

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ResendConfirmationCode in AWS SDK for .NET API Reference.

SignUp

The following code example shows how to use SignUp.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Sign up a new user.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The username to use.</param>
 /// <param name="password">The user's password.</param>
 /// <param name="email">The email address of the user.</param>
 /// <returns>A Boolean value indicating whether the user was confirmed.</
returns>
 public async Task<bool> SignUpAsync(string clientId, string userName, string
 password, string email)
 {
 var userAttrs = new AttributeType
 {
 Name = "email",
 Value = email,
 };

 var userAttrsList = new List<AttributeType>();

 userAttrsList.Add(userAttrs);

 var signUpRequest = new SignUpRequest
 {
 UserAttributes = userAttrsList,
 Username = userName,

Actions 596

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ResendConfirmationCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 ClientId = clientId,
 Password = password
 };

 var response = await _cognitoService.SignUpAsync(signUpRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see SignUp in AWS SDK for .NET API Reference.

VerifySoftwareToken

The following code example shows how to use VerifySoftwareToken.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Verify the TOTP and register for MFA.
 /// </summary>
 /// <param name="session">The name of the session.</param>
 /// <param name="code">The MFA code.</param>
 /// <returns>The status of the software token.</returns>
 public async Task<VerifySoftwareTokenResponseType>
 VerifySoftwareTokenAsync(string session, string code)
 {
 var tokenRequest = new VerifySoftwareTokenRequest
 {
 UserCode = code,
 Session = session,
 };

 var verifyResponse = await
 _cognitoService.VerifySoftwareTokenAsync(tokenRequest);

Actions 597

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/SignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 return verifyResponse.Status;
 }

• For API details, see VerifySoftwareToken in AWS SDK for .NET API Reference.

Scenarios

Sign up a user with a user pool that requires MFA

The following code example shows how to:

• Sign up and confirm a user with a username, password, and email address.

• Set up multi-factor authentication by associating an MFA application with the user.

• Sign in by using a password and an MFA code.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace CognitoBasics;

public class CognitoBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon Cognito.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))

Scenarios 598

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/VerifySoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

AWS SDK for .NET Developer Guide

 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonCognitoIdentityProvider>()
 .AddTransient<CognitoWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<CognitoBasics>();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 var cognitoWrapper = host.Services.GetRequiredService<CognitoWrapper>();

 Console.WriteLine(new string('-', 80));
 UiMethods.DisplayOverview();
 Console.WriteLine(new string('-', 80));

 // clientId - The app client Id value that you get from the AWS CDK script.
 var clientId = configuration["ClientId"]; // "*** REPLACE WITH CLIENT ID
 VALUE FROM CDK SCRIPT";

 // poolId - The pool Id that you get from the AWS CDK script.
 var poolId = configuration["PoolId"]!; // "*** REPLACE WITH POOL ID VALUE
 FROM CDK SCRIPT";
 var userName = configuration["UserName"];
 var password = configuration["Password"];
 var email = configuration["Email"];

 // If the username wasn't set in the configuration file,
 // get it from the user now.
 if (userName is null)
 {
 do
 {
 Console.Write("Username: ");
 userName = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(userName));
 }

Scenarios 599

AWS SDK for .NET Developer Guide

 Console.WriteLine($"\nUsername: {userName}");

 // If the password wasn't set in the configuration file,
 // get it from the user now.
 if (password is null)
 {
 do
 {
 Console.Write("Password: ");
 password = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(password));
 }

 // If the email address wasn't set in the configuration file,
 // get it from the user now.
 if (email is null)
 {
 do
 {
 Console.Write("Email: ");
 email = Console.ReadLine();
 } while (string.IsNullOrEmpty(email));
 }

 // Now sign up the user.
 Console.WriteLine($"\nSigning up {userName} with email address: {email}");
 await cognitoWrapper.SignUpAsync(clientId, userName, password, email);

 // Add the user to the user pool.
 Console.WriteLine($"Adding {userName} to the user pool");
 await cognitoWrapper.GetAdminUserAsync(userName, poolId);

 UiMethods.DisplayTitle("Get confirmation code");
 Console.WriteLine($"Conformation code sent to {userName}.");
 Console.Write("Would you like to send a new code? (Y/N) ");
 var answer = Console.ReadLine();

 if (answer!.ToLower() == "y")
 {
 await cognitoWrapper.ResendConfirmationCodeAsync(clientId, userName);
 Console.WriteLine("Sending a new confirmation code");
 }

Scenarios 600

AWS SDK for .NET Developer Guide

 Console.Write("Enter confirmation code (from Email): ");
 var code = Console.ReadLine();

 await cognitoWrapper.ConfirmSignupAsync(clientId, code, userName);

 UiMethods.DisplayTitle("Checking status");
 Console.WriteLine($"Rechecking the status of {userName} in the user pool");
 await cognitoWrapper.GetAdminUserAsync(userName, poolId);

 Console.WriteLine($"Setting up authenticator for {userName} in the user
 pool");
 var setupResponse = await cognitoWrapper.InitiateAuthAsync(clientId,
 userName, password);

 var setupSession = await
 cognitoWrapper.AssociateSoftwareTokenAsync(setupResponse.Session);
 Console.Write("Enter the 6-digit code displayed in Google Authenticator: ");
 var setupCode = Console.ReadLine();

 var setupResult = await
 cognitoWrapper.VerifySoftwareTokenAsync(setupSession, setupCode);
 Console.WriteLine($"Setup status: {setupResult}");

 Console.WriteLine($"Now logging in {userName} in the user pool");
 var authSession = await cognitoWrapper.AdminInitiateAuthAsync(clientId,
 poolId, userName, password);

 Console.Write("Enter a new 6-digit code displayed in Google Authenticator:
 ");
 var authCode = Console.ReadLine();

 var authResult = await
 cognitoWrapper.AdminRespondToAuthChallengeAsync(userName, clientId, authCode,
 authSession, poolId);
 Console.WriteLine($"Authenticated and received access token:
 {authResult.AccessToken}");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Cognito scenario is complete.");
 Console.WriteLine(new string('-', 80));
 }
}

Scenarios 601

AWS SDK for .NET Developer Guide

using System.Net;

namespace CognitoActions;

/// <summary>
/// Methods to perform Amazon Cognito Identity Provider actions.
/// </summary>
public class CognitoWrapper
{
 private readonly IAmazonCognitoIdentityProvider _cognitoService;

 /// <summary>
 /// Constructor for the wrapper class containing Amazon Cognito actions.
 /// </summary>
 /// <param name="cognitoService">The Amazon Cognito client object.</param>
 public CognitoWrapper(IAmazonCognitoIdentityProvider cognitoService)
 {
 _cognitoService = cognitoService;
 }

 /// <summary>
 /// List the Amazon Cognito user pools for an account.
 /// </summary>
 /// <returns>A list of UserPoolDescriptionType objects.</returns>
 public async Task<List<UserPoolDescriptionType>> ListUserPoolsAsync()
 {
 var userPools = new List<UserPoolDescriptionType>();

 var userPoolsPaginator = _cognitoService.Paginators.ListUserPools(new
 ListUserPoolsRequest());

 await foreach (var response in userPoolsPaginator.Responses)
 {
 userPools.AddRange(response.UserPools);
 }

 return userPools;
 }

 /// <summary>
 /// Get a list of users for the Amazon Cognito user pool.
 /// </summary>
 /// <param name="userPoolId">The user pool ID.</param>

Scenarios 602

AWS SDK for .NET Developer Guide

 /// <returns>A list of users.</returns>
 public async Task<List<UserType>> ListUsersAsync(string userPoolId)
 {
 var request = new ListUsersRequest
 {
 UserPoolId = userPoolId
 };

 var users = new List<UserType>();

 var usersPaginator = _cognitoService.Paginators.ListUsers(request);
 await foreach (var response in usersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

 /// <summary>
 /// Respond to an admin authentication challenge.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="clientId">The client ID.</param>
 /// <param name="mfaCode">The multi-factor authentication code.</param>
 /// <param name="session">The current application session.</param>
 /// <param name="clientId">The user pool ID.</param>
 /// <returns>The result of the authentication response.</returns>
 public async Task<AuthenticationResultType> AdminRespondToAuthChallengeAsync(
 string userName,
 string clientId,
 string mfaCode,
 string session,
 string userPoolId)
 {
 Console.WriteLine("SOFTWARE_TOKEN_MFA challenge is generated");

 var challengeResponses = new Dictionary<string, string>();
 challengeResponses.Add("USERNAME", userName);
 challengeResponses.Add("SOFTWARE_TOKEN_MFA_CODE", mfaCode);

 var respondToAuthChallengeRequest = new AdminRespondToAuthChallengeRequest
 {

Scenarios 603

AWS SDK for .NET Developer Guide

 ChallengeName = ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ClientId = clientId,
 ChallengeResponses = challengeResponses,
 Session = session,
 UserPoolId = userPoolId,
 };

 var response = await
 _cognitoService.AdminRespondToAuthChallengeAsync(respondToAuthChallengeRequest);
 Console.WriteLine($"Response to Authentication
 {response.AuthenticationResult.TokenType}");
 return response.AuthenticationResult;
 }

 /// <summary>
 /// Verify the TOTP and register for MFA.
 /// </summary>
 /// <param name="session">The name of the session.</param>
 /// <param name="code">The MFA code.</param>
 /// <returns>The status of the software token.</returns>
 public async Task<VerifySoftwareTokenResponseType>
 VerifySoftwareTokenAsync(string session, string code)
 {
 var tokenRequest = new VerifySoftwareTokenRequest
 {
 UserCode = code,
 Session = session,
 };

 var verifyResponse = await
 _cognitoService.VerifySoftwareTokenAsync(tokenRequest);

 return verifyResponse.Status;
 }

 /// <summary>
 /// Get an MFA token to authenticate the user with the authenticator.
 /// </summary>
 /// <param name="session">The session name.</param>
 /// <returns>The session name.</returns>
 public async Task<string> AssociateSoftwareTokenAsync(string session)
 {

Scenarios 604

AWS SDK for .NET Developer Guide

 var softwareTokenRequest = new AssociateSoftwareTokenRequest
 {
 Session = session,
 };

 var tokenResponse = await
 _cognitoService.AssociateSoftwareTokenAsync(softwareTokenRequest);
 var secretCode = tokenResponse.SecretCode;

 Console.WriteLine($"Use the following secret code to set up the
 authenticator: {secretCode}");

 return tokenResponse.Session;
 }

 /// <summary>
 /// Initiate an admin auth request.
 /// </summary>
 /// <param name="clientId">The client ID to use.</param>
 /// <param name="userPoolId">The ID of the user pool.</param>
 /// <param name="userName">The username to authenticate.</param>
 /// <param name="password">The user's password.</param>
 /// <returns>The session to use in challenge-response.</returns>
 public async Task<string> AdminInitiateAuthAsync(string clientId, string
 userPoolId, string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var request = new AdminInitiateAuthRequest
 {
 ClientId = clientId,
 UserPoolId = userPoolId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.AdminInitiateAuthAsync(request);
 return response.Session;
 }

 /// <summary>

Scenarios 605

AWS SDK for .NET Developer Guide

 /// Initiate authorization.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The name of the user who is authenticating.</param>
 /// <param name="password">The password for the user who is authenticating.</
param>
 /// <returns>The response from the initiate auth request.</returns>
 public async Task<InitiateAuthResponse> InitiateAuthAsync(string clientId,
 string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var authRequest = new InitiateAuthRequest

 {
 ClientId = clientId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.InitiateAuthAsync(authRequest);
 Console.WriteLine($"Result Challenge is : {response.ChallengeName}");

 return response;
 }

 /// <summary>
 /// Confirm that the user has signed up.
 /// </summary>
 /// <param name="clientId">The Id of this application.</param>
 /// <param name="code">The confirmation code sent to the user.</param>
 /// <param name="userName">The username.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ConfirmSignupAsync(string clientId, string code, string
 userName)
 {
 var signUpRequest = new ConfirmSignUpRequest
 {
 ClientId = clientId,
 ConfirmationCode = code,
 Username = userName,
 };

Scenarios 606

AWS SDK for .NET Developer Guide

 var response = await _cognitoService.ConfirmSignUpAsync(signUpRequest);
 if (response.HttpStatusCode == HttpStatusCode.OK)
 {
 Console.WriteLine($"{userName} was confirmed");
 return true;
 }
 return false;
 }

 /// <summary>
 /// Initiates and confirms tracking of the device.
 /// </summary>
 /// <param name="accessToken">The user's access token.</param>
 /// <param name="deviceKey">The key of the device from Amazon Cognito.</param>
 /// <param name="deviceName">The device name.</param>
 /// <returns></returns>
 public async Task<bool> ConfirmDeviceAsync(string accessToken, string deviceKey,
 string deviceName)
 {
 var request = new ConfirmDeviceRequest
 {
 AccessToken = accessToken,
 DeviceKey = deviceKey,
 DeviceName = deviceName
 };

 var response = await _cognitoService.ConfirmDeviceAsync(request);
 return response.UserConfirmationNecessary;
 }

 /// <summary>
 /// Send a new confirmation code to a user.
 /// </summary>
 /// <param name="clientId">The Id of the client application.</param>
 /// <param name="userName">The username of user who will receive the code.</
param>
 /// <returns>The delivery details.</returns>
 public async Task<CodeDeliveryDetailsType> ResendConfirmationCodeAsync(string
 clientId, string userName)
 {
 var codeRequest = new ResendConfirmationCodeRequest

Scenarios 607

AWS SDK for .NET Developer Guide

 {
 ClientId = clientId,
 Username = userName,
 };

 var response = await
 _cognitoService.ResendConfirmationCodeAsync(codeRequest);

 Console.WriteLine($"Method of delivery is
 {response.CodeDeliveryDetails.DeliveryMedium}");

 return response.CodeDeliveryDetails;
 }

 /// <summary>
 /// Get the specified user from an Amazon Cognito user pool with administrator
 access.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="poolId">The Id of the Amazon Cognito user pool.</param>
 /// <returns>Async task.</returns>
 public async Task<UserStatusType> GetAdminUserAsync(string userName, string
 poolId)
 {
 AdminGetUserRequest userRequest = new AdminGetUserRequest
 {
 Username = userName,
 UserPoolId = poolId,
 };

 var response = await _cognitoService.AdminGetUserAsync(userRequest);

 Console.WriteLine($"User status {response.UserStatus}");
 return response.UserStatus;
 }

 /// <summary>
 /// Sign up a new user.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The username to use.</param>
 /// <param name="password">The user's password.</param>

Scenarios 608

AWS SDK for .NET Developer Guide

 /// <param name="email">The email address of the user.</param>
 /// <returns>A Boolean value indicating whether the user was confirmed.</
returns>
 public async Task<bool> SignUpAsync(string clientId, string userName, string
 password, string email)
 {
 var userAttrs = new AttributeType
 {
 Name = "email",
 Value = email,
 };

 var userAttrsList = new List<AttributeType>();

 userAttrsList.Add(userAttrs);

 var signUpRequest = new SignUpRequest
 {
 UserAttributes = userAttrsList,
 Username = userName,
 ClientId = clientId,
 Password = password
 };

 var response = await _cognitoService.SignUpAsync(signUpRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

Scenarios 609

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminGetUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminInitiateAuth
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/AssociateSoftwareToken
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmDevice
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmSignUp
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/InitiateAuth

AWS SDK for .NET Developer Guide

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Amazon Comprehend examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Comprehend.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

DetectDominantLanguage

The following code example shows how to use DetectDominantLanguage.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Amazon Comprehend 610

https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ListUsers
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/ResendConfirmationCode
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/RespondToAuthChallenge
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/SignUp
https://docs.aws.amazon.com/goto/DotNetSDKV3/cognito-idp-2016-04-18/VerifySoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example calls the Amazon Comprehend service to determine the
 /// dominant language.
 /// </summary>
 public static class DetectDominantLanguage
 {
 /// <summary>
 /// Calls Amazon Comprehend to determine the dominant language used in
 /// the sample text.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle.";

 var comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 Console.WriteLine("Calling DetectDominantLanguage\n");
 var detectDominantLanguageRequest = new DetectDominantLanguageRequest()
 {
 Text = text,
 };

 var detectDominantLanguageResponse = await
 comprehendClient.DetectDominantLanguageAsync(detectDominantLanguageRequest);
 foreach (var dl in detectDominantLanguageResponse.Languages)
 {
 Console.WriteLine($"Language Code: {dl.LanguageCode}, Score:
 {dl.Score}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectDominantLanguage in AWS SDK for .NET API Reference.

Actions 611

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectDominantLanguage

AWS SDK for .NET Developer Guide

DetectEntities

The following code example shows how to use DetectEntities.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use the AmazonComprehend service detect any
 /// entities in submitted text.
 /// </summary>
 public static class DetectEntities
 {
 /// <summary>
 /// The main method calls the DetectEntitiesAsync method to find any
 /// entities in the sample code.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new AmazonComprehendClient();

 Console.WriteLine("Calling DetectEntities\n");
 var detectEntitiesRequest = new DetectEntitiesRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 var detectEntitiesResponse = await
 comprehendClient.DetectEntitiesAsync(detectEntitiesRequest);

 foreach (var e in detectEntitiesResponse.Entities)

Actions 612

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score:
 {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectEntities in AWS SDK for .NET API Reference.

DetectKeyPhrases

The following code example shows how to use DetectKeyPhrases.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use the Amazon Comprehend service to
 /// search text for key phrases.
 /// </summary>
 public static class DetectKeyPhrase
 {
 /// <summary>
 /// This method calls the Amazon Comprehend method DetectKeyPhrasesAsync
 /// to detect any key phrases in the sample text.
 /// </summary>
 public static async Task Main()
 {

Actions 613

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectEntities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 string text = "It is raining today in Seattle";

 var comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 // Call DetectKeyPhrases API
 Console.WriteLine("Calling DetectKeyPhrases");
 var detectKeyPhrasesRequest = new DetectKeyPhrasesRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 var detectKeyPhrasesResponse = await
 comprehendClient.DetectKeyPhrasesAsync(detectKeyPhrasesRequest);
 foreach (var kp in detectKeyPhrasesResponse.KeyPhrases)
 {
 Console.WriteLine($"Text: {kp.Text}, Score: {kp.Score}, BeginOffset:
 {kp.BeginOffset}, EndOffset: {kp.EndOffset}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectKeyPhrases in AWS SDK for .NET API Reference.

DetectPiiEntities

The following code example shows how to use DetectPiiEntities.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;

Actions 614

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectKeyPhrases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use the Amazon Comprehend service to find
 /// personally identifiable information (PII) within text submitted to the
 /// DetectPiiEntitiesAsync method.
 /// </summary>
 public class DetectingPII
 {
 /// <summary>
 /// This method calls the DetectPiiEntitiesAsync method to locate any
 /// personally dientifiable information within the supplied text.
 /// </summary>
 public static async Task Main()
 {
 var comprehendClient = new AmazonComprehendClient();
 var text = @"Hello Paul Santos. The latest statement for your
 credit card account 1111-0000-1111-0000 was
 mailed to 123 Any Street, Seattle, WA 98109.";

 var request = new DetectPiiEntitiesRequest
 {
 Text = text,
 LanguageCode = "EN",
 };

 var response = await comprehendClient.DetectPiiEntitiesAsync(request);

 if (response.Entities.Count > 0)
 {
 foreach (var entity in response.Entities)
 {
 var entityValue = text.Substring(entity.BeginOffset,
 entity.EndOffset - entity.BeginOffset);
 Console.WriteLine($"{entity.Type}: {entityValue}");
 }
 }
 }
 }

• For API details, see DetectPiiEntities in AWS SDK for .NET API Reference.

Actions 615

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectPiiEntities

AWS SDK for .NET Developer Guide

DetectSentiment

The following code example shows how to use DetectSentiment.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to detect the overall sentiment of the supplied
 /// text using the Amazon Comprehend service.
 /// </summary>
 public static class DetectSentiment
 {
 /// <summary>
 /// This method calls the DetetectSentimentAsync method to analyze the
 /// supplied text and determine the overal sentiment.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 // Call DetectKeyPhrases API
 Console.WriteLine("Calling DetectSentiment");
 var detectSentimentRequest = new DetectSentimentRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 var detectSentimentResponse = await
 comprehendClient.DetectSentimentAsync(detectSentimentRequest);

Actions 616

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Sentiment: {detectSentimentResponse.Sentiment}");
 Console.WriteLine("Done");
 }
 }

• For API details, see DetectSentiment in AWS SDK for .NET API Reference.

DetectSyntax

The following code example shows how to use DetectSyntax.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use Amazon Comprehend to detect syntax
 /// elements by calling the DetectSyntaxAsync method.
 /// </summary>
 public class DetectingSyntax
 {
 /// <summary>
 /// This method calls DetectSynaxAsync to identify the syntax elements
 /// in the sample text.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new AmazonComprehendClient();

Actions 617

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectSentiment
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 // Call DetectSyntax API
 Console.WriteLine("Calling DetectSyntaxAsync\n");
 var detectSyntaxRequest = new DetectSyntaxRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 DetectSyntaxResponse detectSyntaxResponse = await
 comprehendClient.DetectSyntaxAsync(detectSyntaxRequest);
 foreach (SyntaxToken s in detectSyntaxResponse.SyntaxTokens)
 {
 Console.WriteLine($"Text: {s.Text}, PartOfSpeech:
 {s.PartOfSpeech.Tag}, BeginOffset: {s.BeginOffset}, EndOffset: {s.EndOffset}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectSyntax in AWS SDK for .NET API Reference.

StartTopicsDetectionJob

The following code example shows how to use StartTopicsDetectionJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example scans the documents in an Amazon Simple Storage Service

Actions 618

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectSyntax
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

AWS SDK for .NET Developer Guide

 /// (Amazon S3) bucket and analyzes it for topics. The results are stored
 /// in another bucket and then the resulting job properties are displayed
 /// on the screen. This example was created using the AWS SDK for .NEt
 /// version 3.7 and .NET Core version 5.0.
 /// </summary>
 public static class TopicModeling
 {
 /// <summary>
 /// This methos calls a topic detection job by calling the Amazon
 /// Comprehend StartTopicsDetectionJobRequest.
 /// </summary>
 public static async Task Main()
 {
 var comprehendClient = new AmazonComprehendClient();

 string inputS3Uri = "s3://input bucket/input path";
 InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE;
 string outputS3Uri = "s3://output bucket/output path";
 string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access
 role";
 int numberOfTopics = 10;

 var startTopicsDetectionJobRequest = new
 StartTopicsDetectionJobRequest()
 {
 InputDataConfig = new InputDataConfig()
 {
 S3Uri = inputS3Uri,
 InputFormat = inputDocFormat,
 },
 OutputDataConfig = new OutputDataConfig()
 {
 S3Uri = outputS3Uri,
 },
 DataAccessRoleArn = dataAccessRoleArn,
 NumberOfTopics = numberOfTopics,
 };

 var startTopicsDetectionJobResponse = await
 comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest);

 var jobId = startTopicsDetectionJobResponse.JobId;
 Console.WriteLine("JobId: " + jobId);

Actions 619

AWS SDK for .NET Developer Guide

 var describeTopicsDetectionJobRequest = new
 DescribeTopicsDetectionJobRequest()
 {
 JobId = jobId,
 };

 var describeTopicsDetectionJobResponse = await
 comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest);

 PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties);

 var listTopicsDetectionJobsResponse = await
 comprehendClient.ListTopicsDetectionJobsAsync(new
 ListTopicsDetectionJobsRequest());
 foreach (var props in
 listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList)
 {
 PrintJobProperties(props);
 }
 }

 /// <summary>
 /// This method is a helper method that displays the job properties
 /// from the call to StartTopicsDetectionJobRequest.
 /// </summary>
 /// <param name="props">A list of properties from the call to
 /// StartTopicsDetectionJobRequest.</param>
 private static void PrintJobProperties(TopicsDetectionJobProperties props)
 {
 Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName},
 JobStatus: {props.JobStatus}");
 Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri:
 {props.InputDataConfig.S3Uri}");
 Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat},
 OutputS3Uri: {props.OutputDataConfig.S3Uri}");
 }
 }

• For API details, see StartTopicsDetectionJob in AWS SDK for .NET API Reference.

Actions 620

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/StartTopicsDetectionJob

AWS SDK for .NET Developer Guide

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment instructions,
see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Amazon DocumentDB examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon DocumentDB.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Scenarios 621

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer

AWS SDK for .NET Developer Guide

Topics

• Serverless examples

Serverless examples

Invoke a Lambda function from a Amazon DocumentDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DocumentDB change stream. The function retrieves the
DocumentDB payload and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using .NET.

using Amazon.Lambda.Core;
using System.Text.Json;
using System;
using System.Collections.Generic;
using System.Text.Json.Serialization;
//Assembly attribute to enable the Lambda function's JSON input to be converted into
 a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaDocDb;

public class Function
{

 /// <summary>
 /// Lambda function entry point to process Amazon DocumentDB events.
 /// </summary>
 /// <param name="event">The Amazon DocumentDB event.</param>
 /// <param name="context">The Lambda context object.</param>

Serverless examples 622

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS SDK for .NET Developer Guide

 /// <returns>A string to indicate successful processing.</returns>
 public string FunctionHandler(Event evnt, ILambdaContext context)
 {

 foreach (var record in evnt.Events)
 {
 ProcessDocumentDBEvent(record, context);
 }

 return "OK";
 }

 private void ProcessDocumentDBEvent(DocumentDBEventRecord record,
 ILambdaContext context)
 {

 var eventData = record.Event;
 var operationType = eventData.OperationType;
 var databaseName = eventData.Ns.Db;
 var collectionName = eventData.Ns.Coll;
 var fullDocument = JsonSerializer.Serialize(eventData.FullDocument, new
 JsonSerializerOptions { WriteIndented = true });

 context.Logger.LogLine($"Operation type: {operationType}");
 context.Logger.LogLine($"Database: {databaseName}");
 context.Logger.LogLine($"Collection: {collectionName}");
 context.Logger.LogLine($"Full document:\n{fullDocument}");
 }

 public class Event
 {
 [JsonPropertyName("eventSourceArn")]
 public string EventSourceArn { get; set; }

 [JsonPropertyName("events")]
 public List<DocumentDBEventRecord> Events { get; set; }

 [JsonPropertyName("eventSource")]
 public string EventSource { get; set; }
 }

 public class DocumentDBEventRecord

Serverless examples 623

AWS SDK for .NET Developer Guide

 {
 [JsonPropertyName("event")]
 public EventData Event { get; set; }
 }

 public class EventData
 {
 [JsonPropertyName("_id")]
 public IdData Id { get; set; }

 [JsonPropertyName("clusterTime")]
 public ClusterTime ClusterTime { get; set; }

 [JsonPropertyName("documentKey")]
 public DocumentKey DocumentKey { get; set; }

 [JsonPropertyName("fullDocument")]
 public Dictionary<string, object> FullDocument { get; set; }

 [JsonPropertyName("ns")]
 public Namespace Ns { get; set; }

 [JsonPropertyName("operationType")]
 public string OperationType { get; set; }
 }

 public class IdData
 {
 [JsonPropertyName("_data")]
 public string Data { get; set; }
 }

 public class ClusterTime
 {
 [JsonPropertyName("$timestamp")]
 public Timestamp Timestamp { get; set; }
 }

 public class Timestamp
 {
 [JsonPropertyName("t")]
 public long T { get; set; }

 [JsonPropertyName("i")]

Serverless examples 624

AWS SDK for .NET Developer Guide

 public int I { get; set; }
 }

 public class DocumentKey
 {
 [JsonPropertyName("_id")]
 public Id Id { get; set; }
 }

 public class Id
 {
 [JsonPropertyName("$oid")]
 public string Oid { get; set; }
 }

 public class Namespace
 {
 [JsonPropertyName("db")]
 public string Db { get; set; }

 [JsonPropertyName("coll")]
 public string Coll { get; set; }
 }
}

DynamoDB examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with DynamoDB.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

AWS community contributions are examples that were created and are maintained by multiple
teams across AWS. To provide feedback, use the mechanism provided in the linked repositories.

DynamoDB 625

AWS SDK for .NET Developer Guide

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello DynamoDB

The following code examples show how to get started using DynamoDB.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;

namespace DynamoDB_Actions;

public static class HelloDynamoDB
{
 static async Task Main(string[] args)
 {
 var dynamoDbClient = new AmazonDynamoDBClient();

 Console.WriteLine($"Hello Amazon Dynamo DB! Following are some of your
 tables:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first five tables.
 var response = await dynamoDbClient.ListTablesAsync(
 new ListTablesRequest()
 {
 Limit = 5
 });

 foreach (var table in response.TableNames)

DynamoDB 626

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"\tTable: {table}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListTables in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

• Scenarios

• Serverless examples

• AWS community contributions

Basics

Learn the basics

The following code example shows how to:

• Create a table that can hold movie data.

• Put, get, and update a single movie in the table.

• Write movie data to the table from a sample JSON file.

• Query for movies that were released in a given year.

• Scan for movies that were released in a range of years.

• Delete a movie from the table, then delete the table.

Basics 627

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/ListTables

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

// This example application performs the following basic Amazon DynamoDB
// functions:
//
// CreateTableAsync
// PutItemAsync
// UpdateItemAsync
// BatchWriteItemAsync
// GetItemAsync
// DeleteItemAsync
// Query
// Scan
// DeleteItemAsync
//
using Amazon.DynamoDBv2;
using DynamoDB_Actions;

public class DynamoDB_Basics
{
 // Separator for the console display.
 private static readonly string SepBar = new string('-', 80);

 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();

 var tableName = "movie_table";

 // Relative path to moviedata.json in the local repository.
 var movieFileName = @"..\..\..\..\..\..\..\..\resources\sample_files
\movies.json";

 DisplayInstructions();

 // Create a new table and wait for it to be active.

Basics 628

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Creating the new table: {tableName}");

 var success = await DynamoDbMethods.CreateMovieTableAsync(client,
 tableName);

 if (success)
 {
 Console.WriteLine($"\nTable: {tableName} successfully created.");
 }
 else
 {
 Console.WriteLine($"\nCould not create {tableName}.");
 }

 WaitForEnter();

 // Add a single new movie to the table.
 var newMovie = new Movie
 {
 Year = 2021,
 Title = "Spider-Man: No Way Home",
 };

 success = await DynamoDbMethods.PutItemAsync(client, newMovie, tableName);
 if (success)
 {
 Console.WriteLine($"Added {newMovie.Title} to the table.");
 }
 else
 {
 Console.WriteLine("Could not add movie to table.");
 }

 WaitForEnter();

 // Update the new movie by adding a plot and rank.
 var newInfo = new MovieInfo
 {
 Plot = "With Spider-Man's identity now revealed, Peter asks" +
 "Doctor Strange for help. When a spell goes wrong, dangerous" +
 "foes from other worlds start to appear, forcing Peter to" +
 "discover what it truly means to be Spider-Man.",
 Rank = 9,
 };

Basics 629

AWS SDK for .NET Developer Guide

 success = await DynamoDbMethods.UpdateItemAsync(client, newMovie, newInfo,
 tableName);
 if (success)
 {
 Console.WriteLine($"Successfully updated the movie: {newMovie.Title}");
 }
 else
 {
 Console.WriteLine("Could not update the movie.");
 }

 WaitForEnter();

 // Add a batch of movies to the DynamoDB table from a list of
 // movies in a JSON file.
 var itemCount = await DynamoDbMethods.BatchWriteItemsAsync(client,
 movieFileName);
 Console.WriteLine($"Added {itemCount} movies to the table.");

 WaitForEnter();

 // Get a movie by key. (partition + sort)
 var lookupMovie = new Movie
 {
 Title = "Jurassic Park",
 Year = 1993,
 };

 Console.WriteLine("Looking for the movie \"Jurassic Park\".");
 var item = await DynamoDbMethods.GetItemAsync(client, lookupMovie,
 tableName);
 if (item.Count > 0)
 {
 DynamoDbMethods.DisplayItem(item);
 }
 else
 {
 Console.WriteLine($"Couldn't find {lookupMovie.Title}");
 }

 WaitForEnter();

 // Delete a movie.

Basics 630

AWS SDK for .NET Developer Guide

 var movieToDelete = new Movie
 {
 Title = "The Town",
 Year = 2010,
 };

 success = await DynamoDbMethods.DeleteItemAsync(client, tableName,
 movieToDelete);

 if (success)
 {
 Console.WriteLine($"Successfully deleted {movieToDelete.Title}.");
 }
 else
 {
 Console.WriteLine($"Could not delete {movieToDelete.Title}.");
 }

 WaitForEnter();

 // Use Query to find all the movies released in 2010.
 int findYear = 2010;
 Console.WriteLine($"Movies released in {findYear}");
 var queryCount = await DynamoDbMethods.QueryMoviesAsync(client, tableName,
 findYear);
 Console.WriteLine($"Found {queryCount} movies released in {findYear}");

 WaitForEnter();

 // Use Scan to get a list of movies from 2001 to 2011.
 int startYear = 2001;
 int endYear = 2011;
 var scanCount = await DynamoDbMethods.ScanTableAsync(client, tableName,
 startYear, endYear);
 Console.WriteLine($"Found {scanCount} movies released between {startYear}
 and {endYear}");

 WaitForEnter();

 // Delete the table.
 success = await DynamoDbMethods.DeleteTableAsync(client, tableName);

 if (success)
 {

Basics 631

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Successfully deleted {tableName}");
 }
 else
 {
 Console.WriteLine($"Could not delete {tableName}");
 }

 Console.WriteLine("The DynamoDB Basics example application is done.");

 WaitForEnter();
 }

 /// <summary>
 /// Displays the description of the application on the console.
 /// </summary>
 private static void DisplayInstructions()
 {
 Console.Clear();
 Console.WriteLine();
 Console.Write(new string(' ', 28));
 Console.WriteLine("DynamoDB Basics Example");
 Console.WriteLine(SepBar);
 Console.WriteLine("This demo application shows the basics of using DynamoDB
 with the AWS SDK.");
 Console.WriteLine(SepBar);
 Console.WriteLine("The application does the following:");
 Console.WriteLine("\t1. Creates a table with partition: year and
 sort:title.");
 Console.WriteLine("\t2. Adds a single movie to the table.");
 Console.WriteLine("\t3. Adds movies to the table from moviedata.json.");
 Console.WriteLine("\t4. Updates the rating and plot of the movie that was
 just added.");
 Console.WriteLine("\t5. Gets a movie using its key (partition + sort).");
 Console.WriteLine("\t6. Deletes a movie.");
 Console.WriteLine("\t7. Uses QueryAsync to return all movies released in a
 given year.");
 Console.WriteLine("\t8. Uses ScanAsync to return all movies released within
 a range of years.");
 Console.WriteLine("\t9. Finally, it deletes the table that was just
 created.");
 WaitForEnter();
 }

 /// <summary>

Basics 632

AWS SDK for .NET Developer Guide

 /// Simple method to wait for the Enter key to be pressed.
 /// </summary>
 private static void WaitForEnter()
 {
 Console.WriteLine("\nPress <Enter> to continue.");
 Console.WriteLine(SepBar);
 _ = Console.ReadLine();
 }
}

Creates a table to contain movie data.

 /// <summary>
 /// Creates a new Amazon DynamoDB table and then waits for the new
 /// table to become active.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="tableName">The name of the table to create.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public static async Task<bool> CreateMovieTableAsync(AmazonDynamoDBClient
 client, string tableName)
 {
 var response = await client.CreateTableAsync(new CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "title",
 AttributeType = ScalarAttributeType.S,
 },
 new AttributeDefinition
 {
 AttributeName = "year",
 AttributeType = ScalarAttributeType.N,
 },
 },

Basics 633

AWS SDK for .NET Developer Guide

 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "year",
 KeyType = KeyType.HASH,
 },
 new KeySchemaElement
 {
 AttributeName = "title",
 KeyType = KeyType.RANGE,
 },
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 5,
 },
 });

 // Wait until the table is ACTIVE and then report success.
 Console.Write("Waiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = response.TableDescription.TableName,
 };

 TableStatus status;

 int sleepDuration = 2000;

 do
 {
 System.Threading.Thread.Sleep(sleepDuration);

 var describeTableResponse = await
 client.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

Basics 634

AWS SDK for .NET Developer Guide

 return status == TableStatus.ACTIVE;
 }

Adds a single movie to the table.

 /// <summary>
 /// Adds a new item to the table.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="newMovie">A Movie object containing informtation for
 /// the movie to add to the table.</param>
 /// <param name="tableName">The name of the table where the item will be
 added.</param>
 /// <returns>A Boolean value that indicates the results of adding the
 item.</returns>
 public static async Task<bool> PutItemAsync(AmazonDynamoDBClient client,
 Movie newMovie, string tableName)
 {
 var item = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 };

 var response = await client.PutItemAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Updates a single item in a table.

Basics 635

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Updates an existing item in the movies table.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="newMovie">A Movie object containing information for
 /// the movie to update.</param>
 /// <param name="newInfo">A MovieInfo object that contains the
 /// information that will be changed.</param>
 /// <param name="tableName">The name of the table that contains the movie.</
param>
 /// <returns>A Boolean value that indicates the success of the operation.</
returns>
 public static async Task<bool> UpdateItemAsync(
 AmazonDynamoDBClient client,
 Movie newMovie,
 MovieInfo newInfo,
 string tableName)
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };
 var updates = new Dictionary<string, AttributeValueUpdate>
 {
 ["info.plot"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { S = newInfo.Plot },
 },

 ["info.rating"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { N = newInfo.Rank.ToString() },
 },
 };

 var request = new UpdateItemRequest
 {
 AttributeUpdates = updates,
 Key = key,
 TableName = tableName,

Basics 636

AWS SDK for .NET Developer Guide

 };

 var response = await client.UpdateItemAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Retrieves a single item from the movie table.

 /// <summary>
 /// Gets information about an existing movie from the table.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="newMovie">A Movie object containing information about
 /// the movie to retrieve.</param>
 /// <param name="tableName">The name of the table containing the movie.</
param>
 /// <returns>A Dictionary object containing information about the item
 /// retrieved.</returns>
 public static async Task<Dictionary<string, AttributeValue>>
 GetItemAsync(AmazonDynamoDBClient client, Movie newMovie, string tableName)
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new GetItemRequest
 {
 Key = key,
 TableName = tableName,
 };

 var response = await client.GetItemAsync(request);
 return response.Item;
 }

Basics 637

AWS SDK for .NET Developer Guide

Writes a batch of items to the movie table.

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonSerializer.Deserialize<List<Movie>>(
 json,
 new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 });

 // Now return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }

 /// <summary>
 /// Writes 250 items to the movie table.
 /// </summary>
 /// <param name="client">The initialized DynamoDB client object.</param>
 /// <param name="movieFileName">A string containing the full path to
 /// the JSON file containing movie data.</param>
 /// <returns>A long integer value representing the number of movies
 /// imported from the JSON file.</returns>
 public static async Task<long> BatchWriteItemsAsync(
 AmazonDynamoDBClient client,
 string movieFileName)
 {
 var movies = ImportMovies(movieFileName);
 if (movies is null)
 {

Basics 638

AWS SDK for .NET Developer Guide

 Console.WriteLine("Couldn't find the JSON file with movie data.");
 return 0;
 }

 var context = new DynamoDBContext(client);

 var movieBatch = context.CreateBatchWrite<Movie>();
 movieBatch.AddPutItems(movies);

 Console.WriteLine("Adding imported movies to the table.");
 await movieBatch.ExecuteAsync();

 return movies.Count;
 }

Deletes a single item from the table.

 /// <summary>
 /// Deletes a single item from a DynamoDB table.
 /// </summary>
 /// <param name="client">The initialized DynamoDB client object.</param>
 /// <param name="tableName">The name of the table from which the item
 /// will be deleted.</param>
 /// <param name="movieToDelete">A movie object containing the title and
 /// year of the movie to delete.</param>
 /// <returns>A Boolean value indicating the success or failure of the
 /// delete operation.</returns>
 public static async Task<bool> DeleteItemAsync(
 AmazonDynamoDBClient client,
 string tableName,
 Movie movieToDelete)
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = movieToDelete.Title },
 ["year"] = new AttributeValue { N = movieToDelete.Year.ToString() },
 };

 var request = new DeleteItemRequest
 {

Basics 639

AWS SDK for .NET Developer Guide

 TableName = tableName,
 Key = key,
 };

 var response = await client.DeleteItemAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Queries the table for movies released in a particular year.

 /// <summary>
 /// Queries the table for movies released in a particular year and
 /// then displays the information for the movies returned.
 /// </summary>
 /// <param name="client">The initialized DynamoDB client object.</param>
 /// <param name="tableName">The name of the table to query.</param>
 /// <param name="year">The release year for which we want to
 /// view movies.</param>
 /// <returns>The number of movies that match the query.</returns>
 public static async Task<int> QueryMoviesAsync(AmazonDynamoDBClient client,
 string tableName, int year)
 {
 var movieTable = Table.LoadTable(client, tableName);
 var filter = new QueryFilter("year", QueryOperator.Equal, year);

 Console.WriteLine("\nFind movies released in: {year}:");

 var config = new QueryOperationConfig()
 {
 Limit = 10, // 10 items per page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {
 "title",
 "year",
 },
 ConsistentRead = true,
 Filter = filter,
 };

Basics 640

AWS SDK for .NET Developer Guide

 // Value used to track how many movies match the
 // supplied criteria.
 var moviesFound = 0;

 Search search = movieTable.Query(config);
 do
 {
 var movieList = await search.GetNextSetAsync();
 moviesFound += movieList.Count;

 foreach (var movie in movieList)
 {
 DisplayDocument(movie);
 }
 }
 while (!search.IsDone);

 return moviesFound;
 }

Scans the table for movies released in a range of years.

 public static async Task<int> ScanTableAsync(
 AmazonDynamoDBClient client,
 string tableName,
 int startYear,
 int endYear)
 {
 var request = new ScanRequest
 {
 TableName = tableName,
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#yr", "year" },
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":y_a", new AttributeValue { N = startYear.ToString() } },
 { ":y_z", new AttributeValue { N = endYear.ToString() } },
 },
 FilterExpression = "#yr between :y_a and :y_z",

Basics 641

AWS SDK for .NET Developer Guide

 ProjectionExpression = "#yr, title, info.actors[0], info.directors,
 info.running_time_secs",
 Limit = 10 // Set a limit to demonstrate using the LastEvaluatedKey.
 };

 // Keep track of how many movies were found.
 int foundCount = 0;

 var response = new ScanResponse();
 do
 {
 response = await client.ScanAsync(request);
 foundCount += response.Items.Count;
 response.Items.ForEach(i => DisplayItem(i));
 request.ExclusiveStartKey = response.LastEvaluatedKey;
 }
 while (response.LastEvaluatedKey.Count > 0);
 return foundCount;
 }

Deletes the movie table.

 public static async Task<bool> DeleteTableAsync(AmazonDynamoDBClient client,
 string tableName)
 {
 var request = new DeleteTableRequest
 {
 TableName = tableName,
 };

 var response = await client.DeleteTableAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Table {response.TableDescription.TableName}
 successfully deleted.");
 return true;
 }
 else
 {
 Console.WriteLine("Could not delete table.");
 return false;

Basics 642

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Actions

BatchExecuteStatement

The following code example shows how to use BatchExecuteStatement.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use batches of INSERT statements to add items.

 /// <summary>
 /// Inserts movies imported from a JSON file into the movie table by
 /// using an Amazon DynamoDB PartiQL INSERT statement.
 /// </summary>

Actions 643

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchWriteItem
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/CreateTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/DeleteItem
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/DeleteTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/DescribeTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/GetItem
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/PutItem
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/Query
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/Scan
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="tableName">The name of the table into which the movie
 /// information will be inserted.</param>
 /// <param name="movieFileName">The name of the JSON file that contains
 /// movie information.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the insert operation.</returns>
 public static async Task<bool> InsertMovies(string tableName, string
 movieFileName)
 {
 // Get the list of movies from the JSON file.
 var movies = ImportMovies(movieFileName);

 var success = false;

 if (movies is not null)
 {
 // Insert the movies in a batch using PartiQL. Because the
 // batch can contain a maximum of 25 items, insert 25 movies
 // at a time.
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";
 var statements = new List<BatchStatementRequest>();

 try
 {
 for (var indexOffset = 0; indexOffset < 250; indexOffset += 25)
 {
 for (var i = indexOffset; i < indexOffset + 25; i++)
 {
 statements.Add(new BatchStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movies[i].Title },
 new AttributeValue { N =
 movies[i].Year.ToString() },
 },
 });
 }

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {

Actions 644

AWS SDK for .NET Developer Guide

 Statements = statements,
 });

 // Wait between batches for movies to be successfully added.
 System.Threading.Thread.Sleep(3000);

 success = response.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;

 // Clear the list of statements for the next batch.
 statements.Clear();
 }
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 return success;
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 if (allMovies is not null)
 {
 // Return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }

Actions 645

AWS SDK for .NET Developer Guide

 else
 {
 return null!;
 }
 }

Use batches of SELECT statements to get items.

 /// <summary>
 /// Gets movies from the movie table by
 /// using an Amazon DynamoDB PartiQL SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year1">The year of the first movie.</param>
 /// <param name="year2">The year of the second movie.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> GetBatch(
 string tableName,
 string title1,
 string title2,
 int year1,
 int year2)
 {
 var getBatch = $"SELECT FROM {tableName} WHERE title = ? AND year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>

Actions 646

AWS SDK for .NET Developer Guide

 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 if (response.Responses.Count > 0)
 {
 response.Responses.ForEach(r =>
 {
 Console.WriteLine($"{r.Item["title"]}\t{r.Item["year"]}");
 });
 return true;
 }
 else
 {
 Console.WriteLine($"Couldn't find either {title1} or {title2}.");
 return false;
 }

 }

Use batches of UPDATE statements to update items.

 /// <summary>
 /// Updates information for multiple movies.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// movies to be updated.</param>
 /// <param name="producer1">The producer name for the first movie
 /// to update.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year that the first movie was released.</param>
 /// <param name="producer2">The producer name for the second
 /// movie to update.</param>

Actions 647

AWS SDK for .NET Developer Guide

 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year that the second movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the update.</
returns>
 public static async Task<bool> UpdateBatch(
 string tableName,
 string producer1,
 string title1,
 int year1,
 string producer2,
 string title2,
 int year2)
 {

 string updateBatch = $"UPDATE {tableName} SET Producer=? WHERE title = ?
 AND year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer1 },
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer2 },
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {

Actions 648

AWS SDK for .NET Developer Guide

 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Use batches of DELETE statements to delete items.

 /// <summary>
 /// Deletes multiple movies using a PartiQL BatchExecuteAsync
 /// statement.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// moves that will be deleted.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year the first movie was released.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year the second movie was released.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public static async Task<bool> DeleteBatch(
 string tableName,
 string title1,
 int year1,
 string title2,
 int year2)
 {

 string updateBatch = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

Actions 649

AWS SDK for .NET Developer Guide

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see BatchExecuteStatement in AWS SDK for .NET API Reference.

BatchGetItem

The following code example shows how to use BatchGetItem.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;

namespace LowLevelBatchGet
{

Actions 650

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 public class LowLevelBatchGet
 {
 private static readonly string _table1Name = "Forum";
 private static readonly string _table2Name = "Thread";

 public static async void RetrieveMultipleItemsBatchGet(AmazonDynamoDBClient
 client)
 {
 var request = new BatchGetItemRequest
 {
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { _table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue> >()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue {
 S = "Amazon DynamoDB"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue {
 S = "Amazon S3"
 } }
 }
 }
 }},
 {
 _table2Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue> >()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon DynamoDB"
 } },
 { "Subject", new AttributeValue {
 S = "DynamoDB Thread 1"

Actions 651

AWS SDK for .NET Developer Guide

 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon DynamoDB"
 } },
 { "Subject", new AttributeValue {
 S = "DynamoDB Thread 2"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon S3"
 } },
 { "Subject", new AttributeValue {
 S = "S3 Thread 1"
 } }
 }
 }
 }
 }
 }
 };

 BatchGetItemResponse response;
 do
 {
 Console.WriteLine("Making request");
 response = await client.BatchGetItemAsync(request);

 // Check the response.
 var responses = response.Responses; // Attribute list in the
 response.

 foreach (var tableResponse in responses)
 {
 var tableResults = tableResponse.Value;
 Console.WriteLine("Items retrieved from table {0}",
 tableResponse.Key);
 foreach (var item1 in tableResults)
 {
 PrintItem(item1);

Actions 652

AWS SDK for .NET Developer Guide

 }
 }

 // Any unprocessed keys? could happen if you exceed
 ProvisionedThroughput or some other error.
 Dictionary<string, KeysAndAttributes> unprocessedKeys =
 response.UnprocessedKeys;
 foreach (var unprocessedTableKeys in unprocessedKeys)
 {
 // Print table name.
 Console.WriteLine(unprocessedTableKeys.Key);
 // Print unprocessed primary keys.
 foreach (var key in unprocessedTableKeys.Value.Keys)
 {
 PrintItem(key);
 }
 }

 request.RequestItems = unprocessedKeys;
 } while (response.UnprocessedKeys.Count > 0);
 }

 private static void PrintItem(Dictionary<string, AttributeValue>
 attributeList)
 {
 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)
 {
 string attributeName = kvp.Key;
 AttributeValue value = kvp.Value;

 Console.WriteLine(
 attributeName + " " +
 (value.S == null ? "" : "S=[" + value.S + "]") +
 (value.N == null ? "" : "N=[" + value.N + "]") +
 (value.SS == null ? "" : "SS=[" + string.Join(",",
 value.SS.ToArray()) + "]") +
 (value.NS == null ? "" : "NS=[" + string.Join(",",
 value.NS.ToArray()) + "]")
);
 }
 Console.WriteLine("**");
 }

 static void Main()

Actions 653

AWS SDK for .NET Developer Guide

 {
 var client = new AmazonDynamoDBClient();

 RetrieveMultipleItemsBatchGet(client);
 }
 }
}

• For API details, see BatchGetItem in AWS SDK for .NET API Reference.

BatchWriteItem

The following code example shows how to use BatchWriteItem.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Writes a batch of items to the movie table.

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();

Actions 654

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchGetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 var allMovies = JsonSerializer.Deserialize<List<Movie>>(
 json,
 new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 });

 // Now return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }

 /// <summary>
 /// Writes 250 items to the movie table.
 /// </summary>
 /// <param name="client">The initialized DynamoDB client object.</param>
 /// <param name="movieFileName">A string containing the full path to
 /// the JSON file containing movie data.</param>
 /// <returns>A long integer value representing the number of movies
 /// imported from the JSON file.</returns>
 public static async Task<long> BatchWriteItemsAsync(
 AmazonDynamoDBClient client,
 string movieFileName)
 {
 var movies = ImportMovies(movieFileName);
 if (movies is null)
 {
 Console.WriteLine("Couldn't find the JSON file with movie data.");
 return 0;
 }

 var context = new DynamoDBContext(client);

 var movieBatch = context.CreateBatchWrite<Movie>();
 movieBatch.AddPutItems(movies);

 Console.WriteLine("Adding imported movies to the table.");
 await movieBatch.ExecuteAsync();

 return movies.Count;
 }

• For API details, see BatchWriteItem in AWS SDK for .NET API Reference.

Actions 655

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchWriteItem

AWS SDK for .NET Developer Guide

CreateTable

The following code example shows how to use CreateTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates a new Amazon DynamoDB table and then waits for the new
 /// table to become active.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="tableName">The name of the table to create.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public static async Task<bool> CreateMovieTableAsync(AmazonDynamoDBClient
 client, string tableName)
 {
 var response = await client.CreateTableAsync(new CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "title",
 AttributeType = ScalarAttributeType.S,
 },
 new AttributeDefinition
 {
 AttributeName = "year",
 AttributeType = ScalarAttributeType.N,
 },
 },
 KeySchema = new List<KeySchemaElement>()
 {

Actions 656

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 new KeySchemaElement
 {
 AttributeName = "year",
 KeyType = KeyType.HASH,
 },
 new KeySchemaElement
 {
 AttributeName = "title",
 KeyType = KeyType.RANGE,
 },
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 5,
 },
 });

 // Wait until the table is ACTIVE and then report success.
 Console.Write("Waiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = response.TableDescription.TableName,
 };

 TableStatus status;

 int sleepDuration = 2000;

 do
 {
 System.Threading.Thread.Sleep(sleepDuration);

 var describeTableResponse = await
 client.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }

Actions 657

AWS SDK for .NET Developer Guide

• For API details, see CreateTable in AWS SDK for .NET API Reference.

DeleteItem

The following code example shows how to use DeleteItem.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes a single item from a DynamoDB table.
 /// </summary>
 /// <param name="client">The initialized DynamoDB client object.</param>
 /// <param name="tableName">The name of the table from which the item
 /// will be deleted.</param>
 /// <param name="movieToDelete">A movie object containing the title and
 /// year of the movie to delete.</param>
 /// <returns>A Boolean value indicating the success or failure of the
 /// delete operation.</returns>
 public static async Task<bool> DeleteItemAsync(
 AmazonDynamoDBClient client,
 string tableName,
 Movie movieToDelete)
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = movieToDelete.Title },
 ["year"] = new AttributeValue { N = movieToDelete.Year.ToString() },
 };

 var request = new DeleteItemRequest
 {

Actions 658

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 TableName = tableName,
 Key = key,
 };

 var response = await client.DeleteItemAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteItem in AWS SDK for .NET API Reference.

DeleteTable

The following code example shows how to use DeleteTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 public static async Task<bool> DeleteTableAsync(AmazonDynamoDBClient client,
 string tableName)
 {
 var request = new DeleteTableRequest
 {
 TableName = tableName,
 };

 var response = await client.DeleteTableAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Table {response.TableDescription.TableName}
 successfully deleted.");
 return true;
 }
 else
 {

Actions 659

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine("Could not delete table.");
 return false;
 }
 }

• For API details, see DeleteTable in AWS SDK for .NET API Reference.

DescribeTable

The following code example shows how to use DescribeTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 private static async Task GetTableInformation()
 {
 Console.WriteLine("\n*** Retrieving table information ***");

 var response = await Client.DescribeTableAsync(new DescribeTableRequest
 {
 TableName = ExampleTableName
 });

 var table = response.Table;
 Console.WriteLine($"Name: {table.TableName}");
 Console.WriteLine($"# of items: {table.ItemCount}");
 Console.WriteLine($"Provision Throughput (reads/sec): " +
 $"{table.ProvisionedThroughput.ReadCapacityUnits}");
 Console.WriteLine($"Provision Throughput (writes/sec): " +
 $"{table.ProvisionedThroughput.WriteCapacityUnits}");
 }

• For API details, see DescribeTable in AWS SDK for .NET API Reference.

Actions 660

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/DescribeTable

AWS SDK for .NET Developer Guide

ExecuteStatement

The following code example shows how to use ExecuteStatement.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Use an INSERT statement to add an item.

 /// <summary>
 /// Inserts a single movie into the movies table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to insert.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the INSERT operation.</returns>
 public static async Task<bool> InsertSingleMovie(string tableName, string
 movieTitle, int year)
 {
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 661

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

Use a SELECT statement to get an item.

 /// <summary>
 /// Uses a PartiQL SELECT statement to retrieve a single movie from the
 /// movie database.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="movieTitle">The title of the movie to retrieve.</param>
 /// <returns>A list of movie data. If no movie matches the supplied
 /// title, the list is empty.</returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetSingleMovie(string tableName, string movieTitle)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE title = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

Use a SELECT statement to get a list of items.

 /// <summary>
 /// Retrieve multiple movies by year using a SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="year">The year the movies were released.</param>
 /// <returns></returns>

Actions 662

AWS SDK for .NET Developer Guide

 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetMovies(string tableName, int year)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE year = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { N = year.ToString() },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

Use an UPDATE statement to update an item.

 /// <summary>
 /// Updates a single movie in the table, adding information for the
 /// producer.
 /// </summary>
 /// <param name="tableName">the name of the table.</param>
 /// <param name="producer">The name of the producer.</param>
 /// <param name="movieTitle">The movie title.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// UPDATE operation.</returns>
 public static async Task<bool> UpdateSingleMovie(string tableName, string
 producer, string movieTitle, int year)
 {
 string insertSingle = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertSingle,

Actions 663

AWS SDK for .NET Developer Guide

 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer },
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Use a DELETE statement to delete a single movie.

 /// <summary>
 /// Deletes a single movie from the table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to delete.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// DELETE operation.</returns>
 public static async Task<bool> DeleteSingleMovie(string tableName, string
 movieTitle, int year)
 {
 var deleteSingle = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = deleteSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 664

AWS SDK for .NET Developer Guide

• For API details, see ExecuteStatement in AWS SDK for .NET API Reference.

GetItem

The following code example shows how to use GetItem.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Gets information about an existing movie from the table.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="newMovie">A Movie object containing information about
 /// the movie to retrieve.</param>
 /// <param name="tableName">The name of the table containing the movie.</
param>
 /// <returns>A Dictionary object containing information about the item
 /// retrieved.</returns>
 public static async Task<Dictionary<string, AttributeValue>>
 GetItemAsync(AmazonDynamoDBClient client, Movie newMovie, string tableName)
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new GetItemRequest
 {
 Key = key,

Actions 665

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 TableName = tableName,
 };

 var response = await client.GetItemAsync(request);
 return response.Item;
 }

• For API details, see GetItem in AWS SDK for .NET API Reference.

ListTables

The following code example shows how to use ListTables.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 private static async Task ListMyTables()
 {
 Console.WriteLine("\n*** Listing tables ***");

 string lastTableNameEvaluated = null;
 do
 {
 var response = await Client.ListTablesAsync(new ListTablesRequest
 {
 Limit = 2,
 ExclusiveStartTableName = lastTableNameEvaluated
 });

 foreach (var name in response.TableNames)
 {
 Console.WriteLine(name);
 }

Actions 666

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 lastTableNameEvaluated = response.LastEvaluatedTableName;
 } while (lastTableNameEvaluated != null);
 }

• For API details, see ListTables in AWS SDK for .NET API Reference.

PutItem

The following code example shows how to use PutItem.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Adds a new item to the table.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="newMovie">A Movie object containing informtation for
 /// the movie to add to the table.</param>
 /// <param name="tableName">The name of the table where the item will be
 added.</param>
 /// <returns>A Boolean value that indicates the results of adding the
 item.</returns>
 public static async Task<bool> PutItemAsync(AmazonDynamoDBClient client,
 Movie newMovie, string tableName)
 {
 var item = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new PutItemRequest

Actions 667

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 {
 TableName = tableName,
 Item = item,
 };

 var response = await client.PutItemAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see PutItem in AWS SDK for .NET API Reference.

Query

The following code example shows how to use Query.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Queries the table for movies released in a particular year and
 /// then displays the information for the movies returned.
 /// </summary>
 /// <param name="client">The initialized DynamoDB client object.</param>
 /// <param name="tableName">The name of the table to query.</param>
 /// <param name="year">The release year for which we want to
 /// view movies.</param>
 /// <returns>The number of movies that match the query.</returns>
 public static async Task<int> QueryMoviesAsync(AmazonDynamoDBClient client,
 string tableName, int year)
 {
 var movieTable = Table.LoadTable(client, tableName);
 var filter = new QueryFilter("year", QueryOperator.Equal, year);

Actions 668

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine("\nFind movies released in: {year}:");

 var config = new QueryOperationConfig()
 {
 Limit = 10, // 10 items per page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {
 "title",
 "year",
 },
 ConsistentRead = true,
 Filter = filter,
 };

 // Value used to track how many movies match the
 // supplied criteria.
 var moviesFound = 0;

 Search search = movieTable.Query(config);
 do
 {
 var movieList = await search.GetNextSetAsync();
 moviesFound += movieList.Count;

 foreach (var movie in movieList)
 {
 DisplayDocument(movie);
 }
 }
 while (!search.IsDone);

 return moviesFound;
 }

• For API details, see Query in AWS SDK for .NET API Reference.

Scan

The following code example shows how to use Scan.

Actions 669

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/Query

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 public static async Task<int> ScanTableAsync(
 AmazonDynamoDBClient client,
 string tableName,
 int startYear,
 int endYear)
 {
 var request = new ScanRequest
 {
 TableName = tableName,
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#yr", "year" },
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":y_a", new AttributeValue { N = startYear.ToString() } },
 { ":y_z", new AttributeValue { N = endYear.ToString() } },
 },
 FilterExpression = "#yr between :y_a and :y_z",
 ProjectionExpression = "#yr, title, info.actors[0], info.directors,
 info.running_time_secs",
 Limit = 10 // Set a limit to demonstrate using the LastEvaluatedKey.
 };

 // Keep track of how many movies were found.
 int foundCount = 0;

 var response = new ScanResponse();
 do
 {
 response = await client.ScanAsync(request);
 foundCount += response.Items.Count;
 response.Items.ForEach(i => DisplayItem(i));
 request.ExclusiveStartKey = response.LastEvaluatedKey;

Actions 670

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 }
 while (response.LastEvaluatedKey.Count > 0);
 return foundCount;
 }

• For API details, see Scan in AWS SDK for .NET API Reference.

UpdateItem

The following code example shows how to use UpdateItem.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Updates an existing item in the movies table.
 /// </summary>
 /// <param name="client">An initialized Amazon DynamoDB client object.</
param>
 /// <param name="newMovie">A Movie object containing information for
 /// the movie to update.</param>
 /// <param name="newInfo">A MovieInfo object that contains the
 /// information that will be changed.</param>
 /// <param name="tableName">The name of the table that contains the movie.</
param>
 /// <returns>A Boolean value that indicates the success of the operation.</
returns>
 public static async Task<bool> UpdateItemAsync(
 AmazonDynamoDBClient client,
 Movie newMovie,
 MovieInfo newInfo,
 string tableName)
 {

Actions 671

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/Scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };
 var updates = new Dictionary<string, AttributeValueUpdate>
 {
 ["info.plot"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { S = newInfo.Plot },
 },

 ["info.rating"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { N = newInfo.Rank.ToString() },
 },
 };

 var request = new UpdateItemRequest
 {
 AttributeUpdates = updates,
 Key = key,
 TableName = tableName,
 };

 var response = await client.UpdateItemAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see UpdateItem in AWS SDK for .NET API Reference.

Scenarios

Create a serverless application to manage photos

The following code example shows how to create a serverless application that lets users manage
photos using labels.

Scenarios 672

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/UpdateItem

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Create a web application to track DynamoDB data

The following code example shows how to create a web application that tracks work items in an
Amazon DynamoDB table and uses Amazon Simple Email Service (Amazon SES) to send reports.

AWS SDK for .NET

Shows how to use the Amazon DynamoDB .NET API to create a dynamic web application that
tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Query a table by using batches of PartiQL statements

The following code example shows how to:

Scenarios 673

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/DynamoDbItemTracker

AWS SDK for .NET Developer Guide

• Get a batch of items by running multiple SELECT statements.

• Add a batch of items by running multiple INSERT statements.

• Update a batch of items by running multiple UPDATE statements.

• Delete a batch of items by running multiple DELETE statements.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

// Before you run this example, download 'movies.json' from
// https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
GettingStarted.Js.02.html,
// and put it in the same folder as the example.

// Separator for the console display.
var SepBar = new string('-', 80);
const string tableName = "movie_table";
const string movieFileName = "moviedata.json";

DisplayInstructions();

// Create the table and wait for it to be active.
Console.WriteLine($"Creating the movie table: {tableName}");

var success = await DynamoDBMethods.CreateMovieTableAsync(tableName);
if (success)
{
 Console.WriteLine($"Successfully created table: {tableName}.");
}

WaitForEnter();

// Add movie information to the table from moviedata.json. See the
// instructions at the top of this file to download the JSON file.
Console.WriteLine($"Inserting movies into the new table. Please wait...");

Scenarios 674

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

success = await PartiQLBatchMethods.InsertMovies(tableName, movieFileName);
if (success)
{
 Console.WriteLine("Movies successfully added to the table.");
}
else
{
 Console.WriteLine("Movies could not be added to the table.");
}

WaitForEnter();

// Update multiple movies by using the BatchExecute statement.
var title1 = "Star Wars";
var year1 = 1977;
var title2 = "Wizard of Oz";
var year2 = 1939;

Console.WriteLine($"Updating two movies with producer information: {title1} and
 {title2}.");
success = await PartiQLBatchMethods.GetBatch(tableName, title1, title2, year1,
 year2);
if (success)
{
 Console.WriteLine($"Successfully retrieved {title1} and {title2}.");
}
else
{
 Console.WriteLine("Select statement failed.");
}

WaitForEnter();

// Update multiple movies by using the BatchExecute statement.
var producer1 = "LucasFilm";
var producer2 = "MGM";

Console.WriteLine($"Updating two movies with producer information: {title1} and
 {title2}.");
success = await PartiQLBatchMethods.UpdateBatch(tableName, producer1, title1, year1,
 producer2, title2, year2);
if (success)
{
 Console.WriteLine($"Successfully updated {title1} and {title2}.");

Scenarios 675

AWS SDK for .NET Developer Guide

}
else
{
 Console.WriteLine("Update failed.");
}

WaitForEnter();

// Delete multiple movies by using the BatchExecute statement.
Console.WriteLine($"Now we will delete {title1} and {title2} from the table.");
success = await PartiQLBatchMethods.DeleteBatch(tableName, title1, year1, title2,
 year2);

if (success)
{
 Console.WriteLine($"Deleted {title1} and {title2}");
}
else
{
 Console.WriteLine($"could not delete {title1} or {title2}");
}

WaitForEnter();

// DNow that the PartiQL Batch scenario is complete, delete the movie table.
success = await DynamoDBMethods.DeleteTableAsync(tableName);

if (success)
{
 Console.WriteLine($"Successfully deleted {tableName}");
}
else
{
 Console.WriteLine($"Could not delete {tableName}");
}

/// <summary>
/// Displays the description of the application on the console.
/// </summary>
void DisplayInstructions()
{
 Console.Clear();
 Console.WriteLine();
 Console.Write(new string(' ', 24));

Scenarios 676

AWS SDK for .NET Developer Guide

 Console.WriteLine("DynamoDB PartiQL Basics Example");
 Console.WriteLine(SepBar);
 Console.WriteLine("This demo application shows the basics of using Amazon
 DynamoDB with the AWS SDK for");
 Console.WriteLine(".NET version 3.7 and .NET 6.");
 Console.WriteLine(SepBar);
 Console.WriteLine("Creates a table by using the CreateTable method.");
 Console.WriteLine("Gets multiple movies by using a PartiQL SELECT statement.");
 Console.WriteLine("Updates multiple movies by using the ExecuteBatch method.");
 Console.WriteLine("Deletes multiple movies by using a PartiQL DELETE
 statement.");
 Console.WriteLine("Cleans up the resources created for the demo by deleting the
 table.");
 Console.WriteLine(SepBar);

 WaitForEnter();
}

/// <summary>
/// Simple method to wait for the <Enter> key to be pressed.
/// </summary>
void WaitForEnter()
{
 Console.WriteLine("\nPress <Enter> to continue.");
 Console.Write(SepBar);
 _ = Console.ReadLine();
}

 /// <summary>
 /// Gets movies from the movie table by
 /// using an Amazon DynamoDB PartiQL SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year1">The year of the first movie.</param>
 /// <param name="year2">The year of the second movie.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> GetBatch(
 string tableName,
 string title1,
 string title2,
 int year1,

Scenarios 677

AWS SDK for .NET Developer Guide

 int year2)
 {
 var getBatch = $"SELECT FROM {tableName} WHERE title = ? AND year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 if (response.Responses.Count > 0)
 {
 response.Responses.ForEach(r =>
 {
 Console.WriteLine($"{r.Item["title"]}\t{r.Item["year"]}");
 });
 return true;
 }
 else
 {
 Console.WriteLine($"Couldn't find either {title1} or {title2}.");
 return false;

Scenarios 678

AWS SDK for .NET Developer Guide

 }

 }

 /// <summary>
 /// Inserts movies imported from a JSON file into the movie table by
 /// using an Amazon DynamoDB PartiQL INSERT statement.
 /// </summary>
 /// <param name="tableName">The name of the table into which the movie
 /// information will be inserted.</param>
 /// <param name="movieFileName">The name of the JSON file that contains
 /// movie information.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the insert operation.</returns>
 public static async Task<bool> InsertMovies(string tableName, string
 movieFileName)
 {
 // Get the list of movies from the JSON file.
 var movies = ImportMovies(movieFileName);

 var success = false;

 if (movies is not null)
 {
 // Insert the movies in a batch using PartiQL. Because the
 // batch can contain a maximum of 25 items, insert 25 movies
 // at a time.
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";
 var statements = new List<BatchStatementRequest>();

 try
 {
 for (var indexOffset = 0; indexOffset < 250; indexOffset += 25)
 {
 for (var i = indexOffset; i < indexOffset + 25; i++)
 {
 statements.Add(new BatchStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movies[i].Title },

Scenarios 679

AWS SDK for .NET Developer Guide

 new AttributeValue { N =
 movies[i].Year.ToString() },
 },
 });
 }

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 // Wait between batches for movies to be successfully added.
 System.Threading.Thread.Sleep(3000);

 success = response.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;

 // Clear the list of statements for the next batch.
 statements.Clear();
 }
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 return success;
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

Scenarios 680

AWS SDK for .NET Developer Guide

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 if (allMovies is not null)
 {
 // Return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }
 else
 {
 return null!;
 }
 }

 /// <summary>
 /// Updates information for multiple movies.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// movies to be updated.</param>
 /// <param name="producer1">The producer name for the first movie
 /// to update.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year that the first movie was released.</param>
 /// <param name="producer2">The producer name for the second
 /// movie to update.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year that the second movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the update.</
returns>
 public static async Task<bool> UpdateBatch(
 string tableName,
 string producer1,
 string title1,
 int year1,
 string producer2,
 string title2,
 int year2)
 {

 string updateBatch = $"UPDATE {tableName} SET Producer=? WHERE title = ?
 AND year = ?";
 var statements = new List<BatchStatementRequest>
 {

Scenarios 681

AWS SDK for .NET Developer Guide

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer1 },
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer2 },
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Deletes multiple movies using a PartiQL BatchExecuteAsync
 /// statement.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// moves that will be deleted.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year the first movie was released.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year the second movie was released.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>

Scenarios 682

AWS SDK for .NET Developer Guide

 public static async Task<bool> DeleteBatch(
 string tableName,
 string title1,
 int year1,
 string title2,
 int year2)
 {

 string updateBatch = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see BatchExecuteStatement in AWS SDK for .NET API Reference.

Scenarios 683

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchExecuteStatement

AWS SDK for .NET Developer Guide

Query a table using PartiQL

The following code example shows how to:

• Get an item by running a SELECT statement.

• Add an item by running an INSERT statement.

• Update an item by running an UPDATE statement.

• Delete an item by running a DELETE statement.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace PartiQL_Basics_Scenario
{
 public class PartiQLMethods
 {
 private static readonly AmazonDynamoDBClient Client = new
 AmazonDynamoDBClient();

 /// <summary>
 /// Inserts movies imported from a JSON file into the movie table by
 /// using an Amazon DynamoDB PartiQL INSERT statement.
 /// </summary>
 /// <param name="tableName">The name of the table where the movie
 /// information will be inserted.</param>
 /// <param name="movieFileName">The name of the JSON file that contains
 /// movie information.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the insert operation.</returns>
 public static async Task<bool> InsertMovies(string tableName, string
 movieFileName)
 {
 // Get the list of movies from the JSON file.
 var movies = ImportMovies(movieFileName);

Scenarios 684

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

AWS SDK for .NET Developer Guide

 var success = false;

 if (movies is not null)
 {
 // Insert the movies in a batch using PartiQL. Because the
 // batch can contain a maximum of 25 items, insert 25 movies
 // at a time.
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";
 var statements = new List<BatchStatementRequest>();

 try
 {
 for (var indexOffset = 0; indexOffset < 250; indexOffset += 25)
 {
 for (var i = indexOffset; i < indexOffset + 25; i++)
 {
 statements.Add(new BatchStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movies[i].Title },
 new AttributeValue { N =
 movies[i].Year.ToString() },
 },
 });
 }

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 // Wait between batches for movies to be successfully added.
 System.Threading.Thread.Sleep(3000);

 success = response.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;

 // Clear the list of statements for the next batch.
 statements.Clear();

Scenarios 685

AWS SDK for .NET Developer Guide

 }
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 return success;
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 if (allMovies is not null)
 {
 // Return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }
 else
 {
 return null!;
 }
 }

 /// <summary>
 /// Uses a PartiQL SELECT statement to retrieve a single movie from the
 /// movie database.

Scenarios 686

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="movieTitle">The title of the movie to retrieve.</param>
 /// <returns>A list of movie data. If no movie matches the supplied
 /// title, the list is empty.</returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetSingleMovie(string tableName, string movieTitle)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE title = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

 /// <summary>
 /// Retrieve multiple movies by year using a SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="year">The year the movies were released.</param>
 /// <returns></returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetMovies(string tableName, int year)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE year = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { N = year.ToString() },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {

Scenarios 687

AWS SDK for .NET Developer Guide

 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

 /// <summary>
 /// Inserts a single movie into the movies table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to insert.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the INSERT operation.</returns>
 public static async Task<bool> InsertSingleMovie(string tableName, string
 movieTitle, int year)
 {
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Updates a single movie in the table, adding information for the
 /// producer.
 /// </summary>
 /// <param name="tableName">the name of the table.</param>
 /// <param name="producer">The name of the producer.</param>

Scenarios 688

AWS SDK for .NET Developer Guide

 /// <param name="movieTitle">The movie title.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// UPDATE operation.</returns>
 public static async Task<bool> UpdateSingleMovie(string tableName, string
 producer, string movieTitle, int year)
 {
 string insertSingle = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer },
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Deletes a single movie from the table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to delete.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// DELETE operation.</returns>
 public static async Task<bool> DeleteSingleMovie(string tableName, string
 movieTitle, int year)
 {
 var deleteSingle = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {

Scenarios 689

AWS SDK for .NET Developer Guide

 Statement = deleteSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Displays the list of movies returned from a database query.
 /// </summary>
 /// <param name="items">The list of movie information to display.</param>
 private static void DisplayMovies(List<Dictionary<string, AttributeValue>>
 items)
 {
 if (items.Count > 0)
 {
 Console.WriteLine($"Found {items.Count} movies.");
 items.ForEach(item =>
 Console.WriteLine($"{item["year"].N}\t{item["title"].S}"));
 }
 else
 {
 Console.WriteLine($"Didn't find a movie that matched the supplied
 criteria.");
 }
 }

 }
}

 /// <summary>
 /// Uses a PartiQL SELECT statement to retrieve a single movie from the
 /// movie database.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="movieTitle">The title of the movie to retrieve.</param>

Scenarios 690

AWS SDK for .NET Developer Guide

 /// <returns>A list of movie data. If no movie matches the supplied
 /// title, the list is empty.</returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetSingleMovie(string tableName, string movieTitle)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE title = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

 /// <summary>
 /// Inserts a single movie into the movies table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to insert.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the INSERT operation.</returns>
 public static async Task<bool> InsertSingleMovie(string tableName, string
 movieTitle, int year)
 {
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },

Scenarios 691

AWS SDK for .NET Developer Guide

 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Updates a single movie in the table, adding information for the
 /// producer.
 /// </summary>
 /// <param name="tableName">the name of the table.</param>
 /// <param name="producer">The name of the producer.</param>
 /// <param name="movieTitle">The movie title.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// UPDATE operation.</returns>
 public static async Task<bool> UpdateSingleMovie(string tableName, string
 producer, string movieTitle, int year)
 {
 string insertSingle = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer },
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Deletes a single movie from the table.

Scenarios 692

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to delete.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// DELETE operation.</returns>
 public static async Task<bool> DeleteSingleMovie(string tableName, string
 movieTitle, int year)
 {
 var deleteSingle = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = deleteSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see ExecuteStatement in AWS SDK for .NET API Reference.

Use a document model

The following code example shows how to perform Create, Read, Update, and Delete (CRUD) and
batch operations using a document model for DynamoDB and an AWS SDK.

For more information, see Document model.

Scenarios 693

https://docs.aws.amazon.com/goto/DotNetSDKV3/dynamodb-2012-08-10/ExecuteStatement
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Perform CRUD operations using a document model.

 /// <summary>
 /// Performs CRUD operations on an Amazon DynamoDB table.
 /// </summary>
 public class MidlevelItemCRUD
 {
 public static async Task Main()
 {
 var tableName = "ProductCatalog";
 var sampleBookId = 555;

 var client = new AmazonDynamoDBClient();
 var productCatalog = LoadTable(client, tableName);

 await CreateBookItem(productCatalog, sampleBookId);
 RetrieveBook(productCatalog, sampleBookId);

 // Couple of sample updates.
 UpdateMultipleAttributes(productCatalog, sampleBookId);
 UpdateBookPriceConditionally(productCatalog, sampleBookId);

 // Delete.
 await DeleteBook(productCatalog, sampleBookId);
 }

 /// <summary>
 /// Loads the contents of a DynamoDB table.
 /// </summary>
 /// <param name="client">An initialized DynamoDB client object.</param>
 /// <param name="tableName">The name of the table to load.</param>
 /// <returns>A DynamoDB table object.</returns>
 public static Table LoadTable(IAmazonDynamoDB client, string tableName)
 {

Scenarios 694

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb/mid-level-api#code-examples

AWS SDK for .NET Developer Guide

 Table productCatalog = Table.LoadTable(client, tableName);
 return productCatalog;
 }

 /// <summary>
 /// Creates an example book item and adds it to the DynamoDB table
 /// ProductCatalog.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async Task CreateBookItem(Table productCatalog, int
 sampleBookId)
 {
 Console.WriteLine("\n*** Executing CreateBookItem() ***");
 var book = new Document
 {
 ["Id"] = sampleBookId,
 ["Title"] = "Book " + sampleBookId,
 ["Price"] = 19.99,
 ["ISBN"] = "111-1111111111",
 ["Authors"] = new List<string> { "Author 1", "Author 2", "Author
 3" },
 ["PageCount"] = 500,
 ["Dimensions"] = "8.5x11x.5",
 ["InPublication"] = new DynamoDBBool(true),
 ["InStock"] = new DynamoDBBool(false),
 ["QuantityOnHand"] = 0,
 };

 // Adds the book to the ProductCatalog table.
 await productCatalog.PutItemAsync(book);
 }

 /// <summary>
 /// Retrieves an item, a book, from the DynamoDB ProductCatalog table.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async void RetrieveBook(
 Table productCatalog,
 int sampleBookId)
 {

Scenarios 695

AWS SDK for .NET Developer Guide

 Console.WriteLine("\n*** Executing RetrieveBook() ***");

 // Optional configuration.
 var config = new GetItemOperationConfig
 {
 AttributesToGet = new List<string> { "Id", "ISBN", "Title",
 "Authors", "Price" },
 ConsistentRead = true,
 };

 Document document = await productCatalog.GetItemAsync(sampleBookId,
 config);
 Console.WriteLine("RetrieveBook: Printing book retrieved...");
 PrintDocument(document);
 }

 /// <summary>
 /// Updates multiple attributes for a book and writes the changes to the
 /// DynamoDB table ProductCatalog.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async void UpdateMultipleAttributes(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\nUpdating multiple attributes....");
 int partitionKey = sampleBookId;

 var book = new Document
 {
 ["Id"] = partitionKey,

 // List of attribute updates.
 // The following replaces the existing authors list.
 ["Authors"] = new List<string> { "Author x", "Author y" },
 ["newAttribute"] = "New Value",
 ["ISBN"] = null, // Remove it.
 };

 // Optional parameters.
 var config = new UpdateItemOperationConfig
 {

Scenarios 696

AWS SDK for .NET Developer Guide

 // Gets updated item in response.
 ReturnValues = ReturnValues.AllNewAttributes,
 };

 Document updatedBook = await productCatalog.UpdateItemAsync(book,
 config);
 Console.WriteLine("UpdateMultipleAttributes: Printing item after
 updates ...");
 PrintDocument(updatedBook);
 }

 /// <summary>
 /// Updates a book item if it meets the specified criteria.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async void UpdateBookPriceConditionally(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\n*** Executing UpdateBookPriceConditionally() ***");

 int partitionKey = sampleBookId;

 var book = new Document
 {
 ["Id"] = partitionKey,
 ["Price"] = 29.99,
 };

 // For conditional price update, creating a condition expression.
 var expr = new Expression
 {
 ExpressionStatement = "Price = :val",
 };
 expr.ExpressionAttributeValues[":val"] = 19.00;

 // Optional parameters.
 var config = new UpdateItemOperationConfig
 {
 ConditionalExpression = expr,
 ReturnValues = ReturnValues.AllNewAttributes,
 };

Scenarios 697

AWS SDK for .NET Developer Guide

 Document updatedBook = await productCatalog.UpdateItemAsync(book,
 config);
 Console.WriteLine("UpdateBookPriceConditionally: Printing item whose
 price was conditionally updated");
 PrintDocument(updatedBook);
 }

 /// <summary>
 /// Deletes the book with the supplied Id value from the DynamoDB table
 /// ProductCatalog.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async Task DeleteBook(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\n*** Executing DeleteBook() ***");

 // Optional configuration.
 var config = new DeleteItemOperationConfig
 {
 // Returns the deleted item.
 ReturnValues = ReturnValues.AllOldAttributes,
 };
 Document document = await productCatalog.DeleteItemAsync(sampleBookId,
 config);
 Console.WriteLine("DeleteBook: Printing deleted just deleted...");

 PrintDocument(document);
 }

 /// <summary>
 /// Prints the information for the supplied DynamoDB document.
 /// </summary>
 /// <param name="updatedDocument">A DynamoDB document object.</param>
 public static void PrintDocument(Document updatedDocument)
 {
 if (updatedDocument is null)
 {
 return;
 }

Scenarios 698

AWS SDK for .NET Developer Guide

 foreach (var attribute in updatedDocument.GetAttributeNames())
 {
 string stringValue = null;
 var value = updatedDocument[attribute];

 if (value is null)
 {
 continue;
 }

 if (value is Primitive)
 {
 stringValue = value.AsPrimitive().Value.ToString();
 }
 else if (value is PrimitiveList)
 {
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select
 primitive.Value).ToArray());
 }

 Console.WriteLine($"{attribute} - {stringValue}", attribute,
 stringValue);
 }
 }
 }

Perform batch write operations using a document model.

 /// <summary>
 /// Shows how to use mid-level Amazon DynamoDB API calls to perform batch
 /// operations.
 /// </summary>
 public class MidLevelBatchWriteItem
 {
 public static async Task Main()
 {
 IAmazonDynamoDB client = new AmazonDynamoDBClient();

Scenarios 699

AWS SDK for .NET Developer Guide

 await SingleTableBatchWrite(client);
 await MultiTableBatchWrite(client);
 }

 /// <summary>
 /// Perform a batch operation on a single DynamoDB table.
 /// </summary>
 /// <param name="client">An initialized DynamoDB object.</param>
 public static async Task SingleTableBatchWrite(IAmazonDynamoDB client)
 {
 Table productCatalog = Table.LoadTable(client, "ProductCatalog");
 var batchWrite = productCatalog.CreateBatchWrite();

 var book1 = new Document
 {
 ["Id"] = 902,
 ["Title"] = "My book1 in batch write using .NET helper classes",
 ["ISBN"] = "902-11-11-1111",
 ["Price"] = 10,
 ["ProductCategory"] = "Book",
 ["Authors"] = new List<string> { "Author 1", "Author 2", "Author
 3" },
 ["Dimensions"] = "8.5x11x.5",
 ["InStock"] = new DynamoDBBool(true),
 ["QuantityOnHand"] = new DynamoDBNull(), // Quantity is unknown at
 this time.
 };

 batchWrite.AddDocumentToPut(book1);

 // Specify delete item using overload that takes PK.
 batchWrite.AddKeyToDelete(12345);
 Console.WriteLine("Performing batch write in SingleTableBatchWrite()");
 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Perform a batch operation involving multiple DynamoDB tables.
 /// </summary>
 /// <param name="client">An initialized DynamoDB client object.</param>
 public static async Task MultiTableBatchWrite(IAmazonDynamoDB client)
 {
 // Specify item to add in the Forum table.

Scenarios 700

AWS SDK for .NET Developer Guide

 Table forum = Table.LoadTable(client, "Forum");
 var forumBatchWrite = forum.CreateBatchWrite();

 var forum1 = new Document
 {
 ["Name"] = "Test BatchWrite Forum",
 ["Threads"] = 0,
 };
 forumBatchWrite.AddDocumentToPut(forum1);

 // Specify item to add in the Thread table.
 Table thread = Table.LoadTable(client, "Thread");
 var threadBatchWrite = thread.CreateBatchWrite();

 var thread1 = new Document
 {
 ["ForumName"] = "S3 forum",
 ["Subject"] = "My sample question",
 ["Message"] = "Message text",
 ["KeywordTags"] = new List<string> { "S3", "Bucket" },
 };
 threadBatchWrite.AddDocumentToPut(thread1);

 // Specify item to delete from the Thread table.
 threadBatchWrite.AddKeyToDelete("someForumName", "someSubject");

 // Create multi-table batch.
 var superBatch = new MultiTableDocumentBatchWrite();
 superBatch.AddBatch(forumBatchWrite);
 superBatch.AddBatch(threadBatchWrite);
 Console.WriteLine("Performing batch write in MultiTableBatchWrite()");

 // Execute the batch.
 await superBatch.ExecuteAsync();
 }
 }

Scan a table using a document model.

 /// <summary>

Scenarios 701

AWS SDK for .NET Developer Guide

 /// Shows how to use mid-level Amazon DynamoDB API calls to scan a DynamoDB
 /// table for values.
 /// </summary>
 public class MidLevelScanOnly
 {
 public static async Task Main()
 {
 IAmazonDynamoDB client = new AmazonDynamoDBClient();

 Table productCatalogTable = Table.LoadTable(client, "ProductCatalog");

 await FindProductsWithNegativePrice(productCatalogTable);
 await FindProductsWithNegativePriceWithConfig(productCatalogTable);
 }

 /// <summary>
 /// Retrieves any products that have a negative price in a DynamoDB table.
 /// </summary>
 /// <param name="productCatalogTable">A DynamoDB table object.</param>
 public static async Task FindProductsWithNegativePrice(
 Table productCatalogTable)
 {
 // Assume there is a price error. So we scan to find items priced < 0.
 var scanFilter = new ScanFilter();
 scanFilter.AddCondition("Price", ScanOperator.LessThan, 0);

 Search search = productCatalogTable.Scan(scanFilter);

 do
 {
 var documentList = await search.GetNextSetAsync();
 Console.WriteLine("\nFindProductsWithNegativePrice:
 printing");

 foreach (var document in documentList)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Finds any items in the ProductCatalog table using a DynamoDB

Scenarios 702

AWS SDK for .NET Developer Guide

 /// configuration object.
 /// </summary>
 /// <param name="productCatalogTable">A DynamoDB table object.</param>
 public static async Task FindProductsWithNegativePriceWithConfig(
 Table productCatalogTable)
 {
 // Assume there is a price error. So we scan to find items priced < 0.
 var scanFilter = new ScanFilter();
 scanFilter.AddCondition("Price", ScanOperator.LessThan, 0);

 var config = new ScanOperationConfig()
 {
 Filter = scanFilter,
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string> { "Title", "Id" },
 };

 Search search = productCatalogTable.Scan(config);

 do
 {
 var documentList = await search.GetNextSetAsync();
 Console.WriteLine("\nFindProductsWithNegativePriceWithConfig:
 printing");

 foreach (var document in documentList)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Displays the details of the passed DynamoDB document object on the
 /// console.
 /// </summary>
 /// <param name="document">A DynamoDB document object.</param>
 public static void PrintDocument(Document document)
 {
 Console.WriteLine();
 foreach (var attribute in document.GetAttributeNames())
 {
 string stringValue = null;

Scenarios 703

AWS SDK for .NET Developer Guide

 var value = document[attribute];
 if (value is Primitive)
 {
 stringValue = value.AsPrimitive().Value.ToString();
 }
 else if (value is PrimitiveList)
 {
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select
 primitive.Value).ToArray());
 }

 Console.WriteLine($"{attribute} - {stringValue}");
 }
 }
 }

Query and scan a table using a document model.

 /// <summary>
 /// Shows how to perform mid-level query procedures on an Amazon DynamoDB
 /// table.
 /// </summary>
 public class MidLevelQueryAndScan
 {
 public static async Task Main()
 {
 IAmazonDynamoDB client = new AmazonDynamoDBClient();

 // Query examples.
 Table replyTable = Table.LoadTable(client, "Reply");
 string forumName = "Amazon DynamoDB";
 string threadSubject = "DynamoDB Thread 2";

 await FindRepliesInLast15Days(replyTable);
 await FindRepliesInLast15DaysWithConfig(replyTable, forumName,
 threadSubject);
 await FindRepliesPostedWithinTimePeriod(replyTable, forumName,
 threadSubject);

Scenarios 704

AWS SDK for .NET Developer Guide

 // Get Example.
 Table productCatalogTable = Table.LoadTable(client, "ProductCatalog");
 int productId = 101;

 await GetProduct(productCatalogTable, productId);
 }

 /// <summary>
 /// Retrieves information about a product from the DynamoDB table
 /// ProductCatalog based on the product ID and displays the information
 /// on the console.
 /// </summary>
 /// <param name="tableName">The name of the table from which to retrieve
 /// product information.</param>
 /// <param name="productId">The ID of the product to retrieve.</param>
 public static async Task GetProduct(Table tableName, int productId)
 {
 Console.WriteLine("*** Executing GetProduct() ***");
 Document productDocument = await tableName.GetItemAsync(productId);
 if (productDocument != null)
 {
 PrintDocument(productDocument);
 }
 else
 {
 Console.WriteLine("Error: product " + productId + " does not
 exist");
 }
 }

 /// <summary>
 /// Retrieves replies from the passed DynamoDB table object.
 /// </summary>
 /// <param name="table">The table we want to query.</param>
 public static async Task FindRepliesInLast15Days(
 Table table)
 {
 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
 var filter = new QueryFilter("Id", QueryOperator.Equal, "Id");
 filter.AddCondition("ReplyDateTime", QueryOperator.GreaterThan,
 twoWeeksAgoDate);

 // Use Query overloads that take the minimum required query parameters.

Scenarios 705

AWS SDK for .NET Developer Guide

 Search search = table.Query(filter);

 do
 {
 var documentSet = await search.GetNextSetAsync();
 Console.WriteLine("\nFindRepliesInLast15Days:
 printing");

 foreach (var document in documentSet)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Retrieve replies made during a specific time period.
 /// </summary>
 /// <param name="table">The table we want to query.</param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadSubject">The subject of the thread, which we are
 /// searching for replies.</param>
 public static async Task FindRepliesPostedWithinTimePeriod(
 Table table,
 string forumName,
 string threadSubject)
 {
 DateTime startDate = DateTime.UtcNow.Subtract(new TimeSpan(21, 0, 0,
 0));
 DateTime endDate = DateTime.UtcNow.Subtract(new TimeSpan(1, 0, 0, 0));

 var filter = new QueryFilter("Id", QueryOperator.Equal, forumName + "#"
 + threadSubject);
 filter.AddCondition("ReplyDateTime", QueryOperator.Between, startDate,
 endDate);

 var config = new QueryOperationConfig()
 {
 Limit = 2, // 2 items/page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {

Scenarios 706

AWS SDK for .NET Developer Guide

 "Message",
 "ReplyDateTime",
 "PostedBy",
 },
 ConsistentRead = true,
 Filter = filter,
 };

 Search search = table.Query(config);

 do
 {
 var documentList = await search.GetNextSetAsync();
 Console.WriteLine("\nFindRepliesPostedWithinTimePeriod: printing
 replies posted within dates: {0} and {1}", startDate, endDate);

 foreach (var document in documentList)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Perform a query for replies made in the last 15 days using a DynamoDB
 /// QueryOperationConfig object.
 /// </summary>
 /// <param name="table">The table we want to query.</param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadName">The bane of the thread that we are searching
 /// for replies.</param>
 public static async Task FindRepliesInLast15DaysWithConfig(
 Table table,
 string forumName,
 string threadName)
 {
 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
 var filter = new QueryFilter("Id", QueryOperator.Equal, forumName + "#"
 + threadName);
 filter.AddCondition("ReplyDateTime", QueryOperator.GreaterThan,
 twoWeeksAgoDate);

Scenarios 707

AWS SDK for .NET Developer Guide

 var config = new QueryOperationConfig()
 {
 Filter = filter,

 // Optional parameters.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {
 "Message",
 "ReplyDateTime",
 "PostedBy",
 },
 ConsistentRead = true,
 };

 Search search = table.Query(config);

 do
 {
 var documentSet = await search.GetNextSetAsync();
 Console.WriteLine("\nFindRepliesInLast15DaysWithConfig:
 printing");

 foreach (var document in documentSet)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Displays the contents of the passed DynamoDB document on the console.
 /// </summary>
 /// <param name="document">A DynamoDB document to display.</param>
 public static void PrintDocument(Document document)
 {
 Console.WriteLine();
 foreach (var attribute in document.GetAttributeNames())
 {
 string stringValue = null;
 var value = document[attribute];

 if (value is Primitive)

Scenarios 708

AWS SDK for .NET Developer Guide

 {
 stringValue = value.AsPrimitive().Value.ToString();
 }
 else if (value is PrimitiveList)
 {
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select
 primitive.Value).ToArray());
 }

 Console.WriteLine($"{attribute} - {stringValue}");
 }
 }
 }

Use a high-level object persistence model

The following code example shows how to perform Create, Read, Update, and Delete (CRUD) and
batch operations using an object persistence model for DynamoDB and an AWS SDK.

For more information, see Object persistence model.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Perform CRUD operations using a high-level object persistence model.

 /// <summary>
 /// Shows how to perform high-level CRUD operations on an Amazon DynamoDB
 /// table.
 /// </summary>
 public class HighLevelItemCrud
 {

Scenarios 709

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb/high-level-api#code-examples

AWS SDK for .NET Developer Guide

 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);
 await PerformCRUDOperations(context);
 }

 public static async Task PerformCRUDOperations(IDynamoDBContext context)
 {
 int bookId = 1001; // Some unique value.
 Book myBook = new Book
 {
 Id = bookId,
 Title = "object persistence-AWS SDK for.NET SDK-Book 1001",
 Isbn = "111-1111111001",
 BookAuthors = new List<string> { "Author 1", "Author 2" },
 };

 // Save the book to the ProductCatalog table.
 await context.SaveAsync(myBook);

 // Retrieve the book from the ProductCatalog table.
 Book bookRetrieved = await context.LoadAsync<Book>(bookId);

 // Update some properties.
 bookRetrieved.Isbn = "222-2222221001";

 // Update existing authors list with the following values.
 bookRetrieved.BookAuthors = new List<string> { " Author 1", "Author
 x" };
 await context.SaveAsync(bookRetrieved);

 // Retrieve the updated book. This time, add the optional
 // ConsistentRead parameter using DynamoDBContextConfig object.
 await context.LoadAsync<Book>(bookId, new DynamoDBContextConfig
 {
 ConsistentRead = true,
 });

 // Delete the book.
 await context.DeleteAsync<Book>(bookId);

 // Try to retrieve deleted book. It should return null.

Scenarios 710

AWS SDK for .NET Developer Guide

 Book deletedBook = await context.LoadAsync<Book>(bookId, new
 DynamoDBContextConfig
 {
 ConsistentRead = true,
 });

 if (deletedBook == null)
 {
 Console.WriteLine("Book is deleted");
 }
 }
 }

Perform batch write operations using a high-level object persistence model.

 /// <summary>
 /// Performs high-level batch write operations to an Amazon DynamoDB table.
 /// This example was written using the AWS SDK for .NET version 3.7 and .NET
 /// Core 5.0.
 /// </summary>
 public class HighLevelBatchWriteItem
 {
 public static async Task SingleTableBatchWrite(IDynamoDBContext context)
 {
 Book book1 = new Book
 {
 Id = 902,
 InPublication = true,
 Isbn = "902-11-11-1111",
 PageCount = "100",
 Price = 10,
 ProductCategory = "Book",
 Title = "My book3 in batch write",
 };

 Book book2 = new Book
 {
 Id = 903,
 InPublication = true,
 Isbn = "903-11-11-1111",

Scenarios 711

AWS SDK for .NET Developer Guide

 PageCount = "200",
 Price = 10,
 ProductCategory = "Book",
 Title = "My book4 in batch write",
 };

 var bookBatch = context.CreateBatchWrite<Book>();
 bookBatch.AddPutItems(new List<Book> { book1, book2 });

 Console.WriteLine("Adding two books to ProductCatalog table.");
 await bookBatch.ExecuteAsync();
 }

 public static async Task MultiTableBatchWrite(IDynamoDBContext context)
 {
 // New Forum item.
 Forum newForum = new Forum
 {
 Name = "Test BatchWrite Forum",
 Threads = 0,
 };
 var forumBatch = context.CreateBatchWrite<Forum>();
 forumBatch.AddPutItem(newForum);

 // New Thread item.
 Thread newThread = new Thread
 {
 ForumName = "S3 forum",
 Subject = "My sample question",
 KeywordTags = new List<string> { "S3", "Bucket" },
 Message = "Message text",
 };

 DynamoDBOperationConfig config = new DynamoDBOperationConfig();
 config.SkipVersionCheck = true;
 var threadBatch = context.CreateBatchWrite<Thread>(config);
 threadBatch.AddPutItem(newThread);
 threadBatch.AddDeleteKey("some partition key value", "some sort key
 value");

 var superBatch = new MultiTableBatchWrite(forumBatch, threadBatch);

 Console.WriteLine("Performing batch write in MultiTableBatchWrite().");
 await superBatch.ExecuteAsync();

Scenarios 712

AWS SDK for .NET Developer Guide

 }

 public static async Task Main()
 {
 AmazonDynamoDBClient client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);

 await SingleTableBatchWrite(context);
 await MultiTableBatchWrite(context);
 }
 }

Map arbitrary data to a table using a high-level object persistence model.

 /// <summary>
 /// Shows how to map arbitrary data to an Amazon DynamoDB table.
 /// </summary>
 public class HighLevelMappingArbitraryData
 {
 /// <summary>
 /// Creates a book, adds it to the DynamoDB ProductCatalog table, retrieves
 /// the new book from the table, updates the dimensions and writes the
 /// changed item back to the table.
 /// </summary>
 /// <param name="context">The DynamoDB context object used to write and
 /// read data from the table.</param>
 public static async Task AddRetrieveUpdateBook(IDynamoDBContext context)
 {
 // Create a book.
 DimensionType myBookDimensions = new DimensionType()
 {
 Length = 8M,
 Height = 11M,
 Thickness = 0.5M,
 };

 Book myBook = new Book
 {
 Id = 501,

Scenarios 713

AWS SDK for .NET Developer Guide

 Title = "AWS SDK for .NET Object Persistence Model Handling
 Arbitrary Data",
 Isbn = "999-9999999999",
 BookAuthors = new List<string> { "Author 1", "Author 2" },
 Dimensions = myBookDimensions,
 };

 // Add the book to the DynamoDB table ProductCatalog.
 await context.SaveAsync(myBook);

 // Retrieve the book.
 Book bookRetrieved = await context.LoadAsync<Book>(501);

 // Update the book dimensions property.
 bookRetrieved.Dimensions.Height += 1;
 bookRetrieved.Dimensions.Length += 1;
 bookRetrieved.Dimensions.Thickness += 0.2M;

 // Write the changed item to the table.
 await context.SaveAsync(bookRetrieved);
 }

 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);
 await AddRetrieveUpdateBook(context);
 }
 }

Query and scan a table using a high-level object persistence model.

 /// <summary>
 /// Shows how to perform high-level query and scan operations to Amazon
 /// DynamoDB tables.
 /// </summary>
 public class HighLevelQueryAndScan
 {
 public static async Task Main()
 {

Scenarios 714

AWS SDK for .NET Developer Guide

 var client = new AmazonDynamoDBClient();

 DynamoDBContext context = new DynamoDBContext(client);

 // Get an item.
 await GetBook(context, 101);

 // Sample forum and thread to test queries.
 string forumName = "Amazon DynamoDB";
 string threadSubject = "DynamoDB Thread 1";

 // Sample queries.
 await FindRepliesInLast15Days(context, forumName, threadSubject);
 await FindRepliesPostedWithinTimePeriod(context, forumName,
 threadSubject);

 // Scan table.
 await FindProductsPricedLessThanZero(context);
 }

 public static async Task GetBook(IDynamoDBContext context, int productId)
 {
 Book bookItem = await context.LoadAsync<Book>(productId);

 Console.WriteLine("\nGetBook: Printing result.....");
 Console.WriteLine($"Title: {bookItem.Title} \n ISBN:{bookItem.Isbn} \n
 No. of pages: {bookItem.PageCount}");
 }

 /// <summary>
 /// Queries a DynamoDB table to find replies posted within the last 15 days.
 /// </summary>
 /// <param name="context">The DynamoDB context used to perform the query.</
param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadSubject">The thread object containing the query
 parameters.</param>
 public static async Task FindRepliesInLast15Days(
 IDynamoDBContext context,
 string forumName,
 string threadSubject)
 {
 string replyId = $"{forumName} #{threadSubject}";

Scenarios 715

AWS SDK for .NET Developer Guide

 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 List<object> times = new List<object>();
 times.Add(twoWeeksAgoDate);

 List<ScanCondition> scs = new List<ScanCondition>();
 var sc = new ScanCondition("PostedBy", ScanOperator.GreaterThan,
 times.ToArray());
 scs.Add(sc);

 var cfg = new DynamoDBOperationConfig
 {
 QueryFilter = scs,
 };

 AsyncSearch<Reply> response = context.QueryAsync<Reply>(replyId, cfg);
 IEnumerable<Reply> latestReplies = await response.GetRemainingAsync();

 Console.WriteLine("\nReplies in last 15 days:");

 foreach (Reply r in latestReplies)
 {

 Console.WriteLine($"{r.Id}\t{r.PostedBy}\t{r.Message}\t{r.ReplyDateTime}");
 }
 }

 /// <summary>
 /// Queries for replies posted within a specific time period.
 /// </summary>
 /// <param name="context">The DynamoDB context used to perform the query.</
param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadSubject">Information about the subject that we're
 /// interested in.</param>
 public static async Task FindRepliesPostedWithinTimePeriod(
 IDynamoDBContext context,
 string forumName,
 string threadSubject)
 {
 string forumId = forumName + "#" + threadSubject;
 Console.WriteLine("\nReplies posted within time period:");

Scenarios 716

AWS SDK for .NET Developer Guide

 DateTime startDate = DateTime.UtcNow - TimeSpan.FromDays(30);
 DateTime endDate = DateTime.UtcNow - TimeSpan.FromDays(1);

 List<object> times = new List<object>();
 times.Add(startDate);
 times.Add(endDate);

 List<ScanCondition> scs = new List<ScanCondition>();
 var sc = new ScanCondition("LastPostedBy", ScanOperator.Between,
 times.ToArray());
 scs.Add(sc);

 var cfg = new DynamoDBOperationConfig
 {
 QueryFilter = scs,
 };

 AsyncSearch<Reply> response = context.QueryAsync<Reply>(forumId, cfg);
 IEnumerable<Reply> repliesInAPeriod = await
 response.GetRemainingAsync();

 foreach (Reply r in repliesInAPeriod)
 {

 Console.WriteLine("{r.Id}\t{r.PostedBy}\t{r.Message}\t{r.ReplyDateTime}");
 }
 }

 /// <summary>
 /// Queries the DynamoDB ProductCatalog table for products costing less
 /// than zero.
 /// </summary>
 /// <param name="context">The DynamoDB context object used to perform the
 /// query.</param>
 public static async Task FindProductsPricedLessThanZero(IDynamoDBContext
 context)
 {
 int price = 0;

 List<ScanCondition> scs = new List<ScanCondition>();
 var sc1 = new ScanCondition("Price", ScanOperator.LessThan, price);
 var sc2 = new ScanCondition("ProductCategory", ScanOperator.Equal,
 "Book");
 scs.Add(sc1);

Scenarios 717

AWS SDK for .NET Developer Guide

 scs.Add(sc2);

 AsyncSearch<Book> response = context.ScanAsync<Book>(scs);

 IEnumerable<Book> itemsWithWrongPrice = await
 response.GetRemainingAsync();

 Console.WriteLine("\nFindProductsPricedLessThanZero: Printing
 result.....");

 foreach (Book r in itemsWithWrongPrice)
 {
 Console.WriteLine($"{r.Id}\t{r.Title}\t{r.Price}\t{r.Isbn}");
 }
 }
 }

Serverless examples

Invoke a Lambda function from a DynamoDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a DynamoDB event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;

Serverless examples 718

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS SDK for .NET Developer Guide

using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public void FunctionHandler(DynamoDBEvent dynamoEvent, ILambdaContext context)
 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");

 foreach (var record in dynamoEvent.Records)
 {
 context.Logger.LogInformation($"Event ID: {record.EventID}");
 context.Logger.LogInformation($"Event Name: {record.EventName}");

 context.Logger.LogInformation(JsonSerializer.Serialize(record));
 }

 context.Logger.LogInformation("Stream processing complete.");
 }
}

Reporting batch item failures for Lambda functions with a DynamoDB trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

Serverless examples 719

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public StreamsEventResponse FunctionHandler(DynamoDBEvent dynamoEvent,
 ILambdaContext context)

 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");
 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>();
 StreamsEventResponse streamsEventResponse = new StreamsEventResponse();

 foreach (var record in dynamoEvent.Records)
 {
 try
 {
 var sequenceNumber = record.Dynamodb.SequenceNumber;
 context.Logger.LogInformation(sequenceNumber);
 }

Serverless examples 720

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS SDK for .NET Developer Guide

 catch (Exception ex)
 {
 context.Logger.LogError(ex.Message);
 batchItemFailures.Add(new StreamsEventResponse.BatchItemFailure()
 { ItemIdentifier = record.Dynamodb.SequenceNumber });
 }
 }

 if (batchItemFailures.Count > 0)
 {
 streamsEventResponse.BatchItemFailures = batchItemFailures;
 }

 context.Logger.LogInformation("Stream processing complete.");
 return streamsEventResponse;
 }
}

AWS community contributions

Build and test a serverless application

The following code example shows how to build and test a serverless application using API
Gateway with Lambda and DynamoDB

AWS SDK for .NET

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the .NET SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

AWS community contributions 721

https://github.com/aws-samples/serverless-dotnet-demo

AWS SDK for .NET Developer Guide

Amazon EC2 examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon EC2.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon EC2

The following code examples show how to get started using Amazon EC2.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace EC2Actions;

public class HelloEc2
{
 /// <summary>
 /// HelloEc2 lists the existing security groups for the default users.
 /// </summary>
 /// <param name="args">Command line arguments</param>
 /// <returns>Async task.</returns>
 static async Task Main(string[] args)
 {

Amazon EC2 722

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 // Set up dependency injection for Amazon Elastic Compute Cloud (Amazon
 EC2).
 using var host =
 Microsoft.Extensions.Hosting.Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonEC2>()
 .AddTransient<EC2Wrapper>()
)
 .Build();

 // Now the client is available for injection.
 var ec2Client = host.Services.GetRequiredService<IAmazonEC2>();

 try
 {
 // Retrieve information for up to 10 Amazon EC2 security groups.
 var request = new DescribeSecurityGroupsRequest { MaxResults = 10, };
 var securityGroups = new List<SecurityGroup>();

 var paginatorForSecurityGroups =
 ec2Client.Paginators.DescribeSecurityGroups(request);

 await foreach (var securityGroup in
 paginatorForSecurityGroups.SecurityGroups)
 {
 securityGroups.Add(securityGroup);
 }

 // Now print the security groups returned by the call to
 // DescribeSecurityGroupsAsync.
 Console.WriteLine("Welcome to the EC2 Hello Service example. " +
 "\nLet's list your Security Groups:");
 securityGroups.ForEach(group =>
 {
 Console.WriteLine(
 $"Security group: {group.GroupName} ID: {group.GroupId}");
 });
 }
 catch (AmazonEC2Exception ex)
 {
 Console.WriteLine($"An Amazon EC2 service error occurred while listing
 security groups. {ex.Message}");
 }
 catch (Exception ex)

Amazon EC2 723

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"An error occurred while listing security groups.
 {ex.Message}");
 }
 }
}

• For API details, see DescribeSecurityGroups in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

• Scenarios

Basics

Learn the basics

The following code example shows how to:

• Create a key pair and security group.

• Select an Amazon Machine Image (AMI) and compatible instance type, then create an instance.

• Stop and restart the instance.

• Associate an Elastic IP address with your instance.

• Connect to your instance with SSH, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run a scenario at a command prompt.

Basics 724

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSecurityGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

/// <summary>
/// Show Amazon Elastic Compute Cloud (Amazon EC2) Basics actions.
/// </summary>
public class EC2Basics
{
 public static ILogger<EC2Basics> _logger = null!;
 public static EC2Wrapper _ec2Wrapper = null!;
 public static SsmWrapper _ssmWrapper = null!;
 public static UiMethods _uiMethods = null!;

 public static string associationId = null!;
 public static string allocationId = null!;
 public static string instanceId = null!;
 public static string keyPairName = null!;
 public static string groupName = null!;
 public static string tempFileName = null!;
 public static string secGroupId = null!;
 public static bool isInteractive = true;

 /// <summary>
 /// Perform the actions defined for the Amazon EC2 Basics scenario.
 /// </summary>
 /// <param name="args">Command line arguments.</param>
 /// <returns>A Task object.</returns>
 public static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EC2 and Amazon Simple Systems
 // Management (Amazon SSM) Service.
 using var host =
 Microsoft.Extensions.Hosting.Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonEC2>()
 .AddAWSService<IAmazonSimpleSystemsManagement>()
 .AddTransient<EC2Wrapper>()
 .AddTransient<SsmWrapper>()
)
 .Build();

 SetUpServices(host);

 var uniqueName = Guid.NewGuid().ToString();
 keyPairName = "mvp-example-key-pair" + uniqueName;
 groupName = "ec2-scenario-group" + uniqueName;

Basics 725

AWS SDK for .NET Developer Guide

 var groupDescription = "A security group created for the EC2 Basics
 scenario.";

 try
 {
 // Start the scenario.
 _uiMethods.DisplayOverview();
 _uiMethods.PressEnter(isInteractive);

 // Create the key pair.
 _uiMethods.DisplayTitle("Create RSA key pair");
 Console.Write("Let's create an RSA key pair that you can be use to ");
 Console.WriteLine("securely connect to your EC2 instance.");
 var keyPair = await _ec2Wrapper.CreateKeyPair(keyPairName);

 // Save key pair information to a temporary file.
 tempFileName = _ec2Wrapper.SaveKeyPair(keyPair);

 Console.WriteLine(
 $"Created the key pair: {keyPair.KeyName} and saved it to:
 {tempFileName}");
 string? answer = "";
 if (isInteractive)
 {
 do
 {
 Console.Write("Would you like to list your existing key pairs?
 ");
 answer = Console.ReadLine();
 } while (answer!.ToLower() != "y" && answer.ToLower() != "n");
 }

 if (!isInteractive || answer == "y")
 {
 // List existing key pairs.
 _uiMethods.DisplayTitle("Existing key pairs");

 // Passing an empty string to the DescribeKeyPairs method will
 return
 // a list of all existing key pairs.
 var keyPairs = await _ec2Wrapper.DescribeKeyPairs("");
 keyPairs.ForEach(kp =>
 {
 Console.WriteLine(

Basics 726

AWS SDK for .NET Developer Guide

 $"{kp.KeyName} created at: {kp.CreateTime} Fingerprint:
 {kp.KeyFingerprint}");
 });
 }

 _uiMethods.PressEnter(isInteractive);

 // Create the security group.
 Console.WriteLine(
 "Let's create a security group to manage access to your instance.");
 secGroupId = await _ec2Wrapper.CreateSecurityGroup(groupName,
 groupDescription);
 Console.WriteLine(
 "Let's add rules to allow all HTTP and HTTPS inbound traffic and to
 allow SSH only from your current IP address.");

 _uiMethods.DisplayTitle("Security group information");
 var secGroups = await _ec2Wrapper.DescribeSecurityGroups(secGroupId);

 Console.WriteLine($"Created security group {groupName} in your default
 VPC.");
 secGroups.ForEach(group =>
 {
 _ec2Wrapper.DisplaySecurityGroupInfoAsync(group);
 });
 _uiMethods.PressEnter(isInteractive);

 Console.WriteLine(
 "Now we'll authorize the security group we just created so that it
 can");
 Console.WriteLine("access the EC2 instances you create.");
 await _ec2Wrapper.AuthorizeSecurityGroupIngress(groupName);

 secGroups = await _ec2Wrapper.DescribeSecurityGroups(secGroupId);
 Console.WriteLine($"Now let's look at the permissions again.");
 secGroups.ForEach(group =>
 {
 _ec2Wrapper.DisplaySecurityGroupInfoAsync(group);
 });
 _uiMethods.PressEnter(isInteractive);

 // Get list of available Amazon Linux 2 Amazon Machine Images (AMIs).
 var parameters =
 await _ssmWrapper.GetParametersByPath(

Basics 727

AWS SDK for .NET Developer Guide

 "/aws/service/ami-amazon-linux-latest");

 List<string> imageIds = parameters.Select(param =>
 param.Value).ToList();

 var images = await _ec2Wrapper.DescribeImages(imageIds);

 var i = 1;
 images.ForEach(image =>
 {
 Console.WriteLine($"\t{i++}\t{image.Description}");
 });

 int choice = 1;
 bool validNumber = false;
 if (isInteractive)
 {
 do
 {
 Console.Write("Please select an image: ");
 var selImage = Console.ReadLine();
 validNumber = int.TryParse(selImage, out choice);
 } while (!validNumber);
 }

 var selectedImage = images[choice - 1];

 // Display available instance types.
 _uiMethods.DisplayTitle("Instance Types");
 var instanceTypes =
 await _ec2Wrapper.DescribeInstanceTypes(selectedImage.Architecture);

 i = 1;
 instanceTypes.ForEach(instanceType =>
 {
 Console.WriteLine($"\t{i++}\t{instanceType.InstanceType}");
 });
 if (isInteractive)
 {
 do
 {
 Console.Write("Please select an instance type: ");
 var selImage = Console.ReadLine();
 validNumber = int.TryParse(selImage, out choice);

Basics 728

AWS SDK for .NET Developer Guide

 } while (!validNumber);
 }

 var selectedInstanceType = instanceTypes[choice - 1].InstanceType;

 // Create an EC2 instance.
 _uiMethods.DisplayTitle("Creating an EC2 Instance");
 instanceId = await _ec2Wrapper.RunInstances(selectedImage.ImageId,
 selectedInstanceType, keyPairName, secGroupId);

 _uiMethods.PressEnter(isInteractive);

 var instance = await _ec2Wrapper.DescribeInstance(instanceId);
 _uiMethods.DisplayTitle("New Instance Information");
 _ec2Wrapper.DisplayInstanceInformation(instance);

 Console.WriteLine(
 "\nYou can use SSH to connect to your instance. For example:");
 Console.WriteLine(
 $"\tssh -i {tempFileName} ec2-user@{instance.PublicIpAddress}");

 _uiMethods.PressEnter(isInteractive);

 Console.WriteLine(
 "Now we'll stop the instance and then start it again to see what's
 changed.");

 await _ec2Wrapper.StopInstances(instanceId);

 Console.WriteLine("Now let's start it up again.");
 await _ec2Wrapper.StartInstances(instanceId);

 Console.WriteLine("\nLet's see what changed.");

 instance = await _ec2Wrapper.DescribeInstance(instanceId);
 _uiMethods.DisplayTitle("New Instance Information");
 _ec2Wrapper.DisplayInstanceInformation(instance);

 Console.WriteLine("\nNotice the change in the SSH information:");
 Console.WriteLine(
 $"\tssh -i {tempFileName} ec2-user@{instance.PublicIpAddress}");

 _uiMethods.PressEnter(isInteractive);

Basics 729

AWS SDK for .NET Developer Guide

 Console.WriteLine(
 "Now we will stop the instance again. Then we will create and
 associate an");
 Console.WriteLine("Elastic IP address to use with our instance.");

 await _ec2Wrapper.StopInstances(instanceId);
 _uiMethods.PressEnter(isInteractive);

 _uiMethods.DisplayTitle("Allocate Elastic IP address");
 Console.WriteLine(
 "You can allocate an Elastic IP address and associate it with your
 instance\nto keep a consistent IP address even when your instance restarts.");
 var allocationResponse = await _ec2Wrapper.AllocateAddress();
 allocationId = allocationResponse.AllocationId;
 Console.WriteLine(
 "Now we will associate the Elastic IP address with our instance.");
 associationId = await _ec2Wrapper.AssociateAddress(allocationId,
 instanceId);

 // Start the instance again.
 Console.WriteLine("Now let's start the instance again.");
 await _ec2Wrapper.StartInstances(instanceId);

 Console.WriteLine("\nLet's see what changed.");

 instance = await _ec2Wrapper.DescribeInstance(instanceId);
 _uiMethods.DisplayTitle("Instance information");
 _ec2Wrapper.DisplayInstanceInformation(instance);

 Console.WriteLine("\nHere is the SSH information:");
 Console.WriteLine(
 $"\tssh -i {tempFileName} ec2-user@{instance.PublicIpAddress}");

 Console.WriteLine("Let's stop and start the instance again.");
 _uiMethods.PressEnter(isInteractive);

 await _ec2Wrapper.StopInstances(instanceId);

 Console.WriteLine("\nThe instance has stopped.");

 Console.WriteLine("Now let's start it up again.");
 await _ec2Wrapper.StartInstances(instanceId);

 instance = await _ec2Wrapper.DescribeInstance(instanceId);

Basics 730

AWS SDK for .NET Developer Guide

 _uiMethods.DisplayTitle("New Instance Information");
 _ec2Wrapper.DisplayInstanceInformation(instance);
 Console.WriteLine("Note that the IP address did not change this time.");
 _uiMethods.PressEnter(isInteractive);

 await Cleanup();
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, "There was a problem with the scenario, starting
 cleanup.");
 await Cleanup();
 }

 _uiMethods.DisplayTitle("EC2 Basics Scenario completed.");
 _uiMethods.PressEnter(isInteractive);
 }

 /// <summary>
 /// Set up the services and logging.
 /// </summary>
 /// <param name="host"></param>
 public static void SetUpServices(IHost host)
 {
 var loggerFactory = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 });
 _logger = new Logger<EC2Basics>(loggerFactory);

 // Now the client is available for injection.
 _ec2Wrapper = host.Services.GetRequiredService<EC2Wrapper>();
 _ssmWrapper = host.Services.GetRequiredService<SsmWrapper>();
 _uiMethods = new UiMethods();
 }

 /// <summary>
 /// Clean up any resources from the scenario.
 /// </summary>
 /// <returns></returns>
 public static async Task Cleanup()
 {
 _uiMethods.DisplayTitle("Clean up resources");
 Console.WriteLine("Now let's clean up the resources we created.");

Basics 731

AWS SDK for .NET Developer Guide

 Console.WriteLine("Disassociate the Elastic IP address and release it.");
 // Disassociate the Elastic IP address.
 await _ec2Wrapper.DisassociateIp(associationId);

 // Delete the Elastic IP address.
 await _ec2Wrapper.ReleaseAddress(allocationId);

 // Terminate the instance.
 Console.WriteLine("Terminating the instance we created.");
 await _ec2Wrapper.TerminateInstances(instanceId);

 // Delete the security group.
 Console.WriteLine($"Deleting the Security Group: {groupName}.");
 await _ec2Wrapper.DeleteSecurityGroup(secGroupId);

 // Delete the RSA key pair.
 Console.WriteLine($"Deleting the key pair: {keyPairName}");
 await _ec2Wrapper.DeleteKeyPair(keyPairName);
 Console.WriteLine("Deleting the temporary file with the key information.");
 _ec2Wrapper.DeleteTempFile(tempFileName);
 _uiMethods.PressEnter(isInteractive);
 }
}

Define a class that wraps EC2 actions.

/// <summary>
/// Methods of this class perform Amazon Elastic Compute Cloud (Amazon EC2).
/// </summary>
public class EC2Wrapper
{
 private readonly IAmazonEC2 _amazonEC2;
 private readonly ILogger<EC2Wrapper> _logger;

 /// <summary>
 /// Constructor for the EC2Wrapper class.
 /// </summary>
 /// <param name="amazonScheduler">The injected EC2 client.</param>
 /// <param name="logger">The injected logger.</param>
 public EC2Wrapper(IAmazonEC2 amazonService, ILogger<EC2Wrapper> logger)
 {

Basics 732

AWS SDK for .NET Developer Guide

 _amazonEC2 = amazonService;
 _logger = logger;
 }

 /// <summary>
 /// Allocates an Elastic IP address that can be associated with an Amazon EC2
 // instance. By using an Elastic IP address, you can keep the public IP address
 // constant even when you restart the associated instance.
 /// </summary>
 /// <returns>The response object for the allocated address.</returns>
 public async Task<AllocateAddressResponse> AllocateAddress()
 {
 var request = new AllocateAddressRequest();

 try
 {
 var response = await _amazonEC2.AllocateAddressAsync(request);
 Console.WriteLine($"Allocated IP: {response.PublicIp} with allocation ID
 {response.AllocationId}.");
 return response;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "AddressLimitExceeded")
 {
 // For more information on Elastic IP address quotas, see:
 // https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-
addresses-eip.html#using-instance-addressing-limit
 _logger.LogError($"Unable to allocate Elastic IP, address limit
 exceeded. {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while allocating Elastic IP.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Associates an Elastic IP address with an instance. When this association is

Basics 733

AWS SDK for .NET Developer Guide

 /// created, the Elastic IP's public IP address is immediately used as the
 public
 /// IP address of the associated instance.
 /// </summary>
 /// <param name="allocationId">The allocation Id of an Elastic IP address.</
param>
 /// <param name="instanceId">The instance Id of the EC2 instance to
 /// associate the address with.</param>
 /// <returns>The association Id that represents
 /// the association of the Elastic IP address with an instance.</returns>
 public async Task<string> AssociateAddress(string allocationId, string
 instanceId)
 {
 try
 {
 var request = new AssociateAddressRequest
 {
 AllocationId = allocationId,
 InstanceId = instanceId
 };

 var response = await _amazonEC2.AssociateAddressAsync(request);
 return response.AssociationId;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to associate address.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while associating the Elastic IP.:
 {ex.Message}");
 throw;
 }
 }

Basics 734

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Authorize the local computer ingress to EC2 instances associated
 /// with the virtual private cloud (VPC) security group.
 /// </summary>
 /// <param name="groupName">The name of the security group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AuthorizeSecurityGroupIngress(string groupName)
 {
 try
 {
 // Get the IP address for the local computer.
 var ipAddress = await GetIpAddress();
 Console.WriteLine($"Your IP address is: {ipAddress}");
 var ipRanges =
 new List<IpRange> { new IpRange { CidrIp = $"{ipAddress}/32" } };
 var permission = new IpPermission
 {
 Ipv4Ranges = ipRanges,
 IpProtocol = "tcp",
 FromPort = 22,
 ToPort = 22
 };
 var permissions = new List<IpPermission> { permission };
 var response = await _amazonEC2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest(groupName, permissions));
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidPermission.Duplicate")
 {
 _logger.LogError(
 $"The ingress rule already exists. {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while authorizing ingress.: {ex.Message}");
 throw;
 }
 }

Basics 735

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Authorize the local computer for ingress to
 /// the Amazon EC2 SecurityGroup.
 /// </summary>
 /// <returns>The IPv4 address of the computer running the scenario.</returns>
 private static async Task<string> GetIpAddress()
 {
 var httpClient = new HttpClient();
 var ipString = await httpClient.GetStringAsync("https://
checkip.amazonaws.com");

 // The IP address is returned with a new line
 // character on the end. Trim off the whitespace and
 // return the value to the caller.
 return ipString.Trim();
 }

 /// <summary>
 /// Create an Amazon EC2 key pair with a specified name.
 /// </summary>
 /// <param name="keyPairName">The name for the new key pair.</param>
 /// <returns>The Amazon EC2 key pair created.</returns>
 public async Task<KeyPair?> CreateKeyPair(string keyPairName)
 {
 try
 {
 var request = new CreateKeyPairRequest { KeyName = keyPairName, };

 var response = await _amazonEC2.CreateKeyPairAsync(request);

 var kp = response.KeyPair;
 // Return the key pair so it can be saved if needed.

 // Wait until the key pair exists.
 int retries = 5;
 while (retries-- > 0)
 {
 Console.WriteLine($"Checking for new KeyPair {keyPairName}...");
 var keyPairs = await DescribeKeyPairs(keyPairName);
 if (keyPairs.Any())
 {
 return kp;
 }

Basics 736

AWS SDK for .NET Developer Guide

 Thread.Sleep(5000);
 retries--;
 }
 _logger.LogError($"Unable to find newly created KeyPair
 {keyPairName}.");
 throw new DoesNotExistException("KeyPair not found");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidKeyPair.Duplicate")
 {
 _logger.LogError(
 $"A key pair called {keyPairName} already exists.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while creating the key pair.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Save KeyPair information to a temporary file.
 /// </summary>
 /// <param name="keyPair">The name of the key pair.</param>
 /// <returns>The full path to the temporary file.</returns>
 public string SaveKeyPair(KeyPair keyPair)
 {
 var tempPath = Path.GetTempPath();
 var tempFileName = $"{tempPath}\\{Path.GetRandomFileName()}";
 var pemFileName = Path.ChangeExtension(tempFileName, "pem");

 // Save the key pair to a file in a temporary folder.
 using var stream = new FileStream(pemFileName, FileMode.Create);
 using var writer = new StreamWriter(stream);
 writer.WriteLine(keyPair.KeyMaterial);

 return pemFileName;
 }

Basics 737

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Create an Amazon EC2 security group with a specified name and description.
 /// </summary>
 /// <param name="groupName">The name for the new security group.</param>
 /// <param name="groupDescription">A description of the new security group.</
param>
 /// <returns>The group Id of the new security group.</returns>
 public async Task<string> CreateSecurityGroup(string groupName, string
 groupDescription)
 {
 try
 {
 var response = await _amazonEC2.CreateSecurityGroupAsync(
 new CreateSecurityGroupRequest(groupName, groupDescription));

 // Wait until the security group exists.
 int retries = 5;
 while (retries-- > 0)
 {
 var groups = await DescribeSecurityGroups(response.GroupId);
 if (groups.Any())
 {
 return response.GroupId;
 }

 Thread.Sleep(5000);
 retries--;
 }
 _logger.LogError($"Unable to find newly created group {groupName}.");
 throw new DoesNotExistException("security group not found");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "ResourceAlreadyExists")
 {
 _logger.LogError(
 $"A security group with the name {groupName} already exists.
 {ec2Exception.Message}");
 }
 throw;
 }
 catch (Exception ex)
 {

Basics 738

AWS SDK for .NET Developer Guide

 _logger.LogError(
 $"An error occurred while creating the security group.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Create a new Amazon EC2 VPC.
 /// </summary>
 /// <param name="cidrBlock">The CIDR block for the new security group.</param>
 /// <returns>The VPC Id of the new VPC.</returns>
 public async Task<string?> CreateVPC(string cidrBlock)
 {

 try
 {
 var response = await _amazonEC2.CreateVpcAsync(new CreateVpcRequest
 {
 CidrBlock = cidrBlock,
 });

 Vpc vpc = response.Vpc;
 Console.WriteLine($"Created VPC with ID: {vpc.VpcId}.");
 return vpc.VpcId;
 }
 catch (AmazonEC2Exception ex)
 {
 Console.WriteLine($"Couldn't create VPC because: {ex.Message}");
 return null;
 }
 }

 /// <summary>
 /// Delete an Amazon EC2 key pair.
 /// </summary>
 /// <param name="keyPairName">The name of the key pair to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteKeyPair(string keyPairName)
 {
 try
 {

Basics 739

AWS SDK for .NET Developer Guide

 await _amazonEC2.DeleteKeyPairAsync(new
 DeleteKeyPairRequest(keyPairName)).ConfigureAwait(false);
 return true;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidKeyPair.NotFound")
 {
 _logger.LogError($"KeyPair {keyPairName} does not exist and cannot
 be deleted. Please verify the key pair name and try again.");
 }

 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't delete the key pair because:
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Delete the temporary file where the key pair information was saved.
 /// </summary>
 /// <param name="tempFileName">The path to the temporary file.</param>
 public void DeleteTempFile(string tempFileName)
 {
 if (File.Exists(tempFileName))
 {
 File.Delete(tempFileName);
 }
 }

 /// <summary>
 /// Delete an Amazon EC2 security group.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteSecurityGroup(string groupId)
 {
 try
 {
 var response =

Basics 740

AWS SDK for .NET Developer Guide

 await _amazonEC2.DeleteSecurityGroupAsync(
 new DeleteSecurityGroupRequest { GroupId = groupId });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidGroup.NotFound")
 {
 _logger.LogError(
 $"Security Group {groupId} does not exist and cannot be deleted.
 Please verify the ID and try again.");
 }

 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't delete the security group because:
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Delete an Amazon EC2 VPC.
 /// </summary>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteVpc(string vpcId)
 {
 var request = new DeleteVpcRequest
 {
 VpcId = vpcId,
 };

 var response = await _amazonEC2.DeleteVpcAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Get information about existing Amazon EC2 images.
 /// </summary>
 /// <returns>A list of image information.</returns>
 public async Task<List<Image>> DescribeImages(List<string>? imageIds)

Basics 741

AWS SDK for .NET Developer Guide

 {
 var request = new DescribeImagesRequest();
 if (imageIds is not null)
 {
 // If the imageIds list is not null, add the list
 // to the request object.
 request.ImageIds = imageIds;
 }

 var response = await _amazonEC2.DescribeImagesAsync(request);
 return response.Images;
 }

 /// <summary>
 /// Display the information returned by DescribeImages.
 /// </summary>
 /// <param name="images">The list of image information to display.</param>
 public void DisplayImageInfo(List<Image> images)
 {
 images.ForEach(image =>
 {
 Console.WriteLine($"{image.Name} Created on: {image.CreationDate}");
 });

 }

 /// <summary>
 /// Get information about an Amazon EC2 instance.
 /// </summary>
 /// <param name="instanceId">The instance Id of the EC2 instance.</param>
 /// <returns>An EC2 instance.</returns>
 public async Task<Instance> DescribeInstance(string instanceId)
 {
 var response = await _amazonEC2.DescribeInstancesAsync(
 new DescribeInstancesRequest { InstanceIds = new List<string>
 { instanceId } });
 return response.Reservations[0].Instances[0];
 }

 /// <summary>
 /// Display EC2 instance information.
 /// </summary>
 /// <param name="instance">The instance Id of the EC2 instance.</param>
 public void DisplayInstanceInformation(Instance instance)

Basics 742

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"ID: {instance.InstanceId}");
 Console.WriteLine($"Image ID: {instance.ImageId}");
 Console.WriteLine($"{instance.InstanceType}");
 Console.WriteLine($"Key Name: {instance.KeyName}");
 Console.WriteLine($"VPC ID: {instance.VpcId}");
 Console.WriteLine($"Public IP: {instance.PublicIpAddress}");
 Console.WriteLine($"State: {instance.State.Name}");
 }

 /// <summary>
 /// Get information about EC2 instances with a particular state.
 /// </summary>
 /// <param name="tagName">The name of the tag to filter on.</param>
 /// <param name="tagValue">The value of the tag to look for.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> GetInstancesWithState(string state)
 {
 try
 {
 // Filters the results of the instance list.
 var filters = new List<Filter>
 {
 new Filter
 {
 Name = $"instance-state-name",
 Values = new List<string> { state, },
 },
 };
 var request = new DescribeInstancesRequest { Filters = filters, };

 Console.WriteLine($"\nShowing instances with state {state}");
 var paginator = _amazonEC2.Paginators.DescribeInstances(request);

 await foreach (var response in paginator.Responses)
 {
 foreach (var reservation in response.Reservations)
 {
 foreach (var instance in reservation.Instances)
 {
 Console.Write($"Instance ID: {instance.InstanceId} ");
 Console.WriteLine($"\tCurrent State:
 {instance.State.Name}");
 }

Basics 743

AWS SDK for .NET Developer Guide

 }
 }

 return true;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidParameterValue")
 {
 _logger.LogError(
 $"Invalid parameter value for filtering instances.");
 }

 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't list instances because: {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Describe the instance types available.
 /// </summary>
 /// <returns>A list of instance type information.</returns>
 public async Task<List<InstanceTypeInfo>>
 DescribeInstanceTypes(ArchitectureValues architecture)
 {
 try
 {
 var request = new DescribeInstanceTypesRequest();

 var filters = new List<Filter>
 {
 new Filter("processor-info.supported-architecture",
 new List<string> { architecture.ToString() })
 };
 filters.Add(new Filter("instance-type", new() { "*.micro",
 "*.small" }));

 request.Filters = filters;
 var instanceTypes = new List<InstanceTypeInfo>();

Basics 744

AWS SDK for .NET Developer Guide

 var paginator = _amazonEC2.Paginators.DescribeInstanceTypes(request);
 await foreach (var instanceType in paginator.InstanceTypes)
 {
 instanceTypes.Add(instanceType);
 }

 return instanceTypes;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidParameterValue")
 {
 _logger.LogError(
 $"Parameters are invalid. Ensure architecture and size strings
 conform to DescribeInstanceTypes API reference.");
 }

 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't delete the security group because:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get information about an Amazon EC2 key pair.
 /// </summary>
 /// <param name="keyPairName">The name of the key pair.</param>
 /// <returns>A list of key pair information.</returns>
 public async Task<List<KeyPairInfo>> DescribeKeyPairs(string keyPairName)
 {
 try
 {
 var request = new DescribeKeyPairsRequest();
 if (!string.IsNullOrEmpty(keyPairName))
 {
 request = new DescribeKeyPairsRequest
 {
 KeyNames = new List<string> { keyPairName }
 };
 }

Basics 745

AWS SDK for .NET Developer Guide

 var response = await _amazonEC2.DescribeKeyPairsAsync(request);
 return response.KeyPairs.ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidKeyPair.NotFound")
 {
 _logger.LogError(
 $"A key pair called {keyPairName} does not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while describing the key pair.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Retrieve information for one or all Amazon EC2 security group.
 /// </summary>
 /// <param name="groupId">The optional Id of a specific Amazon EC2 security
 group.</param>
 /// <returns>A list of security group information.</returns>
 public async Task<List<SecurityGroup>> DescribeSecurityGroups(string groupId)
 {
 try
 {
 var securityGroups = new List<SecurityGroup>();
 var request = new DescribeSecurityGroupsRequest();

 if (!string.IsNullOrEmpty(groupId))
 {
 var groupIds = new List<string> { groupId };
 request.GroupIds = groupIds;
 }

 var paginatorForSecurityGroups =
 _amazonEC2.Paginators.DescribeSecurityGroups(request);

Basics 746

AWS SDK for .NET Developer Guide

 await foreach (var securityGroup in
 paginatorForSecurityGroups.SecurityGroups)
 {
 securityGroups.Add(securityGroup);
 }

 return securityGroups;

 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidGroup.NotFound")
 {
 _logger.LogError(
 $"A security group {groupId} does not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while listing security groups. {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Display the information returned by the call to
 /// DescribeSecurityGroupsAsync.
 /// </summary>
 /// <param name="securityGroup">A list of security group information.</param>
 public void DisplaySecurityGroupInfoAsync(SecurityGroup securityGroup)
 {
 Console.WriteLine($"{securityGroup.GroupName}");
 Console.WriteLine("Ingress permissions:");
 securityGroup.IpPermissions.ForEach(permission =>
 {
 Console.WriteLine($"\tFromPort: {permission.FromPort}");
 Console.WriteLine($"\tIpProtocol: {permission.IpProtocol}");

 Console.Write($"\tIpv4Ranges: ");

Basics 747

AWS SDK for .NET Developer Guide

 permission.Ipv4Ranges.ForEach(range => { Console.Write($"{range.CidrIp}
 "); });

 Console.WriteLine($"\n\tIpv6Ranges:");
 permission.Ipv6Ranges.ForEach(range =>
 { Console.Write($"{range.CidrIpv6} "); });

 Console.Write($"\n\tPrefixListIds: ");
 permission.PrefixListIds.ForEach(id => Console.Write($"{id.Id} "));

 Console.WriteLine($"\n\tTo Port: {permission.ToPort}");
 });
 Console.WriteLine("Egress permissions:");
 securityGroup.IpPermissionsEgress.ForEach(permission =>
 {
 Console.WriteLine($"\tFromPort: {permission.FromPort}");
 Console.WriteLine($"\tIpProtocol: {permission.IpProtocol}");

 Console.Write($"\tIpv4Ranges: ");
 permission.Ipv4Ranges.ForEach(range => { Console.Write($"{range.CidrIp}
 "); });

 Console.WriteLine($"\n\tIpv6Ranges:");
 permission.Ipv6Ranges.ForEach(range =>
 { Console.Write($"{range.CidrIpv6} "); });

 Console.Write($"\n\tPrefixListIds: ");
 permission.PrefixListIds.ForEach(id => Console.Write($"{id.Id} "));

 Console.WriteLine($"\n\tTo Port: {permission.ToPort}");
 });
 }

 /// <summary>
 /// Disassociate an Elastic IP address from an EC2 instance.
 /// </summary>
 /// <param name="associationId">The association Id.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DisassociateIp(string associationId)
 {
 try
 {
 var response = await _amazonEC2.DisassociateAddressAsync(

Basics 748

AWS SDK for .NET Developer Guide

 new DisassociateAddressRequest { AssociationId = associationId });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidAssociationID.NotFound")
 {
 _logger.LogError(
 $"AssociationId is invalid, unable to disassociate address.
 {ec2Exception.Message}");
 }

 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while disassociating the Elastic IP.:
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Retrieve a list of available Amazon Linux images.
 /// </summary>
 /// <returns>A list of image information.</returns>
 public async Task<List<Image>> GetEC2AmiList()
 {
 var filter = new Filter { Name = "architecture", Values = new List<string>
 { "x86_64" } };
 var filters = new List<Filter> { filter };
 var response = await _amazonEC2.DescribeImagesAsync(new
 DescribeImagesRequest { Filters = filters });
 return response.Images;
 }

 /// <summary>
 /// Reboot a specific EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the instance that will be
 rebooted.</param>
 /// <returns>Async Task.</returns>
 public async Task<bool> RebootInstances(string ec2InstanceId)

Basics 749

AWS SDK for .NET Developer Guide

 {
 try
 {
 var request = new RebootInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId },
 };

 await _amazonEC2.RebootInstancesAsync(request);

 // Wait for the instance to be running.
 Console.Write("Waiting for the instance to start.");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Running);

 return true;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId {ec2InstanceId} is invalid, unable to reboot.
 {ec2Exception.Message}");
 }
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while rebooting the instance {ec2InstanceId}.:
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Release an Elastic IP address. After the Elastic IP address is released,
 /// it can no longer be used.
 /// </summary>
 /// <param name="allocationId">The allocation Id of the Elastic IP address.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ReleaseAddress(string allocationId)
 {

Basics 750

AWS SDK for .NET Developer Guide

 try
 {
 var request = new ReleaseAddressRequest { AllocationId = allocationId };

 var response = await _amazonEC2.ReleaseAddressAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidAllocationID.NotFound")
 {
 _logger.LogError(
 $"AllocationId {allocationId} was not found.
 {ec2Exception.Message}");
 }

 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while releasing the AllocationId
 {allocationId}.: {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Create and run an EC2 instance.
 /// </summary>
 /// <param name="ImageId">The image Id of the image used as a basis for the
 /// EC2 instance.</param>
 /// <param name="instanceType">The instance type of the EC2 instance to
 create.</param>
 /// <param name="keyName">The name of the key pair to associate with the
 /// instance.</param>
 /// <param name="groupId">The Id of the Amazon EC2 security group that will be
 /// allowed to interact with the new EC2 instance.</param>
 /// <returns>The instance Id of the new EC2 instance.</returns>
 public async Task<string> RunInstances(string imageId, string instanceType,
 string keyName, string groupId)
 {
 try
 {

Basics 751

AWS SDK for .NET Developer Guide

 var request = new RunInstancesRequest
 {
 ImageId = imageId,
 InstanceType = instanceType,
 KeyName = keyName,
 MinCount = 1,
 MaxCount = 1,
 SecurityGroupIds = new List<string> { groupId }
 };
 var response = await _amazonEC2.RunInstancesAsync(request);
 var instanceId = response.Reservation.Instances[0].InstanceId;

 Console.Write("Waiting for the instance to start.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);

 return instanceId;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidGroupId.NotFound")
 {
 _logger.LogError(
 $"GroupId {groupId} was not found. {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while running the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Start an EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the Amazon EC2 instance
 /// to start.</param>
 /// <returns>Async task.</returns>
 public async Task StartInstances(string ec2InstanceId)
 {

Basics 752

AWS SDK for .NET Developer Guide

 try
 {
 var request = new StartInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId },
 };

 await _amazonEC2.StartInstancesAsync(request);

 Console.Write("Waiting for instance to start. ");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Running);
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to start.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while starting the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Stop an EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the EC2 instance to
 /// stop.</param>
 /// <returns>Async task.</returns>
 public async Task StopInstances(string ec2InstanceId)
 {
 try
 {
 var request = new StopInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId },

Basics 753

AWS SDK for .NET Developer Guide

 };

 await _amazonEC2.StopInstancesAsync(request);
 Console.Write("Waiting for the instance to stop.");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Stopped);

 Console.WriteLine("\nThe instance has stopped.");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to stop.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while stopping the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Terminate an EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the EC2 instance
 /// to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task<List<InstanceStateChange>> TerminateInstances(string
 ec2InstanceId)
 {
 try
 {
 var request = new TerminateInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId }
 };

 var response = await _amazonEC2.TerminateInstancesAsync(request);

Basics 754

AWS SDK for .NET Developer Guide

 Console.Write("Waiting for the instance to terminate.");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Terminated);

 Console.WriteLine($"\nThe instance {ec2InstanceId} has been
 terminated.");
 return response.TerminatingInstances;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to terminate.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while terminating the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {

Basics 755

AWS SDK for .NET Developer Guide

 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEC2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AllocateAddress

• AssociateAddress

• AuthorizeSecurityGroupIngress

• CreateKeyPair

• CreateSecurityGroup

• DeleteKeyPair

• DeleteSecurityGroup

• DescribeImages

• DescribeInstanceTypes

• DescribeInstances

• DescribeKeyPairs

• DescribeSecurityGroups

• DisassociateAddress

• ReleaseAddress

• RunInstances

• StartInstances

• StopInstances

• TerminateInstancesBasics 756

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/AllocateAddress
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/AssociateAddress
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/AuthorizeSecurityGroupIngress
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateKeyPair
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateSecurityGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteKeyPair
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteSecurityGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeImages
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstanceTypes
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeKeyPairs
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSecurityGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DisassociateAddress
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReleaseAddress
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RunInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/StartInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/StopInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/TerminateInstances

AWS SDK for .NET Developer Guide

• UnmonitorInstances

Actions

AllocateAddress

The following code example shows how to use AllocateAddress.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Allocates an Elastic IP address that can be associated with an Amazon EC2
 // instance. By using an Elastic IP address, you can keep the public IP address
 // constant even when you restart the associated instance.
 /// </summary>
 /// <returns>The response object for the allocated address.</returns>
 public async Task<AllocateAddressResponse> AllocateAddress()
 {
 var request = new AllocateAddressRequest();

 try
 {
 var response = await _amazonEC2.AllocateAddressAsync(request);
 Console.WriteLine($"Allocated IP: {response.PublicIp} with allocation ID
 {response.AllocationId}.");
 return response;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "AddressLimitExceeded")
 {
 // For more information on Elastic IP address quotas, see:
 // https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-
addresses-eip.html#using-instance-addressing-limit

Actions 757

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/UnmonitorInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 _logger.LogError($"Unable to allocate Elastic IP, address limit
 exceeded. {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while allocating Elastic IP.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see AllocateAddress in AWS SDK for .NET API Reference.

AssociateAddress

The following code example shows how to use AssociateAddress.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Associates an Elastic IP address with an instance. When this association is
 /// created, the Elastic IP's public IP address is immediately used as the
 public
 /// IP address of the associated instance.
 /// </summary>
 /// <param name="allocationId">The allocation Id of an Elastic IP address.</
param>
 /// <param name="instanceId">The instance Id of the EC2 instance to
 /// associate the address with.</param>
 /// <returns>The association Id that represents
 /// the association of the Elastic IP address with an instance.</returns>

Actions 758

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/AllocateAddress
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 public async Task<string> AssociateAddress(string allocationId, string
 instanceId)
 {
 try
 {
 var request = new AssociateAddressRequest
 {
 AllocationId = allocationId,
 InstanceId = instanceId
 };

 var response = await _amazonEC2.AssociateAddressAsync(request);
 return response.AssociationId;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to associate address.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while associating the Elastic IP.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see AssociateAddress in AWS SDK for .NET API Reference.

AuthorizeSecurityGroupIngress

The following code example shows how to use AuthorizeSecurityGroupIngress.

Actions 759

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/AssociateAddress

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Authorize the local computer ingress to EC2 instances associated
 /// with the virtual private cloud (VPC) security group.
 /// </summary>
 /// <param name="groupName">The name of the security group.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AuthorizeSecurityGroupIngress(string groupName)
 {
 try
 {
 // Get the IP address for the local computer.
 var ipAddress = await GetIpAddress();
 Console.WriteLine($"Your IP address is: {ipAddress}");
 var ipRanges =
 new List<IpRange> { new IpRange { CidrIp = $"{ipAddress}/32" } };
 var permission = new IpPermission
 {
 Ipv4Ranges = ipRanges,
 IpProtocol = "tcp",
 FromPort = 22,
 ToPort = 22
 };
 var permissions = new List<IpPermission> { permission };
 var response = await _amazonEC2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest(groupName, permissions));
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidPermission.Duplicate")
 {
 _logger.LogError(
 $"The ingress rule already exists. {ec2Exception.Message}");
 }

Actions 760

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while authorizing ingress.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Authorize the local computer for ingress to
 /// the Amazon EC2 SecurityGroup.
 /// </summary>
 /// <returns>The IPv4 address of the computer running the scenario.</returns>
 private static async Task<string> GetIpAddress()
 {
 var httpClient = new HttpClient();
 var ipString = await httpClient.GetStringAsync("https://
checkip.amazonaws.com");

 // The IP address is returned with a new line
 // character on the end. Trim off the whitespace and
 // return the value to the caller.
 return ipString.Trim();
 }

• For API details, see AuthorizeSecurityGroupIngress in AWS SDK for .NET API Reference.

CreateKeyPair

The following code example shows how to use CreateKeyPair.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 761

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/AuthorizeSecurityGroupIngress
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Create an Amazon EC2 key pair with a specified name.
 /// </summary>
 /// <param name="keyPairName">The name for the new key pair.</param>
 /// <returns>The Amazon EC2 key pair created.</returns>
 public async Task<KeyPair?> CreateKeyPair(string keyPairName)
 {
 try
 {
 var request = new CreateKeyPairRequest { KeyName = keyPairName, };

 var response = await _amazonEC2.CreateKeyPairAsync(request);

 var kp = response.KeyPair;
 // Return the key pair so it can be saved if needed.

 // Wait until the key pair exists.
 int retries = 5;
 while (retries-- > 0)
 {
 Console.WriteLine($"Checking for new KeyPair {keyPairName}...");
 var keyPairs = await DescribeKeyPairs(keyPairName);
 if (keyPairs.Any())
 {
 return kp;
 }

 Thread.Sleep(5000);
 retries--;
 }
 _logger.LogError($"Unable to find newly created KeyPair
 {keyPairName}.");
 throw new DoesNotExistException("KeyPair not found");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidKeyPair.Duplicate")
 {
 _logger.LogError(
 $"A key pair called {keyPairName} already exists.");
 }

 throw;

Actions 762

AWS SDK for .NET Developer Guide

 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while creating the key pair.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Save KeyPair information to a temporary file.
 /// </summary>
 /// <param name="keyPair">The name of the key pair.</param>
 /// <returns>The full path to the temporary file.</returns>
 public string SaveKeyPair(KeyPair keyPair)
 {
 var tempPath = Path.GetTempPath();
 var tempFileName = $"{tempPath}\\{Path.GetRandomFileName()}";
 var pemFileName = Path.ChangeExtension(tempFileName, "pem");

 // Save the key pair to a file in a temporary folder.
 using var stream = new FileStream(pemFileName, FileMode.Create);
 using var writer = new StreamWriter(stream);
 writer.WriteLine(keyPair.KeyMaterial);

 return pemFileName;
 }

• For API details, see CreateKeyPair in AWS SDK for .NET API Reference.

CreateLaunchTemplate

The following code example shows how to use CreateLaunchTemplate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 763

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateKeyPair
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Creates an Amazon EC2 launch template to use with Amazon EC2 Auto Scaling.
 /// The launch template specifies a Bash script in its user data field that runs
 after
 /// the instance is started. This script installs the Python packages and starts
 a Python
 /// web server on the instance.
 /// </summary>
 /// <param name="startupScriptPath">The path to a Bash script file that is
 run.</param>
 /// <param name="instancePolicyPath">The path to a permissions policy to create
 and attach to the profile.</param>
 /// <returns>The template object.</returns>
 public async Task<Amazon.EC2.Model.LaunchTemplate> CreateTemplate(string
 startupScriptPath, string instancePolicyPath)
 {
 try
 {
 await CreateKeyPair(_keyPairName);
 await CreateInstanceProfileWithName(_instancePolicyName,
 _instanceRoleName,
 _instanceProfileName, instancePolicyPath);

 var startServerText = await File.ReadAllTextAsync(startupScriptPath);
 var plainTextBytes =
 System.Text.Encoding.UTF8.GetBytes(startServerText);

 var amiLatest = await _amazonSsm.GetParameterAsync(
 new GetParameterRequest() { Name = _amiParam });
 var amiId = amiLatest.Parameter.Value;
 var launchTemplateResponse = await _amazonEc2.CreateLaunchTemplateAsync(
 new CreateLaunchTemplateRequest()
 {
 LaunchTemplateName = _launchTemplateName,
 LaunchTemplateData = new RequestLaunchTemplateData()
 {
 InstanceType = _instanceType,
 ImageId = amiId,
 IamInstanceProfile =
 new

 LaunchTemplateIamInstanceProfileSpecificationRequest()
 {

Actions 764

AWS SDK for .NET Developer Guide

 Name = _instanceProfileName
 },
 KeyName = _keyPairName,
 UserData = System.Convert.ToBase64String(plainTextBytes)
 }
 });
 return launchTemplateResponse.LaunchTemplate;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.AlreadyExistsException")
 {
 _logger.LogError($"Could not create the template, the name
 {_launchTemplateName} already exists. " +
 $"Please try again with a unique name.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see CreateLaunchTemplate in AWS SDK for .NET API Reference.

CreateSecurityGroup

The following code example shows how to use CreateSecurityGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 765

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateLaunchTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Create an Amazon EC2 security group with a specified name and description.
 /// </summary>
 /// <param name="groupName">The name for the new security group.</param>
 /// <param name="groupDescription">A description of the new security group.</
param>
 /// <returns>The group Id of the new security group.</returns>
 public async Task<string> CreateSecurityGroup(string groupName, string
 groupDescription)
 {
 try
 {
 var response = await _amazonEC2.CreateSecurityGroupAsync(
 new CreateSecurityGroupRequest(groupName, groupDescription));

 // Wait until the security group exists.
 int retries = 5;
 while (retries-- > 0)
 {
 var groups = await DescribeSecurityGroups(response.GroupId);
 if (groups.Any())
 {
 return response.GroupId;
 }

 Thread.Sleep(5000);
 retries--;
 }
 _logger.LogError($"Unable to find newly created group {groupName}.");
 throw new DoesNotExistException("security group not found");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "ResourceAlreadyExists")
 {
 _logger.LogError(
 $"A security group with the name {groupName} already exists.
 {ec2Exception.Message}");
 }
 throw;
 }
 catch (Exception ex)
 {

Actions 766

AWS SDK for .NET Developer Guide

 _logger.LogError(
 $"An error occurred while creating the security group.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see CreateSecurityGroup in AWS SDK for .NET API Reference.

DeleteKeyPair

The following code example shows how to use DeleteKeyPair.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an Amazon EC2 key pair.
 /// </summary>
 /// <param name="keyPairName">The name of the key pair to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteKeyPair(string keyPairName)
 {
 try
 {
 await _amazonEC2.DeleteKeyPairAsync(new
 DeleteKeyPairRequest(keyPairName)).ConfigureAwait(false);
 return true;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidKeyPair.NotFound")
 {
 _logger.LogError($"KeyPair {keyPairName} does not exist and cannot
 be deleted. Please verify the key pair name and try again.");

Actions 767

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateSecurityGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 }

 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't delete the key pair because:
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Delete the temporary file where the key pair information was saved.
 /// </summary>
 /// <param name="tempFileName">The path to the temporary file.</param>
 public void DeleteTempFile(string tempFileName)
 {
 if (File.Exists(tempFileName))
 {
 File.Delete(tempFileName);
 }
 }

• For API details, see DeleteKeyPair in AWS SDK for .NET API Reference.

DeleteLaunchTemplate

The following code example shows how to use DeleteLaunchTemplate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a launch template by name.

Actions 768

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteKeyPair
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="templateName">The name of the template to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTemplateByName(string templateName)
 {
 try
 {
 await _amazonEc2.DeleteLaunchTemplateAsync(
 new DeleteLaunchTemplateRequest()
 {
 LaunchTemplateName = templateName
 });
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.NotFoundException")
 {
 _logger.LogError(
 $"Could not delete the template, the name {_launchTemplateName}
 was not found.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while deleting the template.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see DeleteLaunchTemplate in AWS SDK for .NET API Reference.

DeleteSecurityGroup

The following code example shows how to use DeleteSecurityGroup.

Actions 769

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteLaunchTemplate

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an Amazon EC2 security group.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteSecurityGroup(string groupId)
 {
 try
 {
 var response =
 await _amazonEC2.DeleteSecurityGroupAsync(
 new DeleteSecurityGroupRequest { GroupId = groupId });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidGroup.NotFound")
 {
 _logger.LogError(
 $"Security Group {groupId} does not exist and cannot be deleted.
 Please verify the ID and try again.");
 }

 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't delete the security group because:
 {ex.Message}");
 return false;
 }
 }

Actions 770

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DeleteSecurityGroup in AWS SDK for .NET API Reference.

DescribeAvailabilityZones

The following code example shows how to use DescribeAvailabilityZones.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of Availability Zones in the AWS Region of the Amazon EC2 Client.
 /// </summary>
 /// <returns>A list of availability zones.</returns>
 public async Task<List<string>> DescribeAvailabilityZones()
 {
 try
 {
 var zoneResponse = await _amazonEc2.DescribeAvailabilityZonesAsync(
 new DescribeAvailabilityZonesRequest());
 return zoneResponse.AvailabilityZones.Select(z => z.ZoneName).ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 _logger.LogError($"An Amazon EC2 error occurred while listing
 availability zones.: {ec2Exception.Message}");
 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while listing availability zones.:
 {ex.Message}");
 throw;
 }
 }

Actions 771

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteSecurityGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DescribeAvailabilityZones in AWS SDK for .NET API Reference.

DescribeIamInstanceProfileAssociations

The following code example shows how to use DescribeIamInstanceProfileAssociations.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the instance profile association data for an instance.
 /// </summary>
 /// <param name="instanceId">The Id of the instance.</param>
 /// <returns>Instance profile associations data.</returns>
 public async Task<IamInstanceProfileAssociation> GetInstanceProfile(string
 instanceId)
 {
 try
 {
 var response = await
 _amazonEc2.DescribeIamInstanceProfileAssociationsAsync(
 new DescribeIamInstanceProfileAssociationsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("instance-id", new List<string>() { instanceId })
 },
 });
 return response.IamInstanceProfileAssociations[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

Actions 772

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeAvailabilityZones
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see DescribeIamInstanceProfileAssociations in AWS SDK for .NET API
Reference.

DescribeInstanceTypes

The following code example shows how to use DescribeInstanceTypes.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe the instance types available.
 /// </summary>
 /// <returns>A list of instance type information.</returns>
 public async Task<List<InstanceTypeInfo>>
 DescribeInstanceTypes(ArchitectureValues architecture)
 {
 try
 {
 var request = new DescribeInstanceTypesRequest();

 var filters = new List<Filter>
 {
 new Filter("processor-info.supported-architecture",
 new List<string> { architecture.ToString() })

Actions 773

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 };
 filters.Add(new Filter("instance-type", new() { "*.micro",
 "*.small" }));

 request.Filters = filters;
 var instanceTypes = new List<InstanceTypeInfo>();

 var paginator = _amazonEC2.Paginators.DescribeInstanceTypes(request);
 await foreach (var instanceType in paginator.InstanceTypes)
 {
 instanceTypes.Add(instanceType);
 }

 return instanceTypes;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidParameterValue")
 {
 _logger.LogError(
 $"Parameters are invalid. Ensure architecture and size strings
 conform to DescribeInstanceTypes API reference.");
 }

 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't delete the security group because:
 {ex.Message}");
 throw;
 }
 }

• For API details, see DescribeInstanceTypes in AWS SDK for .NET API Reference.

DescribeInstances

The following code example shows how to use DescribeInstances.

Actions 774

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstanceTypes

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about EC2 instances with a particular state.
 /// </summary>
 /// <param name="tagName">The name of the tag to filter on.</param>
 /// <param name="tagValue">The value of the tag to look for.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> GetInstancesWithState(string state)
 {
 try
 {
 // Filters the results of the instance list.
 var filters = new List<Filter>
 {
 new Filter
 {
 Name = $"instance-state-name",
 Values = new List<string> { state, },
 },
 };
 var request = new DescribeInstancesRequest { Filters = filters, };

 Console.WriteLine($"\nShowing instances with state {state}");
 var paginator = _amazonEC2.Paginators.DescribeInstances(request);

 await foreach (var response in paginator.Responses)
 {
 foreach (var reservation in response.Reservations)
 {
 foreach (var instance in reservation.Instances)
 {
 Console.Write($"Instance ID: {instance.InstanceId} ");
 Console.WriteLine($"\tCurrent State:
 {instance.State.Name}");
 }

Actions 775

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 }
 }

 return true;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidParameterValue")
 {
 _logger.LogError(
 $"Invalid parameter value for filtering instances.");
 }

 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't list instances because: {ex.Message}");
 return false;
 }
 }

• For API details, see DescribeInstances in AWS SDK for .NET API Reference.

DescribeKeyPairs

The following code example shows how to use DescribeKeyPairs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an Amazon EC2 key pair.
 /// </summary>
 /// <param name="keyPairName">The name of the key pair.</param>

Actions 776

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 /// <returns>A list of key pair information.</returns>
 public async Task<List<KeyPairInfo>> DescribeKeyPairs(string keyPairName)
 {
 try
 {
 var request = new DescribeKeyPairsRequest();
 if (!string.IsNullOrEmpty(keyPairName))
 {
 request = new DescribeKeyPairsRequest
 {
 KeyNames = new List<string> { keyPairName }
 };
 }

 var response = await _amazonEC2.DescribeKeyPairsAsync(request);
 return response.KeyPairs.ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidKeyPair.NotFound")
 {
 _logger.LogError(
 $"A key pair called {keyPairName} does not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while describing the key pair.: {ex.Message}");
 throw;
 }
 }

• For API details, see DescribeKeyPairs in AWS SDK for .NET API Reference.

DescribeSecurityGroups

The following code example shows how to use DescribeSecurityGroups.

Actions 777

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeKeyPairs

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve information for one or all Amazon EC2 security group.
 /// </summary>
 /// <param name="groupId">The optional Id of a specific Amazon EC2 security
 group.</param>
 /// <returns>A list of security group information.</returns>
 public async Task<List<SecurityGroup>> DescribeSecurityGroups(string groupId)
 {
 try
 {
 var securityGroups = new List<SecurityGroup>();
 var request = new DescribeSecurityGroupsRequest();

 if (!string.IsNullOrEmpty(groupId))
 {
 var groupIds = new List<string> { groupId };
 request.GroupIds = groupIds;
 }

 var paginatorForSecurityGroups =
 _amazonEC2.Paginators.DescribeSecurityGroups(request);

 await foreach (var securityGroup in
 paginatorForSecurityGroups.SecurityGroups)
 {
 securityGroups.Add(securityGroup);
 }

 return securityGroups;

 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidGroup.NotFound")

Actions 778

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 {
 _logger.LogError(
 $"A security group {groupId} does not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while listing security groups. {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Display the information returned by the call to
 /// DescribeSecurityGroupsAsync.
 /// </summary>
 /// <param name="securityGroup">A list of security group information.</param>
 public void DisplaySecurityGroupInfoAsync(SecurityGroup securityGroup)
 {
 Console.WriteLine($"{securityGroup.GroupName}");
 Console.WriteLine("Ingress permissions:");
 securityGroup.IpPermissions.ForEach(permission =>
 {
 Console.WriteLine($"\tFromPort: {permission.FromPort}");
 Console.WriteLine($"\tIpProtocol: {permission.IpProtocol}");

 Console.Write($"\tIpv4Ranges: ");
 permission.Ipv4Ranges.ForEach(range => { Console.Write($"{range.CidrIp}
 "); });

 Console.WriteLine($"\n\tIpv6Ranges:");
 permission.Ipv6Ranges.ForEach(range =>
 { Console.Write($"{range.CidrIpv6} "); });

 Console.Write($"\n\tPrefixListIds: ");
 permission.PrefixListIds.ForEach(id => Console.Write($"{id.Id} "));

 Console.WriteLine($"\n\tTo Port: {permission.ToPort}");
 });
 Console.WriteLine("Egress permissions:");
 securityGroup.IpPermissionsEgress.ForEach(permission =>

Actions 779

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"\tFromPort: {permission.FromPort}");
 Console.WriteLine($"\tIpProtocol: {permission.IpProtocol}");

 Console.Write($"\tIpv4Ranges: ");
 permission.Ipv4Ranges.ForEach(range => { Console.Write($"{range.CidrIp}
 "); });

 Console.WriteLine($"\n\tIpv6Ranges:");
 permission.Ipv6Ranges.ForEach(range =>
 { Console.Write($"{range.CidrIpv6} "); });

 Console.Write($"\n\tPrefixListIds: ");
 permission.PrefixListIds.ForEach(id => Console.Write($"{id.Id} "));

 Console.WriteLine($"\n\tTo Port: {permission.ToPort}");
 });
 }

• For API details, see DescribeSecurityGroups in AWS SDK for .NET API Reference.

DescribeSubnets

The following code example shows how to use DescribeSubnets.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get all the subnets for a Vpc in a set of availability zones.
 /// </summary>
 /// <param name="vpcId">The Id of the Vpc.</param>
 /// <param name="availabilityZones">The list of availability zones.</param>
 /// <returns>The collection of subnet objects.</returns>

Actions 780

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSecurityGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 public async Task<List<Subnet>> GetAllVpcSubnetsForZones(string vpcId,
 List<string> availabilityZones)
 {
 try
 {
 var subnets = new List<Subnet>();
 var subnetPaginator = _amazonEc2.Paginators.DescribeSubnets(
 new DescribeSubnetsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("vpc-id", new List<string>() { vpcId }),
 new("availability-zone", availabilityZones),
 new("default-for-az", new List<string>() { "true" })
 }
 });

 // Get the entire list using the paginator.
 await foreach (var subnet in subnetPaginator.Subnets)
 {
 subnets.Add(subnet);
 }

 return subnets;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidVpcID.NotFound")
 {
 _logger.LogError(ec2Exception, $"The specified VPC ID {vpcId} does
 not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the subnets.:
 {ex.Message}");
 throw;
 }
 }

Actions 781

AWS SDK for .NET Developer Guide

• For API details, see DescribeSubnets in AWS SDK for .NET API Reference.

DescribeVpcs

The following code example shows how to use DescribeVpcs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the default VPC for the account.
 /// </summary>
 /// <returns>The default VPC object.</returns>
 public async Task<Vpc> GetDefaultVpc()
 {
 try
 {
 var vpcResponse = await _amazonEc2.DescribeVpcsAsync(
 new DescribeVpcsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("is-default", new List<string>() { "true" })
 }
 });
 return vpcResponse.Vpcs[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "UnauthorizedOperation")
 {
 _logger.LogError(ec2Exception, $"You do not have the necessary
 permissions to describe VPCs.");
 }

 throw;
 }

Actions 782

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSubnets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the vpcs.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see DescribeVpcs in AWS SDK for .NET API Reference.

DisassociateAddress

The following code example shows how to use DisassociateAddress.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Disassociate an Elastic IP address from an EC2 instance.
 /// </summary>
 /// <param name="associationId">The association Id.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DisassociateIp(string associationId)
 {
 try
 {
 var response = await _amazonEC2.DisassociateAddressAsync(
 new DisassociateAddressRequest { AssociationId = associationId });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidAssociationID.NotFound")
 {
 _logger.LogError(

Actions 783

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeVpcs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 $"AssociationId is invalid, unable to disassociate address.
 {ec2Exception.Message}");
 }

 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while disassociating the Elastic IP.:
 {ex.Message}");
 return false;
 }
 }

• For API details, see DisassociateAddress in AWS SDK for .NET API Reference.

RebootInstances

The following code example shows how to use RebootInstances.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Reboot an instance by its Id.

 /// <summary>
 /// Reboot a specific EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the instance that will be
 rebooted.</param>
 /// <returns>Async Task.</returns>
 public async Task<bool> RebootInstances(string ec2InstanceId)
 {
 try
 {

Actions 784

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DisassociateAddress
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 var request = new RebootInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId },
 };

 await _amazonEC2.RebootInstancesAsync(request);

 // Wait for the instance to be running.
 Console.Write("Waiting for the instance to start.");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Running);

 return true;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId {ec2InstanceId} is invalid, unable to reboot.
 {ec2Exception.Message}");
 }
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while rebooting the instance {ec2InstanceId}.:
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }

Actions 785

AWS SDK for .NET Developer Guide

 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEC2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }

Replace the profile for an instance, reboot, and restart a web server.

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile is
 replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate with
 the specified instance.</param>
 /// <param name="associationId">The Id of the existing profile association for
 the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 try
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()

Actions 786

AWS SDK for .NET Developer Guide

 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });
 // Allow time before resetting.
 Thread.Sleep(25000);

 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(25000);
 var instanceReady = false;
 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }
 Console.WriteLine("Waiting for instance to be running.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);
 Console.WriteLine("Instance ready.");
 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {
 "commands",

Actions 787

AWS SDK for .NET Developer Guide

 new List<string>() { "cd / && sudo python3 server.py
 80" }
 }
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while replacing the template.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see RebootInstances in AWS SDK for .NET API Reference.

ReleaseAddress

The following code example shows how to use ReleaseAddress.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Release an Elastic IP address. After the Elastic IP address is released,

Actions 788

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RebootInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 /// it can no longer be used.
 /// </summary>
 /// <param name="allocationId">The allocation Id of the Elastic IP address.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ReleaseAddress(string allocationId)
 {
 try
 {
 var request = new ReleaseAddressRequest { AllocationId = allocationId };

 var response = await _amazonEC2.ReleaseAddressAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidAllocationID.NotFound")
 {
 _logger.LogError(
 $"AllocationId {allocationId} was not found.
 {ec2Exception.Message}");
 }

 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while releasing the AllocationId
 {allocationId}.: {ex.Message}");
 return false;
 }
 }

• For API details, see ReleaseAddress in AWS SDK for .NET API Reference.

ReplaceIamInstanceProfileAssociation

The following code example shows how to use ReplaceIamInstanceProfileAssociation.

Actions 789

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReleaseAddress

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile is
 replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate with
 the specified instance.</param>
 /// <param name="associationId">The Id of the existing profile association for
 the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 try
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()
 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });
 // Allow time before resetting.
 Thread.Sleep(25000);

 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(25000);
 var instanceReady = false;

Actions 790

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }
 Console.WriteLine("Waiting for instance to be running.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);
 Console.WriteLine("Instance ready.");
 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {
 "commands",
 new List<string>() { "cd / && sudo python3 server.py
 80" }
 }
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

Actions 791

AWS SDK for .NET Developer Guide

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while replacing the template.:
 {ex.Message}");
 throw;
 }
 }

• For API details, see ReplaceIamInstanceProfileAssociation in AWS SDK for .NET API Reference.

RunInstances

The following code example shows how to use RunInstances.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create and run an EC2 instance.
 /// </summary>
 /// <param name="ImageId">The image Id of the image used as a basis for the
 /// EC2 instance.</param>
 /// <param name="instanceType">The instance type of the EC2 instance to
 create.</param>
 /// <param name="keyName">The name of the key pair to associate with the
 /// instance.</param>
 /// <param name="groupId">The Id of the Amazon EC2 security group that will be
 /// allowed to interact with the new EC2 instance.</param>
 /// <returns>The instance Id of the new EC2 instance.</returns>
 public async Task<string> RunInstances(string imageId, string instanceType,
 string keyName, string groupId)
 {
 try

Actions 792

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 {
 var request = new RunInstancesRequest
 {
 ImageId = imageId,
 InstanceType = instanceType,
 KeyName = keyName,
 MinCount = 1,
 MaxCount = 1,
 SecurityGroupIds = new List<string> { groupId }
 };
 var response = await _amazonEC2.RunInstancesAsync(request);
 var instanceId = response.Reservation.Instances[0].InstanceId;

 Console.Write("Waiting for the instance to start.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);

 return instanceId;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidGroupId.NotFound")
 {
 _logger.LogError(
 $"GroupId {groupId} was not found. {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while running the instance.: {ex.Message}");
 throw;
 }
 }

• For API details, see RunInstances in AWS SDK for .NET API Reference.

StartInstances

The following code example shows how to use StartInstances.

Actions 793

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RunInstances

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Start an EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the Amazon EC2 instance
 /// to start.</param>
 /// <returns>Async task.</returns>
 public async Task StartInstances(string ec2InstanceId)
 {
 try
 {
 var request = new StartInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId },
 };

 await _amazonEC2.StartInstancesAsync(request);

 Console.Write("Waiting for instance to start. ");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Running);
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to start.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(

Actions 794

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 $"An error occurred while starting the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEC2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }

• For API details, see StartInstances in AWS SDK for .NET API Reference.

StopInstances

The following code example shows how to use StopInstances.

Actions 795

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/StartInstances

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Stop an EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the EC2 instance to
 /// stop.</param>
 /// <returns>Async task.</returns>
 public async Task StopInstances(string ec2InstanceId)
 {
 try
 {
 var request = new StopInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId },
 };

 await _amazonEC2.StopInstancesAsync(request);
 Console.Write("Waiting for the instance to stop.");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Stopped);

 Console.WriteLine("\nThe instance has stopped.");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to stop.
 {ec2Exception.Message}");
 }

 throw;
 }
 catch (Exception ex)
 {

Actions 796

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 _logger.LogError(
 $"An error occurred while stopping the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEC2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }

• For API details, see StopInstances in AWS SDK for .NET API Reference.

Actions 797

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/StopInstances

AWS SDK for .NET Developer Guide

TerminateInstances

The following code example shows how to use TerminateInstances.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Terminate an EC2 instance.
 /// </summary>
 /// <param name="ec2InstanceId">The instance Id of the EC2 instance
 /// to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task<List<InstanceStateChange>> TerminateInstances(string
 ec2InstanceId)
 {
 try
 {
 var request = new TerminateInstancesRequest
 {
 InstanceIds = new List<string> { ec2InstanceId }
 };

 var response = await _amazonEC2.TerminateInstancesAsync(request);
 Console.Write("Waiting for the instance to terminate.");
 await WaitForInstanceState(ec2InstanceId, InstanceStateName.Terminated);

 Console.WriteLine($"\nThe instance {ec2InstanceId} has been
 terminated.");
 return response.TerminatingInstances;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceId")
 {
 _logger.LogError(
 $"InstanceId is invalid, unable to terminate.
 {ec2Exception.Message}");

Actions 798

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EC2#code-examples

AWS SDK for .NET Developer Guide

 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while terminating the instance.: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEC2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }

Actions 799

AWS SDK for .NET Developer Guide

• For API details, see TerminateInstances in AWS SDK for .NET API Reference.

Scenarios

Build and manage a resilient service

The following code example shows how to create a load-balanced web service that returns book,
movie, and song recommendations. The example shows how the service responds to failures, and
how to restructure the service for more resilience when failures occur.

• Use an Amazon EC2 Auto Scaling group to create Amazon Elastic Compute Cloud (Amazon EC2)
instances based on a launch template and to keep the number of instances in a specified range.

• Handle and distribute HTTP requests with Elastic Load Balancing.

• Monitor the health of instances in an Auto Scaling group and forward requests only to healthy
instances.

• Run a Python web server on each EC2 instance to handle HTTP requests. The web server
responds with recommendations and health checks.

• Simulate a recommendation service with an Amazon DynamoDB table.

• Control web server response to requests and health checks by updating AWS Systems Manager
parameters.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

 static async Task Main(string[] args)
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.

Scenarios 800

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/TerminateInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService#code-examples

AWS SDK for .NET Developer Guide

 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 // Set up dependency injection for the AWS services.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonDynamoDB>()
 .AddAWSService<IAmazonElasticLoadBalancingV2>()
 .AddAWSService<IAmazonSimpleSystemsManagement>()
 .AddAWSService<IAmazonAutoScaling>()
 .AddAWSService<IAmazonEC2>()
 .AddTransient<AutoScalerWrapper>()
 .AddTransient<ElasticLoadBalancerWrapper>()
 .AddTransient<SmParameterWrapper>()
 .AddTransient<Recommendations>()
 .AddSingleton<IConfiguration>(_configuration)
)
 .Build();

 ServicesSetup(host);
 ResourcesSetup();

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Resilient Architecture Example
 Scenario.");
 Console.WriteLine(new string('-', 80));
 await Deploy(true);

 Console.WriteLine("Now let's begin the scenario.");
 Console.WriteLine(new string('-', 80));
 await Demo(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Finally, let's clean up our resources.");

Scenarios 801

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('-', 80));

 await DestroyResources(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resilient Architecture Example Scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await DestroyResources(true);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Setup any common resources, also used for integration testing.
 /// </summary>
 public static void ResourcesSetup()
 {
 _httpClient = new HttpClient();
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _elasticLoadBalancerWrapper =
 host.Services.GetRequiredService<ElasticLoadBalancerWrapper>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 _recommendations = host.Services.GetRequiredService<Recommendations>();
 _autoScalerWrapper = host.Services.GetRequiredService<AutoScalerWrapper>();
 _smParameterWrapper =
 host.Services.GetRequiredService<SmParameterWrapper>();
 }

 /// <summary>

Scenarios 802

AWS SDK for .NET Developer Guide

 /// Deploy necessary resources for the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Deploy(bool interactive)
 {
 var protocol = "HTTP";
 var port = 80;
 var sshPort = 22;

 Console.WriteLine(
 "\nFor this demo, we'll use the AWS SDK for .NET to create several AWS
 resources\n" +
 "to set up a load-balanced web service endpoint and explore some ways to
 make it resilient\n" +
 "against various kinds of failures.\n\n" +
 "Some of the resources create by this demo are:\n");

 Console.WriteLine(
 "\t* A DynamoDB table that the web service depends on to provide book,
 movie, and song recommendations.");
 Console.WriteLine(
 "\t* An EC2 launch template that defines EC2 instances that each contain
 a Python web server.");
 Console.WriteLine(
 "\t* An EC2 Auto Scaling group that manages EC2 instances across several
 Availability Zones.");
 Console.WriteLine(
 "\t* An Elastic Load Balancing (ELB) load balancer that targets the Auto
 Scaling group to distribute requests.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to start deploying
 resources.");
 if (interactive)
 Console.ReadLine();

 // Create and populate the DynamoDB table.
 var databaseTableName = _configuration["databaseName"];
 var recommendationsPath = Path.Join(_configuration["resourcePath"],
 "recommendations_objects.json");
 Console.WriteLine($"Creating and populating a DynamoDB table named
 {databaseTableName}.");
 await _recommendations.CreateDatabaseWithName(databaseTableName);

Scenarios 803

AWS SDK for .NET Developer Guide

 await _recommendations.PopulateDatabase(databaseTableName,
 recommendationsPath);
 Console.WriteLine(new string('-', 80));

 // Create the EC2 Launch Template.

 Console.WriteLine(
 $"Creating an EC2 launch template that runs 'server_startup_script.sh'
 when an instance starts.\n"
 + "\nThis script starts a Python web server defined in the `server.py`
 script. The web server\n"
 + "listens to HTTP requests on port 80 and responds to requests to '/'
 and to '/healthcheck'.\n"
 + "For demo purposes, this server is run as the root user. In
 production, the best practice is to\n"
 + "run a web server, such as Apache, with least-privileged
 credentials.");
 Console.WriteLine(
 "\nThe template also defines an IAM policy that each instance uses to
 assume a role that grants\n"
 + "permissions to access the DynamoDB recommendation table and Systems
 Manager parameters\n"
 + "that control the flow of the demo.");

 var startupScriptPath = Path.Join(_configuration["resourcePath"],
 "server_startup_script.sh");
 var instancePolicyPath = Path.Join(_configuration["resourcePath"],
 "instance_policy.json");
 await _autoScalerWrapper.CreateTemplate(startupScriptPath,
 instancePolicyPath);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "Creating an EC2 Auto Scaling group that maintains three EC2 instances,
 each in a different\n"
 + "Availability Zone.\n");
 var zones = await _autoScalerWrapper.DescribeAvailabilityZones();
 await _autoScalerWrapper.CreateGroupOfSize(3, _autoScalerWrapper.GroupName,
 zones);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "At this point, you have EC2 instances created. Once each instance
 starts, it listens for\n"

Scenarios 804

AWS SDK for .NET Developer Guide

 + "HTTP requests. You can see these instances in the console or continue
 with the demo.\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("Creating variables that control the flow of the demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine(
 "\nCreating an Elastic Load Balancing target group and load balancer.
 The target group\n"
 + "defines how the load balancer connects to instances. The load
 balancer provides a\n"
 + "single endpoint where clients connect and dispatches requests to
 instances in the group.");

 var defaultVpc = await _autoScalerWrapper.GetDefaultVpc();
 var subnets = await
 _autoScalerWrapper.GetAllVpcSubnetsForZones(defaultVpc.VpcId, zones);
 var subnetIds = subnets.Select(s => s.SubnetId).ToList();
 var targetGroup = await
 _elasticLoadBalancerWrapper.CreateTargetGroupOnVpc(_elasticLoadBalancerWrapper.TargetGroupName,
 protocol, port, defaultVpc.VpcId);

 await
 _elasticLoadBalancerWrapper.CreateLoadBalancerAndListener(_elasticLoadBalancerWrapper.LoadBalancerName,
 subnetIds, targetGroup);
 await
 _autoScalerWrapper.AttachLoadBalancerToGroup(_autoScalerWrapper.GroupName,
 targetGroup.TargetGroupArn);
 Console.WriteLine("\nVerifying access to the load balancer endpoint...");
 var endPoint = await
 _elasticLoadBalancerWrapper.GetEndpointForLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 var loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);

 if (!loadBalancerAccess)
 {
 Console.WriteLine("\nCouldn't connect to the load balancer, verifying
 that the port is open...");

Scenarios 805

AWS SDK for .NET Developer Guide

 var ipString = await _httpClient.GetStringAsync("https://
checkip.amazonaws.com");
 ipString = ipString.Trim();

 var defaultSecurityGroup = await
 _autoScalerWrapper.GetDefaultSecurityGroupForVpc(defaultVpc);
 var portIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, port, ipString);
 var sshPortIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, sshPort,
 ipString);

 if (!portIsOpen)
 {
 Console.WriteLine(
 "\nFor this example to work, the default security group for your
 default VPC must\n"
 + "allows access from this computer. You can either add it
 automatically from this\n"
 + "example or add it yourself using the AWS Management Console.
\n");

 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound traffic from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, port, ipString);
 }
 }

 if (!sshPortIsOpen)
 {
 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound SSH traffic for debugging from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, sshPort,
 ipString);
 }
 }
 loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);

Scenarios 806

AWS SDK for .NET Developer Guide

 }

 if (loadBalancerAccess)
 {
 Console.WriteLine("Your load balancer is ready. You can access it by
 browsing to:");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 else
 {
 Console.WriteLine(
 "\nCouldn't get a successful response from the load balancer
 endpoint. Troubleshoot by\n"
 + "manually verifying that your VPC and security group are
 configured correctly and that\n"
 + "you can successfully make a GET request to the load balancer
 endpoint:\n");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue with the
 demo.");
 if (interactive)
 Console.ReadLine();
 return true;
 }

 /// <summary>
 /// Demonstrate the steps of the scenario.
 /// </summary>
 /// <param name="interactive">True to run as an interactive scenario.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> Demo(bool interactive)
 {
 var ssmOnlyPolicy = Path.Join(_configuration["resourcePath"],
 "ssm_only_policy.json");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resetting parameters to starting values for demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine("\nThis part of the demonstration shows how to toggle
 different parts of the system\n" +

Scenarios 807

AWS SDK for .NET Developer Guide

 "to create situations where the web service fails, and
 shows how using a resilient\n" +
 "architecture can keep the web service running in spite of
 these failures.");
 Console.WriteLine(new string('-', 88));
 Console.WriteLine("At the start, the load balancer endpoint returns
 recommendations and reports that all targets are healthy.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine($"The web service running on the EC2 instances gets
 recommendations by querying a DynamoDB table.\n" +
 $"The table name is contained in a Systems Manager
 parameter named '{_smParameterWrapper.TableParameter}'.\n" +
 $"To simulate a failure of the recommendation service,
 let's set this parameter to name a non-existent table.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");
 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a failure code. But, the service reports as\n" +
 "healthy to the load balancer because shallow health
 checks don't check for failure of the recommendation service.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Instead of failing when the recommendation service fails,
 the web service can return a static response.");
 Console.WriteLine("While this is not a perfect solution, it presents the
 customer with a somewhat better experience than failure.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.FailureResponseParameter,
 "static");

 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a static response.");
 Console.WriteLine("The service still reports as healthy because health
 checks are still shallow.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Let's reinstate the recommendation service.\n");

Scenarios 808

AWS SDK for .NET Developer Guide

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 _smParameterWrapper.TableName);
 Console.WriteLine(
 "\nLet's also substitute bad credentials for one of the instances in the
 target group so that it can't\n" +
 "access the DynamoDB recommendation table.\n"
);
 await _autoScalerWrapper.CreateInstanceProfileWithName(
 _autoScalerWrapper.BadCredsPolicyName,
 _autoScalerWrapper.BadCredsRoleName,
 _autoScalerWrapper.BadCredsProfileName,
 ssmOnlyPolicy,
 new List<string> { "AmazonSSMManagedInstanceCore" }
);
 var instances = await
 _autoScalerWrapper.GetInstancesByGroupName(_autoScalerWrapper.GroupName);
 var badInstanceId = instances.First();
 var instanceProfile = await
 _autoScalerWrapper.GetInstanceProfile(badInstanceId);
 Console.WriteLine(
 $"Replacing the profile for instance {badInstanceId} with a profile that
 contains\n" +
 "bad credentials...\n"
);
 await _autoScalerWrapper.ReplaceInstanceProfile(
 badInstanceId,
 _autoScalerWrapper.BadCredsProfileName,
 instanceProfile.AssociationId
);
 Console.WriteLine(
 "Now, sending a GET request to the load balancer endpoint returns either
 a recommendation or a static response,\n" +
 "depending on which instance is selected by the load balancer.\n"
);
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nLet's implement a deep health check. For this demo, a
 deep health check tests whether");
 Console.WriteLine("the web service can access the DynamoDB table that it
 depends on for recommendations. Note that");
 Console.WriteLine("the deep health check is only for ELB routing and not for
 Auto Scaling instance health.");

Scenarios 809

AWS SDK for .NET Developer Guide

 Console.WriteLine("This kind of deep health check is not recommended for
 Auto Scaling instance health, because it");
 Console.WriteLine("risks accidental termination of all instances in the Auto
 Scaling group when a dependent service fails.");

 Console.WriteLine("\nBy implementing deep health checks, the load balancer
 can detect when one of the instances is failing");
 Console.WriteLine("and take that instance out of rotation.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.HealthCheckParameter,
 "deep");

 Console.WriteLine($"\nNow, checking target health indicates that the
 instance with bad credentials ({badInstanceId})");
 Console.WriteLine("is unhealthy. Note that it might take a minute or two for
 the load balancer to detect the unhealthy");
 Console.WriteLine("instance. Sending a GET request to the load balancer
 endpoint always returns a recommendation, because");
 Console.WriteLine("the load balancer takes unhealthy instances out of its
 rotation.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nBecause the instances in this demo are controlled by an
 auto scaler, the simplest way to fix an unhealthy");
 Console.WriteLine("instance is to terminate it and let the auto scaler start
 a new instance to replace it.");

 await _autoScalerWrapper.TryTerminateInstanceById(badInstanceId);

 Console.WriteLine($"\nEven while the instance is terminating and the new
 instance is starting, sending a GET");
 Console.WriteLine("request to the web service continues to get a successful
 recommendation response because");
 Console.WriteLine("starts and reports as healthy, it is included in the load
 balancing rotation.");
 Console.WriteLine("Note that terminating and replacing an instance typically
 takes several minutes, during which time you");
 Console.WriteLine("can see the changing health check status until the new
 instance is running and healthy.");

 if (interactive)

Scenarios 810

AWS SDK for .NET Developer Guide

 await DemoActionChoices();

 Console.WriteLine("\nIf the recommendation service fails now, deep health
 checks mean all instances report as unhealthy.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");

 Console.WriteLine($"\nWhen all instances are unhealthy, the load balancer
 continues to route requests even to");
 Console.WriteLine("unhealthy instances, allowing them to fail open and
 return a static response rather than fail");
 Console.WriteLine("closed and report failure to the customer.");

 if (interactive)
 await DemoActionChoices();
 await _smParameterWrapper.Reset();

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="interactive">True to ask the user for cleanup.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> DestroyResources(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "To keep things tidy and to avoid unwanted charges on your account, we
 can clean up all AWS resources\n" +
 "that were created for this demo."
);

 if (!interactive || GetYesNoResponse("Do you want to clean up all demo
 resources? (y/n) "))
 {
 await
 _elasticLoadBalancerWrapper.DeleteLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 await
 _elasticLoadBalancerWrapper.DeleteTargetGroupByName(_elasticLoadBalancerWrapper.TargetGroupName);

Scenarios 811

AWS SDK for .NET Developer Guide

 await
 _autoScalerWrapper.TerminateAndDeleteAutoScalingGroupWithName(_autoScalerWrapper.GroupName);
 await
 _autoScalerWrapper.DeleteKeyPairByName(_autoScalerWrapper.KeyPairName);
 await
 _autoScalerWrapper.DeleteTemplateByName(_autoScalerWrapper.LaunchTemplateName);
 await _autoScalerWrapper.DeleteInstanceProfile(
 _autoScalerWrapper.BadCredsProfileName,
 _autoScalerWrapper.BadCredsRoleName
);
 await
 _recommendations.DestroyDatabaseByName(_recommendations.TableName);
 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you might
 incur unexpected charges."
);
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

Create a class that wraps Auto Scaling and Amazon EC2 actions.

/// <summary>
/// Encapsulates Amazon EC2 Auto Scaling and EC2 management methods.
/// </summary>
public class AutoScalerWrapper
{
 private readonly IAmazonAutoScaling _amazonAutoScaling;
 private readonly IAmazonEC2 _amazonEc2;
 private readonly IAmazonSimpleSystemsManagement _amazonSsm;
 private readonly IAmazonIdentityManagementService _amazonIam;
 private readonly ILogger<AutoScalerWrapper> _logger;

 private readonly string _instanceType = "";
 private readonly string _amiParam = "";
 private readonly string _launchTemplateName = "";

Scenarios 812

AWS SDK for .NET Developer Guide

 private readonly string _groupName = "";
 private readonly string _instancePolicyName = "";
 private readonly string _instanceRoleName = "";
 private readonly string _instanceProfileName = "";
 private readonly string _badCredsProfileName = "";
 private readonly string _badCredsRoleName = "";
 private readonly string _badCredsPolicyName = "";
 private readonly string _keyPairName = "";

 public string GroupName => _groupName;
 public string KeyPairName => _keyPairName;
 public string LaunchTemplateName => _launchTemplateName;
 public string InstancePolicyName => _instancePolicyName;
 public string BadCredsProfileName => _badCredsProfileName;
 public string BadCredsRoleName => _badCredsRoleName;
 public string BadCredsPolicyName => _badCredsPolicyName;

 /// <summary>
 /// Constructor for the AutoScalerWrapper.
 /// </summary>
 /// <param name="amazonAutoScaling">The injected AutoScaling client.</param>
 /// <param name="amazonEc2">The injected EC2 client.</param>
 /// <param name="amazonIam">The injected IAM client.</param>
 /// <param name="amazonSsm">The injected SSM client.</param>
 public AutoScalerWrapper(
 IAmazonAutoScaling amazonAutoScaling,
 IAmazonEC2 amazonEc2,
 IAmazonSimpleSystemsManagement amazonSsm,
 IAmazonIdentityManagementService amazonIam,
 IConfiguration configuration,
 ILogger<AutoScalerWrapper> logger)
 {
 _amazonAutoScaling = amazonAutoScaling;
 _amazonEc2 = amazonEc2;
 _amazonSsm = amazonSsm;
 _amazonIam = amazonIam;
 _logger = logger;

 var prefix = configuration["resourcePrefix"];
 _instanceType = configuration["instanceType"];
 _amiParam = configuration["amiParam"];

 _launchTemplateName = prefix + "-template";
 _groupName = prefix + "-group";

Scenarios 813

AWS SDK for .NET Developer Guide

 _instancePolicyName = prefix + "-pol";
 _instanceRoleName = prefix + "-role";
 _instanceProfileName = prefix + "-prof";
 _badCredsPolicyName = prefix + "-bc-pol";
 _badCredsRoleName = prefix + "-bc-role";
 _badCredsProfileName = prefix + "-bc-prof";
 _keyPairName = prefix + "-key-pair";
 }

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with a
 specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to the
 role.</param>
 /// <returns>The Arn of the profile.</returns>
 public async Task<string> CreateInstanceProfileWithName(
 string policyName,
 string roleName,
 string profileName,
 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

Scenarios 814

AWS SDK for .NET Developer Guide

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.
 await foreach (var policy in policiesPaginator.Policies)
 {
 if (policy.PolicyName.Equals(policyName))
 {
 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");
 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = assumeRoleDoc,

Scenarios 815

AWS SDK for .NET Developer Guide

 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

 string profileArn = "";
 try
 {
 var profileCreateResponse = await _amazonIam.CreateInstanceProfileAsync(
 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;
 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }
 catch (EntityAlreadyExistsException)

Scenarios 816

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

 /// <summary>
 /// Create a new key pair and save the file.
 /// </summary>
 /// <param name="newKeyPairName">The name of the new key pair.</param>
 /// <returns>Async task.</returns>
 public async Task CreateKeyPair(string newKeyPairName)
 {
 try
 {
 var keyResponse = await _amazonEc2.CreateKeyPairAsync(
 new CreateKeyPairRequest() { KeyName = newKeyPairName });
 await File.WriteAllTextAsync($"{newKeyPairName}.pem",
 keyResponse.KeyPair.KeyMaterial);
 Console.WriteLine($"Created key pair {newKeyPairName}.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine("Key pair already exists.");
 }
 }

 /// <summary>
 /// Delete the key pair and file by name.
 /// </summary>
 /// <param name="deleteKeyPairName">The key pair to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteKeyPairByName(string deleteKeyPairName)
 {
 try
 {
 await _amazonEc2.DeleteKeyPairAsync(
 new DeleteKeyPairRequest() { KeyName = deleteKeyPairName });

Scenarios 817

AWS SDK for .NET Developer Guide

 File.Delete($"{deleteKeyPairName}.pem");
 }
 catch (FileNotFoundException)
 {
 Console.WriteLine($"Key pair {deleteKeyPairName} not found.");
 }
 }

 /// <summary>
 /// Creates an Amazon EC2 launch template to use with Amazon EC2 Auto Scaling.
 /// The launch template specifies a Bash script in its user data field that runs
 after
 /// the instance is started. This script installs the Python packages and starts
 a Python
 /// web server on the instance.
 /// </summary>
 /// <param name="startupScriptPath">The path to a Bash script file that is
 run.</param>
 /// <param name="instancePolicyPath">The path to a permissions policy to create
 and attach to the profile.</param>
 /// <returns>The template object.</returns>
 public async Task<Amazon.EC2.Model.LaunchTemplate> CreateTemplate(string
 startupScriptPath, string instancePolicyPath)
 {
 try
 {
 await CreateKeyPair(_keyPairName);
 await CreateInstanceProfileWithName(_instancePolicyName,
 _instanceRoleName,
 _instanceProfileName, instancePolicyPath);

 var startServerText = await File.ReadAllTextAsync(startupScriptPath);
 var plainTextBytes =
 System.Text.Encoding.UTF8.GetBytes(startServerText);

 var amiLatest = await _amazonSsm.GetParameterAsync(
 new GetParameterRequest() { Name = _amiParam });
 var amiId = amiLatest.Parameter.Value;
 var launchTemplateResponse = await _amazonEc2.CreateLaunchTemplateAsync(
 new CreateLaunchTemplateRequest()
 {
 LaunchTemplateName = _launchTemplateName,
 LaunchTemplateData = new RequestLaunchTemplateData()
 {

Scenarios 818

AWS SDK for .NET Developer Guide

 InstanceType = _instanceType,
 ImageId = amiId,
 IamInstanceProfile =
 new

 LaunchTemplateIamInstanceProfileSpecificationRequest()
 {
 Name = _instanceProfileName
 },
 KeyName = _keyPairName,
 UserData = System.Convert.ToBase64String(plainTextBytes)
 }
 });
 return launchTemplateResponse.LaunchTemplate;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.AlreadyExistsException")
 {
 _logger.LogError($"Could not create the template, the name
 {_launchTemplateName} already exists. " +
 $"Please try again with a unique name.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get a list of Availability Zones in the AWS Region of the Amazon EC2 Client.
 /// </summary>
 /// <returns>A list of availability zones.</returns>
 public async Task<List<string>> DescribeAvailabilityZones()
 {
 try
 {
 var zoneResponse = await _amazonEc2.DescribeAvailabilityZonesAsync(

Scenarios 819

AWS SDK for .NET Developer Guide

 new DescribeAvailabilityZonesRequest());
 return zoneResponse.AvailabilityZones.Select(z => z.ZoneName).ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 _logger.LogError($"An Amazon EC2 error occurred while listing
 availability zones.: {ec2Exception.Message}");
 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while listing availability zones.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Create an EC2 Auto Scaling group of a specified size and name.
 /// </summary>
 /// <param name="groupSize">The size for the group.</param>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="availabilityZones">The availability zones for the group.</
param>
 /// <returns>Async task.</returns>
 public async Task CreateGroupOfSize(int groupSize, string groupName,
 List<string> availabilityZones)
 {
 try
 {
 await _amazonAutoScaling.CreateAutoScalingGroupAsync(
 new CreateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = availabilityZones,
 LaunchTemplate =
 new Amazon.AutoScaling.Model.LaunchTemplateSpecification()
 {
 LaunchTemplateName = _launchTemplateName,
 Version = "$Default"
 },
 MaxSize = groupSize,
 MinSize = groupSize
 });

Scenarios 820

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Created EC2 Auto Scaling group {groupName} with size
 {groupSize}.");
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine($"EC2 Auto Scaling group {groupName} already
 exists.");
 }
 }

 /// <summary>
 /// Get the default VPC for the account.
 /// </summary>
 /// <returns>The default VPC object.</returns>
 public async Task<Vpc> GetDefaultVpc()
 {
 try
 {
 var vpcResponse = await _amazonEc2.DescribeVpcsAsync(
 new DescribeVpcsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("is-default", new List<string>() { "true" })
 }
 });
 return vpcResponse.Vpcs[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "UnauthorizedOperation")
 {
 _logger.LogError(ec2Exception, $"You do not have the necessary
 permissions to describe VPCs.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the vpcs.:
 {ex.Message}");
 throw;
 }

Scenarios 821

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Get all the subnets for a Vpc in a set of availability zones.
 /// </summary>
 /// <param name="vpcId">The Id of the Vpc.</param>
 /// <param name="availabilityZones">The list of availability zones.</param>
 /// <returns>The collection of subnet objects.</returns>
 public async Task<List<Subnet>> GetAllVpcSubnetsForZones(string vpcId,
 List<string> availabilityZones)
 {
 try
 {
 var subnets = new List<Subnet>();
 var subnetPaginator = _amazonEc2.Paginators.DescribeSubnets(
 new DescribeSubnetsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("vpc-id", new List<string>() { vpcId }),
 new("availability-zone", availabilityZones),
 new("default-for-az", new List<string>() { "true" })
 }
 });

 // Get the entire list using the paginator.
 await foreach (var subnet in subnetPaginator.Subnets)
 {
 subnets.Add(subnet);
 }

 return subnets;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidVpcID.NotFound")
 {
 _logger.LogError(ec2Exception, $"The specified VPC ID {vpcId} does
 not exist.");
 }

 throw;
 }
 catch (Exception ex)

Scenarios 822

AWS SDK for .NET Developer Guide

 {
 _logger.LogError(ex, $"An error occurred while describing the subnets.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Delete a launch template by name.
 /// </summary>
 /// <param name="templateName">The name of the template to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTemplateByName(string templateName)
 {
 try
 {
 await _amazonEc2.DeleteLaunchTemplateAsync(
 new DeleteLaunchTemplateRequest()
 {
 LaunchTemplateName = templateName
 });
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.NotFoundException")
 {
 _logger.LogError(
 $"Could not delete the template, the name {_launchTemplateName}
 was not found.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while deleting the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the role,

Scenarios 823

AWS SDK for .NET Developer Guide

 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)
 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });
 var attachedPolicies = await _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn
 });
 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {

Scenarios 824

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

 /// <summary>
 /// Gets data about the instances in an EC2 Auto Scaling group by its group
 name.
 /// </summary>
 /// <param name="group">The name of the auto scaling group.</param>
 /// <returns>A collection of instance Ids.</returns>
 public async Task<IEnumerable<string>> GetInstancesByGroupName(string group)
 {
 var instanceResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { group }
 });
 var instanceIds = instanceResponse.AutoScalingGroups.SelectMany(
 g => g.Instances.Select(i => i.InstanceId));
 return instanceIds;
 }

 /// <summary>
 /// Get the instance profile association data for an instance.
 /// </summary>
 /// <param name="instanceId">The Id of the instance.</param>
 /// <returns>Instance profile associations data.</returns>
 public async Task<IamInstanceProfileAssociation> GetInstanceProfile(string
 instanceId)
 {
 try
 {
 var response = await
 _amazonEc2.DescribeIamInstanceProfileAssociationsAsync(
 new DescribeIamInstanceProfileAssociationsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("instance-id", new List<string>() { instanceId })
 },
 });
 return response.IamInstanceProfileAssociations[0];
 }

Scenarios 825

AWS SDK for .NET Developer Guide

 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile is
 replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate with
 the specified instance.</param>
 /// <param name="associationId">The Id of the existing profile association for
 the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 try
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()
 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });

Scenarios 826

AWS SDK for .NET Developer Guide

 // Allow time before resetting.
 Thread.Sleep(25000);

 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(25000);
 var instanceReady = false;
 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }
 Console.WriteLine("Waiting for instance to be running.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);
 Console.WriteLine("Instance ready.");
 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {
 "commands",
 new List<string>() { "cd / && sudo python3 server.py
 80" }
 }
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");
 }

Scenarios 827

AWS SDK for .NET Developer Guide

 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while replacing the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Try to terminate an instance by its Id.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task TryTerminateInstanceById(string instanceId)
 {
 var stopping = false;
 Console.WriteLine($"Stopping {instanceId}...");
 while (!stopping)
 {
 try
 {
 await _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(
 new TerminateInstanceInAutoScalingGroupRequest()
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false
 });
 stopping = true;
 }
 catch (ScalingActivityInProgressException)
 {
 Console.WriteLine($"Scaling activity in progress for {instanceId}.
 Waiting...");
 Thread.Sleep(10000);
 }

Scenarios 828

AWS SDK for .NET Developer Guide

 }
 }

 /// <summary>
 /// Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 /// waits and retries until the group is successfully deleted.
 /// </summary>
 /// <param name="groupName">The name of the group to try to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TryDeleteGroupByName(string groupName)
 {
 var stopped = false;
 while (!stopped)
 {
 try
 {
 await _amazonAutoScaling.DeleteAutoScalingGroupAsync(
 new DeleteAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName
 });
 stopped = true;
 }
 catch (Exception e)
 when ((e is ScalingActivityInProgressException)
 || (e is Amazon.AutoScaling.Model.ResourceInUseException))
 {
 Console.WriteLine($"Some instances are still running. Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Terminate instances and delete the Auto Scaling group by name.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TerminateAndDeleteAutoScalingGroupWithName(string groupName)
 {
 var describeGroupsResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()

Scenarios 829

AWS SDK for .NET Developer Guide

 {
 AutoScalingGroupNames = new List<string>() { groupName }
 });
 if (describeGroupsResponse.AutoScalingGroups.Any())
 {
 // Update the size to 0.
 await _amazonAutoScaling.UpdateAutoScalingGroupAsync(
 new UpdateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 MinSize = 0
 });
 var group = describeGroupsResponse.AutoScalingGroups[0];
 foreach (var instance in group.Instances)
 {
 await TryTerminateInstanceById(instance.InstanceId);
 }

 await TryDeleteGroupByName(groupName);
 }
 else
 {
 Console.WriteLine($"No groups found with name {groupName}.");
 }
 }

 /// <summary>
 /// Get the default security group for a specified Vpc.
 /// </summary>
 /// <param name="vpc">The Vpc to search.</param>
 /// <returns>The default security group.</returns>
 public async Task<SecurityGroup> GetDefaultSecurityGroupForVpc(Vpc vpc)
 {
 var groupResponse = await _amazonEc2.DescribeSecurityGroupsAsync(
 new DescribeSecurityGroupsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("group-name", new List<string>() { "default" }),
 new ("vpc-id", new List<string>() { vpc.VpcId })
 }
 });
 return groupResponse.SecurityGroups[0];

Scenarios 830

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Verify the default security group of a Vpc allows ingress from the calling
 computer.
 /// This can be done by allowing ingress from this computer's IP address.
 /// In some situations, such as connecting from a corporate network, you must
 instead specify
 /// a prefix list Id. You can also temporarily open the port to any IP address
 while running this example.
 /// If you do, be sure to remove public access when you're done.
 /// </summary>
 /// <param name="vpc">The group to check.</param>
 /// <param name="port">The port to verify.</param>
 /// <param name="ipAddress">This computer's IP address.</param>
 /// <returns>True if the ip address is allowed on the group.</returns>
 public bool VerifyInboundPortForGroup(SecurityGroup group, int port, string
 ipAddress)
 {
 var portIsOpen = false;
 foreach (var ipPermission in group.IpPermissions)
 {
 if (ipPermission.FromPort == port)
 {
 foreach (var ipRange in ipPermission.Ipv4Ranges)
 {
 var cidr = ipRange.CidrIp;
 if (cidr.StartsWith(ipAddress) || cidr == "0.0.0.0/0")
 {
 portIsOpen = true;
 }
 }

 if (ipPermission.PrefixListIds.Any())
 {
 portIsOpen = true;
 }

 if (!portIsOpen)
 {
 Console.WriteLine("The inbound rule does not appear to be open
 to either this computer's IP\n" +
 "address, to all IP addresses (0.0.0.0/0), or
 to a prefix list ID.");

Scenarios 831

AWS SDK for .NET Developer Guide

 }
 else
 {
 break;
 }
 }
 }

 return portIsOpen;
 }

 /// <summary>
 /// Add an ingress rule to the specified security group that allows access on
 the
 /// specified port from the specified IP address.
 /// </summary>
 /// <param name="groupId">The Id of the security group to modify.</param>
 /// <param name="port">The port to open.</param>
 /// <param name="ipAddress">The IP address to allow access.</param>
 /// <returns>Async task.</returns>
 public async Task OpenInboundPort(string groupId, int port, string ipAddress)
 {
 await _amazonEc2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest()
 {
 GroupId = groupId,
 IpPermissions = new List<IpPermission>()
 {
 new IpPermission()
 {
 FromPort = port,
 ToPort = port,
 IpProtocol = "tcp",
 Ipv4Ranges = new List<IpRange>()
 {
 new IpRange() { CidrIp = $"{ipAddress}/32" }
 }
 }
 }
 });
 }

 /// <summary>

Scenarios 832

AWS SDK for .NET Developer Guide

 /// Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 /// The
 /// </summary>
 /// <param name="autoScalingGroupName">The name of the Auto Scaling group.</
param>
 /// <param name="targetGroupArn">The Arn for the target group.</param>
 /// <returns>Async task.</returns>
 public async Task AttachLoadBalancerToGroup(string autoScalingGroupName, string
 targetGroupArn)
 {
 await _amazonAutoScaling.AttachLoadBalancerTargetGroupsAsync(
 new AttachLoadBalancerTargetGroupsRequest()
 {
 AutoScalingGroupName = autoScalingGroupName,
 TargetGroupARNs = new List<string>() { targetGroupArn }
 });
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEc2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;

Scenarios 833

AWS SDK for .NET Developer Guide

 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }
}

Create a class that wraps Elastic Load Balancing actions.

/// <summary>
/// Encapsulates Elastic Load Balancer actions.
/// </summary>
public class ElasticLoadBalancerWrapper
{
 private readonly IAmazonElasticLoadBalancingV2 _amazonElasticLoadBalancingV2;
 private string? _endpoint = null;
 private readonly string _targetGroupName = "";
 private readonly string _loadBalancerName = "";
 HttpClient _httpClient = new();

 public string TargetGroupName => _targetGroupName;
 public string LoadBalancerName => _loadBalancerName;

 /// <summary>
 /// Constructor for the Elastic Load Balancer wrapper.
 /// </summary>
 /// <param name="amazonElasticLoadBalancingV2">The injected load balancing v2
 client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public ElasticLoadBalancerWrapper(
 IAmazonElasticLoadBalancingV2 amazonElasticLoadBalancingV2,
 IConfiguration configuration)
 {
 _amazonElasticLoadBalancingV2 = amazonElasticLoadBalancingV2;
 var prefix = configuration["resourcePrefix"];
 _targetGroupName = prefix + "-tg";
 _loadBalancerName = prefix + "-lb";
 }

 /// <summary>
 /// Get the HTTP Endpoint of a load balancer by its name.

Scenarios 834

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="loadBalancerName">The name of the load balancer.</param>
 /// <returns>The HTTP endpoint.</returns>
 public async Task<string> GetEndpointForLoadBalancerByName(string
 loadBalancerName)
 {
 if (_endpoint == null)
 {
 var endpointResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { loadBalancerName }
 });
 _endpoint = endpointResponse.LoadBalancers[0].DNSName;
 }

 return _endpoint;
 }

 /// <summary>
 /// Return the GET response for an endpoint as text.
 /// </summary>
 /// <param name="endpoint">The endpoint for the request.</param>
 /// <returns>The request response.</returns>
 public async Task<string> GetEndPointResponse(string endpoint)
 {
 var endpointResponse = await _httpClient.GetAsync($"http://{endpoint}");
 var textResponse = await endpointResponse.Content.ReadAsStringAsync();
 return textResponse!;
 }

 /// <summary>
 /// Get the target health for a group by name.
 /// </summary>
 /// <param name="groupName">The name of the group.</param>
 /// <returns>The collection of health descriptions.</returns>
 public async Task<List<TargetHealthDescription>>
 CheckTargetHealthForGroup(string groupName)
 {
 List<TargetHealthDescription> result = null!;
 try
 {
 var groupResponse =

Scenarios 835

AWS SDK for .NET Developer Guide

 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });
 var healthResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetHealthAsync(
 new DescribeTargetHealthRequest()
 {
 TargetGroupArn =
 groupResponse.TargetGroups[0].TargetGroupArn
 });
 ;
 result = healthResponse.TargetHealthDescriptions;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine($"Target group {groupName} not found.");
 }
 return result;
 }

 /// <summary>
 /// Create an Elastic Load Balancing target group. The target group specifies
 how the load balancer forwards
 /// requests to instances in the group and how instance health is checked.
 ///
 /// To speed up this demo, the health check is configured with shortened times
 and lower thresholds. In production,
 /// you might want to decrease the sensitivity of your health checks to avoid
 unwanted failures.
 /// </summary>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="protocol">The protocol, such as HTTP.</param>
 /// <param name="port">The port to use to forward requests, such as 80.</param>
 /// <param name="vpcId">The Id of the Vpc in which the load balancer exists.</
param>
 /// <returns>The new TargetGroup object.</returns>
 public async Task<TargetGroup> CreateTargetGroupOnVpc(string groupName,
 ProtocolEnum protocol, int port, string vpcId)
 {
 var createResponse = await
 _amazonElasticLoadBalancingV2.CreateTargetGroupAsync(
 new CreateTargetGroupRequest()

Scenarios 836

AWS SDK for .NET Developer Guide

 {
 Name = groupName,
 Protocol = protocol,
 Port = port,
 HealthCheckPath = "/healthcheck",
 HealthCheckIntervalSeconds = 10,
 HealthCheckTimeoutSeconds = 5,
 HealthyThresholdCount = 2,
 UnhealthyThresholdCount = 2,
 VpcId = vpcId
 });
 var targetGroup = createResponse.TargetGroups[0];
 return targetGroup;
 }

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>
 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {
 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)
 {
 try
 {
 var describeResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(

Scenarios 837

AWS SDK for .NET Developer Guide

 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,
 DefaultActions = new List<Action>()
 {
 new Action()
 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

 /// <summary>
 /// Verify this computer can successfully send a GET request to the
 /// load balancer endpoint.
 /// </summary>
 /// <param name="endpoint">The endpoint to check.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> VerifyLoadBalancerEndpoint(string endpoint)
 {

Scenarios 838

AWS SDK for .NET Developer Guide

 var success = false;
 var retries = 3;
 while (!success && retries > 0)
 {
 try
 {
 var endpointResponse = await _httpClient.GetAsync($"http://
{endpoint}");
 Console.WriteLine($"Response: {endpointResponse.StatusCode}.");

 if (endpointResponse.IsSuccessStatusCode)
 {
 success = true;
 }
 else
 {
 retries = 0;
 }
 }
 catch (HttpRequestException)
 {
 Console.WriteLine("Connection error, retrying...");
 retries--;
 Thread.Sleep(10000);
 }
 }

 return success;
 }

 /// <summary>
 /// Delete a load balancer by its specified name.
 /// </summary>
 /// <param name="name">The name of the load balancer to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteLoadBalancerByName(string name)
 {
 try
 {
 var describeLoadBalancerResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }

Scenarios 839

AWS SDK for .NET Developer Guide

 });
 var lbArn =
 describeLoadBalancerResponse.LoadBalancers[0].LoadBalancerArn;
 await _amazonElasticLoadBalancingV2.DeleteLoadBalancerAsync(
 new DeleteLoadBalancerRequest()
 {
 LoadBalancerArn = lbArn
 }
);
 }
 catch (LoadBalancerNotFoundException)
 {
 Console.WriteLine($"Load balancer {name} not found.");
 }
 }

 /// <summary>
 /// Delete a TargetGroup by its specified name.
 /// </summary>
 /// <param name="groupName">Name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTargetGroupByName(string groupName)
 {
 var done = false;
 while (!done)
 {
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });

 var targetArn = groupResponse.TargetGroups[0].TargetGroupArn;
 await _amazonElasticLoadBalancingV2.DeleteTargetGroupAsync(
 new DeleteTargetGroupRequest() { TargetGroupArn = targetArn });
 Console.WriteLine($"Deleted load balancing target group
 {groupName}.");
 done = true;
 }
 catch (TargetGroupNotFoundException)
 {

Scenarios 840

AWS SDK for .NET Developer Guide

 Console.WriteLine(
 $"Target group {groupName} not found, could not delete.");
 done = true;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine("Target group not yet released, waiting...");
 Thread.Sleep(10000);
 }
 }
 }
}

Create a class that uses DynamoDB to simulate a recommendation service.

/// <summary>
/// Encapsulates a DynamoDB table to use as a service that recommends books, movies,
 and songs.
/// </summary>
public class Recommendations
{
 private readonly IAmazonDynamoDB _amazonDynamoDb;
 private readonly DynamoDBContext _context;
 private readonly string _tableName;

 public string TableName => _tableName;

 /// <summary>
 /// Constructor for the Recommendations service.
 /// </summary>
 /// <param name="amazonDynamoDb">The injected DynamoDb client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public Recommendations(IAmazonDynamoDB amazonDynamoDb, IConfiguration
 configuration)
 {
 _amazonDynamoDb = amazonDynamoDb;
 _context = new DynamoDBContext(_amazonDynamoDb);
 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Create the DynamoDb table with a specified name.

Scenarios 841

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="tableName">The name for the table.</param>
 /// <returns>True when ready.</returns>
 public async Task<bool> CreateDatabaseWithName(string tableName)
 {
 try
 {
 Console.Write($"Creating table {tableName}...");
 var createRequest = new CreateTableRequest()
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition()
 {
 AttributeName = "MediaType",
 AttributeType = ScalarAttributeType.S
 },
 new AttributeDefinition()
 {
 AttributeName = "ItemId",
 AttributeType = ScalarAttributeType.N
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement()
 {
 AttributeName = "MediaType",
 KeyType = KeyType.HASH
 },
 new KeySchemaElement()
 {
 AttributeName = "ItemId",
 KeyType = KeyType.RANGE
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 5
 }
 };
 await _amazonDynamoDb.CreateTableAsync(createRequest);

Scenarios 842

AWS SDK for .NET Developer Guide

 // Wait until the table is ACTIVE and then report success.
 Console.Write("\nWaiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = tableName
 };

 TableStatus status;
 do
 {
 Thread.Sleep(2000);

 var describeTableResponse = await
 _amazonDynamoDb.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine($"Table {tableName} already exists.");
 return false;
 }
 }

 /// <summary>
 /// Populate the database table with data from a specified path.
 /// </summary>
 /// <param name="databaseTableName">The name of the table.</param>
 /// <param name="recommendationsPath">The path of the recommendations data.</
param>
 /// <returns>Async task.</returns>
 public async Task PopulateDatabase(string databaseTableName, string
 recommendationsPath)
 {
 var recommendationsText = await File.ReadAllTextAsync(recommendationsPath);
 var records =
 JsonSerializer.Deserialize<RecommendationModel[]>(recommendationsText);

Scenarios 843

AWS SDK for .NET Developer Guide

 var batchWrite = _context.CreateBatchWrite<RecommendationModel>();

 foreach (var record in records!)
 {
 batchWrite.AddPutItem(record);
 }

 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Delete the recommendation table by name.
 /// </summary>
 /// <param name="tableName">The name of the recommendation table.</param>
 /// <returns>Async task.</returns>
 public async Task DestroyDatabaseByName(string tableName)
 {
 try
 {
 await _amazonDynamoDb.DeleteTableAsync(
 new DeleteTableRequest() { TableName = tableName });
 Console.WriteLine($"Table {tableName} was deleted.");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Table {tableName} not found");
 }
 }
}

Create a class that wraps Systems Manager actions.

/// <summary>
/// Encapsulates Systems Manager parameter operations. This example uses these
 parameters
/// to drive the demonstration of resilient architecture, such as failure of a
 dependency or
/// how the service responds to a health check.
/// </summary>
public class SmParameterWrapper
{
 private readonly IAmazonSimpleSystemsManagement _amazonSimpleSystemsManagement;

Scenarios 844

AWS SDK for .NET Developer Guide

 private readonly string _tableParameter = "doc-example-resilient-architecture-
table";
 private readonly string _failureResponseParameter = "doc-example-resilient-
architecture-failure-response";
 private readonly string _healthCheckParameter = "doc-example-resilient-
architecture-health-check";
 private readonly string _tableName = "";

 public string TableParameter => _tableParameter;
 public string TableName => _tableName;
 public string HealthCheckParameter => _healthCheckParameter;
 public string FailureResponseParameter => _failureResponseParameter;

 /// <summary>
 /// Constructor for the SmParameterWrapper.
 /// </summary>
 /// <param name="amazonSimpleSystemsManagement">The injected Simple Systems
 Management client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public SmParameterWrapper(IAmazonSimpleSystemsManagement
 amazonSimpleSystemsManagement, IConfiguration configuration)
 {
 _amazonSimpleSystemsManagement = amazonSimpleSystemsManagement;
 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Reset the Systems Manager parameters to starting values for the demo.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task Reset()
 {
 await this.PutParameterByName(_tableParameter, _tableName);
 await this.PutParameterByName(_failureResponseParameter, "none");
 await this.PutParameterByName(_healthCheckParameter, "shallow");
 }

 /// <summary>
 /// Set the value of a named Systems Manager parameter.
 /// </summary>
 /// <param name="name">The name of the parameter.</param>
 /// <param name="value">The value to set.</param>
 /// <returns>Async task.</returns>

Scenarios 845

AWS SDK for .NET Developer Guide

 public async Task PutParameterByName(string name, string value)
 {
 await _amazonSimpleSystemsManagement.PutParameterAsync(
 new PutParameterRequest() { Name = name, Value = value, Overwrite =
 true });
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation
Scenarios 846

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSubnets
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation

AWS SDK for .NET Developer Guide

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Amazon ECS examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon ECS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon ECS

The following code example shows how to get started using Amazon ECS.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.ECS;
using Amazon.ECS.Model;
using Microsoft.Extensions.Hosting;

namespace ECSActions;

public class HelloECS
{

Amazon ECS 847

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ECS#code-examples

AWS SDK for .NET Developer Guide

 static async System.Threading.Tasks.Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the Amazon ECS domain registration service.
 // Use your AWS profile name, or leave it blank to use the default profile.
 using var host = Host.CreateDefaultBuilder(args).Build();

 // Now the client is available for injection.
 var amazonECSClient = new AmazonECSClient();

 // You can use await and any of the async methods to get a response.
 var response = await amazonECSClient.ListClustersAsync(new
 ListClustersRequest { });

 Console.WriteLine($"Hello Amazon ECS! Following are some cluster ARNS
 available in the your aws account");
 Console.WriteLine();
 foreach (var arn in response.ClusterArns.Take(5))
 {
 Console.WriteLine($"\tARN: {arn}");
 Console.WriteLine($"Cluster Name: {arn.Split("/").Last()}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListClusters in AWS SDK for .NET API Reference.

Topics

• Actions

• Scenarios

Actions

ListClusters

The following code example shows how to use ListClusters.

Actions 848

https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListClusters

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List cluster ARNs available.
 /// </summary>
 /// <returns>The ARN list of clusters.</returns>
 public async Task<List<string>> GetClusterARNSAsync()
 {

 Console.WriteLine("Getting a list of all the clusters in your AWS
 account...");
 List<string> clusterArnList = new List<string>();
 // Get a list of all the clusters in your AWS account
 try
 {

 var listClustersResponse = _ecsClient.Paginators.ListClusters(new
 ListClustersRequest
 {
 });

 var clusterArns = listClustersResponse.ClusterArns;

 // Print the ARNs of the clusters
 await foreach (var clusterArn in clusterArns)
 {
 clusterArnList.Add(clusterArn);
 }

 if (clusterArnList.Count == 0)
 {
 _logger.LogWarning("No clusters found in your AWS account.");
 }
 return clusterArnList;
 }
 catch (Exception e)

Actions 849

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ECS#code-examples

AWS SDK for .NET Developer Guide

 {
 _logger.LogError($"An error occurred while getting a list of all the
 clusters in your AWS account. {e.InnerException}");
 throw new Exception($"An error occurred while getting a list of all the
 clusters in your AWS account. {e.InnerException}");
 }
 }

• For API details, see ListClusters in AWS SDK for .NET API Reference.

ListServices

The following code example shows how to use ListServices.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List service ARNs available.
 /// </summary>
 /// <param name="clusterARN">The arn of the ECS cluster.</param>
 /// <returns>The ARN list of services in given cluster.</returns>
 public async Task<List<string>> GetServiceARNSAsync(string clusterARN)
 {
 List<string> serviceArns = new List<string>();

 var request = new ListServicesRequest
 {
 Cluster = clusterARN
 };
 // Call the ListServices API operation and get the list of service ARNs
 var serviceList = _ecsClient.Paginators.ListServices(request);

 await foreach (var serviceARN in serviceList.ServiceArns)
 {
 if (serviceARN is null)

Actions 850

https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ECS#code-examples

AWS SDK for .NET Developer Guide

 continue;

 serviceArns.Add(serviceARN);
 }

 if (serviceArns.Count == 0)
 {
 _logger.LogWarning($"No services found in cluster {clusterARN} .");
 }

 return serviceArns;
 }

• For API details, see ListServices in AWS SDK for .NET API Reference.

ListTasks

The following code example shows how to use ListTasks.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List task ARNs available.
 /// </summary>
 /// <param name="clusterARN">The arn of the ECS cluster.</param>
 /// <returns>The ARN list of tasks in given cluster.</returns>
 public async Task<List<string>> GetTaskARNsAsync(string clusterARN)
 {
 // Set up the request to describe the tasks in the service
 var listTasksRequest = new ListTasksRequest
 {
 Cluster = clusterARN
 };
 List<string> taskArns = new List<string>();

Actions 851

https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListServices
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ECS#code-examples

AWS SDK for .NET Developer Guide

 // Call the ListTasks API operation and get the list of task ARNs
 var tasks = _ecsClient.Paginators.ListTasks(listTasksRequest);

 await foreach (var task in tasks.TaskArns)
 {
 if (task is null)
 continue;

 taskArns.Add(task);
 }

 if (taskArns.Count == 0)
 {
 _logger.LogWarning("No tasks found in cluster: " + clusterARN);
 }

 return taskArns;
 }

• For API details, see ListTasks in AWS SDK for .NET API Reference.

Scenarios

Get ARN information for clusters, services, and tasks

The following code example shows how to:

• Get a list of all clusters.

• Get services for a cluster.

• Get tasks for a cluster.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Scenarios 852

https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListTasks
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/ECS#code-examples

AWS SDK for .NET Developer Guide

Run an interactive scenario at a command prompt.

using Amazon.ECS;
using ECSActions;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

namespace ECSScenario;

public class ECSScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. List ECS Cluster ARNs.
 2. List services in every cluster
 3. List Task ARNs in every cluster.
 */

 private static ILogger logger = null!;
 private static ECSWrapper _ecsWrapper = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .Build();

 ILoggerFactory loggerFactory = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 });

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })

Scenarios 853

AWS SDK for .NET Developer Guide

 .CreateLogger<ECSScenario>();

 var loggerECSWarpper = LoggerFactory.Create(builder =>
 { builder.AddConsole(); })
 .CreateLogger<ECSWrapper>();

 var amazonECSClient = new AmazonECSClient();

 _ecsWrapper = new ECSWrapper(amazonECSClient, loggerECSWarpper);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon ECS example scenario.");
 Console.WriteLine(new string('-', 80));

 try
 {
 await ListClusterARNs();
 await ListServiceARNs();
 await ListTaskARNs();

 }
 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 }
 }

 /// <summary>
 /// List ECS Cluster ARNs
 /// </summary>
 private static async Task ListClusterARNs()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"1. List Cluster ARNs from ECS.");
 var arns = await _ecsWrapper.GetClusterARNSAsync();

 foreach (var arn in arns)
 {
 Console.WriteLine($"Cluster arn: {arn}");
 Console.WriteLine($"Cluster name: {arn.Split("/").Last()}");
 }

 Console.WriteLine(new string('-', 80));
 }

Scenarios 854

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List services in every cluster
 /// </summary>
 private static async Task ListServiceARNs()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"2. List Service ARNs in every cluster.");
 var clusterARNs = await _ecsWrapper.GetClusterARNSAsync();

 foreach (var clusterARN in clusterARNs)
 {
 Console.WriteLine($"Getting services for cluster name:
 {clusterARN.Split("/").Last()}");
 Console.WriteLine(new string('.', 5));

 var serviceARNs = await _ecsWrapper.GetServiceARNSAsync(clusterARN);

 foreach (var serviceARN in serviceARNs)
 {
 Console.WriteLine($"Service arn: {serviceARN}");
 Console.WriteLine($"Service name: {serviceARN.Split("/").Last()}");
 }
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List tasks in every cluster
 /// </summary>
 private static async Task ListTaskARNs()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"3. List Task ARNs in every cluster.");
 var clusterARNs = await _ecsWrapper.GetClusterARNSAsync();

 foreach (var clusterARN in clusterARNs)
 {
 Console.WriteLine($"Getting tasks for cluster name:
 {clusterARN.Split("/").Last()}");

Scenarios 855

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('.', 5));

 var taskARNs = await _ecsWrapper.GetTaskARNsAsync(clusterARN);

 foreach (var taskARN in taskARNs)
 {
 Console.WriteLine($"Task arn: {taskARN}");
 }
 }
 Console.WriteLine(new string('-', 80));
 }
}

Wrapper methods that are called by the scenario to manage Amazon ECS actions.

using Amazon.ECS;
using Amazon.ECS.Model;
using Microsoft.Extensions.Logging;

namespace ECSActions;

public class ECSWrapper
{
 private readonly AmazonECSClient _ecsClient;
 private readonly ILogger<ECSWrapper> _logger;

 /// <summary>
 /// Constructor for the ECS wrapper.
 /// </summary>
 /// <param name="ecsClient">The injected ECS client.</param>
 /// <param name="logger">The injected logger for the wrapper.</param>
 public ECSWrapper(AmazonECSClient ecsClient, ILogger<ECSWrapper> logger)

 {
 _logger = logger;
 _ecsClient = ecsClient;
 }

 /// <summary>
 /// List cluster ARNs available.
 /// </summary>
 /// <returns>The ARN list of clusters.</returns>

Scenarios 856

AWS SDK for .NET Developer Guide

 public async Task<List<string>> GetClusterARNSAsync()
 {

 Console.WriteLine("Getting a list of all the clusters in your AWS
 account...");
 List<string> clusterArnList = new List<string>();
 // Get a list of all the clusters in your AWS account
 try
 {

 var listClustersResponse = _ecsClient.Paginators.ListClusters(new
 ListClustersRequest
 {
 });

 var clusterArns = listClustersResponse.ClusterArns;

 // Print the ARNs of the clusters
 await foreach (var clusterArn in clusterArns)
 {
 clusterArnList.Add(clusterArn);
 }

 if (clusterArnList.Count == 0)
 {
 _logger.LogWarning("No clusters found in your AWS account.");
 }
 return clusterArnList;
 }
 catch (Exception e)
 {
 _logger.LogError($"An error occurred while getting a list of all the
 clusters in your AWS account. {e.InnerException}");
 throw new Exception($"An error occurred while getting a list of all the
 clusters in your AWS account. {e.InnerException}");
 }
 }

 /// <summary>
 /// List service ARNs available.
 /// </summary>
 /// <param name="clusterARN">The arn of the ECS cluster.</param>
 /// <returns>The ARN list of services in given cluster.</returns>
 public async Task<List<string>> GetServiceARNSAsync(string clusterARN)

Scenarios 857

AWS SDK for .NET Developer Guide

 {
 List<string> serviceArns = new List<string>();

 var request = new ListServicesRequest
 {
 Cluster = clusterARN
 };
 // Call the ListServices API operation and get the list of service ARNs
 var serviceList = _ecsClient.Paginators.ListServices(request);

 await foreach (var serviceARN in serviceList.ServiceArns)
 {
 if (serviceARN is null)
 continue;

 serviceArns.Add(serviceARN);
 }

 if (serviceArns.Count == 0)
 {
 _logger.LogWarning($"No services found in cluster {clusterARN} .");
 }

 return serviceArns;
 }

 /// <summary>
 /// List task ARNs available.
 /// </summary>
 /// <param name="clusterARN">The arn of the ECS cluster.</param>
 /// <returns>The ARN list of tasks in given cluster.</returns>
 public async Task<List<string>> GetTaskARNsAsync(string clusterARN)
 {
 // Set up the request to describe the tasks in the service
 var listTasksRequest = new ListTasksRequest
 {
 Cluster = clusterARN
 };
 List<string> taskArns = new List<string>();

 // Call the ListTasks API operation and get the list of task ARNs
 var tasks = _ecsClient.Paginators.ListTasks(listTasksRequest);

 await foreach (var task in tasks.TaskArns)

Scenarios 858

AWS SDK for .NET Developer Guide

 {
 if (task is null)
 continue;

 taskArns.Add(task);
 }

 if (taskArns.Count == 0)
 {
 _logger.LogWarning("No tasks found in cluster: " + clusterARN);
 }

 return taskArns;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• ListClusters

• ListServices

• ListTasks

Elastic Load Balancing - Version 2 examples using AWS SDK
for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Elastic Load Balancing - Version 2.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

Elastic Load Balancing - Version 2 859

https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListClusters
https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListServices
https://docs.aws.amazon.com/goto/DotNetSDKV3/ecs-2014-11-13/ListTasks

AWS SDK for .NET Developer Guide

• Actions

• Scenarios

Actions

CreateListener

The following code example shows how to use CreateListener.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>
 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {
 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)

Actions 860

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 {
 try
 {
 var describeResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,
 DefaultActions = new List<Action>()
 {
 new Action()
 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

• For API details, see CreateListener in AWS SDK for .NET API Reference.

Actions 861

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateListener

AWS SDK for .NET Developer Guide

CreateLoadBalancer

The following code example shows how to use CreateLoadBalancer.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>
 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {
 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)
 {
 try
 {
 var describeResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {

Actions 862

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,
 DefaultActions = new List<Action>()
 {
 new Action()
 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

• For API details, see CreateLoadBalancer in AWS SDK for .NET API Reference.

CreateTargetGroup

The following code example shows how to use CreateTargetGroup.

Actions 863

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an Elastic Load Balancing target group. The target group specifies
 how the load balancer forwards
 /// requests to instances in the group and how instance health is checked.
 ///
 /// To speed up this demo, the health check is configured with shortened times
 and lower thresholds. In production,
 /// you might want to decrease the sensitivity of your health checks to avoid
 unwanted failures.
 /// </summary>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="protocol">The protocol, such as HTTP.</param>
 /// <param name="port">The port to use to forward requests, such as 80.</param>
 /// <param name="vpcId">The Id of the Vpc in which the load balancer exists.</
param>
 /// <returns>The new TargetGroup object.</returns>
 public async Task<TargetGroup> CreateTargetGroupOnVpc(string groupName,
 ProtocolEnum protocol, int port, string vpcId)
 {
 var createResponse = await
 _amazonElasticLoadBalancingV2.CreateTargetGroupAsync(
 new CreateTargetGroupRequest()
 {
 Name = groupName,
 Protocol = protocol,
 Port = port,
 HealthCheckPath = "/healthcheck",
 HealthCheckIntervalSeconds = 10,
 HealthCheckTimeoutSeconds = 5,
 HealthyThresholdCount = 2,
 UnhealthyThresholdCount = 2,
 VpcId = vpcId
 });
 var targetGroup = createResponse.TargetGroups[0];

Actions 864

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 return targetGroup;
 }

• For API details, see CreateTargetGroup in AWS SDK for .NET API Reference.

DeleteLoadBalancer

The following code example shows how to use DeleteLoadBalancer.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a load balancer by its specified name.
 /// </summary>
 /// <param name="name">The name of the load balancer to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteLoadBalancerByName(string name)
 {
 try
 {
 var describeLoadBalancerResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });
 var lbArn =
 describeLoadBalancerResponse.LoadBalancers[0].LoadBalancerArn;
 await _amazonElasticLoadBalancingV2.DeleteLoadBalancerAsync(
 new DeleteLoadBalancerRequest()
 {
 LoadBalancerArn = lbArn
 }
);
 }

Actions 865

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 catch (LoadBalancerNotFoundException)
 {
 Console.WriteLine($"Load balancer {name} not found.");
 }
 }

• For API details, see DeleteLoadBalancer in AWS SDK for .NET API Reference.

DeleteTargetGroup

The following code example shows how to use DeleteTargetGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a TargetGroup by its specified name.
 /// </summary>
 /// <param name="groupName">Name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTargetGroupByName(string groupName)
 {
 var done = false;
 while (!done)
 {
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });

 var targetArn = groupResponse.TargetGroups[0].TargetGroupArn;
 await _amazonElasticLoadBalancingV2.DeleteTargetGroupAsync(

Actions 866

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 new DeleteTargetGroupRequest() { TargetGroupArn = targetArn });
 Console.WriteLine($"Deleted load balancing target group
 {groupName}.");
 done = true;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine(
 $"Target group {groupName} not found, could not delete.");
 done = true;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine("Target group not yet released, waiting...");
 Thread.Sleep(10000);
 }
 }
 }

• For API details, see DeleteTargetGroup in AWS SDK for .NET API Reference.

DescribeLoadBalancers

The following code example shows how to use DescribeLoadBalancers.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the HTTP Endpoint of a load balancer by its name.
 /// </summary>
 /// <param name="loadBalancerName">The name of the load balancer.</param>
 /// <returns>The HTTP endpoint.</returns>
 public async Task<string> GetEndpointForLoadBalancerByName(string
 loadBalancerName)
 {

Actions 867

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 if (_endpoint == null)
 {
 var endpointResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { loadBalancerName }
 });
 _endpoint = endpointResponse.LoadBalancers[0].DNSName;
 }

 return _endpoint;
 }

• For API details, see DescribeLoadBalancers in AWS SDK for .NET API Reference.

DescribeTargetHealth

The following code example shows how to use DescribeTargetHealth.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the target health for a group by name.
 /// </summary>
 /// <param name="groupName">The name of the group.</param>
 /// <returns>The collection of health descriptions.</returns>
 public async Task<List<TargetHealthDescription>>
 CheckTargetHealthForGroup(string groupName)
 {
 List<TargetHealthDescription> result = null!;
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(

Actions 868

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/ElasticLoadBalancerActions#code-examples

AWS SDK for .NET Developer Guide

 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });
 var healthResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetHealthAsync(
 new DescribeTargetHealthRequest()
 {
 TargetGroupArn =
 groupResponse.TargetGroups[0].TargetGroupArn
 });
 ;
 result = healthResponse.TargetHealthDescriptions;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine($"Target group {groupName} not found.");
 }
 return result;
 }

• For API details, see DescribeTargetHealth in AWS SDK for .NET API Reference.

Scenarios

Build and manage a resilient service

The following code example shows how to create a load-balanced web service that returns book,
movie, and song recommendations. The example shows how the service responds to failures, and
how to restructure the service for more resilience when failures occur.

• Use an Amazon EC2 Auto Scaling group to create Amazon Elastic Compute Cloud (Amazon EC2)
instances based on a launch template and to keep the number of instances in a specified range.

• Handle and distribute HTTP requests with Elastic Load Balancing.

• Monitor the health of instances in an Auto Scaling group and forward requests only to healthy
instances.

• Run a Python web server on each EC2 instance to handle HTTP requests. The web server
responds with recommendations and health checks.

• Simulate a recommendation service with an Amazon DynamoDB table.

Scenarios 869

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth

AWS SDK for .NET Developer Guide

• Control web server response to requests and health checks by updating AWS Systems Manager
parameters.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

 static async Task Main(string[] args)
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 // Set up dependency injection for the AWS services.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonDynamoDB>()
 .AddAWSService<IAmazonElasticLoadBalancingV2>()
 .AddAWSService<IAmazonSimpleSystemsManagement>()
 .AddAWSService<IAmazonAutoScaling>()
 .AddAWSService<IAmazonEC2>()
 .AddTransient<AutoScalerWrapper>()
 .AddTransient<ElasticLoadBalancerWrapper>()
 .AddTransient<SmParameterWrapper>()
 .AddTransient<Recommendations>()
 .AddSingleton<IConfiguration>(_configuration)

Scenarios 870

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService#code-examples

AWS SDK for .NET Developer Guide

)
 .Build();

 ServicesSetup(host);
 ResourcesSetup();

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Resilient Architecture Example
 Scenario.");
 Console.WriteLine(new string('-', 80));
 await Deploy(true);

 Console.WriteLine("Now let's begin the scenario.");
 Console.WriteLine(new string('-', 80));
 await Demo(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Finally, let's clean up our resources.");
 Console.WriteLine(new string('-', 80));

 await DestroyResources(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resilient Architecture Example Scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await DestroyResources(true);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Setup any common resources, also used for integration testing.
 /// </summary>
 public static void ResourcesSetup()
 {

Scenarios 871

AWS SDK for .NET Developer Guide

 _httpClient = new HttpClient();
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _elasticLoadBalancerWrapper =
 host.Services.GetRequiredService<ElasticLoadBalancerWrapper>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 _recommendations = host.Services.GetRequiredService<Recommendations>();
 _autoScalerWrapper = host.Services.GetRequiredService<AutoScalerWrapper>();
 _smParameterWrapper =
 host.Services.GetRequiredService<SmParameterWrapper>();
 }

 /// <summary>
 /// Deploy necessary resources for the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Deploy(bool interactive)
 {
 var protocol = "HTTP";
 var port = 80;
 var sshPort = 22;

 Console.WriteLine(
 "\nFor this demo, we'll use the AWS SDK for .NET to create several AWS
 resources\n" +
 "to set up a load-balanced web service endpoint and explore some ways to
 make it resilient\n" +
 "against various kinds of failures.\n\n" +
 "Some of the resources create by this demo are:\n");

 Console.WriteLine(
 "\t* A DynamoDB table that the web service depends on to provide book,
 movie, and song recommendations.");
 Console.WriteLine(
 "\t* An EC2 launch template that defines EC2 instances that each contain
 a Python web server.");

Scenarios 872

AWS SDK for .NET Developer Guide

 Console.WriteLine(
 "\t* An EC2 Auto Scaling group that manages EC2 instances across several
 Availability Zones.");
 Console.WriteLine(
 "\t* An Elastic Load Balancing (ELB) load balancer that targets the Auto
 Scaling group to distribute requests.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to start deploying
 resources.");
 if (interactive)
 Console.ReadLine();

 // Create and populate the DynamoDB table.
 var databaseTableName = _configuration["databaseName"];
 var recommendationsPath = Path.Join(_configuration["resourcePath"],
 "recommendations_objects.json");
 Console.WriteLine($"Creating and populating a DynamoDB table named
 {databaseTableName}.");
 await _recommendations.CreateDatabaseWithName(databaseTableName);
 await _recommendations.PopulateDatabase(databaseTableName,
 recommendationsPath);
 Console.WriteLine(new string('-', 80));

 // Create the EC2 Launch Template.

 Console.WriteLine(
 $"Creating an EC2 launch template that runs 'server_startup_script.sh'
 when an instance starts.\n"
 + "\nThis script starts a Python web server defined in the `server.py`
 script. The web server\n"
 + "listens to HTTP requests on port 80 and responds to requests to '/'
 and to '/healthcheck'.\n"
 + "For demo purposes, this server is run as the root user. In
 production, the best practice is to\n"
 + "run a web server, such as Apache, with least-privileged
 credentials.");
 Console.WriteLine(
 "\nThe template also defines an IAM policy that each instance uses to
 assume a role that grants\n"
 + "permissions to access the DynamoDB recommendation table and Systems
 Manager parameters\n"
 + "that control the flow of the demo.");

 var startupScriptPath = Path.Join(_configuration["resourcePath"],

Scenarios 873

AWS SDK for .NET Developer Guide

 "server_startup_script.sh");
 var instancePolicyPath = Path.Join(_configuration["resourcePath"],
 "instance_policy.json");
 await _autoScalerWrapper.CreateTemplate(startupScriptPath,
 instancePolicyPath);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "Creating an EC2 Auto Scaling group that maintains three EC2 instances,
 each in a different\n"
 + "Availability Zone.\n");
 var zones = await _autoScalerWrapper.DescribeAvailabilityZones();
 await _autoScalerWrapper.CreateGroupOfSize(3, _autoScalerWrapper.GroupName,
 zones);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "At this point, you have EC2 instances created. Once each instance
 starts, it listens for\n"
 + "HTTP requests. You can see these instances in the console or continue
 with the demo.\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("Creating variables that control the flow of the demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine(
 "\nCreating an Elastic Load Balancing target group and load balancer.
 The target group\n"
 + "defines how the load balancer connects to instances. The load
 balancer provides a\n"
 + "single endpoint where clients connect and dispatches requests to
 instances in the group.");

 var defaultVpc = await _autoScalerWrapper.GetDefaultVpc();
 var subnets = await
 _autoScalerWrapper.GetAllVpcSubnetsForZones(defaultVpc.VpcId, zones);
 var subnetIds = subnets.Select(s => s.SubnetId).ToList();

Scenarios 874

AWS SDK for .NET Developer Guide

 var targetGroup = await
 _elasticLoadBalancerWrapper.CreateTargetGroupOnVpc(_elasticLoadBalancerWrapper.TargetGroupName,
 protocol, port, defaultVpc.VpcId);

 await
 _elasticLoadBalancerWrapper.CreateLoadBalancerAndListener(_elasticLoadBalancerWrapper.LoadBalancerName,
 subnetIds, targetGroup);
 await
 _autoScalerWrapper.AttachLoadBalancerToGroup(_autoScalerWrapper.GroupName,
 targetGroup.TargetGroupArn);
 Console.WriteLine("\nVerifying access to the load balancer endpoint...");
 var endPoint = await
 _elasticLoadBalancerWrapper.GetEndpointForLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 var loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);

 if (!loadBalancerAccess)
 {
 Console.WriteLine("\nCouldn't connect to the load balancer, verifying
 that the port is open...");

 var ipString = await _httpClient.GetStringAsync("https://
checkip.amazonaws.com");
 ipString = ipString.Trim();

 var defaultSecurityGroup = await
 _autoScalerWrapper.GetDefaultSecurityGroupForVpc(defaultVpc);
 var portIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, port, ipString);
 var sshPortIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, sshPort,
 ipString);

 if (!portIsOpen)
 {
 Console.WriteLine(
 "\nFor this example to work, the default security group for your
 default VPC must\n"
 + "allows access from this computer. You can either add it
 automatically from this\n"
 + "example or add it yourself using the AWS Management Console.
\n");

 if (!interactive || GetYesNoResponse(

Scenarios 875

AWS SDK for .NET Developer Guide

 "Do you want to add a rule to the security group to allow
 inbound traffic from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, port, ipString);
 }
 }

 if (!sshPortIsOpen)
 {
 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound SSH traffic for debugging from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, sshPort,
 ipString);
 }
 }
 loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);
 }

 if (loadBalancerAccess)
 {
 Console.WriteLine("Your load balancer is ready. You can access it by
 browsing to:");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 else
 {
 Console.WriteLine(
 "\nCouldn't get a successful response from the load balancer
 endpoint. Troubleshoot by\n"
 + "manually verifying that your VPC and security group are
 configured correctly and that\n"
 + "you can successfully make a GET request to the load balancer
 endpoint:\n");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue with the
 demo.");
 if (interactive)

Scenarios 876

AWS SDK for .NET Developer Guide

 Console.ReadLine();
 return true;
 }

 /// <summary>
 /// Demonstrate the steps of the scenario.
 /// </summary>
 /// <param name="interactive">True to run as an interactive scenario.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> Demo(bool interactive)
 {
 var ssmOnlyPolicy = Path.Join(_configuration["resourcePath"],
 "ssm_only_policy.json");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resetting parameters to starting values for demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine("\nThis part of the demonstration shows how to toggle
 different parts of the system\n" +
 "to create situations where the web service fails, and
 shows how using a resilient\n" +
 "architecture can keep the web service running in spite of
 these failures.");
 Console.WriteLine(new string('-', 88));
 Console.WriteLine("At the start, the load balancer endpoint returns
 recommendations and reports that all targets are healthy.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine($"The web service running on the EC2 instances gets
 recommendations by querying a DynamoDB table.\n" +
 $"The table name is contained in a Systems Manager
 parameter named '{_smParameterWrapper.TableParameter}'.\n" +
 $"To simulate a failure of the recommendation service,
 let's set this parameter to name a non-existent table.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");
 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a failure code. But, the service reports as\n" +
 "healthy to the load balancer because shallow health
 checks don't check for failure of the recommendation service.");
 if (interactive)

Scenarios 877

AWS SDK for .NET Developer Guide

 await DemoActionChoices();

 Console.WriteLine("Instead of failing when the recommendation service fails,
 the web service can return a static response.");
 Console.WriteLine("While this is not a perfect solution, it presents the
 customer with a somewhat better experience than failure.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.FailureResponseParameter,
 "static");

 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a static response.");
 Console.WriteLine("The service still reports as healthy because health
 checks are still shallow.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Let's reinstate the recommendation service.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 _smParameterWrapper.TableName);
 Console.WriteLine(
 "\nLet's also substitute bad credentials for one of the instances in the
 target group so that it can't\n" +
 "access the DynamoDB recommendation table.\n"
);
 await _autoScalerWrapper.CreateInstanceProfileWithName(
 _autoScalerWrapper.BadCredsPolicyName,
 _autoScalerWrapper.BadCredsRoleName,
 _autoScalerWrapper.BadCredsProfileName,
 ssmOnlyPolicy,
 new List<string> { "AmazonSSMManagedInstanceCore" }
);
 var instances = await
 _autoScalerWrapper.GetInstancesByGroupName(_autoScalerWrapper.GroupName);
 var badInstanceId = instances.First();
 var instanceProfile = await
 _autoScalerWrapper.GetInstanceProfile(badInstanceId);
 Console.WriteLine(
 $"Replacing the profile for instance {badInstanceId} with a profile that
 contains\n" +
 "bad credentials...\n"
);

Scenarios 878

AWS SDK for .NET Developer Guide

 await _autoScalerWrapper.ReplaceInstanceProfile(
 badInstanceId,
 _autoScalerWrapper.BadCredsProfileName,
 instanceProfile.AssociationId
);
 Console.WriteLine(
 "Now, sending a GET request to the load balancer endpoint returns either
 a recommendation or a static response,\n" +
 "depending on which instance is selected by the load balancer.\n"
);
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nLet's implement a deep health check. For this demo, a
 deep health check tests whether");
 Console.WriteLine("the web service can access the DynamoDB table that it
 depends on for recommendations. Note that");
 Console.WriteLine("the deep health check is only for ELB routing and not for
 Auto Scaling instance health.");
 Console.WriteLine("This kind of deep health check is not recommended for
 Auto Scaling instance health, because it");
 Console.WriteLine("risks accidental termination of all instances in the Auto
 Scaling group when a dependent service fails.");

 Console.WriteLine("\nBy implementing deep health checks, the load balancer
 can detect when one of the instances is failing");
 Console.WriteLine("and take that instance out of rotation.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.HealthCheckParameter,
 "deep");

 Console.WriteLine($"\nNow, checking target health indicates that the
 instance with bad credentials ({badInstanceId})");
 Console.WriteLine("is unhealthy. Note that it might take a minute or two for
 the load balancer to detect the unhealthy");
 Console.WriteLine("instance. Sending a GET request to the load balancer
 endpoint always returns a recommendation, because");
 Console.WriteLine("the load balancer takes unhealthy instances out of its
 rotation.");

 if (interactive)
 await DemoActionChoices();

Scenarios 879

AWS SDK for .NET Developer Guide

 Console.WriteLine("\nBecause the instances in this demo are controlled by an
 auto scaler, the simplest way to fix an unhealthy");
 Console.WriteLine("instance is to terminate it and let the auto scaler start
 a new instance to replace it.");

 await _autoScalerWrapper.TryTerminateInstanceById(badInstanceId);

 Console.WriteLine($"\nEven while the instance is terminating and the new
 instance is starting, sending a GET");
 Console.WriteLine("request to the web service continues to get a successful
 recommendation response because");
 Console.WriteLine("starts and reports as healthy, it is included in the load
 balancing rotation.");
 Console.WriteLine("Note that terminating and replacing an instance typically
 takes several minutes, during which time you");
 Console.WriteLine("can see the changing health check status until the new
 instance is running and healthy.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nIf the recommendation service fails now, deep health
 checks mean all instances report as unhealthy.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");

 Console.WriteLine($"\nWhen all instances are unhealthy, the load balancer
 continues to route requests even to");
 Console.WriteLine("unhealthy instances, allowing them to fail open and
 return a static response rather than fail");
 Console.WriteLine("closed and report failure to the customer.");

 if (interactive)
 await DemoActionChoices();
 await _smParameterWrapper.Reset();

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Clean up the resources from the scenario.

Scenarios 880

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="interactive">True to ask the user for cleanup.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> DestroyResources(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "To keep things tidy and to avoid unwanted charges on your account, we
 can clean up all AWS resources\n" +
 "that were created for this demo."
);

 if (!interactive || GetYesNoResponse("Do you want to clean up all demo
 resources? (y/n) "))
 {
 await
 _elasticLoadBalancerWrapper.DeleteLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 await
 _elasticLoadBalancerWrapper.DeleteTargetGroupByName(_elasticLoadBalancerWrapper.TargetGroupName);
 await
 _autoScalerWrapper.TerminateAndDeleteAutoScalingGroupWithName(_autoScalerWrapper.GroupName);
 await
 _autoScalerWrapper.DeleteKeyPairByName(_autoScalerWrapper.KeyPairName);
 await
 _autoScalerWrapper.DeleteTemplateByName(_autoScalerWrapper.LaunchTemplateName);
 await _autoScalerWrapper.DeleteInstanceProfile(
 _autoScalerWrapper.BadCredsProfileName,
 _autoScalerWrapper.BadCredsRoleName
);
 await
 _recommendations.DestroyDatabaseByName(_recommendations.TableName);
 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you might
 incur unexpected charges."
);
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

Scenarios 881

AWS SDK for .NET Developer Guide

Create a class that wraps Auto Scaling and Amazon EC2 actions.

/// <summary>
/// Encapsulates Amazon EC2 Auto Scaling and EC2 management methods.
/// </summary>
public class AutoScalerWrapper
{
 private readonly IAmazonAutoScaling _amazonAutoScaling;
 private readonly IAmazonEC2 _amazonEc2;
 private readonly IAmazonSimpleSystemsManagement _amazonSsm;
 private readonly IAmazonIdentityManagementService _amazonIam;
 private readonly ILogger<AutoScalerWrapper> _logger;

 private readonly string _instanceType = "";
 private readonly string _amiParam = "";
 private readonly string _launchTemplateName = "";
 private readonly string _groupName = "";
 private readonly string _instancePolicyName = "";
 private readonly string _instanceRoleName = "";
 private readonly string _instanceProfileName = "";
 private readonly string _badCredsProfileName = "";
 private readonly string _badCredsRoleName = "";
 private readonly string _badCredsPolicyName = "";
 private readonly string _keyPairName = "";

 public string GroupName => _groupName;
 public string KeyPairName => _keyPairName;
 public string LaunchTemplateName => _launchTemplateName;
 public string InstancePolicyName => _instancePolicyName;
 public string BadCredsProfileName => _badCredsProfileName;
 public string BadCredsRoleName => _badCredsRoleName;
 public string BadCredsPolicyName => _badCredsPolicyName;

 /// <summary>
 /// Constructor for the AutoScalerWrapper.
 /// </summary>
 /// <param name="amazonAutoScaling">The injected AutoScaling client.</param>
 /// <param name="amazonEc2">The injected EC2 client.</param>
 /// <param name="amazonIam">The injected IAM client.</param>
 /// <param name="amazonSsm">The injected SSM client.</param>
 public AutoScalerWrapper(

Scenarios 882

AWS SDK for .NET Developer Guide

 IAmazonAutoScaling amazonAutoScaling,
 IAmazonEC2 amazonEc2,
 IAmazonSimpleSystemsManagement amazonSsm,
 IAmazonIdentityManagementService amazonIam,
 IConfiguration configuration,
 ILogger<AutoScalerWrapper> logger)
 {
 _amazonAutoScaling = amazonAutoScaling;
 _amazonEc2 = amazonEc2;
 _amazonSsm = amazonSsm;
 _amazonIam = amazonIam;
 _logger = logger;

 var prefix = configuration["resourcePrefix"];
 _instanceType = configuration["instanceType"];
 _amiParam = configuration["amiParam"];

 _launchTemplateName = prefix + "-template";
 _groupName = prefix + "-group";
 _instancePolicyName = prefix + "-pol";
 _instanceRoleName = prefix + "-role";
 _instanceProfileName = prefix + "-prof";
 _badCredsPolicyName = prefix + "-bc-pol";
 _badCredsRoleName = prefix + "-bc-role";
 _badCredsProfileName = prefix + "-bc-prof";
 _keyPairName = prefix + "-key-pair";
 }

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with a
 specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to the
 role.</param>
 /// <returns>The Arn of the profile.</returns>
 public async Task<string> CreateInstanceProfileWithName(

Scenarios 883

AWS SDK for .NET Developer Guide

 string policyName,
 string roleName,
 string profileName,
 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.
 await foreach (var policy in policiesPaginator.Policies)

Scenarios 884

AWS SDK for .NET Developer Guide

 {
 if (policy.PolicyName.Equals(policyName))
 {
 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");
 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = assumeRoleDoc,
 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

 string profileArn = "";

Scenarios 885

AWS SDK for .NET Developer Guide

 try
 {
 var profileCreateResponse = await _amazonIam.CreateInstanceProfileAsync(
 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;
 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

 /// <summary>
 /// Create a new key pair and save the file.
 /// </summary>
 /// <param name="newKeyPairName">The name of the new key pair.</param>
 /// <returns>Async task.</returns>
 public async Task CreateKeyPair(string newKeyPairName)
 {
 try
 {
 var keyResponse = await _amazonEc2.CreateKeyPairAsync(
 new CreateKeyPairRequest() { KeyName = newKeyPairName });
 await File.WriteAllTextAsync($"{newKeyPairName}.pem",
 keyResponse.KeyPair.KeyMaterial);

Scenarios 886

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Created key pair {newKeyPairName}.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine("Key pair already exists.");
 }
 }

 /// <summary>
 /// Delete the key pair and file by name.
 /// </summary>
 /// <param name="deleteKeyPairName">The key pair to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteKeyPairByName(string deleteKeyPairName)
 {
 try
 {
 await _amazonEc2.DeleteKeyPairAsync(
 new DeleteKeyPairRequest() { KeyName = deleteKeyPairName });
 File.Delete($"{deleteKeyPairName}.pem");
 }
 catch (FileNotFoundException)
 {
 Console.WriteLine($"Key pair {deleteKeyPairName} not found.");
 }
 }

 /// <summary>
 /// Creates an Amazon EC2 launch template to use with Amazon EC2 Auto Scaling.
 /// The launch template specifies a Bash script in its user data field that runs
 after
 /// the instance is started. This script installs the Python packages and starts
 a Python
 /// web server on the instance.
 /// </summary>
 /// <param name="startupScriptPath">The path to a Bash script file that is
 run.</param>
 /// <param name="instancePolicyPath">The path to a permissions policy to create
 and attach to the profile.</param>
 /// <returns>The template object.</returns>
 public async Task<Amazon.EC2.Model.LaunchTemplate> CreateTemplate(string
 startupScriptPath, string instancePolicyPath)
 {
 try

Scenarios 887

AWS SDK for .NET Developer Guide

 {
 await CreateKeyPair(_keyPairName);
 await CreateInstanceProfileWithName(_instancePolicyName,
 _instanceRoleName,
 _instanceProfileName, instancePolicyPath);

 var startServerText = await File.ReadAllTextAsync(startupScriptPath);
 var plainTextBytes =
 System.Text.Encoding.UTF8.GetBytes(startServerText);

 var amiLatest = await _amazonSsm.GetParameterAsync(
 new GetParameterRequest() { Name = _amiParam });
 var amiId = amiLatest.Parameter.Value;
 var launchTemplateResponse = await _amazonEc2.CreateLaunchTemplateAsync(
 new CreateLaunchTemplateRequest()
 {
 LaunchTemplateName = _launchTemplateName,
 LaunchTemplateData = new RequestLaunchTemplateData()
 {
 InstanceType = _instanceType,
 ImageId = amiId,
 IamInstanceProfile =
 new

 LaunchTemplateIamInstanceProfileSpecificationRequest()
 {
 Name = _instanceProfileName
 },
 KeyName = _keyPairName,
 UserData = System.Convert.ToBase64String(plainTextBytes)
 }
 });
 return launchTemplateResponse.LaunchTemplate;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.AlreadyExistsException")
 {
 _logger.LogError($"Could not create the template, the name
 {_launchTemplateName} already exists. " +
 $"Please try again with a unique name.");
 }

Scenarios 888

AWS SDK for .NET Developer Guide

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get a list of Availability Zones in the AWS Region of the Amazon EC2 Client.
 /// </summary>
 /// <returns>A list of availability zones.</returns>
 public async Task<List<string>> DescribeAvailabilityZones()
 {
 try
 {
 var zoneResponse = await _amazonEc2.DescribeAvailabilityZonesAsync(
 new DescribeAvailabilityZonesRequest());
 return zoneResponse.AvailabilityZones.Select(z => z.ZoneName).ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 _logger.LogError($"An Amazon EC2 error occurred while listing
 availability zones.: {ec2Exception.Message}");
 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while listing availability zones.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Create an EC2 Auto Scaling group of a specified size and name.
 /// </summary>
 /// <param name="groupSize">The size for the group.</param>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="availabilityZones">The availability zones for the group.</
param>
 /// <returns>Async task.</returns>

Scenarios 889

AWS SDK for .NET Developer Guide

 public async Task CreateGroupOfSize(int groupSize, string groupName,
 List<string> availabilityZones)
 {
 try
 {
 await _amazonAutoScaling.CreateAutoScalingGroupAsync(
 new CreateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = availabilityZones,
 LaunchTemplate =
 new Amazon.AutoScaling.Model.LaunchTemplateSpecification()
 {
 LaunchTemplateName = _launchTemplateName,
 Version = "$Default"
 },
 MaxSize = groupSize,
 MinSize = groupSize
 });
 Console.WriteLine($"Created EC2 Auto Scaling group {groupName} with size
 {groupSize}.");
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine($"EC2 Auto Scaling group {groupName} already
 exists.");
 }
 }

 /// <summary>
 /// Get the default VPC for the account.
 /// </summary>
 /// <returns>The default VPC object.</returns>
 public async Task<Vpc> GetDefaultVpc()
 {
 try
 {
 var vpcResponse = await _amazonEc2.DescribeVpcsAsync(
 new DescribeVpcsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("is-default", new List<string>() { "true" })
 }

Scenarios 890

AWS SDK for .NET Developer Guide

 });
 return vpcResponse.Vpcs[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "UnauthorizedOperation")
 {
 _logger.LogError(ec2Exception, $"You do not have the necessary
 permissions to describe VPCs.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the vpcs.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get all the subnets for a Vpc in a set of availability zones.
 /// </summary>
 /// <param name="vpcId">The Id of the Vpc.</param>
 /// <param name="availabilityZones">The list of availability zones.</param>
 /// <returns>The collection of subnet objects.</returns>
 public async Task<List<Subnet>> GetAllVpcSubnetsForZones(string vpcId,
 List<string> availabilityZones)
 {
 try
 {
 var subnets = new List<Subnet>();
 var subnetPaginator = _amazonEc2.Paginators.DescribeSubnets(
 new DescribeSubnetsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("vpc-id", new List<string>() { vpcId }),
 new("availability-zone", availabilityZones),
 new("default-for-az", new List<string>() { "true" })
 }
 });

Scenarios 891

AWS SDK for .NET Developer Guide

 // Get the entire list using the paginator.
 await foreach (var subnet in subnetPaginator.Subnets)
 {
 subnets.Add(subnet);
 }

 return subnets;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidVpcID.NotFound")
 {
 _logger.LogError(ec2Exception, $"The specified VPC ID {vpcId} does
 not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the subnets.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Delete a launch template by name.
 /// </summary>
 /// <param name="templateName">The name of the template to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTemplateByName(string templateName)
 {
 try
 {
 await _amazonEc2.DeleteLaunchTemplateAsync(
 new DeleteLaunchTemplateRequest()
 {
 LaunchTemplateName = templateName
 });
 }
 catch (AmazonEC2Exception ec2Exception)
 {

Scenarios 892

AWS SDK for .NET Developer Guide

 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.NotFoundException")
 {
 _logger.LogError(
 $"Could not delete the template, the name {_launchTemplateName}
 was not found.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while deleting the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the role,
 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)
 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });
 var attachedPolicies = await _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()

Scenarios 893

AWS SDK for .NET Developer Guide

 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn
 });
 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

 /// <summary>
 /// Gets data about the instances in an EC2 Auto Scaling group by its group
 name.
 /// </summary>
 /// <param name="group">The name of the auto scaling group.</param>
 /// <returns>A collection of instance Ids.</returns>
 public async Task<IEnumerable<string>> GetInstancesByGroupName(string group)
 {
 var instanceResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { group }
 });
 var instanceIds = instanceResponse.AutoScalingGroups.SelectMany(
 g => g.Instances.Select(i => i.InstanceId));
 return instanceIds;
 }

 /// <summary>

Scenarios 894

AWS SDK for .NET Developer Guide

 /// Get the instance profile association data for an instance.
 /// </summary>
 /// <param name="instanceId">The Id of the instance.</param>
 /// <returns>Instance profile associations data.</returns>
 public async Task<IamInstanceProfileAssociation> GetInstanceProfile(string
 instanceId)
 {
 try
 {
 var response = await
 _amazonEc2.DescribeIamInstanceProfileAssociationsAsync(
 new DescribeIamInstanceProfileAssociationsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("instance-id", new List<string>() { instanceId })
 },
 });
 return response.IamInstanceProfileAssociations[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile is
 replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>

Scenarios 895

AWS SDK for .NET Developer Guide

 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate with
 the specified instance.</param>
 /// <param name="associationId">The Id of the existing profile association for
 the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 try
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()
 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });
 // Allow time before resetting.
 Thread.Sleep(25000);

 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(25000);
 var instanceReady = false;
 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }

Scenarios 896

AWS SDK for .NET Developer Guide

 Console.WriteLine("Waiting for instance to be running.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);
 Console.WriteLine("Instance ready.");
 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {
 "commands",
 new List<string>() { "cd / && sudo python3 server.py
 80" }
 }
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while replacing the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Try to terminate an instance by its Id.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task TryTerminateInstanceById(string instanceId)
 {

Scenarios 897

AWS SDK for .NET Developer Guide

 var stopping = false;
 Console.WriteLine($"Stopping {instanceId}...");
 while (!stopping)
 {
 try
 {
 await _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(
 new TerminateInstanceInAutoScalingGroupRequest()
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false
 });
 stopping = true;
 }
 catch (ScalingActivityInProgressException)
 {
 Console.WriteLine($"Scaling activity in progress for {instanceId}.
 Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 /// waits and retries until the group is successfully deleted.
 /// </summary>
 /// <param name="groupName">The name of the group to try to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TryDeleteGroupByName(string groupName)
 {
 var stopped = false;
 while (!stopped)
 {
 try
 {
 await _amazonAutoScaling.DeleteAutoScalingGroupAsync(
 new DeleteAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName
 });
 stopped = true;
 }

Scenarios 898

AWS SDK for .NET Developer Guide

 catch (Exception e)
 when ((e is ScalingActivityInProgressException)
 || (e is Amazon.AutoScaling.Model.ResourceInUseException))
 {
 Console.WriteLine($"Some instances are still running. Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Terminate instances and delete the Auto Scaling group by name.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TerminateAndDeleteAutoScalingGroupWithName(string groupName)
 {
 var describeGroupsResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { groupName }
 });
 if (describeGroupsResponse.AutoScalingGroups.Any())
 {
 // Update the size to 0.
 await _amazonAutoScaling.UpdateAutoScalingGroupAsync(
 new UpdateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 MinSize = 0
 });
 var group = describeGroupsResponse.AutoScalingGroups[0];
 foreach (var instance in group.Instances)
 {
 await TryTerminateInstanceById(instance.InstanceId);
 }

 await TryDeleteGroupByName(groupName);
 }
 else
 {
 Console.WriteLine($"No groups found with name {groupName}.");
 }

Scenarios 899

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Get the default security group for a specified Vpc.
 /// </summary>
 /// <param name="vpc">The Vpc to search.</param>
 /// <returns>The default security group.</returns>
 public async Task<SecurityGroup> GetDefaultSecurityGroupForVpc(Vpc vpc)
 {
 var groupResponse = await _amazonEc2.DescribeSecurityGroupsAsync(
 new DescribeSecurityGroupsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("group-name", new List<string>() { "default" }),
 new ("vpc-id", new List<string>() { vpc.VpcId })
 }
 });
 return groupResponse.SecurityGroups[0];
 }

 /// <summary>
 /// Verify the default security group of a Vpc allows ingress from the calling
 computer.
 /// This can be done by allowing ingress from this computer's IP address.
 /// In some situations, such as connecting from a corporate network, you must
 instead specify
 /// a prefix list Id. You can also temporarily open the port to any IP address
 while running this example.
 /// If you do, be sure to remove public access when you're done.
 /// </summary>
 /// <param name="vpc">The group to check.</param>
 /// <param name="port">The port to verify.</param>
 /// <param name="ipAddress">This computer's IP address.</param>
 /// <returns>True if the ip address is allowed on the group.</returns>
 public bool VerifyInboundPortForGroup(SecurityGroup group, int port, string
 ipAddress)
 {
 var portIsOpen = false;
 foreach (var ipPermission in group.IpPermissions)
 {
 if (ipPermission.FromPort == port)
 {

Scenarios 900

AWS SDK for .NET Developer Guide

 foreach (var ipRange in ipPermission.Ipv4Ranges)
 {
 var cidr = ipRange.CidrIp;
 if (cidr.StartsWith(ipAddress) || cidr == "0.0.0.0/0")
 {
 portIsOpen = true;
 }
 }

 if (ipPermission.PrefixListIds.Any())
 {
 portIsOpen = true;
 }

 if (!portIsOpen)
 {
 Console.WriteLine("The inbound rule does not appear to be open
 to either this computer's IP\n" +
 "address, to all IP addresses (0.0.0.0/0), or
 to a prefix list ID.");
 }
 else
 {
 break;
 }
 }
 }

 return portIsOpen;
 }

 /// <summary>
 /// Add an ingress rule to the specified security group that allows access on
 the
 /// specified port from the specified IP address.
 /// </summary>
 /// <param name="groupId">The Id of the security group to modify.</param>
 /// <param name="port">The port to open.</param>
 /// <param name="ipAddress">The IP address to allow access.</param>
 /// <returns>Async task.</returns>
 public async Task OpenInboundPort(string groupId, int port, string ipAddress)
 {
 await _amazonEc2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest()

Scenarios 901

AWS SDK for .NET Developer Guide

 {
 GroupId = groupId,
 IpPermissions = new List<IpPermission>()
 {
 new IpPermission()
 {
 FromPort = port,
 ToPort = port,
 IpProtocol = "tcp",
 Ipv4Ranges = new List<IpRange>()
 {
 new IpRange() { CidrIp = $"{ipAddress}/32" }
 }
 }
 }
 });
 }

 /// <summary>
 /// Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 /// The
 /// </summary>
 /// <param name="autoScalingGroupName">The name of the Auto Scaling group.</
param>
 /// <param name="targetGroupArn">The Arn for the target group.</param>
 /// <returns>Async task.</returns>
 public async Task AttachLoadBalancerToGroup(string autoScalingGroupName, string
 targetGroupArn)
 {
 await _amazonAutoScaling.AttachLoadBalancerTargetGroupsAsync(
 new AttachLoadBalancerTargetGroupsRequest()
 {
 AutoScalingGroupName = autoScalingGroupName,
 TargetGroupARNs = new List<string>() { targetGroupArn }
 });
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>

Scenarios 902

AWS SDK for .NET Developer Guide

 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {
 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEc2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }
}

Create a class that wraps Elastic Load Balancing actions.

/// <summary>
/// Encapsulates Elastic Load Balancer actions.
/// </summary>
public class ElasticLoadBalancerWrapper
{
 private readonly IAmazonElasticLoadBalancingV2 _amazonElasticLoadBalancingV2;
 private string? _endpoint = null;
 private readonly string _targetGroupName = "";
 private readonly string _loadBalancerName = "";
 HttpClient _httpClient = new();

 public string TargetGroupName => _targetGroupName;
 public string LoadBalancerName => _loadBalancerName;

Scenarios 903

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Constructor for the Elastic Load Balancer wrapper.
 /// </summary>
 /// <param name="amazonElasticLoadBalancingV2">The injected load balancing v2
 client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public ElasticLoadBalancerWrapper(
 IAmazonElasticLoadBalancingV2 amazonElasticLoadBalancingV2,
 IConfiguration configuration)
 {
 _amazonElasticLoadBalancingV2 = amazonElasticLoadBalancingV2;
 var prefix = configuration["resourcePrefix"];
 _targetGroupName = prefix + "-tg";
 _loadBalancerName = prefix + "-lb";
 }

 /// <summary>
 /// Get the HTTP Endpoint of a load balancer by its name.
 /// </summary>
 /// <param name="loadBalancerName">The name of the load balancer.</param>
 /// <returns>The HTTP endpoint.</returns>
 public async Task<string> GetEndpointForLoadBalancerByName(string
 loadBalancerName)
 {
 if (_endpoint == null)
 {
 var endpointResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { loadBalancerName }
 });
 _endpoint = endpointResponse.LoadBalancers[0].DNSName;
 }

 return _endpoint;
 }

 /// <summary>
 /// Return the GET response for an endpoint as text.
 /// </summary>
 /// <param name="endpoint">The endpoint for the request.</param>
 /// <returns>The request response.</returns>

Scenarios 904

AWS SDK for .NET Developer Guide

 public async Task<string> GetEndPointResponse(string endpoint)
 {
 var endpointResponse = await _httpClient.GetAsync($"http://{endpoint}");
 var textResponse = await endpointResponse.Content.ReadAsStringAsync();
 return textResponse!;
 }

 /// <summary>
 /// Get the target health for a group by name.
 /// </summary>
 /// <param name="groupName">The name of the group.</param>
 /// <returns>The collection of health descriptions.</returns>
 public async Task<List<TargetHealthDescription>>
 CheckTargetHealthForGroup(string groupName)
 {
 List<TargetHealthDescription> result = null!;
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });
 var healthResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetHealthAsync(
 new DescribeTargetHealthRequest()
 {
 TargetGroupArn =
 groupResponse.TargetGroups[0].TargetGroupArn
 });
 ;
 result = healthResponse.TargetHealthDescriptions;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine($"Target group {groupName} not found.");
 }
 return result;
 }

 /// <summary>
 /// Create an Elastic Load Balancing target group. The target group specifies
 how the load balancer forwards

Scenarios 905

AWS SDK for .NET Developer Guide

 /// requests to instances in the group and how instance health is checked.
 ///
 /// To speed up this demo, the health check is configured with shortened times
 and lower thresholds. In production,
 /// you might want to decrease the sensitivity of your health checks to avoid
 unwanted failures.
 /// </summary>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="protocol">The protocol, such as HTTP.</param>
 /// <param name="port">The port to use to forward requests, such as 80.</param>
 /// <param name="vpcId">The Id of the Vpc in which the load balancer exists.</
param>
 /// <returns>The new TargetGroup object.</returns>
 public async Task<TargetGroup> CreateTargetGroupOnVpc(string groupName,
 ProtocolEnum protocol, int port, string vpcId)
 {
 var createResponse = await
 _amazonElasticLoadBalancingV2.CreateTargetGroupAsync(
 new CreateTargetGroupRequest()
 {
 Name = groupName,
 Protocol = protocol,
 Port = port,
 HealthCheckPath = "/healthcheck",
 HealthCheckIntervalSeconds = 10,
 HealthCheckTimeoutSeconds = 5,
 HealthyThresholdCount = 2,
 UnhealthyThresholdCount = 2,
 VpcId = vpcId
 });
 var targetGroup = createResponse.TargetGroups[0];
 return targetGroup;
 }

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>

Scenarios 906

AWS SDK for .NET Developer Guide

 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {
 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)
 {
 try
 {
 var describeResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,

Scenarios 907

AWS SDK for .NET Developer Guide

 DefaultActions = new List<Action>()
 {
 new Action()
 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

 /// <summary>
 /// Verify this computer can successfully send a GET request to the
 /// load balancer endpoint.
 /// </summary>
 /// <param name="endpoint">The endpoint to check.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> VerifyLoadBalancerEndpoint(string endpoint)
 {
 var success = false;
 var retries = 3;
 while (!success && retries > 0)
 {
 try
 {
 var endpointResponse = await _httpClient.GetAsync($"http://
{endpoint}");
 Console.WriteLine($"Response: {endpointResponse.StatusCode}.");

 if (endpointResponse.IsSuccessStatusCode)
 {
 success = true;
 }
 else
 {
 retries = 0;
 }
 }
 catch (HttpRequestException)
 {
 Console.WriteLine("Connection error, retrying...");
 retries--;
 Thread.Sleep(10000);

Scenarios 908

AWS SDK for .NET Developer Guide

 }
 }

 return success;
 }

 /// <summary>
 /// Delete a load balancer by its specified name.
 /// </summary>
 /// <param name="name">The name of the load balancer to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteLoadBalancerByName(string name)
 {
 try
 {
 var describeLoadBalancerResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });
 var lbArn =
 describeLoadBalancerResponse.LoadBalancers[0].LoadBalancerArn;
 await _amazonElasticLoadBalancingV2.DeleteLoadBalancerAsync(
 new DeleteLoadBalancerRequest()
 {
 LoadBalancerArn = lbArn
 }
);
 }
 catch (LoadBalancerNotFoundException)
 {
 Console.WriteLine($"Load balancer {name} not found.");
 }
 }

 /// <summary>
 /// Delete a TargetGroup by its specified name.
 /// </summary>
 /// <param name="groupName">Name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTargetGroupByName(string groupName)
 {
 var done = false;

Scenarios 909

AWS SDK for .NET Developer Guide

 while (!done)
 {
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });

 var targetArn = groupResponse.TargetGroups[0].TargetGroupArn;
 await _amazonElasticLoadBalancingV2.DeleteTargetGroupAsync(
 new DeleteTargetGroupRequest() { TargetGroupArn = targetArn });
 Console.WriteLine($"Deleted load balancing target group
 {groupName}.");
 done = true;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine(
 $"Target group {groupName} not found, could not delete.");
 done = true;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine("Target group not yet released, waiting...");
 Thread.Sleep(10000);
 }
 }
 }
}

Create a class that uses DynamoDB to simulate a recommendation service.

/// <summary>
/// Encapsulates a DynamoDB table to use as a service that recommends books, movies,
 and songs.
/// </summary>
public class Recommendations
{
 private readonly IAmazonDynamoDB _amazonDynamoDb;

Scenarios 910

AWS SDK for .NET Developer Guide

 private readonly DynamoDBContext _context;
 private readonly string _tableName;

 public string TableName => _tableName;

 /// <summary>
 /// Constructor for the Recommendations service.
 /// </summary>
 /// <param name="amazonDynamoDb">The injected DynamoDb client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public Recommendations(IAmazonDynamoDB amazonDynamoDb, IConfiguration
 configuration)
 {
 _amazonDynamoDb = amazonDynamoDb;
 _context = new DynamoDBContext(_amazonDynamoDb);
 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Create the DynamoDb table with a specified name.
 /// </summary>
 /// <param name="tableName">The name for the table.</param>
 /// <returns>True when ready.</returns>
 public async Task<bool> CreateDatabaseWithName(string tableName)
 {
 try
 {
 Console.Write($"Creating table {tableName}...");
 var createRequest = new CreateTableRequest()
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition()
 {
 AttributeName = "MediaType",
 AttributeType = ScalarAttributeType.S
 },
 new AttributeDefinition()
 {
 AttributeName = "ItemId",
 AttributeType = ScalarAttributeType.N
 }
 },

Scenarios 911

AWS SDK for .NET Developer Guide

 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement()
 {
 AttributeName = "MediaType",
 KeyType = KeyType.HASH
 },
 new KeySchemaElement()
 {
 AttributeName = "ItemId",
 KeyType = KeyType.RANGE
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 5
 }
 };
 await _amazonDynamoDb.CreateTableAsync(createRequest);

 // Wait until the table is ACTIVE and then report success.
 Console.Write("\nWaiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = tableName
 };

 TableStatus status;
 do
 {
 Thread.Sleep(2000);

 var describeTableResponse = await
 _amazonDynamoDb.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }

Scenarios 912

AWS SDK for .NET Developer Guide

 catch (ResourceInUseException)
 {
 Console.WriteLine($"Table {tableName} already exists.");
 return false;
 }
 }

 /// <summary>
 /// Populate the database table with data from a specified path.
 /// </summary>
 /// <param name="databaseTableName">The name of the table.</param>
 /// <param name="recommendationsPath">The path of the recommendations data.</
param>
 /// <returns>Async task.</returns>
 public async Task PopulateDatabase(string databaseTableName, string
 recommendationsPath)
 {
 var recommendationsText = await File.ReadAllTextAsync(recommendationsPath);
 var records =
 JsonSerializer.Deserialize<RecommendationModel[]>(recommendationsText);
 var batchWrite = _context.CreateBatchWrite<RecommendationModel>();

 foreach (var record in records!)
 {
 batchWrite.AddPutItem(record);
 }

 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Delete the recommendation table by name.
 /// </summary>
 /// <param name="tableName">The name of the recommendation table.</param>
 /// <returns>Async task.</returns>
 public async Task DestroyDatabaseByName(string tableName)
 {
 try
 {
 await _amazonDynamoDb.DeleteTableAsync(
 new DeleteTableRequest() { TableName = tableName });
 Console.WriteLine($"Table {tableName} was deleted.");
 }
 catch (ResourceNotFoundException)

Scenarios 913

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Table {tableName} not found");
 }
 }
}

Create a class that wraps Systems Manager actions.

/// <summary>
/// Encapsulates Systems Manager parameter operations. This example uses these
 parameters
/// to drive the demonstration of resilient architecture, such as failure of a
 dependency or
/// how the service responds to a health check.
/// </summary>
public class SmParameterWrapper
{
 private readonly IAmazonSimpleSystemsManagement _amazonSimpleSystemsManagement;

 private readonly string _tableParameter = "doc-example-resilient-architecture-
table";
 private readonly string _failureResponseParameter = "doc-example-resilient-
architecture-failure-response";
 private readonly string _healthCheckParameter = "doc-example-resilient-
architecture-health-check";
 private readonly string _tableName = "";

 public string TableParameter => _tableParameter;
 public string TableName => _tableName;
 public string HealthCheckParameter => _healthCheckParameter;
 public string FailureResponseParameter => _failureResponseParameter;

 /// <summary>
 /// Constructor for the SmParameterWrapper.
 /// </summary>
 /// <param name="amazonSimpleSystemsManagement">The injected Simple Systems
 Management client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public SmParameterWrapper(IAmazonSimpleSystemsManagement
 amazonSimpleSystemsManagement, IConfiguration configuration)
 {
 _amazonSimpleSystemsManagement = amazonSimpleSystemsManagement;

Scenarios 914

AWS SDK for .NET Developer Guide

 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Reset the Systems Manager parameters to starting values for the demo.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task Reset()
 {
 await this.PutParameterByName(_tableParameter, _tableName);
 await this.PutParameterByName(_failureResponseParameter, "none");
 await this.PutParameterByName(_healthCheckParameter, "shallow");
 }

 /// <summary>
 /// Set the value of a named Systems Manager parameter.
 /// </summary>
 /// <param name="name">The name of the parameter.</param>
 /// <param name="value">The value to set.</param>
 /// <returns>Async task.</returns>
 public async Task PutParameterByName(string name, string value)
 {
 await _amazonSimpleSystemsManagement.PutParameterAsync(
 new PutParameterRequest() { Name = name, Value = value, Overwrite =
 true });
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

Scenarios 915

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile

AWS SDK for .NET Developer Guide

• DeleteLaunchTemplate

• DeleteLoadBalancer

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

EventBridge examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with EventBridge.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello EventBridge

The following code examples show how to get started using EventBridge.

EventBridge 916

https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSubnets
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.EventBridge;
using Amazon.EventBridge.Model;

namespace EventBridgeActions;

public static class HelloEventBridge
{
 static async Task Main(string[] args)
 {
 var eventBridgeClient = new AmazonEventBridgeClient();

 Console.WriteLine($"Hello Amazon EventBridge! Following are some of your
 EventBuses:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first five event buses.
 var response = await eventBridgeClient.ListEventBusesAsync(
 new ListEventBusesRequest()
 {
 Limit = 5
 });

 foreach (var eventBus in response.EventBuses)
 {
 Console.WriteLine($"\tEventBus: {eventBus.Name}");
 Console.WriteLine($"\tArn: {eventBus.Arn}");
 Console.WriteLine($"\tPolicy: {eventBus.Policy}");
 Console.WriteLine();
 }
 }
}

EventBridge 917

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ListEventBuses in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

• Create a rule and add a target to it.

• Enable and disable rules.

• List and update rules and targets.

• Send events, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

public class EventBridgeScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks with Amazon EventBridge:
 - Create a rule.
 - Add a target to a rule.
 - Enable and disable rules.
 - List rules and targets.

Basics 918

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListEventBuses
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 - Update rules and targets.
 - Send events.
 - Delete the rule.
 */

 private static ILogger logger = null!;
 private static EventBridgeWrapper _eventBridgeWrapper = null!;
 private static IConfiguration _configuration = null!;

 private static IAmazonIdentityManagementService? _iamClient = null!;
 private static IAmazonSimpleNotificationService? _snsClient = null!;
 private static IAmazonS3 _s3Client = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EventBridge.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonEventBridge>()
 .AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonS3>()
 .AddAWSService<IAmazonSimpleNotificationService>()
 .AddTransient<EventBridgeWrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<EventBridgeScenario>();

 ServicesSetup(host);

 string topicArn = "";

Basics 919

AWS SDK for .NET Developer Guide

 string roleArn = "";

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon EventBridge example scenario.");
 Console.WriteLine(new string('-', 80));

 try
 {
 roleArn = await CreateRole();

 await CreateBucketWithEventBridgeEvents();

 await AddEventRule(roleArn);

 await ListEventRules();

 topicArn = await CreateSnsTopic();

 var email = await SubscribeToSnsTopic(topicArn);

 await AddSnsTarget(topicArn);

 await ListTargets();

 await ListRulesForTarget(topicArn);

 await UploadS3File(_s3Client);

 await ChangeRuleState(false);

 await GetRuleState();

 await UpdateSnsEventRule(topicArn);

 await ChangeRuleState(true);

 await UploadS3File(_s3Client);

 await UpdateToCustomRule(topicArn);

 await TriggerCustomRule(email);

 await CleanupResources(topicArn);
 }

Basics 920

AWS SDK for .NET Developer Guide

 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 await CleanupResources(topicArn);
 }
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("The Amazon EventBridge example scenario is complete.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _eventBridgeWrapper =
 host.Services.GetRequiredService<EventBridgeWrapper>();
 _snsClient =
 host.Services.GetRequiredService<IAmazonSimpleNotificationService>();
 _s3Client = host.Services.GetRequiredService<IAmazonS3>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 }

 /// <summary>
 /// Create a role to be used by EventBridge.
 /// </summary>
 /// <returns>The role Amazon Resource Name (ARN).</returns>
 public static async Task<string> CreateRole()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Creating a role to use with EventBridge and attaching
 managed policy AmazonEventBridgeFullAccess.");
 Console.WriteLine(new string('-', 80));

 var roleName = _configuration["roleName"];

 var assumeRolePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": \"events.amazonaws.com\"" +

Basics 921

AWS SDK for .NET Developer Guide

 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var roleResult = await _iamClient!.CreateRoleAsync(
 new CreateRoleRequest()
 {
 AssumeRolePolicyDocument = assumeRolePolicy,
 Path = "/",
 RoleName = roleName
 });

 await _iamClient.AttachRolePolicyAsync(
 new AttachRolePolicyRequest()
 {
 PolicyArn = "arn:aws:iam::aws:policy/AmazonEventBridgeFullAccess",
 RoleName = roleName
 });
 // Allow time for the role to be ready.
 Thread.Sleep(10000);
 return roleResult.Role.Arn;
 }

 /// <summary>
 /// Create an Amazon Simple Storage Service (Amazon S3) bucket with EventBridge
 events enabled.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CreateBucketWithEventBridgeEvents()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Creating an S3 bucket with EventBridge events enabled.");

 var testBucketName = _configuration["testBucketName"];

 var bucketExists = await
 Amazon.S3.Util.AmazonS3Util.DoesS3BucketExistV2Async(_s3Client,
 testBucketName);

 if (!bucketExists)
 {
 await _s3Client.PutBucketAsync(new PutBucketRequest()
 {

Basics 922

AWS SDK for .NET Developer Guide

 BucketName = testBucketName,
 UseClientRegion = true
 });
 }

 await _s3Client.PutBucketNotificationAsync(new
 PutBucketNotificationRequest()
 {
 BucketName = testBucketName,
 EventBridgeConfiguration = new EventBridgeConfiguration()
 });

 Console.WriteLine($"\tAdded bucket {testBucketName} with EventBridge events
 enabled.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Create and upload a file to an S3 bucket to trigger an event.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task UploadS3File(IAmazonS3 s3Client)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Uploading a file to the test bucket. This will trigger a
 subscription email.");

 var testBucketName = _configuration["testBucketName"];

 var fileName = $"example_upload_{DateTime.UtcNow.Ticks}.txt";

 // Create the file if it does not already exist.
 if (!File.Exists(fileName))
 {
 await using StreamWriter sw = File.CreateText(fileName);
 await sw.WriteLineAsync(
 "This is a sample file for testing uploads.");
 }

 await s3Client.PutObjectAsync(new PutObjectRequest()
 {
 FilePath = fileName,
 BucketName = testBucketName

Basics 923

AWS SDK for .NET Developer Guide

 });

 Console.WriteLine($"\tPress Enter to continue.");
 Console.ReadLine();

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Create an Amazon Simple Notification Service (Amazon SNS) topic to use as an
 EventBridge target.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string> CreateSnsTopic()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "Creating an Amazon Simple Notification Service (Amazon SNS) topic for
 email subscriptions.");

 var topicName = _configuration["topicName"];

 string topicPolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Sid\": \"EventBridgePublishTopic\"," +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": \"events.amazonaws.com\"" +
 "}," +
 "\"Resource\": \"*\"," +
 "\"Action\": \"sns:Publish\"" +
 "}]" +
 "}";

 var topicAttributes = new Dictionary<string, string>()
 {
 { "Policy", topicPolicy }
 };

 var topicResponse = await _snsClient!.CreateTopicAsync(new
 CreateTopicRequest()
 {
 Name = topicName,

Basics 924

AWS SDK for .NET Developer Guide

 Attributes = topicAttributes

 });

 Console.WriteLine($"\tAdded topic {topicName} for email subscriptions.");

 Console.WriteLine(new string('-', 80));

 return topicResponse.TopicArn;
 }

 /// <summary>
 /// Subscribe a user email to an SNS topic.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic.</param>
 /// <returns>The user's email.</returns>
 private static async Task<string> SubscribeToSnsTopic(string topicArn)
 {
 Console.WriteLine(new string('-', 80));

 string email = "";
 while (string.IsNullOrEmpty(email))
 {
 Console.WriteLine("Enter your email to subscribe to the Amazon SNS
 topic:");
 email = Console.ReadLine()!;
 }

 var subscriptions = new List<string>();
 var paginatedSubscriptions =
 _snsClient!.Paginators.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest()
 {
 TopicArn = topicArn
 });

 // Get the entire list using the paginator.
 await foreach (var subscription in paginatedSubscriptions.Subscriptions)
 {
 subscriptions.Add(subscription.Endpoint);
 }

 if (subscriptions.Contains(email))

Basics 925

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"\tYour email is already subscribed.");
 Console.WriteLine(new string('-', 80));
 return email;
 }

 await _snsClient.SubscribeAsync(new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "email",
 Endpoint = email
 });

 Console.WriteLine($"Use the link in the email you received to confirm your
 subscription, then press Enter to continue.");

 Console.ReadLine();

 Console.WriteLine(new string('-', 80));
 return email;
 }

 /// <summary>
 /// Add a rule which triggers when a file is uploaded to an S3 bucket.
 /// </summary>
 /// <param name="roleArn">The ARN of the role used by EventBridge.</param>
 /// <returns>Async task.</returns>
 private static async Task AddEventRule(string roleArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Creating an EventBridge event that sends an email when an
 Amazon S3 object is created.");

 var eventRuleName = _configuration["eventRuleName"];
 var testBucketName = _configuration["testBucketName"];

 await _eventBridgeWrapper.PutS3UploadRule(roleArn, eventRuleName,
 testBucketName);
 Console.WriteLine($"\tAdded event rule {eventRuleName} for bucket
 {testBucketName}.");

 Console.WriteLine(new string('-', 80));
 }

Basics 926

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Add an SNS target to the rule.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic.</param>
 /// <returns>Async task.</returns>
 private static async Task AddSnsTarget(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Adding a target to the rule to that sends an email when
 the rule is triggered.");

 var eventRuleName = _configuration["eventRuleName"];
 var testBucketName = _configuration["testBucketName"];
 var topicName = _configuration["topicName"];
 await _eventBridgeWrapper.AddSnsTargetToRule(eventRuleName, topicArn);
 Console.WriteLine($"\tAdded event rule {eventRuleName} with Amazon SNS
 target {topicName} for bucket {testBucketName}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List the event rules on the default event bus.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListEventRules()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Current event rules:");

 var rules = await _eventBridgeWrapper.ListAllRulesForEventBus();
 rules.ForEach(r => Console.WriteLine($"\tRule: {r.Name} Description:
 {r.Description} State: {r.State}"));

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Update the event target to use a transform.
 /// </summary>
 /// <param name="topicArn">The SNS topic ARN target to update.</param>
 /// <returns>Async task.</returns>
 private static async Task UpdateSnsEventRule(string topicArn)
 {

Basics 927

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Let's update the event target with a transform.");

 var eventRuleName = _configuration["eventRuleName"];
 var testBucketName = _configuration["testBucketName"];

 await
 _eventBridgeWrapper.UpdateS3UploadRuleTargetWithTransform(eventRuleName, topicArn);
 Console.WriteLine($"\tUpdated event rule {eventRuleName} with Amazon SNS
 target {topicArn} for bucket {testBucketName}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Update the rule to use a custom event pattern.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task UpdateToCustomRule(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Updating the event pattern to be triggered by a custom
 event instead.");

 var eventRuleName = _configuration["eventRuleName"];

 await _eventBridgeWrapper.UpdateCustomEventPattern(eventRuleName);

 Console.WriteLine($"\tUpdated event rule {eventRuleName} to custom
 pattern.");
 await _eventBridgeWrapper.UpdateCustomRuleTargetWithTransform(eventRuleName,
 topicArn);

 Console.WriteLine($"\tUpdated event target {topicArn}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Send rule events for a custom rule using the user's email address.
 /// </summary>
 /// <param name="email">The email address to include.</param>
 /// <returns>Async task.</returns>
 private static async Task TriggerCustomRule(string email)

Basics 928

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Sending an event to trigger the rule. This will trigger a
 subscription email.");

 await _eventBridgeWrapper.PutCustomEmailEvent(email);

 Console.WriteLine($"\tEvents have been sent. Press Enter to continue.");
 Console.ReadLine();

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List all of the targets for a rule.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListTargets()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("List all of the targets for a particular rule.");

 var eventRuleName = _configuration["eventRuleName"];
 var targets = await _eventBridgeWrapper.ListAllTargetsOnRule(eventRuleName);
 targets.ForEach(t => Console.WriteLine($"\tTarget: {t.Arn} Id: {t.Id} Input:
 {t.Input}"));

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List all of the rules for a particular target.
 /// </summary>
 /// <param name="topicArn">The ARN of the SNS topic.</param>
 /// <returns>Async task.</returns>
 private static async Task ListRulesForTarget(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("List all of the rules for a particular target.");

 var rules = await _eventBridgeWrapper.ListAllRuleNamesByTarget(topicArn);
 rules.ForEach(r => Console.WriteLine($"\tRule: {r}"));

 Console.WriteLine(new string('-', 80));

Basics 929

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Enable or disable a particular rule.
 /// </summary>
 /// <param name="isEnabled">True to enable the rule, otherwise false.</param>
 /// <returns>Async task.</returns>
 private static async Task ChangeRuleState(bool isEnabled)
 {
 Console.WriteLine(new string('-', 80));
 var eventRuleName = _configuration["eventRuleName"];

 if (!isEnabled)
 {
 Console.WriteLine($"Disabling the rule: {eventRuleName}");
 await _eventBridgeWrapper.DisableRuleByName(eventRuleName);
 }
 else
 {
 Console.WriteLine($"Enabling the rule: {eventRuleName}");
 await _eventBridgeWrapper.EnableRuleByName(eventRuleName);
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get the current state of the rule.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task GetRuleState()
 {
 Console.WriteLine(new string('-', 80));
 var eventRuleName = _configuration["eventRuleName"];

 var state = await _eventBridgeWrapper.GetRuleStateByRuleName(eventRuleName);
 Console.WriteLine($"Rule {eventRuleName} is in current state {state}.");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>

Basics 930

AWS SDK for .NET Developer Guide

 /// <param name="topicArn">The ARN of the SNS topic to clean up.</param>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources(string topicArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 var eventRuleName = _configuration["eventRuleName"];
 if (GetYesNoResponse($"\tDelete all targets and event rule {eventRuleName}?
 (y/n)"))
 {
 Console.WriteLine($"\tRemoving all targets from the event rule.");
 await _eventBridgeWrapper.RemoveAllTargetsFromRule(eventRuleName);

 Console.WriteLine($"\tDeleting event rule.");
 await _eventBridgeWrapper.DeleteRuleByName(eventRuleName);
 }

 var topicName = _configuration["topicName"];
 if (GetYesNoResponse($"\tDelete Amazon SNS subscription topic {topicName}?
 (y/n)"))
 {
 Console.WriteLine($"\tDeleting topic.");
 await _snsClient!.DeleteTopicAsync(new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 }

 var bucketName = _configuration["testBucketName"];
 if (GetYesNoResponse($"\tDelete Amazon S3 bucket {bucketName}? (y/n)"))
 {
 Console.WriteLine($"\tDeleting bucket.");
 // Delete all objects in the bucket.
 var deleteList = await _s3Client.ListObjectsV2Async(new
 ListObjectsV2Request()
 {
 BucketName = bucketName
 });
 await _s3Client.DeleteObjectsAsync(new DeleteObjectsRequest()
 {
 BucketName = bucketName,
 Objects = deleteList.S3Objects
 .Select(o => new KeyVersion { Key = o.Key }).ToList()

Basics 931

AWS SDK for .NET Developer Guide

 });
 // Now delete the bucket.
 await _s3Client.DeleteBucketAsync(new DeleteBucketRequest()
 {
 BucketName = bucketName
 });
 }

 var roleName = _configuration["roleName"];
 if (GetYesNoResponse($"\tDelete role {roleName}? (y/n)"))
 {
 Console.WriteLine($"\tDetaching policy and deleting role.");

 await _iamClient!.DetachRolePolicyAsync(new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = "arn:aws:iam::aws:policy/AmazonEventBridgeFullAccess",
 });

 await _iamClient!.DeleteRoleAsync(new DeleteRoleRequest()
 {
 RoleName = roleName
 });
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
}

Basics 932

AWS SDK for .NET Developer Guide

Create a class that wraps EventBridge operations.

/// <summary>
/// Wrapper for Amazon EventBridge operations.
/// </summary>
public class EventBridgeWrapper
{
 private readonly IAmazonEventBridge _amazonEventBridge;
 private readonly ILogger<EventBridgeWrapper> _logger;

 /// <summary>
 /// Constructor for the EventBridge wrapper.
 /// </summary>
 /// <param name="amazonEventBridge">The injected EventBridge client.</param>
 /// <param name="logger">The injected logger for the wrapper.</param>
 public EventBridgeWrapper(IAmazonEventBridge amazonEventBridge,
 ILogger<EventBridgeWrapper> logger)

 {
 _amazonEventBridge = amazonEventBridge;
 _logger = logger;
 }

 /// <summary>
 /// Get the state for a rule by the rule name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="eventBusName">The optional name of the event bus. If empty,
 uses the default event bus.</param>
 /// <returns>The state of the rule.</returns>
 public async Task<RuleState> GetRuleStateByRuleName(string ruleName, string?
 eventBusName = null)
 {
 var ruleResponse = await _amazonEventBridge.DescribeRuleAsync(
 new DescribeRuleRequest()
 {
 Name = ruleName,
 EventBusName = eventBusName
 });
 return ruleResponse.State;

Basics 933

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Enable a particular rule on an event bus.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.EnableRuleAsync(
 new EnableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Disable a particular rule on an event bus.
 /// </summary
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DisableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.DisableRuleAsync(
 new DisableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// List the rules on an event bus.
 /// </summary>
 /// <param name="eventBusArn">The optional ARN of the event bus. If empty, uses
 the default event bus.</param>
 /// <returns>The list of rules.</returns>
 public async Task<List<Rule>> ListAllRulesForEventBus(string? eventBusArn =
 null)
 {
 var results = new List<Rule>();
 var request = new ListRulesRequest()
 {

Basics 934

AWS SDK for .NET Developer Guide

 EventBusName = eventBusArn
 };
 // Get all of the pages of rules.
 ListRulesResponse response;
 do
 {
 response = await _amazonEventBridge.ListRulesAsync(request);
 results.AddRange(response.Rules);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

 /// <summary>
 /// List all of the targets matching a rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>The list of targets.</returns>
 public async Task<List<Target>> ListAllTargetsOnRule(string ruleName)
 {
 var results = new List<Target>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse response;
 do
 {
 response = await _amazonEventBridge.ListTargetsByRuleAsync(request);
 results.AddRange(response.Targets);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

 /// <summary>
 /// List names of all rules matching a target.
 /// </summary>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <returns>The list of rule names.</returns>

Basics 935

AWS SDK for .NET Developer Guide

 public async Task<List<string>> ListAllRuleNamesByTarget(string targetArn)
 {
 var results = new List<string>();
 var request = new ListRuleNamesByTargetRequest()
 {
 TargetArn = targetArn
 };
 ListRuleNamesByTargetResponse response;
 do
 {
 response = await _amazonEventBridge.ListRuleNamesByTargetAsync(request);
 results.AddRange(response.RuleNames);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

 /// <summary>
 /// Create a new event rule that triggers when an Amazon S3 object is created in
 a bucket.
 /// </summary>
 /// <param name="roleArn">The ARN of the role.</param>
 /// <param name="ruleName">The name to give the rule.</param>
 /// <param name="bucketName">The name of the bucket to trigger the event.</
param>
 /// <returns>The ARN of the new rule.</returns>
 public async Task<string> PutS3UploadRule(string roleArn, string ruleName,
 string bucketName)
 {
 string eventPattern = "{" +
 "\"source\": [\"aws.s3\"]," +
 "\"detail-type\": [\"Object Created\"]," +
 "\"detail\": {" +
 "\"bucket\": {" +
 "\"name\": [\"" + bucketName + "\"]" +
 "}" +
 "}" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {

Basics 936

AWS SDK for .NET Developer Guide

 Name = ruleName,
 Description = "Example S3 upload rule for EventBridge",
 RoleArn = roleArn,
 EventPattern = eventPattern
 });

 return response.RuleArn;
 }

 /// <summary>
 /// Update an Amazon S3 object created rule with a transform on the target.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <param name="eventBusArn">Optional event bus ARN. If empty, uses the default
 event bus.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> UpdateS3UploadRuleTargetWithTransform(string ruleName,
 string targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 var targets = new List<Target>
 {
 new Target()
 {
 Id = targetID,
 Arn = targetArn,
 InputTransformer = new InputTransformer()
 {
 InputPathsMap = new Dictionary<string, string>()
 {
 {"bucket", "$.detail.bucket.name"},
 {"time", "$.time"}
 },
 InputTemplate = "\"Notification: an object was uploaded to
 bucket <bucket> at <time>.\""
 }
 }
 };
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,

Basics 937

AWS SDK for .NET Developer Guide

 Rule = ruleName,
 Targets = targets,
 });
 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }
 return targetID;
 }

 /// <summary>
 /// Update a custom rule with a transform on the target.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <param name="eventBusArn">Optional event bus ARN. If empty, uses the default
 event bus.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> UpdateCustomRuleTargetWithTransform(string ruleName,
 string targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 var targets = new List<Target>
 {
 new Target()
 {
 Id = targetID,
 Arn = targetArn,
 InputTransformer = new InputTransformer()
 {
 InputTemplate = "\"Notification: sample event was received.\""
 }
 }
 };
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,

Basics 938

AWS SDK for .NET Developer Guide

 Rule = ruleName,
 Targets = targets,
 });
 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }
 return targetID;
 }

 /// <summary>
 /// Add an event to the event bus that includes an email, message, and time.
 /// </summary>
 /// <param name="email">The email to use in the event detail of the custom
 event.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutCustomEmailEvent(string email)
 {
 var eventDetail = new
 {
 UserEmail = email,
 Message = "This event was generated by example code.",
 UtcTime = DateTime.UtcNow.ToString("g")
 };
 var response = await _amazonEventBridge.PutEventsAsync(
 new PutEventsRequest()
 {
 Entries = new List<PutEventsRequestEntry>()
 {
 new PutEventsRequestEntry()
 {
 Source = "ExampleSource",
 Detail = JsonSerializer.Serialize(eventDetail),
 DetailType = "ExampleType"
 }
 }
 });

 return response.FailedEntryCount == 0;

Basics 939

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Update a rule to use a custom defined event pattern.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <returns>The ARN of the updated rule.</returns>
 public async Task<string> UpdateCustomEventPattern(string ruleName)
 {
 string customEventsPattern = "{" +
 "\"source\": [\"ExampleSource\"]," +
 "\"detail-type\": [\"ExampleType\"]" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Custom test rule",
 EventPattern = customEventsPattern
 });

 return response.RuleArn;
 }

 /// <summary>
 /// Add an Amazon SNS target topic to a rule.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <param name="targetArn">The ARN of the Amazon SNS target.</param>
 /// <param name="eventBusArn">The optional event bus name, uses default if
 empty.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> AddSnsTargetToRule(string ruleName, string targetArn,
 string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 // Create the list of targets and add a new target.
 var targets = new List<Target>
 {
 new Target()
 {
 Arn = targetArn,

Basics 940

AWS SDK for .NET Developer Guide

 Id = targetID
 }
 };

 // Add the targets to the rule.
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });

 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }

 return targetID;
 }

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> RemoveAllTargetsFromRule(string ruleName)
 {
 var targetIds = new List<string>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse targetsResponse;
 do
 {
 targetsResponse = await
 _amazonEventBridge.ListTargetsByRuleAsync(request);
 targetIds.AddRange(targetsResponse.Targets.Select(t => t.Id));

Basics 941

AWS SDK for .NET Developer Guide

 request.NextToken = targetsResponse.NextToken;

 } while (targetsResponse.NextToken is not null);

 var removeResponse = await _amazonEventBridge.RemoveTargetsAsync(
 new RemoveTargetsRequest()
 {
 Rule = ruleName,
 Ids = targetIds
 });

 if (removeResponse.FailedEntryCount > 0)
 {
 removeResponse.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to remove target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }

 return removeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteRuleByName(string ruleName)
 {
 var response = await _amazonEventBridge.DeleteRuleAsync(
 new DeleteRuleRequest()
 {
 Name = ruleName
 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

Basics 942

AWS SDK for .NET Developer Guide

• DeleteRule

• DescribeRule

• DisableRule

• EnableRule

• ListRuleNamesByTarget

• ListRules

• ListTargetsByRule

• PutEvents

• PutRule

• PutTargets

Actions

DeleteRule

The following code example shows how to use DeleteRule.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Delete a rule by its name.

 /// <summary>
 /// Delete an event rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteRuleByName(string ruleName)
 {
 var response = await _amazonEventBridge.DeleteRuleAsync(
 new DeleteRuleRequest()
 {
 Name = ruleName

Actions 943

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DeleteRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DescribeRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DisableRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/EnableRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRuleNamesByTarget
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRules
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListTargetsByRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutEvents
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutRule
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutTargets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 });

 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteRule in AWS SDK for .NET API Reference.

DescribeRule

The following code example shows how to use DescribeRule.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Get the state of a rule using the rule description.

 /// <summary>
 /// Get the state for a rule by the rule name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="eventBusName">The optional name of the event bus. If empty,
 uses the default event bus.</param>
 /// <returns>The state of the rule.</returns>
 public async Task<RuleState> GetRuleStateByRuleName(string ruleName, string?
 eventBusName = null)
 {
 var ruleResponse = await _amazonEventBridge.DescribeRuleAsync(
 new DescribeRuleRequest()
 {
 Name = ruleName,
 EventBusName = eventBusName
 });
 return ruleResponse.State;
 }

Actions 944

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DeleteRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DescribeRule in AWS SDK for .NET API Reference.

DisableRule

The following code example shows how to use DisableRule.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Disable a rule by its rule name.

 /// <summary>
 /// Disable a particular rule on an event bus.
 /// </summary
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DisableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.DisableRuleAsync(
 new DisableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DisableRule in AWS SDK for .NET API Reference.

EnableRule

The following code example shows how to use EnableRule.

Actions 945

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DescribeRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/DisableRule

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Enable a rule by its rule name.

 /// <summary>
 /// Enable a particular rule on an event bus.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableRuleByName(string ruleName)
 {
 var ruleResponse = await _amazonEventBridge.EnableRuleAsync(
 new EnableRuleRequest()
 {
 Name = ruleName
 });
 return ruleResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see EnableRule in AWS SDK for .NET API Reference.

ListRuleNamesByTarget

The following code example shows how to use ListRuleNamesByTarget.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

List all of the rule names using the target.

Actions 946

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/EnableRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List names of all rules matching a target.
 /// </summary>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <returns>The list of rule names.</returns>
 public async Task<List<string>> ListAllRuleNamesByTarget(string targetArn)
 {
 var results = new List<string>();
 var request = new ListRuleNamesByTargetRequest()
 {
 TargetArn = targetArn
 };
 ListRuleNamesByTargetResponse response;
 do
 {
 response = await _amazonEventBridge.ListRuleNamesByTargetAsync(request);
 results.AddRange(response.RuleNames);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

• For API details, see ListRuleNamesByTarget in AWS SDK for .NET API Reference.

ListRules

The following code example shows how to use ListRules.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

List all of the rules for an event bus.

Actions 947

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRuleNamesByTarget
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List the rules on an event bus.
 /// </summary>
 /// <param name="eventBusArn">The optional ARN of the event bus. If empty, uses
 the default event bus.</param>
 /// <returns>The list of rules.</returns>
 public async Task<List<Rule>> ListAllRulesForEventBus(string? eventBusArn =
 null)
 {
 var results = new List<Rule>();
 var request = new ListRulesRequest()
 {
 EventBusName = eventBusArn
 };
 // Get all of the pages of rules.
 ListRulesResponse response;
 do
 {
 response = await _amazonEventBridge.ListRulesAsync(request);
 results.AddRange(response.Rules);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

• For API details, see ListRules in AWS SDK for .NET API Reference.

ListTargetsByRule

The following code example shows how to use ListTargetsByRule.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 948

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListRules
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

List all of the targets for a rule using the rule name.

 /// <summary>
 /// List all of the targets matching a rule by name.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <returns>The list of targets.</returns>
 public async Task<List<Target>> ListAllTargetsOnRule(string ruleName)
 {
 var results = new List<Target>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse response;
 do
 {
 response = await _amazonEventBridge.ListTargetsByRuleAsync(request);
 results.AddRange(response.Targets);
 request.NextToken = response.NextToken;

 } while (response.NextToken is not null);

 return results;
 }

• For API details, see ListTargetsByRule in AWS SDK for .NET API Reference.

PutEvents

The following code example shows how to use PutEvents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send an event that matches a custom pattern for a rule.

Actions 949

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/ListTargetsByRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Add an event to the event bus that includes an email, message, and time.
 /// </summary>
 /// <param name="email">The email to use in the event detail of the custom
 event.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> PutCustomEmailEvent(string email)
 {
 var eventDetail = new
 {
 UserEmail = email,
 Message = "This event was generated by example code.",
 UtcTime = DateTime.UtcNow.ToString("g")
 };
 var response = await _amazonEventBridge.PutEventsAsync(
 new PutEventsRequest()
 {
 Entries = new List<PutEventsRequestEntry>()
 {
 new PutEventsRequestEntry()
 {
 Source = "ExampleSource",
 Detail = JsonSerializer.Serialize(eventDetail),
 DetailType = "ExampleType"
 }
 }
 });

 return response.FailedEntryCount == 0;
 }

• For API details, see PutEvents in AWS SDK for .NET API Reference.

PutRule

The following code example shows how to use PutRule.

Actions 950

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutEvents

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create a rule that triggers when an object is added to an Amazon Simple Storage Service
bucket.

 /// <summary>
 /// Create a new event rule that triggers when an Amazon S3 object is created in
 a bucket.
 /// </summary>
 /// <param name="roleArn">The ARN of the role.</param>
 /// <param name="ruleName">The name to give the rule.</param>
 /// <param name="bucketName">The name of the bucket to trigger the event.</
param>
 /// <returns>The ARN of the new rule.</returns>
 public async Task<string> PutS3UploadRule(string roleArn, string ruleName,
 string bucketName)
 {
 string eventPattern = "{" +
 "\"source\": [\"aws.s3\"]," +
 "\"detail-type\": [\"Object Created\"]," +
 "\"detail\": {" +
 "\"bucket\": {" +
 "\"name\": [\"" + bucketName + "\"]" +
 "}" +
 "}" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Example S3 upload rule for EventBridge",
 RoleArn = roleArn,
 EventPattern = eventPattern
 });

Actions 951

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 return response.RuleArn;
 }

Create a rule that uses a custom pattern.

 /// <summary>
 /// Update a rule to use a custom defined event pattern.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <returns>The ARN of the updated rule.</returns>
 public async Task<string> UpdateCustomEventPattern(string ruleName)
 {
 string customEventsPattern = "{" +
 "\"source\": [\"ExampleSource\"]," +
 "\"detail-type\": [\"ExampleType\"]" +
 "}";

 var response = await _amazonEventBridge.PutRuleAsync(
 new PutRuleRequest()
 {
 Name = ruleName,
 Description = "Custom test rule",
 EventPattern = customEventsPattern
 });

 return response.RuleArn;
 }

• For API details, see PutRule in AWS SDK for .NET API Reference.

PutTargets

The following code example shows how to use PutTargets.

Actions 952

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutRule

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Add an Amazon SNS topic as a target for a rule.

 /// <summary>
 /// Add an Amazon SNS target topic to a rule.
 /// </summary>
 /// <param name="ruleName">The name of the rule to update.</param>
 /// <param name="targetArn">The ARN of the Amazon SNS target.</param>
 /// <param name="eventBusArn">The optional event bus name, uses default if
 empty.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> AddSnsTargetToRule(string ruleName, string targetArn,
 string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 // Create the list of targets and add a new target.
 var targets = new List<Target>
 {
 new Target()
 {
 Arn = targetArn,
 Id = targetID
 }
 };

 // Add the targets to the rule.
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });

 if (response.FailedEntryCount > 0)

Actions 953

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }

 return targetID;
 }

Add an input transformer to a target for a rule.

 /// <summary>
 /// Update an Amazon S3 object created rule with a transform on the target.
 /// </summary>
 /// <param name="ruleName">The name of the rule.</param>
 /// <param name="targetArn">The ARN of the target.</param>
 /// <param name="eventBusArn">Optional event bus ARN. If empty, uses the default
 event bus.</param>
 /// <returns>The ID of the target.</returns>
 public async Task<string> UpdateS3UploadRuleTargetWithTransform(string ruleName,
 string targetArn, string? eventBusArn = null)
 {
 var targetID = Guid.NewGuid().ToString();

 var targets = new List<Target>
 {
 new Target()
 {
 Id = targetID,
 Arn = targetArn,
 InputTransformer = new InputTransformer()
 {
 InputPathsMap = new Dictionary<string, string>()
 {
 {"bucket", "$.detail.bucket.name"},
 {"time", "$.time"}
 },
 InputTemplate = "\"Notification: an object was uploaded to
 bucket <bucket> at <time>.\""

Actions 954

AWS SDK for .NET Developer Guide

 }
 }
 };
 var response = await _amazonEventBridge.PutTargetsAsync(
 new PutTargetsRequest()
 {
 EventBusName = eventBusArn,
 Rule = ruleName,
 Targets = targets,
 });
 if (response.FailedEntryCount > 0)
 {
 response.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to add target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }
 return targetID;
 }

• For API details, see PutTargets in AWS SDK for .NET API Reference.

RemoveTargets

The following code example shows how to use RemoveTargets.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Remove all of the targets for a rule using the rule name.

 /// <summary>
 /// Delete an event rule by name.

Actions 955

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/PutTargets
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="ruleName">The name of the event rule.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> RemoveAllTargetsFromRule(string ruleName)
 {
 var targetIds = new List<string>();
 var request = new ListTargetsByRuleRequest()
 {
 Rule = ruleName
 };
 ListTargetsByRuleResponse targetsResponse;
 do
 {
 targetsResponse = await
 _amazonEventBridge.ListTargetsByRuleAsync(request);
 targetIds.AddRange(targetsResponse.Targets.Select(t => t.Id));
 request.NextToken = targetsResponse.NextToken;

 } while (targetsResponse.NextToken is not null);

 var removeResponse = await _amazonEventBridge.RemoveTargetsAsync(
 new RemoveTargetsRequest()
 {
 Rule = ruleName,
 Ids = targetIds
 });

 if (removeResponse.FailedEntryCount > 0)
 {
 removeResponse.FailedEntries.ForEach(e =>
 {
 _logger.LogError(
 $"Failed to remove target {e.TargetId}: {e.ErrorMessage}, code
 {e.ErrorCode}");
 });
 }

 return removeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see RemoveTargets in AWS SDK for .NET API Reference.

Actions 956

https://docs.aws.amazon.com/goto/DotNetSDKV3/eventbridge-2015-10-07/RemoveTargets

AWS SDK for .NET Developer Guide

EventBridge Scheduler examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with EventBridge Scheduler.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello EventBridge Scheduler

The following code examples show how to get started using EventBridge Scheduler.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

public static class HelloScheduler
{
 static async Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the EventBridge Scheduler service.
 // Use your AWS profile name, or leave it blank to use the default profile.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonScheduler>()
).Build();

 // Now the client is available for injection.
 var schedulerClient = host.Services.GetRequiredService<IAmazonScheduler>();

EventBridge Scheduler 957

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge%20Scheduler%23code-examples

AWS SDK for .NET Developer Guide

 // You can use await and any of the async methods to get a response, or a
 paginator to list schedules or groups.
 var results = new List<ScheduleSummary>();
 var paginateSchedules = schedulerClient.Paginators.ListSchedules(
 new ListSchedulesRequest());
 Console.WriteLine(
 $"Hello AWS Scheduler! Let's list schedules in your account.");
 // Get the entire list using the paginator.
 await foreach (var schedule in paginateSchedules.Schedules)
 {
 results.Add(schedule);
 }
 Console.WriteLine($"\tTotal of {results.Count} schedule(s) available.");
 results.ForEach(s => Console.WriteLine($"\tSchedule: {s.Name}"));
 }
}

• For API details, see ListSchedules in AWS SDK for .NET API Reference.

Topics

• Actions

• Scenarios

Actions

CreateSchedule

The following code example shows how to use CreateSchedule.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 958

https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/ListSchedules
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge%20Scheduler%23code-examples

AWS SDK for .NET Developer Guide

 /// Creates a new schedule in Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule.</param>
 /// <param name="scheduleExpression">The schedule expression that defines when
 the schedule should run.</param>
 /// <param name="scheduleGroupName">The name of the schedule group to which the
 schedule should be added.</param>
 /// <param name="deleteAfterCompletion">Indicates whether to delete the schedule
 after completion.</param>
 /// <param name="useFlexibleTimeWindow">Indicates whether to use a flexible time
 window for the schedule.</param>
 /// <param name="targetArn">ARN of the event target.</param>
 /// <param name="roleArn">Execution Role ARN.</param>
 /// <returns>True if the schedule was created successfully, false otherwise.</
returns>
 public async Task<bool> CreateScheduleAsync(
 string name,
 string scheduleExpression,
 string scheduleGroupName,
 string targetArn,
 string roleArn,
 string input,
 bool deleteAfterCompletion = false,
 bool useFlexibleTimeWindow = false)
 {
 try
 {
 int hoursToRun = 1;
 int flexibleTimeWindowMinutes = 10;

 var request = new CreateScheduleRequest
 {
 Name = name,
 ScheduleExpression = scheduleExpression,
 GroupName = scheduleGroupName,
 Target = new Target { Arn = targetArn, RoleArn = roleArn, Input =
 input },
 ActionAfterCompletion = deleteAfterCompletion
 ? ActionAfterCompletion.DELETE
 : ActionAfterCompletion.NONE,
 StartDate = DateTime.UtcNow, // Ignored for one-time schedules.
 EndDate =
 DateTime.UtcNow
 .AddHours(hoursToRun) // Ignored for one-time schedules.

Actions 959

AWS SDK for .NET Developer Guide

 };
 // Allow a flexible time window if the caller specifies it.
 request.FlexibleTimeWindow = new FlexibleTimeWindow
 {
 Mode = useFlexibleTimeWindow
 ? FlexibleTimeWindowMode.FLEXIBLE
 : FlexibleTimeWindowMode.OFF,
 MaximumWindowInMinutes = useFlexibleTimeWindow
 ? flexibleTimeWindowMinutes
 : null
 };

 var response = await _amazonScheduler.CreateScheduleAsync(request);

 Console.WriteLine($"Successfully created schedule '{name}' " +
 $"in schedule group '{scheduleGroupName}':
 {response.ScheduleArn}.");
 return true;
 }
 catch (ConflictException ex)
 {
 // If the name is not unique, a ConflictException will be thrown.
 _logger.LogError($"Failed to create schedule '{name}' due to a conflict.
 {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating schedule '{name}' "
 +
 $"in schedule group '{scheduleGroupName}':
 {ex.Message}");
 return false;
 }
 }

• For API details, see CreateSchedule in AWS SDK for .NET API Reference.

CreateScheduleGroup

The following code example shows how to use CreateScheduleGroup.

Actions 960

https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/CreateSchedule

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates a new schedule group in Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule group.</param>
 /// <returns>True if the schedule group was created successfully, false
 otherwise.</returns>
 public async Task<bool> CreateScheduleGroupAsync(string name)
 {
 try
 {
 var request = new CreateScheduleGroupRequest { Name = name };

 var response = await _amazonScheduler.CreateScheduleGroupAsync(request);

 Console.WriteLine($"Successfully created schedule group '{name}':
 {response.ScheduleGroupArn}.");
 return true;

 }
 catch (ConflictException ex)
 {
 // If the name is not unique, a ConflictException will be thrown.
 _logger.LogError($"Failed to create schedule group '{name}' due to a
 conflict. {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while creating schedule group '{name}':
 {ex.Message}");
 return false;
 }
 }

Actions 961

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge%20Scheduler%23code-examples

AWS SDK for .NET Developer Guide

• For API details, see CreateScheduleGroup in AWS SDK for .NET API Reference.

DeleteSchedule

The following code example shows how to use DeleteSchedule.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes an existing schedule from Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule to delete.</param>
 /// <param name="groupName">The group name of the schedule to delete.</param>
 /// <returns>True if the schedule was deleted successfully, false otherwise.</
returns>
 public async Task<bool> DeleteScheduleAsync(string name, string groupName)
 {
 try
 {
 var request = new DeleteScheduleRequest
 {
 Name = name,
 GroupName = groupName
 };

 await _amazonScheduler.DeleteScheduleAsync(request);

 Console.WriteLine($"Successfully deleted schedule with name '{name}'.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {

Actions 962

https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/CreateScheduleGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge%20Scheduler%23code-examples

AWS SDK for .NET Developer Guide

 _logger.LogError(
 $"Failed to delete schedule with ID '{name}' because the resource
 was not found: {ex.Message}");
 return true;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while deleting schedule with ID '{name}':
 {ex.Message}");
 return false;
 }
 }

• For API details, see DeleteSchedule in AWS SDK for .NET API Reference.

DeleteScheduleGroup

The following code example shows how to use DeleteScheduleGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes an existing schedule group from Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule group to delete.</param>
 /// <returns>True if the schedule group was deleted successfully, false
 otherwise.</returns>
 public async Task<bool> DeleteScheduleGroupAsync(string name)
 {
 try
 {
 var request = new DeleteScheduleGroupRequest { Name = name };

Actions 963

https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/DeleteSchedule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge%20Scheduler%23code-examples

AWS SDK for .NET Developer Guide

 await _amazonScheduler.DeleteScheduleGroupAsync(request);

 Console.WriteLine($"Successfully deleted schedule group '{name}'.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {
 _logger.LogError(
 $"Failed to delete schedule group '{name}' because the resource was
 not found: {ex.Message}");
 return true;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while deleting schedule group '{name}':
 {ex.Message}");
 return false;
 }
 }

• For API details, see DeleteScheduleGroup in AWS SDK for .NET API Reference.

Scenarios

Scheduled Events workflow

The following code example shows how to:

• Deploy a AWS CloudFormation stack with required resources.

• Create a EventBridge Scheduler schedule group.

• Create a one-time EventBridge Scheduler schedule with a flexible time window.

• Create a recurring EventBridge Scheduler schedule with a specified rate.

• Delete EventBridge Scheduler the schedule and schedule group.

• Clean up resources and delete the stack.

Scenarios 964

https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/DeleteScheduleGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run the workflow.

using System.Text.RegularExpressions;
using Amazon.CloudFormation;
using Amazon.CloudFormation.Model;
using Amazon.Scheduler;
using Amazon.Scheduler.Model;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;
using SchedulerActions;
using Exception = System.Exception;

namespace SchedulerScenario;

public class SchedulerWorkflow
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.
 This .NET code example performs the following tasks for the Amazon EventBridge
 Scheduler workflow:

 1. Prepare the Application:
 - Prompt the user for an email address to use for the subscription for the
 SNS topic subscription.
 - Prompt the user for a name for the Cloud Formation stack.
 - Deploy the Cloud Formation template in resources/cfn_template.yaml for
 resource creation.
 - Store the outputs of the stack into variables for use in the workflow.
 - Create a schedule group for all workflow schedules.

 2. Create one-time Schedule:

Scenarios 965

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge%20Scheduler%23code-examples

AWS SDK for .NET Developer Guide

 - Create a one-time schedule to send an initial event.
 - Use a Flexible Time Window and set the schedule to delete after completion.
 - Wait for the user to receive the event email from SNS.

 3. Create a time-based schedule:
 - Prompt the user for how many X times per Y hours a recurring event should
 be scheduled.
 - Create the scheduled event for X times per hour for Y hours.
 - Wait for the user to receive the event email from SNS.
 - Delete the schedule when the user is finished.

 4. Clean up:
 - Prompt the user for y/n answer if they want to destroy the stack and clean
 up all resources.
 - Delete the schedule group.
 - Destroy the Cloud Formation stack and wait until the stack has been
 removed.
 */

 public static ILogger<SchedulerWorkflow> _logger = null!;
 public static SchedulerWrapper _schedulerWrapper = null!;
 public static IAmazonCloudFormation _amazonCloudFormation = null!;

 private static string _roleArn = null!;
 private static string _snsTopicArn = null!;

 public static bool _interactive = true;
 private static string _stackName = "default-scheduler-workflow-stack-name";
 private static string _scheduleGroupName = "workflow-schedules-group";
 private static string _stackResourcePath = "../../../../../../workflows/
eventbridge_scheduler/resources/cfn_template.yaml";

 public static async Task Main(string[] args)
 {
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonScheduler>()
 .AddAWSService<IAmazonCloudFormation>()
 .AddTransient<SchedulerWrapper>()

Scenarios 966

AWS SDK for .NET Developer Guide

)
 .Build();

 if (_interactive)
 {
 _logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<SchedulerWorkflow>();

 _schedulerWrapper =
 host.Services.GetRequiredService<SchedulerWrapper>();
 _amazonCloudFormation =
 host.Services.GetRequiredService<IAmazonCloudFormation>();
 }

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon EventBridge Scheduler Workflow.");
 Console.WriteLine(new string('-', 80));

 try
 {
 Console.WriteLine(new string('-', 80));
 var prepareSuccess = await PrepareApplication();
 Console.WriteLine(new string('-', 80));

 if (prepareSuccess)
 {
 Console.WriteLine(new string('-', 80));
 await CreateOneTimeSchedule();
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(new string('-', 80));
 await CreateRecurringSchedule();
 Console.WriteLine(new string('-', 80));
 }

 Console.WriteLine(new string('-', 80));
 await Cleanup();
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, "There was a problem with the workflow, initiating
 cleanup...");
 _interactive = false;

Scenarios 967

AWS SDK for .NET Developer Guide

 await Cleanup();
 }

 Console.WriteLine("Amazon EventBridge Scheduler workflow completed.");
 }

 /// <summary>
 /// Prepares the application by creating the necessary resources.
 /// </summary>
 /// <returns>True if the application was prepared successfully.</returns>
 public static async Task<bool> PrepareApplication()
 {
 Console.WriteLine("Preparing the application...");
 try
 {
 // Prompt the user for an email address to use for the subscription.
 Console.WriteLine("\nThis example creates resources in a CloudFormation
 stack, including an SNS topic" +
 "\nthat will be subscribed to the EventBridge Scheduler
 events. " +
 "\n\nYou will need to confirm the subscription in order to
 receive event emails. ");

 var emailAddress = PromptUserForEmail();

 // Prompt the user for a name for the CloudFormation stack
 _stackName = PromptUserForStackName();

 // Deploy the CloudFormation stack
 var deploySuccess = await DeployCloudFormationStack(_stackName,
 emailAddress);

 if (deploySuccess)
 {
 // Create a schedule group for all workflow schedules
 await
 _schedulerWrapper.CreateScheduleGroupAsync(_scheduleGroupName);

 Console.WriteLine("Application preparation complete.");
 return true;
 }
 }
 catch (Exception ex)
 {

Scenarios 968

AWS SDK for .NET Developer Guide

 _logger.LogError(ex, "An error occurred while preparing the
 application.");
 }
 Console.WriteLine("Application preparation failed.");
 return false;
 }

 /// <summary>
 /// Deploys the CloudFormation stack with the necessary resources.
 /// </summary>
 /// <param name="stackName">The name of the CloudFormation stack.</param>
 /// <param name="email">The email to use for the subscription.</param>
 /// <returns>True if the stack was deployed successfully.</returns>
 private static async Task<bool> DeployCloudFormationStack(string stackName,
 string email)
 {
 Console.WriteLine($"\nDeploying CloudFormation stack: {stackName}");

 try
 {
 var request = new CreateStackRequest
 {
 StackName = stackName,
 TemplateBody = await File.ReadAllTextAsync(_stackResourcePath),
 Capabilities = { Capability.CAPABILITY_NAMED_IAM }
 };

 // If an email is provided, set the parameter.
 if (!string.IsNullOrWhiteSpace(email))
 {
 request.Parameters = new List<Parameter>()
 {
 new() { ParameterKey = "email", ParameterValue = email }
 };
 }

 var response = await _amazonCloudFormation.CreateStackAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"CloudFormation stack creation started:
 {stackName}");

 // Wait for the stack to be in CREATE_COMPLETE state

Scenarios 969

AWS SDK for .NET Developer Guide

 bool stackCreated = await WaitForStackCompletion(response.StackId);

 if (stackCreated)
 {
 // Retrieve the output values
 var success = await GetStackOutputs(response.StackId);
 return success;
 }
 else
 {
 _logger.LogError($"CloudFormation stack creation failed:
 {stackName}");
 return false;
 }
 }
 else
 {
 _logger.LogError($"Failed to create CloudFormation stack:
 {stackName}");
 return false;
 }
 }
 catch (AlreadyExistsException)
 {
 _logger.LogWarning($"CloudFormation stack '{stackName}' already exists.
 Please provide a unique name.");
 var newStackName = PromptUserForStackName();
 return await DeployCloudFormationStack(newStackName, email);
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while deploying the
 CloudFormation stack: {stackName}");
 return false;
 }
 }

 /// <summary>
 /// Waits for the CloudFormation stack to be in the CREATE_COMPLETE state.
 /// </summary>
 /// <param name="client">The CloudFormation client.</param>
 /// <param name="stackId">The ID of the CloudFormation stack.</param>
 /// <returns>True if the stack was created successfully.</returns>
 private static async Task<bool> WaitForStackCompletion(string stackId)

Scenarios 970

AWS SDK for .NET Developer Guide

 {
 int retryCount = 0;
 const int maxRetries = 10;
 const int retryDelay = 30000; // 30 seconds.

 while (retryCount < maxRetries)
 {
 var describeStacksRequest = new DescribeStacksRequest
 {
 StackName = stackId
 };

 var describeStacksResponse = await
 _amazonCloudFormation.DescribeStacksAsync(describeStacksRequest);

 if (describeStacksResponse.Stacks.Count > 0)
 {
 if (describeStacksResponse.Stacks[0].StackStatus ==
 StackStatus.CREATE_COMPLETE)
 {
 Console.WriteLine("CloudFormation stack creation complete.");
 return true;
 }
 if (describeStacksResponse.Stacks[0].StackStatus ==
 StackStatus.CREATE_FAILED ||
 describeStacksResponse.Stacks[0].StackStatus ==
 StackStatus.ROLLBACK_COMPLETE)
 {
 Console.WriteLine("CloudFormation stack creation failed.");
 return false;
 }
 }

 Console.WriteLine("Waiting for CloudFormation stack creation to
 complete...");
 await Task.Delay(retryDelay);
 retryCount++;
 }

 _logger.LogError("Timed out waiting for CloudFormation stack creation to
 complete.");
 return false;
 }

Scenarios 971

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Retrieves the output values from the CloudFormation stack.
 /// </summary>
 /// <param name="stackId">The ID of the CloudFormation stack.</param>
 private static async Task<bool> GetStackOutputs(string stackId)
 {
 try
 {
 var describeStacksRequest = new DescribeStacksRequest { StackName =
 stackId };

 var describeStacksResponse =
 await
 _amazonCloudFormation.DescribeStacksAsync(describeStacksRequest);

 if (describeStacksResponse.Stacks.Count > 0)
 {
 var stack = describeStacksResponse.Stacks[0];
 _roleArn = GetStackOutputValue(stack, "RoleARN");
 _snsTopicArn = GetStackOutputValue(stack, "SNStopicARN");
 return true;
 }
 else
 {
 _logger.LogError($"No stack found for stack outputs: {stackId}");
 return false;
 }
 }
 catch (Exception ex)
 {
 _logger.LogError(
 ex, $"Failed to retrieve CloudFormation stack outputs: {stackId}");
 return false;
 }
 }

 /// <summary>
 /// Get an output value by key from a CloudFormation stack.
 /// </summary>
 /// <param name="stack">The CloudFormation stack.</param>
 /// <param name="outputKey">The key of the output.</param>
 /// <returns>The value as a string.</returns>
 private static string GetStackOutputValue(Stack stack, string outputKey)
 {

Scenarios 972

AWS SDK for .NET Developer Guide

 var output = stack.Outputs.First(o => o.OutputKey == outputKey);
 var outputValue = output.OutputValue;
 Console.WriteLine($"Stack output {outputKey}: {outputValue}");
 return outputValue;
 }

 /// <summary>
 /// Creates a one-time schedule to send an initial event.
 /// </summary>
 /// <returns>True if the one-time schedule was created successfully.</returns>
 public static async Task<bool> CreateOneTimeSchedule()
 {
 var scheduleName =
 PromptUserForResourceName("Enter a name for the one-time schedule:");

 Console.WriteLine($"Creating a one-time schedule named '{scheduleName}' " +
 $"\nto send an initial event in 1 minute with a flexible
 time window...");
 try
 {
 // Create a one-time schedule with a flexible time
 // window set to delete after completion.
 // You may also set a timezone instead of using UTC.
 var scheduledTime = DateTime.UtcNow.AddMinutes(1).ToString("s");

 var createSuccess = await _schedulerWrapper.CreateScheduleAsync(
 scheduleName,
 $"at({scheduledTime})",
 _scheduleGroupName,
 _snsTopicArn,
 _roleArn,
 $"One time scheduled event test from schedule {scheduleName}.",
 true,
 useFlexibleTimeWindow: true);

 Console.WriteLine($"Subscription email will receive an email from this
 event.");
 Console.WriteLine($"You must confirm your subscription to receive event
 emails.");

 Console.WriteLine($"One-time schedule '{scheduleName}' created
 successfully.");
 return createSuccess;
 }

Scenarios 973

AWS SDK for .NET Developer Guide

 catch (ResourceNotFoundException ex)
 {
 _logger.LogError(ex, $"The target with ARN '{_snsTopicArn}' was not
 found.");
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while creating the one-time
 schedule '{scheduleName}'.");
 return false;
 }
 }

 /// <summary>
 /// Create a recurring schedule to send events at a specified rate in minutes.
 /// </summary>
 /// <returns>True if the recurring schedule was created successfully.</returns>
 public static async Task<bool> CreateRecurringSchedule()
 {
 Console.WriteLine("Creating a recurring schedule to send events for one
 hour...");

 try
 {
 // Prompt the user for a schedule name.
 var scheduleName =
 PromptUserForResourceName("Enter a name for the recurring schedule:
 ");

 // Prompt the user for the schedule rate (in minutes).
 var scheduleRateInMinutes =
 PromptUserForInteger("Enter the desired schedule rate (in minutes):
 ");

 // Create the recurring schedule.
 var createSuccess = await _schedulerWrapper.CreateScheduleAsync(
 scheduleName,
 $"rate({scheduleRateInMinutes} minutes)",
 _scheduleGroupName,
 _snsTopicArn,
 _roleArn,
 $"Recurrent event test from schedule {scheduleName}.");

Scenarios 974

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Subscription email will receive an email from this
 event.");
 Console.WriteLine($"You must confirm your subscription to receive event
 emails.");

 // Delete the schedule when the user is finished.
 if (!_interactive || GetYesNoResponse($"Are you ready to delete the
 '{scheduleName}' schedule? (y/n)"))
 {
 await _schedulerWrapper.DeleteScheduleAsync(scheduleName,
 _scheduleGroupName);
 }

 return createSuccess;
 }
 catch (ResourceNotFoundException ex)
 {
 _logger.LogError(ex, $"The target with ARN '{_snsTopicArn}' was not
 found.");
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, "An error occurred while creating the recurring
 schedule.");
 return false;
 }
 }

 /// <summary>
 /// Cleans up the resources created during the workflow.
 /// </summary>
 /// <returns>True if the cleanup was successful.</returns>
 public static async Task<bool> Cleanup()
 {
 // Prompt the user to confirm cleanup.
 var cleanup = !_interactive || GetYesNoResponse(
 "Do you want to delete all resources created by this workflow? (y/n) ");
 if (cleanup)
 {
 try
 {
 // Delete the schedule group.

Scenarios 975

AWS SDK for .NET Developer Guide

 var groupDeleteSuccess = await
 _schedulerWrapper.DeleteScheduleGroupAsync(_scheduleGroupName);

 // Destroy the CloudFormation stack and wait for it to be removed.
 var stackDeleteSuccess = await DeleteCloudFormationStack(_stackName,
 false);

 return groupDeleteSuccess && stackDeleteSuccess;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex,
 "An error occurred while cleaning up the resources.");
 return false;
 }
 }
 _logger.LogInformation("EventBridge Scheduler workflow is complete.");
 return true;
 }

 /// <summary>
 /// Delete the resources in the stack and wait for confirmation.
 /// </summary>
 /// <param name="stackName">The name of the stack.</param>
 /// <param name="forceDelete">True to force delete the stack.</param>
 /// <returns>True if successful.</returns>
 private static async Task<bool> DeleteCloudFormationStack(string stackName, bool
 forceDelete)
 {
 var request = new DeleteStackRequest
 {
 StackName = stackName,
 };

 if (forceDelete)
 {
 request.DeletionMode = DeletionMode.FORCE_DELETE_STACK;
 }

 await _amazonCloudFormation.DeleteStackAsync(request);
 Console.WriteLine($"CloudFormation stack '{_stackName}' is being deleted.
 This may take a few minutes.");

 bool stackDeleted = await WaitForStackDeletion(_stackName, forceDelete);

Scenarios 976

AWS SDK for .NET Developer Guide

 if (stackDeleted)
 {
 Console.WriteLine($"CloudFormation stack '{_stackName}' has been
 deleted.");
 return true;
 }
 else
 {
 _logger.LogError($"Failed to delete CloudFormation stack
 '{_stackName}'.");
 return false;
 }
 }

 /// <summary>
 /// Wait for the stack to be deleted.
 /// </summary>
 /// <param name="stackName">The name of the stack.</param>
 /// <param name="forceDelete">True to force delete the stack.</param>
 /// <returns>True if successful.</returns>
 private static async Task<bool> WaitForStackDeletion(string stackName, bool
 forceDelete)
 {
 int retryCount = 0;
 const int maxRetries = 10;
 const int retryDelay = 30000; // 30 seconds

 while (retryCount < maxRetries)
 {
 var describeStacksRequest = new DescribeStacksRequest
 {
 StackName = stackName
 };

 try
 {
 var describeStacksResponse = await
 _amazonCloudFormation.DescribeStacksAsync(describeStacksRequest);

 if (describeStacksResponse.Stacks.Count == 0 ||
 describeStacksResponse.Stacks[0].StackStatus == StackStatus.DELETE_COMPLETE)
 {
 return true;

Scenarios 977

AWS SDK for .NET Developer Guide

 }
 if (!forceDelete && describeStacksResponse.Stacks[0].StackStatus ==
 StackStatus.DELETE_FAILED)
 {
 // Try one time to force delete.
 return await DeleteCloudFormationStack(stackName, true);
 }
 }
 catch (AmazonCloudFormationException ex) when (ex.ErrorCode ==
 "ValidationError")
 {
 // Stack does not exist, so it has been successfully deleted.
 return true;
 }

 Console.WriteLine($"Waiting for CloudFormation stack '{stackName}' to be
 deleted...");
 await Task.Delay(retryDelay);
 retryCount++;
 }

 _logger.LogError($"Timed out waiting for CloudFormation stack '{stackName}'
 to be deleted.");
 return false;
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

 /// <summary>
 /// Prompt the user for a valid email address.
 /// </summary>
 /// <returns>The valid email address.</returns>

Scenarios 978

AWS SDK for .NET Developer Guide

 private static string PromptUserForEmail()
 {
 if (_interactive)
 {
 Console.WriteLine("Enter an email address to use for event
 subscriptions: ");

 string email = Console.ReadLine()!;

 if (!IsValidEmail(email))
 {
 Console.WriteLine("Invalid email address. Please try again.");
 return PromptUserForEmail();
 }
 return email;
 }
 // Used when running without user prompts.
 return "";
 }

 /// <summary>
 /// Prompt the user for a non-empty stack name.
 /// </summary>
 /// <returns>The valid stack name</returns>
 private static string PromptUserForStackName()
 {
 Console.WriteLine("Enter a name for the AWS Cloud Formation Stack: ");
 if (_interactive)
 {
 string stackName = Console.ReadLine()!;
 var regex = "[a-zA-Z][-a-zA-Z0-9]|arn:[-a-zA-Z0-9:/._+]";
 if (!Regex.IsMatch(stackName, regex))
 {
 Console.WriteLine(
 $"Invalid stack name. Please use a name that matches the pattern
 {regex}.");
 return PromptUserForStackName();
 }

 return stackName;
 }
 // Used when running without user prompts.
 return _stackName;
 }

Scenarios 979

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Prompt the user for a non-empty resource name.
 /// </summary>
 /// <returns>The valid stack name</returns>
 private static string PromptUserForResourceName(string prompt)
 {
 if (_interactive)
 {
 Console.WriteLine(prompt);
 string resourceName = Console.ReadLine()!;
 var regex = "[0-9a-zA-Z-_.]+";
 if (!Regex.IsMatch(resourceName, regex))
 {
 Console.WriteLine($"Invalid resource name. Please use a name that
 matches the pattern {regex}.");
 return PromptUserForResourceName(prompt);
 }
 return resourceName!;
 }
 // Used when running without user prompts.
 return "resource-" + Guid.NewGuid();
 }

 /// <summary>
 /// Prompt the user for a non-empty resource name.
 /// </summary>
 /// <returns>The valid stack name</returns>
 private static int PromptUserForInteger(string prompt)
 {
 if (_interactive)
 {
 Console.WriteLine(prompt);
 string stringResponse = Console.ReadLine()!;
 if (string.IsNullOrWhiteSpace(stringResponse) ||
 !Int32.TryParse(stringResponse, out var intResponse))
 {
 Console.WriteLine($"Invalid integer. ");
 return PromptUserForInteger(prompt);
 }
 return intResponse!;
 }
 // Used when running without user prompts.
 return 1;

Scenarios 980

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Use System Mail to check for a valid email address.
 /// </summary>
 /// <param name="email">The string to verify.</param>
 /// <returns>True if a valid email address.</returns>
 private static bool IsValidEmail(string email)
 {
 try
 {
 var mailAddress = new System.Net.Mail.MailAddress(email);
 return mailAddress.Address == email;
 }
 catch
 {
 // Invalid emails will cause an exception, return false.
 return false;
 }
 }
}

Wrapper for service operations.

using Amazon.Scheduler;
using Amazon.Scheduler.Model;
using Microsoft.Extensions.Logging;

namespace SchedulerActions;

/// <summary>
/// Wrapper class for Amazon EventBridge Scheduler operations.
/// </summary>
public class SchedulerWrapper
{
 private readonly IAmazonScheduler _amazonScheduler;
 private readonly ILogger<SchedulerWrapper> _logger;

 /// <summary>
 /// Constructor for the SchedulerWrapper class.
 /// </summary>

Scenarios 981

AWS SDK for .NET Developer Guide

 /// <param name="amazonScheduler">The injected EventBridge Scheduler client.</
param>
 /// <param name="logger">The injected logger.</param>
 public SchedulerWrapper(IAmazonScheduler amazonScheduler,
 ILogger<SchedulerWrapper> logger)
 {
 _amazonScheduler = amazonScheduler;
 _logger = logger;
 }

 /// <summary>
 /// Creates a new schedule in Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule.</param>
 /// <param name="scheduleExpression">The schedule expression that defines when
 the schedule should run.</param>
 /// <param name="scheduleGroupName">The name of the schedule group to which the
 schedule should be added.</param>
 /// <param name="deleteAfterCompletion">Indicates whether to delete the schedule
 after completion.</param>
 /// <param name="useFlexibleTimeWindow">Indicates whether to use a flexible time
 window for the schedule.</param>
 /// <param name="targetArn">ARN of the event target.</param>
 /// <param name="roleArn">Execution Role ARN.</param>
 /// <returns>True if the schedule was created successfully, false otherwise.</
returns>
 public async Task<bool> CreateScheduleAsync(
 string name,
 string scheduleExpression,
 string scheduleGroupName,
 string targetArn,
 string roleArn,
 string input,
 bool deleteAfterCompletion = false,
 bool useFlexibleTimeWindow = false)
 {
 try
 {
 int hoursToRun = 1;
 int flexibleTimeWindowMinutes = 10;

 var request = new CreateScheduleRequest
 {
 Name = name,

Scenarios 982

AWS SDK for .NET Developer Guide

 ScheduleExpression = scheduleExpression,
 GroupName = scheduleGroupName,
 Target = new Target { Arn = targetArn, RoleArn = roleArn, Input =
 input },
 ActionAfterCompletion = deleteAfterCompletion
 ? ActionAfterCompletion.DELETE
 : ActionAfterCompletion.NONE,
 StartDate = DateTime.UtcNow, // Ignored for one-time schedules.
 EndDate =
 DateTime.UtcNow
 .AddHours(hoursToRun) // Ignored for one-time schedules.
 };
 // Allow a flexible time window if the caller specifies it.
 request.FlexibleTimeWindow = new FlexibleTimeWindow
 {
 Mode = useFlexibleTimeWindow
 ? FlexibleTimeWindowMode.FLEXIBLE
 : FlexibleTimeWindowMode.OFF,
 MaximumWindowInMinutes = useFlexibleTimeWindow
 ? flexibleTimeWindowMinutes
 : null
 };

 var response = await _amazonScheduler.CreateScheduleAsync(request);

 Console.WriteLine($"Successfully created schedule '{name}' " +
 $"in schedule group '{scheduleGroupName}':
 {response.ScheduleArn}.");
 return true;
 }
 catch (ConflictException ex)
 {
 // If the name is not unique, a ConflictException will be thrown.
 _logger.LogError($"Failed to create schedule '{name}' due to a conflict.
 {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating schedule '{name}' "
 +
 $"in schedule group '{scheduleGroupName}':
 {ex.Message}");
 return false;

Scenarios 983

AWS SDK for .NET Developer Guide

 }
 }

 /// <summary>
 /// Creates a new schedule group in Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule group.</param>
 /// <returns>True if the schedule group was created successfully, false
 otherwise.</returns>
 public async Task<bool> CreateScheduleGroupAsync(string name)
 {
 try
 {
 var request = new CreateScheduleGroupRequest { Name = name };

 var response = await _amazonScheduler.CreateScheduleGroupAsync(request);

 Console.WriteLine($"Successfully created schedule group '{name}':
 {response.ScheduleGroupArn}.");
 return true;

 }
 catch (ConflictException ex)
 {
 // If the name is not unique, a ConflictException will be thrown.
 _logger.LogError($"Failed to create schedule group '{name}' due to a
 conflict. {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while creating schedule group '{name}':
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Deletes an existing schedule from Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule to delete.</param>
 /// <param name="groupName">The group name of the schedule to delete.</param>

Scenarios 984

AWS SDK for .NET Developer Guide

 /// <returns>True if the schedule was deleted successfully, false otherwise.</
returns>
 public async Task<bool> DeleteScheduleAsync(string name, string groupName)
 {
 try
 {
 var request = new DeleteScheduleRequest
 {
 Name = name,
 GroupName = groupName
 };

 await _amazonScheduler.DeleteScheduleAsync(request);

 Console.WriteLine($"Successfully deleted schedule with name '{name}'.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {
 _logger.LogError(
 $"Failed to delete schedule with ID '{name}' because the resource
 was not found: {ex.Message}");
 return true;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while deleting schedule with ID '{name}':
 {ex.Message}");
 return false;
 }
 }

 /// <summary>
 /// Deletes an existing schedule group from Amazon EventBridge Scheduler.
 /// </summary>
 /// <param name="name">The name of the schedule group to delete.</param>
 /// <returns>True if the schedule group was deleted successfully, false
 otherwise.</returns>
 public async Task<bool> DeleteScheduleGroupAsync(string name)
 {
 try
 {

Scenarios 985

AWS SDK for .NET Developer Guide

 var request = new DeleteScheduleGroupRequest { Name = name };

 await _amazonScheduler.DeleteScheduleGroupAsync(request);

 Console.WriteLine($"Successfully deleted schedule group '{name}'.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {
 _logger.LogError(
 $"Failed to delete schedule group '{name}' because the resource was
 not found: {ex.Message}");
 return true;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 $"An error occurred while deleting schedule group '{name}':
 {ex.Message}");
 return false;
 }
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateSchedule

• CreateScheduleGroup

• DeleteSchedule

• DeleteScheduleGroups

AWS Glue examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with AWS Glue.

Basics are code examples that show you how to perform the essential operations within a service.

AWS Glue 986

https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/CreateSchedule
https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/CreateScheduleGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/DeleteSchedule
https://docs.aws.amazon.com/goto/DotNetSDKV3/scheduler-2021-06-30/DeleteScheduleGroups

AWS SDK for .NET Developer Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello AWS Glue

The following code examples show how to get started using AWS Glue.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace GlueActions;

public class HelloGlue
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for AWS Glue.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonGlue>()
 .AddTransient<GlueWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })

AWS Glue 987

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 .CreateLogger<HelloGlue>();
 var glueClient = host.Services.GetRequiredService<IAmazonGlue>();

 var request = new ListJobsRequest();

 var jobNames = new List<string>();

 do
 {
 var response = await glueClient.ListJobsAsync(request);
 jobNames.AddRange(response.JobNames);
 request.NextToken = response.NextToken;
 }
 while (request.NextToken is not null);

 Console.Clear();
 Console.WriteLine("Hello, Glue. Let's list your existing Glue Jobs:");
 if (jobNames.Count == 0)
 {
 Console.WriteLine("You don't have any AWS Glue jobs.");
 }
 else
 {
 jobNames.ForEach(Console.WriteLine);
 }
 }
}

• For API details, see ListJobs in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

Basics 988

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/ListJobs

AWS SDK for .NET Developer Guide

• Create a crawler that crawls a public Amazon S3 bucket and generates a database of CSV-
formatted metadata.

• List information about databases and tables in your AWS Glue Data Catalog.

• Create a job to extract CSV data from the S3 bucket, transform the data, and load JSON-
formatted output into another S3 bucket.

• List information about job runs, view transformed data, and clean up resources.

For more information, see Tutorial: Getting started with AWS Glue Studio.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create a class that wraps AWS Glue functions that are used in the scenario.

using System.Net;

namespace GlueActions;

public class GlueWrapper
{
 private readonly IAmazonGlue _amazonGlue;

 /// <summary>
 /// Constructor for the AWS Glue actions wrapper.
 /// </summary>
 /// <param name="amazonGlue"></param>
 public GlueWrapper(IAmazonGlue amazonGlue)
 {
 _amazonGlue = amazonGlue;
 }

 /// <summary>
 /// Create an AWS Glue crawler.
 /// </summary>

Basics 989

https://docs.aws.amazon.com/glue/latest/ug/tutorial-create-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="crawlerName">The name for the crawler.</param>
 /// <param name="crawlerDescription">A description of the crawler.</param>
 /// <param name="role">The AWS Identity and Access Management (IAM) role to
 /// be assumed by the crawler.</param>
 /// <param name="schedule">The schedule on which the crawler will be executed.</
param>
 /// <param name="s3Path">The path to the Amazon Simple Storage Service (Amazon
 S3)
 /// bucket where the Python script has been stored.</param>
 /// <param name="dbName">The name to use for the database that will be
 /// created by the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateCrawlerAsync(
 string crawlerName,
 string crawlerDescription,
 string role,
 string schedule,
 string s3Path,
 string dbName)
 {
 var s3Target = new S3Target
 {
 Path = s3Path,
 };

 var targetList = new List<S3Target>
 {
 s3Target,
 };

 var targets = new CrawlerTargets
 {
 S3Targets = targetList,
 };

 var crawlerRequest = new CreateCrawlerRequest
 {
 DatabaseName = dbName,
 Name = crawlerName,
 Description = crawlerDescription,
 Targets = targets,
 Role = role,
 Schedule = schedule,
 };

Basics 990

AWS SDK for .NET Developer Guide

 var response = await _amazonGlue.CreateCrawlerAsync(crawlerRequest);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="roleName">The name of the IAM role to be assumed by
 /// the job.</param>
 /// <param name="description">A description of the job.</param>
 /// <param name="scriptUrl">The URL to the script.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateJobAsync(string dbName, string tableName, string
 bucketUrl, string jobName, string roleName, string description, string scriptUrl)
 {
 var command = new JobCommand
 {
 PythonVersion = "3",
 Name = "glueetl",
 ScriptLocation = scriptUrl,
 };

 var arguments = new Dictionary<string, string>
 {
 { "--input_database", dbName },
 { "--input_table", tableName },
 { "--output_bucket_url", bucketUrl }
 };

 var request = new CreateJobRequest
 {
 Command = command,
 DefaultArguments = arguments,
 Description = description,
 GlueVersion = "3.0",
 Name = jobName,
 NumberOfWorkers = 10,
 Role = roleName,
 WorkerType = "G.1X"
 };

Basics 991

AWS SDK for .NET Developer Guide

 var response = await _amazonGlue.CreateJobAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteCrawlerAsync(string crawlerName)
 {
 var response = await _amazonGlue.DeleteCrawlerAsync(new DeleteCrawlerRequest
 { Name = crawlerName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete the AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteDatabaseAsync(string dbName)
 {
 var response = await _amazonGlue.DeleteDatabaseAsync(new
 DeleteDatabaseRequest { Name = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteJobAsync(string jobName)
 {
 var response = await _amazonGlue.DeleteJobAsync(new DeleteJobRequest
 { JobName = jobName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Basics 992

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete a table from an AWS Glue database.
 /// </summary>
 /// <param name="tableName">The table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTableAsync(string dbName, string tableName)
 {
 var response = await _amazonGlue.DeleteTableAsync(new DeleteTableRequest
 { Name = tableName, DatabaseName = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get information about an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Crawler object describing the crawler.</returns>
 public async Task<Crawler?> GetCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new GetCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.GetCrawlerAsync(crawlerRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 var databaseName = response.Crawler.DatabaseName;
 Console.WriteLine($"{crawlerName} has the database {databaseName}");
 return response.Crawler;
 }

 Console.WriteLine($"No information regarding {crawlerName} could be
 found.");
 return null;
 }

 /// <summary>
 /// Get information about the state of an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A value describing the state of the crawler.</returns>

Basics 993

AWS SDK for .NET Developer Guide

 public async Task<CrawlerState> GetCrawlerStateAsync(string crawlerName)
 {
 var response = await _amazonGlue.GetCrawlerAsync(
 new GetCrawlerRequest { Name = crawlerName });
 return response.Crawler.State;
 }

 /// <summary>
 /// Get information about an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Database object containing information about the database.</
returns>
 public async Task<Database> GetDatabaseAsync(string dbName)
 {
 var databasesRequest = new GetDatabaseRequest
 {
 Name = dbName,
 };

 var response = await _amazonGlue.GetDatabaseAsync(databasesRequest);
 return response.Database;
 }

 /// <summary>
 /// Get information about a specific AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="jobRunId">The Id of the job run.</param>
 /// <returns>A JobRun object with information about the job run.</returns>
 public async Task<JobRun> GetJobRunAsync(string jobName, string jobRunId)
 {
 var response = await _amazonGlue.GetJobRunAsync(new GetJobRunRequest
 { JobName = jobName, RunId = jobRunId });
 return response.JobRun;
 }

 /// <summary>
 /// Get information about all AWS Glue runs of a specific job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>

Basics 994

AWS SDK for .NET Developer Guide

 /// <returns>A list of JobRun objects.</returns>
 public async Task<List<JobRun>> GetJobRunsAsync(string jobName)
 {
 var jobRuns = new List<JobRun>();

 var request = new GetJobRunsRequest
 {
 JobName = jobName,
 };

 // No need to loop to get all the log groups--the SDK does it for us behind
 the scenes
 var paginatorForJobRuns =
 _amazonGlue.Paginators.GetJobRuns(request);

 await foreach (var response in paginatorForJobRuns.Responses)
 {
 response.JobRuns.ForEach(jobRun =>
 {
 jobRuns.Add(jobRun);
 });
 }

 return jobRuns;
 }

 /// <summary>
 /// Get a list of tables for an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A list of Table objects.</returns>
 public async Task<List<Table>> GetTablesAsync(string dbName)
 {
 var request = new GetTablesRequest { DatabaseName = dbName };
 var tables = new List<Table>();

 // Get a paginator for listing the tables.
 var tablePaginator = _amazonGlue.Paginators.GetTables(request);

 await foreach (var response in tablePaginator.Responses)
 {
 tables.AddRange(response.TableList);
 }

Basics 995

AWS SDK for .NET Developer Guide

 return tables;
 }

 /// <summary>
 /// List AWS Glue jobs using a paginator.
 /// </summary>
 /// <returns>A list of AWS Glue job names.</returns>
 public async Task<List<string>> ListJobsAsync()
 {
 var jobNames = new List<string>();

 var listJobsPaginator = _amazonGlue.Paginators.ListJobs(new ListJobsRequest
 { MaxResults = 10 });
 await foreach (var response in listJobsPaginator.Responses)
 {
 jobNames.AddRange(response.JobNames);
 }

 return jobNames;
 }

 /// <summary>
 /// Start an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> StartCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new StartCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.StartCrawlerAsync(crawlerRequest);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Start an AWS Glue job run.

Basics 996

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A string representing the job run Id.</returns>
 public async Task<string> StartJobRunAsync(
 string jobName,
 string inputDatabase,
 string inputTable,
 string bucketName)
 {
 var request = new StartJobRunRequest
 {
 JobName = jobName,
 Arguments = new Dictionary<string, string>
 {
 {"--input_database", inputDatabase},
 {"--input_table", inputTable},
 {"--output_bucket_url", $"s3://{bucketName}/"}
 }
 };

 var response = await _amazonGlue.StartJobRunAsync(request);
 return response.JobRunId;
 }

}

Create a class that runs the scenario.

global using Amazon.Glue;
global using GlueActions;
global using Microsoft.Extensions.Configuration;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

using Amazon.Glue.Model;
using Amazon.S3;

Basics 997

AWS SDK for .NET Developer Guide

using Amazon.S3.Model;

namespace GlueBasics;

public class GlueBasics
{
 private static ILogger logger = null!;
 private static IConfiguration _configuration = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for AWS Glue.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonGlue>()
 .AddTransient<GlueWrapper>()
 .AddTransient<UiWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<GlueBasics>();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // These values are stored in settings.json
 // Once you have run the CDK script to deploy the resources,
 // edit the file to set "BucketName", "RoleName", and "ScriptURL"
 // to the appropriate values. Also set "CrawlerName" to the name
 // you want to give the crawler when it is created.
 string bucketName = _configuration["BucketName"]!;
 string bucketUrl = _configuration["BucketUrl"]!;
 string crawlerName = _configuration["CrawlerName"]!;
 string roleName = _configuration["RoleName"]!;

Basics 998

AWS SDK for .NET Developer Guide

 string sourceData = _configuration["SourceData"]!;
 string dbName = _configuration["DbName"]!;
 string cron = _configuration["Cron"]!;
 string scriptUrl = _configuration["ScriptURL"]!;
 string jobName = _configuration["JobName"]!;

 var wrapper = host.Services.GetRequiredService<GlueWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UiWrapper>();

 uiWrapper.DisplayOverview();
 uiWrapper.PressEnter();

 // Create the crawler and wait for it to be ready.
 uiWrapper.DisplayTitle("Create AWS Glue crawler");
 Console.WriteLine("Let's begin by creating the AWS Glue crawler.");

 var crawlerDescription = "Crawler created for the AWS Glue Basics
 scenario.";
 var crawlerCreated = await wrapper.CreateCrawlerAsync(crawlerName,
 crawlerDescription, roleName, cron, sourceData, dbName);
 if (crawlerCreated)
 {
 Console.WriteLine($"The crawler: {crawlerName} has been created. Now
 let's wait until it's ready.");
 CrawlerState crawlerState;
 do
 {
 crawlerState = await wrapper.GetCrawlerStateAsync(crawlerName);
 }
 while (crawlerState != "READY");
 Console.WriteLine($"The crawler {crawlerName} is now ready for use.");
 }
 else
 {
 Console.WriteLine($"Couldn't create crawler {crawlerName}.");
 return; // Exit the application.
 }

 uiWrapper.DisplayTitle("Start AWS Glue crawler");
 Console.WriteLine("Now let's wait until the crawler has successfully
 started.");
 var crawlerStarted = await wrapper.StartCrawlerAsync(crawlerName);
 if (crawlerStarted)
 {

Basics 999

AWS SDK for .NET Developer Guide

 CrawlerState crawlerState;
 do
 {
 crawlerState = await wrapper.GetCrawlerStateAsync(crawlerName);
 }
 while (crawlerState != "READY");
 Console.WriteLine($"The crawler {crawlerName} is now ready for use.");
 }
 else
 {
 Console.WriteLine($"Couldn't start the crawler {crawlerName}.");
 return; // Exit the application.
 }

 uiWrapper.PressEnter();

 Console.WriteLine($"\nLet's take a look at the database: {dbName}");
 var database = await wrapper.GetDatabaseAsync(dbName);

 if (database != null)
 {
 uiWrapper.DisplayTitle($"{database.Name} Details");
 Console.WriteLine($"{database.Name} created on {database.CreateTime}");
 Console.WriteLine(database.Description);
 }

 uiWrapper.PressEnter();

 var tables = await wrapper.GetTablesAsync(dbName);
 if (tables.Count > 0)
 {
 tables.ForEach(table =>
 {
 Console.WriteLine($"{table.Name}\tCreated:
 {table.CreateTime}\tUpdated: {table.UpdateTime}");
 });
 }

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Create AWS Glue job");
 Console.WriteLine("Creating a new AWS Glue job.");
 var description = "An AWS Glue job created using the AWS SDK for .NET";

Basics 1000

AWS SDK for .NET Developer Guide

 await wrapper.CreateJobAsync(dbName, tables[0].Name, bucketUrl, jobName,
 roleName, description, scriptUrl);

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Starting AWS Glue job");
 Console.WriteLine("Starting the new AWS Glue job...");
 var jobRunId = await wrapper.StartJobRunAsync(jobName, dbName,
 tables[0].Name, bucketName);
 var jobRunComplete = false;
 var jobRun = new JobRun();
 do
 {
 jobRun = await wrapper.GetJobRunAsync(jobName, jobRunId);
 if (jobRun.JobRunState == "SUCCEEDED" || jobRun.JobRunState == "STOPPED"
 ||
 jobRun.JobRunState == "FAILED" || jobRun.JobRunState == "TIMEOUT")
 {
 jobRunComplete = true;
 }
 } while (!jobRunComplete);

 uiWrapper.DisplayTitle($"Data in {bucketName}");

 // Get the list of data stored in the S3 bucket.
 var s3Client = new AmazonS3Client();

 var response = await s3Client.ListObjectsAsync(new ListObjectsRequest
 { BucketName = bucketName });
 response.S3Objects.ForEach(s3Object =>
 {
 Console.WriteLine(s3Object.Key);
 });

 uiWrapper.DisplayTitle("AWS Glue jobs");
 var jobNames = await wrapper.ListJobsAsync();
 jobNames.ForEach(jobName =>
 {
 Console.WriteLine(jobName);
 });

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Get AWS Glue job run information");

Basics 1001

AWS SDK for .NET Developer Guide

 Console.WriteLine("Getting information about the AWS Glue job.");
 var jobRuns = await wrapper.GetJobRunsAsync(jobName);

 jobRuns.ForEach(jobRun =>
 {

 Console.WriteLine($"{jobRun.JobName}\t{jobRun.JobRunState}\t{jobRun.CompletedOn}");
 });

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Deleting resources");
 Console.WriteLine("Deleting the AWS Glue job used by the example.");
 await wrapper.DeleteJobAsync(jobName);

 Console.WriteLine("Deleting the tables from the database.");
 tables.ForEach(async table =>
 {
 await wrapper.DeleteTableAsync(dbName, table.Name);
 });

 Console.WriteLine("Deleting the database.");
 await wrapper.DeleteDatabaseAsync(dbName);

 Console.WriteLine("Deleting the AWS Glue crawler.");
 await wrapper.DeleteCrawlerAsync(crawlerName);

 Console.WriteLine("The AWS Glue scenario has completed.");
 uiWrapper.PressEnter();
 }
}

namespace GlueBasics;

public class UiWrapper
{
 public readonly string SepBar = new string('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the scenario.
 /// </summary>
 public void DisplayOverview()
 {

Basics 1002

AWS SDK for .NET Developer Guide

 Console.Clear();
 DisplayTitle("Amazon Glue: get started with crawlers and jobs");

 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t 1. Create a crawler, pass it the IAM role and the URL
 to the public S3 bucket that contains the source data");
 Console.WriteLine("\t 2. Start the crawler.");
 Console.WriteLine("\t 3. Get the database created by the crawler and the
 tables in the database.");
 Console.WriteLine("\t 4. Create a job.");
 Console.WriteLine("\t 5. Start a job run.");
 Console.WriteLine("\t 6. Wait for the job run to complete.");
 Console.WriteLine("\t 7. Show the data stored in the bucket.");
 Console.WriteLine("\t 8. List jobs for the account.");
 Console.WriteLine("\t 9. Get job run details for the job that was run.");
 Console.WriteLine("\t10. Delete the demo job.");
 Console.WriteLine("\t11. Delete the database and tables created for the
 demo.");
 Console.WriteLine("\t12. Delete the crawler.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPlease press <Enter> to continue. ");
 _ = Console.ReadLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to center on the screen.</param>
 /// <returns>The string padded to make it center on the screen.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title and another

Basics 1003

AWS SDK for .NET Developer Guide

 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateCrawler

• CreateJob

• DeleteCrawler

• DeleteDatabase

• DeleteJob

• DeleteTable

• GetCrawler

• GetDatabase

• GetDatabases

• GetJob

• GetJobRun

• GetJobRuns

• GetTables

• ListJobs

• StartCrawler

• StartJobRun

Actions

CreateCrawler

The following code example shows how to use CreateCrawler.

Actions 1004

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteDatabase
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetDatabase
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetDatabases
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJob
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRun
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRuns
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetTables
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/ListJobs
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartCrawler
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartJobRun

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name for the crawler.</param>
 /// <param name="crawlerDescription">A description of the crawler.</param>
 /// <param name="role">The AWS Identity and Access Management (IAM) role to
 /// be assumed by the crawler.</param>
 /// <param name="schedule">The schedule on which the crawler will be executed.</
param>
 /// <param name="s3Path">The path to the Amazon Simple Storage Service (Amazon
 S3)
 /// bucket where the Python script has been stored.</param>
 /// <param name="dbName">The name to use for the database that will be
 /// created by the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateCrawlerAsync(
 string crawlerName,
 string crawlerDescription,
 string role,
 string schedule,
 string s3Path,
 string dbName)
 {
 var s3Target = new S3Target
 {
 Path = s3Path,
 };

 var targetList = new List<S3Target>
 {
 s3Target,
 };

 var targets = new CrawlerTargets

Actions 1005

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 {
 S3Targets = targetList,
 };

 var crawlerRequest = new CreateCrawlerRequest
 {
 DatabaseName = dbName,
 Name = crawlerName,
 Description = crawlerDescription,
 Targets = targets,
 Role = role,
 Schedule = schedule,
 };

 var response = await _amazonGlue.CreateCrawlerAsync(crawlerRequest);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see CreateCrawler in AWS SDK for .NET API Reference.

CreateJob

The following code example shows how to use CreateJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="roleName">The name of the IAM role to be assumed by
 /// the job.</param>
 /// <param name="description">A description of the job.</param>

Actions 1006

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="scriptUrl">The URL to the script.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateJobAsync(string dbName, string tableName, string
 bucketUrl, string jobName, string roleName, string description, string scriptUrl)
 {
 var command = new JobCommand
 {
 PythonVersion = "3",
 Name = "glueetl",
 ScriptLocation = scriptUrl,
 };

 var arguments = new Dictionary<string, string>
 {
 { "--input_database", dbName },
 { "--input_table", tableName },
 { "--output_bucket_url", bucketUrl }
 };

 var request = new CreateJobRequest
 {
 Command = command,
 DefaultArguments = arguments,
 Description = description,
 GlueVersion = "3.0",
 Name = jobName,
 NumberOfWorkers = 10,
 Role = roleName,
 WorkerType = "G.1X"
 };

 var response = await _amazonGlue.CreateJobAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see CreateJob in AWS SDK for .NET API Reference.

DeleteCrawler

The following code example shows how to use DeleteCrawler.

Actions 1007

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/CreateJob

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteCrawlerAsync(string crawlerName)
 {
 var response = await _amazonGlue.DeleteCrawlerAsync(new DeleteCrawlerRequest
 { Name = crawlerName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteCrawler in AWS SDK for .NET API Reference.

DeleteDatabase

The following code example shows how to use DeleteDatabase.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete the AWS Glue database.
 /// </summary>

Actions 1008

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteDatabaseAsync(string dbName)
 {
 var response = await _amazonGlue.DeleteDatabaseAsync(new
 DeleteDatabaseRequest { Name = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteDatabase in AWS SDK for .NET API Reference.

DeleteJob

The following code example shows how to use DeleteJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an AWS Glue job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteJobAsync(string jobName)
 {
 var response = await _amazonGlue.DeleteJobAsync(new DeleteJobRequest
 { JobName = jobName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteJob in AWS SDK for .NET API Reference.

Actions 1009

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteJob

AWS SDK for .NET Developer Guide

DeleteTable

The following code example shows how to use DeleteTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a table from an AWS Glue database.
 /// </summary>
 /// <param name="tableName">The table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTableAsync(string dbName, string tableName)
 {
 var response = await _amazonGlue.DeleteTableAsync(new DeleteTableRequest
 { Name = tableName, DatabaseName = dbName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTable in AWS SDK for .NET API Reference.

GetCrawler

The following code example shows how to use GetCrawler.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1010

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Get information about an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Crawler object describing the crawler.</returns>
 public async Task<Crawler?> GetCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new GetCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.GetCrawlerAsync(crawlerRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 var databaseName = response.Crawler.DatabaseName;
 Console.WriteLine($"{crawlerName} has the database {databaseName}");
 return response.Crawler;
 }

 Console.WriteLine($"No information regarding {crawlerName} could be
 found.");
 return null;
 }

• For API details, see GetCrawler in AWS SDK for .NET API Reference.

GetDatabase

The following code example shows how to use GetDatabase.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1011

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetCrawler
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Get information about an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A Database object containing information about the database.</
returns>
 public async Task<Database> GetDatabaseAsync(string dbName)
 {
 var databasesRequest = new GetDatabaseRequest
 {
 Name = dbName,
 };

 var response = await _amazonGlue.GetDatabaseAsync(databasesRequest);
 return response.Database;
 }

• For API details, see GetDatabase in AWS SDK for .NET API Reference.

GetJobRun

The following code example shows how to use GetJobRun.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about a specific AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <param name="jobRunId">The Id of the job run.</param>
 /// <returns>A JobRun object with information about the job run.</returns>
 public async Task<JobRun> GetJobRunAsync(string jobName, string jobRunId)
 {

Actions 1012

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetDatabase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 var response = await _amazonGlue.GetJobRunAsync(new GetJobRunRequest
 { JobName = jobName, RunId = jobRunId });
 return response.JobRun;
 }

• For API details, see GetJobRun in AWS SDK for .NET API Reference.

GetJobRuns

The following code example shows how to use GetJobRuns.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about all AWS Glue runs of a specific job.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A list of JobRun objects.</returns>
 public async Task<List<JobRun>> GetJobRunsAsync(string jobName)
 {
 var jobRuns = new List<JobRun>();

 var request = new GetJobRunsRequest
 {
 JobName = jobName,
 };

 // No need to loop to get all the log groups--the SDK does it for us behind
 the scenes
 var paginatorForJobRuns =
 _amazonGlue.Paginators.GetJobRuns(request);

 await foreach (var response in paginatorForJobRuns.Responses)
 {

Actions 1013

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRun
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 response.JobRuns.ForEach(jobRun =>
 {
 jobRuns.Add(jobRun);
 });
 }

 return jobRuns;
 }

• For API details, see GetJobRuns in AWS SDK for .NET API Reference.

GetTables

The following code example shows how to use GetTables.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of tables for an AWS Glue database.
 /// </summary>
 /// <param name="dbName">The name of the database.</param>
 /// <returns>A list of Table objects.</returns>
 public async Task<List<Table>> GetTablesAsync(string dbName)
 {
 var request = new GetTablesRequest { DatabaseName = dbName };
 var tables = new List<Table>();

 // Get a paginator for listing the tables.
 var tablePaginator = _amazonGlue.Paginators.GetTables(request);

 await foreach (var response in tablePaginator.Responses)
 {
 tables.AddRange(response.TableList);
 }

Actions 1014

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetJobRuns
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples

AWS SDK for .NET Developer Guide

 return tables;
 }

• For API details, see GetTables in AWS SDK for .NET API Reference.

ListJobs

The following code example shows how to use ListJobs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List AWS Glue jobs using a paginator.
 /// </summary>
 /// <returns>A list of AWS Glue job names.</returns>
 public async Task<List<string>> ListJobsAsync()
 {
 var jobNames = new List<string>();

 var listJobsPaginator = _amazonGlue.Paginators.ListJobs(new ListJobsRequest
 { MaxResults = 10 });
 await foreach (var response in listJobsPaginator.Responses)
 {
 jobNames.AddRange(response.JobNames);
 }

 return jobNames;
 }

• For API details, see ListJobs in AWS SDK for .NET API Reference.

Actions 1015

https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/GetTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/ListJobs

AWS SDK for .NET Developer Guide

StartCrawler

The following code example shows how to use StartCrawler.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Start an AWS Glue crawler.
 /// </summary>
 /// <param name="crawlerName">The name of the crawler.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> StartCrawlerAsync(string crawlerName)
 {
 var crawlerRequest = new StartCrawlerRequest
 {
 Name = crawlerName,
 };

 var response = await _amazonGlue.StartCrawlerAsync(crawlerRequest);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see StartCrawler in AWS SDK for .NET API Reference.

StartJobRun

The following code example shows how to use StartJobRun.

Actions 1016

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartCrawler

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Start an AWS Glue job run.
 /// </summary>
 /// <param name="jobName">The name of the job.</param>
 /// <returns>A string representing the job run Id.</returns>
 public async Task<string> StartJobRunAsync(
 string jobName,
 string inputDatabase,
 string inputTable,
 string bucketName)
 {
 var request = new StartJobRunRequest
 {
 JobName = jobName,
 Arguments = new Dictionary<string, string>
 {
 {"--input_database", inputDatabase},
 {"--input_table", inputTable},
 {"--output_bucket_url", $"s3://{bucketName}/"}
 }
 };

 var response = await _amazonGlue.StartJobRunAsync(request);
 return response.JobRunId;
 }

• For API details, see StartJobRun in AWS SDK for .NET API Reference.

Actions 1017

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glue#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glue-2017-03-31/StartJobRun

AWS SDK for .NET Developer Guide

IAM examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with IAM.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello IAM

The following code examples show how to get started using IAM.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace IAMActions;

public class HelloIAM
{
 static async Task Main(string[] args)
 {
 // Getting started with AWS Identity and Access Management (IAM). List
 // the policies for the account.
 var iamClient = new AmazonIdentityManagementServiceClient();

 var listPoliciesPaginator = iamClient.Paginators.ListPolicies(new
 ListPoliciesRequest());

IAM 1018

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)
 {
 policies.AddRange(response.Policies);
 }

 Console.WriteLine("Here are the policies defined for your account:\n");
 policies.ForEach(policy =>
 {
 Console.WriteLine($"Created:
 {policy.CreateDate}\t{policy.PolicyName}\t{policy.Description}");
 });
 }
}

• For API details, see ListPolicies in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

• Scenarios

Basics

Learn the basics

The following code example shows how to create a user and assume a role.

Warning

To avoid security risks, don't use IAM users for authentication when developing purpose-
built software or working with real data. Instead, use federation with an identity provider
such as AWS IAM Identity Center.

• Create a user with no permissions.

Basics 1019

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListPolicies
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS SDK for .NET Developer Guide

• Create a role that grants permission to list Amazon S3 buckets for the account.

• Add a policy to let the user assume the role.

• Assume the role and list S3 buckets using temporary credentials, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

global using Amazon.IdentityManagement;
global using Amazon.S3;
global using Amazon.SecurityToken;
global using IAMActions;
global using IamScenariosCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

namespace IAMActions;

public class IAMWrapper
{
 private readonly IAmazonIdentityManagementService _IAMService;

 /// <summary>
 /// Constructor for the IAMWrapper class.
 /// </summary>
 /// <param name="IAMService">An IAM client object.</param>
 public IAMWrapper(IAmazonIdentityManagementService IAMService)
 {
 _IAMService = IAMService;
 }

 /// <summary>
 /// Attach an IAM policy to a role.

Basics 1020

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="policyArn">The policy to attach.</param>
 /// <param name="roleName">The role that the policy will be attached to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachRolePolicyAsync(string policyArn, string roleName)
 {
 var response = await _IAMService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create an IAM access key for a user.
 /// </summary>
 /// <param name="userName">The username for which to create the IAM access
 /// key.</param>
 /// <returns>The AccessKey.</returns>
 public async Task<AccessKey> CreateAccessKeyAsync(string userName)
 {
 var response = await _IAMService.CreateAccessKeyAsync(new
 CreateAccessKeyRequest
 {
 UserName = userName,
 });

 return response.AccessKey;

 }

 /// <summary>
 /// Create an IAM policy.
 /// </summary>
 /// <param name="policyName">The name to give the new IAM policy.</param>
 /// <param name="policyDocument">The policy document for the new policy.</param>
 /// <returns>The new IAM policy object.</returns>
 public async Task<ManagedPolicy> CreatePolicyAsync(string policyName, string
 policyDocument)

Basics 1021

AWS SDK for .NET Developer Guide

 {
 var response = await _IAMService.CreatePolicyAsync(new CreatePolicyRequest
 {
 PolicyDocument = policyDocument,
 PolicyName = policyName,
 });

 return response.Policy;
 }

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="rolePolicyDocument">The name of the IAM policy document
 /// for the new role.</param>
 /// <returns>The Amazon Resource Name (ARN) of the role.</returns>
 public async Task<string> CreateRoleAsync(string roleName, string
 rolePolicyDocument)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = rolePolicyDocument,
 };

 var response = await _IAMService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Create an IAM service-linked role.
 /// </summary>
 /// <param name="serviceName">The name of the AWS Service.</param>
 /// <param name="description">A description of the IAM service-linked role.</
param>
 /// <returns>The IAM role that was created.</returns>
 public async Task<Role> CreateServiceLinkedRoleAsync(string serviceName, string
 description)
 {
 var request = new CreateServiceLinkedRoleRequest
 {

Basics 1022

AWS SDK for .NET Developer Guide

 AWSServiceName = serviceName,
 Description = description
 };

 var response = await _IAMService.CreateServiceLinkedRoleAsync(request);
 return response.Role;
 }

 /// <summary>
 /// Create an IAM user.
 /// </summary>
 /// <param name="userName">The username for the new IAM user.</param>
 /// <returns>The IAM user that was created.</returns>
 public async Task<User> CreateUserAsync(string userName)
 {
 var response = await _IAMService.CreateUserAsync(new CreateUserRequest
 { UserName = userName });
 return response.User;
 }

 /// <summary>
 /// Delete an IAM user's access key.
 /// </summary>
 /// <param name="accessKeyId">The Id for the IAM access key.</param>
 /// <param name="userName">The username of the user that owns the IAM
 /// access key.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAccessKeyAsync(string accessKeyId, string
 userName)
 {
 var response = await _IAMService.DeleteAccessKeyAsync(new
 DeleteAccessKeyRequest
 {
 AccessKeyId = accessKeyId,
 UserName = userName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>

Basics 1023

AWS SDK for .NET Developer Guide

 /// Delete an IAM policy.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the policy to
 /// delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeletePolicyAsync(string policyArn)
 {
 var response = await _IAMService.DeletePolicyAsync(new DeletePolicyRequest
 { PolicyArn = policyArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRoleAsync(string roleName)
 {
 var response = await _IAMService.DeleteRoleAsync(new DeleteRoleRequest
 { RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM role policy.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="policyName">The name of the IAM role policy to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRolePolicyAsync(string roleName, string
 policyName)
 {
 var response = await _IAMService.DeleteRolePolicyAsync(new
 DeleteRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Basics 1024

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an IAM user.
 /// </summary>
 /// <param name="userName">The username of the IAM user to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserAsync(string userName)
 {
 var response = await _IAMService.DeleteUserAsync(new DeleteUserRequest
 { UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an IAM user policy.
 /// </summary>
 /// <param name="policyName">The name of the IAM policy to delete.</param>
 /// <param name="userName">The username of the IAM user.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserPolicyAsync(string policyName, string
 userName)
 {
 var response = await _IAMService.DeleteUserPolicyAsync(new
 DeleteUserPolicyRequest { PolicyName = policyName, UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Detach an IAM policy from an IAM role.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM policy.</
param>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DetachRolePolicyAsync(string policyArn, string roleName)
 {
 var response = await _IAMService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest
 {

Basics 1025

AWS SDK for .NET Developer Guide

 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Gets the IAM password policy for an AWS account.
 /// </summary>
 /// <returns>The PasswordPolicy for the AWS account.</returns>
 public async Task<PasswordPolicy> GetAccountPasswordPolicyAsync()
 {
 var response = await _IAMService.GetAccountPasswordPolicyAsync(new
 GetAccountPasswordPolicyRequest());
 return response.PasswordPolicy;
 }

 /// <summary>
 /// Get information about an IAM policy.
 /// </summary>
 /// <param name="policyArn">The IAM policy to retrieve information for.</param>
 /// <returns>The IAM policy.</returns>
 public async Task<ManagedPolicy> GetPolicyAsync(string policyArn)
 {

 var response = await _IAMService.GetPolicyAsync(new GetPolicyRequest
 { PolicyArn = policyArn });
 return response.Policy;
 }

 /// <summary>
 /// Get information about an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to retrieve information
 /// for.</param>
 /// <returns>The IAM role that was retrieved.</returns>
 public async Task<Role> GetRoleAsync(string roleName)
 {
 var response = await _IAMService.GetRoleAsync(new GetRoleRequest
 {

Basics 1026

AWS SDK for .NET Developer Guide

 RoleName = roleName,
 });

 return response.Role;
 }

 /// <summary>
 /// Get information about an IAM user.
 /// </summary>
 /// <param name="userName">The username of the user.</param>
 /// <returns>An IAM user object.</returns>
 public async Task<User> GetUserAsync(string userName)
 {
 var response = await _IAMService.GetUserAsync(new GetUserRequest { UserName
 = userName });
 return response.User;
 }

 /// <summary>
 /// List the IAM role policies that are attached to an IAM role.
 /// </summary>
 /// <param name="roleName">The IAM role to list IAM policies for.</param>
 /// <returns>A list of the IAM policies attached to the IAM role.</returns>
 public async Task<List<AttachedPolicyType>> ListAttachedRolePoliciesAsync(string
 roleName)
 {
 var attachedPolicies = new List<AttachedPolicyType>();
 var attachedRolePoliciesPaginator =
 _IAMService.Paginators.ListAttachedRolePolicies(new ListAttachedRolePoliciesRequest
 { RoleName = roleName });

 await foreach (var response in attachedRolePoliciesPaginator.Responses)
 {
 attachedPolicies.AddRange(response.AttachedPolicies);
 }

 return attachedPolicies;
 }

 /// <summary>
 /// List IAM groups.

Basics 1027

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <returns>A list of IAM groups.</returns>
 public async Task<List<Group>> ListGroupsAsync()
 {
 var groupsPaginator = _IAMService.Paginators.ListGroups(new
 ListGroupsRequest());
 var groups = new List<Group>();

 await foreach (var response in groupsPaginator.Responses)
 {
 groups.AddRange(response.Groups);
 }

 return groups;
 }

 /// <summary>
 /// List IAM policies.
 /// </summary>
 /// <returns>A list of the IAM policies.</returns>
 public async Task<List<ManagedPolicy>> ListPoliciesAsync()
 {
 var listPoliciesPaginator = _IAMService.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)
 {
 policies.AddRange(response.Policies);
 }

 return policies;
 }

 /// <summary>
 /// List IAM role policies.
 /// </summary>
 /// <param name="roleName">The IAM role for which to list IAM policies.</param>
 /// <returns>A list of IAM policy names.</returns>
 public async Task<List<string>> ListRolePoliciesAsync(string roleName)
 {

Basics 1028

AWS SDK for .NET Developer Guide

 var listRolePoliciesPaginator = _IAMService.Paginators.ListRolePolicies(new
 ListRolePoliciesRequest { RoleName = roleName });
 var policyNames = new List<string>();

 await foreach (var response in listRolePoliciesPaginator.Responses)
 {
 policyNames.AddRange(response.PolicyNames);
 }

 return policyNames;
 }

 /// <summary>
 /// List IAM roles.
 /// </summary>
 /// <returns>A list of IAM roles.</returns>
 public async Task<List<Role>> ListRolesAsync()
 {
 var listRolesPaginator = _IAMService.Paginators.ListRoles(new
 ListRolesRequest());
 var roles = new List<Role>();

 await foreach (var response in listRolesPaginator.Responses)
 {
 roles.AddRange(response.Roles);
 }

 return roles;
 }

 /// <summary>
 /// List SAML authentication providers.
 /// </summary>
 /// <returns>A list of SAML providers.</returns>
 public async Task<List<SAMLProviderListEntry>> ListSAMLProvidersAsync()
 {
 var response = await _IAMService.ListSAMLProvidersAsync(new
 ListSAMLProvidersRequest());
 return response.SAMLProviderList;
 }

Basics 1029

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List IAM users.
 /// </summary>
 /// <returns>A list of IAM users.</returns>
 public async Task<List<User>> ListUsersAsync()
 {
 var listUsersPaginator = _IAMService.Paginators.ListUsers(new
 ListUsersRequest());
 var users = new List<User>();

 await foreach (var response in listUsersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

 /// <summary>
 /// Update the inline policy document embedded in a role.
 /// </summary>
 /// <param name="policyName">The name of the policy to embed.</param>
 /// <param name="roleName">The name of the role to update.</param>
 /// <param name="policyDocument">The policy document that defines the role.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutRolePolicyAsync(string policyName, string roleName,
 string policyDocument)
 {
 var request = new PutRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutRolePolicyAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Add or update an inline policy document that is embedded in an IAM user.

Basics 1030

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="userName">The name of the IAM user.</param>
 /// <param name="policyName">The name of the IAM policy.</param>
 /// <param name="policyDocument">The policy document defining the IAM policy.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutUserPolicyAsync(string userName, string policyName,
 string policyDocument)
 {
 var request = new PutUserPolicyRequest
 {
 UserName = userName,
 PolicyName = policyName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutUserPolicyAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Wait for a new access key to be ready to use.
 /// </summary>
 /// <param name="accessKeyId">The Id of the access key.</param>
 /// <returns>A boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitUntilAccessKeyIsReady(string accessKeyId)
 {
 var keyReady = false;

 do
 {
 try
 {
 var response = await _IAMService.GetAccessKeyLastUsedAsync(
 new GetAccessKeyLastUsedRequest { AccessKeyId = accessKeyId });
 if (response.UserName is not null)
 {
 keyReady = true;
 }
 }
 catch (NoSuchEntityException)
 {
 keyReady = false;
 }

Basics 1031

AWS SDK for .NET Developer Guide

 } while (!keyReady);

 return keyReady;
 }
}

using Microsoft.Extensions.Configuration;

namespace IAMBasics;

public class IAMBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the AWS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<IAMWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<IAMBasics>();

 IConfiguration configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // Values needed for user, role, and policies.

Basics 1032

AWS SDK for .NET Developer Guide

 string userName = configuration["UserName"]!;
 string s3PolicyName = configuration["S3PolicyName"]!;
 string roleName = configuration["RoleName"]!;

 var iamWrapper = host.Services.GetRequiredService<IAMWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 uiWrapper.DisplayBasicsOverview();
 uiWrapper.PressEnter();

 // First create a user. By default, the new user has
 // no permissions.
 uiWrapper.DisplayTitle("Create User");
 Console.WriteLine($"Creating a new user with user name: {userName}.");
 var user = await iamWrapper.CreateUserAsync(userName);
 var userArn = user.Arn;

 Console.WriteLine($"Successfully created user: {userName} with ARN:
 {userArn}.");
 uiWrapper.WaitABit(15, "Now let's wait for the user to be ready for use.");

 // Define a role policy document that allows the new user
 // to assume the role.
 string assumeRolePolicyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $" \"AWS\": \"{userArn}\"" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 // Permissions to list all buckets.
 string policyDocument = "{" +
 "\"Version\": \"2012-10-17\"," +
 " \"Statement\" : [{" +
 " \"Action\" : [\"s3:ListAllMyBuckets\"]," +
 " \"Effect\" : \"Allow\"," +
 " \"Resource\" : \"*\"" +
 "}]" +
 "}";

Basics 1033

AWS SDK for .NET Developer Guide

 // Create an AccessKey for the user.
 uiWrapper.DisplayTitle("Create access key");
 Console.WriteLine("Now let's create an access key for the new user.");
 var accessKey = await iamWrapper.CreateAccessKeyAsync(userName);

 var accessKeyId = accessKey.AccessKeyId;
 var secretAccessKey = accessKey.SecretAccessKey;

 Console.WriteLine($"We have created the access key with Access key id:
 {accessKeyId}.");

 Console.WriteLine("Now let's wait until the IAM access key is ready to
 use.");
 var keyReady = await iamWrapper.WaitUntilAccessKeyIsReady(accessKeyId);

 // Now try listing the Amazon Simple Storage Service (Amazon S3)
 // buckets. This should fail at this point because the user doesn't
 // have permissions to perform this task.
 uiWrapper.DisplayTitle("Try to display Amazon S3 buckets");
 Console.WriteLine("Now let's try to display a list of the user's Amazon S3
 buckets.");
 var s3Client1 = new AmazonS3Client(accessKeyId, secretAccessKey);
 var stsClient1 = new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKey);

 var s3Wrapper = new S3Wrapper(s3Client1, stsClient1);
 var buckets = await s3Wrapper.ListMyBucketsAsync();

 Console.WriteLine(buckets is null
 ? "As expected, the call to list the buckets has returned a null list."
 : "Something went wrong. This shouldn't have worked.");

 uiWrapper.PressEnter();

 uiWrapper.DisplayTitle("Create IAM role");
 Console.WriteLine($"Creating the role: {roleName}");

 // Creating an IAM role to allow listing the S3 buckets. A role name
 // is not case sensitive and must be unique to the account for which it
 // is created.
 var roleArn = await iamWrapper.CreateRoleAsync(roleName,
 assumeRolePolicyDocument);

Basics 1034

AWS SDK for .NET Developer Guide

 uiWrapper.PressEnter();

 // Create a policy with permissions to list S3 buckets.
 uiWrapper.DisplayTitle("Create IAM policy");
 Console.WriteLine($"Creating the policy: {s3PolicyName}");
 Console.WriteLine("with permissions to list the Amazon S3 buckets for the
 account.");
 var policy = await iamWrapper.CreatePolicyAsync(s3PolicyName,
 policyDocument);

 // Wait 15 seconds for the IAM policy to be available.
 uiWrapper.WaitABit(15, "Waiting for the policy to be available.");

 // Attach the policy to the role you created earlier.
 uiWrapper.DisplayTitle("Attach new IAM policy");
 Console.WriteLine("Now let's attach the policy to the role.");
 await iamWrapper.AttachRolePolicyAsync(policy.Arn, roleName);

 // Wait 15 seconds for the role to be updated.
 Console.WriteLine();
 uiWrapper.WaitABit(15, "Waiting for the policy to be attached.");

 // Use the AWS Security Token Service (AWS STS) to have the user
 // assume the role we created.
 var stsClient2 = new AmazonSecurityTokenServiceClient(accessKeyId,
 secretAccessKey);

 // Wait for the new credentials to become valid.
 uiWrapper.WaitABit(10, "Waiting for the credentials to be valid.");

 var assumedRoleCredentials = await s3Wrapper.AssumeS3RoleAsync("temporary-
session", roleArn);

 // Try again to list the buckets using the client created with
 // the new user's credentials. This time, it should work.
 var s3Client2 = new AmazonS3Client(assumedRoleCredentials);

 s3Wrapper.UpdateClients(s3Client2, stsClient2);

 buckets = await s3Wrapper.ListMyBucketsAsync();

 uiWrapper.DisplayTitle("List Amazon S3 buckets");
 Console.WriteLine("This time we should have buckets to list.");
 if (buckets is not null)

Basics 1035

AWS SDK for .NET Developer Guide

 {
 buckets.ForEach(bucket =>
 {
 Console.WriteLine($"{bucket.BucketName} created:
 {bucket.CreationDate}");
 });
 }

 uiWrapper.PressEnter();

 // Now clean up all the resources used in the example.
 uiWrapper.DisplayTitle("Clean up resources");
 Console.WriteLine("Thank you for watching. The IAM Basics demo is
 complete.");
 Console.WriteLine("Please wait while we clean up the resources we
 created.");

 await iamWrapper.DetachRolePolicyAsync(policy.Arn, roleName);

 await iamWrapper.DeletePolicyAsync(policy.Arn);

 await iamWrapper.DeleteRoleAsync(roleName);

 await iamWrapper.DeleteAccessKeyAsync(accessKeyId, userName);

 await iamWrapper.DeleteUserAsync(userName);

 uiWrapper.PressEnter();

 Console.WriteLine("All done cleaning up our resources. Thank you for your
 patience.");
 }
}

namespace IamScenariosCommon;

using System.Net;

/// <summary>
/// A class to perform Amazon Simple Storage Service (Amazon S3) actions for
/// the IAM Basics scenario.
/// </summary>
public class S3Wrapper

Basics 1036

AWS SDK for .NET Developer Guide

{
 private IAmazonS3 _s3Service;
 private IAmazonSecurityTokenService _stsService;

 /// <summary>
 /// Constructor for the S3Wrapper class.
 /// </summary>
 /// <param name="s3Service">An Amazon S3 client object.</param>
 /// <param name="stsService">An AWS Security Token Service (AWS STS)
 /// client object.</param>
 public S3Wrapper(IAmazonS3 s3Service, IAmazonSecurityTokenService stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }

 /// <summary>
 /// Assumes an AWS Identity and Access Management (IAM) role that allows
 /// Amazon S3 access for the current session.
 /// </summary>
 /// <param name="roleSession">A string representing the current session.</param>
 /// <param name="roleToAssume">The name of the IAM role to assume.</param>
 /// <returns>Credentials for the newly assumed IAM role.</returns>
 public async Task<Credentials> AssumeS3RoleAsync(string roleSession, string
 roleToAssume)
 {
 // Create the request to use with the AssumeRoleAsync call.
 var request = new AssumeRoleRequest()
 {
 RoleSessionName = roleSession,
 RoleArn = roleToAssume,
 };

 var response = await _stsService.AssumeRoleAsync(request);

 return response.Credentials;
 }

 /// <summary>
 /// Delete an S3 bucket.
 /// </summary>
 /// <param name="bucketName">Name of the S3 bucket to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>

Basics 1037

AWS SDK for .NET Developer Guide

 public async Task<bool> DeleteBucketAsync(string bucketName)
 {
 var result = await _s3Service.DeleteBucketAsync(new DeleteBucketRequest
 { BucketName = bucketName });
 return result.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// List the buckets that are owned by the user's account.
 /// </summary>
 /// <returns>Async Task.</returns>
 public async Task<List<S3Bucket>?> ListMyBucketsAsync()
 {
 try
 {
 // Get the list of buckets accessible by the new user.
 var response = await _s3Service.ListBucketsAsync();

 return response.Buckets;
 }
 catch (AmazonS3Exception ex)
 {
 // Something else went wrong. Display the error message.
 Console.WriteLine($"Error: {ex.Message}");
 return null;
 }
 }

 /// <summary>
 /// Create a new S3 bucket.
 /// </summary>
 /// <param name="bucketName">The name for the new bucket.</param>
 /// <returns>A Boolean value indicating whether the action completed
 /// successfully.</returns>
 public async Task<bool> PutBucketAsync(string bucketName)
 {
 var response = await _s3Service.PutBucketAsync(new PutBucketRequest
 { BucketName = bucketName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Update the client objects with new client objects. This is available
 /// because the scenario uses the methods of this class without and then

Basics 1038

AWS SDK for .NET Developer Guide

 /// with the proper permissions to list S3 buckets.
 /// </summary>
 /// <param name="s3Service">The Amazon S3 client object.</param>
 /// <param name="stsService">The AWS STS client object.</param>
 public void UpdateClients(IAmazonS3 s3Service, IAmazonSecurityTokenService
 stsService)
 {
 _s3Service = s3Service;
 _stsService = stsService;
 }
}

namespace IamScenariosCommon;

public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the IAM Groups scenario.
 /// </summary>
 public void DisplayGroupsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to the IAM Groups Demo");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an Amazon Identity and Access Management
 (IAM) group.");
 Console.WriteLine("\t2. Adds an IAM policy to the IAM group giving it full
 access to Amazon S3.");
 Console.WriteLine("\t3. Creates a new IAM user.");
 Console.WriteLine("\t4. Creates an IAM access key for the user.");
 Console.WriteLine("\t5. Adds the user to the IAM group.");
 Console.WriteLine("\t6. Lists the buckets on the account.");
 Console.WriteLine("\t7. Proves that the user has full Amazon S3 access by
 creating a bucket.");
 Console.WriteLine("\t8. List the buckets again to show the new bucket.");
 Console.WriteLine("\t9. Cleans up all the resources created.");
 }

 /// <summary>
 /// Show information about the IAM Basics scenario.

Basics 1039

AWS SDK for .NET Developer Guide

 /// </summary>
 public void DisplayBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to IAM Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates a user with no permissions.");
 Console.WriteLine("\t2. Creates a role and policy that grant
 s3:ListAllMyBuckets permission.");
 Console.WriteLine("\t3. Grants the user permission to assume the role.");
 Console.WriteLine("\t4. Creates an S3 client object as the user and tries to
 list buckets (this will fail).");
 Console.WriteLine("\t5. Gets temporary credentials by assuming the role.");
 Console.WriteLine("\t6. Creates a new S3 client object with the temporary
 credentials and lists the buckets (this will succeed).");
 Console.WriteLine("\t7. Deletes all the resources.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title, and another
 /// line of hyphens.

Basics 1040

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachRolePolicy

• CreateAccessKey

• CreatePolicy

• CreateRole

• CreateUser

• DeleteAccessKey

• DeletePolicy

• DeleteRole

• DeleteUser

Basics 1041

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AttachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreatePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateUser
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteAccessKey
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeletePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRole
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUser

AWS SDK for .NET Developer Guide

• DeleteUserPolicy

• DetachRolePolicy

• PutUserPolicy

Actions

AttachRolePolicy

The following code example shows how to use AttachRolePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Attach an IAM policy to a role.
 /// </summary>
 /// <param name="policyArn">The policy to attach.</param>
 /// <param name="roleName">The role that the policy will be attached to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachRolePolicyAsync(string policyArn, string roleName)
 {
 var response = await _IAMService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see AttachRolePolicy in AWS SDK for .NET API Reference.

Actions 1042

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUserPolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DetachRolePolicy
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutUserPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/AttachRolePolicy

AWS SDK for .NET Developer Guide

CreateAccessKey

The following code example shows how to use CreateAccessKey.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM access key for a user.
 /// </summary>
 /// <param name="userName">The username for which to create the IAM access
 /// key.</param>
 /// <returns>The AccessKey.</returns>
 public async Task<AccessKey> CreateAccessKeyAsync(string userName)
 {
 var response = await _IAMService.CreateAccessKeyAsync(new
 CreateAccessKeyRequest
 {
 UserName = userName,
 });

 return response.AccessKey;

 }

• For API details, see CreateAccessKey in AWS SDK for .NET API Reference.

CreateInstanceProfile

The following code example shows how to use CreateInstanceProfile.

Actions 1043

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateAccessKey

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with a
 specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to the
 role.</param>
 /// <returns>The Arn of the profile.</returns>
 public async Task<string> CreateInstanceProfileWithName(
 string policyName,
 string roleName,
 string profileName,
 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +

Actions 1044

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 "}";

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.
 await foreach (var policy in policiesPaginator.Policies)
 {
 if (policy.PolicyName.Equals(policyName))
 {
 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");
 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,

Actions 1045

AWS SDK for .NET Developer Guide

 AssumeRolePolicyDocument = assumeRoleDoc,
 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

 string profileArn = "";
 try
 {
 var profileCreateResponse = await _amazonIam.CreateInstanceProfileAsync(
 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;
 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }

Actions 1046

AWS SDK for .NET Developer Guide

 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

• For API details, see CreateInstanceProfile in AWS SDK for .NET API Reference.

CreatePolicy

The following code example shows how to use CreatePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM policy.
 /// </summary>
 /// <param name="policyName">The name to give the new IAM policy.</param>
 /// <param name="policyDocument">The policy document for the new policy.</param>
 /// <returns>The new IAM policy object.</returns>
 public async Task<ManagedPolicy> CreatePolicyAsync(string policyName, string
 policyDocument)
 {
 var response = await _IAMService.CreatePolicyAsync(new CreatePolicyRequest
 {
 PolicyDocument = policyDocument,
 PolicyName = policyName,
 });

Actions 1047

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 return response.Policy;
 }

• For API details, see CreatePolicy in AWS SDK for .NET API Reference.

CreateRole

The following code example shows how to use CreateRole.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="rolePolicyDocument">The name of the IAM policy document
 /// for the new role.</param>
 /// <returns>The Amazon Resource Name (ARN) of the role.</returns>
 public async Task<string> CreateRoleAsync(string roleName, string
 rolePolicyDocument)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = rolePolicyDocument,
 };

 var response = await _IAMService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

Actions 1048

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

• For API details, see CreateRole in AWS SDK for .NET API Reference.

CreateServiceLinkedRole

The following code example shows how to use CreateServiceLinkedRole.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM service-linked role.
 /// </summary>
 /// <param name="serviceName">The name of the AWS Service.</param>
 /// <param name="description">A description of the IAM service-linked role.</
param>
 /// <returns>The IAM role that was created.</returns>
 public async Task<Role> CreateServiceLinkedRoleAsync(string serviceName, string
 description)
 {
 var request = new CreateServiceLinkedRoleRequest
 {
 AWSServiceName = serviceName,
 Description = description
 };

 var response = await _IAMService.CreateServiceLinkedRoleAsync(request);
 return response.Role;
 }

• For API details, see CreateServiceLinkedRole in AWS SDK for .NET API Reference.

CreateUser

The following code example shows how to use CreateUser.

Actions 1049

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateServiceLinkedRole

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an IAM user.
 /// </summary>
 /// <param name="userName">The username for the new IAM user.</param>
 /// <returns>The IAM user that was created.</returns>
 public async Task<User> CreateUserAsync(string userName)
 {
 var response = await _IAMService.CreateUserAsync(new CreateUserRequest
 { UserName = userName });
 return response.User;
 }

• For API details, see CreateUser in AWS SDK for .NET API Reference.

DeleteAccessKey

The following code example shows how to use DeleteAccessKey.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM user's access key.
 /// </summary>

Actions 1050

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="accessKeyId">The Id for the IAM access key.</param>
 /// <param name="userName">The username of the user that owns the IAM
 /// access key.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteAccessKeyAsync(string accessKeyId, string
 userName)
 {
 var response = await _IAMService.DeleteAccessKeyAsync(new
 DeleteAccessKeyRequest
 {
 AccessKeyId = accessKeyId,
 UserName = userName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteAccessKey in AWS SDK for .NET API Reference.

DeleteInstanceProfile

The following code example shows how to use DeleteInstanceProfile.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the role,
 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)

Actions 1051

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteAccessKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService/AutoScalerActions#code-examples

AWS SDK for .NET Developer Guide

 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });
 var attachedPolicies = await _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn
 });
 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

• For API details, see DeleteInstanceProfile in AWS SDK for .NET API Reference.

Actions 1052

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile

AWS SDK for .NET Developer Guide

DeletePolicy

The following code example shows how to use DeletePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM policy.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the policy to
 /// delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeletePolicyAsync(string policyArn)
 {
 var response = await _IAMService.DeletePolicyAsync(new DeletePolicyRequest
 { PolicyArn = policyArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeletePolicy in AWS SDK for .NET API Reference.

DeleteRole

The following code example shows how to use DeleteRole.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1053

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRoleAsync(string roleName)
 {
 var response = await _IAMService.DeleteRoleAsync(new DeleteRoleRequest
 { RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteRole in AWS SDK for .NET API Reference.

DeleteRolePolicy

The following code example shows how to use DeleteRolePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM role policy.
 /// </summary>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <param name="policyName">The name of the IAM role policy to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteRolePolicyAsync(string roleName, string
 policyName)
 {
 var response = await _IAMService.DeleteRolePolicyAsync(new
 DeleteRolePolicyRequest
 {
 PolicyName = policyName,

Actions 1054

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteRolePolicy in AWS SDK for .NET API Reference.

DeleteUser

The following code example shows how to use DeleteUser.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM user.
 /// </summary>
 /// <param name="userName">The username of the IAM user to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserAsync(string userName)
 {
 var response = await _IAMService.DeleteUserAsync(new DeleteUserRequest
 { UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteUser in AWS SDK for .NET API Reference.

Actions 1055

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteRolePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUser

AWS SDK for .NET Developer Guide

DeleteUserPolicy

The following code example shows how to use DeleteUserPolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an IAM user policy.
 /// </summary>
 /// <param name="policyName">The name of the IAM policy to delete.</param>
 /// <param name="userName">The username of the IAM user.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteUserPolicyAsync(string policyName, string
 userName)
 {
 var response = await _IAMService.DeleteUserPolicyAsync(new
 DeleteUserPolicyRequest { PolicyName = policyName, UserName = userName });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteUserPolicy in AWS SDK for .NET API Reference.

DetachRolePolicy

The following code example shows how to use DetachRolePolicy.

Actions 1056

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteUserPolicy

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Detach an IAM policy from an IAM role.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM policy.</
param>
 /// <param name="roleName">The name of the IAM role.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DetachRolePolicyAsync(string policyArn, string roleName)
 {
 var response = await _IAMService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest
 {
 PolicyArn = policyArn,
 RoleName = roleName,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DetachRolePolicy in AWS SDK for .NET API Reference.

GetAccountPasswordPolicy

The following code example shows how to use GetAccountPasswordPolicy.

Actions 1057

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DetachRolePolicy

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Gets the IAM password policy for an AWS account.
 /// </summary>
 /// <returns>The PasswordPolicy for the AWS account.</returns>
 public async Task<PasswordPolicy> GetAccountPasswordPolicyAsync()
 {
 var response = await _IAMService.GetAccountPasswordPolicyAsync(new
 GetAccountPasswordPolicyRequest());
 return response.PasswordPolicy;
 }

• For API details, see GetAccountPasswordPolicy in AWS SDK for .NET API Reference.

GetPolicy

The following code example shows how to use GetPolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an IAM policy.
 /// </summary>
 /// <param name="policyArn">The IAM policy to retrieve information for.</param>
 /// <returns>The IAM policy.</returns>

Actions 1058

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetAccountPasswordPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 public async Task<ManagedPolicy> GetPolicyAsync(string policyArn)
 {

 var response = await _IAMService.GetPolicyAsync(new GetPolicyRequest
 { PolicyArn = policyArn });
 return response.Policy;
 }

• For API details, see GetPolicy in AWS SDK for .NET API Reference.

GetRole

The following code example shows how to use GetRole.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to retrieve information
 /// for.</param>
 /// <returns>The IAM role that was retrieved.</returns>
 public async Task<Role> GetRoleAsync(string roleName)
 {
 var response = await _IAMService.GetRoleAsync(new GetRoleRequest
 {
 RoleName = roleName,
 });

 return response.Role;
 }

Actions 1059

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

• For API details, see GetRole in AWS SDK for .NET API Reference.

GetUser

The following code example shows how to use GetUser.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an IAM user.
 /// </summary>
 /// <param name="userName">The username of the user.</param>
 /// <returns>An IAM user object.</returns>
 public async Task<User> GetUserAsync(string userName)
 {
 var response = await _IAMService.GetUserAsync(new GetUserRequest { UserName
 = userName });
 return response.User;
 }

• For API details, see GetUser in AWS SDK for .NET API Reference.

ListAttachedRolePolicies

The following code example shows how to use ListAttachedRolePolicies.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1060

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetRole
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/GetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List the IAM role policies that are attached to an IAM role.
 /// </summary>
 /// <param name="roleName">The IAM role to list IAM policies for.</param>
 /// <returns>A list of the IAM policies attached to the IAM role.</returns>
 public async Task<List<AttachedPolicyType>> ListAttachedRolePoliciesAsync(string
 roleName)
 {
 var attachedPolicies = new List<AttachedPolicyType>();
 var attachedRolePoliciesPaginator =
 _IAMService.Paginators.ListAttachedRolePolicies(new ListAttachedRolePoliciesRequest
 { RoleName = roleName });

 await foreach (var response in attachedRolePoliciesPaginator.Responses)
 {
 attachedPolicies.AddRange(response.AttachedPolicies);
 }

 return attachedPolicies;
 }

• For API details, see ListAttachedRolePolicies in AWS SDK for .NET API Reference.

ListGroups

The following code example shows how to use ListGroups.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List IAM groups.
 /// </summary>
 /// <returns>A list of IAM groups.</returns>

Actions 1061

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListAttachedRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 public async Task<List<Group>> ListGroupsAsync()
 {
 var groupsPaginator = _IAMService.Paginators.ListGroups(new
 ListGroupsRequest());
 var groups = new List<Group>();

 await foreach (var response in groupsPaginator.Responses)
 {
 groups.AddRange(response.Groups);
 }

 return groups;
 }

• For API details, see ListGroups in AWS SDK for .NET API Reference.

ListPolicies

The following code example shows how to use ListPolicies.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List IAM policies.
 /// </summary>
 /// <returns>A list of the IAM policies.</returns>
 public async Task<List<ManagedPolicy>> ListPoliciesAsync()
 {
 var listPoliciesPaginator = _IAMService.Paginators.ListPolicies(new
 ListPoliciesRequest());
 var policies = new List<ManagedPolicy>();

 await foreach (var response in listPoliciesPaginator.Responses)

Actions 1062

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 {
 policies.AddRange(response.Policies);
 }

 return policies;
 }

• For API details, see ListPolicies in AWS SDK for .NET API Reference.

ListRolePolicies

The following code example shows how to use ListRolePolicies.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List IAM role policies.
 /// </summary>
 /// <param name="roleName">The IAM role for which to list IAM policies.</param>
 /// <returns>A list of IAM policy names.</returns>
 public async Task<List<string>> ListRolePoliciesAsync(string roleName)
 {
 var listRolePoliciesPaginator = _IAMService.Paginators.ListRolePolicies(new
 ListRolePoliciesRequest { RoleName = roleName });
 var policyNames = new List<string>();

 await foreach (var response in listRolePoliciesPaginator.Responses)
 {
 policyNames.AddRange(response.PolicyNames);
 }

 return policyNames;
 }

Actions 1063

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ListRolePolicies in AWS SDK for .NET API Reference.

ListRoles

The following code example shows how to use ListRoles.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List IAM roles.
 /// </summary>
 /// <returns>A list of IAM roles.</returns>
 public async Task<List<Role>> ListRolesAsync()
 {
 var listRolesPaginator = _IAMService.Paginators.ListRoles(new
 ListRolesRequest());
 var roles = new List<Role>();

 await foreach (var response in listRolesPaginator.Responses)
 {
 roles.AddRange(response.Roles);
 }

 return roles;
 }

• For API details, see ListRoles in AWS SDK for .NET API Reference.

ListSAMLProviders

The following code example shows how to use ListSAMLProviders.

Actions 1064

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListRolePolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListRoles

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List SAML authentication providers.
 /// </summary>
 /// <returns>A list of SAML providers.</returns>
 public async Task<List<SAMLProviderListEntry>> ListSAMLProvidersAsync()
 {
 var response = await _IAMService.ListSAMLProvidersAsync(new
 ListSAMLProvidersRequest());
 return response.SAMLProviderList;
 }

• For API details, see ListSAMLProviders in AWS SDK for .NET API Reference.

ListUsers

The following code example shows how to use ListUsers.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List IAM users.
 /// </summary>
 /// <returns>A list of IAM users.</returns>

Actions 1065

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListSAMLProviders
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 public async Task<List<User>> ListUsersAsync()
 {
 var listUsersPaginator = _IAMService.Paginators.ListUsers(new
 ListUsersRequest());
 var users = new List<User>();

 await foreach (var response in listUsersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

• For API details, see ListUsers in AWS SDK for .NET API Reference.

PutRolePolicy

The following code example shows how to use PutRolePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Update the inline policy document embedded in a role.
 /// </summary>
 /// <param name="policyName">The name of the policy to embed.</param>
 /// <param name="roleName">The name of the role to update.</param>
 /// <param name="policyDocument">The policy document that defines the role.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> PutRolePolicyAsync(string policyName, string roleName,
 string policyDocument)
 {

Actions 1066

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/IAM#code-examples

AWS SDK for .NET Developer Guide

 var request = new PutRolePolicyRequest
 {
 PolicyName = policyName,
 RoleName = roleName,
 PolicyDocument = policyDocument
 };

 var response = await _IAMService.PutRolePolicyAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see PutRolePolicy in AWS SDK for .NET API Reference.

Scenarios

Build and manage a resilient service

The following code example shows how to create a load-balanced web service that returns book,
movie, and song recommendations. The example shows how the service responds to failures, and
how to restructure the service for more resilience when failures occur.

• Use an Amazon EC2 Auto Scaling group to create Amazon Elastic Compute Cloud (Amazon EC2)
instances based on a launch template and to keep the number of instances in a specified range.

• Handle and distribute HTTP requests with Elastic Load Balancing.

• Monitor the health of instances in an Auto Scaling group and forward requests only to healthy
instances.

• Run a Python web server on each EC2 instance to handle HTTP requests. The web server
responds with recommendations and health checks.

• Simulate a recommendation service with an Amazon DynamoDB table.

• Control web server response to requests and health checks by updating AWS Systems Manager
parameters.

Scenarios 1067

https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/PutRolePolicy

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run the interactive scenario at a command prompt.

 static async Task Main(string[] args)
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 // Set up dependency injection for the AWS services.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>()
 .AddAWSService<IAmazonDynamoDB>()
 .AddAWSService<IAmazonElasticLoadBalancingV2>()
 .AddAWSService<IAmazonSimpleSystemsManagement>()
 .AddAWSService<IAmazonAutoScaling>()
 .AddAWSService<IAmazonEC2>()
 .AddTransient<AutoScalerWrapper>()
 .AddTransient<ElasticLoadBalancerWrapper>()
 .AddTransient<SmParameterWrapper>()
 .AddTransient<Recommendations>()
 .AddSingleton<IConfiguration>(_configuration)
)
 .Build();

 ServicesSetup(host);

Scenarios 1068

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/ResilientService#code-examples

AWS SDK for .NET Developer Guide

 ResourcesSetup();

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Resilient Architecture Example
 Scenario.");
 Console.WriteLine(new string('-', 80));
 await Deploy(true);

 Console.WriteLine("Now let's begin the scenario.");
 Console.WriteLine(new string('-', 80));
 await Demo(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Finally, let's clean up our resources.");
 Console.WriteLine(new string('-', 80));

 await DestroyResources(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resilient Architecture Example Scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await DestroyResources(true);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Setup any common resources, also used for integration testing.
 /// </summary>
 public static void ResourcesSetup()
 {
 _httpClient = new HttpClient();
 }

 /// <summary>

Scenarios 1069

AWS SDK for .NET Developer Guide

 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _elasticLoadBalancerWrapper =
 host.Services.GetRequiredService<ElasticLoadBalancerWrapper>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 _recommendations = host.Services.GetRequiredService<Recommendations>();
 _autoScalerWrapper = host.Services.GetRequiredService<AutoScalerWrapper>();
 _smParameterWrapper =
 host.Services.GetRequiredService<SmParameterWrapper>();
 }

 /// <summary>
 /// Deploy necessary resources for the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Deploy(bool interactive)
 {
 var protocol = "HTTP";
 var port = 80;
 var sshPort = 22;

 Console.WriteLine(
 "\nFor this demo, we'll use the AWS SDK for .NET to create several AWS
 resources\n" +
 "to set up a load-balanced web service endpoint and explore some ways to
 make it resilient\n" +
 "against various kinds of failures.\n\n" +
 "Some of the resources create by this demo are:\n");

 Console.WriteLine(
 "\t* A DynamoDB table that the web service depends on to provide book,
 movie, and song recommendations.");
 Console.WriteLine(
 "\t* An EC2 launch template that defines EC2 instances that each contain
 a Python web server.");
 Console.WriteLine(
 "\t* An EC2 Auto Scaling group that manages EC2 instances across several
 Availability Zones.");
 Console.WriteLine(

Scenarios 1070

AWS SDK for .NET Developer Guide

 "\t* An Elastic Load Balancing (ELB) load balancer that targets the Auto
 Scaling group to distribute requests.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to start deploying
 resources.");
 if (interactive)
 Console.ReadLine();

 // Create and populate the DynamoDB table.
 var databaseTableName = _configuration["databaseName"];
 var recommendationsPath = Path.Join(_configuration["resourcePath"],
 "recommendations_objects.json");
 Console.WriteLine($"Creating and populating a DynamoDB table named
 {databaseTableName}.");
 await _recommendations.CreateDatabaseWithName(databaseTableName);
 await _recommendations.PopulateDatabase(databaseTableName,
 recommendationsPath);
 Console.WriteLine(new string('-', 80));

 // Create the EC2 Launch Template.

 Console.WriteLine(
 $"Creating an EC2 launch template that runs 'server_startup_script.sh'
 when an instance starts.\n"
 + "\nThis script starts a Python web server defined in the `server.py`
 script. The web server\n"
 + "listens to HTTP requests on port 80 and responds to requests to '/'
 and to '/healthcheck'.\n"
 + "For demo purposes, this server is run as the root user. In
 production, the best practice is to\n"
 + "run a web server, such as Apache, with least-privileged
 credentials.");
 Console.WriteLine(
 "\nThe template also defines an IAM policy that each instance uses to
 assume a role that grants\n"
 + "permissions to access the DynamoDB recommendation table and Systems
 Manager parameters\n"
 + "that control the flow of the demo.");

 var startupScriptPath = Path.Join(_configuration["resourcePath"],
 "server_startup_script.sh");
 var instancePolicyPath = Path.Join(_configuration["resourcePath"],
 "instance_policy.json");

Scenarios 1071

AWS SDK for .NET Developer Guide

 await _autoScalerWrapper.CreateTemplate(startupScriptPath,
 instancePolicyPath);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "Creating an EC2 Auto Scaling group that maintains three EC2 instances,
 each in a different\n"
 + "Availability Zone.\n");
 var zones = await _autoScalerWrapper.DescribeAvailabilityZones();
 await _autoScalerWrapper.CreateGroupOfSize(3, _autoScalerWrapper.GroupName,
 zones);
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(
 "At this point, you have EC2 instances created. Once each instance
 starts, it listens for\n"
 + "HTTP requests. You can see these instances in the console or continue
 with the demo.\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("Creating variables that control the flow of the demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine(
 "\nCreating an Elastic Load Balancing target group and load balancer.
 The target group\n"
 + "defines how the load balancer connects to instances. The load
 balancer provides a\n"
 + "single endpoint where clients connect and dispatches requests to
 instances in the group.");

 var defaultVpc = await _autoScalerWrapper.GetDefaultVpc();
 var subnets = await
 _autoScalerWrapper.GetAllVpcSubnetsForZones(defaultVpc.VpcId, zones);
 var subnetIds = subnets.Select(s => s.SubnetId).ToList();
 var targetGroup = await
 _elasticLoadBalancerWrapper.CreateTargetGroupOnVpc(_elasticLoadBalancerWrapper.TargetGroupName,
 protocol, port, defaultVpc.VpcId);

Scenarios 1072

AWS SDK for .NET Developer Guide

 await
 _elasticLoadBalancerWrapper.CreateLoadBalancerAndListener(_elasticLoadBalancerWrapper.LoadBalancerName,
 subnetIds, targetGroup);
 await
 _autoScalerWrapper.AttachLoadBalancerToGroup(_autoScalerWrapper.GroupName,
 targetGroup.TargetGroupArn);
 Console.WriteLine("\nVerifying access to the load balancer endpoint...");
 var endPoint = await
 _elasticLoadBalancerWrapper.GetEndpointForLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 var loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);

 if (!loadBalancerAccess)
 {
 Console.WriteLine("\nCouldn't connect to the load balancer, verifying
 that the port is open...");

 var ipString = await _httpClient.GetStringAsync("https://
checkip.amazonaws.com");
 ipString = ipString.Trim();

 var defaultSecurityGroup = await
 _autoScalerWrapper.GetDefaultSecurityGroupForVpc(defaultVpc);
 var portIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, port, ipString);
 var sshPortIsOpen =
 _autoScalerWrapper.VerifyInboundPortForGroup(defaultSecurityGroup, sshPort,
 ipString);

 if (!portIsOpen)
 {
 Console.WriteLine(
 "\nFor this example to work, the default security group for your
 default VPC must\n"
 + "allows access from this computer. You can either add it
 automatically from this\n"
 + "example or add it yourself using the AWS Management Console.
\n");

 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound traffic from your computer's IP address?"))
 {

Scenarios 1073

AWS SDK for .NET Developer Guide

 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, port, ipString);
 }
 }

 if (!sshPortIsOpen)
 {
 if (!interactive || GetYesNoResponse(
 "Do you want to add a rule to the security group to allow
 inbound SSH traffic for debugging from your computer's IP address?"))
 {
 await
 _autoScalerWrapper.OpenInboundPort(defaultSecurityGroup.GroupId, sshPort,
 ipString);
 }
 }
 loadBalancerAccess = await
 _elasticLoadBalancerWrapper.VerifyLoadBalancerEndpoint(endPoint);
 }

 if (loadBalancerAccess)
 {
 Console.WriteLine("Your load balancer is ready. You can access it by
 browsing to:");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 else
 {
 Console.WriteLine(
 "\nCouldn't get a successful response from the load balancer
 endpoint. Troubleshoot by\n"
 + "manually verifying that your VPC and security group are
 configured correctly and that\n"
 + "you can successfully make a GET request to the load balancer
 endpoint:\n");
 Console.WriteLine($"\thttp://{endPoint}\n");
 }
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you're ready to continue with the
 demo.");
 if (interactive)
 Console.ReadLine();
 return true;
 }

Scenarios 1074

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Demonstrate the steps of the scenario.
 /// </summary>
 /// <param name="interactive">True to run as an interactive scenario.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> Demo(bool interactive)
 {
 var ssmOnlyPolicy = Path.Join(_configuration["resourcePath"],
 "ssm_only_policy.json");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Resetting parameters to starting values for demo.");
 await _smParameterWrapper.Reset();

 Console.WriteLine("\nThis part of the demonstration shows how to toggle
 different parts of the system\n" +
 "to create situations where the web service fails, and
 shows how using a resilient\n" +
 "architecture can keep the web service running in spite of
 these failures.");
 Console.WriteLine(new string('-', 88));
 Console.WriteLine("At the start, the load balancer endpoint returns
 recommendations and reports that all targets are healthy.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine($"The web service running on the EC2 instances gets
 recommendations by querying a DynamoDB table.\n" +
 $"The table name is contained in a Systems Manager
 parameter named '{_smParameterWrapper.TableParameter}'.\n" +
 $"To simulate a failure of the recommendation service,
 let's set this parameter to name a non-existent table.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");
 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a failure code. But, the service reports as\n" +
 "healthy to the load balancer because shallow health
 checks don't check for failure of the recommendation service.");
 if (interactive)
 await DemoActionChoices();

Scenarios 1075

AWS SDK for .NET Developer Guide

 Console.WriteLine("Instead of failing when the recommendation service fails,
 the web service can return a static response.");
 Console.WriteLine("While this is not a perfect solution, it presents the
 customer with a somewhat better experience than failure.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.FailureResponseParameter,
 "static");

 Console.WriteLine("\nNow, sending a GET request to the load balancer
 endpoint returns a static response.");
 Console.WriteLine("The service still reports as healthy because health
 checks are still shallow.");
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("Let's reinstate the recommendation service.\n");
 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter,
 _smParameterWrapper.TableName);
 Console.WriteLine(
 "\nLet's also substitute bad credentials for one of the instances in the
 target group so that it can't\n" +
 "access the DynamoDB recommendation table.\n"
);
 await _autoScalerWrapper.CreateInstanceProfileWithName(
 _autoScalerWrapper.BadCredsPolicyName,
 _autoScalerWrapper.BadCredsRoleName,
 _autoScalerWrapper.BadCredsProfileName,
 ssmOnlyPolicy,
 new List<string> { "AmazonSSMManagedInstanceCore" }
);
 var instances = await
 _autoScalerWrapper.GetInstancesByGroupName(_autoScalerWrapper.GroupName);
 var badInstanceId = instances.First();
 var instanceProfile = await
 _autoScalerWrapper.GetInstanceProfile(badInstanceId);
 Console.WriteLine(
 $"Replacing the profile for instance {badInstanceId} with a profile that
 contains\n" +
 "bad credentials...\n"
);
 await _autoScalerWrapper.ReplaceInstanceProfile(
 badInstanceId,

Scenarios 1076

AWS SDK for .NET Developer Guide

 _autoScalerWrapper.BadCredsProfileName,
 instanceProfile.AssociationId
);
 Console.WriteLine(
 "Now, sending a GET request to the load balancer endpoint returns either
 a recommendation or a static response,\n" +
 "depending on which instance is selected by the load balancer.\n"
);
 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nLet's implement a deep health check. For this demo, a
 deep health check tests whether");
 Console.WriteLine("the web service can access the DynamoDB table that it
 depends on for recommendations. Note that");
 Console.WriteLine("the deep health check is only for ELB routing and not for
 Auto Scaling instance health.");
 Console.WriteLine("This kind of deep health check is not recommended for
 Auto Scaling instance health, because it");
 Console.WriteLine("risks accidental termination of all instances in the Auto
 Scaling group when a dependent service fails.");

 Console.WriteLine("\nBy implementing deep health checks, the load balancer
 can detect when one of the instances is failing");
 Console.WriteLine("and take that instance out of rotation.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.HealthCheckParameter,
 "deep");

 Console.WriteLine($"\nNow, checking target health indicates that the
 instance with bad credentials ({badInstanceId})");
 Console.WriteLine("is unhealthy. Note that it might take a minute or two for
 the load balancer to detect the unhealthy");
 Console.WriteLine("instance. Sending a GET request to the load balancer
 endpoint always returns a recommendation, because");
 Console.WriteLine("the load balancer takes unhealthy instances out of its
 rotation.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nBecause the instances in this demo are controlled by an
 auto scaler, the simplest way to fix an unhealthy");

Scenarios 1077

AWS SDK for .NET Developer Guide

 Console.WriteLine("instance is to terminate it and let the auto scaler start
 a new instance to replace it.");

 await _autoScalerWrapper.TryTerminateInstanceById(badInstanceId);

 Console.WriteLine($"\nEven while the instance is terminating and the new
 instance is starting, sending a GET");
 Console.WriteLine("request to the web service continues to get a successful
 recommendation response because");
 Console.WriteLine("starts and reports as healthy, it is included in the load
 balancing rotation.");
 Console.WriteLine("Note that terminating and replacing an instance typically
 takes several minutes, during which time you");
 Console.WriteLine("can see the changing health check status until the new
 instance is running and healthy.");

 if (interactive)
 await DemoActionChoices();

 Console.WriteLine("\nIf the recommendation service fails now, deep health
 checks mean all instances report as unhealthy.");

 await
 _smParameterWrapper.PutParameterByName(_smParameterWrapper.TableParameter, "this-
is-not-a-table");

 Console.WriteLine($"\nWhen all instances are unhealthy, the load balancer
 continues to route requests even to");
 Console.WriteLine("unhealthy instances, allowing them to fail open and
 return a static response rather than fail");
 Console.WriteLine("closed and report failure to the customer.");

 if (interactive)
 await DemoActionChoices();
 await _smParameterWrapper.Reset();

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="interactive">True to ask the user for cleanup.</param>

Scenarios 1078

AWS SDK for .NET Developer Guide

 /// <returns>Async task.</returns>
 public static async Task<bool> DestroyResources(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "To keep things tidy and to avoid unwanted charges on your account, we
 can clean up all AWS resources\n" +
 "that were created for this demo."
);

 if (!interactive || GetYesNoResponse("Do you want to clean up all demo
 resources? (y/n) "))
 {
 await
 _elasticLoadBalancerWrapper.DeleteLoadBalancerByName(_elasticLoadBalancerWrapper.LoadBalancerName);
 await
 _elasticLoadBalancerWrapper.DeleteTargetGroupByName(_elasticLoadBalancerWrapper.TargetGroupName);
 await
 _autoScalerWrapper.TerminateAndDeleteAutoScalingGroupWithName(_autoScalerWrapper.GroupName);
 await
 _autoScalerWrapper.DeleteKeyPairByName(_autoScalerWrapper.KeyPairName);
 await
 _autoScalerWrapper.DeleteTemplateByName(_autoScalerWrapper.LaunchTemplateName);
 await _autoScalerWrapper.DeleteInstanceProfile(
 _autoScalerWrapper.BadCredsProfileName,
 _autoScalerWrapper.BadCredsRoleName
);
 await
 _recommendations.DestroyDatabaseByName(_recommendations.TableName);
 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you might
 incur unexpected charges."
);
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

Scenarios 1079

AWS SDK for .NET Developer Guide

Create a class that wraps Auto Scaling and Amazon EC2 actions.

/// <summary>
/// Encapsulates Amazon EC2 Auto Scaling and EC2 management methods.
/// </summary>
public class AutoScalerWrapper
{
 private readonly IAmazonAutoScaling _amazonAutoScaling;
 private readonly IAmazonEC2 _amazonEc2;
 private readonly IAmazonSimpleSystemsManagement _amazonSsm;
 private readonly IAmazonIdentityManagementService _amazonIam;
 private readonly ILogger<AutoScalerWrapper> _logger;

 private readonly string _instanceType = "";
 private readonly string _amiParam = "";
 private readonly string _launchTemplateName = "";
 private readonly string _groupName = "";
 private readonly string _instancePolicyName = "";
 private readonly string _instanceRoleName = "";
 private readonly string _instanceProfileName = "";
 private readonly string _badCredsProfileName = "";
 private readonly string _badCredsRoleName = "";
 private readonly string _badCredsPolicyName = "";
 private readonly string _keyPairName = "";

 public string GroupName => _groupName;
 public string KeyPairName => _keyPairName;
 public string LaunchTemplateName => _launchTemplateName;
 public string InstancePolicyName => _instancePolicyName;
 public string BadCredsProfileName => _badCredsProfileName;
 public string BadCredsRoleName => _badCredsRoleName;
 public string BadCredsPolicyName => _badCredsPolicyName;

 /// <summary>
 /// Constructor for the AutoScalerWrapper.
 /// </summary>
 /// <param name="amazonAutoScaling">The injected AutoScaling client.</param>
 /// <param name="amazonEc2">The injected EC2 client.</param>
 /// <param name="amazonIam">The injected IAM client.</param>
 /// <param name="amazonSsm">The injected SSM client.</param>
 public AutoScalerWrapper(
 IAmazonAutoScaling amazonAutoScaling,
 IAmazonEC2 amazonEc2,
 IAmazonSimpleSystemsManagement amazonSsm,

Scenarios 1080

AWS SDK for .NET Developer Guide

 IAmazonIdentityManagementService amazonIam,
 IConfiguration configuration,
 ILogger<AutoScalerWrapper> logger)
 {
 _amazonAutoScaling = amazonAutoScaling;
 _amazonEc2 = amazonEc2;
 _amazonSsm = amazonSsm;
 _amazonIam = amazonIam;
 _logger = logger;

 var prefix = configuration["resourcePrefix"];
 _instanceType = configuration["instanceType"];
 _amiParam = configuration["amiParam"];

 _launchTemplateName = prefix + "-template";
 _groupName = prefix + "-group";
 _instancePolicyName = prefix + "-pol";
 _instanceRoleName = prefix + "-role";
 _instanceProfileName = prefix + "-prof";
 _badCredsPolicyName = prefix + "-bc-pol";
 _badCredsRoleName = prefix + "-bc-role";
 _badCredsProfileName = prefix + "-bc-prof";
 _keyPairName = prefix + "-key-pair";
 }

 /// <summary>
 /// Create a policy, role, and profile that is associated with instances with a
 specified name.
 /// An instance's associated profile defines a role that is assumed by the
 /// instance.The role has attached policies that specify the AWS permissions
 granted to
 /// clients that run on the instance.
 /// </summary>
 /// <param name="policyName">Name to use for the policy.</param>
 /// <param name="roleName">Name to use for the role.</param>
 /// <param name="profileName">Name to use for the profile.</param>
 /// <param name="ssmOnlyPolicyFile">Path to a policy file for SSM.</param>
 /// <param name="awsManagedPolicies">AWS Managed policies to be attached to the
 role.</param>
 /// <returns>The Arn of the profile.</returns>
 public async Task<string> CreateInstanceProfileWithName(
 string policyName,
 string roleName,
 string profileName,

Scenarios 1081

AWS SDK for .NET Developer Guide

 string ssmOnlyPolicyFile,
 List<string>? awsManagedPolicies = null)
 {

 var assumeRoleDoc = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 "\"Service\": [" +
 "\"ec2.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var policyDocument = await File.ReadAllTextAsync(ssmOnlyPolicyFile);

 var policyArn = "";

 try
 {
 var createPolicyResult = await _amazonIam.CreatePolicyAsync(
 new CreatePolicyRequest
 {
 PolicyName = policyName,
 PolicyDocument = policyDocument
 });
 policyArn = createPolicyResult.Policy.Arn;
 }
 catch (EntityAlreadyExistsException)
 {
 // The policy already exists, so we look it up to get the Arn.
 var policiesPaginator = _amazonIam.Paginators.ListPolicies(
 new ListPoliciesRequest()
 {
 Scope = PolicyScopeType.Local
 });
 // Get the entire list using the paginator.
 await foreach (var policy in policiesPaginator.Policies)
 {
 if (policy.PolicyName.Equals(policyName))
 {

Scenarios 1082

AWS SDK for .NET Developer Guide

 policyArn = policy.Arn;
 }
 }

 if (policyArn == null)
 {
 throw new InvalidOperationException("Policy not found");
 }
 }

 try
 {
 await _amazonIam.CreateRoleAsync(new CreateRoleRequest()
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = assumeRoleDoc,
 });
 await _amazonIam.AttachRolePolicyAsync(new AttachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policyArn
 });
 if (awsManagedPolicies != null)
 {
 foreach (var awsPolicy in awsManagedPolicies)
 {
 await _amazonIam.AttachRolePolicyAsync(new
 AttachRolePolicyRequest()
 {
 PolicyArn = $"arn:aws:iam::aws:policy/{awsPolicy}",
 RoleName = roleName
 });
 }
 }
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Role already exists.");
 }

 string profileArn = "";
 try
 {
 var profileCreateResponse = await _amazonIam.CreateInstanceProfileAsync(

Scenarios 1083

AWS SDK for .NET Developer Guide

 new CreateInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 // Allow time for the profile to be ready.
 profileArn = profileCreateResponse.InstanceProfile.Arn;
 Thread.Sleep(10000);
 await _amazonIam.AddRoleToInstanceProfileAsync(
 new AddRoleToInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });

 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("Policy already exists.");
 var profileGetResponse = await _amazonIam.GetInstanceProfileAsync(
 new GetInstanceProfileRequest()
 {
 InstanceProfileName = profileName
 });
 profileArn = profileGetResponse.InstanceProfile.Arn;
 }
 return profileArn;
 }

 /// <summary>
 /// Create a new key pair and save the file.
 /// </summary>
 /// <param name="newKeyPairName">The name of the new key pair.</param>
 /// <returns>Async task.</returns>
 public async Task CreateKeyPair(string newKeyPairName)
 {
 try
 {
 var keyResponse = await _amazonEc2.CreateKeyPairAsync(
 new CreateKeyPairRequest() { KeyName = newKeyPairName });
 await File.WriteAllTextAsync($"{newKeyPairName}.pem",
 keyResponse.KeyPair.KeyMaterial);
 Console.WriteLine($"Created key pair {newKeyPairName}.");
 }
 catch (AlreadyExistsException)

Scenarios 1084

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine("Key pair already exists.");
 }
 }

 /// <summary>
 /// Delete the key pair and file by name.
 /// </summary>
 /// <param name="deleteKeyPairName">The key pair to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteKeyPairByName(string deleteKeyPairName)
 {
 try
 {
 await _amazonEc2.DeleteKeyPairAsync(
 new DeleteKeyPairRequest() { KeyName = deleteKeyPairName });
 File.Delete($"{deleteKeyPairName}.pem");
 }
 catch (FileNotFoundException)
 {
 Console.WriteLine($"Key pair {deleteKeyPairName} not found.");
 }
 }

 /// <summary>
 /// Creates an Amazon EC2 launch template to use with Amazon EC2 Auto Scaling.
 /// The launch template specifies a Bash script in its user data field that runs
 after
 /// the instance is started. This script installs the Python packages and starts
 a Python
 /// web server on the instance.
 /// </summary>
 /// <param name="startupScriptPath">The path to a Bash script file that is
 run.</param>
 /// <param name="instancePolicyPath">The path to a permissions policy to create
 and attach to the profile.</param>
 /// <returns>The template object.</returns>
 public async Task<Amazon.EC2.Model.LaunchTemplate> CreateTemplate(string
 startupScriptPath, string instancePolicyPath)
 {
 try
 {
 await CreateKeyPair(_keyPairName);

Scenarios 1085

AWS SDK for .NET Developer Guide

 await CreateInstanceProfileWithName(_instancePolicyName,
 _instanceRoleName,
 _instanceProfileName, instancePolicyPath);

 var startServerText = await File.ReadAllTextAsync(startupScriptPath);
 var plainTextBytes =
 System.Text.Encoding.UTF8.GetBytes(startServerText);

 var amiLatest = await _amazonSsm.GetParameterAsync(
 new GetParameterRequest() { Name = _amiParam });
 var amiId = amiLatest.Parameter.Value;
 var launchTemplateResponse = await _amazonEc2.CreateLaunchTemplateAsync(
 new CreateLaunchTemplateRequest()
 {
 LaunchTemplateName = _launchTemplateName,
 LaunchTemplateData = new RequestLaunchTemplateData()
 {
 InstanceType = _instanceType,
 ImageId = amiId,
 IamInstanceProfile =
 new

 LaunchTemplateIamInstanceProfileSpecificationRequest()
 {
 Name = _instanceProfileName
 },
 KeyName = _keyPairName,
 UserData = System.Convert.ToBase64String(plainTextBytes)
 }
 });
 return launchTemplateResponse.LaunchTemplate;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.AlreadyExistsException")
 {
 _logger.LogError($"Could not create the template, the name
 {_launchTemplateName} already exists. " +
 $"Please try again with a unique name.");
 }

 throw;
 }

Scenarios 1086

AWS SDK for .NET Developer Guide

 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get a list of Availability Zones in the AWS Region of the Amazon EC2 Client.
 /// </summary>
 /// <returns>A list of availability zones.</returns>
 public async Task<List<string>> DescribeAvailabilityZones()
 {
 try
 {
 var zoneResponse = await _amazonEc2.DescribeAvailabilityZonesAsync(
 new DescribeAvailabilityZonesRequest());
 return zoneResponse.AvailabilityZones.Select(z => z.ZoneName).ToList();
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 _logger.LogError($"An Amazon EC2 error occurred while listing
 availability zones.: {ec2Exception.Message}");
 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while listing availability zones.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Create an EC2 Auto Scaling group of a specified size and name.
 /// </summary>
 /// <param name="groupSize">The size for the group.</param>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="availabilityZones">The availability zones for the group.</
param>
 /// <returns>Async task.</returns>
 public async Task CreateGroupOfSize(int groupSize, string groupName,
 List<string> availabilityZones)

Scenarios 1087

AWS SDK for .NET Developer Guide

 {
 try
 {
 await _amazonAutoScaling.CreateAutoScalingGroupAsync(
 new CreateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 AvailabilityZones = availabilityZones,
 LaunchTemplate =
 new Amazon.AutoScaling.Model.LaunchTemplateSpecification()
 {
 LaunchTemplateName = _launchTemplateName,
 Version = "$Default"
 },
 MaxSize = groupSize,
 MinSize = groupSize
 });
 Console.WriteLine($"Created EC2 Auto Scaling group {groupName} with size
 {groupSize}.");
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine($"EC2 Auto Scaling group {groupName} already
 exists.");
 }
 }

 /// <summary>
 /// Get the default VPC for the account.
 /// </summary>
 /// <returns>The default VPC object.</returns>
 public async Task<Vpc> GetDefaultVpc()
 {
 try
 {
 var vpcResponse = await _amazonEc2.DescribeVpcsAsync(
 new DescribeVpcsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("is-default", new List<string>() { "true" })
 }
 });
 return vpcResponse.Vpcs[0];

Scenarios 1088

AWS SDK for .NET Developer Guide

 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "UnauthorizedOperation")
 {
 _logger.LogError(ec2Exception, $"You do not have the necessary
 permissions to describe VPCs.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the vpcs.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Get all the subnets for a Vpc in a set of availability zones.
 /// </summary>
 /// <param name="vpcId">The Id of the Vpc.</param>
 /// <param name="availabilityZones">The list of availability zones.</param>
 /// <returns>The collection of subnet objects.</returns>
 public async Task<List<Subnet>> GetAllVpcSubnetsForZones(string vpcId,
 List<string> availabilityZones)
 {
 try
 {
 var subnets = new List<Subnet>();
 var subnetPaginator = _amazonEc2.Paginators.DescribeSubnets(
 new DescribeSubnetsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("vpc-id", new List<string>() { vpcId }),
 new("availability-zone", availabilityZones),
 new("default-for-az", new List<string>() { "true" })
 }
 });

 // Get the entire list using the paginator.
 await foreach (var subnet in subnetPaginator.Subnets)

Scenarios 1089

AWS SDK for .NET Developer Guide

 {
 subnets.Add(subnet);
 }

 return subnets;
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidVpcID.NotFound")
 {
 _logger.LogError(ec2Exception, $"The specified VPC ID {vpcId} does
 not exist.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while describing the subnets.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Delete a launch template by name.
 /// </summary>
 /// <param name="templateName">The name of the template to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTemplateByName(string templateName)
 {
 try
 {
 await _amazonEc2.DeleteLaunchTemplateAsync(
 new DeleteLaunchTemplateRequest()
 {
 LaunchTemplateName = templateName
 });
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode ==
 "InvalidLaunchTemplateName.NotFoundException")
 {

Scenarios 1090

AWS SDK for .NET Developer Guide

 _logger.LogError(
 $"Could not delete the template, the name {_launchTemplateName}
 was not found.");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError($"An error occurred while deleting the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Detaches a role from an instance profile, detaches policies from the role,
 /// and deletes all the resources.
 /// </summary>
 /// <param name="profileName">The name of the profile to delete.</param>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteInstanceProfile(string profileName, string roleName)
 {
 try
 {
 await _amazonIam.RemoveRoleFromInstanceProfileAsync(
 new RemoveRoleFromInstanceProfileRequest()
 {
 InstanceProfileName = profileName,
 RoleName = roleName
 });
 await _amazonIam.DeleteInstanceProfileAsync(
 new DeleteInstanceProfileRequest() { InstanceProfileName =
 profileName });
 var attachedPolicies = await _amazonIam.ListAttachedRolePoliciesAsync(
 new ListAttachedRolePoliciesRequest() { RoleName = roleName });
 foreach (var policy in attachedPolicies.AttachedPolicies)
 {
 await _amazonIam.DetachRolePolicyAsync(
 new DetachRolePolicyRequest()
 {
 RoleName = roleName,
 PolicyArn = policy.PolicyArn

Scenarios 1091

AWS SDK for .NET Developer Guide

 });
 // Delete the custom policies only.
 if (!policy.PolicyArn.StartsWith("arn:aws:iam::aws"))
 {
 await _amazonIam.DeletePolicyAsync(
 new Amazon.IdentityManagement.Model.DeletePolicyRequest()
 {
 PolicyArn = policy.PolicyArn
 });
 }
 }

 await _amazonIam.DeleteRoleAsync(
 new DeleteRoleRequest() { RoleName = roleName });
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine($"Instance profile {profileName} does not exist.");
 }
 }

 /// <summary>
 /// Gets data about the instances in an EC2 Auto Scaling group by its group
 name.
 /// </summary>
 /// <param name="group">The name of the auto scaling group.</param>
 /// <returns>A collection of instance Ids.</returns>
 public async Task<IEnumerable<string>> GetInstancesByGroupName(string group)
 {
 var instanceResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { group }
 });
 var instanceIds = instanceResponse.AutoScalingGroups.SelectMany(
 g => g.Instances.Select(i => i.InstanceId));
 return instanceIds;
 }

 /// <summary>
 /// Get the instance profile association data for an instance.
 /// </summary>
 /// <param name="instanceId">The Id of the instance.</param>

Scenarios 1092

AWS SDK for .NET Developer Guide

 /// <returns>Instance profile associations data.</returns>
 public async Task<IamInstanceProfileAssociation> GetInstanceProfile(string
 instanceId)
 {
 try
 {
 var response = await
 _amazonEc2.DescribeIamInstanceProfileAssociationsAsync(
 new DescribeIamInstanceProfileAssociationsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new("instance-id", new List<string>() { instanceId })
 },
 });
 return response.IamInstanceProfileAssociations[0];
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while creating the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Replace the profile associated with a running instance. After the profile is
 replaced, the instance
 /// is rebooted to ensure that it uses the new profile. When the instance is
 ready, Systems Manager is
 /// used to restart the Python web server.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to update.</param>
 /// <param name="credsProfileName">The name of the new profile to associate with
 the specified instance.</param>

Scenarios 1093

AWS SDK for .NET Developer Guide

 /// <param name="associationId">The Id of the existing profile association for
 the instance.</param>
 /// <returns>Async task.</returns>
 public async Task ReplaceInstanceProfile(string instanceId, string
 credsProfileName, string associationId)
 {
 try
 {
 await _amazonEc2.ReplaceIamInstanceProfileAssociationAsync(
 new ReplaceIamInstanceProfileAssociationRequest()
 {
 AssociationId = associationId,
 IamInstanceProfile = new IamInstanceProfileSpecification()
 {
 Name = credsProfileName
 }
 });
 // Allow time before resetting.
 Thread.Sleep(25000);

 await _amazonEc2.RebootInstancesAsync(
 new RebootInstancesRequest(new List<string>() { instanceId }));
 Thread.Sleep(25000);
 var instanceReady = false;
 var retries = 5;
 while (retries-- > 0 && !instanceReady)
 {
 var instancesPaginator =
 _amazonSsm.Paginators.DescribeInstanceInformation(
 new DescribeInstanceInformationRequest());
 // Get the entire list using the paginator.
 await foreach (var instance in
 instancesPaginator.InstanceInformationList)
 {
 instanceReady = instance.InstanceId == instanceId;
 if (instanceReady)
 {
 break;
 }
 }
 }
 Console.WriteLine("Waiting for instance to be running.");
 await WaitForInstanceState(instanceId, InstanceStateName.Running);
 Console.WriteLine("Instance ready.");

Scenarios 1094

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Sending restart command to instance {instanceId}");
 await _amazonSsm.SendCommandAsync(
 new SendCommandRequest()
 {
 InstanceIds = new List<string>() { instanceId },
 DocumentName = "AWS-RunShellScript",
 Parameters = new Dictionary<string, List<string>>()
 {
 {
 "commands",
 new List<string>() { "cd / && sudo python3 server.py
 80" }
 }
 }
 });
 Console.WriteLine($"Restarted the web server on instance {instanceId}");
 }
 catch (AmazonEC2Exception ec2Exception)
 {
 if (ec2Exception.ErrorCode == "InvalidInstanceID.NotFound")
 {
 _logger.LogError(ec2Exception, $"Instance {instanceId} not found");
 }

 throw;
 }
 catch (Exception ex)
 {
 _logger.LogError(ex, $"An error occurred while replacing the template.:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Try to terminate an instance by its Id.
 /// </summary>
 /// <param name="instanceId">The Id of the instance to terminate.</param>
 /// <returns>Async task.</returns>
 public async Task TryTerminateInstanceById(string instanceId)
 {
 var stopping = false;
 Console.WriteLine($"Stopping {instanceId}...");
 while (!stopping)

Scenarios 1095

AWS SDK for .NET Developer Guide

 {
 try
 {
 await _amazonAutoScaling.TerminateInstanceInAutoScalingGroupAsync(
 new TerminateInstanceInAutoScalingGroupRequest()
 {
 InstanceId = instanceId,
 ShouldDecrementDesiredCapacity = false
 });
 stopping = true;
 }
 catch (ScalingActivityInProgressException)
 {
 Console.WriteLine($"Scaling activity in progress for {instanceId}.
 Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Tries to delete the EC2 Auto Scaling group. If the group is in use or in
 progress,
 /// waits and retries until the group is successfully deleted.
 /// </summary>
 /// <param name="groupName">The name of the group to try to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TryDeleteGroupByName(string groupName)
 {
 var stopped = false;
 while (!stopped)
 {
 try
 {
 await _amazonAutoScaling.DeleteAutoScalingGroupAsync(
 new DeleteAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName
 });
 stopped = true;
 }
 catch (Exception e)
 when ((e is ScalingActivityInProgressException)
 || (e is Amazon.AutoScaling.Model.ResourceInUseException))

Scenarios 1096

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Some instances are still running. Waiting...");
 Thread.Sleep(10000);
 }
 }
 }

 /// <summary>
 /// Terminate instances and delete the Auto Scaling group by name.
 /// </summary>
 /// <param name="groupName">The name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task TerminateAndDeleteAutoScalingGroupWithName(string groupName)
 {
 var describeGroupsResponse = await
 _amazonAutoScaling.DescribeAutoScalingGroupsAsync(
 new DescribeAutoScalingGroupsRequest()
 {
 AutoScalingGroupNames = new List<string>() { groupName }
 });
 if (describeGroupsResponse.AutoScalingGroups.Any())
 {
 // Update the size to 0.
 await _amazonAutoScaling.UpdateAutoScalingGroupAsync(
 new UpdateAutoScalingGroupRequest()
 {
 AutoScalingGroupName = groupName,
 MinSize = 0
 });
 var group = describeGroupsResponse.AutoScalingGroups[0];
 foreach (var instance in group.Instances)
 {
 await TryTerminateInstanceById(instance.InstanceId);
 }

 await TryDeleteGroupByName(groupName);
 }
 else
 {
 Console.WriteLine($"No groups found with name {groupName}.");
 }
 }

Scenarios 1097

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Get the default security group for a specified Vpc.
 /// </summary>
 /// <param name="vpc">The Vpc to search.</param>
 /// <returns>The default security group.</returns>
 public async Task<SecurityGroup> GetDefaultSecurityGroupForVpc(Vpc vpc)
 {
 var groupResponse = await _amazonEc2.DescribeSecurityGroupsAsync(
 new DescribeSecurityGroupsRequest()
 {
 Filters = new List<Amazon.EC2.Model.Filter>()
 {
 new ("group-name", new List<string>() { "default" }),
 new ("vpc-id", new List<string>() { vpc.VpcId })
 }
 });
 return groupResponse.SecurityGroups[0];
 }

 /// <summary>
 /// Verify the default security group of a Vpc allows ingress from the calling
 computer.
 /// This can be done by allowing ingress from this computer's IP address.
 /// In some situations, such as connecting from a corporate network, you must
 instead specify
 /// a prefix list Id. You can also temporarily open the port to any IP address
 while running this example.
 /// If you do, be sure to remove public access when you're done.
 /// </summary>
 /// <param name="vpc">The group to check.</param>
 /// <param name="port">The port to verify.</param>
 /// <param name="ipAddress">This computer's IP address.</param>
 /// <returns>True if the ip address is allowed on the group.</returns>
 public bool VerifyInboundPortForGroup(SecurityGroup group, int port, string
 ipAddress)
 {
 var portIsOpen = false;
 foreach (var ipPermission in group.IpPermissions)
 {
 if (ipPermission.FromPort == port)
 {
 foreach (var ipRange in ipPermission.Ipv4Ranges)
 {
 var cidr = ipRange.CidrIp;

Scenarios 1098

AWS SDK for .NET Developer Guide

 if (cidr.StartsWith(ipAddress) || cidr == "0.0.0.0/0")
 {
 portIsOpen = true;
 }
 }

 if (ipPermission.PrefixListIds.Any())
 {
 portIsOpen = true;
 }

 if (!portIsOpen)
 {
 Console.WriteLine("The inbound rule does not appear to be open
 to either this computer's IP\n" +
 "address, to all IP addresses (0.0.0.0/0), or
 to a prefix list ID.");
 }
 else
 {
 break;
 }
 }
 }

 return portIsOpen;
 }

 /// <summary>
 /// Add an ingress rule to the specified security group that allows access on
 the
 /// specified port from the specified IP address.
 /// </summary>
 /// <param name="groupId">The Id of the security group to modify.</param>
 /// <param name="port">The port to open.</param>
 /// <param name="ipAddress">The IP address to allow access.</param>
 /// <returns>Async task.</returns>
 public async Task OpenInboundPort(string groupId, int port, string ipAddress)
 {
 await _amazonEc2.AuthorizeSecurityGroupIngressAsync(
 new AuthorizeSecurityGroupIngressRequest()
 {
 GroupId = groupId,
 IpPermissions = new List<IpPermission>()

Scenarios 1099

AWS SDK for .NET Developer Guide

 {
 new IpPermission()
 {
 FromPort = port,
 ToPort = port,
 IpProtocol = "tcp",
 Ipv4Ranges = new List<IpRange>()
 {
 new IpRange() { CidrIp = $"{ipAddress}/32" }
 }
 }
 }
 });
 }

 /// <summary>
 /// Attaches an Elastic Load Balancing (ELB) target group to this EC2 Auto
 Scaling group.
 /// The
 /// </summary>
 /// <param name="autoScalingGroupName">The name of the Auto Scaling group.</
param>
 /// <param name="targetGroupArn">The Arn for the target group.</param>
 /// <returns>Async task.</returns>
 public async Task AttachLoadBalancerToGroup(string autoScalingGroupName, string
 targetGroupArn)
 {
 await _amazonAutoScaling.AttachLoadBalancerTargetGroupsAsync(
 new AttachLoadBalancerTargetGroupsRequest()
 {
 AutoScalingGroupName = autoScalingGroupName,
 TargetGroupARNs = new List<string>() { targetGroupArn }
 });
 }

 /// <summary>
 /// Wait until an EC2 instance is in a specified state.
 /// </summary>
 /// <param name="instanceId">The instance Id.</param>
 /// <param name="stateName">The state to wait for.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> WaitForInstanceState(string instanceId,
 InstanceStateName stateName)
 {

Scenarios 1100

AWS SDK for .NET Developer Guide

 var request = new DescribeInstancesRequest
 {
 InstanceIds = new List<string> { instanceId }
 };

 // Wait until the instance is in the specified state.
 var hasState = false;
 do
 {
 // Wait 5 seconds.
 Thread.Sleep(5000);

 // Check for the desired state.
 var response = await _amazonEc2.DescribeInstancesAsync(request);
 var instance = response.Reservations[0].Instances[0];
 hasState = instance.State.Name == stateName;
 Console.Write(". ");
 } while (!hasState);

 return hasState;
 }
}

Create a class that wraps Elastic Load Balancing actions.

/// <summary>
/// Encapsulates Elastic Load Balancer actions.
/// </summary>
public class ElasticLoadBalancerWrapper
{
 private readonly IAmazonElasticLoadBalancingV2 _amazonElasticLoadBalancingV2;
 private string? _endpoint = null;
 private readonly string _targetGroupName = "";
 private readonly string _loadBalancerName = "";
 HttpClient _httpClient = new();

 public string TargetGroupName => _targetGroupName;
 public string LoadBalancerName => _loadBalancerName;

 /// <summary>
 /// Constructor for the Elastic Load Balancer wrapper.

Scenarios 1101

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="amazonElasticLoadBalancingV2">The injected load balancing v2
 client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public ElasticLoadBalancerWrapper(
 IAmazonElasticLoadBalancingV2 amazonElasticLoadBalancingV2,
 IConfiguration configuration)
 {
 _amazonElasticLoadBalancingV2 = amazonElasticLoadBalancingV2;
 var prefix = configuration["resourcePrefix"];
 _targetGroupName = prefix + "-tg";
 _loadBalancerName = prefix + "-lb";
 }

 /// <summary>
 /// Get the HTTP Endpoint of a load balancer by its name.
 /// </summary>
 /// <param name="loadBalancerName">The name of the load balancer.</param>
 /// <returns>The HTTP endpoint.</returns>
 public async Task<string> GetEndpointForLoadBalancerByName(string
 loadBalancerName)
 {
 if (_endpoint == null)
 {
 var endpointResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { loadBalancerName }
 });
 _endpoint = endpointResponse.LoadBalancers[0].DNSName;
 }

 return _endpoint;
 }

 /// <summary>
 /// Return the GET response for an endpoint as text.
 /// </summary>
 /// <param name="endpoint">The endpoint for the request.</param>
 /// <returns>The request response.</returns>
 public async Task<string> GetEndPointResponse(string endpoint)
 {
 var endpointResponse = await _httpClient.GetAsync($"http://{endpoint}");

Scenarios 1102

AWS SDK for .NET Developer Guide

 var textResponse = await endpointResponse.Content.ReadAsStringAsync();
 return textResponse!;
 }

 /// <summary>
 /// Get the target health for a group by name.
 /// </summary>
 /// <param name="groupName">The name of the group.</param>
 /// <returns>The collection of health descriptions.</returns>
 public async Task<List<TargetHealthDescription>>
 CheckTargetHealthForGroup(string groupName)
 {
 List<TargetHealthDescription> result = null!;
 try
 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });
 var healthResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetHealthAsync(
 new DescribeTargetHealthRequest()
 {
 TargetGroupArn =
 groupResponse.TargetGroups[0].TargetGroupArn
 });
 ;
 result = healthResponse.TargetHealthDescriptions;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine($"Target group {groupName} not found.");
 }
 return result;
 }

 /// <summary>
 /// Create an Elastic Load Balancing target group. The target group specifies
 how the load balancer forwards
 /// requests to instances in the group and how instance health is checked.
 ///

Scenarios 1103

AWS SDK for .NET Developer Guide

 /// To speed up this demo, the health check is configured with shortened times
 and lower thresholds. In production,
 /// you might want to decrease the sensitivity of your health checks to avoid
 unwanted failures.
 /// </summary>
 /// <param name="groupName">The name for the group.</param>
 /// <param name="protocol">The protocol, such as HTTP.</param>
 /// <param name="port">The port to use to forward requests, such as 80.</param>
 /// <param name="vpcId">The Id of the Vpc in which the load balancer exists.</
param>
 /// <returns>The new TargetGroup object.</returns>
 public async Task<TargetGroup> CreateTargetGroupOnVpc(string groupName,
 ProtocolEnum protocol, int port, string vpcId)
 {
 var createResponse = await
 _amazonElasticLoadBalancingV2.CreateTargetGroupAsync(
 new CreateTargetGroupRequest()
 {
 Name = groupName,
 Protocol = protocol,
 Port = port,
 HealthCheckPath = "/healthcheck",
 HealthCheckIntervalSeconds = 10,
 HealthCheckTimeoutSeconds = 5,
 HealthyThresholdCount = 2,
 UnhealthyThresholdCount = 2,
 VpcId = vpcId
 });
 var targetGroup = createResponse.TargetGroups[0];
 return targetGroup;
 }

 /// <summary>
 /// Create an Elastic Load Balancing load balancer that uses the specified
 subnets
 /// and forwards requests to the specified target group.
 /// </summary>
 /// <param name="name">The name for the new load balancer.</param>
 /// <param name="subnetIds">Subnets for the load balancer.</param>
 /// <param name="targetGroup">Target group for forwarded requests.</param>
 /// <returns>The new LoadBalancer object.</returns>
 public async Task<LoadBalancer> CreateLoadBalancerAndListener(string name,
 List<string> subnetIds, TargetGroup targetGroup)
 {

Scenarios 1104

AWS SDK for .NET Developer Guide

 var createLbResponse = await
 _amazonElasticLoadBalancingV2.CreateLoadBalancerAsync(
 new CreateLoadBalancerRequest()
 {
 Name = name,
 Subnets = subnetIds
 });
 var loadBalancerArn = createLbResponse.LoadBalancers[0].LoadBalancerArn;

 // Wait for load balancer to be available.
 var loadBalancerReady = false;
 while (!loadBalancerReady)
 {
 try
 {
 var describeResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });

 var loadBalancerState =
 describeResponse.LoadBalancers[0].State.Code;

 loadBalancerReady = loadBalancerState ==
 LoadBalancerStateEnum.Active;
 }
 catch (LoadBalancerNotFoundException)
 {
 loadBalancerReady = false;
 }
 Thread.Sleep(10000);
 }
 // Create the listener.
 await _amazonElasticLoadBalancingV2.CreateListenerAsync(
 new CreateListenerRequest()
 {
 LoadBalancerArn = loadBalancerArn,
 Protocol = targetGroup.Protocol,
 Port = targetGroup.Port,
 DefaultActions = new List<Action>()
 {
 new Action()

Scenarios 1105

AWS SDK for .NET Developer Guide

 {
 Type = ActionTypeEnum.Forward,
 TargetGroupArn = targetGroup.TargetGroupArn
 }
 }
 });
 return createLbResponse.LoadBalancers[0];
 }

 /// <summary>
 /// Verify this computer can successfully send a GET request to the
 /// load balancer endpoint.
 /// </summary>
 /// <param name="endpoint">The endpoint to check.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> VerifyLoadBalancerEndpoint(string endpoint)
 {
 var success = false;
 var retries = 3;
 while (!success && retries > 0)
 {
 try
 {
 var endpointResponse = await _httpClient.GetAsync($"http://
{endpoint}");
 Console.WriteLine($"Response: {endpointResponse.StatusCode}.");

 if (endpointResponse.IsSuccessStatusCode)
 {
 success = true;
 }
 else
 {
 retries = 0;
 }
 }
 catch (HttpRequestException)
 {
 Console.WriteLine("Connection error, retrying...");
 retries--;
 Thread.Sleep(10000);
 }
 }

Scenarios 1106

AWS SDK for .NET Developer Guide

 return success;
 }

 /// <summary>
 /// Delete a load balancer by its specified name.
 /// </summary>
 /// <param name="name">The name of the load balancer to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteLoadBalancerByName(string name)
 {
 try
 {
 var describeLoadBalancerResponse =
 await _amazonElasticLoadBalancingV2.DescribeLoadBalancersAsync(
 new DescribeLoadBalancersRequest()
 {
 Names = new List<string>() { name }
 });
 var lbArn =
 describeLoadBalancerResponse.LoadBalancers[0].LoadBalancerArn;
 await _amazonElasticLoadBalancingV2.DeleteLoadBalancerAsync(
 new DeleteLoadBalancerRequest()
 {
 LoadBalancerArn = lbArn
 }
);
 }
 catch (LoadBalancerNotFoundException)
 {
 Console.WriteLine($"Load balancer {name} not found.");
 }
 }

 /// <summary>
 /// Delete a TargetGroup by its specified name.
 /// </summary>
 /// <param name="groupName">Name of the group to delete.</param>
 /// <returns>Async task.</returns>
 public async Task DeleteTargetGroupByName(string groupName)
 {
 var done = false;
 while (!done)
 {
 try

Scenarios 1107

AWS SDK for .NET Developer Guide

 {
 var groupResponse =
 await _amazonElasticLoadBalancingV2.DescribeTargetGroupsAsync(
 new DescribeTargetGroupsRequest()
 {
 Names = new List<string>() { groupName }
 });

 var targetArn = groupResponse.TargetGroups[0].TargetGroupArn;
 await _amazonElasticLoadBalancingV2.DeleteTargetGroupAsync(
 new DeleteTargetGroupRequest() { TargetGroupArn = targetArn });
 Console.WriteLine($"Deleted load balancing target group
 {groupName}.");
 done = true;
 }
 catch (TargetGroupNotFoundException)
 {
 Console.WriteLine(
 $"Target group {groupName} not found, could not delete.");
 done = true;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine("Target group not yet released, waiting...");
 Thread.Sleep(10000);
 }
 }
 }
}

Create a class that uses DynamoDB to simulate a recommendation service.

/// <summary>
/// Encapsulates a DynamoDB table to use as a service that recommends books, movies,
 and songs.
/// </summary>
public class Recommendations
{
 private readonly IAmazonDynamoDB _amazonDynamoDb;
 private readonly DynamoDBContext _context;
 private readonly string _tableName;

Scenarios 1108

AWS SDK for .NET Developer Guide

 public string TableName => _tableName;

 /// <summary>
 /// Constructor for the Recommendations service.
 /// </summary>
 /// <param name="amazonDynamoDb">The injected DynamoDb client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public Recommendations(IAmazonDynamoDB amazonDynamoDb, IConfiguration
 configuration)
 {
 _amazonDynamoDb = amazonDynamoDb;
 _context = new DynamoDBContext(_amazonDynamoDb);
 _tableName = configuration["databaseName"]!;
 }

 /// <summary>
 /// Create the DynamoDb table with a specified name.
 /// </summary>
 /// <param name="tableName">The name for the table.</param>
 /// <returns>True when ready.</returns>
 public async Task<bool> CreateDatabaseWithName(string tableName)
 {
 try
 {
 Console.Write($"Creating table {tableName}...");
 var createRequest = new CreateTableRequest()
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition()
 {
 AttributeName = "MediaType",
 AttributeType = ScalarAttributeType.S
 },
 new AttributeDefinition()
 {
 AttributeName = "ItemId",
 AttributeType = ScalarAttributeType.N
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement()

Scenarios 1109

AWS SDK for .NET Developer Guide

 {
 AttributeName = "MediaType",
 KeyType = KeyType.HASH
 },
 new KeySchemaElement()
 {
 AttributeName = "ItemId",
 KeyType = KeyType.RANGE
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 5
 }
 };
 await _amazonDynamoDb.CreateTableAsync(createRequest);

 // Wait until the table is ACTIVE and then report success.
 Console.Write("\nWaiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = tableName
 };

 TableStatus status;
 do
 {
 Thread.Sleep(2000);

 var describeTableResponse = await
 _amazonDynamoDb.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException)
 {
 Console.WriteLine($"Table {tableName} already exists.");

Scenarios 1110

AWS SDK for .NET Developer Guide

 return false;
 }
 }

 /// <summary>
 /// Populate the database table with data from a specified path.
 /// </summary>
 /// <param name="databaseTableName">The name of the table.</param>
 /// <param name="recommendationsPath">The path of the recommendations data.</
param>
 /// <returns>Async task.</returns>
 public async Task PopulateDatabase(string databaseTableName, string
 recommendationsPath)
 {
 var recommendationsText = await File.ReadAllTextAsync(recommendationsPath);
 var records =
 JsonSerializer.Deserialize<RecommendationModel[]>(recommendationsText);
 var batchWrite = _context.CreateBatchWrite<RecommendationModel>();

 foreach (var record in records!)
 {
 batchWrite.AddPutItem(record);
 }

 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Delete the recommendation table by name.
 /// </summary>
 /// <param name="tableName">The name of the recommendation table.</param>
 /// <returns>Async task.</returns>
 public async Task DestroyDatabaseByName(string tableName)
 {
 try
 {
 await _amazonDynamoDb.DeleteTableAsync(
 new DeleteTableRequest() { TableName = tableName });
 Console.WriteLine($"Table {tableName} was deleted.");
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"Table {tableName} not found");
 }

Scenarios 1111

AWS SDK for .NET Developer Guide

 }
}

Create a class that wraps Systems Manager actions.

/// <summary>
/// Encapsulates Systems Manager parameter operations. This example uses these
 parameters
/// to drive the demonstration of resilient architecture, such as failure of a
 dependency or
/// how the service responds to a health check.
/// </summary>
public class SmParameterWrapper
{
 private readonly IAmazonSimpleSystemsManagement _amazonSimpleSystemsManagement;

 private readonly string _tableParameter = "doc-example-resilient-architecture-
table";
 private readonly string _failureResponseParameter = "doc-example-resilient-
architecture-failure-response";
 private readonly string _healthCheckParameter = "doc-example-resilient-
architecture-health-check";
 private readonly string _tableName = "";

 public string TableParameter => _tableParameter;
 public string TableName => _tableName;
 public string HealthCheckParameter => _healthCheckParameter;
 public string FailureResponseParameter => _failureResponseParameter;

 /// <summary>
 /// Constructor for the SmParameterWrapper.
 /// </summary>
 /// <param name="amazonSimpleSystemsManagement">The injected Simple Systems
 Management client.</param>
 /// <param name="configuration">The injected configuration.</param>
 public SmParameterWrapper(IAmazonSimpleSystemsManagement
 amazonSimpleSystemsManagement, IConfiguration configuration)
 {
 _amazonSimpleSystemsManagement = amazonSimpleSystemsManagement;
 _tableName = configuration["databaseName"]!;
 }

Scenarios 1112

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Reset the Systems Manager parameters to starting values for the demo.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task Reset()
 {
 await this.PutParameterByName(_tableParameter, _tableName);
 await this.PutParameterByName(_failureResponseParameter, "none");
 await this.PutParameterByName(_healthCheckParameter, "shallow");
 }

 /// <summary>
 /// Set the value of a named Systems Manager parameter.
 /// </summary>
 /// <param name="name">The name of the parameter.</param>
 /// <param name="value">The value to set.</param>
 /// <returns>Async task.</returns>
 public async Task PutParameterByName(string name, string value)
 {
 await _amazonSimpleSystemsManagement.PutParameterAsync(
 new PutParameterRequest() { Name = name, Value = value, Overwrite =
 true });
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AttachLoadBalancerTargetGroups

• CreateAutoScalingGroup

• CreateInstanceProfile

• CreateLaunchTemplate

• CreateListener

• CreateLoadBalancer

• CreateTargetGroup

• DeleteAutoScalingGroup

• DeleteInstanceProfile

• DeleteLaunchTemplate

• DeleteLoadBalancer

Scenarios 1113

https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/AttachLoadBalancerTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/CreateAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/CreateInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/CreateLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateListener
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateLoadBalancer
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/CreateTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DeleteAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/iam-2010-05-08/DeleteInstanceProfile
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DeleteLaunchTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteLoadBalancer

AWS SDK for .NET Developer Guide

• DeleteTargetGroup

• DescribeAutoScalingGroups

• DescribeAvailabilityZones

• DescribeIamInstanceProfileAssociations

• DescribeInstances

• DescribeLoadBalancers

• DescribeSubnets

• DescribeTargetGroups

• DescribeTargetHealth

• DescribeVpcs

• RebootInstances

• ReplaceIamInstanceProfileAssociation

• TerminateInstanceInAutoScalingGroup

• UpdateAutoScalingGroup

Amazon Keyspaces examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Keyspaces.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon Keyspaces

The following code examples show how to get started using Amazon Keyspaces.

Amazon Keyspaces 1114

https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DeleteTargetGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/DescribeAutoScalingGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeAvailabilityZones
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeIamInstanceProfileAssociations
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeLoadBalancers
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeSubnets
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/elasticloadbalancingv2-2015-12-01/DescribeTargetHealth
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/DescribeVpcs
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/RebootInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/ec2-2016-11-15/ReplaceIamInstanceProfileAssociation
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/TerminateInstanceInAutoScalingGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/autoscaling-2011-01-01/UpdateAutoScalingGroup

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace KeyspacesActions;

public class HelloKeyspaces
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon Keyspaces (for Apache Cassandra).
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonKeyspaces>()
 .AddTransient<KeyspacesWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<HelloKeyspaces>();

 var keyspacesClient = host.Services.GetRequiredService<IAmazonKeyspaces>();
 var keyspacesWrapper = new KeyspacesWrapper(keyspacesClient);

 Console.WriteLine("Hello, Amazon Keyspaces! Let's list your keyspaces:");
 await keyspacesWrapper.ListKeyspaces();
 }
}

Amazon Keyspaces 1115

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ListKeyspaces in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

• Create a keyspace and table. The table schema holds movie data and has point-in-time recovery
enabled.

• Connect to the keyspace using a secure TLS connection with SigV4 authentication.

• Query the table. Add, retrieve, and update movie data.

• Update the table. Add a column to track watched movies.

• Restore the table to its previous state and clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

global using System.Security.Cryptography.X509Certificates;
global using Amazon.Keyspaces;
global using Amazon.Keyspaces.Model;
global using KeyspacesActions;
global using KeyspacesScenario;
global using Microsoft.Extensions.Configuration;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;

Basics 1116

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListKeyspaces
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

global using Microsoft.Extensions.Logging.Debug;
global using Newtonsoft.Json;

namespace KeyspacesBasics;

/// <summary>
/// Amazon Keyspaces (for Apache Cassandra) scenario. Shows some of the basic
/// actions performed with Amazon Keyspaces.
/// </summary>
public class KeyspacesBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonKeyspaces>()
 .AddTransient<KeyspacesWrapper>()
 .AddTransient<CassandraWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<KeyspacesBasics>();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 var keyspacesWrapper = host.Services.GetRequiredService<KeyspacesWrapper>();
 var uiMethods = new UiMethods();

 var keyspaceName = configuration["KeyspaceName"];

Basics 1117

AWS SDK for .NET Developer Guide

 var tableName = configuration["TableName"];

 bool success; // Used to track the results of some operations.

 uiMethods.DisplayOverview();
 uiMethods.PressEnter();

 // Create the keyspace.
 var keyspaceArn = await keyspacesWrapper.CreateKeyspace(keyspaceName);

 // Wait for the keyspace to be available. GetKeyspace results in a
 // resource not found error until it is ready for use.
 try
 {
 var getKeyspaceArn = "";
 Console.Write($"Created {keyspaceName}. Waiting for it to become
 available. ");
 do
 {
 getKeyspaceArn = await keyspacesWrapper.GetKeyspace(keyspaceName);
 Console.Write(". ");
 } while (getKeyspaceArn != keyspaceArn);
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Waiting for keyspace to be created.");
 }

 Console.WriteLine($"\nThe keyspace {keyspaceName} is ready for use.");

 uiMethods.PressEnter();

 // Create the table.
 // First define the schema.
 var allColumns = new List<ColumnDefinition>
 {
 new ColumnDefinition { Name = "title", Type = "text" },
 new ColumnDefinition { Name = "year", Type = "int" },
 new ColumnDefinition { Name = "release_date", Type = "timestamp" },
 new ColumnDefinition { Name = "plot", Type = "text" },
 };

 var partitionKeys = new List<PartitionKey>
 {

Basics 1118

AWS SDK for .NET Developer Guide

 new PartitionKey { Name = "year", },
 new PartitionKey { Name = "title" },
 };

 var tableSchema = new SchemaDefinition
 {
 AllColumns = allColumns,
 PartitionKeys = partitionKeys,
 };

 var tableArn = await keyspacesWrapper.CreateTable(keyspaceName, tableSchema,
 tableName);

 // Wait for the table to be active.
 try
 {
 var resp = new GetTableResponse();
 Console.Write("Waiting for the new table to be active. ");
 do
 {
 try
 {
 resp = await keyspacesWrapper.GetTable(keyspaceName, tableName);
 Console.Write(".");
 }
 catch (ResourceNotFoundException)
 {
 Console.Write(".");
 }
 } while (resp.Status != TableStatus.ACTIVE);

 // Display the table's schema.
 Console.WriteLine($"\nTable {tableName} has been created in
 {keyspaceName}");
 Console.WriteLine("Let's take a look at the schema.");
 uiMethods.DisplayTitle("All columns");
 resp.SchemaDefinition.AllColumns.ForEach(column =>
 {
 Console.WriteLine($"{column.Name,-40}\t{column.Type,-20}");
 });

 uiMethods.DisplayTitle("Cluster keys");
 resp.SchemaDefinition.ClusteringKeys.ForEach(clusterKey =>
 {

Basics 1119

AWS SDK for .NET Developer Guide

 Console.WriteLine($"{clusterKey.Name,-40}\t{clusterKey.OrderBy,-20}");
 });

 uiMethods.DisplayTitle("Partition keys");
 resp.SchemaDefinition.PartitionKeys.ForEach(partitionKey =>
 {
 Console.WriteLine($"{partitionKey.Name}");
 });

 uiMethods.PressEnter();
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

 // Access Apache Cassandra using the Cassandra drive for C#.
 var cassandraWrapper = host.Services.GetRequiredService<CassandraWrapper>();
 var movieFilePath = configuration["MovieFile"];

 Console.WriteLine("Let's add some movies to the table we created.");
 var inserted = await cassandraWrapper.InsertIntoMovieTable(keyspaceName,
 tableName, movieFilePath);

 uiMethods.PressEnter();

 Console.WriteLine("Added the following movies to the table:");
 var rows = await cassandraWrapper.GetMovies(keyspaceName, tableName);
 uiMethods.DisplayTitle("All Movies");

 foreach (var row in rows)
 {
 var title = row.GetValue<string>("title");
 var year = row.GetValue<int>("year");
 var plot = row.GetValue<string>("plot");
 var release_date = row.GetValue<DateTime>("release_date");
 Console.WriteLine($"{release_date}\t{title}\t{year}\n{plot}");
 Console.WriteLine(uiMethods.SepBar);
 }

 // Update the table schema
 uiMethods.DisplayTitle("Update table schema");

Basics 1120

AWS SDK for .NET Developer Guide

 Console.WriteLine("Now we will update the table to add a boolean field
 called watched.");

 // First save the current time as a UTC Date so the original
 // table can be restored later.
 var timeChanged = DateTime.UtcNow;

 // Now update the schema.
 var resourceArn = await keyspacesWrapper.UpdateTable(keyspaceName,
 tableName);
 uiMethods.PressEnter();

 Console.WriteLine("Now let's mark some of the movies as watched.");

 // Pick some files to mark as watched.
 var movieToWatch = rows[2].GetValue<string>("title");
 var watchedMovieYear = rows[2].GetValue<int>("year");
 var changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[6].GetValue<string>("title");
 watchedMovieYear = rows[6].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[9].GetValue<string>("title");
 watchedMovieYear = rows[9].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[10].GetValue<string>("title");
 watchedMovieYear = rows[10].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[13].GetValue<string>("title");
 watchedMovieYear = rows[13].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 uiMethods.DisplayTitle("Watched movies");
 Console.WriteLine("These movies have been marked as watched:");
 rows = await cassandraWrapper.GetWatchedMovies(keyspaceName, tableName);
 foreach (var row in rows)

Basics 1121

AWS SDK for .NET Developer Guide

 {
 var title = row.GetValue<string>("title");
 var year = row.GetValue<int>("year");
 Console.WriteLine($"{title,-40}\t{year,8}");
 }
 uiMethods.PressEnter();

 Console.WriteLine("We can restore the table to its previous state but that
 can take up to 20 minutes to complete.");
 string answer;
 do
 {
 Console.WriteLine("Do you want to restore the table? (y/n)");
 answer = Console.ReadLine();
 } while (answer.ToLower() != "y" && answer.ToLower() != "n");

 if (answer == "y")
 {
 var restoredTableName = $"{tableName}_restored";
 var restoredTableArn = await keyspacesWrapper.RestoreTable(
 keyspaceName,
 tableName,
 restoredTableName,
 timeChanged);
 // Loop and call GetTable until the table is gone. Once it has been
 // deleted completely, GetTable will raise a ResourceNotFoundException.
 bool wasRestored = false;

 try
 {
 do
 {
 var resp = await keyspacesWrapper.GetTable(keyspaceName,
 restoredTableName);
 wasRestored = (resp.Status == TableStatus.ACTIVE);
 } while (!wasRestored);
 }
 catch (ResourceNotFoundException)
 {
 // If the restored table raised an error, it isn't
 // ready yet.
 Console.Write(".");
 }
 }

Basics 1122

AWS SDK for .NET Developer Guide

 uiMethods.DisplayTitle("Clean up resources.");

 // Delete the table.
 success = await keyspacesWrapper.DeleteTable(keyspaceName, tableName);

 Console.WriteLine($"Table {tableName} successfully deleted from
 {keyspaceName}.");
 Console.WriteLine("Waiting for the table to be removed completely. ");

 // Loop and call GetTable until the table is gone. Once it has been
 // deleted completely, GetTable will raise a ResourceNotFoundException.
 bool wasDeleted = false;

 try
 {
 do
 {
 var resp = await keyspacesWrapper.GetTable(keyspaceName, tableName);
 } while (!wasDeleted);
 }
 catch (ResourceNotFoundException ex)
 {
 wasDeleted = true;
 Console.WriteLine($"{ex.Message} indicates that the table has been
 deleted.");
 }

 // Delete the keyspace.
 success = await keyspacesWrapper.DeleteKeyspace(keyspaceName);
 Console.WriteLine("The keyspace has been deleted and the demo is now
 complete.");
 }
}

namespace KeyspacesActions;

/// <summary>
/// Performs Amazon Keyspaces (for Apache Cassandra) actions.
/// </summary>
public class KeyspacesWrapper

Basics 1123

AWS SDK for .NET Developer Guide

{
 private readonly IAmazonKeyspaces _amazonKeyspaces;

 /// <summary>
 /// Constructor for the KeyspaceWrapper.
 /// </summary>
 /// <param name="amazonKeyspaces">An Amazon Keyspaces client object.</param>
 public KeyspacesWrapper(IAmazonKeyspaces amazonKeyspaces)
 {
 _amazonKeyspaces = amazonKeyspaces;
 }

 /// <summary>
 /// Create a new keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name for the new keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new keyspace.</returns>
 public async Task<string> CreateKeyspace(string keyspaceName)
 {
 var response =
 await _amazonKeyspaces.CreateKeyspaceAsync(
 new CreateKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

 /// <summary>
 /// Create a new Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace where the table will be created.</
param>
 /// <param name="schema">The schema for the new table.</param>
 /// <param name="tableName">The name of the new table.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new table.</returns>
 public async Task<string> CreateTable(string keyspaceName, SchemaDefinition
 schema, string tableName)
 {
 var request = new CreateTableRequest
 {
 KeyspaceName = keyspaceName,
 SchemaDefinition = schema,
 TableName = tableName,
 PointInTimeRecovery = new PointInTimeRecovery { Status =
 PointInTimeRecoveryStatus.ENABLED }

Basics 1124

AWS SDK for .NET Developer Guide

 };

 var response = await _amazonKeyspaces.CreateTableAsync(request);
 return response.ResourceArn;
 }

 /// <summary>
 /// Delete an existing keyspace.
 /// </summary>
 /// <param name="keyspaceName"></param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.DeleteKeyspaceAsync(
 new DeleteKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTable(string keyspaceName, string tableName)
 {
 var response = await _amazonKeyspaces.DeleteTableAsync(
 new DeleteTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get data about a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the keyspace.</returns>
 public async Task<string> GetKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.GetKeyspaceAsync(
 new GetKeyspaceRequest { KeyspaceName = keyspaceName });

Basics 1125

AWS SDK for .NET Developer Guide

 return response.ResourceArn;
 }

 /// <summary>
 /// Get information about an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the Amazon Keyspaces table.</param>
 /// <returns>The response containing data about the table.</returns>
 public async Task<GetTableResponse> GetTable(string keyspaceName, string
 tableName)
 {
 var response = await _amazonKeyspaces.GetTableAsync(
 new GetTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response;
 }

 /// <summary>
 /// Lists all keyspaces for the account.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task ListKeyspaces()
 {
 var paginator = _amazonKeyspaces.Paginators.ListKeyspaces(new
 ListKeyspacesRequest());

 Console.WriteLine("{0, -30}\t{1}", "Keyspace name", "Keyspace ARN");
 Console.WriteLine(new string('-', Console.WindowWidth));
 await foreach (var keyspace in paginator.Keyspaces)
 {

 Console.WriteLine($"{keyspace.KeyspaceName,-30}\t{keyspace.ResourceArn}");
 }
 }

 /// <summary>
 /// Lists the Amazon Keyspaces tables in a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>A list of TableSummary objects.</returns>

Basics 1126

AWS SDK for .NET Developer Guide

 public async Task<List<TableSummary>> ListTables(string keyspaceName)
 {
 var response = await _amazonKeyspaces.ListTablesAsync(new ListTablesRequest
 { KeyspaceName = keyspaceName });
 response.Tables.ForEach(table =>
 {

 Console.WriteLine($"{table.KeyspaceName}\t{table.TableName}\t{table.ResourceArn}");
 });

 return response.Tables;
 }

 /// <summary>
 /// Restores the specified table to the specified point in time.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to restore.</param>
 /// <param name="timestamp">The time to which the table will be restored.</
param>
 /// <returns>The Amazon Resource Name (ARN) of the restored table.</returns>
 public async Task<string> RestoreTable(string keyspaceName, string tableName,
 string restoredTableName, DateTime timestamp)
 {
 var request = new RestoreTableRequest
 {
 RestoreTimestamp = timestamp,
 SourceKeyspaceName = keyspaceName,
 SourceTableName = tableName,
 TargetKeyspaceName = keyspaceName,
 TargetTableName = restoredTableName
 };

 var response = await _amazonKeyspaces.RestoreTableAsync(request);
 return response.RestoredTableARN;
 }

 /// <summary>
 /// Updates the movie table to add a boolean column named watched.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to change.</param>

Basics 1127

AWS SDK for .NET Developer Guide

 /// <returns>The Amazon Resource Name (ARN) of the updated table.</returns>
 public async Task<string> UpdateTable(string keyspaceName, string tableName)
 {
 var newColumn = new ColumnDefinition { Name = "watched", Type = "boolean" };
 var request = new UpdateTableRequest
 {
 KeyspaceName = keyspaceName,
 TableName = tableName,
 AddColumns = new List<ColumnDefinition> { newColumn }
 };
 var response = await _amazonKeyspaces.UpdateTableAsync(request);
 return response.ResourceArn;
 }

}

using System.Net;
using Cassandra;

namespace KeyspacesScenario;

/// <summary>
/// Class to perform CRUD methods on an Amazon Keyspaces (for Apache Cassandra)
 database.
///
/// NOTE: This sample uses a plain text authenticator for example purposes only.
/// Recommended best practice is to use a SigV4 authentication plugin, if available.
/// </summary>
public class CassandraWrapper
{
 private readonly IConfiguration _configuration;
 private readonly string _localPathToFile;
 private const string _certLocation = "https://certs.secureserver.net/repository/
sf-class2-root.crt";
 private const string _certFileName = "sf-class2-root.crt";
 private readonly X509Certificate2Collection _certCollection;
 private X509Certificate2 _amazoncert;
 private Cluster _cluster;

 // User name and password for the service.
 private string _userName = null!;

Basics 1128

AWS SDK for .NET Developer Guide

 private string _pwd = null!;

 public CassandraWrapper()
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 _localPathToFile = Path.GetTempPath();

 // Get the Starfield digital certificate and save it locally.
 var client = new WebClient();
 client.DownloadFile(_certLocation, $"{_localPathToFile}/{_certFileName}");

 //var httpClient = new HttpClient();
 //var httpResult = httpClient.Get(fileUrl);
 //using var resultStream = await httpResult.Content.ReadAsStreamAsync();
 //using var fileStream = File.Create(pathToSave);
 //resultStream.CopyTo(fileStream);

 _certCollection = new X509Certificate2Collection();
 _amazoncert = new X509Certificate2($"{_localPathToFile}/{_certFileName}");

 // Get the user name and password stored in the configuration file.
 _userName = _configuration["UserName"]!;
 _pwd = _configuration["Password"]!;

 // For a list of Service Endpoints for Amazon Keyspaces, see:
 // https://docs.aws.amazon.com/keyspaces/latest/devguide/
programmatic.endpoints.html
 var awsEndpoint = _configuration["ServiceEndpoint"];

 _cluster = Cluster.Builder()
 .AddContactPoints(awsEndpoint)
 .WithPort(9142)
 .WithAuthProvider(new PlainTextAuthProvider(_userName, _pwd))
 .WithSSL(new SSLOptions().SetCertificateCollection(_certCollection))
 .WithQueryOptions(
 new QueryOptions()
 .SetConsistencyLevel(ConsistencyLevel.LocalQuorum)
 .SetSerialConsistencyLevel(ConsistencyLevel.LocalSerial))

Basics 1129

AWS SDK for .NET Developer Guide

 .Build();
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the Apache Cassandra table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A list of movie objects.</returns>
 public List<Movie> ImportMoviesFromJson(string movieFileName, int numToImport =
 0)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();

 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 // If numToImport = 0, return all movies in the collection.
 if (numToImport == 0)
 {
 // Now return the entire list of movies.
 return allMovies;
 }
 else
 {
 // Now return the first numToImport entries.
 return allMovies.GetRange(0, numToImport);
 }
 }

 /// <summary>
 /// Insert movies into the movie table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="movieTableName">The Amazon Keyspaces table.</param>
 /// <param name="movieFilePath">The path to the resource file containing
 /// movie data to insert into the table.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>

Basics 1130

AWS SDK for .NET Developer Guide

 public async Task<bool> InsertIntoMovieTable(string keyspaceName, string
 movieTableName, string movieFilePath, int numToImport = 20)
 {
 // Get some movie data from the movies.json file
 var movies = ImportMoviesFromJson(movieFilePath, numToImport);

 var session = _cluster.Connect(keyspaceName);

 string insertCql;

 RowSet rs;

 // Now we insert the numToImport movies into the table.
 foreach (var movie in movies)
 {
 // Escape single quote characters in the plot.
 insertCql = $"INSERT INTO {keyspaceName}.{movieTableName}
 (title, year, release_date, plot) values($${movie.Title}$$, {movie.Year},
 '{movie.Info.Release_Date.ToString("yyyy-MM-dd")}', $${movie.Info.Plot}$$)";
 rs = await session.ExecuteAsync(new SimpleStatement(insertCql));
 }

 return true;
 }

 /// <summary>
 /// Gets all of the movies in the movies table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table.</param>
 /// <returns>A list of row objects containing movie data.</returns>
 public async Task<List<Row>> GetMovies(string keyspaceName, string tableName)
 {
 var session = _cluster.Connect();
 RowSet rs;
 try
 {
 rs = await session.ExecuteAsync(new SimpleStatement($"SELECT * FROM
 {keyspaceName}.{tableName}"));

 // Extract the row data from the returned RowSet.
 var rows = rs.GetRows().ToList();
 return rows;
 }

Basics 1131

AWS SDK for .NET Developer Guide

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 return null!;
 }
 }

 /// <summary>
 /// Mark a movie in the movie table as watched.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="title">The title of the movie to mark as watched.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A set of rows containing the changed data.</returns>
 public async Task<List<Row>> MarkMovieAsWatched(string keyspaceName, string
 tableName, string title, int year)
 {
 var session = _cluster.Connect();
 string updateCql = $"UPDATE {keyspaceName}.{tableName} SET watched=true
 WHERE title = $${title}$$ AND year = {year};";
 var rs = await session.ExecuteAsync(new SimpleStatement(updateCql));
 var rows = rs.GetRows().ToList();
 return rows;
 }

 /// <summary>
 /// Retrieve the movies in the movies table where watched is true.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table.</param>
 /// <returns>A list of row objects containing information about movies
 /// where watched is true.</returns>
 public async Task<List<Row>> GetWatchedMovies(string keyspaceName, string
 tableName)
 {
 var session = _cluster.Connect();
 RowSet rs;
 try
 {
 rs = await session.ExecuteAsync(new SimpleStatement($"SELECT title,
 year, plot FROM {keyspaceName}.{tableName} WHERE watched = true ALLOW FILTERING"));

 // Extract the row data from the returned RowSet.

Basics 1132

AWS SDK for .NET Developer Guide

 var rows = rs.GetRows().ToList();
 return rows;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 return null!;
 }
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateKeyspace

• CreateTable

• DeleteKeyspace

• DeleteTable

• GetKeyspace

• GetTable

• ListKeyspaces

• ListTables

• RestoreTable

• UpdateTable

Actions

CreateKeyspace

The following code example shows how to use CreateKeyspace.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1133

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateKeyspace
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteKeyspace
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetKeyspace
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListKeyspaces
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListTables
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/RestoreTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/UpdateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Create a new keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name for the new keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new keyspace.</returns>
 public async Task<string> CreateKeyspace(string keyspaceName)
 {
 var response =
 await _amazonKeyspaces.CreateKeyspaceAsync(
 new CreateKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

• For API details, see CreateKeyspace in AWS SDK for .NET API Reference.

CreateTable

The following code example shows how to use CreateTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a new Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace where the table will be created.</
param>
 /// <param name="schema">The schema for the new table.</param>
 /// <param name="tableName">The name of the new table.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new table.</returns>
 public async Task<string> CreateTable(string keyspaceName, SchemaDefinition
 schema, string tableName)
 {
 var request = new CreateTableRequest

Actions 1134

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

 {
 KeyspaceName = keyspaceName,
 SchemaDefinition = schema,
 TableName = tableName,
 PointInTimeRecovery = new PointInTimeRecovery { Status =
 PointInTimeRecoveryStatus.ENABLED }
 };

 var response = await _amazonKeyspaces.CreateTableAsync(request);
 return response.ResourceArn;
 }

• For API details, see CreateTable in AWS SDK for .NET API Reference.

DeleteKeyspace

The following code example shows how to use DeleteKeyspace.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an existing keyspace.
 /// </summary>
 /// <param name="keyspaceName"></param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.DeleteKeyspaceAsync(
 new DeleteKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Actions 1135

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DeleteKeyspace in AWS SDK for .NET API Reference.

DeleteTable

The following code example shows how to use DeleteTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTable(string keyspaceName, string tableName)
 {
 var response = await _amazonKeyspaces.DeleteTableAsync(
 new DeleteTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTable in AWS SDK for .NET API Reference.

GetKeyspace

The following code example shows how to use GetKeyspace.

Actions 1136

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteTable

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get data about a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the keyspace.</returns>
 public async Task<string> GetKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.GetKeyspaceAsync(
 new GetKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

• For API details, see GetKeyspace in AWS SDK for .NET API Reference.

GetTable

The following code example shows how to use GetTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>

Actions 1137

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="tableName">The name of the Amazon Keyspaces table.</param>
 /// <returns>The response containing data about the table.</returns>
 public async Task<GetTableResponse> GetTable(string keyspaceName, string
 tableName)
 {
 var response = await _amazonKeyspaces.GetTableAsync(
 new GetTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response;
 }

• For API details, see GetTable in AWS SDK for .NET API Reference.

ListKeyspaces

The following code example shows how to use ListKeyspaces.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Lists all keyspaces for the account.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task ListKeyspaces()
 {
 var paginator = _amazonKeyspaces.Paginators.ListKeyspaces(new
 ListKeyspacesRequest());

 Console.WriteLine("{0, -30}\t{1}", "Keyspace name", "Keyspace ARN");
 Console.WriteLine(new string('-', Console.WindowWidth));
 await foreach (var keyspace in paginator.Keyspaces)
 {

 Console.WriteLine($"{keyspace.KeyspaceName,-30}\t{keyspace.ResourceArn}");

Actions 1138

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see ListKeyspaces in AWS SDK for .NET API Reference.

ListTables

The following code example shows how to use ListTables.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Lists the Amazon Keyspaces tables in a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>A list of TableSummary objects.</returns>
 public async Task<List<TableSummary>> ListTables(string keyspaceName)
 {
 var response = await _amazonKeyspaces.ListTablesAsync(new ListTablesRequest
 { KeyspaceName = keyspaceName });
 response.Tables.ForEach(table =>
 {

 Console.WriteLine($"{table.KeyspaceName}\t{table.TableName}\t{table.ResourceArn}");
 });

 return response.Tables;
 }

• For API details, see ListTables in AWS SDK for .NET API Reference.

Actions 1139

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListKeyspaces
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListTables

AWS SDK for .NET Developer Guide

RestoreTable

The following code example shows how to use RestoreTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Restores the specified table to the specified point in time.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to restore.</param>
 /// <param name="timestamp">The time to which the table will be restored.</
param>
 /// <returns>The Amazon Resource Name (ARN) of the restored table.</returns>
 public async Task<string> RestoreTable(string keyspaceName, string tableName,
 string restoredTableName, DateTime timestamp)
 {
 var request = new RestoreTableRequest
 {
 RestoreTimestamp = timestamp,
 SourceKeyspaceName = keyspaceName,
 SourceTableName = tableName,
 TargetKeyspaceName = keyspaceName,
 TargetTableName = restoredTableName
 };

 var response = await _amazonKeyspaces.RestoreTableAsync(request);
 return response.RestoredTableARN;
 }

• For API details, see RestoreTable in AWS SDK for .NET API Reference.

Actions 1140

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/RestoreTable

AWS SDK for .NET Developer Guide

UpdateTable

The following code example shows how to use UpdateTable.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Updates the movie table to add a boolean column named watched.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to change.</param>
 /// <returns>The Amazon Resource Name (ARN) of the updated table.</returns>
 public async Task<string> UpdateTable(string keyspaceName, string tableName)
 {
 var newColumn = new ColumnDefinition { Name = "watched", Type = "boolean" };
 var request = new UpdateTableRequest
 {
 KeyspaceName = keyspaceName,
 TableName = tableName,
 AddColumns = new List<ColumnDefinition> { newColumn }
 };
 var response = await _amazonKeyspaces.UpdateTableAsync(request);
 return response.ResourceArn;
 }

• For API details, see UpdateTable in AWS SDK for .NET API Reference.

Kinesis examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Kinesis.

Kinesis 1141

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/UpdateTable

AWS SDK for .NET Developer Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Serverless examples

Actions

AddTagsToStream

The following code example shows how to use AddTagsToStream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// This example shows how to apply key/value pairs to an Amazon Kinesis
 /// stream.
 /// </summary>
 public class TagStream
 {
 public static async Task Main()
 {
 IAmazonKinesis client = new AmazonKinesisClient();

Actions 1142

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 string streamName = "AmazonKinesisStream";
 var tags = new Dictionary<string, string>
 {
 { "Project", "Sample Kinesis Project" },
 { "Application", "Sample Kinesis App" },
 };

 var success = await ApplyTagsToStreamAsync(client, streamName, tags);

 if (success)
 {
 Console.WriteLine($"Taggs successfully added to {streamName}.");
 }
 else
 {
 Console.WriteLine("Tags were not added to the stream.");
 }
 }

 /// <summary>
 /// Applies the set of tags to the named Kinesis stream.
 /// </summary>
 /// <param name="client">The initialized Kinesis client.</param>
 /// <param name="streamName">The name of the Kinesis stream to which
 /// the tags will be attached.</param>
 /// <param name="tags">A sictionary containing key/value pairs which
 /// will be used to create the Kinesis tags.</param>
 /// <returns>A Boolean value which represents the success or failure
 /// of AddTagsToStreamAsync.</returns>
 public static async Task<bool> ApplyTagsToStreamAsync(
 IAmazonKinesis client,
 string streamName,
 Dictionary<string, string> tags)
 {
 var request = new AddTagsToStreamRequest
 {
 StreamName = streamName,
 Tags = tags,
 };

 var response = await client.AddTagsToStreamAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 1143

AWS SDK for .NET Developer Guide

 }

• For API details, see AddTagsToStream in AWS SDK for .NET API Reference.

CreateStream

The following code example shows how to use CreateStream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// This example shows how to create a new Amazon Kinesis stream.
 /// </summary>
 public class CreateStream
 {
 public static async Task Main()
 {
 IAmazonKinesis client = new AmazonKinesisClient();

 string streamName = "AmazonKinesisStream";
 int shardCount = 1;

 var success = await CreateNewStreamAsync(client, streamName,
 shardCount);
 if (success)
 {
 Console.WriteLine($"The stream, {streamName} successfully
 created.");
 }

Actions 1144

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/AddTagsToStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Creates a new Kinesis stream.
 /// </summary>
 /// <param name="client">An initialized Kinesis client.</param>
 /// <param name="streamName">The name for the new stream.</param>
 /// <param name="shardCount">The number of shards the new stream will
 /// use. The throughput of the stream is a function of the number of
 /// shards; more shards are required for greater provisioned
 /// throughput.</param>
 /// <returns>A Boolean value indicating whether the stream was created.</
returns>
 public static async Task<bool> CreateNewStreamAsync(IAmazonKinesis client,
 string streamName, int shardCount)
 {
 var request = new CreateStreamRequest
 {
 StreamName = streamName,
 ShardCount = shardCount,
 };

 var response = await client.CreateStreamAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 }

• For API details, see CreateStream in AWS SDK for .NET API Reference.

DeleteStream

The following code example shows how to use DeleteStream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1145

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/CreateStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// Shows how to delete an Amazon Kinesis stream.
 /// </summary>
 public class DeleteStream
 {
 public static async Task Main()
 {
 IAmazonKinesis client = new AmazonKinesisClient();
 string streamName = "AmazonKinesisStream";

 var success = await DeleteStreamAsync(client, streamName);

 if (success)
 {
 Console.WriteLine($"Stream, {streamName} successfully deleted.");
 }
 else
 {
 Console.WriteLine("Stream not deleted.");
 }
 }

 /// <summary>
 /// Deletes a Kinesis stream.
 /// </summary>
 /// <param name="client">An initialized Kinesis client object.</param>
 /// <param name="streamName">The name of the string to delete.</param>
 /// <returns>A Boolean value representing the success of the operation.</
returns>
 public static async Task<bool> DeleteStreamAsync(IAmazonKinesis client,
 string streamName)
 {
 // If EnforceConsumerDeletion is true, any consumers
 // of this stream will also be deleted. If it is set
 // to false and this stream has any consumers, the
 // call will fail with a ResourceInUseException.
 var request = new DeleteStreamRequest
 {

Actions 1146

AWS SDK for .NET Developer Guide

 StreamName = streamName,
 EnforceConsumerDeletion = true,
 };

 var response = await client.DeleteStreamAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 }

• For API details, see DeleteStream in AWS SDK for .NET API Reference.

DeregisterStreamConsumer

The following code example shows how to use DeregisterStreamConsumer.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// Shows how to deregister a consumer from an Amazon Kinesis stream.
 /// </summary>
 public class DeregisterConsumer
 {
 public static async Task Main(string[] args)
 {
 IAmazonKinesis client = new AmazonKinesisClient();

 string streamARN = "arn:aws:kinesis:us-west-2:000000000000:stream/
AmazonKinesisStream";

Actions 1147

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/DeleteStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 string consumerName = "CONSUMER_NAME";
 string consumerARN = "arn:aws:kinesis:us-west-2:000000000000:stream/
AmazonKinesisStream/consumer/CONSUMER_NAME:000000000000";

 var success = await DeregisterConsumerAsync(client, streamARN,
 consumerARN, consumerName);

 if (success)
 {
 Console.WriteLine($"{consumerName} successfully deregistered.");
 }
 else
 {
 Console.WriteLine($"{consumerName} was not successfully
 deregistered.");
 }
 }

 /// <summary>
 /// Deregisters a consumer from a Kinesis stream.
 /// </summary>
 /// <param name="client">An initialized Kinesis client object.</param>
 /// <param name="streamARN">The ARN of a Kinesis stream.</param>
 /// <param name="consumerARN">The ARN of the consumer.</param>
 /// <param name="consumerName">The name of the consumer.</param>
 /// <returns>A Boolean value representing the success of the operation.</
returns>
 public static async Task<bool> DeregisterConsumerAsync(
 IAmazonKinesis client,
 string streamARN,
 string consumerARN,
 string consumerName)
 {
 var request = new DeregisterStreamConsumerRequest
 {
 StreamARN = streamARN,
 ConsumerARN = consumerARN,
 ConsumerName = consumerName,
 };

 var response = await client.DeregisterStreamConsumerAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 1148

AWS SDK for .NET Developer Guide

 }

• For API details, see DeregisterStreamConsumer in AWS SDK for .NET API Reference.

ListStreamConsumers

The following code example shows how to use ListStreamConsumers.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// List the consumers of an Amazon Kinesis stream.
 /// </summary>
 public class ListConsumers
 {
 public static async Task Main()
 {
 IAmazonKinesis client = new AmazonKinesisClient();

 string streamARN = "arn:aws:kinesis:us-east-2:000000000000:stream/
AmazonKinesisStream";
 int maxResults = 10;

 var consumers = await ListConsumersAsync(client, streamARN, maxResults);

 if (consumers.Count > 0)
 {

Actions 1149

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/DeregisterStreamConsumer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 consumers
 .ForEach(c => Console.WriteLine($"Name: {c.ConsumerName} ARN:
 {c.ConsumerARN}"));
 }
 else
 {
 Console.WriteLine("No consumers found.");
 }
 }

 /// <summary>
 /// Retrieve a list of the consumers for a Kinesis stream.
 /// </summary>
 /// <param name="client">An initialized Kinesis client object.</param>
 /// <param name="streamARN">The ARN of the stream for which we want to
 /// retrieve a list of clients.</param>
 /// <param name="maxResults">The maximum number of results to return.</
param>
 /// <returns>A list of Consumer objects.</returns>
 public static async Task<List<Consumer>> ListConsumersAsync(IAmazonKinesis
 client, string streamARN, int maxResults)
 {
 var request = new ListStreamConsumersRequest
 {
 StreamARN = streamARN,
 MaxResults = maxResults,
 };

 var response = await client.ListStreamConsumersAsync(request);

 return response.Consumers;
 }
 }

• For API details, see ListStreamConsumers in AWS SDK for .NET API Reference.

ListStreams

The following code example shows how to use ListStreams.

Actions 1150

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/ListStreamConsumers

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// Retrieves and displays a list of existing Amazon Kinesis streams.
 /// </summary>
 public class ListStreams
 {
 public static async Task Main(string[] args)
 {
 IAmazonKinesis client = new AmazonKinesisClient();
 var response = await client.ListStreamsAsync(new ListStreamsRequest());

 List<string> streamNames = response.StreamNames;

 if (streamNames.Count > 0)
 {
 streamNames
 .ForEach(s => Console.WriteLine($"Stream name: {s}"));
 }
 else
 {
 Console.WriteLine("No streams were found.");
 }
 }
 }

• For API details, see ListStreams in AWS SDK for .NET API Reference.

Actions 1151

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/ListStreams

AWS SDK for .NET Developer Guide

ListTagsForStream

The following code example shows how to use ListTagsForStream.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// Shows how to list the tags that have been attached to an Amazon Kinesis
 /// stream.
 /// </summary>
 public class ListTags
 {
 public static async Task Main()
 {
 IAmazonKinesis client = new AmazonKinesisClient();
 string streamName = "AmazonKinesisStream";

 await ListTagsAsync(client, streamName);
 }

 /// <summary>
 /// List the tags attached to a Kinesis stream.
 /// </summary>
 /// <param name="client">An initialized Kinesis client object.</param>
 /// <param name="streamName">The name of the Kinesis stream for which you
 /// wish to display tags.</param>
 public static async Task ListTagsAsync(IAmazonKinesis client, string
 streamName)
 {
 var request = new ListTagsForStreamRequest
 {

Actions 1152

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 StreamName = streamName,
 Limit = 10,
 };

 var response = await client.ListTagsForStreamAsync(request);
 DisplayTags(response.Tags);

 while (response.HasMoreTags)
 {
 request.ExclusiveStartTagKey = response.Tags[response.Tags.Count -
 1].Key;
 response = await client.ListTagsForStreamAsync(request);
 }
 }

 /// <summary>
 /// Displays the items in a list of Kinesis tags.
 /// </summary>
 /// <param name="tags">A list of the Tag objects to be displayed.</param>
 public static void DisplayTags(List<Tag> tags)
 {
 tags
 .ForEach(t => Console.WriteLine($"Key: {t.Key} Value: {t.Value}"));
 }
 }

• For API details, see ListTagsForStream in AWS SDK for .NET API Reference.

RegisterStreamConsumer

The following code example shows how to use RegisterStreamConsumer.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1153

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/ListTagsForStream
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Kinesis#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Kinesis;
 using Amazon.Kinesis.Model;

 /// <summary>
 /// This example shows how to register a consumer to an Amazon Kinesis
 /// stream.
 /// </summary>
 public class RegisterConsumer
 {
 public static async Task Main()
 {
 IAmazonKinesis client = new AmazonKinesisClient();
 string consumerName = "NEW_CONSUMER_NAME";
 string streamARN = "arn:aws:kinesis:us-east-2:000000000000:stream/
AmazonKinesisStream";

 var consumer = await RegisterConsumerAsync(client, consumerName,
 streamARN);

 if (consumer is not null)
 {
 Console.WriteLine($"{consumer.ConsumerName}");
 }
 }

 /// <summary>
 /// Registers the consumer to a Kinesis stream.
 /// </summary>
 /// <param name="client">The initialized Kinesis client object.</param>
 /// <param name="consumerName">A string representing the consumer.</param>
 /// <param name="streamARN">The ARN of the stream.</param>
 /// <returns>A Consumer object that contains information about the
 consumer.</returns>
 public static async Task<Consumer> RegisterConsumerAsync(IAmazonKinesis
 client, string consumerName, string streamARN)
 {
 var request = new RegisterStreamConsumerRequest
 {
 ConsumerName = consumerName,
 StreamARN = streamARN,
 };

Actions 1154

AWS SDK for .NET Developer Guide

 var response = await client.RegisterStreamConsumerAsync(request);
 return response.Consumer;
 }
 }

• For API details, see RegisterStreamConsumer in AWS SDK for .NET API Reference.

Serverless examples

Invoke a Lambda function from a Kinesis trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a Kinesis stream. The function retrieves the Kinesis payload,
decodes from Base64, and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a Kinesis event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegrationSampleCode;

Serverless examples 1155

https://docs.aws.amazon.com/goto/DotNetSDKV3/kinesis-2013-12-02/RegisterStreamConsumer
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS SDK for .NET Developer Guide

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task FunctionHandler(KinesisEvent evnt, ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return;
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 throw;
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

Serverless examples 1156

AWS SDK for .NET Developer Guide

Reporting batch item failures for Lambda functions with a Kinesis trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a Kinesis stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using System.Text.Json.Serialization;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegration;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task<StreamsEventResponse> FunctionHandler(KinesisEvent evnt,
 ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");

Serverless examples 1157

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS SDK for .NET Developer Guide

 return new StreamsEventResponse();
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 return new StreamsEventResponse
 {
 BatchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>
 {
 new StreamsEventResponse.BatchItemFailure { ItemIdentifier =
 record.Kinesis.SequenceNumber }
 }
 };
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 return new StreamsEventResponse();
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }

Serverless examples 1158

AWS SDK for .NET Developer Guide

}

public class StreamsEventResponse
{
 [JsonPropertyName("batchItemFailures")]
 public IList<BatchItemFailure> BatchItemFailures { get; set; }
 public class BatchItemFailure
 {
 [JsonPropertyName("itemIdentifier")]
 public string ItemIdentifier { get; set; }
 }
}

AWS KMS examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with AWS KMS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

CreateAlias

The following code example shows how to use CreateAlias.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

AWS KMS 1159

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Creates an alias for an AWS Key Management Service (AWS KMS) key.
 /// </summary>
 public class CreateAlias
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The alias name must start with alias/ and can be
 // up to 256 alphanumeric characters long.
 var aliasName = "alias/ExampleAlias";

 // The value supplied as the TargetKeyId can be either
 // the key ID or key Amazon Resource Name (ARN) of the
 // AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";

 var request = new CreateAliasRequest
 {
 AliasName = aliasName,
 TargetKeyId = keyId,
 };

 var response = await client.CreateAliasAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Alias, {aliasName}, successfully created.");
 }
 else
 {
 Console.WriteLine($"Could not create alias.");
 }
 }
 }

Actions 1160

AWS SDK for .NET Developer Guide

• For API details, see CreateAlias in AWS SDK for .NET API Reference.

CreateGrant

The following code example shows how to use CreateGrant.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The identity that is given permission to perform the operations
 // specified in the grant.
 var grantee = "arn:aws:iam::111122223333:role/ExampleRole";

 // The identifier of the AWS KMS key to which the grant applies. You
 // can use the key ID or the Amazon Resource Name (ARN) of the KMS key.
 var keyId = "7c9eccc2-38cb-4c4f-9db3-766ee8dd3ad4";

 var request = new CreateGrantRequest
 {
 GranteePrincipal = grantee,
 KeyId = keyId,

 // A list of operations that the grant allows.
 Operations = new List<string>
 {
 "Encrypt",
 "Decrypt",
 },
 };

 var response = await client.CreateGrantAsync(request);

Actions 1161

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/CreateAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 string grantId = response.GrantId; // The unique identifier of the
 grant.
 string grantToken = response.GrantToken; // The grant token.

 Console.WriteLine($"Id: {grantId}, Token: {grantToken}");
 }
 }

• For API details, see CreateGrant in AWS SDK for .NET API Reference.

CreateKey

The following code example shows how to use CreateKey.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Shows how to create a new AWS Key Management Service (AWS KMS)
 /// key.
 /// </summary>
 public class CreateKey
 {
 public static async Task Main()
 {
 // Note that if you need to create a Key in an AWS Region
 // other than the Region defined for the default user, you need to
 // pass the Region to the client constructor.
 var client = new AmazonKeyManagementServiceClient();

Actions 1162

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/CreateGrant
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 // The call to CreateKeyAsync will create a symmetrical AWS KMS
 // key. For more information about symmetrical and asymmetrical
 // keys, see:
 //
 // https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-
choose.html
 var response = await client.CreateKeyAsync(new CreateKeyRequest());

 // The KeyMetadata object contains information about the new AWS KMS
 key.
 KeyMetadata keyMetadata = response.KeyMetadata;

 if (keyMetadata is not null)
 {
 Console.WriteLine($"KMS Key: {keyMetadata.KeyId} was successfully
 created.");
 }
 else
 {
 Console.WriteLine("Could not create KMS Key.");
 }
 }
 }

• For API details, see CreateKey in AWS SDK for .NET API Reference.

DescribeKey

The following code example shows how to use DescribeKey.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;

Actions 1163

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/CreateKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Retrieve information about an AWS Key Management Service (AWS KMS) key.
 /// You can supply either the key Id or the key Amazon Resource Name (ARN)
 /// to the DescribeKeyRequest KeyId property.
 /// </summary>
 public class DescribeKey
 {
 public static async Task Main()
 {
 var keyId = "7c9eccc2-38cb-4c4f-9db3-766ee8dd3ad4";
 var request = new DescribeKeyRequest
 {
 KeyId = keyId,
 };

 var client = new AmazonKeyManagementServiceClient();

 var response = await client.DescribeKeyAsync(request);
 var metadata = response.KeyMetadata;

 Console.WriteLine($"{metadata.KeyId} created on:
 {metadata.CreationDate}");
 Console.WriteLine($"State: {metadata.KeyState}");
 Console.WriteLine($"{metadata.Description}");
 }
 }

• For API details, see DescribeKey in AWS SDK for .NET API Reference.

DisableKey

The following code example shows how to use DisableKey.

Actions 1164

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/DescribeKey

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Disable an AWS Key Management Service (AWS KMS) key and then retrieve
 /// the key's status to show that it has been disabled.
 /// </summary>
 public class DisableKey
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The identifier of the AWS KMS key to disable. You can use the
 // key Id or the Amazon Resource Name (ARN) of the AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";

 var request = new DisableKeyRequest
 {
 KeyId = keyId,
 };

 var response = await client.DisableKeyAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 // Retrieve information about the key to show that it has now
 // been disabled.
 var describeResponse = await client.DescribeKeyAsync(new
 DescribeKeyRequest
 {
 KeyId = keyId,

Actions 1165

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 });
 Console.WriteLine($"{describeResponse.KeyMetadata.KeyId} - state:
 {describeResponse.KeyMetadata.KeyState}");
 }
 }
 }

• For API details, see DisableKey in AWS SDK for .NET API Reference.

EnableKey

The following code example shows how to use EnableKey.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Enable an AWS Key Management Service (AWS KMS) key.
 /// </summary>
 public class EnableKey
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The identifier of the AWS KMS key to enable. You can use the
 // key Id or the Amazon Resource Name (ARN) of the AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";

Actions 1166

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/DisableKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 var request = new EnableKeyRequest
 {
 KeyId = keyId,
 };

 var response = await client.EnableKeyAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 // Retrieve information about the key to show that it has now
 // been enabled.
 var describeResponse = await client.DescribeKeyAsync(new
 DescribeKeyRequest
 {
 KeyId = keyId,
 });
 Console.WriteLine($"{describeResponse.KeyMetadata.KeyId} - state:
 {describeResponse.KeyMetadata.KeyState}");
 }
 }
 }

• For API details, see EnableKey in AWS SDK for .NET API Reference.

ListAliases

The following code example shows how to use ListAliases.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

Actions 1167

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/EnableKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List the AWS Key Management Service (AWS KMS) aliases that have been defined
 for
 /// the keys in the same AWS Region as the default user. If you want to list
 /// the aliases in a different Region, pass the Region to the client
 /// constructor.
 /// </summary>
 public class ListAliases
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();
 var request = new ListAliasesRequest();
 var response = new ListAliasesResponse();

 do
 {
 response = await client.ListAliasesAsync(request);

 response.Aliases.ForEach(alias =>
 {
 Console.WriteLine($"Created: {alias.CreationDate} Last Update:
 {alias.LastUpdatedDate} Name: {alias.AliasName}");
 });

 request.Marker = response.NextMarker;
 }
 while (response.Truncated);
 }
 }

• For API details, see ListAliases in AWS SDK for .NET API Reference.

ListGrants

The following code example shows how to use ListGrants.

Actions 1168

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/ListAliases

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// List the AWS Key Management Service (AWS KMS) grants that are associated
 with
 /// a specific key.
 /// </summary>
 public class ListGrants
 {
 public static async Task Main()
 {
 // The identifier of the AWS KMS key to disable. You can use the
 // key Id or the Amazon Resource Name (ARN) of the AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";
 var client = new AmazonKeyManagementServiceClient();
 var request = new ListGrantsRequest
 {
 KeyId = keyId,
 };

 var response = new ListGrantsResponse();

 do
 {
 response = await client.ListGrantsAsync(request);

 response.Grants.ForEach(grant =>
 {
 Console.WriteLine($"{grant.GrantId}");
 });

Actions 1169

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 request.Marker = response.NextMarker;
 }
 while (response.Truncated);
 }
 }

• For API details, see ListGrants in AWS SDK for .NET API Reference.

ListKeys

The following code example shows how to use ListKeys.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// List the AWS Key Managements Service (AWS KMS) keys for the AWS Region
 /// of the default user. To list keys in another AWS Region, supply the Region
 /// as a parameter to the client constructor.
 /// </summary>
 public class ListKeys
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();
 var request = new ListKeysRequest();
 var response = new ListKeysResponse();

 do
 {

Actions 1170

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/ListGrants
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

AWS SDK for .NET Developer Guide

 response = await client.ListKeysAsync(request);

 response.Keys.ForEach(key =>
 {
 Console.WriteLine($"ID: {key.KeyId}, {key.KeyArn}");
 });

 // Set the Marker property when response.Truncated is true
 // in order to get the next keys.
 request.Marker = response.NextMarker;
 }
 while (response.Truncated);
 }
 }

• For API details, see ListKeys in AWS SDK for .NET API Reference.

Lambda examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Lambda.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

AWS community contributions are examples that were created and are maintained by multiple
teams across AWS. To provide feedback, use the mechanism provided in the linked repositories.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Lambda

The following code examples show how to get started using Lambda.

Lambda 1171

https://docs.aws.amazon.com/goto/DotNetSDKV3/kms-2014-11-01/ListKeys

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace LambdaActions;

using Amazon.Lambda;

public class HelloLambda
{
 static async Task Main(string[] args)
 {
 var lambdaClient = new AmazonLambdaClient();

 Console.WriteLine("Hello AWS Lambda");
 Console.WriteLine("Let's get started with AWS Lambda by listing your
 existing Lambda functions:");

 var response = await lambdaClient.ListFunctionsAsync();
 response.Functions.ForEach(function =>
 {
 Console.WriteLine($"{function.FunctionName}\t{function.Description}");
 });
 }
}

• For API details, see ListFunctions in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

• Scenarios

• Serverless examples

Lambda 1172

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions

AWS SDK for .NET Developer Guide

• AWS community contributions

Basics

Learn the basics

The following code example shows how to:

• Create an IAM role and Lambda function, then upload handler code.

• Invoke the function with a single parameter and get results.

• Update the function code and configure with an environment variable.

• Invoke the function with new parameters and get results. Display the returned execution log.

• List the functions for your account, then clean up resources.

For more information, see Create a Lambda function with the console.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create methods that perform Lambda actions.

namespace LambdaActions;

using Amazon.Lambda;
using Amazon.Lambda.Model;

/// <summary>
/// A class that implements AWS Lambda methods.
/// </summary>
public class LambdaWrapper
{
 private readonly IAmazonLambda _lambdaService;

 /// <summary>

Basics 1173

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS SDK for .NET Developer Guide

 /// Constructor for the LambdaWrapper class.
 /// </summary>
 /// <param name="lambdaService">An initialized Lambda service client.</param>
 public LambdaWrapper(IAmazonLambda lambdaService)
 {
 _lambdaService = lambdaService;
 }

 /// <summary>
 /// Creates a new Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function.</param>
 /// <param name="s3Bucket">The Amazon Simple Storage Service (Amazon S3)
 /// bucket where the zip file containing the code is located.</param>
 /// <param name="s3Key">The Amazon S3 key of the zip file.</param>
 /// <param name="role">The Amazon Resource Name (ARN) of a role with the
 /// appropriate Lambda permissions.</param>
 /// <param name="handler">The name of the handler function.</param>
 /// <returns>The Amazon Resource Name (ARN) of the newly created
 /// Lambda function.</returns>
 public async Task<string> CreateLambdaFunctionAsync(
 string functionName,
 string s3Bucket,
 string s3Key,
 string role,
 string handler)
 {
 // Defines the location for the function code.
 // S3Bucket - The S3 bucket where the file containing
 // the source code is stored.
 // S3Key - The name of the file containing the code.
 var functionCode = new FunctionCode
 {
 S3Bucket = s3Bucket,
 S3Key = s3Key,
 };

 var createFunctionRequest = new CreateFunctionRequest
 {
 FunctionName = functionName,
 Description = "Created by the Lambda .NET API",
 Code = functionCode,
 Handler = handler,
 Runtime = Runtime.Dotnet6,

Basics 1174

AWS SDK for .NET Developer Guide

 Role = role,
 };

 var reponse = await
 _lambdaService.CreateFunctionAsync(createFunctionRequest);
 return reponse.FunctionArn;
 }

 /// <summary>
 /// Delete an AWS Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// delete.</param>
 /// <returns>A Boolean value that indicates the success of the action.</returns>
 public async Task<bool> DeleteFunctionAsync(string functionName)
 {
 var request = new DeleteFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.DeleteFunctionAsync(request);

 // A return value of NoContent means that the request was processed.
 // In this case, the function was deleted, and the return value
 // is intentionally blank.
 return response.HttpStatusCode == System.Net.HttpStatusCode.NoContent;
 }

 /// <summary>
 /// Gets information about a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function for
 /// which to retrieve information.</param>
 /// <returns>Async Task.</returns>
 public async Task<FunctionConfiguration> GetFunctionAsync(string functionName)
 {
 var functionRequest = new GetFunctionRequest
 {
 FunctionName = functionName,
 };

Basics 1175

AWS SDK for .NET Developer Guide

 var response = await _lambdaService.GetFunctionAsync(functionRequest);
 return response.Configuration;
 }

 /// <summary>
 /// Invoke a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// invoke.</param
 /// <param name="parameters">The parameter values that will be passed to the
 function.</param>
 /// <returns>A System Threading Task.</returns>
 public async Task<string> InvokeFunctionAsync(
 string functionName,
 string parameters)
 {
 var payload = parameters;
 var request = new InvokeRequest
 {
 FunctionName = functionName,
 Payload = payload,
 };

 var response = await _lambdaService.InvokeAsync(request);
 MemoryStream stream = response.Payload;
 string returnValue = System.Text.Encoding.UTF8.GetString(stream.ToArray());
 return returnValue;
 }

 /// <summary>
 /// Get a list of Lambda functions.
 /// </summary>
 /// <returns>A list of FunctionConfiguration objects.</returns>
 public async Task<List<FunctionConfiguration>> ListFunctionsAsync()
 {
 var functionList = new List<FunctionConfiguration>();

 var functionPaginator =
 _lambdaService.Paginators.ListFunctions(new ListFunctionsRequest());
 await foreach (var function in functionPaginator.Functions)
 {
 functionList.Add(function);

Basics 1176

AWS SDK for .NET Developer Guide

 }

 return functionList;
 }

 /// <summary>
 /// Update an existing Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to update.</
param>
 /// <param name="bucketName">The bucket where the zip file containing
 /// the Lambda function code is stored.</param>
 /// <param name="key">The key name of the source code file.</param>
 /// <returns>Async Task.</returns>
 public async Task UpdateFunctionCodeAsync(
 string functionName,
 string bucketName,
 string key)
 {
 var functionCodeRequest = new UpdateFunctionCodeRequest
 {
 FunctionName = functionName,
 Publish = true,
 S3Bucket = bucketName,
 S3Key = key,
 };

 var response = await
 _lambdaService.UpdateFunctionCodeAsync(functionCodeRequest);
 Console.WriteLine($"The Function was last modified at
 {response.LastModified}.");
 }

 /// <summary>
 /// Update the code of a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function to update.</param>
 /// <param name="functionHandler">The code that performs the function's
 actions.</param>
 /// <param name="environmentVariables">A dictionary of environment variables.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>

Basics 1177

AWS SDK for .NET Developer Guide

 public async Task<bool> UpdateFunctionConfigurationAsync(
 string functionName,
 string functionHandler,
 Dictionary<string, string> environmentVariables)
 {
 var request = new UpdateFunctionConfigurationRequest
 {
 Handler = functionHandler,
 FunctionName = functionName,
 Environment = new Amazon.Lambda.Model.Environment { Variables =
 environmentVariables },
 };

 var response = await
 _lambdaService.UpdateFunctionConfigurationAsync(request);

 Console.WriteLine(response.LastModified);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

}

Create a function that runs the scenario.

global using System.Threading.Tasks;
global using Amazon.IdentityManagement;
global using Amazon.Lambda;
global using LambdaActions;
global using LambdaScenarioCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

using Amazon.Lambda.Model;
using Microsoft.Extensions.Configuration;

Basics 1178

AWS SDK for .NET Developer Guide

namespace LambdaBasics;

public class LambdaBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonLambda>()
 .AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<LambdaWrapper>()
 .AddTransient<LambdaRoleWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<LambdaBasics>();

 var lambdaWrapper = host.Services.GetRequiredService<LambdaWrapper>();
 var lambdaRoleWrapper =
 host.Services.GetRequiredService<LambdaRoleWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 string functionName = configuration["FunctionName"]!;
 string roleName = configuration["RoleName"]!;
 string policyDocument = "{" +
 " \"Version\": \"2012-10-17\"," +

Basics 1179

AWS SDK for .NET Developer Guide

 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Principal\": {" +
 " \"Service\": \"lambda.amazonaws.com\" " +
 " }," +
 " \"Action\": \"sts:AssumeRole\" " +
 " }" +
 "]" +
 "}";

 var incrementHandler = configuration["IncrementHandler"];
 var calculatorHandler = configuration["CalculatorHandler"];
 var bucketName = configuration["BucketName"];
 var incrementKey = configuration["IncrementKey"];
 var calculatorKey = configuration["CalculatorKey"];
 var policyArn = configuration["PolicyArn"];

 uiWrapper.DisplayLambdaBasicsOverview();

 // Create the policy to use with the AWS Lambda functions and then attach
 the
 // policy to a new role.
 var roleArn = await lambdaRoleWrapper.CreateLambdaRoleAsync(roleName,
 policyDocument);

 Console.WriteLine("Waiting for role to become active.");
 uiWrapper.WaitABit(15, "Wait until the role is active before trying to use
 it.");

 // Attach the appropriate AWS Identity and Access Management (IAM) role
 policy to the new role.
 var success = await lambdaRoleWrapper.AttachLambdaRolePolicyAsync(policyArn,
 roleName);
 uiWrapper.WaitABit(10, "Allow time for the IAM policy to be attached to the
 role.");

 // Create the Lambda function using a zip file stored in an Amazon Simple
 Storage Service
 // (Amazon S3) bucket.
 uiWrapper.DisplayTitle("Create Lambda Function");
 Console.WriteLine($"Creating the AWS Lambda function: {functionName}.");
 var lambdaArn = await lambdaWrapper.CreateLambdaFunctionAsync(
 functionName,

Basics 1180

AWS SDK for .NET Developer Guide

 bucketName,
 incrementKey,
 roleArn,
 incrementHandler);

 Console.WriteLine("Waiting for the new function to be available.");
 Console.WriteLine($"The AWS Lambda ARN is {lambdaArn}");

 // Get the Lambda function.
 Console.WriteLine($"Getting the {functionName} AWS Lambda function.");
 FunctionConfiguration config;
 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.State != State.Active);

 Console.WriteLine($"\nThe function, {functionName} has been created.");
 Console.WriteLine($"The runtime of this Lambda function is
 {config.Runtime}.");

 uiWrapper.PressEnter();

 // List the Lambda functions.
 uiWrapper.DisplayTitle("Listing all Lambda functions.");
 var functions = await lambdaWrapper.ListFunctionsAsync();
 DisplayFunctionList(functions);

 uiWrapper.DisplayTitle("Invoke increment function");
 Console.WriteLine("Now that it has been created, invoke the Lambda increment
 function.");
 string? value;
 do
 {
 Console.Write("Enter a value to increment: ");
 value = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(value));

 string functionParameters = "{" +
 "\"action\": \"increment\", " +
 "\"x\": \"" + value + "\"" +
 "}";

Basics 1181

AWS SDK for .NET Developer Guide

 var answer = await lambdaWrapper.InvokeFunctionAsync(functionName,
 functionParameters);
 Console.WriteLine($"{value} + 1 = {answer}.");

 uiWrapper.DisplayTitle("Update function");
 Console.WriteLine("Now update the Lambda function code.");
 await lambdaWrapper.UpdateFunctionCodeAsync(functionName, bucketName,
 calculatorKey);

 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.LastUpdateStatus == LastUpdateStatus.InProgress);

 await lambdaWrapper.UpdateFunctionConfigurationAsync(
 functionName,
 calculatorHandler,
 new Dictionary<string, string> { { "LOG_LEVEL", "DEBUG" } });

 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.LastUpdateStatus == LastUpdateStatus.InProgress);

 uiWrapper.DisplayTitle("Call updated function");
 Console.WriteLine("Now call the updated function...");

 bool done = false;

 do
 {
 string? opSelected;

 Console.WriteLine("Select the operation to perform:");
 Console.WriteLine("\t1. add");
 Console.WriteLine("\t2. subtract");
 Console.WriteLine("\t3. multiply");
 Console.WriteLine("\t4. divide");
 Console.WriteLine("\tOr enter \"q\" to quit.");

Basics 1182

AWS SDK for .NET Developer Guide

 Console.WriteLine("Enter the number (1, 2, 3, 4, or q) of the operation
 you want to perform: ");
 do
 {
 Console.Write("Your choice? ");
 opSelected = Console.ReadLine();
 }
 while (opSelected == string.Empty);

 var operation = (opSelected) switch
 {
 "1" => "add",
 "2" => "subtract",
 "3" => "multiply",
 "4" => "divide",
 "q" => "quit",
 _ => "add",
 };

 if (operation == "quit")
 {
 done = true;
 }
 else
 {
 // Get two numbers and an action from the user.
 value = string.Empty;
 do
 {
 Console.Write("Enter the first value: ");
 value = Console.ReadLine();
 }
 while (value == string.Empty);

 string? value2;
 do
 {
 Console.Write("Enter a second value: ");
 value2 = Console.ReadLine();
 }
 while (value2 == string.Empty);

 functionParameters = "{" +
 "\"action\": \"" + operation + "\", " +

Basics 1183

AWS SDK for .NET Developer Guide

 "\"x\": \"" + value + "\"," +
 "\"y\": \"" + value2 + "\"" +
 "}";

 answer = await lambdaWrapper.InvokeFunctionAsync(functionName,
 functionParameters);
 Console.WriteLine($"The answer when we {operation} the two numbers
 is: {answer}.");
 }

 uiWrapper.PressEnter();
 } while (!done);

 // Delete the function created earlier.

 uiWrapper.DisplayTitle("Clean up resources");
 // Detach the IAM policy from the IAM role.
 Console.WriteLine("First detach the IAM policy from the role.");
 success = await lambdaRoleWrapper.DetachLambdaRolePolicyAsync(policyArn,
 roleName);
 uiWrapper.WaitABit(15, "Let's wait for the policy to be fully detached from
 the role.");

 Console.WriteLine("Delete the AWS Lambda function.");
 success = await lambdaWrapper.DeleteFunctionAsync(functionName);
 if (success)
 {
 Console.WriteLine($"The {functionName} function was deleted.");
 }
 else
 {
 Console.WriteLine($"Could not remove the function {functionName}");
 }

 // Now delete the IAM role created for use with the functions
 // created by the application.
 Console.WriteLine("Now we can delete the role that we created.");
 success = await lambdaRoleWrapper.DeleteLambdaRoleAsync(roleName);
 if (success)
 {
 Console.WriteLine("The role has been successfully removed.");
 }
 else
 {

Basics 1184

AWS SDK for .NET Developer Guide

 Console.WriteLine("Couldn't delete the role.");
 }

 Console.WriteLine("The Lambda Scenario is now complete.");
 uiWrapper.PressEnter();

 // Displays a formatted list of existing functions returned by the
 // LambdaMethods.ListFunctions.
 void DisplayFunctionList(List<FunctionConfiguration> functions)
 {
 functions.ForEach(functionConfig =>
 {

 Console.WriteLine($"{functionConfig.FunctionName}\t{functionConfig.Description}");
 });
 }
 }
}

namespace LambdaActions;

using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;

public class LambdaRoleWrapper
{
 private readonly IAmazonIdentityManagementService _lambdaRoleService;

 public LambdaRoleWrapper(IAmazonIdentityManagementService lambdaRoleService)
 {
 _lambdaRoleService = lambdaRoleService;
 }

 /// <summary>
 /// Attach an AWS Identity and Access Management (IAM) role policy to the
 /// IAM role to be assumed by the AWS Lambda functions created for the scenario.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM policy.</
param>
 /// <param name="roleName">The name of the IAM role to attach the IAM policy
 to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>

Basics 1185

AWS SDK for .NET Developer Guide

 public async Task<bool> AttachLambdaRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _lambdaRoleService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest { PolicyArn = policyArn, RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to create.</param>
 /// <param name="policyDocument">The policy document for the new IAM role.</
param>
 /// <returns>A string representing the ARN for newly created role.</returns>
 public async Task<string> CreateLambdaRoleAsync(string roleName, string
 policyDocument)
 {
 var request = new CreateRoleRequest
 {
 AssumeRolePolicyDocument = policyDocument,
 RoleName = roleName,
 };

 var response = await _lambdaRoleService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Deletes an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</returns>
 public async Task<bool> DeleteLambdaRoleAsync(string roleName)
 {
 var request = new DeleteRoleRequest
 {
 RoleName = roleName,
 };

 var response = await _lambdaRoleService.DeleteRoleAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Basics 1186

AWS SDK for .NET Developer Guide

 public async Task<bool> DetachLambdaRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _lambdaRoleService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest { PolicyArn = policyArn, RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
}

namespace LambdaScenarioCommon;
public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the AWS Lambda Basics scenario.
 /// </summary>
 public void DisplayLambdaBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to AWS Lambda Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an AWS Identity and Access Management (IAM)
 role that will be assumed by the functions we create.");
 Console.WriteLine("\t2. Attaches an IAM role policy that has Lambda
 permissions.");
 Console.WriteLine("\t3. Creates a Lambda function that increments the value
 passed to it.");
 Console.WriteLine("\t4. Calls the increment function and passes a value.");
 Console.WriteLine("\t5. Updates the code so that the function is a simple
 calculator.");
 Console.WriteLine("\t6. Calls the calculator function with the values
 entered.");
 Console.WriteLine("\t7. Deletes the Lambda function.");
 Console.WriteLine("\t7. Detaches the IAM role policy.");
 Console.WriteLine("\t8. Deletes the IAM role.");
 PressEnter();
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>

Basics 1187

AWS SDK for .NET Developer Guide

 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");

Basics 1188

AWS SDK for .NET Developer Guide

 }

 PressEnter();
 }
}

Define a Lambda handler that increments a number.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaIncrement;

public class Function
{

 /// <summary>
 /// A simple function increments the integer parameter.
 /// </summary>
 /// <param name="input">A JSON string containing an action, which must be
 /// "increment" and a string representing the value to increment.</param>
 /// <param name="context">The context object passed by Lambda containing
 /// information about invocation, function, and execution environment.</param>
 /// <returns>A string representing the incremented value of the parameter.</
returns>
 public int FunctionHandler(Dictionary<string, string> input, ILambdaContext
 context)
 {
 if (input["action"] == "increment")
 {
 int inputValue = Convert.ToInt32(input["x"]);
 return inputValue + 1;
 }
 else
 {
 return 0;
 }

Basics 1189

AWS SDK for .NET Developer Guide

 }
}

Define a second Lambda handler that performs arithmetic operations.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaCalculator;

public class Function
{

 /// <summary>
 /// A simple function that takes two number in string format and performs
 /// the requested arithmetic function.
 /// </summary>
 /// <param name="input">JSON data containing an action, and x and y values.
 /// Valid actions include: add, subtract, multiply, and divide.</param>
 /// <param name="context">The context object passed by Lambda containing
 /// information about invocation, function, and execution environment.</param>
 /// <returns>A string representing the results of the calculation.</returns>
 public int FunctionHandler(Dictionary<string, string> input, ILambdaContext
 context)
 {
 var action = input["action"];
 int x = Convert.ToInt32(input["x"]);
 int y = Convert.ToInt32(input["y"]);
 int result;
 switch (action)
 {
 case "add":
 result = x + y;
 break;
 case "subtract":
 result = x - y;
 break;

Basics 1190

AWS SDK for .NET Developer Guide

 case "multiply":
 result = x * y;
 break;
 case "divide":
 if (y == 0)
 {
 Console.Error.WriteLine("Divide by zero error.");
 result = 0;
 }
 else
 result = x / y;
 break;
 default:
 Console.Error.WriteLine($"{action} is not a valid operation.");
 result = 0;
 break;
 }
 return result;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Actions

CreateFunction

The following code example shows how to use CreateFunction.

Actions 1191

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionConfiguration

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates a new Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function.</param>
 /// <param name="s3Bucket">The Amazon Simple Storage Service (Amazon S3)
 /// bucket where the zip file containing the code is located.</param>
 /// <param name="s3Key">The Amazon S3 key of the zip file.</param>
 /// <param name="role">The Amazon Resource Name (ARN) of a role with the
 /// appropriate Lambda permissions.</param>
 /// <param name="handler">The name of the handler function.</param>
 /// <returns>The Amazon Resource Name (ARN) of the newly created
 /// Lambda function.</returns>
 public async Task<string> CreateLambdaFunctionAsync(
 string functionName,
 string s3Bucket,
 string s3Key,
 string role,
 string handler)
 {
 // Defines the location for the function code.
 // S3Bucket - The S3 bucket where the file containing
 // the source code is stored.
 // S3Key - The name of the file containing the code.
 var functionCode = new FunctionCode
 {
 S3Bucket = s3Bucket,
 S3Key = s3Key,
 };

 var createFunctionRequest = new CreateFunctionRequest
 {
 FunctionName = functionName,
 Description = "Created by the Lambda .NET API",
 Code = functionCode,

Actions 1192

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS SDK for .NET Developer Guide

 Handler = handler,
 Runtime = Runtime.Dotnet6,
 Role = role,
 };

 var reponse = await
 _lambdaService.CreateFunctionAsync(createFunctionRequest);
 return reponse.FunctionArn;
 }

• For API details, see CreateFunction in AWS SDK for .NET API Reference.

DeleteFunction

The following code example shows how to use DeleteFunction.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an AWS Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// delete.</param>
 /// <returns>A Boolean value that indicates the success of the action.</returns>
 public async Task<bool> DeleteFunctionAsync(string functionName)
 {
 var request = new DeleteFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.DeleteFunctionAsync(request);

 // A return value of NoContent means that the request was processed.

Actions 1193

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/CreateFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS SDK for .NET Developer Guide

 // In this case, the function was deleted, and the return value
 // is intentionally blank.
 return response.HttpStatusCode == System.Net.HttpStatusCode.NoContent;
 }

• For API details, see DeleteFunction in AWS SDK for .NET API Reference.

GetFunction

The following code example shows how to use GetFunction.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Gets information about a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function for
 /// which to retrieve information.</param>
 /// <returns>Async Task.</returns>
 public async Task<FunctionConfiguration> GetFunctionAsync(string functionName)
 {
 var functionRequest = new GetFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.GetFunctionAsync(functionRequest);
 return response.Configuration;
 }

• For API details, see GetFunction in AWS SDK for .NET API Reference.

Actions 1194

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/DeleteFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/GetFunction

AWS SDK for .NET Developer Guide

Invoke

The following code example shows how to use Invoke.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Invoke a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// invoke.</param
 /// <param name="parameters">The parameter values that will be passed to the
 function.</param>
 /// <returns>A System Threading Task.</returns>
 public async Task<string> InvokeFunctionAsync(
 string functionName,
 string parameters)
 {
 var payload = parameters;
 var request = new InvokeRequest
 {
 FunctionName = functionName,
 Payload = payload,
 };

 var response = await _lambdaService.InvokeAsync(request);
 MemoryStream stream = response.Payload;
 string returnValue = System.Text.Encoding.UTF8.GetString(stream.ToArray());
 return returnValue;
 }

• For API details, see Invoke in AWS SDK for .NET API Reference.

Actions 1195

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/Invoke

AWS SDK for .NET Developer Guide

ListFunctions

The following code example shows how to use ListFunctions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of Lambda functions.
 /// </summary>
 /// <returns>A list of FunctionConfiguration objects.</returns>
 public async Task<List<FunctionConfiguration>> ListFunctionsAsync()
 {
 var functionList = new List<FunctionConfiguration>();

 var functionPaginator =
 _lambdaService.Paginators.ListFunctions(new ListFunctionsRequest());
 await foreach (var function in functionPaginator.Functions)
 {
 functionList.Add(function);
 }

 return functionList;
 }

• For API details, see ListFunctions in AWS SDK for .NET API Reference.

UpdateFunctionCode

The following code example shows how to use UpdateFunctionCode.

Actions 1196

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Update an existing Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to update.</
param>
 /// <param name="bucketName">The bucket where the zip file containing
 /// the Lambda function code is stored.</param>
 /// <param name="key">The key name of the source code file.</param>
 /// <returns>Async Task.</returns>
 public async Task UpdateFunctionCodeAsync(
 string functionName,
 string bucketName,
 string key)
 {
 var functionCodeRequest = new UpdateFunctionCodeRequest
 {
 FunctionName = functionName,
 Publish = true,
 S3Bucket = bucketName,
 S3Key = key,
 };

 var response = await
 _lambdaService.UpdateFunctionCodeAsync(functionCodeRequest);
 Console.WriteLine($"The Function was last modified at
 {response.LastModified}.");
 }

• For API details, see UpdateFunctionCode in AWS SDK for .NET API Reference.

Actions 1197

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionCode

AWS SDK for .NET Developer Guide

UpdateFunctionConfiguration

The following code example shows how to use UpdateFunctionConfiguration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Update the code of a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function to update.</param>
 /// <param name="functionHandler">The code that performs the function's
 actions.</param>
 /// <param name="environmentVariables">A dictionary of environment variables.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateFunctionConfigurationAsync(
 string functionName,
 string functionHandler,
 Dictionary<string, string> environmentVariables)
 {
 var request = new UpdateFunctionConfigurationRequest
 {
 Handler = functionHandler,
 FunctionName = functionName,
 Environment = new Amazon.Lambda.Model.Environment { Variables =
 environmentVariables },
 };

 var response = await
 _lambdaService.UpdateFunctionConfigurationAsync(request);

 Console.WriteLine(response.LastModified);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 1198

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS SDK for .NET Developer Guide

• For API details, see UpdateFunctionConfiguration in AWS SDK for .NET API Reference.

Scenarios

Create a serverless application to manage photos

The following code example shows how to create a serverless application that lets users manage
photos using labels.

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various

Scenarios 1199

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

AWS SDK for .NET Developer Guide

languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment instructions,
see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Transform data with S3 Object Lambda

The following code example shows how to transform data for your application with S3 Object
Lambda.

AWS SDK for .NET

Shows how to add custom code to standard S3 GET requests to modify the requested object
retrieved from S3 so that the object suit the needs of the requesting client or application.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Lambda

• Amazon S3

Scenarios 1200

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/S3ObjectLambdaFunction

AWS SDK for .NET Developer Guide

Serverless examples

Connecting to an Amazon RDS database in a Lambda function

The following code example shows how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using .NET.

using System.Data;
using System.Text.Json;
using Amazon.Lambda.APIGatewayEvents;
using Amazon.Lambda.Core;
using MySql.Data.MySqlClient;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace aws_rds;

public class InputModel
{
 public string key1 { get; set; }
 public string key2 { get; set; }
}

public class Function
{
 /// <summary>
 // Handles the Lambda function execution for connecting to RDS using IAM
 authentication.
 /// </summary>

Serverless examples 1201

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS SDK for .NET Developer Guide

 /// <param name="input">The input event data passed to the Lambda function</
param>
 /// <param name="context">The Lambda execution context that provides runtime
 information</param>
 /// <returns>A response object containing the execution result</returns>

 public async Task<APIGatewayProxyResponse>
 FunctionHandler(APIGatewayProxyRequest request, ILambdaContext context)
 {
 // Sample Input: {"body": "{\"key1\":\"20\", \"key2\":\"25\"}"}
 var input = JsonSerializer.Deserialize<InputModel>(request.Body);

 /// Obtain authentication token
 var authToken = RDSAuthTokenGenerator.GenerateAuthToken(
 Environment.GetEnvironmentVariable("RDS_ENDPOINT"),
 Convert.ToInt32(Environment.GetEnvironmentVariable("RDS_PORT")),
 Environment.GetEnvironmentVariable("RDS_USERNAME")
);

 /// Build the Connection String with the Token
 string connectionString =
 $"Server={Environment.GetEnvironmentVariable("RDS_ENDPOINT")};" +

 $"Port={Environment.GetEnvironmentVariable("RDS_PORT")};" +

 $"Uid={Environment.GetEnvironmentVariable("RDS_USERNAME")};" +
 $"Pwd={authToken};";

 try
 {
 await using var connection = new MySqlConnection(connectionString);
 await connection.OpenAsync();

 const string sql = "SELECT @param1 + @param2 AS Sum";

 await using var command = new MySqlCommand(sql, connection);
 command.Parameters.AddWithValue("@param1", int.Parse(input.key1 ??
 "0"));
 command.Parameters.AddWithValue("@param2", int.Parse(input.key2 ??
 "0"));

 await using var reader = await command.ExecuteReaderAsync();
 if (await reader.ReadAsync())

Serverless examples 1202

AWS SDK for .NET Developer Guide

 {
 int result = reader.GetInt32("Sum");

 //Sample Response: {"statusCode":200,"body":"{\"message\":\"The sum
 is: 45\"}","isBase64Encoded":false}
 return new APIGatewayProxyResponse
 {
 StatusCode = 200,
 Body = JsonSerializer.Serialize(new { message = $"The sum is:
 {result}" })
 };
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

 return new APIGatewayProxyResponse
 {
 StatusCode = 500,
 Body = JsonSerializer.Serialize(new { error = "Internal server error" })
 };
 }
}

Invoke a Lambda function from a Kinesis trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a Kinesis stream. The function retrieves the Kinesis payload,
decodes from Base64, and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Serverless examples 1203

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS SDK for .NET Developer Guide

Consuming a Kinesis event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegrationSampleCode;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task FunctionHandler(KinesisEvent evnt, ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return;
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 throw;
 }

Serverless examples 1204

AWS SDK for .NET Developer Guide

 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

Invoke a Lambda function from a DynamoDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a DynamoDB event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.

Serverless examples 1205

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS SDK for .NET Developer Guide

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public void FunctionHandler(DynamoDBEvent dynamoEvent, ILambdaContext context)
 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");

 foreach (var record in dynamoEvent.Records)
 {
 context.Logger.LogInformation($"Event ID: {record.EventID}");
 context.Logger.LogInformation($"Event Name: {record.EventName}");

 context.Logger.LogInformation(JsonSerializer.Serialize(record));
 }

 context.Logger.LogInformation("Stream processing complete.");
 }
}

Invoke a Lambda function from a Amazon DocumentDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DocumentDB change stream. The function retrieves the
DocumentDB payload and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using .NET.

Serverless examples 1206

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS SDK for .NET Developer Guide

using Amazon.Lambda.Core;
using System.Text.Json;
using System;
using System.Collections.Generic;
using System.Text.Json.Serialization;
//Assembly attribute to enable the Lambda function's JSON input to be converted into
 a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaDocDb;

public class Function
{

 /// <summary>
 /// Lambda function entry point to process Amazon DocumentDB events.
 /// </summary>
 /// <param name="event">The Amazon DocumentDB event.</param>
 /// <param name="context">The Lambda context object.</param>
 /// <returns>A string to indicate successful processing.</returns>
 public string FunctionHandler(Event evnt, ILambdaContext context)
 {

 foreach (var record in evnt.Events)
 {
 ProcessDocumentDBEvent(record, context);
 }

 return "OK";
 }

 private void ProcessDocumentDBEvent(DocumentDBEventRecord record,
 ILambdaContext context)
 {

 var eventData = record.Event;
 var operationType = eventData.OperationType;
 var databaseName = eventData.Ns.Db;
 var collectionName = eventData.Ns.Coll;
 var fullDocument = JsonSerializer.Serialize(eventData.FullDocument, new
 JsonSerializerOptions { WriteIndented = true });

Serverless examples 1207

AWS SDK for .NET Developer Guide

 context.Logger.LogLine($"Operation type: {operationType}");
 context.Logger.LogLine($"Database: {databaseName}");
 context.Logger.LogLine($"Collection: {collectionName}");
 context.Logger.LogLine($"Full document:\n{fullDocument}");
 }

 public class Event
 {
 [JsonPropertyName("eventSourceArn")]
 public string EventSourceArn { get; set; }

 [JsonPropertyName("events")]
 public List<DocumentDBEventRecord> Events { get; set; }

 [JsonPropertyName("eventSource")]
 public string EventSource { get; set; }
 }

 public class DocumentDBEventRecord
 {
 [JsonPropertyName("event")]
 public EventData Event { get; set; }
 }

 public class EventData
 {
 [JsonPropertyName("_id")]
 public IdData Id { get; set; }

 [JsonPropertyName("clusterTime")]
 public ClusterTime ClusterTime { get; set; }

 [JsonPropertyName("documentKey")]
 public DocumentKey DocumentKey { get; set; }

 [JsonPropertyName("fullDocument")]
 public Dictionary<string, object> FullDocument { get; set; }

 [JsonPropertyName("ns")]
 public Namespace Ns { get; set; }

 [JsonPropertyName("operationType")]

Serverless examples 1208

AWS SDK for .NET Developer Guide

 public string OperationType { get; set; }
 }

 public class IdData
 {
 [JsonPropertyName("_data")]
 public string Data { get; set; }
 }

 public class ClusterTime
 {
 [JsonPropertyName("$timestamp")]
 public Timestamp Timestamp { get; set; }
 }

 public class Timestamp
 {
 [JsonPropertyName("t")]
 public long T { get; set; }

 [JsonPropertyName("i")]
 public int I { get; set; }
 }

 public class DocumentKey
 {
 [JsonPropertyName("_id")]
 public Id Id { get; set; }
 }

 public class Id
 {
 [JsonPropertyName("$oid")]
 public string Oid { get; set; }
 }

 public class Namespace
 {
 [JsonPropertyName("db")]
 public string Db { get; set; }

 [JsonPropertyName("coll")]
 public string Coll { get; set; }
 }

Serverless examples 1209

AWS SDK for .NET Developer Guide

}

Invoke a Lambda function from an Amazon MSK trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from an Amazon MSK cluster. The function retrieves the MSK
payload and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using .NET.

using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KafkaEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace MSKLambda;

public class Function
{

 /// <param name="input">The event for the Lambda function handler to process.</
param>
 /// <param name="context">The ILambdaContext that provides methods for logging
 and describing the Lambda environment.</param>
 /// <returns></returns>
 public void FunctionHandler(KafkaEvent evnt, ILambdaContext context)

Serverless examples 1210

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS SDK for .NET Developer Guide

 {

 foreach (var record in evnt.Records)
 {
 Console.WriteLine("Key:" + record.Key);
 foreach (var eventRecord in record.Value)
 {
 var valueBytes = eventRecord.Value.ToArray();
 var valueText = Encoding.UTF8.GetString(valueBytes);

 Console.WriteLine("Message:" + valueText);
 }
 }
 }

}

Invoke a Lambda function from an Amazon S3 trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by uploading an object to an S3 bucket. The function retrieves the S3 bucket name and
object key from the event parameter and calls the Amazon S3 API to retrieve and log the content
type of the object.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an S3 event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;

Serverless examples 1211

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS SDK for .NET Developer Guide

using System;
using Amazon.Lambda.S3Events;
using System.Web;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace S3Integration
{
 public class Function
 {
 private static AmazonS3Client _s3Client;
 public Function() : this(null)
 {
 }

 internal Function(AmazonS3Client s3Client)
 {
 _s3Client = s3Client ?? new AmazonS3Client();
 }

 public async Task<string> Handler(S3Event evt, ILambdaContext context)
 {
 try
 {
 if (evt.Records.Count <= 0)
 {
 context.Logger.LogLine("Empty S3 Event received");
 return string.Empty;
 }

 var bucket = evt.Records[0].S3.Bucket.Name;
 var key = HttpUtility.UrlDecode(evt.Records[0].S3.Object.Key);

 context.Logger.LogLine($"Request is for {bucket} and {key}");

 var objectResult = await _s3Client.GetObjectAsync(bucket, key);

 context.Logger.LogLine($"Returning {objectResult.Key}");

 return objectResult.Key;
 }

Serverless examples 1212

AWS SDK for .NET Developer Guide

 catch (Exception e)
 {
 context.Logger.LogLine($"Error processing request - {e.Message}");

 return string.Empty;
 }
 }
 }
}

Invoke a Lambda function from an Amazon SNS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

public class Function
{

Serverless examples 1213

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS SDK for .NET Developer Guide

 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record, ILambdaContext
 context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Invoke a Lambda function from an Amazon SQS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Serverless examples 1214

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS SDK for .NET Developer Guide

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

 context.Logger.LogInformation("done");
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }

Serverless examples 1215

AWS SDK for .NET Developer Guide

}

Reporting batch item failures for Lambda functions with a Kinesis trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a Kinesis stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using System.Text.Json.Serialization;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegration;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task<StreamsEventResponse> FunctionHandler(KinesisEvent evnt,
 ILambdaContext context)

Serverless examples 1216

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS SDK for .NET Developer Guide

 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return new StreamsEventResponse();
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 return new StreamsEventResponse
 {
 BatchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>
 {
 new StreamsEventResponse.BatchItemFailure { ItemIdentifier =
 record.Kinesis.SequenceNumber }
 }
 };
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 return new StreamsEventResponse();
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();

Serverless examples 1217

AWS SDK for .NET Developer Guide

 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

public class StreamsEventResponse
{
 [JsonPropertyName("batchItemFailures")]
 public IList<BatchItemFailure> BatchItemFailures { get; set; }
 public class BatchItemFailure
 {
 [JsonPropertyName("itemIdentifier")]
 public string ItemIdentifier { get; set; }
 }
}

Reporting batch item failures for Lambda functions with a DynamoDB trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

Serverless examples 1218

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS SDK for .NET Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public StreamsEventResponse FunctionHandler(DynamoDBEvent dynamoEvent,
 ILambdaContext context)

 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");
 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>();
 StreamsEventResponse streamsEventResponse = new StreamsEventResponse();

 foreach (var record in dynamoEvent.Records)
 {
 try
 {
 var sequenceNumber = record.Dynamodb.SequenceNumber;
 context.Logger.LogInformation(sequenceNumber);
 }
 catch (Exception ex)
 {
 context.Logger.LogError(ex.Message);
 batchItemFailures.Add(new StreamsEventResponse.BatchItemFailure()
 { ItemIdentifier = record.Dynamodb.SequenceNumber });
 }
 }

 if (batchItemFailures.Count > 0)
 {
 streamsEventResponse.BatchItemFailures = batchItemFailures;
 }

 context.Logger.LogInformation("Stream processing complete.");
 return streamsEventResponse;
 }
}

Serverless examples 1219

AWS SDK for .NET Developer Guide

Reporting batch item failures for Lambda functions with an Amazon SQS trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)

Serverless examples 1220

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS SDK for .NET Developer Guide

 {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }
 context.Logger.LogInformation($"Processed message {message.Body}");
 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

AWS community contributions

Build and test a serverless application

The following code example shows how to build and test a serverless application using API
Gateway with Lambda and DynamoDB

AWS SDK for .NET

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the .NET SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

AWS community contributions 1221

https://github.com/aws-samples/serverless-dotnet-demo

AWS SDK for .NET Developer Guide

MediaConvert examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with MediaConvert.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello MediaConvert

The following code example shows how to get started using AWS Elemental MediaConvert.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.MediaConvert;
using Amazon.MediaConvert.Model;

namespace MediaConvertActions;

public static class HelloMediaConvert
{
 static async Task Main(string[] args)
 {
 // Create the client using the default profile.
 var mediaConvertClient = new AmazonMediaConvertClient();

 Console.WriteLine($"Hello AWS Elemental MediaConvert! Your MediaConvert Jobs
 are:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.

MediaConvert 1222

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/MediaConvert#code-examples

AWS SDK for .NET Developer Guide

 // Let's get some MediaConvert jobs.
 var response = await mediaConvertClient.ListJobsAsync(
 new ListJobsRequest()
 {
 MaxResults = 10
 }
);

 foreach (var job in response.Jobs)
 {
 Console.WriteLine($"\tJob: {job.Id} status {job.Status}");
 Console.WriteLine();
 }
 }
}

• For API details, see DescribeEndpoints in AWS SDK for .NET API Reference.

Topics

• Actions

Actions

CreateJob

The following code example shows how to use CreateJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Set up the file locations, client, and wrapper.

 // MediaConvert role Amazon Resource Name (ARN).

Actions 1223

https://docs.aws.amazon.com/goto/DotNetSDKV3/mediaconvert-2017-08-29/DescribeEndpoints
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/MediaConvert#code-examples

AWS SDK for .NET Developer Guide

 // For information on creating this role, see
 // https://docs.aws.amazon.com/mediaconvert/latest/ug/creating-the-iam-role-
in-mediaconvert-configured.html.
 var mediaConvertRole = _configuration["mediaConvertRoleARN"];

 // Include the file input and output locations in settings.json or
 settings.local.json.
 var fileInput = _configuration["fileInput"];
 var fileOutput = _configuration["fileOutput"];

 AmazonMediaConvertClient mcClient = new AmazonMediaConvertClient();

 var wrapper = new MediaConvertWrapper(mcClient);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Creating job for input file {fileInput}.");
 var jobId = await wrapper.CreateJob(mediaConvertRole!, fileInput!,
 fileOutput!);
 Console.WriteLine($"Created job with Job ID: {jobId}");
 Console.WriteLine(new string('-', 80));

Create the job using the wrapper method and return the job ID.

 /// <summary>
 /// Create a job to convert a media file.
 /// </summary>
 /// <param name="mediaConvertRole">The Amazon Resource Name (ARN) of the media
 convert role, as specified here:
 /// https://docs.aws.amazon.com/mediaconvert/latest/ug/creating-the-iam-role-in-
mediaconvert-configured.html</param>
 /// <param name="fileInput">The Amazon Simple Storage Service (Amazon S3)
 location of the input media file.</param>
 /// <param name="fileOutput">The Amazon S3 location for the output media file.</
param>
 /// <returns>The ID of the new job.</returns>
 public async Task<string> CreateJob(string mediaConvertRole, string fileInput,
 string fileOutput)
 {
 CreateJobRequest createJobRequest = new CreateJobRequest
 {

Actions 1224

AWS SDK for .NET Developer Guide

 Role = mediaConvertRole
 };

 createJobRequest.UserMetadata.Add("Customer", "Amazon");

 JobSettings jobSettings = new JobSettings
 {
 AdAvailOffset = 0,
 TimecodeConfig = new TimecodeConfig
 {
 Source = TimecodeSource.EMBEDDED
 }
 };
 createJobRequest.Settings = jobSettings;

 #region OutputGroup

 OutputGroup ofg = new OutputGroup
 {
 Name = "File Group",
 OutputGroupSettings = new OutputGroupSettings
 {
 Type = OutputGroupType.FILE_GROUP_SETTINGS,
 FileGroupSettings = new FileGroupSettings
 {
 Destination = fileOutput
 }
 }
 };

 Output output = new Output
 {
 NameModifier = "_1"
 };

 #region VideoDescription

 VideoDescription vdes = new VideoDescription
 {
 ScalingBehavior = ScalingBehavior.DEFAULT,
 TimecodeInsertion = VideoTimecodeInsertion.DISABLED,
 AntiAlias = AntiAlias.ENABLED,
 Sharpness = 50,
 AfdSignaling = AfdSignaling.NONE,

Actions 1225

AWS SDK for .NET Developer Guide

 DropFrameTimecode = DropFrameTimecode.ENABLED,
 RespondToAfd = RespondToAfd.NONE,
 ColorMetadata = ColorMetadata.INSERT,
 CodecSettings = new VideoCodecSettings
 {
 Codec = VideoCodec.H_264
 }
 };
 output.VideoDescription = vdes;

 H264Settings h264 = new H264Settings
 {
 InterlaceMode = H264InterlaceMode.PROGRESSIVE,
 NumberReferenceFrames = 3,
 Syntax = H264Syntax.DEFAULT,
 Softness = 0,
 GopClosedCadence = 1,
 GopSize = 90,
 Slices = 1,
 GopBReference = H264GopBReference.DISABLED,
 SlowPal = H264SlowPal.DISABLED,
 SpatialAdaptiveQuantization = H264SpatialAdaptiveQuantization.ENABLED,
 TemporalAdaptiveQuantization = H264TemporalAdaptiveQuantization.ENABLED,
 FlickerAdaptiveQuantization = H264FlickerAdaptiveQuantization.DISABLED,
 EntropyEncoding = H264EntropyEncoding.CABAC,
 Bitrate = 5000000,
 FramerateControl = H264FramerateControl.SPECIFIED,
 RateControlMode = H264RateControlMode.CBR,
 CodecProfile = H264CodecProfile.MAIN,
 Telecine = H264Telecine.NONE,
 MinIInterval = 0,
 AdaptiveQuantization = H264AdaptiveQuantization.HIGH,
 CodecLevel = H264CodecLevel.AUTO,
 FieldEncoding = H264FieldEncoding.PAFF,
 SceneChangeDetect = H264SceneChangeDetect.ENABLED,
 QualityTuningLevel = H264QualityTuningLevel.SINGLE_PASS,
 FramerateConversionAlgorithm =
 H264FramerateConversionAlgorithm.DUPLICATE_DROP,
 UnregisteredSeiTimecode = H264UnregisteredSeiTimecode.DISABLED,
 GopSizeUnits = H264GopSizeUnits.FRAMES,
 ParControl = H264ParControl.SPECIFIED,
 NumberBFramesBetweenReferenceFrames = 2,
 RepeatPps = H264RepeatPps.DISABLED,
 FramerateNumerator = 30,

Actions 1226

AWS SDK for .NET Developer Guide

 FramerateDenominator = 1,
 ParNumerator = 1,
 ParDenominator = 1
 };
 output.VideoDescription.CodecSettings.H264Settings = h264;

 #endregion VideoDescription

 #region AudioDescription

 AudioDescription ades = new AudioDescription
 {
 LanguageCodeControl = AudioLanguageCodeControl.FOLLOW_INPUT,
 // This name matches one specified in the following Inputs.
 AudioSourceName = "Audio Selector 1",
 CodecSettings = new AudioCodecSettings
 {
 Codec = AudioCodec.AAC
 }
 };

 AacSettings aac = new AacSettings
 {
 AudioDescriptionBroadcasterMix =
 AacAudioDescriptionBroadcasterMix.NORMAL,
 RateControlMode = AacRateControlMode.CBR,
 CodecProfile = AacCodecProfile.LC,
 CodingMode = AacCodingMode.CODING_MODE_2_0,
 RawFormat = AacRawFormat.NONE,
 SampleRate = 48000,
 Specification = AacSpecification.MPEG4,
 Bitrate = 64000
 };
 ades.CodecSettings.AacSettings = aac;
 output.AudioDescriptions.Add(ades);

 #endregion AudioDescription

 #region Mp4 Container

 output.ContainerSettings = new ContainerSettings
 {
 Container = ContainerType.MP4
 };

Actions 1227

AWS SDK for .NET Developer Guide

 Mp4Settings mp4 = new Mp4Settings
 {
 CslgAtom = Mp4CslgAtom.INCLUDE,
 FreeSpaceBox = Mp4FreeSpaceBox.EXCLUDE,
 MoovPlacement = Mp4MoovPlacement.PROGRESSIVE_DOWNLOAD
 };
 output.ContainerSettings.Mp4Settings = mp4;

 #endregion Mp4 Container

 ofg.Outputs.Add(output);
 createJobRequest.Settings.OutputGroups.Add(ofg);

 #endregion OutputGroup

 #region Input

 Input input = new Input
 {
 FilterEnable = InputFilterEnable.AUTO,
 PsiControl = InputPsiControl.USE_PSI,
 FilterStrength = 0,
 DeblockFilter = InputDeblockFilter.DISABLED,
 DenoiseFilter = InputDenoiseFilter.DISABLED,
 TimecodeSource = InputTimecodeSource.EMBEDDED,
 FileInput = fileInput
 };

 AudioSelector audsel = new AudioSelector
 {
 Offset = 0,
 DefaultSelection = AudioDefaultSelection.NOT_DEFAULT,
 ProgramSelection = 1,
 SelectorType = AudioSelectorType.TRACK
 };
 audsel.Tracks.Add(1);
 input.AudioSelectors.Add("Audio Selector 1", audsel);

 input.VideoSelector = new VideoSelector
 {
 ColorSpace = ColorSpace.FOLLOW
 };

 createJobRequest.Settings.Inputs.Add(input);

Actions 1228

AWS SDK for .NET Developer Guide

 #endregion Input

 CreateJobResponse createJobResponse =
 await _amazonMediaConvert.CreateJobAsync(createJobRequest);

 var jobId = createJobResponse.Job.Id;

 return jobId;
 }

• For API details, see CreateJob in AWS SDK for .NET API Reference.

GetJob

The following code example shows how to use GetJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Set up the file locations, client, and wrapper.

 // MediaConvert role Amazon Resource Name (ARN).
 // For information on creating this role, see
 // https://docs.aws.amazon.com/mediaconvert/latest/ug/creating-the-iam-role-
in-mediaconvert-configured.html.
 var mediaConvertRole = _configuration["mediaConvertRoleARN"];

 // Include the file input and output locations in settings.json or
 settings.local.json.
 var fileInput = _configuration["fileInput"];
 var fileOutput = _configuration["fileOutput"];

 AmazonMediaConvertClient mcClient = new AmazonMediaConvertClient();

Actions 1229

https://docs.aws.amazon.com/goto/DotNetSDKV3/mediaconvert-2017-08-29/CreateJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/MediaConvert#code-examples

AWS SDK for .NET Developer Guide

 var wrapper = new MediaConvertWrapper(mcClient);

Get a job by its ID.

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Getting job information for Job ID {jobId}");
 var job = await wrapper.GetJobById(jobId);
 Console.WriteLine($"Job {job.Id} created on {job.CreatedAt:d} has status
 {job.Status}.");
 Console.WriteLine(new string('-', 80));

 /// <summary>
 /// Get the job information for a job by its ID.
 /// </summary>
 /// <param name="jobId">The ID of the job.</param>
 /// <returns>The Job object.</returns>
 public async Task<Job> GetJobById(string jobId)
 {
 var jobResponse = await _amazonMediaConvert.GetJobAsync(
 new GetJobRequest
 {
 Id = jobId
 });

 return jobResponse.Job;
 }

• For API details, see GetJob in AWS SDK for .NET API Reference.

ListJobs

The following code example shows how to use ListJobs.

Actions 1230

https://docs.aws.amazon.com/goto/DotNetSDKV3/mediaconvert-2017-08-29/GetJob

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Set up the file locations, client, and wrapper.

 // MediaConvert role Amazon Resource Name (ARN).
 // For information on creating this role, see
 // https://docs.aws.amazon.com/mediaconvert/latest/ug/creating-the-iam-role-
in-mediaconvert-configured.html.
 var mediaConvertRole = _configuration["mediaConvertRoleARN"];

 // Include the file input and output locations in settings.json or
 settings.local.json.
 var fileInput = _configuration["fileInput"];
 var fileOutput = _configuration["fileOutput"];

 AmazonMediaConvertClient mcClient = new AmazonMediaConvertClient();

 var wrapper = new MediaConvertWrapper(mcClient);

List the jobs with a particular status.

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Listing all complete jobs.");
 var completeJobs = await wrapper.ListAllJobsByStatus(JobStatus.COMPLETE);
 completeJobs.ForEach(j =>
 {
 Console.WriteLine($"Job {j.Id} created on {j.CreatedAt:d} has status
 {j.Status}.");
 });

List the jobs using a paginator.

 /// <summary>

Actions 1231

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/MediaConvert#code-examples

AWS SDK for .NET Developer Guide

 /// List all of the jobs with a particular status using a paginator.
 /// </summary>
 /// <param name="status">The status to use when listing jobs.</param>
 /// <returns>The list of jobs matching the status.</returns>
 public async Task<List<Job>> ListAllJobsByStatus(JobStatus? status = null)
 {
 var returnedJobs = new List<Job>();

 var paginatedJobs = _amazonMediaConvert.Paginators.ListJobs(
 new ListJobsRequest
 {
 Status = status
 });

 // Get the entire list using the paginator.
 await foreach (var job in paginatedJobs.Jobs)
 {
 returnedJobs.Add(job);
 }

 return returnedJobs;
 }

• For API details, see ListJobs in AWS SDK for .NET API Reference.

Amazon MSK examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon MSK.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Serverless examples

Amazon MSK 1232

https://docs.aws.amazon.com/goto/DotNetSDKV3/mediaconvert-2017-08-29/ListJobs

AWS SDK for .NET Developer Guide

Serverless examples

Invoke a Lambda function from an Amazon MSK trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from an Amazon MSK cluster. The function retrieves the MSK
payload and logs the record contents.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using .NET.

using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KafkaEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace MSKLambda;

public class Function
{

 /// <param name="input">The event for the Lambda function handler to process.</
param>
 /// <param name="context">The ILambdaContext that provides methods for logging
 and describing the Lambda environment.</param>
 /// <returns></returns>
 public void FunctionHandler(KafkaEvent evnt, ILambdaContext context)
 {

Serverless examples 1233

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS SDK for .NET Developer Guide

 foreach (var record in evnt.Records)
 {
 Console.WriteLine("Key:" + record.Key);
 foreach (var eventRecord in record.Value)
 {
 var valueBytes = eventRecord.Value.ToArray();
 var valueText = Encoding.UTF8.GetString(valueBytes);

 Console.WriteLine("Message:" + valueText);
 }
 }
 }

}

Organizations examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Organizations.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

AttachPolicy

The following code example shows how to use AttachPolicy.

Organizations 1234

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Shows how to attach an AWS Organizations policy to an organization,
 /// an organizational unit, or an account.
 /// </summary>
 public class AttachPolicy
 {
 /// <summary>
 /// Initializes the Organizations client object and then calls the
 /// AttachPolicyAsync method to attach the policy to the root
 /// organization.
 /// </summary>
 public static async Task Main()
 {
 IAmazonOrganizations client = new AmazonOrganizationsClient();
 var policyId = "p-00000000";
 var targetId = "r-0000";

 var request = new AttachPolicyRequest
 {
 PolicyId = policyId,
 TargetId = targetId,
 };

 var response = await client.AttachPolicyAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully attached Policy ID {policyId} to
 Target ID: {targetId}.");

Actions 1235

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 }
 else
 {
 Console.WriteLine("Was not successful in attaching the policy.");
 }
 }
 }

• For API details, see AttachPolicy in AWS SDK for .NET API Reference.

CreateAccount

The following code example shows how to use CreateAccount.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Creates a new AWS Organizations account.
 /// </summary>
 public class CreateAccount
 {
 /// <summary>
 /// Initializes an Organizations client object and uses it to create
 /// the new account with the name specified in accountName.
 /// </summary>
 public static async Task Main()
 {
 IAmazonOrganizations client = new AmazonOrganizationsClient();
 var accountName = "ExampleAccount";

Actions 1236

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/AttachPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 var email = "someone@example.com";

 var request = new CreateAccountRequest
 {
 AccountName = accountName,
 Email = email,
 };

 var response = await client.CreateAccountAsync(request);
 var status = response.CreateAccountStatus;

 Console.WriteLine($"The staus of {status.AccountName} is
 {status.State}.");
 }
 }

• For API details, see CreateAccount in AWS SDK for .NET API Reference.

CreateOrganization

The following code example shows how to use CreateOrganization.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Creates an organization in AWS Organizations.
 /// </summary>
 public class CreateOrganization
 {

Actions 1237

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/CreateAccount
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Creates an Organizations client object and then uses it to create
 /// a new organization with the default user as the administrator, and
 /// then displays information about the new organization.
 /// </summary>
 public static async Task Main()
 {
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var response = await client.CreateOrganizationAsync(new
 CreateOrganizationRequest
 {
 FeatureSet = "ALL",
 });

 Organization newOrg = response.Organization;

 Console.WriteLine($"Organization: {newOrg.Id} Main Accoount:
 {newOrg.MasterAccountId}");
 }
 }

• For API details, see CreateOrganization in AWS SDK for .NET API Reference.

CreateOrganizationalUnit

The following code example shows how to use CreateOrganizationalUnit.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

Actions 1238

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/CreateOrganization
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Creates a new organizational unit in AWS Organizations.
 /// </summary>
 public class CreateOrganizationalUnit
 {
 /// <summary>
 /// Initializes an Organizations client object and then uses it to call
 /// the CreateOrganizationalUnit method. If the call succeeds, it
 /// displays information about the new organizational unit.
 /// </summary>
 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var orgUnitName = "ProductDevelopmentUnit";

 var request = new CreateOrganizationalUnitRequest
 {
 Name = orgUnitName,
 ParentId = "r-0000",
 };

 var response = await client.CreateOrganizationalUnitAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully created organizational unit:
 {orgUnitName}.");
 Console.WriteLine($"Organizational unit {orgUnitName} Details");
 Console.WriteLine($"ARN: {response.OrganizationalUnit.Arn} Id:
 {response.OrganizationalUnit.Id}");
 }
 else
 {
 Console.WriteLine("Could not create new organizational unit.");
 }
 }
 }

• For API details, see CreateOrganizationalUnit in AWS SDK for .NET API Reference.

Actions 1239

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/CreateOrganizationalUnit

AWS SDK for .NET Developer Guide

CreatePolicy

The following code example shows how to use CreatePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Creates a new AWS Organizations Policy.
 /// </summary>
 public class CreatePolicy
 {
 /// <summary>
 /// Initializes the AWS Organizations client object, uses it to
 /// create a new Organizations Policy, and then displays information
 /// about the newly created Policy.
 /// </summary>
 public static async Task Main()
 {
 IAmazonOrganizations client = new AmazonOrganizationsClient();
 var policyContent = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\" : [{" +
 " \"Action\" : [\"s3:*\"]," +
 " \"Effect\" : \"Allow\"," +
 " \"Resource\" : \"*\"" +
 "}]" +
 "}";

 try
 {
 var response = await client.CreatePolicyAsync(new
 CreatePolicyRequest

Actions 1240

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 {
 Content = policyContent,
 Description = "Enables admins of attached accounts to delegate
 all Amazon S3 permissions",
 Name = "AllowAllS3Actions",
 Type = "SERVICE_CONTROL_POLICY",
 });

 Policy policy = response.Policy;
 Console.WriteLine($"{policy.PolicySummary.Name} has the following
 content: {policy.Content}");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }

• For API details, see CreatePolicy in AWS SDK for .NET API Reference.

DeleteOrganization

The following code example shows how to use DeleteOrganization.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Shows how to delete an existing organization using the AWS

Actions 1241

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/CreatePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 /// Organizations Service.
 /// </summary>
 public class DeleteOrganization
 {
 /// <summary>
 /// Initializes the Organizations client and then calls
 /// DeleteOrganizationAsync to delete the organization.
 /// </summary>
 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var response = await client.DeleteOrganizationAsync(new
 DeleteOrganizationRequest());

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine("Successfully deleted organization.");
 }
 else
 {
 Console.WriteLine("Could not delete organization.");
 }
 }
 }

• For API details, see DeleteOrganization in AWS SDK for .NET API Reference.

DeleteOrganizationalUnit

The following code example shows how to use DeleteOrganizationalUnit.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1242

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/DeleteOrganization
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Shows how to delete an existing AWS Organizations organizational unit.
 /// </summary>
 public class DeleteOrganizationalUnit
 {
 /// <summary>
 /// Initializes the Organizations client object and calls
 /// DeleteOrganizationalUnitAsync to delete the organizational unit
 /// with the selected ID.
 /// </summary>
 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var orgUnitId = "ou-0000-00000000";

 var request = new DeleteOrganizationalUnitRequest
 {
 OrganizationalUnitId = orgUnitId,
 };

 var response = await client.DeleteOrganizationalUnitAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully deleted the organizational unit
 with ID: {orgUnitId}.");
 }
 else
 {
 Console.WriteLine($"Could not delete the organizational unit with
 ID: {orgUnitId}.");
 }
 }
 }

Actions 1243

AWS SDK for .NET Developer Guide

• For API details, see DeleteOrganizationalUnit in AWS SDK for .NET API Reference.

DeletePolicy

The following code example shows how to use DeletePolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Deletes an existing AWS Organizations policy.
 /// </summary>
 public class DeletePolicy
 {
 /// <summary>
 /// Initializes the Organizations client object and then uses it to
 /// delete the policy with the specified policyId.
 /// </summary>
 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var policyId = "p-00000000";

 var request = new DeletePolicyRequest
 {
 PolicyId = policyId,
 };

 var response = await client.DeletePolicyAsync(request);

Actions 1244

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/DeleteOrganizationalUnit
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully deleted Policy: {policyId}.");
 }
 else
 {
 Console.WriteLine($"Could not delete Policy: {policyId}.");
 }
 }
 }

• For API details, see DeletePolicy in AWS SDK for .NET API Reference.

DetachPolicy

The following code example shows how to use DetachPolicy.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Shows how to detach a policy from an AWS Organizations organization,
 /// organizational unit, or account.
 /// </summary>
 public class DetachPolicy
 {
 /// <summary>
 /// Initializes the Organizations client object and uses it to call
 /// DetachPolicyAsync to detach the policy.
 /// </summary>

Actions 1245

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/DeletePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var policyId = "p-00000000";
 var targetId = "r-0000";

 var request = new DetachPolicyRequest
 {
 PolicyId = policyId,
 TargetId = targetId,
 };

 var response = await client.DetachPolicyAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully detached policy with Policy Id:
 {policyId}.");
 }
 else
 {
 Console.WriteLine("Could not detach the policy.");
 }
 }
 }

• For API details, see DetachPolicy in AWS SDK for .NET API Reference.

ListAccounts

The following code example shows how to use ListAccounts.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1246

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/DetachPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Uses the AWS Organizations service to list the accounts associated
 /// with the default account.
 /// </summary>
 public class ListAccounts
 {
 /// <summary>
 /// Creates the Organizations client and then calls its
 /// ListAccountsAsync method.
 /// </summary>
 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var request = new ListAccountsRequest
 {
 MaxResults = 5,
 };

 var response = new ListAccountsResponse();
 try
 {
 do
 {
 response = await client.ListAccountsAsync(request);
 response.Accounts.ForEach(a => DisplayAccounts(a));
 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }
 }
 while (response.NextToken is not null);
 }
 catch (AWSOrganizationsNotInUseException ex)
 {
 Console.WriteLine(ex.Message);
 }

Actions 1247

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Displays information about an Organizations account.
 /// </summary>
 /// <param name="account">An Organizations account for which to display
 /// information on the console.</param>
 private static void DisplayAccounts(Account account)
 {
 string accountInfo = $"{account.Id} {account.Name}\t{account.Status}";

 Console.WriteLine(accountInfo);
 }
 }

• For API details, see ListAccounts in AWS SDK for .NET API Reference.

ListOrganizationalUnitsForParent

The following code example shows how to use ListOrganizationalUnitsForParent.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Lists the AWS Organizations organizational units that belong to an
 /// organization.
 /// </summary>
 public class ListOrganizationalUnitsForParent
 {

Actions 1248

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/ListAccounts
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Initializes the Organizations client object and then uses it to
 /// call the ListOrganizationalUnitsForParentAsync method to retrieve
 /// the list of organizational units.
 /// </summary>
 public static async Task Main()
 {
 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 var parentId = "r-0000";

 var request = new ListOrganizationalUnitsForParentRequest
 {
 ParentId = parentId,
 MaxResults = 5,
 };

 var response = new ListOrganizationalUnitsForParentResponse();
 try
 {
 do
 {
 response = await
 client.ListOrganizationalUnitsForParentAsync(request);
 response.OrganizationalUnits.ForEach(u =>
 DisplayOrganizationalUnit(u));
 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }
 }
 while (response.NextToken is not null);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 /// <summary>
 /// Displays information about an Organizations organizational unit.
 /// </summary>
 /// <param name="unit">The OrganizationalUnit for which to display

Actions 1249

AWS SDK for .NET Developer Guide

 /// information.</param>
 public static void DisplayOrganizationalUnit(OrganizationalUnit unit)
 {
 string accountInfo = $"{unit.Id} {unit.Name}\t{unit.Arn}";

 Console.WriteLine(accountInfo);
 }
 }

• For API details, see ListOrganizationalUnitsForParent in AWS SDK for .NET API Reference.

ListPolicies

The following code example shows how to use ListPolicies.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Organizations;
 using Amazon.Organizations.Model;

 /// <summary>
 /// Shows how to list the AWS Organizations policies associated with an
 /// organization.
 /// </summary>
 public class ListPolicies
 {
 /// <summary>
 /// Initializes an Organizations client object, and then calls its
 /// ListPoliciesAsync method.
 /// </summary>
 public static async Task Main()
 {

Actions 1250

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/ListOrganizationalUnitsForParent
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Organizations#code-examples

AWS SDK for .NET Developer Guide

 // Create the client object using the default account.
 IAmazonOrganizations client = new AmazonOrganizationsClient();

 // The value for the Filter parameter is required and must must be
 // one of the following:
 // AISERVICES_OPT_OUT_POLICY
 // BACKUP_POLICY
 // SERVICE_CONTROL_POLICY
 // TAG_POLICY
 var request = new ListPoliciesRequest
 {
 Filter = "SERVICE_CONTROL_POLICY",
 MaxResults = 5,
 };

 var response = new ListPoliciesResponse();
 try
 {
 do
 {
 response = await client.ListPoliciesAsync(request);
 response.Policies.ForEach(p => DisplayPolicies(p));
 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }
 }
 while (response.NextToken is not null);
 }
 catch (AWSOrganizationsNotInUseException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 /// <summary>
 /// Displays information about the Organizations policies associated
 /// with an organization.
 /// </summary>
 /// <param name="policy">An Organizations policy summary to display
 /// information on the console.</param>
 private static void DisplayPolicies(PolicySummary policy)
 {
 string policyInfo = $"{policy.Id} {policy.Name}\t{policy.Description}";

Actions 1251

AWS SDK for .NET Developer Guide

 Console.WriteLine(policyInfo);
 }
 }

• For API details, see ListPolicies in AWS SDK for .NET API Reference.

Amazon Pinpoint examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Pinpoint.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

SendMessages

The following code example shows how to use SendMessages.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Send an email message.

Amazon Pinpoint 1252

https://docs.aws.amazon.com/goto/DotNetSDKV3/organizations-2016-11-28/ListPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Pinpoint#code-examples

AWS SDK for .NET Developer Guide

using Amazon;
using Amazon.Pinpoint;
using Amazon.Pinpoint.Model;
using Microsoft.Extensions.Configuration;

namespace SendEmailMessage;

public class SendEmailMainClass
{
 public static async Task Main(string[] args)
 {
 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // The AWS Region that you want to use to send the email. For a list of
 // AWS Regions where the Amazon Pinpoint API is available, see
 // https://docs.aws.amazon.com/pinpoint/latest/apireference/
 string region = "us-east-1";

 // The "From" address. This address has to be verified in Amazon Pinpoint
 // in the region you're using to send email.
 string senderAddress = configuration["SenderAddress"]!;

 // The address on the "To" line. If your Amazon Pinpoint account is in
 // the sandbox, this address also has to be verified.
 string toAddress = configuration["ToAddress"]!;

 // The Amazon Pinpoint project/application ID to use when you send this
 message.
 // Make sure that the SMS channel is enabled for the project or application
 // that you choose.
 string appId = configuration["AppId"]!;

 try
 {
 await SendEmailMessage(region, appId, toAddress, senderAddress);
 }
 catch (Exception ex)
 {

Actions 1253

AWS SDK for .NET Developer Guide

 Console.WriteLine("The message wasn't sent. Error message: " +
 ex.Message);
 }
 }

 public static async Task<MessageResponse> SendEmailMessage(
 string region, string appId, string toAddress, string senderAddress)
 {
 var client = new
 AmazonPinpointClient(RegionEndpoint.GetBySystemName(region));

 // The subject line of the email.
 string subject = "Amazon Pinpoint Email test";

 // The body of the email for recipients whose email clients don't
 // support HTML content.
 string textBody = @"Amazon Pinpoint Email Test (.NET)"
 + "\n---------------------------------"
 + "\nThis email was sent using the Amazon Pinpoint API
 using the AWS SDK for .NET.";

 // The body of the email for recipients whose email clients support
 // HTML content.
 string htmlBody = @"<html>"
 + "\n<head></head>"
 + "\n<body>"
 + "\n <h1>Amazon Pinpoint Email Test (AWS SDK for .NET)</
h1>"
 + "\n <p>This email was sent using the "
 + "\n Amazon
 Pinpoint API "
 + "\n using the <a href='https://aws.amazon.com/sdk-
for-net/'>AWS SDK for .NET"
 + "\n </p>"
 + "\n</body>"
 + "\n</html>";

 // The character encoding the you want to use for the subject line and
 // message body of the email.
 string charset = "UTF-8";

 var sendRequest = new SendMessagesRequest
 {
 ApplicationId = appId,

Actions 1254

AWS SDK for .NET Developer Guide

 MessageRequest = new MessageRequest
 {
 Addresses = new Dictionary<string, AddressConfiguration>
 {
 {
 toAddress,
 new AddressConfiguration
 {
 ChannelType = ChannelType.EMAIL
 }
 }
 },
 MessageConfiguration = new DirectMessageConfiguration
 {
 EmailMessage = new EmailMessage
 {
 FromAddress = senderAddress,
 SimpleEmail = new SimpleEmail
 {
 HtmlPart = new SimpleEmailPart
 {
 Charset = charset,
 Data = htmlBody
 },
 TextPart = new SimpleEmailPart
 {
 Charset = charset,
 Data = textBody
 },
 Subject = new SimpleEmailPart
 {
 Charset = charset,
 Data = subject
 }
 }
 }
 }
 }
 };
 Console.WriteLine("Sending message...");
 SendMessagesResponse response = await client.SendMessagesAsync(sendRequest);
 Console.WriteLine("Message sent!");
 return response.MessageResponse;
 }

Actions 1255

AWS SDK for .NET Developer Guide

}

Send an SMS message.

using Amazon;
using Amazon.Pinpoint;
using Amazon.Pinpoint.Model;
using Microsoft.Extensions.Configuration;

namespace SendSmsMessage;

public class SendSmsMessageMainClass
{
 public static async Task Main(string[] args)
 {
 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 // The AWS Region that you want to use to send the message. For a list of
 // AWS Regions where the Amazon Pinpoint API is available, see
 // https://docs.aws.amazon.com/pinpoint/latest/apireference/
 string region = "us-east-1";

 // The phone number or short code to send the message from. The phone number
 // or short code that you specify has to be associated with your Amazon
 Pinpoint
 // account. For best results, specify long codes in E.164 format.
 string originationNumber = configuration["OriginationNumber"]!;

 // The recipient's phone number. For best results, you should specify the
 // phone number in E.164 format.
 string destinationNumber = configuration["DestinationNumber"]!;

 // The Pinpoint project/ application ID to use when you send this message.
 // Make sure that the SMS channel is enabled for the project or application
 // that you choose.

Actions 1256

AWS SDK for .NET Developer Guide

 string appId = configuration["AppId"]!;

 // The type of SMS message that you want to send. If you plan to send
 // time-sensitive content, specify TRANSACTIONAL. If you plan to send
 // marketing-related content, specify PROMOTIONAL.
 MessageType messageType = MessageType.TRANSACTIONAL;

 // The registered keyword associated with the originating short code.
 string? registeredKeyword = configuration["RegisteredKeyword"];

 // The sender ID to use when sending the message. Support for sender ID
 // varies by country or region. For more information, see
 // https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-
countries.html
 string? senderId = configuration["SenderId"];

 try
 {
 var response = await SendSmsMessage(region, appId, destinationNumber,
 originationNumber, registeredKeyword, senderId, messageType);
 Console.WriteLine($"Message sent to
 {response.MessageResponse.Result.Count} recipient(s).");
 foreach (var messageResultValue in
 response.MessageResponse.Result.Select(r => r.Value))
 {
 Console.WriteLine($"{messageResultValue.MessageId} Status:
 {messageResultValue.DeliveryStatus}");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("The message wasn't sent. Error message: " +
 ex.Message);
 }
 }

 public static async Task<SendMessagesResponse> SendSmsMessage(
 string region, string appId, string destinationNumber, string
 originationNumber,
 string? keyword, string? senderId, MessageType messageType)
 {

 // The content of the SMS message.
 string message = "This message was sent through Amazon Pinpoint using" +

Actions 1257

AWS SDK for .NET Developer Guide

 " the AWS SDK for .NET. Reply STOP to opt out.";

 var client = new
 AmazonPinpointClient(RegionEndpoint.GetBySystemName(region));

 SendMessagesRequest sendRequest = new SendMessagesRequest
 {
 ApplicationId = appId,
 MessageRequest = new MessageRequest
 {
 Addresses =
 new Dictionary<string, AddressConfiguration>
 {
 {
 destinationNumber,
 new AddressConfiguration { ChannelType =
 ChannelType.SMS }
 }
 },
 MessageConfiguration = new DirectMessageConfiguration
 {
 SMSMessage = new SMSMessage
 {
 Body = message,
 MessageType = MessageType.TRANSACTIONAL,
 OriginationNumber = originationNumber,
 SenderId = senderId,
 Keyword = keyword
 }
 }
 }
 };
 SendMessagesResponse response = await client.SendMessagesAsync(sendRequest);
 return response;
 }
}

• For API details, see SendMessages in AWS SDK for .NET API Reference.

Actions 1258

https://docs.aws.amazon.com/goto/DotNetSDKV3/pinpoint-2016-12-01/SendMessages

AWS SDK for .NET Developer Guide

Amazon Polly examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Polly.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

DeleteLexicon

The following code example shows how to use DeleteLexicon.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 /// <summary>
 /// Deletes an existing Amazon Polly lexicon using the AWS SDK for .NET.
 /// </summary>

Amazon Polly 1259

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Polly#code-examples

AWS SDK for .NET Developer Guide

 public class DeleteLexicon
 {
 public static async Task Main()
 {
 string lexiconName = "SampleLexicon";

 var client = new AmazonPollyClient();

 var success = await DeletePollyLexiconAsync(client, lexiconName);

 if (success)
 {
 Console.WriteLine($"Successfully deleted {lexiconName}.");
 }
 else
 {
 Console.WriteLine($"Could not delete {lexiconName}.");
 }
 }

 /// <summary>
 /// Deletes the named Amazon Polly lexicon.
 /// </summary>
 /// <param name="client">The initialized Amazon Polly client object.</param>
 /// <param name="lexiconName">The name of the Amazon Polly lexicon to
 /// delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public static async Task<bool> DeletePollyLexiconAsync(
 AmazonPollyClient client,
 string lexiconName)
 {
 var deleteLexiconRequest = new DeleteLexiconRequest()
 {
 Name = lexiconName,
 };

 var response = await client.DeleteLexiconAsync(deleteLexiconRequest);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 }

Actions 1260

AWS SDK for .NET Developer Guide

• For API details, see DeleteLexicon in AWS SDK for .NET API Reference.

DescribeVoices

The following code example shows how to use DescribeVoices.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 public class DescribeVoices
 {
 public static async Task Main()
 {
 var client = new AmazonPollyClient();

 var allVoicesRequest = new DescribeVoicesRequest();
 var enUsVoicesRequest = new DescribeVoicesRequest()
 {
 LanguageCode = "en-US",
 };

 try
 {
 string nextToken;
 do
 {
 var allVoicesResponse = await
 client.DescribeVoicesAsync(allVoicesRequest);
 nextToken = allVoicesResponse.NextToken;

Actions 1261

https://docs.aws.amazon.com/goto/DotNetSDKV3/polly-2016-06-10/DeleteLexicon
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Polly#code-examples

AWS SDK for .NET Developer Guide

 allVoicesRequest.NextToken = nextToken;

 Console.WriteLine("\nAll voices: ");
 allVoicesResponse.Voices.ForEach(voice =>
 {
 DisplayVoiceInfo(voice);
 });
 }
 while (nextToken is not null);

 do
 {
 var enUsVoicesResponse = await
 client.DescribeVoicesAsync(enUsVoicesRequest);
 nextToken = enUsVoicesResponse.NextToken;
 enUsVoicesRequest.NextToken = nextToken;

 Console.WriteLine("\nen-US voices: ");
 enUsVoicesResponse.Voices.ForEach(voice =>
 {
 DisplayVoiceInfo(voice);
 });
 }
 while (nextToken is not null);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception caught: " + ex.Message);
 }
 }

 public static void DisplayVoiceInfo(Voice voice)
 {
 Console.WriteLine($" Name: {voice.Name}\tGender:
 {voice.Gender}\tLanguageName: {voice.LanguageName}");
 }
 }

• For API details, see DescribeVoices in AWS SDK for .NET API Reference.

Actions 1262

https://docs.aws.amazon.com/goto/DotNetSDKV3/polly-2016-06-10/DescribeVoices

AWS SDK for .NET Developer Guide

GetLexicon

The following code example shows how to use GetLexicon.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 /// <summary>
 /// Retrieves information about a specific Amazon Polly lexicon.
 /// </summary>
 public class GetLexicon
 {
 public static async Task Main(string[] args)
 {
 string lexiconName = "SampleLexicon";

 var client = new AmazonPollyClient();

 await GetPollyLexiconAsync(client, lexiconName);
 }

 public static async Task GetPollyLexiconAsync(AmazonPollyClient client,
 string lexiconName)
 {
 var getLexiconRequest = new GetLexiconRequest()
 {
 Name = lexiconName,
 };

 try
 {
 var response = await client.GetLexiconAsync(getLexiconRequest);
 Console.WriteLine($"Lexicon:\n Name: {response.Lexicon.Name}");

Actions 1263

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Polly#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Content: {response.Lexicon.Content}");
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error: " + ex.Message);
 }
 }
 }

• For API details, see GetLexicon in AWS SDK for .NET API Reference.

ListLexicons

The following code example shows how to use ListLexicons.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 /// <summary>
 /// Lists the Amazon Polly lexicons that have been defined. By default,
 /// lists the lexicons that are defined in the same AWS Region as the default
 /// user. To view Amazon Polly lexicons that are defined in a different AWS
 /// Region, supply it as a parameter to the Amazon Polly constructor.
 /// </summary>
 public class ListLexicons
 {
 public static async Task Main()
 {
 var client = new AmazonPollyClient();

Actions 1264

https://docs.aws.amazon.com/goto/DotNetSDKV3/polly-2016-06-10/GetLexicon
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Polly#code-examples

AWS SDK for .NET Developer Guide

 var request = new ListLexiconsRequest();

 try
 {
 Console.WriteLine("All voices: ");

 do
 {
 var response = await client.ListLexiconsAsync(request);
 request.NextToken = response.NextToken;

 response.Lexicons.ForEach(lexicon =>
 {
 var attributes = lexicon.Attributes;
 Console.WriteLine($"Name: {lexicon.Name}");
 Console.WriteLine($"\tAlphabet: {attributes.Alphabet}");
 Console.WriteLine($"\tLanguageCode:
 {attributes.LanguageCode}");
 Console.WriteLine($"\tLastModified:
 {attributes.LastModified}");
 Console.WriteLine($"\tLexemesCount:
 {attributes.LexemesCount}");
 Console.WriteLine($"\tLexiconArn: {attributes.LexiconArn}");
 Console.WriteLine($"\tSize: {attributes.Size}");
 });
 }
 while (request.NextToken is not null);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
 }

• For API details, see ListLexicons in AWS SDK for .NET API Reference.

PutLexicon

The following code example shows how to use PutLexicon.

Actions 1265

https://docs.aws.amazon.com/goto/DotNetSDKV3/polly-2016-06-10/ListLexicons

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 /// <summary>
 /// Creates a new Amazon Polly lexicon using the AWS SDK for .NET.
 /// </summary>
 public class PutLexicon
 {
 public static async Task Main()
 {
 string lexiconContent = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" +
 "<lexicon version=\"1.0\" xmlns=\"http://www.w3.org/2005/01/
pronunciation-lexicon\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" " +
 "xsi:schemaLocation=\"http://www.w3.org/2005/01/pronunciation-
lexicon http://www.w3.org/TR/2007/CR-pronunciation-lexicon-20071212/pls.xsd\" " +
 "alphabet=\"ipa\" xml:lang=\"en-US\">" +
 "<lexeme><grapheme>test1</grapheme><alias>test2</alias></lexeme>" +
 "</lexicon>";
 string lexiconName = "SampleLexicon";

 var client = new AmazonPollyClient();
 var putLexiconRequest = new PutLexiconRequest()
 {
 Name = lexiconName,
 Content = lexiconContent,
 };

 try
 {
 var response = await client.PutLexiconAsync(putLexiconRequest);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {

Actions 1266

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Polly#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Successfully created Lexicon:
 {lexiconName}.");
 }
 else
 {
 Console.WriteLine($"Could not create Lexicon: {lexiconName}.");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception caught: " + ex.Message);
 }
 }
 }

• For API details, see PutLexicon in AWS SDK for .NET API Reference.

SynthesizeSpeech

The following code example shows how to use SynthesizeSpeech.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 public class SynthesizeSpeech
 {
 public static async Task Main()
 {
 string outputFileName = "speech.mp3";

Actions 1267

https://docs.aws.amazon.com/goto/DotNetSDKV3/polly-2016-06-10/PutLexicon
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Polly#code-examples

AWS SDK for .NET Developer Guide

 string text = "Twas brillig, and the slithy toves did gyre and gimbol in
 the wabe";

 var client = new AmazonPollyClient();
 var response = await PollySynthesizeSpeech(client, text);

 WriteSpeechToStream(response.AudioStream, outputFileName);
 }

 /// <summary>
 /// Calls the Amazon Polly SynthesizeSpeechAsync method to convert text
 /// to speech.
 /// </summary>
 /// <param name="client">The Amazon Polly client object used to connect
 /// to the Amazon Polly service.</param>
 /// <param name="text">The text to convert to speech.</param>
 /// <returns>A SynthesizeSpeechResponse object that includes an AudioStream
 /// object with the converted text.</returns>
 private static async Task<SynthesizeSpeechResponse>
 PollySynthesizeSpeech(IAmazonPolly client, string text)
 {
 var synthesizeSpeechRequest = new SynthesizeSpeechRequest()
 {
 OutputFormat = OutputFormat.Mp3,
 VoiceId = VoiceId.Joanna,
 Text = text,
 };

 var synthesizeSpeechResponse =
 await client.SynthesizeSpeechAsync(synthesizeSpeechRequest);

 return synthesizeSpeechResponse;
 }

 /// <summary>
 /// Writes the AudioStream returned from the call to
 /// SynthesizeSpeechAsync to a file in MP3 format.
 /// </summary>
 /// <param name="audioStream">The AudioStream returned from the
 /// call to the SynthesizeSpeechAsync method.</param>
 /// <param name="outputFileName">The full path to the file in which to
 /// save the audio stream.</param>
 private static void WriteSpeechToStream(Stream audioStream, string
 outputFileName)

Actions 1268

AWS SDK for .NET Developer Guide

 {
 var outputStream = new FileStream(
 outputFileName,
 FileMode.Create,
 FileAccess.Write);
 byte[] buffer = new byte[2 * 1024];
 int readBytes;

 while ((readBytes = audioStream.Read(buffer, 0, 2 * 1024)) > 0)
 {
 outputStream.Write(buffer, 0, readBytes);
 }

 // Flushes the buffer to avoid losing the last second or so of
 // the synthesized text.
 outputStream.Flush();
 Console.WriteLine($"Saved {outputFileName} to disk.");
 }
 }

Synthesize speech from text using speech marks with Amazon Polly using an AWS SDK.

 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.Polly;
 using Amazon.Polly.Model;

 public class SynthesizeSpeechMarks
 {
 public static async Task Main()
 {
 var client = new AmazonPollyClient();
 string outputFileName = "speechMarks.json";

 var synthesizeSpeechRequest = new SynthesizeSpeechRequest()
 {
 OutputFormat = OutputFormat.Json,
 SpeechMarkTypes = new List<string>
 {

Actions 1269

AWS SDK for .NET Developer Guide

 SpeechMarkType.Viseme,
 SpeechMarkType.Word,
 },
 VoiceId = VoiceId.Joanna,
 Text = "This is a sample text to be synthesized.",
 };

 try
 {
 using (var outputStream = new FileStream(outputFileName,
 FileMode.Create, FileAccess.Write))
 {
 var synthesizeSpeechResponse = await
 client.SynthesizeSpeechAsync(synthesizeSpeechRequest);
 var buffer = new byte[2 * 1024];
 int readBytes;

 var inputStream = synthesizeSpeechResponse.AudioStream;
 while ((readBytes = inputStream.Read(buffer, 0, 2 * 1024)) > 0)
 {
 outputStream.Write(buffer, 0, readBytes);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
 }

• For API details, see SynthesizeSpeech in AWS SDK for .NET API Reference.

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

Scenarios 1270

https://docs.aws.amazon.com/goto/DotNetSDKV3/polly-2016-06-10/SynthesizeSpeech

AWS SDK for .NET Developer Guide

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment instructions,
see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Amazon RDS examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon RDS.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Amazon RDS 1271

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer

AWS SDK for .NET Developer Guide

Hello Amazon RDS

The following code examples show how to get started using Amazon RDS.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon.RDS;
using Amazon.RDS.Model;

namespace RDSActions;

public static class HelloRds
{
 static async Task Main(string[] args)
 {
 var rdsClient = new AmazonRDSClient();

 Console.WriteLine($"Hello Amazon RDS! Following are some of your DB
 instances:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first twenty DB instances.
 var response = await rdsClient.DescribeDBInstancesAsync(
 new DescribeDBInstancesRequest()
 {
 MaxRecords = 20 // Must be between 20 and 100.
 });

 foreach (var instance in response.DBInstances)
 {
 Console.WriteLine($"\tDB name: {instance.DBName}");
 Console.WriteLine($"\tArn: {instance.DBInstanceArn}");
 Console.WriteLine($"\tIdentifier: {instance.DBInstanceIdentifier}");
 Console.WriteLine();

Amazon RDS 1272

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

 }
 }
}

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

• Scenarios

• Serverless examples

Basics

Learn the basics

The following code example shows how to:

• Create a custom DB parameter group and set parameter values.

• Create a DB instance that's configured to use the parameter group. The DB instance also contains
a database.

• Take a snapshot of the instance.

• Delete the instance and parameter group.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>

Basics 1273

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

/// Scenario for RDS DB instance example.
/// </summary>
public class RDSInstanceScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. Returns a list of the available DB engine families using the
 DescribeDBEngineVersionsAsync method.
 2. Selects an engine family and creates a custom DB parameter group using the
 CreateDBParameterGroupAsync method.
 3. Gets the parameter groups using the DescribeDBParameterGroupsAsync method.
 4. Gets parameters in the group using the DescribeDBParameters method.
 5. Parses and displays parameters in the group.
 6. Modifies both the auto_increment_offset and auto_increment_increment
 parameters
 using the ModifyDBParameterGroupAsync method.
 7. Gets and displays the updated parameters using the DescribeDBParameters
 method with a source of "user".
 8. Gets a list of allowed engine versions using the
 DescribeDBEngineVersionsAsync method.
 9. Displays and selects from a list of micro instance classes available for the
 selected engine and version.
 10. Creates an RDS DB instance that contains a MySql database and uses the
 parameter group
 using the CreateDBInstanceAsync method.
 11. Waits for DB instance to be ready using the DescribeDBInstancesAsync method.
 12. Prints out the connection endpoint string for the new DB instance.
 13. Creates a snapshot of the DB instance using the CreateDBSnapshotAsync
 method.
 14. Waits for DB snapshot to be ready using the DescribeDBSnapshots method.
 15. Deletes the DB instance using the DeleteDBInstanceAsync method.
 16. Waits for DB instance to be deleted using the DescribeDbInstances method.
 17. Deletes the parameter group using the DeleteDBParameterGroupAsync.
 */

 private static readonly string sepBar = new('-', 80);
 private static RDSWrapper rdsWrapper = null!;
 private static ILogger logger = null!;
 private static readonly string engine = "mysql";
 static async Task Main(string[] args)
 {

Basics 1274

AWS SDK for .NET Developer Guide

 // Set up dependency injection for the Amazon RDS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRDS>()
 .AddTransient<RDSWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 }).CreateLogger<RDSInstanceScenario>();

 rdsWrapper = host.Services.GetRequiredService<RDSWrapper>();

 Console.WriteLine(sepBar);
 Console.WriteLine(
 "Welcome to the Amazon Relational Database Service (Amazon RDS) DB
 instance scenario example.");
 Console.WriteLine(sepBar);

 try
 {
 var parameterGroupFamily = await ChooseParameterGroupFamily();

 var parameterGroup = await CreateDbParameterGroup(parameterGroupFamily);

 var parameters = await
 DescribeParametersInGroup(parameterGroup.DBParameterGroupName,
 new List<string> { "auto_increment_offset",
 "auto_increment_increment" });

 await ModifyParameters(parameterGroup.DBParameterGroupName, parameters);

 await DescribeUserSourceParameters(parameterGroup.DBParameterGroupName);

 var engineVersionChoice = await
 ChooseDbEngineVersion(parameterGroupFamily);

Basics 1275

AWS SDK for .NET Developer Guide

 var instanceChoice = await ChooseDbInstanceClass(engine,
 engineVersionChoice.EngineVersion);

 var newInstanceIdentifier = "Example-Instance-" + DateTime.Now.Ticks;

 var newInstance = await CreateRdsNewInstance(parameterGroup, engine,
 engineVersionChoice.EngineVersion,
 instanceChoice.DBInstanceClass, newInstanceIdentifier);
 if (newInstance != null)
 {
 DisplayConnectionString(newInstance);

 await CreateSnapshot(newInstance);

 await DeleteRdsInstance(newInstance);
 }

 await DeleteParameterGroup(parameterGroup);

 Console.WriteLine("Scenario complete.");
 Console.WriteLine(sepBar);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 }
 }

 /// <summary>
 /// Choose the RDS DB parameter group family from a list of available options.
 /// </summary>
 /// <returns>The selected parameter group family.</returns>
 public static async Task<string> ChooseParameterGroupFamily()
 {
 Console.WriteLine(sepBar);
 // 1. Get a list of available engines.
 var engines = await rdsWrapper.DescribeDBEngineVersions(engine);

 Console.WriteLine("1. The following is a list of available DB parameter
 group families:");
 int i = 1;
 var parameterGroupFamilies = engines.GroupBy(e =>
 e.DBParameterGroupFamily).ToList();
 foreach (var parameterGroupFamily in parameterGroupFamilies)

Basics 1276

AWS SDK for .NET Developer Guide

 {
 // List the available parameter group families.
 Console.WriteLine(
 $"\t{i}. Family: {parameterGroupFamily.Key}");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > parameterGroupFamilies.Count)
 {
 Console.WriteLine("Select an available DB parameter group family by
 entering a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }
 var parameterGroupFamilyChoice = parameterGroupFamilies[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return parameterGroupFamilyChoice.Key;
 }

 /// <summary>
 /// Create and get information on a DB parameter group.
 /// </summary>
 /// <param name="dbParameterGroupFamily">The DBParameterGroupFamily for the new
 DB parameter group.</param>
 /// <returns>The new DBParameterGroup.</returns>
 public static async Task<DBParameterGroup> CreateDbParameterGroup(string
 dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"2. Create new DB parameter group with family
 {dbParameterGroupFamily}:");

 var parameterGroup = await rdsWrapper.CreateDBParameterGroup(
 "ExampleParameterGroup-" + DateTime.Now.Ticks,
 dbParameterGroupFamily, "New example parameter group");

 var groupInfo =
 await rdsWrapper.DescribeDBParameterGroups(parameterGroup
 .DBParameterGroupName);

 Console.WriteLine(
 $"3. New DB parameter group: \n\t{groupInfo[0].Description}, \n\tARN
 {groupInfo[0].DBParameterGroupArn}");

Basics 1277

AWS SDK for .NET Developer Guide

 Console.WriteLine(sepBar);
 return parameterGroup;
 }

 /// <summary>
 /// Get and describe parameters from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <param name="parameterNames">Optional specific names of parameters to
 describe.</param>
 /// <returns>The list of requested parameters.</returns>
 public static async Task<List<Parameter>> DescribeParametersInGroup(string
 parameterGroupName, List<string>? parameterNames = null)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("4. Get some parameters from the group.");
 Console.WriteLine(sepBar);

 var parameters =
 await rdsWrapper.DescribeDBParameters(parameterGroupName);

 var matchingParameters =
 parameters.Where(p => parameterNames == null ||
 parameterNames.Contains(p.ParameterName)).ToList();

 Console.WriteLine("5. Parameter information:");
 matchingParameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);

 return matchingParameters;
 }

 /// <summary>
 /// Modify a parameter from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <param name="parameters">The parameters to modify.</param>
 /// <returns>Async task.</returns>

Basics 1278

AWS SDK for .NET Developer Guide

 public static async Task ModifyParameters(string parameterGroupName,
 List<Parameter> parameters)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("6. Modify some parameters in the group.");

 foreach (var p in parameters)
 {
 if (p.IsModifiable && p.DataType == "integer")
 {
 int newValue = 0;
 while (newValue == 0)
 {
 Console.WriteLine(
 $"Enter a new value for {p.ParameterName} from the allowed
 values {p.AllowedValues} ");

 var choice = Console.ReadLine();
 Int32.TryParse(choice, out newValue);
 }

 p.ParameterValue = newValue.ToString();
 }
 }

 await rdsWrapper.ModifyDBParameterGroup(parameterGroupName, parameters);

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Describe the user source parameters in the group.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <returns>Async task.</returns>
 public static async Task DescribeUserSourceParameters(string parameterGroupName)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("7. Describe user source parameters in the group.");

 var parameters =
 await rdsWrapper.DescribeDBParameters(parameterGroupName, "user");

Basics 1279

AWS SDK for .NET Developer Guide

 parameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Choose a DB engine version.
 /// </summary>
 /// <param name="dbParameterGroupFamily">DB parameter group family for engine
 choice.</param>
 /// <returns>The selected engine version.</returns>
 public static async Task<DBEngineVersion> ChooseDbEngineVersion(string
 dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 // Get a list of allowed engines.
 var allowedEngines =
 await rdsWrapper.DescribeDBEngineVersions(engine,
 dbParameterGroupFamily);

 Console.WriteLine($"Available DB engine versions for parameter group family
 {dbParameterGroupFamily}:");
 int i = 1;
 foreach (var version in allowedEngines)
 {
 Console.WriteLine(
 $"\t{i}. Engine: {version.Engine} Version
 {version.EngineVersion}.");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedEngines.Count)
 {
 Console.WriteLine("8. Select an available DB engine version by entering
 a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);

Basics 1280

AWS SDK for .NET Developer Guide

 }

 var engineChoice = allowedEngines[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return engineChoice;
 }

 /// <summary>
 /// Choose a DB instance class for a particular engine and engine version.
 /// </summary>
 /// <param name="engine">DB engine for DB instance choice.</param>
 /// <param name="engineVersion">DB engine version for DB instance choice.</
param>
 /// <returns>The selected orderable DB instance option.</returns>
 public static async Task<OrderableDBInstanceOption> ChooseDbInstanceClass(string
 engine, string engineVersion)
 {
 Console.WriteLine(sepBar);
 // Get a list of allowed DB instance classes.
 var allowedInstances =
 await rdsWrapper.DescribeOrderableDBInstanceOptions(engine,
 engineVersion);

 Console.WriteLine($"8. Available micro DB instance classes for engine
 {engine} and version {engineVersion}:");
 int i = 1;

 // Filter to micro instances for this example.
 allowedInstances = allowedInstances
 .Where(i => i.DBInstanceClass.Contains("micro")).ToList();

 foreach (var instance in allowedInstances)
 {
 Console.WriteLine(
 $"\t{i}. Instance class: {instance.DBInstanceClass} (storage type
 {instance.StorageType})");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedInstances.Count)
 {
 Console.WriteLine("9. Select an available DB instance class by entering
 a number from the list above:");

Basics 1281

AWS SDK for .NET Developer Guide

 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var instanceChoice = allowedInstances[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return instanceChoice;
 }

 /// <summary>
 /// Create a new RDS DB instance.
 /// </summary>
 /// <param name="parameterGroup">Parameter group to use for the DB instance.</
param>
 /// <param name="engineName">Engine to use for the DB instance.</param>
 /// <param name="engineVersion">Engine version to use for the DB instance.</
param>
 /// <param name="instanceClass">Instance class to use for the DB instance.</
param>
 /// <param name="instanceIdentifier">Instance identifier to use for the DB
 instance.</param>
 /// <returns>The new DB instance.</returns>
 public static async Task<DBInstance?> CreateRdsNewInstance(DBParameterGroup
 parameterGroup,
 string engineName, string engineVersion, string instanceClass, string
 instanceIdentifier)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"10. Create a new DB instance with identifier
 {instanceIdentifier}.");
 bool isInstanceReady = false;
 DBInstance newInstance;
 var instances = await rdsWrapper.DescribeDBInstances();
 isInstanceReady = instances.FirstOrDefault(i =>
 i.DBInstanceIdentifier == instanceIdentifier)?.DBInstanceStatus ==
 "available";

 if (isInstanceReady)
 {
 Console.WriteLine("Instance already created.");
 newInstance = instances.First(i => i.DBInstanceIdentifier ==
 instanceIdentifier);
 }
 else

Basics 1282

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine("Please enter an admin user name:");
 var username = Console.ReadLine();

 Console.WriteLine("Please enter an admin password:");
 var password = Console.ReadLine();

 newInstance = await rdsWrapper.CreateDBInstance(
 "ExampleInstance",
 instanceIdentifier,
 parameterGroup.DBParameterGroupName,
 engineName,
 engineVersion,
 instanceClass,
 20,
 username,
 password
);

 // 11. Wait for the DB instance to be ready.

 Console.WriteLine("11. Waiting for DB instance to be ready...");
 while (!isInstanceReady)
 {
 instances = await
 rdsWrapper.DescribeDBInstances(instanceIdentifier);
 isInstanceReady = instances.FirstOrDefault()?.DBInstanceStatus ==
 "available";
 newInstance = instances.First();
 Thread.Sleep(30000);
 }
 }

 Console.WriteLine(sepBar);
 return newInstance;
 }

 /// <summary>
 /// Display a connection string for an RDS DB instance.
 /// </summary>
 /// <param name="instance">The DB instance to use to get a connection string.</
param>
 public static void DisplayConnectionString(DBInstance instance)
 {

Basics 1283

AWS SDK for .NET Developer Guide

 Console.WriteLine(sepBar);
 // Display the connection string.
 Console.WriteLine("12. New DB instance connection string: ");
 Console.WriteLine(
 $"\n{engine} -h {instance.Endpoint.Address} -P {instance.Endpoint.Port}
 "
 + $"-u {instance.MasterUsername} -p [YOUR PASSWORD]\n");

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Create a snapshot from an RDS DB instance.
 /// </summary>
 /// <param name="instance">DB instance to use when creating a snapshot.</param>
 /// <returns>The snapshot object.</returns>
 public static async Task<DBSnapshot> CreateSnapshot(DBInstance instance)
 {
 Console.WriteLine(sepBar);
 // Create a snapshot.
 Console.WriteLine($"13. Creating snapshot from DB instance
 {instance.DBInstanceIdentifier}.");
 var snapshot = await
 rdsWrapper.CreateDBSnapshot(instance.DBInstanceIdentifier, "ExampleSnapshot-" +
 DateTime.Now.Ticks);

 // Wait for the snapshot to be available
 bool isSnapshotReady = false;

 Console.WriteLine($"14. Waiting for snapshot to be ready...");
 while (!isSnapshotReady)
 {
 var snapshots = await
 rdsWrapper.DescribeDBSnapshots(instance.DBInstanceIdentifier);
 isSnapshotReady = snapshots.FirstOrDefault()?.Status == "available";
 snapshot = snapshots.First();
 Thread.Sleep(30000);
 }

 Console.WriteLine(
 $"Snapshot {snapshot.DBSnapshotIdentifier} status is
 {snapshot.Status}.");
 Console.WriteLine(sepBar);
 return snapshot;

Basics 1284

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Delete an RDS DB instance.
 /// </summary>
 /// <param name="instance">The DB instance to delete.</param>
 /// <returns>Async task.</returns>
 public static async Task DeleteRdsInstance(DBInstance newInstance)
 {
 Console.WriteLine(sepBar);
 // Delete the DB instance.
 Console.WriteLine($"15. Delete the DB instance
 {newInstance.DBInstanceIdentifier}.");
 await rdsWrapper.DeleteDBInstance(newInstance.DBInstanceIdentifier);

 // Wait for the DB instance to delete.
 Console.WriteLine($"16. Waiting for the DB instance to delete...");
 bool isInstanceDeleted = false;

 while (!isInstanceDeleted)
 {
 var instance = await rdsWrapper.DescribeDBInstances();
 isInstanceDeleted = instance.All(i => i.DBInstanceIdentifier !=
 newInstance.DBInstanceIdentifier);
 Thread.Sleep(30000);
 }

 Console.WriteLine("DB instance deleted.");
 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Delete a DB parameter group.
 /// </summary>
 /// <param name="parameterGroup">The parameter group to delete.</param>
 /// <returns>Async task.</returns>
 public static async Task DeleteParameterGroup(DBParameterGroup parameterGroup)
 {
 Console.WriteLine(sepBar);
 // Delete the parameter group.
 Console.WriteLine($"17. Delete the DB parameter group
 {parameterGroup.DBParameterGroupName}.");
 await
 rdsWrapper.DeleteDBParameterGroup(parameterGroup.DBParameterGroupName);

Basics 1285

AWS SDK for .NET Developer Guide

 Console.WriteLine(sepBar);
 }

Wrapper methods used by the scenario for DB instance actions.

/// <summary>
/// Wrapper methods to use Amazon Relational Database Service (Amazon RDS) with DB
 instance operations.
/// </summary>
public partial class RDSWrapper
{
 private readonly IAmazonRDS _amazonRDS;
 public RDSWrapper(IAmazonRDS amazonRDS)
 {
 _amazonRDS = amazonRDS;
 }

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="dbParameterGroupFamily">Optional parameter group family name.</
param>
 /// <returns>List of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>> DescribeDBEngineVersions(string engine,
 string dbParameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,
 DBParameterGroupFamily = dbParameterGroupFamily
 });
 return response.DBEngineVersions;
 }

 /// <summary>

Basics 1286

AWS SDK for .NET Developer Guide

 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptions(string engine, string engineVersion)
 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstances(string
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });

Basics 1287

AWS SDK for .NET Developer Guide

 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

 /// <summary>
 /// Create an RDS DB instance with a particular set of properties. Use the
 action DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbName">Name for the DB instance.</param>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="parameterGroupName">DB parameter group to associate with the
 instance.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <param name="allocatedStorage">The amount of storage in gibibytes (GiB) to
 allocate to the DB instance.</param>
 /// <param name="adminName">Admin user name.</param>
 /// <param name="adminPassword">Admin user password.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstance(string dbName, string
 dbInstanceIdentifier,
 string parameterGroupName, string dbEngine, string dbEngineVersion,
 string instanceClass, int allocatedStorage, string adminName, string
 adminPassword)
 {
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBName = dbName,
 DBInstanceIdentifier = dbInstanceIdentifier,
 DBParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass,
 AllocatedStorage = allocatedStorage,
 MasterUsername = adminName,

Basics 1288

AWS SDK for .NET Developer Guide

 MasterUserPassword = adminPassword
 });

 return response.DBInstance;
 }

 /// <summary>
 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstance(string dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }

Wrapper methods used by the scenario for DB parameter groups.

/// <summary>
/// Wrapper methods to use Amazon Relational Database Service (Amazon RDS) with
 parameter groups.
/// </summary>
public partial class RDSWrapper
{

 /// <summary>
 /// Get descriptions of DB parameter groups.
 /// </summary>
 /// <param name="name">Optional name of the DB parameter group to describe.</
param>

Basics 1289

AWS SDK for .NET Developer Guide

 /// <returns>The list of DB parameter group descriptions.</returns>
 public async Task<List<DBParameterGroup>> DescribeDBParameterGroups(string name
 = null)
 {
 var response = await _amazonRDS.DescribeDBParameterGroupsAsync(
 new DescribeDBParameterGroupsRequest()
 {
 DBParameterGroupName = name
 });
 return response.DBParameterGroups;
 }

 /// <summary>
 /// Create a new DB parameter group. Use the action
 DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="family">Family of the DB parameter group.</param>
 /// <param name="description">Description of the DB parameter group.</param>
 /// <returns>The new DB parameter group.</returns>
 public async Task<DBParameterGroup> CreateDBParameterGroup(
 string name, string family, string description)
 {
 var response = await _amazonRDS.CreateDBParameterGroupAsync(
 new CreateDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 DBParameterGroupFamily = family,
 Description = description
 });
 return response.DBParameterGroup;
 }

 /// <summary>
 /// Update a DB parameter group. Use the action DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>

Basics 1290

AWS SDK for .NET Developer Guide

 /// <param name="parameters">List of parameters. Maximum of 20 per request.</
param>
 /// <returns>The updated DB parameter group name.</returns>
 public async Task<string> ModifyDBParameterGroup(
 string name, List<Parameter> parameters)
 {
 var response = await _amazonRDS.ModifyDBParameterGroupAsync(
 new ModifyDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 Parameters = parameters,
 });
 return response.DBParameterGroupName;
 }

 /// <summary>
 /// Delete a DB parameter group. The group cannot be a default DB parameter
 group
 /// or be associated with any DB instances.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteDBParameterGroup(string name)
 {
 var response = await _amazonRDS.DeleteDBParameterGroupAsync(
 new DeleteDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get a list of DB parameters from a specific parameter group.
 /// </summary>
 /// <param name="dbParameterGroupName">Name of a specific DB parameter group.</
param>
 /// <param name="source">Optional source for selecting parameters.</param>
 /// <returns>List of parameter values.</returns>

Basics 1291

AWS SDK for .NET Developer Guide

 public async Task<List<Parameter>> DescribeDBParameters(string
 dbParameterGroupName, string source = null)
 {
 var results = new List<Parameter>();
 var paginateParameters = _amazonRDS.Paginators.DescribeDBParameters(
 new DescribeDBParametersRequest()
 {
 DBParameterGroupName = dbParameterGroupName,
 Source = source
 });
 // Get the entire list using the paginator.
 await foreach (var parameters in paginateParameters.Parameters)
 {
 results.Add(parameters);
 }
 return results;
 }

Wrapper methods used by the scenario for DB snapshot actions.

/// <summary>
/// Wrapper methods to use Amazon Relational Database Service (Amazon RDS) with
 snapshots.
/// </summary>
public partial class RDSWrapper
{

 /// <summary>
 /// Create a snapshot of a DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBSnapshot> CreateDBSnapshot(string dbInstanceIdentifier,
 string snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBSnapshotAsync(
 new CreateDBSnapshotRequest()
 {
 DBSnapshotIdentifier = snapshotIdentifier,

Basics 1292

AWS SDK for .NET Developer Guide

 DBInstanceIdentifier = dbInstanceIdentifier
 });

 return response.DBSnapshot;
 }

 /// <summary>
 /// Return a list of DB snapshots for a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBSnapshot>> DescribeDBSnapshots(string
 dbInstanceIdentifier)
 {
 var results = new List<DBSnapshot>();
 var snapshotsPaginator = _amazonRDS.Paginators.DescribeDBSnapshots(
 new DescribeDBSnapshotsRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 // Get the entire list using the paginator.
 await foreach (var snapshots in snapshotsPaginator.DBSnapshots)
 {
 results.Add(snapshots);
 }
 return results;
 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateDBInstance

• CreateDBParameterGroup

• CreateDBSnapshot

• DeleteDBInstance

• DeleteDBParameterGroup

• DescribeDBEngineVersions

Basics 1293

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBSnapshot
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions

AWS SDK for .NET Developer Guide

• DescribeDBInstances

• DescribeDBParameterGroups

• DescribeDBParameters

• DescribeDBSnapshots

• DescribeOrderableDBInstanceOptions

• ModifyDBParameterGroup

Actions

CreateDBInstance

The following code example shows how to use CreateDBInstance.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an RDS DB instance with a particular set of properties. Use the
 action DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbName">Name for the DB instance.</param>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="parameterGroupName">DB parameter group to associate with the
 instance.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <param name="allocatedStorage">The amount of storage in gibibytes (GiB) to
 allocate to the DB instance.</param>
 /// <param name="adminName">Admin user name.</param>
 /// <param name="adminPassword">Admin user password.</param>
 /// <returns>DB instance object.</returns>

Actions 1294

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameterGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameters
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBSnapshots
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

 public async Task<DBInstance> CreateDBInstance(string dbName, string
 dbInstanceIdentifier,
 string parameterGroupName, string dbEngine, string dbEngineVersion,
 string instanceClass, int allocatedStorage, string adminName, string
 adminPassword)
 {
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBName = dbName,
 DBInstanceIdentifier = dbInstanceIdentifier,
 DBParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass,
 AllocatedStorage = allocatedStorage,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword
 });

 return response.DBInstance;
 }

• For API details, see CreateDBInstance in AWS SDK for .NET API Reference.

CreateDBParameterGroup

The following code example shows how to use CreateDBParameterGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 1295

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

 /// Create a new DB parameter group. Use the action
 DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="family">Family of the DB parameter group.</param>
 /// <param name="description">Description of the DB parameter group.</param>
 /// <returns>The new DB parameter group.</returns>
 public async Task<DBParameterGroup> CreateDBParameterGroup(
 string name, string family, string description)
 {
 var response = await _amazonRDS.CreateDBParameterGroupAsync(
 new CreateDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 DBParameterGroupFamily = family,
 Description = description
 });
 return response.DBParameterGroup;
 }

• For API details, see CreateDBParameterGroup in AWS SDK for .NET API Reference.

CreateDBSnapshot

The following code example shows how to use CreateDBSnapshot.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a snapshot of a DB instance.
 /// </summary>

Actions 1296

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBSnapshot> CreateDBSnapshot(string dbInstanceIdentifier,
 string snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBSnapshotAsync(
 new CreateDBSnapshotRequest()
 {
 DBSnapshotIdentifier = snapshotIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 return response.DBSnapshot;
 }

• For API details, see CreateDBSnapshot in AWS SDK for .NET API Reference.

DeleteDBInstance

The following code example shows how to use DeleteDBInstance.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstance(string dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(

Actions 1297

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }

• For API details, see DeleteDBInstance in AWS SDK for .NET API Reference.

DeleteDBParameterGroup

The following code example shows how to use DeleteDBParameterGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a DB parameter group. The group cannot be a default DB parameter
 group
 /// or be associated with any DB instances.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteDBParameterGroup(string name)
 {
 var response = await _amazonRDS.DeleteDBParameterGroupAsync(
 new DeleteDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 });
 return response.HttpStatusCode == HttpStatusCode.OK;

Actions 1298

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples

AWS SDK for .NET Developer Guide

 }

• For API details, see DeleteDBParameterGroup in AWS SDK for .NET API Reference.

DescribeDBEngineVersions

The following code example shows how to use DescribeDBEngineVersions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="dbParameterGroupFamily">Optional parameter group family name.</
param>
 /// <returns>List of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>> DescribeDBEngineVersions(string engine,
 string dbParameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,
 DBParameterGroupFamily = dbParameterGroupFamily
 });
 return response.DBEngineVersions;
 }

• For API details, see DescribeDBEngineVersions in AWS SDK for .NET API Reference.

Actions 1299

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions

AWS SDK for .NET Developer Guide

DescribeDBInstances

The following code example shows how to use DescribeDBInstances.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstances(string
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

Actions 1300

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances

AWS SDK for .NET Developer Guide

DescribeDBParameterGroups

The following code example shows how to use DescribeDBParameterGroups.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get descriptions of DB parameter groups.
 /// </summary>
 /// <param name="name">Optional name of the DB parameter group to describe.</
param>
 /// <returns>The list of DB parameter group descriptions.</returns>
 public async Task<List<DBParameterGroup>> DescribeDBParameterGroups(string name
 = null)
 {
 var response = await _amazonRDS.DescribeDBParameterGroupsAsync(
 new DescribeDBParameterGroupsRequest()
 {
 DBParameterGroupName = name
 });
 return response.DBParameterGroups;
 }

• For API details, see DescribeDBParameterGroups in AWS SDK for .NET API Reference.

DescribeDBParameters

The following code example shows how to use DescribeDBParameters.

Actions 1301

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameterGroups

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of DB parameters from a specific parameter group.
 /// </summary>
 /// <param name="dbParameterGroupName">Name of a specific DB parameter group.</
param>
 /// <param name="source">Optional source for selecting parameters.</param>
 /// <returns>List of parameter values.</returns>
 public async Task<List<Parameter>> DescribeDBParameters(string
 dbParameterGroupName, string source = null)
 {
 var results = new List<Parameter>();
 var paginateParameters = _amazonRDS.Paginators.DescribeDBParameters(
 new DescribeDBParametersRequest()
 {
 DBParameterGroupName = dbParameterGroupName,
 Source = source
 });
 // Get the entire list using the paginator.
 await foreach (var parameters in paginateParameters.Parameters)
 {
 results.Add(parameters);
 }
 return results;
 }

• For API details, see DescribeDBParameters in AWS SDK for .NET API Reference.

DescribeDBSnapshots

The following code example shows how to use DescribeDBSnapshots.

Actions 1302

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBParameters

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Return a list of DB snapshots for a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBSnapshot>> DescribeDBSnapshots(string
 dbInstanceIdentifier)
 {
 var results = new List<DBSnapshot>();
 var snapshotsPaginator = _amazonRDS.Paginators.DescribeDBSnapshots(
 new DescribeDBSnapshotsRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });

 // Get the entire list using the paginator.
 await foreach (var snapshots in snapshotsPaginator.DBSnapshots)
 {
 results.Add(snapshots);
 }
 return results;
 }

• For API details, see DescribeDBSnapshots in AWS SDK for .NET API Reference.

DescribeOrderableDBInstanceOptions

The following code example shows how to use DescribeOrderableDBInstanceOptions.

Actions 1303

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBSnapshots

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptions(string engine, string engineVersion)
 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for .NET API Reference.

Actions 1304

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions

AWS SDK for .NET Developer Guide

ModifyDBParameterGroup

The following code example shows how to use ModifyDBParameterGroup.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Update a DB parameter group. Use the action DescribeDBParameterGroupsAsync
 /// to determine when the DB parameter group is ready to use.
 /// </summary>
 /// <param name="name">Name of the DB parameter group.</param>
 /// <param name="parameters">List of parameters. Maximum of 20 per request.</
param>
 /// <returns>The updated DB parameter group name.</returns>
 public async Task<string> ModifyDBParameterGroup(
 string name, List<Parameter> parameters)
 {
 var response = await _amazonRDS.ModifyDBParameterGroupAsync(
 new ModifyDBParameterGroupRequest()
 {
 DBParameterGroupName = name,
 Parameters = parameters,
 });
 return response.DBParameterGroupName;
 }

• For API details, see ModifyDBParameterGroup in AWS SDK for .NET API Reference.

Actions 1305

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/RDS#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBParameterGroup

AWS SDK for .NET Developer Guide

Scenarios

Create an Aurora Serverless work item tracker

The following code example shows how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

AWS SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work items in
an Amazon Aurora database and emails reports by using Amazon Simple Email Service (Amazon
SES). This example uses a front end built with React.js to interact with a RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Serverless examples

Connecting to an Amazon RDS database in a Lambda function

The following code example shows how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

Scenarios 1306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using .NET.

using System.Data;
using System.Text.Json;
using Amazon.Lambda.APIGatewayEvents;
using Amazon.Lambda.Core;
using MySql.Data.MySqlClient;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace aws_rds;

public class InputModel
{
 public string key1 { get; set; }
 public string key2 { get; set; }
}

public class Function
{
 /// <summary>
 // Handles the Lambda function execution for connecting to RDS using IAM
 authentication.
 /// </summary>
 /// <param name="input">The input event data passed to the Lambda function</
param>
 /// <param name="context">The Lambda execution context that provides runtime
 information</param>
 /// <returns>A response object containing the execution result</returns>

 public async Task<APIGatewayProxyResponse>
 FunctionHandler(APIGatewayProxyRequest request, ILambdaContext context)

Serverless examples 1307

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS SDK for .NET Developer Guide

 {
 // Sample Input: {"body": "{\"key1\":\"20\", \"key2\":\"25\"}"}
 var input = JsonSerializer.Deserialize<InputModel>(request.Body);

 /// Obtain authentication token
 var authToken = RDSAuthTokenGenerator.GenerateAuthToken(
 Environment.GetEnvironmentVariable("RDS_ENDPOINT"),
 Convert.ToInt32(Environment.GetEnvironmentVariable("RDS_PORT")),
 Environment.GetEnvironmentVariable("RDS_USERNAME")
);

 /// Build the Connection String with the Token
 string connectionString =
 $"Server={Environment.GetEnvironmentVariable("RDS_ENDPOINT")};" +

 $"Port={Environment.GetEnvironmentVariable("RDS_PORT")};" +

 $"Uid={Environment.GetEnvironmentVariable("RDS_USERNAME")};" +
 $"Pwd={authToken};";

 try
 {
 await using var connection = new MySqlConnection(connectionString);
 await connection.OpenAsync();

 const string sql = "SELECT @param1 + @param2 AS Sum";

 await using var command = new MySqlCommand(sql, connection);
 command.Parameters.AddWithValue("@param1", int.Parse(input.key1 ??
 "0"));
 command.Parameters.AddWithValue("@param2", int.Parse(input.key2 ??
 "0"));

 await using var reader = await command.ExecuteReaderAsync();
 if (await reader.ReadAsync())
 {
 int result = reader.GetInt32("Sum");

 //Sample Response: {"statusCode":200,"body":"{\"message\":\"The sum
 is: 45\"}","isBase64Encoded":false}
 return new APIGatewayProxyResponse
 {
 StatusCode = 200,

Serverless examples 1308

AWS SDK for .NET Developer Guide

 Body = JsonSerializer.Serialize(new { message = $"The sum is:
 {result}" })
 };
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

 return new APIGatewayProxyResponse
 {
 StatusCode = 500,
 Body = JsonSerializer.Serialize(new { error = "Internal server error" })
 };
 }
}

Amazon RDS Data Service examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon RDS Data Service.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Scenarios

Amazon RDS Data Service 1309

AWS SDK for .NET Developer Guide

Scenarios

Create an Aurora Serverless work item tracker

The following code example shows how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

AWS SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work items in
an Amazon Aurora database and emails reports by using Amazon Simple Email Service (Amazon
SES). This example uses a front end built with React.js to interact with a RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Amazon Rekognition examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Rekognition.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Scenarios 1310

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker

AWS SDK for .NET Developer Guide

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

CompareFaces

The following code example shows how to use CompareFaces.

For more information, see Comparing faces in images.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to compare faces in two images.
 /// </summary>
 public class CompareFaces
 {
 public static async Task Main()
 {
 float similarityThreshold = 70F;
 string sourceImage = "source.jpg";
 string targetImage = "target.jpg";

 var rekognitionClient = new AmazonRekognitionClient();

Actions 1311

https://docs.aws.amazon.com/rekognition/latest/dg/faces-comparefaces.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 Amazon.Rekognition.Model.Image imageSource = new
 Amazon.Rekognition.Model.Image();

 try
 {
 using FileStream fs = new FileStream(sourceImage, FileMode.Open,
 FileAccess.Read);
 byte[] data = new byte[fs.Length];
 fs.Read(data, 0, (int)fs.Length);
 imageSource.Bytes = new MemoryStream(data);
 }
 catch (Exception)
 {
 Console.WriteLine($"Failed to load source image: {sourceImage}");
 return;
 }

 Amazon.Rekognition.Model.Image imageTarget = new
 Amazon.Rekognition.Model.Image();

 try
 {
 using FileStream fs = new FileStream(targetImage, FileMode.Open,
 FileAccess.Read);
 byte[] data = new byte[fs.Length];
 data = new byte[fs.Length];
 fs.Read(data, 0, (int)fs.Length);
 imageTarget.Bytes = new MemoryStream(data);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Failed to load target image: {targetImage}");
 Console.WriteLine(ex.Message);
 return;
 }

 var compareFacesRequest = new CompareFacesRequest
 {
 SourceImage = imageSource,
 TargetImage = imageTarget,
 SimilarityThreshold = similarityThreshold,
 };

Actions 1312

AWS SDK for .NET Developer Guide

 // Call operation
 var compareFacesResponse = await
 rekognitionClient.CompareFacesAsync(compareFacesRequest);

 // Display results
 compareFacesResponse.FaceMatches.ForEach(match =>
 {
 ComparedFace face = match.Face;
 BoundingBox position = face.BoundingBox;
 Console.WriteLine($"Face at {position.Left} {position.Top} matches
 with {match.Similarity}% confidence.");
 });

 Console.WriteLine($"Found {compareFacesResponse.UnmatchedFaces.Count}
 face(s) that did not match.");
 }
 }

• For API details, see CompareFaces in AWS SDK for .NET API Reference.

CreateCollection

The following code example shows how to use CreateCollection.

For more information, see Creating a collection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>

Actions 1313

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/CompareFaces
https://docs.aws.amazon.com/rekognition/latest/dg/create-collection-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 /// Uses Amazon Rekognition to create a collection to which you can add
 /// faces using the IndexFaces operation.
 /// </summary>
 public class CreateCollection
 {
 public static async Task Main()
 {
 var rekognitionClient = new AmazonRekognitionClient();

 string collectionId = "MyCollection";
 Console.WriteLine("Creating collection: " + collectionId);

 var createCollectionRequest = new CreateCollectionRequest
 {
 CollectionId = collectionId,
 };

 CreateCollectionResponse createCollectionResponse = await
 rekognitionClient.CreateCollectionAsync(createCollectionRequest);
 Console.WriteLine($"CollectionArn :
 {createCollectionResponse.CollectionArn}");
 Console.WriteLine($"Status code :
 {createCollectionResponse.StatusCode}");
 }
 }

• For API details, see CreateCollection in AWS SDK for .NET API Reference.

DeleteCollection

The following code example shows how to use DeleteCollection.

For more information, see Deleting a collection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1314

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/CreateCollection
https://docs.aws.amazon.com/rekognition/latest/dg/delete-collection-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to delete an existing collection.
 /// </summary>
 public class DeleteCollection
 {
 public static async Task Main()
 {
 var rekognitionClient = new AmazonRekognitionClient();

 string collectionId = "MyCollection";
 Console.WriteLine("Deleting collection: " + collectionId);

 var deleteCollectionRequest = new DeleteCollectionRequest()
 {
 CollectionId = collectionId,
 };

 var deleteCollectionResponse = await
 rekognitionClient.DeleteCollectionAsync(deleteCollectionRequest);
 Console.WriteLine($"{collectionId}:
 {deleteCollectionResponse.StatusCode}");
 }
 }

• For API details, see DeleteCollection in AWS SDK for .NET API Reference.

DeleteFaces

The following code example shows how to use DeleteFaces.

For more information, see Deleting faces from a collection.

Actions 1315

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DeleteCollection
https://docs.aws.amazon.com/rekognition/latest/dg/delete-faces-procedure.html

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to delete one or more faces from
 /// a Rekognition collection.
 /// </summary>
 public class DeleteFaces
 {
 public static async Task Main()
 {
 string collectionId = "MyCollection";
 var faces = new List<string> { "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" };

 var rekognitionClient = new AmazonRekognitionClient();

 var deleteFacesRequest = new DeleteFacesRequest()
 {
 CollectionId = collectionId,
 FaceIds = faces,
 };

 DeleteFacesResponse deleteFacesResponse = await
 rekognitionClient.DeleteFacesAsync(deleteFacesRequest);
 deleteFacesResponse.DeletedFaces.ForEach(face =>
 {
 Console.WriteLine($"FaceID: {face}");
 });
 }
 }

Actions 1316

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DeleteFaces in AWS SDK for .NET API Reference.

DescribeCollection

The following code example shows how to use DescribeCollection.

For more information, see Describing a collection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to describe the contents of a
 /// collection.
 /// </summary>
 public class DescribeCollection
 {
 public static async Task Main()
 {
 var rekognitionClient = new AmazonRekognitionClient();

 string collectionId = "MyCollection";
 Console.WriteLine($"Describing collection: {collectionId}");

 var describeCollectionRequest = new DescribeCollectionRequest()
 {
 CollectionId = collectionId,
 };

Actions 1317

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DeleteFaces
https://docs.aws.amazon.com/rekognition/latest/dg/describe-collection-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 var describeCollectionResponse = await
 rekognitionClient.DescribeCollectionAsync(describeCollectionRequest);
 Console.WriteLine($"Collection ARN:
 {describeCollectionResponse.CollectionARN}");
 Console.WriteLine($"Face count:
 {describeCollectionResponse.FaceCount}");
 Console.WriteLine($"Face model version:
 {describeCollectionResponse.FaceModelVersion}");
 Console.WriteLine($"Created:
 {describeCollectionResponse.CreationTimestamp}");
 }
 }

• For API details, see DescribeCollection in AWS SDK for .NET API Reference.

DetectFaces

The following code example shows how to use DetectFaces.

For more information, see Detecting faces in an image.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to detect faces within an image
 /// stored in an Amazon Simple Storage Service (Amazon S3) bucket.
 /// </summary>
 public class DetectFaces

Actions 1318

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DescribeCollection
https://docs.aws.amazon.com/rekognition/latest/dg/faces-detect-images.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 {
 public static async Task Main()
 {
 string photo = "input.jpg";
 string bucket = "amzn-s3-demo-bucket";

 var rekognitionClient = new AmazonRekognitionClient();

 var detectFacesRequest = new DetectFacesRequest()
 {
 Image = new Image()
 {
 S3Object = new S3Object()
 {
 Name = photo,
 Bucket = bucket,
 },
 },

 // Attributes can be "ALL" or "DEFAULT".
 // "DEFAULT": BoundingBox, Confidence, Landmarks, Pose, and Quality.
 // "ALL": See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
items/Rekognition/TFaceDetail.html
 Attributes = new List<string>() { "ALL" },
 };

 try
 {
 DetectFacesResponse detectFacesResponse = await
 rekognitionClient.DetectFacesAsync(detectFacesRequest);
 bool hasAll = detectFacesRequest.Attributes.Contains("ALL");
 foreach (FaceDetail face in detectFacesResponse.FaceDetails)
 {
 Console.WriteLine($"BoundingBox: top={face.BoundingBox.Left}
 left={face.BoundingBox.Top} width={face.BoundingBox.Width}
 height={face.BoundingBox.Height}");
 Console.WriteLine($"Confidence: {face.Confidence}");
 Console.WriteLine($"Landmarks: {face.Landmarks.Count}");
 Console.WriteLine($"Pose: pitch={face.Pose.Pitch}
 roll={face.Pose.Roll} yaw={face.Pose.Yaw}");
 Console.WriteLine($"Brightness:
 {face.Quality.Brightness}\tSharpness: {face.Quality.Sharpness}");

 if (hasAll)

Actions 1319

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Estimated age is between
 {face.AgeRange.Low} and {face.AgeRange.High} years old.");
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }

Display bounding box information for all faces in an image.

 using System;
 using System.Collections.Generic;
 using System.Drawing;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to display the details of the
 /// bounding boxes around the faces detected in an image.
 /// </summary>
 public class ImageOrientationBoundingBox
 {
 public static async Task Main()
 {
 string photo = @"D:\Development\AWS-Examples\Rekognition\target.jpg"; //
 "photo.jpg";

 var rekognitionClient = new AmazonRekognitionClient();

 var image = new Amazon.Rekognition.Model.Image();
 try
 {
 using var fs = new FileStream(photo, FileMode.Open,
 FileAccess.Read);

Actions 1320

AWS SDK for .NET Developer Guide

 byte[] data = null;
 data = new byte[fs.Length];
 fs.Read(data, 0, (int)fs.Length);
 image.Bytes = new MemoryStream(data);
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load file " + photo);
 return;
 }

 int height;
 int width;

 // Used to extract original photo width/height
 using (var imageBitmap = new Bitmap(photo))
 {
 height = imageBitmap.Height;
 width = imageBitmap.Width;
 }

 Console.WriteLine("Image Information:");
 Console.WriteLine(photo);
 Console.WriteLine("Image Height: " + height);
 Console.WriteLine("Image Width: " + width);

 try
 {
 var detectFacesRequest = new DetectFacesRequest()
 {
 Image = image,
 Attributes = new List<string>() { "ALL" },
 };

 DetectFacesResponse detectFacesResponse = await
 rekognitionClient.DetectFacesAsync(detectFacesRequest);
 detectFacesResponse.FaceDetails.ForEach(face =>
 {
 Console.WriteLine("Face:");
 ShowBoundingBoxPositions(
 height,
 width,
 face.BoundingBox,
 detectFacesResponse.OrientationCorrection);

Actions 1321

AWS SDK for .NET Developer Guide

 Console.WriteLine($"BoundingBox: top={face.BoundingBox.Left}
 left={face.BoundingBox.Top} width={face.BoundingBox.Width}
 height={face.BoundingBox.Height}");
 Console.WriteLine($"The detected face is estimated to be between
 {face.AgeRange.Low} and {face.AgeRange.High} years old.\n");
 });
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 /// <summary>
 /// Display the bounding box information for an image.
 /// </summary>
 /// <param name="imageHeight">The height of the image.</param>
 /// <param name="imageWidth">The width of the image.</param>
 /// <param name="box">The bounding box for a face found within the image.</
param>
 /// <param name="rotation">The rotation of the face's bounding box.</param>
 public static void ShowBoundingBoxPositions(int imageHeight, int imageWidth,
 BoundingBox box, string rotation)
 {
 float left;
 float top;

 if (rotation == null)
 {
 Console.WriteLine("No estimated orientation. Check Exif data.");
 return;
 }

 // Calculate face position based on image orientation.
 switch (rotation)
 {
 case "ROTATE_0":
 left = imageWidth * box.Left;
 top = imageHeight * box.Top;
 break;
 case "ROTATE_90":
 left = imageHeight * (1 - (box.Top + box.Height));
 top = imageWidth * box.Left;

Actions 1322

AWS SDK for .NET Developer Guide

 break;
 case "ROTATE_180":
 left = imageWidth - (imageWidth * (box.Left + box.Width));
 top = imageHeight * (1 - (box.Top + box.Height));
 break;
 case "ROTATE_270":
 left = imageHeight * box.Top;
 top = imageWidth * (1 - box.Left - box.Width);
 break;
 default:
 Console.WriteLine("No estimated orientation information. Check
 Exif data.");
 return;
 }

 // Display face location information.
 Console.WriteLine($"Left: {left}");
 Console.WriteLine($"Top: {top}");
 Console.WriteLine($"Face Width: {imageWidth * box.Width}");
 Console.WriteLine($"Face Height: {imageHeight * box.Height}");
 }
 }

• For API details, see DetectFaces in AWS SDK for .NET API Reference.

DetectLabels

The following code example shows how to use DetectLabels.

For more information, see Detecting labels in an image.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;

Actions 1323

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectFaces
https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to detect labels within an image
 /// stored in an Amazon Simple Storage Service (Amazon S3) bucket.
 /// </summary>
 public class DetectLabels
 {
 public static async Task Main()
 {
 string photo = "del_river_02092020_01.jpg"; // "input.jpg";
 string bucket = "amzn-s3-demo-bucket"; // "bucket";

 var rekognitionClient = new AmazonRekognitionClient();

 var detectlabelsRequest = new DetectLabelsRequest
 {
 Image = new Image()
 {
 S3Object = new S3Object()
 {
 Name = photo,
 Bucket = bucket,
 },
 },
 MaxLabels = 10,
 MinConfidence = 75F,
 };

 try
 {
 DetectLabelsResponse detectLabelsResponse = await
 rekognitionClient.DetectLabelsAsync(detectlabelsRequest);
 Console.WriteLine("Detected labels for " + photo);
 foreach (Label label in detectLabelsResponse.Labels)
 {
 Console.WriteLine($"Name: {label.Name} Confidence:
 {label.Confidence}");
 }
 }
 catch (Exception ex)
 {

Actions 1324

AWS SDK for .NET Developer Guide

 Console.WriteLine(ex.Message);
 }
 }
 }

Detect labels in an image file stored on your computer.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to detect labels within an image
 /// stored locally.
 /// </summary>
 public class DetectLabelsLocalFile
 {
 public static async Task Main()
 {
 string photo = "input.jpg";

 var image = new Amazon.Rekognition.Model.Image();
 try
 {
 using var fs = new FileStream(photo, FileMode.Open,
 FileAccess.Read);
 byte[] data = null;
 data = new byte[fs.Length];
 fs.Read(data, 0, (int)fs.Length);
 image.Bytes = new MemoryStream(data);
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load file " + photo);
 return;
 }

 var rekognitionClient = new AmazonRekognitionClient();

Actions 1325

AWS SDK for .NET Developer Guide

 var detectlabelsRequest = new DetectLabelsRequest
 {
 Image = image,
 MaxLabels = 10,
 MinConfidence = 77F,
 };

 try
 {
 DetectLabelsResponse detectLabelsResponse = await
 rekognitionClient.DetectLabelsAsync(detectlabelsRequest);
 Console.WriteLine($"Detected labels for {photo}");
 foreach (Label label in detectLabelsResponse.Labels)
 {
 Console.WriteLine($"{label.Name}: {label.Confidence}");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }

• For API details, see DetectLabels in AWS SDK for .NET API Reference.

DetectModerationLabels

The following code example shows how to use DetectModerationLabels.

For more information, see Detecting inappropriate images.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1326

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectLabels
https://docs.aws.amazon.com/rekognition/latest/dg/procedure-moderate-images.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to detect unsafe content in a
 /// JPEG or PNG format image.
 /// </summary>
 public class DetectModerationLabels
 {
 public static async Task Main(string[] args)
 {
 string photo = "input.jpg";
 string bucket = "amzn-s3-demo-bucket";

 var rekognitionClient = new AmazonRekognitionClient();

 var detectModerationLabelsRequest = new DetectModerationLabelsRequest()
 {
 Image = new Image()
 {
 S3Object = new S3Object()
 {
 Name = photo,
 Bucket = bucket,
 },
 },
 MinConfidence = 60F,
 };

 try
 {
 var detectModerationLabelsResponse = await
 rekognitionClient.DetectModerationLabelsAsync(detectModerationLabelsRequest);
 Console.WriteLine("Detected labels for " + photo);
 foreach (ModerationLabel label in
 detectModerationLabelsResponse.ModerationLabels)
 {
 Console.WriteLine($"Label: {label.Name}");
 Console.WriteLine($"Confidence: {label.Confidence}");
 Console.WriteLine($"Parent: {label.ParentName}");
 }

Actions 1327

AWS SDK for .NET Developer Guide

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }

• For API details, see DetectModerationLabels in AWS SDK for .NET API Reference.

DetectText

The following code example shows how to use DetectText.

For more information, see Detecting text in an image.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to detect text in an image. The
 /// example was created using the AWS SDK for .NET version 3.7 and .NET
 /// Core 5.0.
 /// </summary>
 public class DetectText
 {
 public static async Task Main()
 {
 string photo = "Dad_photographer.jpg"; // "input.jpg";
 string bucket = "amzn-s3-demo-bucket"; // "bucket";

Actions 1328

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectModerationLabels
https://docs.aws.amazon.com/rekognition/latest/dg/text-detecting-text-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 var rekognitionClient = new AmazonRekognitionClient();

 var detectTextRequest = new DetectTextRequest()
 {
 Image = new Image()
 {
 S3Object = new S3Object()
 {
 Name = photo,
 Bucket = bucket,
 },
 },
 };

 try
 {
 DetectTextResponse detectTextResponse = await
 rekognitionClient.DetectTextAsync(detectTextRequest);
 Console.WriteLine($"Detected lines and words for {photo}");
 detectTextResponse.TextDetections.ForEach(text =>
 {
 Console.WriteLine($"Detected: {text.DetectedText}");
 Console.WriteLine($"Confidence: {text.Confidence}");
 Console.WriteLine($"Id : {text.Id}");
 Console.WriteLine($"Parent Id: {text.ParentId}");
 Console.WriteLine($"Type: {text.Type}");
 });
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
 }

• For API details, see DetectText in AWS SDK for .NET API Reference.

GetCelebrityInfo

The following code example shows how to use GetCelebrityInfo.

Actions 1329

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectText

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Shows how to use Amazon Rekognition to retrieve information about the
 /// celebrity identified by the supplied celebrity Id.
 /// </summary>
 public class CelebrityInfo
 {
 public static async Task Main()
 {
 string celebId = "nnnnnnnn";

 var rekognitionClient = new AmazonRekognitionClient();

 var celebrityInfoRequest = new GetCelebrityInfoRequest
 {
 Id = celebId,
 };

 Console.WriteLine($"Getting information for celebrity: {celebId}");

 var celebrityInfoResponse = await
 rekognitionClient.GetCelebrityInfoAsync(celebrityInfoRequest);

 // Display celebrity information.
 Console.WriteLine($"celebrity name: {celebrityInfoResponse.Name}");
 Console.WriteLine("Further information (if available):");
 celebrityInfoResponse.Urls.ForEach(url =>
 {
 Console.WriteLine(url);
 });

Actions 1330

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see GetCelebrityInfo in AWS SDK for .NET API Reference.

IndexFaces

The following code example shows how to use IndexFaces.

For more information, see Adding faces to a collection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to detect faces in an image
 /// that has been uploaded to an Amazon Simple Storage Service (Amazon S3)
 /// bucket and then adds the information to a collection.
 /// </summary>
 public class AddFaces
 {
 public static async Task Main()
 {
 string collectionId = "MyCollection2";
 string bucket = "amzn-s3-demo-bucket";
 string photo = "input.jpg";

 var rekognitionClient = new AmazonRekognitionClient();

Actions 1331

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/GetCelebrityInfo
https://docs.aws.amazon.com/rekognition/latest/dg/add-faces-to-collection-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 var image = new Image
 {
 S3Object = new S3Object
 {
 Bucket = bucket,
 Name = photo,
 },
 };

 var indexFacesRequest = new IndexFacesRequest
 {
 Image = image,
 CollectionId = collectionId,
 ExternalImageId = photo,
 DetectionAttributes = new List<string>() { "ALL" },
 };

 IndexFacesResponse indexFacesResponse = await
 rekognitionClient.IndexFacesAsync(indexFacesRequest);

 Console.WriteLine($"{photo} added");
 foreach (FaceRecord faceRecord in indexFacesResponse.FaceRecords)
 {
 Console.WriteLine($"Face detected: Faceid is
 {faceRecord.Face.FaceId}");
 }
 }
 }

• For API details, see IndexFaces in AWS SDK for .NET API Reference.

ListCollections

The following code example shows how to use ListCollections.

For more information, see Listing collections.

Actions 1332

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/IndexFaces
https://docs.aws.amazon.com/rekognition/latest/dg/list-collection-procedure.html

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses Amazon Rekognition to list the collection IDs in the
 /// current account.
 /// </summary>
 public class ListCollections
 {
 public static async Task Main()
 {
 var rekognitionClient = new AmazonRekognitionClient();

 Console.WriteLine("Listing collections");
 int limit = 10;

 var listCollectionsRequest = new ListCollectionsRequest
 {
 MaxResults = limit,
 };

 var listCollectionsResponse = new ListCollectionsResponse();

 do
 {
 if (listCollectionsResponse is not null)
 {
 listCollectionsRequest.NextToken =
 listCollectionsResponse.NextToken;
 }

Actions 1333

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 listCollectionsResponse = await
 rekognitionClient.ListCollectionsAsync(listCollectionsRequest);

 listCollectionsResponse.CollectionIds.ForEach(id =>
 {
 Console.WriteLine(id);
 });
 }
 while (listCollectionsResponse.NextToken is not null);
 }
 }

• For API details, see ListCollections in AWS SDK for .NET API Reference.

ListFaces

The following code example shows how to use ListFaces.

For more information, see Listing faces in a collection.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to retrieve the list of faces
 /// stored in a collection.
 /// </summary>
 public class ListFaces
 {

Actions 1334

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/ListCollections
https://docs.aws.amazon.com/rekognition/latest/dg/list-faces-in-collection-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 public static async Task Main()
 {
 string collectionId = "MyCollection2";

 var rekognitionClient = new AmazonRekognitionClient();

 var listFacesResponse = new ListFacesResponse();
 Console.WriteLine($"Faces in collection {collectionId}");

 var listFacesRequest = new ListFacesRequest
 {
 CollectionId = collectionId,
 MaxResults = 1,
 };

 do
 {
 listFacesResponse = await
 rekognitionClient.ListFacesAsync(listFacesRequest);
 listFacesResponse.Faces.ForEach(face =>
 {
 Console.WriteLine(face.FaceId);
 });

 listFacesRequest.NextToken = listFacesResponse.NextToken;
 }
 while (!string.IsNullOrEmpty(listFacesResponse.NextToken));
 }
 }

• For API details, see ListFaces in AWS SDK for .NET API Reference.

RecognizeCelebrities

The following code example shows how to use RecognizeCelebrities.

For more information, see Recognizing celebrities in an image.

Actions 1335

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/ListFaces
https://docs.aws.amazon.com/rekognition/latest/dg/celebrities-procedure-image.html

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Shows how to use Amazon Rekognition to identify celebrities in a photo.
 /// </summary>
 public class CelebritiesInImage
 {
 public static async Task Main(string[] args)
 {
 string photo = "moviestars.jpg";

 var rekognitionClient = new AmazonRekognitionClient();

 var recognizeCelebritiesRequest = new RecognizeCelebritiesRequest();

 var img = new Amazon.Rekognition.Model.Image();
 byte[] data = null;
 try
 {
 using var fs = new FileStream(photo, FileMode.Open,
 FileAccess.Read);
 data = new byte[fs.Length];
 fs.Read(data, 0, (int)fs.Length);
 }
 catch (Exception)
 {
 Console.WriteLine($"Failed to load file {photo}");
 return;
 }

Actions 1336

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 img.Bytes = new MemoryStream(data);
 recognizeCelebritiesRequest.Image = img;

 Console.WriteLine($"Looking for celebrities in image {photo}\n");

 var recognizeCelebritiesResponse = await
 rekognitionClient.RecognizeCelebritiesAsync(recognizeCelebritiesRequest);

 Console.WriteLine($"{recognizeCelebritiesResponse.CelebrityFaces.Count}
 celebrity(s) were recognized.\n");
 recognizeCelebritiesResponse.CelebrityFaces.ForEach(celeb =>
 {
 Console.WriteLine($"Celebrity recognized: {celeb.Name}");
 Console.WriteLine($"Celebrity ID: {celeb.Id}");
 BoundingBox boundingBox = celeb.Face.BoundingBox;
 Console.WriteLine($"position: {boundingBox.Left}
 {boundingBox.Top}");
 Console.WriteLine("Further information (if available):");
 celeb.Urls.ForEach(url =>
 {
 Console.WriteLine(url);
 });
 });

 Console.WriteLine($"{recognizeCelebritiesResponse.UnrecognizedFaces.Count} face(s)
 were unrecognized.");
 }
 }

• For API details, see RecognizeCelebrities in AWS SDK for .NET API Reference.

SearchFaces

The following code example shows how to use SearchFaces.

For more information, see Searching for a face (face ID).

Actions 1337

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/RecognizeCelebrities
https://docs.aws.amazon.com/rekognition/latest/dg/search-face-with-id-procedure.html

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to find faces in an image that
 /// match the face Id provided in the method request.
 /// </summary>
 public class SearchFacesMatchingId
 {
 public static async Task Main()
 {
 string collectionId = "MyCollection";
 string faceId = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx";

 var rekognitionClient = new AmazonRekognitionClient();

 // Search collection for faces matching the face id.
 var searchFacesRequest = new SearchFacesRequest
 {
 CollectionId = collectionId,
 FaceId = faceId,
 FaceMatchThreshold = 70F,
 MaxFaces = 2,
 };

 SearchFacesResponse searchFacesResponse = await
 rekognitionClient.SearchFacesAsync(searchFacesRequest);

 Console.WriteLine("Face matching faceId " + faceId);

 Console.WriteLine("Matche(s): ");
 searchFacesResponse.FaceMatches.ForEach(face =>

Actions 1338

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"FaceId: {face.Face.FaceId} Similarity:
 {face.Similarity}");
 });
 }
 }

• For API details, see SearchFaces in AWS SDK for .NET API Reference.

SearchFacesByImage

The following code example shows how to use SearchFacesByImage.

For more information, see Searching for a face (image).

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Rekognition;
 using Amazon.Rekognition.Model;

 /// <summary>
 /// Uses the Amazon Rekognition Service to search for images matching those
 /// in a collection.
 /// </summary>
 public class SearchFacesMatchingImage
 {
 public static async Task Main()
 {
 string collectionId = "MyCollection";
 string bucket = "amzn-s3-demo-bucket";
 string photo = "input.jpg";

Actions 1339

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/SearchFaces
https://docs.aws.amazon.com/rekognition/latest/dg/search-face-with-image-procedure.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Rekognition/#code-examples

AWS SDK for .NET Developer Guide

 var rekognitionClient = new AmazonRekognitionClient();

 // Get an image object from S3 bucket.
 var image = new Image()
 {
 S3Object = new S3Object()
 {
 Bucket = bucket,
 Name = photo,
 },
 };

 var searchFacesByImageRequest = new SearchFacesByImageRequest()
 {
 CollectionId = collectionId,
 Image = image,
 FaceMatchThreshold = 70F,
 MaxFaces = 2,
 };

 SearchFacesByImageResponse searchFacesByImageResponse = await
 rekognitionClient.SearchFacesByImageAsync(searchFacesByImageRequest);

 Console.WriteLine("Faces matching largest face in image from " + photo);
 searchFacesByImageResponse.FaceMatches.ForEach(face =>
 {
 Console.WriteLine($"FaceId: {face.Face.FaceId}, Similarity:
 {face.Similarity}");
 });
 }
 }

• For API details, see SearchFacesByImage in AWS SDK for .NET API Reference.

Scenarios

Create a serverless application to manage photos

The following code example shows how to create a serverless application that lets users manage
photos using labels.

Scenarios 1340

https://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/SearchFacesByImage

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Detect objects in images

The following code example shows how to build an app that uses Amazon Rekognition to detect
objects by category in images.

AWS SDK for .NET

Shows how to use Amazon Rekognition .NET API to create an app that uses Amazon
Rekognition to identify objects by category in images located in an Amazon Simple Storage
Service (Amazon S3) bucket. The app sends the admin an email notification with the results
using Amazon Simple Email Service (Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

Scenarios 1341

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAnalyzerApp

AWS SDK for .NET Developer Guide

Route 53 domain registration examples using AWS SDK
for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Route 53 domain registration.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Route 53 domain registration

The following code examples show how to get started using Route 53 domain registration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

public static class HelloRoute53Domains
{
 static async Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the Amazon Route 53 domain registration service.
 // Use your AWS profile name, or leave it blank to use the default profile.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRoute53Domains>()
).Build();

Route 53 domain registration 1342

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 // Now the client is available for injection.
 var route53Client =
 host.Services.GetRequiredService<IAmazonRoute53Domains>();

 // You can use await and any of the async methods to get a response.
 var response = await route53Client.ListPricesAsync(new ListPricesRequest
 { Tld = "com" });
 Console.WriteLine($"Hello Amazon Route 53 Domains! Following are prices
 for .com domain operations:");
 var comPrices = response.Prices.FirstOrDefault();
 if (comPrices != null)
 {
 Console.WriteLine($"\tRegistration: {comPrices.RegistrationPrice?.Price}
 {comPrices.RegistrationPrice?.Currency}");
 Console.WriteLine($"\tRenewal: {comPrices.RenewalPrice?.Price}
 {comPrices.RenewalPrice?.Currency}");
 }
 }
}

• For API details, see ListPrices in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

• List current domains, and list operations in the past year.

• View billing for the past year, and view prices for domain types.

• Get domain suggestions.

• Check domain availability and transferability.

• Optionally, request a domain registration.

Basics 1343

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListPrices

AWS SDK for .NET Developer Guide

• Get an operation detail.

• Optionally, get a domain detail.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

public static class Route53DomainScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. List current domains.
 2. List operations in the past year.
 3. View billing for the account in the past year.
 4. View prices for domain types.
 5. Get domain suggestions.
 6. Check domain availability.
 7. Check domain transferability.
 8. Optionally, request a domain registration.
 9. Get an operation detail.
 10. Optionally, get a domain detail.
 */

 private static Route53Wrapper _route53Wrapper = null!;
 private static IConfiguration _configuration = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>

Basics 1344

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRoute53Domains>()
 .AddTransient<Route53Wrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 var logger = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 }).CreateLogger(typeof(Route53DomainScenario));

 _route53Wrapper = host.Services.GetRequiredService<Route53Wrapper>();

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon Route 53 domains example
 scenario.");
 Console.WriteLine(new string('-', 80));

 try
 {
 await ListDomains();
 await ListOperations();
 await ListBillingRecords();
 await ListPrices();
 await ListDomainSuggestions();
 await CheckDomainAvailability();
 await CheckDomainTransferability();
 var operationId = await RequestDomainRegistration();
 await GetOperationalDetail(operationId);
 await GetDomainDetails();
 }
 catch (Exception ex)
 {

Basics 1345

AWS SDK for .NET Developer Guide

 logger.LogError(ex, "There was a problem executing the scenario.");
 }

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("The Amazon Route 53 domains example scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List account registered domains.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListDomains()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"1. List account domains.");
 var domains = await _route53Wrapper.ListDomains();
 for (int i = 0; i < domains.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {domains[i].DomainName}");
 }

 if (!domains.Any())
 {
 Console.WriteLine("\tNo domains found in this account.");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List domain operations in the past year.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListOperations()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"2. List account domain operations in the past year.");
 var operations = await _route53Wrapper.ListOperations(
 DateTime.Today.AddYears(-1));
 for (int i = 0; i < operations.Count; i++)
 {
 Console.WriteLine($"\tOperation Id: {operations[i].OperationId}");

Basics 1346

AWS SDK for .NET Developer Guide

 Console.WriteLine($"\tStatus: {operations[i].Status}");
 Console.WriteLine($"\tDate: {operations[i].SubmittedDate}");
 }
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List billing in the past year.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListBillingRecords()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"3. View billing for the account in the past year.");
 var billingRecords = await _route53Wrapper.ViewBilling(
 DateTime.Today.AddYears(-1),
 DateTime.Today);
 for (int i = 0; i < billingRecords.Count; i++)
 {
 Console.WriteLine($"\tBill Date:
 {billingRecords[i].BillDate.ToShortDateString()}");
 Console.WriteLine($"\tOperation: {billingRecords[i].Operation}");
 Console.WriteLine($"\tPrice: {billingRecords[i].Price}");
 }
 if (!billingRecords.Any())
 {
 Console.WriteLine("\tNo billing records found in this account for the
 past year.");
 }
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List prices for a few domain types.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListPrices()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"4. View prices for domain types.");
 var domainTypes = new List<string> { "net", "com", "org", "co" };

 var prices = await _route53Wrapper.ListPrices(domainTypes);
 foreach (var pr in prices)

Basics 1347

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"\tName: {pr.Name}");
 Console.WriteLine($"\tRegistration: {pr.RegistrationPrice?.Price}
 {pr.RegistrationPrice?.Currency}");
 Console.WriteLine($"\tRenewal: {pr.RenewalPrice?.Price}
 {pr.RenewalPrice?.Currency}");
 Console.WriteLine($"\tTransfer: {pr.TransferPrice?.Price}
 {pr.TransferPrice?.Currency}");
 Console.WriteLine($"\tChange Ownership: {pr.ChangeOwnershipPrice?.Price}
 {pr.ChangeOwnershipPrice?.Currency}");
 Console.WriteLine($"\tRestoration: {pr.RestorationPrice?.Price}
 {pr.RestorationPrice?.Currency}");
 Console.WriteLine();
 }
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List domain suggestions for a domain name.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task ListDomainSuggestions()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"5. Get domain suggestions.");
 string? domainName = null;
 while (domainName == null || string.IsNullOrWhiteSpace(domainName))
 {
 Console.WriteLine($"Enter a domain name to get available domain
 suggestions.");
 domainName = Console.ReadLine();
 }

 var suggestions = await _route53Wrapper.GetDomainSuggestions(domainName,
 true, 5);
 foreach (var suggestion in suggestions)
 {
 Console.WriteLine($"\tSuggestion Name: {suggestion.DomainName}");
 Console.WriteLine($"\tAvailability: {suggestion.Availability}");
 }
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>

Basics 1348

AWS SDK for .NET Developer Guide

 /// Check availability for a domain name.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CheckDomainAvailability()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"6. Check domain availability.");
 string? domainName = null;
 while (domainName == null || string.IsNullOrWhiteSpace(domainName))
 {
 Console.WriteLine($"Enter a domain name to check domain availability.");
 domainName = Console.ReadLine();
 }

 var availability = await
 _route53Wrapper.CheckDomainAvailability(domainName);
 Console.WriteLine($"\tAvailability: {availability}");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Check transferability for a domain name.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CheckDomainTransferability()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"7. Check domain transferability.");
 string? domainName = null;
 while (domainName == null || string.IsNullOrWhiteSpace(domainName))
 {
 Console.WriteLine($"Enter a domain name to check domain
 transferability.");
 domainName = Console.ReadLine();
 }

 var transferability = await
 _route53Wrapper.CheckDomainTransferability(domainName);
 Console.WriteLine($"\tTransferability: {transferability}");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>

Basics 1349

AWS SDK for .NET Developer Guide

 /// Check transferability for a domain name.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string?> RequestDomainRegistration()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"8. Optionally, request a domain registration.");

 Console.WriteLine($"\tNote: This example uses domain request settings in
 settings.json.");
 Console.WriteLine($"\tTo change the domain registration settings, set the
 values in that file.");
 Console.WriteLine($"\tRemember, registering an actual domain will incur an
 account billing cost.");
 Console.WriteLine($"\tWould you like to begin a domain registration? (y/
n)");
 var ynResponse = Console.ReadLine();
 if (ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase))
 {
 string domainName = _configuration["DomainName"];
 ContactDetail contact = new ContactDetail();
 contact.CountryCode =
 CountryCode.FindValue(_configuration["Contact:CountryCode"]);
 contact.ContactType =
 ContactType.FindValue(_configuration["Contact:ContactType"]);

 _configuration.GetSection("Contact").Bind(contact);

 var operationId = await _route53Wrapper.RegisterDomain(
 domainName,
 Convert.ToBoolean(_configuration["AutoRenew"]),
 Convert.ToInt32(_configuration["DurationInYears"]),
 contact);
 if (operationId != null)
 {
 Console.WriteLine(
 $"\tRegistration requested. Operation Id: {operationId}");
 }

 return operationId;
 }

 Console.WriteLine(new string('-', 80));

Basics 1350

AWS SDK for .NET Developer Guide

 return null;
 }

 /// <summary>
 /// Get details for an operation.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task GetOperationalDetail(string? operationId)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"9. Get an operation detail.");

 var operationDetails =
 await _route53Wrapper.GetOperationDetail(operationId);

 Console.WriteLine(operationDetails);

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Optionally, get details for a registered domain.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string?> GetDomainDetails()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"10. Get details on a domain.");

 Console.WriteLine($"\tNote: you must have a registered domain to get
 details.");
 Console.WriteLine($"\tWould you like to get domain details? (y/n)");
 var ynResponse = Console.ReadLine();
 if (ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase))
 {
 string? domainName = null;
 while (domainName == null)
 {
 Console.WriteLine($"\tEnter a domain name to get details.");
 domainName = Console.ReadLine();
 }

 var domainDetails = await _route53Wrapper.GetDomainDetail(domainName);

Basics 1351

AWS SDK for .NET Developer Guide

 Console.WriteLine(domainDetails);
 }

 Console.WriteLine(new string('-', 80));
 return null;
 }
}

Wrapper methods used by the scenario for Route 53 domain registration actions.

public class Route53Wrapper
{
 private readonly IAmazonRoute53Domains _amazonRoute53Domains;
 private readonly ILogger<Route53Wrapper> _logger;
 public Route53Wrapper(IAmazonRoute53Domains amazonRoute53Domains,
 ILogger<Route53Wrapper> logger)
 {
 _amazonRoute53Domains = amazonRoute53Domains;
 _logger = logger;
 }

 /// <summary>
 /// List prices for domain type operations.
 /// </summary>
 /// <param name="domainTypes">Domain types to include in the results.</param>
 /// <returns>The list of domain prices.</returns>
 public async Task<List<DomainPrice>> ListPrices(List<string> domainTypes)
 {
 var results = new List<DomainPrice>();
 var paginatePrices = _amazonRoute53Domains.Paginators.ListPrices(new
 ListPricesRequest());
 // Get the entire list using the paginator.
 await foreach (var prices in paginatePrices.Prices)
 {
 results.Add(prices);
 }
 return results.Where(p => domainTypes.Contains(p.Name)).ToList();
 }

Basics 1352

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Check the availability of a domain name.
 /// </summary>
 /// <param name="domain">The domain to check for availability.</param>
 /// <returns>An availability result string.</returns>
 public async Task<string> CheckDomainAvailability(string domain)
 {
 var result = await _amazonRoute53Domains.CheckDomainAvailabilityAsync(
 new CheckDomainAvailabilityRequest
 {
 DomainName = domain
 }
);
 return result.Availability.Value;
 }

 /// <summary>
 /// Check the transferability of a domain name.
 /// </summary>
 /// <param name="domain">The domain to check for transferability.</param>
 /// <returns>A transferability result string.</returns>
 public async Task<string> CheckDomainTransferability(string domain)
 {
 var result = await _amazonRoute53Domains.CheckDomainTransferabilityAsync(
 new CheckDomainTransferabilityRequest
 {
 DomainName = domain
 }
);
 return result.Transferability.Transferable.Value;
 }

 /// <summary>
 /// Get a list of suggestions for a given domain.
 /// </summary>
 /// <param name="domain">The domain to check for suggestions.</param>
 /// <param name="onlyAvailable">If true, only returns available domains.</param>
 /// <param name="suggestionCount">The number of suggestions to return. Defaults
 to the max of 50.</param>
 /// <returns>A collection of domain suggestions.</returns>
 public async Task<List<DomainSuggestion>> GetDomainSuggestions(string domain,
 bool onlyAvailable, int suggestionCount = 50)

Basics 1353

AWS SDK for .NET Developer Guide

 {
 var result = await _amazonRoute53Domains.GetDomainSuggestionsAsync(
 new GetDomainSuggestionsRequest
 {
 DomainName = domain,
 OnlyAvailable = onlyAvailable,
 SuggestionCount = suggestionCount
 }
);
 return result.SuggestionsList;
 }

 /// <summary>
 /// Get details for a domain action operation.
 /// </summary>
 /// <param name="operationId">The operational Id.</param>
 /// <returns>A string describing the operational details.</returns>
 public async Task<string> GetOperationDetail(string? operationId)
 {
 if (operationId == null)
 return "Unable to get operational details because ID is null.";
 try
 {
 var operationDetails =
 await _amazonRoute53Domains.GetOperationDetailAsync(
 new GetOperationDetailRequest
 {
 OperationId = operationId
 }
);

 var details = $"\tOperation {operationId}:\n" +
 $"\tFor domain {operationDetails.DomainName} on
 {operationDetails.SubmittedDate.ToShortDateString()}.\n" +
 $"\tMessage is {operationDetails.Message}.\n" +
 $"\tStatus is {operationDetails.Status}.\n";

 return details;
 }
 catch (AmazonRoute53DomainsException ex)
 {
 return $"Unable to get operation details. Here's why: {ex.Message}.";
 }

Basics 1354

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Initiate a domain registration request.
 /// </summary>
 /// <param name="contact">Contact details.</param>
 /// <param name="domainName">The domain name to register.</param>
 /// <param name="autoRenew">True if the domain should automatically renew.</
param>
 /// <param name="duration">The duration in years for the domain registration.</
param>
 /// <returns>The operation Id.</returns>
 public async Task<string?> RegisterDomain(string domainName, bool autoRenew, int
 duration, ContactDetail contact)
 {
 // This example uses the same contact information for admin, registrant, and
 tech contacts.
 try
 {
 var result = await _amazonRoute53Domains.RegisterDomainAsync(
 new RegisterDomainRequest()
 {
 AdminContact = contact,
 RegistrantContact = contact,
 TechContact = contact,
 DomainName = domainName,
 AutoRenew = autoRenew,
 DurationInYears = duration,
 PrivacyProtectAdminContact = false,
 PrivacyProtectRegistrantContact = false,
 PrivacyProtectTechContact = false
 }
);
 return result.OperationId;
 }
 catch (InvalidInputException)
 {
 _logger.LogInformation($"Unable to request registration for domain
 {domainName}");
 return null;
 }
 }

Basics 1355

AWS SDK for .NET Developer Guide

 /// <summary>
 /// View billing records for the account between a start and end date.
 /// </summary>
 /// <param name="startDate">The start date for billing results.</param>
 /// <param name="endDate">The end date for billing results.</param>
 /// <returns>A collection of billing records.</returns>
 public async Task<List<BillingRecord>> ViewBilling(DateTime startDate, DateTime
 endDate)
 {
 var results = new List<BillingRecord>();
 var paginateBilling = _amazonRoute53Domains.Paginators.ViewBilling(
 new ViewBillingRequest()
 {
 Start = startDate,
 End = endDate
 });

 // Get the entire list using the paginator.
 await foreach (var billingRecords in paginateBilling.BillingRecords)
 {
 results.Add(billingRecords);
 }
 return results;
 }

 /// <summary>
 /// List the domains for the account.
 /// </summary>
 /// <returns>A collection of domain summary records.</returns>
 public async Task<List<DomainSummary>> ListDomains()
 {
 var results = new List<DomainSummary>();
 var paginateDomains = _amazonRoute53Domains.Paginators.ListDomains(
 new ListDomainsRequest());

 // Get the entire list using the paginator.
 await foreach (var domain in paginateDomains.Domains)
 {
 results.Add(domain);
 }
 return results;
 }

Basics 1356

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List operations for the account that are submitted after a specified date.
 /// </summary>
 /// <returns>A collection of operation summary records.</returns>
 public async Task<List<OperationSummary>> ListOperations(DateTime
 submittedSince)
 {
 var results = new List<OperationSummary>();
 var paginateOperations = _amazonRoute53Domains.Paginators.ListOperations(
 new ListOperationsRequest()
 {
 SubmittedSince = submittedSince
 });

 // Get the entire list using the paginator.
 await foreach (var operations in paginateOperations.Operations)
 {
 results.Add(operations);
 }
 return results;
 }

 /// <summary>
 /// Get details for a domain.
 /// </summary>
 /// <returns>A string with detail information about the domain.</returns>
 public async Task<string> GetDomainDetail(string domainName)
 {
 try
 {
 var result = await _amazonRoute53Domains.GetDomainDetailAsync(
 new GetDomainDetailRequest()
 {
 DomainName = domainName
 });
 var details = $"\tDomain {domainName}:\n" +
 $"\tCreated on {result.CreationDate.ToShortDateString()}.
\n" +
 $"\tAdmin contact is {result.AdminContact.Email}.\n" +
 $"\tAuto-renew is {result.AutoRenew}.\n";

Basics 1357

AWS SDK for .NET Developer Guide

 return details;
 }
 catch (InvalidInputException)
 {
 return $"Domain {domainName} was not found in your account.";
 }
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CheckDomainAvailability

• CheckDomainTransferability

• GetDomainDetail

• GetDomainSuggestions

• GetOperationDetail

• ListDomains

• ListOperations

• ListPrices

• RegisterDomain

• ViewBilling

Actions

CheckDomainAvailability

The following code example shows how to use CheckDomainAvailability.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1358

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/CheckDomainAvailability
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/CheckDomainTransferability
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/GetDomainDetail
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/GetDomainSuggestions
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/GetOperationDetail
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListDomains
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListOperations
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListPrices
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/RegisterDomain
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ViewBilling
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Check the availability of a domain name.
 /// </summary>
 /// <param name="domain">The domain to check for availability.</param>
 /// <returns>An availability result string.</returns>
 public async Task<string> CheckDomainAvailability(string domain)
 {
 var result = await _amazonRoute53Domains.CheckDomainAvailabilityAsync(
 new CheckDomainAvailabilityRequest
 {
 DomainName = domain
 }
);
 return result.Availability.Value;
 }

• For API details, see CheckDomainAvailability in AWS SDK for .NET API Reference.

CheckDomainTransferability

The following code example shows how to use CheckDomainTransferability.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Check the transferability of a domain name.
 /// </summary>
 /// <param name="domain">The domain to check for transferability.</param>
 /// <returns>A transferability result string.</returns>
 public async Task<string> CheckDomainTransferability(string domain)
 {
 var result = await _amazonRoute53Domains.CheckDomainTransferabilityAsync(
 new CheckDomainTransferabilityRequest

Actions 1359

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/CheckDomainAvailability
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 {
 DomainName = domain
 }
);
 return result.Transferability.Transferable.Value;
 }

• For API details, see CheckDomainTransferability in AWS SDK for .NET API Reference.

GetDomainDetail

The following code example shows how to use GetDomainDetail.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get details for a domain.
 /// </summary>
 /// <returns>A string with detail information about the domain.</returns>
 public async Task<string> GetDomainDetail(string domainName)
 {
 try
 {
 var result = await _amazonRoute53Domains.GetDomainDetailAsync(
 new GetDomainDetailRequest()
 {
 DomainName = domainName
 });
 var details = $"\tDomain {domainName}:\n" +
 $"\tCreated on {result.CreationDate.ToShortDateString()}.
\n" +
 $"\tAdmin contact is {result.AdminContact.Email}.\n" +
 $"\tAuto-renew is {result.AutoRenew}.\n";

Actions 1360

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/CheckDomainTransferability
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 return details;
 }
 catch (InvalidInputException)
 {
 return $"Domain {domainName} was not found in your account.";
 }
 }

• For API details, see GetDomainDetail in AWS SDK for .NET API Reference.

GetDomainSuggestions

The following code example shows how to use GetDomainSuggestions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of suggestions for a given domain.
 /// </summary>
 /// <param name="domain">The domain to check for suggestions.</param>
 /// <param name="onlyAvailable">If true, only returns available domains.</param>
 /// <param name="suggestionCount">The number of suggestions to return. Defaults
 to the max of 50.</param>
 /// <returns>A collection of domain suggestions.</returns>
 public async Task<List<DomainSuggestion>> GetDomainSuggestions(string domain,
 bool onlyAvailable, int suggestionCount = 50)
 {
 var result = await _amazonRoute53Domains.GetDomainSuggestionsAsync(
 new GetDomainSuggestionsRequest
 {
 DomainName = domain,
 OnlyAvailable = onlyAvailable,

Actions 1361

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/GetDomainDetail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 SuggestionCount = suggestionCount
 }
);
 return result.SuggestionsList;
 }

• For API details, see GetDomainSuggestions in AWS SDK for .NET API Reference.

GetOperationDetail

The following code example shows how to use GetOperationDetail.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get details for a domain action operation.
 /// </summary>
 /// <param name="operationId">The operational Id.</param>
 /// <returns>A string describing the operational details.</returns>
 public async Task<string> GetOperationDetail(string? operationId)
 {
 if (operationId == null)
 return "Unable to get operational details because ID is null.";
 try
 {
 var operationDetails =
 await _amazonRoute53Domains.GetOperationDetailAsync(
 new GetOperationDetailRequest
 {
 OperationId = operationId
 }
);

 var details = $"\tOperation {operationId}:\n" +

Actions 1362

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/GetDomainSuggestions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 $"\tFor domain {operationDetails.DomainName} on
 {operationDetails.SubmittedDate.ToShortDateString()}.\n" +
 $"\tMessage is {operationDetails.Message}.\n" +
 $"\tStatus is {operationDetails.Status}.\n";

 return details;
 }
 catch (AmazonRoute53DomainsException ex)
 {
 return $"Unable to get operation details. Here's why: {ex.Message}.";
 }
 }

• For API details, see GetOperationDetail in AWS SDK for .NET API Reference.

ListDomains

The following code example shows how to use ListDomains.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List the domains for the account.
 /// </summary>
 /// <returns>A collection of domain summary records.</returns>
 public async Task<List<DomainSummary>> ListDomains()
 {
 var results = new List<DomainSummary>();
 var paginateDomains = _amazonRoute53Domains.Paginators.ListDomains(
 new ListDomainsRequest());

 // Get the entire list using the paginator.
 await foreach (var domain in paginateDomains.Domains)
 {

Actions 1363

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/GetOperationDetail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 results.Add(domain);
 }
 return results;
 }

• For API details, see ListDomains in AWS SDK for .NET API Reference.

ListOperations

The following code example shows how to use ListOperations.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List operations for the account that are submitted after a specified date.
 /// </summary>
 /// <returns>A collection of operation summary records.</returns>
 public async Task<List<OperationSummary>> ListOperations(DateTime
 submittedSince)
 {
 var results = new List<OperationSummary>();
 var paginateOperations = _amazonRoute53Domains.Paginators.ListOperations(
 new ListOperationsRequest()
 {
 SubmittedSince = submittedSince
 });

 // Get the entire list using the paginator.
 await foreach (var operations in paginateOperations.Operations)
 {
 results.Add(operations);
 }
 return results;
 }

Actions 1364

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListDomains
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ListOperations in AWS SDK for .NET API Reference.

ListPrices

The following code example shows how to use ListPrices.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List prices for domain type operations.
 /// </summary>
 /// <param name="domainTypes">Domain types to include in the results.</param>
 /// <returns>The list of domain prices.</returns>
 public async Task<List<DomainPrice>> ListPrices(List<string> domainTypes)
 {
 var results = new List<DomainPrice>();
 var paginatePrices = _amazonRoute53Domains.Paginators.ListPrices(new
 ListPricesRequest());
 // Get the entire list using the paginator.
 await foreach (var prices in paginatePrices.Prices)
 {
 results.Add(prices);
 }
 return results.Where(p => domainTypes.Contains(p.Name)).ToList();
 }

• For API details, see ListPrices in AWS SDK for .NET API Reference.

RegisterDomain

The following code example shows how to use RegisterDomain.

Actions 1365

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListOperations
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ListPrices

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Initiate a domain registration request.
 /// </summary>
 /// <param name="contact">Contact details.</param>
 /// <param name="domainName">The domain name to register.</param>
 /// <param name="autoRenew">True if the domain should automatically renew.</
param>
 /// <param name="duration">The duration in years for the domain registration.</
param>
 /// <returns>The operation Id.</returns>
 public async Task<string?> RegisterDomain(string domainName, bool autoRenew, int
 duration, ContactDetail contact)
 {
 // This example uses the same contact information for admin, registrant, and
 tech contacts.
 try
 {
 var result = await _amazonRoute53Domains.RegisterDomainAsync(
 new RegisterDomainRequest()
 {
 AdminContact = contact,
 RegistrantContact = contact,
 TechContact = contact,
 DomainName = domainName,
 AutoRenew = autoRenew,
 DurationInYears = duration,
 PrivacyProtectAdminContact = false,
 PrivacyProtectRegistrantContact = false,
 PrivacyProtectTechContact = false
 }
);
 return result.OperationId;
 }

Actions 1366

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 catch (InvalidInputException)
 {
 _logger.LogInformation($"Unable to request registration for domain
 {domainName}");
 return null;
 }
 }

• For API details, see RegisterDomain in AWS SDK for .NET API Reference.

ViewBilling

The following code example shows how to use ViewBilling.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// View billing records for the account between a start and end date.
 /// </summary>
 /// <param name="startDate">The start date for billing results.</param>
 /// <param name="endDate">The end date for billing results.</param>
 /// <returns>A collection of billing records.</returns>
 public async Task<List<BillingRecord>> ViewBilling(DateTime startDate, DateTime
 endDate)
 {
 var results = new List<BillingRecord>();
 var paginateBilling = _amazonRoute53Domains.Paginators.ViewBilling(
 new ViewBillingRequest()
 {
 Start = startDate,
 End = endDate
 });

 // Get the entire list using the paginator.

Actions 1367

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/RegisterDomain
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Route53#code-examples

AWS SDK for .NET Developer Guide

 await foreach (var billingRecords in paginateBilling.BillingRecords)
 {
 results.Add(billingRecords);
 }
 return results;
 }

• For API details, see ViewBilling in AWS SDK for .NET API Reference.

Amazon S3 examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon S3.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Basics

• Actions

• Scenarios

• Serverless examples

Basics

Learn the basics

The following code example shows how to:

• Create a bucket and upload a file to it.

Amazon S3 1368

https://docs.aws.amazon.com/goto/DotNetSDKV3/route53domains-2014-05-15/ViewBilling

AWS SDK for .NET Developer Guide

• Download an object from a bucket.

• Copy an object to a subfolder in a bucket.

• List the objects in a bucket.

• Delete the bucket objects and the bucket.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 public class S3_Basics
 {
 public static async Task Main()
 {
 // Create an Amazon S3 client object. The constructor uses the
 // default user installed on the system. To work with Amazon S3
 // features in a different AWS Region, pass the AWS Region as a
 // parameter to the client constructor.
 IAmazonS3 client = new AmazonS3Client();
 string bucketName = string.Empty;
 string filePath = string.Empty;
 string keyName = string.Empty;

 var sepBar = new string('-', Console.WindowWidth);

 Console.WriteLine(sepBar);
 Console.WriteLine("Amazon Simple Storage Service (Amazon S3) basic");
 Console.WriteLine("procedures. This application will:");
 Console.WriteLine("\n\t1. Create a bucket");
 Console.WriteLine("\n\t2. Upload an object to the new bucket");
 Console.WriteLine("\n\t3. Copy the uploaded object to a folder in the
 bucket");
 Console.WriteLine("\n\t4. List the items in the new bucket");
 Console.WriteLine("\n\t5. Delete all the items in the bucket");
 Console.WriteLine("\n\t6. Delete the bucket");
 Console.WriteLine(sepBar);

Basics 1369

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/S3_Basics#code-examples

AWS SDK for .NET Developer Guide

 // Create a bucket.
 Console.WriteLine($"\n{sepBar}");
 Console.WriteLine("\nCreate a new Amazon S3 bucket.\n");
 Console.WriteLine(sepBar);

 Console.Write("Please enter a name for the new bucket: ");
 bucketName = Console.ReadLine();

 var success = await S3Bucket.CreateBucketAsync(client, bucketName);
 if (success)
 {
 Console.WriteLine($"Successfully created bucket: {bucketName}.\n");
 }
 else
 {
 Console.WriteLine($"Could not create bucket: {bucketName}.\n");
 }

 Console.WriteLine(sepBar);
 Console.WriteLine("Upload a file to the new bucket.");
 Console.WriteLine(sepBar);

 // Get the local path and filename for the file to upload.
 while (string.IsNullOrEmpty(filePath))
 {
 Console.Write("Please enter the path and filename of the file to
 upload: ");
 filePath = Console.ReadLine();

 // Confirm that the file exists on the local computer.
 if (!File.Exists(filePath))
 {
 Console.WriteLine($"Couldn't find {filePath}. Try again.\n");
 filePath = string.Empty;
 }
 }

 // Get the file name from the full path.
 keyName = Path.GetFileName(filePath);

 success = await S3Bucket.UploadFileAsync(client, bucketName, keyName,
 filePath);

 if (success)

Basics 1370

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Successfully uploaded {keyName} from {filePath}
 to {bucketName}.\n");
 }
 else
 {
 Console.WriteLine($"Could not upload {keyName}.\n");
 }

 // Set the file path to an empty string to avoid overwriting the
 // file we just uploaded to the bucket.
 filePath = string.Empty;

 // Now get a new location where we can save the file.
 while (string.IsNullOrEmpty(filePath))
 {
 // First get the path to which the file will be downloaded.
 Console.Write("Please enter the path where the file will be
 downloaded: ");
 filePath = Console.ReadLine();

 // Confirm that the file exists on the local computer.
 if (File.Exists($"{filePath}\\{keyName}"))
 {
 Console.WriteLine($"Sorry, the file already exists in that
 location.\n");
 filePath = string.Empty;
 }
 }

 // Download an object from a bucket.
 success = await S3Bucket.DownloadObjectFromBucketAsync(client,
 bucketName, keyName, filePath);

 if (success)
 {
 Console.WriteLine($"Successfully downloaded {keyName}.\n");
 }
 else
 {
 Console.WriteLine($"Sorry, could not download {keyName}.\n");
 }

 // Copy the object to a different folder in the bucket.

Basics 1371

AWS SDK for .NET Developer Guide

 string folderName = string.Empty;

 while (string.IsNullOrEmpty(folderName))
 {
 Console.Write("Please enter the name of the folder to copy your
 object to: ");
 folderName = Console.ReadLine();
 }

 while (string.IsNullOrEmpty(keyName))
 {
 // Get the name to give to the object once uploaded.
 Console.Write("Enter the name of the object to copy: ");
 keyName = Console.ReadLine();
 }

 await S3Bucket.CopyObjectInBucketAsync(client, bucketName, keyName,
 folderName);

 // List the objects in the bucket.
 await S3Bucket.ListBucketContentsAsync(client, bucketName);

 // Delete the contents of the bucket.
 await S3Bucket.DeleteBucketContentsAsync(client, bucketName);

 // Deleting the bucket too quickly after deleting its contents will
 // cause an error that the bucket isn't empty. So...
 Console.WriteLine("Press <Enter> when you are ready to delete the
 bucket.");
 _ = Console.ReadLine();

 // Delete the bucket.
 await S3Bucket.DeleteBucketAsync(client, bucketName);
 }
 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CopyObject

• CreateBucket

• DeleteBucket

Basics 1372

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CopyObject
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CreateBucket
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteBucket

AWS SDK for .NET Developer Guide

• DeleteObjects

• GetObject

• ListObjectsV2

• PutObject

Actions

CopyObject

The following code example shows how to use CopyObject.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 public class CopyObject
 {
 public static async Task Main()
 {
 // Specify the AWS Region where your buckets are located if it is
 // different from the AWS Region of the default user.
 IAmazonS3 s3Client = new AmazonS3Client();

 // Remember to change these values to refer to your Amazon S3 objects.
 string sourceBucketName = "amzn-s3-demo-bucket1";
 string destinationBucketName = "amzn-s3-demo-bucket2";
 string sourceObjectKey = "testfile.txt";
 string destinationObjectKey = "testfilecopy.txt";

 Console.WriteLine($"Copying {sourceObjectKey} from {sourceBucketName} to
 ");

Actions 1373

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteObjects
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObject
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/ListObjectsV2
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"{destinationBucketName} as {destinationObjectKey}");

 var response = await CopyingObjectAsync(
 s3Client,
 sourceObjectKey,
 destinationObjectKey,
 sourceBucketName,
 destinationBucketName);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine("\nCopy complete.");
 }
 }

 /// <summary>
 /// This method calls the AWS SDK for .NET to copy an
 /// object from one Amazon S3 bucket to another.
 /// </summary>
 /// <param name="client">The Amazon S3 client object.</param>
 /// <param name="sourceKey">The name of the object to be copied.</param>
 /// <param name="destinationKey">The name under which to save the copy.</
param>
 /// <param name="sourceBucketName">The name of the Amazon S3 bucket
 /// where the file is located now.</param>
 /// <param name="destinationBucketName">The name of the Amazon S3
 /// bucket where the copy should be saved.</param>
 /// <returns>Returns a CopyObjectResponse object with the results from
 /// the async call.</returns>
 public static async Task<CopyObjectResponse> CopyingObjectAsync(
 IAmazonS3 client,
 string sourceKey,
 string destinationKey,
 string sourceBucketName,
 string destinationBucketName)
 {
 var response = new CopyObjectResponse();
 try
 {
 var request = new CopyObjectRequest
 {
 SourceBucket = sourceBucketName,
 SourceKey = sourceKey,
 DestinationBucket = destinationBucketName,

Actions 1374

AWS SDK for .NET Developer Guide

 DestinationKey = destinationKey,
 };
 response = await client.CopyObjectAsync(request);
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error copying object: '{ex.Message}'");
 }

 return response;
 }
 }

Copy an object using a conditional request.

 /// <summary>
 /// Copies an object from one Amazon S3 bucket to another with a conditional
 request.
 /// </summary>
 /// <param name="sourceKey">The key of the source object to copy.</param>
 /// <param name="destKey">The key of the destination object.</param>
 /// <param name="sourceBucket">The source bucket of the object.</param>
 /// <param name="destBucket">The destination bucket of the object.</param>
 /// <param name="conditionType">The type of condition to apply, e.g.
 'CopySourceIfMatch', 'CopySourceIfNoneMatch', 'CopySourceIfModifiedSince',
 'CopySourceIfUnmodifiedSince'.</param>
 /// <param name="conditionDateValue">The value to use for the condition for
 dates.</param>
 /// <param name="etagConditionalValue">The value to use for the condition for
 etags.</param>
 /// <returns>True if the conditional copy is successful, False otherwise.</
returns>
 public async Task<bool> CopyObjectConditional(string sourceKey, string destKey,
 string sourceBucket, string destBucket,
 S3ConditionType conditionType, DateTime? conditionDateValue = null, string?
 etagConditionalValue = null)
 {
 try
 {
 var copyObjectRequest = new CopyObjectRequest
 {

Actions 1375

AWS SDK for .NET Developer Guide

 DestinationBucket = destBucket,
 DestinationKey = destKey,
 SourceBucket = sourceBucket,
 SourceKey = sourceKey
 };

 switch (conditionType)
 {
 case S3ConditionType.IfMatch:
 copyObjectRequest.ETagToMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfNoneMatch:
 copyObjectRequest.ETagToNotMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfModifiedSince:
 copyObjectRequest.ModifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 case S3ConditionType.IfUnmodifiedSince:
 copyObjectRequest.UnmodifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 default:
 throw new ArgumentOutOfRangeException(nameof(conditionType),
 conditionType, null);
 }

 await _amazonS3.CopyObjectAsync(copyObjectRequest);
 _logger.LogInformation($"Conditional copy successful for key {destKey}
 in bucket {destBucket}.");
 return true;
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "PreconditionFailed")
 {
 _logger.LogError("Conditional copy failed: Precondition failed");
 }
 else if (e.ErrorCode == "304")
 {
 _logger.LogError("Conditional copy failed: Object not modified");
 }
 else
 {

Actions 1376

AWS SDK for .NET Developer Guide

 _logger.LogError($"Unexpected error: {e.ErrorCode}");
 throw;
 }
 return false;
 }
 }

• For API details, see CopyObject in AWS SDK for .NET API Reference.

CreateBucket

The following code example shows how to use CreateBucket.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Shows how to create a new Amazon S3 bucket.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <param name="bucketName">The name of the bucket to create.</param>
 /// <returns>A boolean value representing the success or failure of
 /// the bucket creation process.</returns>
 public static async Task<bool> CreateBucketAsync(IAmazonS3 client, string
 bucketName)
 {
 try
 {
 var request = new PutBucketRequest
 {
 BucketName = bucketName,
 UseClientRegion = true,
 };

 var response = await client.PutBucketAsync(request);

Actions 1377

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CopyObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error creating bucket: '{ex.Message}'");
 return false;
 }
 }

Create a bucket with object lock enabled.

 /// <summary>
 /// Create a new Amazon S3 bucket with object lock actions.
 /// </summary>
 /// <param name="bucketName">The name of the bucket to create.</param>
 /// <param name="enableObjectLock">True to enable object lock on the bucket.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateBucketWithObjectLock(string bucketName, bool
 enableObjectLock)
 {
 Console.WriteLine($"\tCreating bucket {bucketName} with object lock
 {enableObjectLock}.");
 try
 {
 var request = new PutBucketRequest
 {
 BucketName = bucketName,
 UseClientRegion = true,
 ObjectLockEnabledForBucket = enableObjectLock,
 };

 var response = await _amazonS3.PutBucketAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error creating bucket: '{ex.Message}'");
 return false;
 }

Actions 1378

AWS SDK for .NET Developer Guide

 }

• For API details, see CreateBucket in AWS SDK for .NET API Reference.

DeleteBucket

The following code example shows how to use DeleteBucket.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Shows how to delete an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket to delete.</
param>
 /// <returns>A boolean value that represents the success or failure of
 /// the delete operation.</returns>
 public static async Task<bool> DeleteBucketAsync(IAmazonS3 client, string
 bucketName)
 {
 var request = new DeleteBucketRequest
 {
 BucketName = bucketName,
 };

 var response = await client.DeleteBucketAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteBucket in AWS SDK for .NET API Reference.

Actions 1379

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CreateBucket
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteBucket

AWS SDK for .NET Developer Guide

DeleteBucketCors

The following code example shows how to use DeleteBucketCors.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes a CORS configuration from an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used
 /// to delete the CORS configuration from the bucket.</param>
 private static async Task DeleteCORSConfigurationAsync(AmazonS3Client
 client)
 {
 DeleteCORSConfigurationRequest request = new
 DeleteCORSConfigurationRequest()
 {
 BucketName = BucketName,
 };
 await client.DeleteCORSConfigurationAsync(request);
 }

• For API details, see DeleteBucketCors in AWS SDK for .NET API Reference.

DeleteBucketLifecycle

The following code example shows how to use DeleteBucketLifecycle.

Actions 1380

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteBucketCors

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// This method removes the Lifecycle configuration from the named
 /// S3 bucket.
 /// </summary>
 /// <param name="client">The S3 client object used to call
 /// the RemoveLifecycleConfigAsync method.</param>
 /// <param name="bucketName">A string representing the name of the
 /// S3 bucket from which the configuration will be removed.</param>
 public static async Task RemoveLifecycleConfigAsync(IAmazonS3 client, string
 bucketName)
 {
 var request = new DeleteLifecycleConfigurationRequest()
 {
 BucketName = bucketName,
 };
 await client.DeleteLifecycleConfigurationAsync(request);
 }

• For API details, see DeleteBucketLifecycle in AWS SDK for .NET API Reference.

DeleteObject

The following code example shows how to use DeleteObject.

Actions 1381

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteBucketLifecycle

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Delete an object in a non-versioned S3 bucket.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to delete an object from a non-versioned Amazon
 /// Simple Storage Service (Amazon S3) bucket.
 /// </summary>
 public class DeleteObject
 {
 /// <summary>
 /// The Main method initializes the necessary variables and then calls
 /// the DeleteObjectNonVersionedBucketAsync method to delete the object
 /// named by the keyName parameter.
 /// </summary>
 public static async Task Main()
 {
 const string bucketName = "amzn-s3-demo-bucket";
 const string keyName = "testfile.txt";

 // If the Amazon S3 bucket is located in an AWS Region other than the
 // Region of the default account, define the AWS Region for the
 // Amazon S3 bucket in your call to the AmazonS3Client constructor.
 // For example RegionEndpoint.USWest2.
 IAmazonS3 client = new AmazonS3Client();
 await DeleteObjectNonVersionedBucketAsync(client, bucketName, keyName);
 }

 /// <summary>
 /// The DeleteObjectNonVersionedBucketAsync takes care of deleting the
 /// desired object from the named bucket.
 /// </summary>

Actions 1382

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="client">An initialized Amazon S3 client used to delete
 /// an object from an Amazon S3 bucket.</param>
 /// <param name="bucketName">The name of the bucket from which the
 /// object will be deleted.</param>
 /// <param name="keyName">The name of the object to delete.</param>
 public static async Task DeleteObjectNonVersionedBucketAsync(IAmazonS3
 client, string bucketName, string keyName)
 {
 try
 {
 var deleteObjectRequest = new DeleteObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 };

 Console.WriteLine($"Deleting object: {keyName}");
 await client.DeleteObjectAsync(deleteObjectRequest);
 Console.WriteLine($"Object: {keyName} deleted from {bucketName}.");
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error encountered on server.
 Message:'{ex.Message}' when deleting an object.");
 }
 }
 }

Delete an object in a versioned S3 bucket.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example creates an object in an Amazon Simple Storage Service
 /// (Amazon S3) bucket and then deletes the object version that was
 /// created.
 /// </summary>
 public class DeleteObjectVersion

Actions 1383

AWS SDK for .NET Developer Guide

 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string keyName = "verstioned-object.txt";

 // If the AWS Region of the default user is different from the AWS
 // Region of the Amazon S3 bucket, pass the AWS Region of the
 // bucket region to the Amazon S3 client object's constructor.
 // Define it like this:
 // RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 IAmazonS3 client = new AmazonS3Client();

 await CreateAndDeleteObjectVersionAsync(client, bucketName, keyName);
 }

 /// <summary>
 /// This method creates and then deletes a versioned object.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 /// create and delete the object.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket where the
 /// object will be created and deleted.</param>
 /// <param name="keyName">The key name of the object to create.</param>
 public static async Task CreateAndDeleteObjectVersionAsync(IAmazonS3 client,
 string bucketName, string keyName)
 {
 try
 {
 // Add a sample object.
 string versionID = await PutAnObject(client, bucketName, keyName);

 // Delete the object by specifying an object key and a version ID.
 DeleteObjectRequest request = new DeleteObjectRequest()
 {
 BucketName = bucketName,
 Key = keyName,
 VersionId = versionID,
 };

 Console.WriteLine("Deleting an object");
 await client.DeleteObjectAsync(request);
 }
 catch (AmazonS3Exception ex)

Actions 1384

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }

 /// <summary>
 /// This method is used to create the temporary Amazon S3 object.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 object which will be used
 /// to create the temporary Amazon S3 object.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket where the
 object
 /// will be created.</param>
 /// <param name="objectKey">The name of the Amazon S3 object co create.</
param>
 /// <returns>The Version ID of the created object.</returns>
 public static async Task<string> PutAnObject(IAmazonS3 client, string
 bucketName, string objectKey)
 {
 PutObjectRequest request = new PutObjectRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 ContentBody = "This is the content body!",
 };

 PutObjectResponse response = await client.PutObjectAsync(request);
 return response.VersionId;
 }
 }

• For API details, see DeleteObject in AWS SDK for .NET API Reference.

DeleteObjects

The following code example shows how to use DeleteObjects.

Actions 1385

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteObject

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Delete all objects in an S3 bucket.

 /// <summary>
 /// Delete all of the objects stored in an existing Amazon S3 bucket.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <param name="bucketName">The name of the bucket from which the
 /// contents will be deleted.</param>
 /// <returns>A boolean value that represents the success or failure of
 /// deleting all of the objects in the bucket.</returns>
 public static async Task<bool> DeleteBucketContentsAsync(IAmazonS3 client,
 string bucketName)
 {
 // Iterate over the contents of the bucket and delete all objects.
 var request = new ListObjectsV2Request
 {
 BucketName = bucketName,
 };

 try
 {
 ListObjectsV2Response response;

 do
 {
 response = await client.ListObjectsV2Async(request);
 response.S3Objects
 .ForEach(async obj => await
 client.DeleteObjectAsync(bucketName, obj.Key));

 // If the response is truncated, set the request
 ContinuationToken
 // from the NextContinuationToken property of the response.
 request.ContinuationToken = response.NextContinuationToken;

Actions 1386

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 }
 while (response.IsTruncated);

 return true;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error deleting objects: {ex.Message}");
 return false;
 }
 }

Delete multiple objects in a non-versioned S3 bucket.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to delete multiple objects from an Amazon Simple
 /// Storage Service (Amazon S3) bucket.
 /// </summary>
 public class DeleteMultipleObjects
 {
 /// <summary>
 /// The Main method initializes the Amazon S3 client and the name of
 /// the bucket and then passes those values to MultiObjectDeleteAsync.
 /// </summary>
 public static async Task Main()
 {
 const string bucketName = "amzn-s3-demo-bucket";

 // If the Amazon S3 bucket from which you wish to delete objects is not
 // located in the same AWS Region as the default user, define the
 // AWS Region for the Amazon S3 bucket as a parameter to the client
 // constructor.
 IAmazonS3 s3Client = new AmazonS3Client();

 await MultiObjectDeleteAsync(s3Client, bucketName);

Actions 1387

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// This method uses the passed Amazon S3 client to first create and then
 /// delete three files from the named bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// Amazon S3 methods.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket where objects
 /// will be created and then deleted.</param>
 public static async Task MultiObjectDeleteAsync(IAmazonS3 client, string
 bucketName)
 {
 // Create three sample objects which we will then delete.
 var keysAndVersions = await PutObjectsAsync(client, 3, bucketName);

 // Now perform the multi-object delete, passing the key names and
 // version IDs. Since we are working with a non-versioned bucket,
 // the object keys collection includes null version IDs.
 DeleteObjectsRequest multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keysAndVersions,
 };

 // You can add a specific object key to the delete request using the
 // AddKey method of the multiObjectDeleteRequest.
 try
 {
 DeleteObjectsResponse response = await
 client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionErrorStatus(e);
 }
 }

 /// <summary>
 /// Prints the list of errors raised by the call to DeleteObjectsAsync.
 /// </summary>

Actions 1388

AWS SDK for .NET Developer Guide

 /// <param name="ex">A collection of exceptions returned by the call to
 /// DeleteObjectsAsync.</param>
 public static void PrintDeletionErrorStatus(DeleteObjectsException ex)
 {
 DeleteObjectsResponse errorResponse = ex.Response;
 Console.WriteLine("x {0}", errorResponse.DeletedObjects.Count);

 Console.WriteLine($"Successfully deleted
 {errorResponse.DeletedObjects.Count}.");
 Console.WriteLine($"No. of objects failed to delete =
 {errorResponse.DeleteErrors.Count}");

 Console.WriteLine("Printing error data...");
 foreach (DeleteError deleteError in errorResponse.DeleteErrors)
 {
 Console.WriteLine($"Object Key:
 {deleteError.Key}\t{deleteError.Code}\t{deleteError.Message}");
 }
 }

 /// <summary>
 /// This method creates simple text file objects that can be used in
 /// the delete method.
 /// </summary>
 /// <param name="client">The Amazon S3 client used to call PutObjectAsync.</
param>
 /// <param name="number">The number of objects to create.</param>
 /// <param name="bucketName">The name of the bucket where the objects
 /// will be created.</param>
 /// <returns>A list of keys (object keys) and versions that the calling
 /// method will use to delete the newly created files.</returns>
 public static async Task<List<KeyVersion>> PutObjectsAsync(IAmazonS3 client,
 int number, string bucketName)
 {
 List<KeyVersion> keys = new List<KeyVersion>();
 for (int i = 0; i < number; i++)
 {
 string key = "ExampleObject-" + new System.Random().Next();
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = "This is the content body!",
 };

Actions 1389

AWS SDK for .NET Developer Guide

 PutObjectResponse response = await client.PutObjectAsync(request);

 // For non-versioned bucket operations, we only need the
 // object key.
 KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 };
 keys.Add(keyVersion);
 }

 return keys;
 }
 }

Delete multiple objects in a versioned S3 bucket.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to delete objects in a version-enabled Amazon
 /// Simple StorageService (Amazon S3) bucket.
 /// </summary>
 public class DeleteMultipleObjects
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";

 // If the AWS Region for your Amazon S3 bucket is different from
 // the AWS Region of the default user, define the AWS Region for
 // the Amazon S3 bucket and pass it to the client constructor
 // like this:
 // RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 IAmazonS3 s3Client;

Actions 1390

AWS SDK for .NET Developer Guide

 s3Client = new AmazonS3Client();
 await DeleteMultipleObjectsFromVersionedBucketAsync(s3Client,
 bucketName);
 }

 /// <summary>
 /// This method removes multiple versions and objects from a
 /// version-enabled Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// DeleteObjectVersionsAsync, DeleteObjectsAsync, and
 /// RemoveDeleteMarkersAsync.</param>
 /// <param name="bucketName">The name of the bucket from which to delete
 /// objects.</param>
 public static async Task
 DeleteMultipleObjectsFromVersionedBucketAsync(IAmazonS3 client, string bucketName)
 {
 // Delete objects (specifying object version in the request).
 await DeleteObjectVersionsAsync(client, bucketName);

 // Delete objects (without specifying object version in the request).
 var deletedObjects = await DeleteObjectsAsync(client, bucketName);

 // Additional exercise - remove the delete markers Amazon S3 returned
 from
 // the preceding response. This results in the objects reappearing
 // in the bucket (you can verify the appearance/disappearance of
 // objects in the console).
 await RemoveDeleteMarkersAsync(client, bucketName, deletedObjects);
 }

 /// <summary>
 /// Creates and then deletes non-versioned Amazon S3 objects and then
 deletes
 /// them again. The method returns a list of the Amazon S3 objects deleted.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// PubObjectsAsync and NonVersionedDeleteAsync.</param>
 /// <param name="bucketName">The name of the bucket where the objects
 /// will be created and then deleted.</param>
 /// <returns>A list of DeletedObjects.</returns>

Actions 1391

AWS SDK for .NET Developer Guide

 public static async Task<List<DeletedObject>> DeleteObjectsAsync(IAmazonS3
 client, string bucketName)
 {
 // Upload the sample objects.
 var keysAndVersions2 = await PutObjectsAsync(client, bucketName, 3);

 // Delete objects using only keys. Amazon S3 creates a delete marker and
 // returns its version ID in the response.
 List<DeletedObject> deletedObjects = await
 NonVersionedDeleteAsync(client, bucketName, keysAndVersions2);
 return deletedObjects;
 }

 /// <summary>
 /// This method creates several temporary objects and then deletes them.
 /// </summary>
 /// <param name="client">The S3 client.</param>
 /// <param name="bucketName">Name of the bucket.</param>
 /// <returns>Async task.</returns>
 public static async Task DeleteObjectVersionsAsync(IAmazonS3 client, string
 bucketName)
 {
 // Upload the sample objects.
 var keysAndVersions1 = await PutObjectsAsync(client, bucketName, 3);

 // Delete the specific object versions.
 await VersionedDeleteAsync(client, bucketName, keysAndVersions1);
 }

 /// <summary>
 /// Displays the list of information about deleted files to the console.
 /// </summary>
 /// <param name="e">Error information from the delete process.</param>
 private static void DisplayDeletionErrors(DeleteObjectsException e)
 {
 var errorResponse = e.Response;
 Console.WriteLine($"No. of objects successfully deleted =
 {errorResponse.DeletedObjects.Count}");
 Console.WriteLine($"No. of objects failed to delete =
 {errorResponse.DeleteErrors.Count}");
 Console.WriteLine("Printing error data...");
 foreach (var deleteError in errorResponse.DeleteErrors)
 {

Actions 1392

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Object Key:
 {deleteError.Key}\t{deleteError.Code}\t{deleteError.Message}");
 }
 }

 /// <summary>
 /// Delete multiple objects from a version-enabled bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// DeleteObjectVersionsAsync, DeleteObjectsAsync, and
 /// RemoveDeleteMarkersAsync.</param>
 /// <param name="bucketName">The name of the bucket from which to delete
 /// objects.</param>
 /// <param name="keys">A list of key names for the objects to delete.</
param>
 private static async Task VersionedDeleteAsync(IAmazonS3 client, string
 bucketName, List<KeyVersion> keys)
 {
 var multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keys, // This includes the object keys and specific
 version IDs.
 };

 try
 {
 Console.WriteLine("Executing VersionedDelete...");
 DeleteObjectsResponse response = await
 client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine($"Successfully deleted all the
 {response.DeletedObjects.Count} items");
 }
 catch (DeleteObjectsException ex)
 {
 DisplayDeletionErrors(ex);
 }
 }

 /// <summary>
 /// Deletes multiple objects from a non-versioned Amazon S3 bucket.
 /// </summary>

Actions 1393

AWS SDK for .NET Developer Guide

 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// DeleteObjectVersionsAsync, DeleteObjectsAsync, and
 /// RemoveDeleteMarkersAsync.</param>
 /// <param name="bucketName">The name of the bucket from which to delete
 /// objects.</param>
 /// <param name="keys">A list of key names for the objects to delete.</
param>
 /// <returns>A list of the deleted objects.</returns>
 private static async Task<List<DeletedObject>>
 NonVersionedDeleteAsync(IAmazonS3 client, string bucketName, List<KeyVersion> keys)
 {
 // Create a request that includes only the object key names.
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest();
 multiObjectDeleteRequest.BucketName = bucketName;

 foreach (var key in keys)
 {
 multiObjectDeleteRequest.AddKey(key.Key);
 }

 // Execute DeleteObjectsAsync.
 // The DeleteObjectsAsync method adds a delete marker for each
 // object deleted. You can verify that the objects were removed
 // using the Amazon S3 console.
 DeleteObjectsResponse response;
 try
 {
 Console.WriteLine("Executing NonVersionedDelete...");
 response = await
 client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException ex)
 {
 DisplayDeletionErrors(ex);
 throw; // Some deletions failed. Investigate before continuing.
 }

 // This response contains the DeletedObjects list which we use to delete
 the delete markers.
 return response.DeletedObjects;

Actions 1394

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Deletes the markers left after deleting the temporary objects.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// DeleteObjectVersionsAsync, DeleteObjectsAsync, and
 /// RemoveDeleteMarkersAsync.</param>
 /// <param name="bucketName">The name of the bucket from which to delete
 /// objects.</param>
 /// <param name="deletedObjects">A list of the objects that were deleted.</
param>
 private static async Task RemoveDeleteMarkersAsync(IAmazonS3 client, string
 bucketName, List<DeletedObject> deletedObjects)
 {
 var keyVersionList = new List<KeyVersion>();

 foreach (var deletedObject in deletedObjects)
 {
 KeyVersion keyVersion = new KeyVersion
 {
 Key = deletedObject.Key,
 VersionId = deletedObject.DeleteMarkerVersionId,
 };
 keyVersionList.Add(keyVersion);
 }

 // Create another request to delete the delete markers.
 var multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keyVersionList,
 };

 // Now, delete the delete marker to bring your objects back to the
 bucket.
 try
 {
 Console.WriteLine("Removing the delete markers");
 var deleteObjectResponse = await
 client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine($"Successfully deleted the
 {deleteObjectResponse.DeletedObjects.Count} delete markers");

Actions 1395

AWS SDK for .NET Developer Guide

 }
 catch (DeleteObjectsException ex)
 {
 DisplayDeletionErrors(ex);
 }
 }

 /// <summary>
 /// Create temporary Amazon S3 objects to show how object deletion wors in
 an
 /// Amazon S3 bucket with versioning enabled.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// PutObjectAsync to create temporary objects for the example.</param>
 /// <param name="bucketName">A string representing the name of the S3
 /// bucket where we will create the temporary objects.</param>
 /// <param name="number">The number of temporary objects to create.</param>
 /// <returns>A list of the KeyVersion objects.</returns>
 private static async Task<List<KeyVersion>> PutObjectsAsync(IAmazonS3
 client, string bucketName, int number)
 {
 var keys = new List<KeyVersion>();

 for (var i = 0; i < number; i++)
 {
 string key = "ObjectToDelete-" + new System.Random().Next();
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = "This is the content body!",
 };

 var response = await client.PutObjectAsync(request);
 KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 VersionId = response.VersionId,
 };

 keys.Add(keyVersion);
 }

Actions 1396

AWS SDK for .NET Developer Guide

 return keys;
 }
 }

• For API details, see DeleteObjects in AWS SDK for .NET API Reference.

GetBucketAcl

The following code example shows how to use GetBucketAcl.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the access control list (ACL) for the new bucket.
 /// </summary>
 /// <param name="client">The initialized client object used to get the
 /// access control list (ACL) of the bucket.</param>
 /// <param name="newBucketName">The name of the newly created bucket.</
param>
 /// <returns>An S3AccessControlList.</returns>
 public static async Task<S3AccessControlList> GetACLForBucketAsync(IAmazonS3
 client, string newBucketName)
 {
 // Retrieve bucket ACL to show that the ACL was properly applied to
 // the new bucket.
 GetACLResponse getACLResponse = await client.GetACLAsync(new
 GetACLRequest
 {
 BucketName = newBucketName,
 });

 return getACLResponse.AccessControlList;

Actions 1397

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/DeleteObjects
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 }

• For API details, see GetBucketAcl in AWS SDK for .NET API Reference.

GetBucketCors

The following code example shows how to use GetBucketCors.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve the CORS configuration applied to the Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used
 /// to retrieve the CORS configuration.</param>
 /// <returns>The created CORS configuration object.</returns>
 private static async Task<CORSConfiguration>
 RetrieveCORSConfigurationAsync(AmazonS3Client client)
 {
 GetCORSConfigurationRequest request = new GetCORSConfigurationRequest()
 {
 BucketName = BucketName,
 };
 var response = await client.GetCORSConfigurationAsync(request);
 var configuration = response.Configuration;
 PrintCORSRules(configuration);
 return configuration;
 }

• For API details, see GetBucketCors in AWS SDK for .NET API Reference.

Actions 1398

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetBucketAcl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetBucketCors

AWS SDK for .NET Developer Guide

GetBucketEncryption

The following code example shows how to use GetBucketEncryption.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get and print the encryption settings of a bucket.
 /// </summary>
 /// <param name="bucketName">Name of the bucket.</param>
 /// <returns>Async task.</returns>
 public static async Task GetEncryptionSettings(string bucketName)
 {
 // Check and print the bucket encryption settings.
 Console.WriteLine($"Getting encryption settings for bucket {bucketName}.");

 try
 {
 var settings =
 await _s3Client.GetBucketEncryptionAsync(
 new GetBucketEncryptionRequest() { BucketName = bucketName });

 foreach (var encryptionSettings in
 settings?.ServerSideEncryptionConfiguration?.ServerSideEncryptionRules!)
 {
 Console.WriteLine(
 $"\tAlgorithm:
 {encryptionSettings.ServerSideEncryptionByDefault.ServerSideEncryptionAlgorithm}");
 Console.WriteLine(
 $"\tKey:
 {encryptionSettings.ServerSideEncryptionByDefault.ServerSideEncryptionKeyManagementServiceKeyId}");
 }
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine(ex.ErrorCode == "InvalidBucketName"
 ? $"Bucket {bucketName} was not found."

Actions 1399

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/PutBucketEncryption#code-examples

AWS SDK for .NET Developer Guide

 : $"Unable to get bucket encryption for bucket {bucketName},
 {ex.Message}");
 }
 }

• For API details, see GetBucketEncryption in AWS SDK for .NET API Reference.

GetBucketLifecycleConfiguration

The following code example shows how to use GetBucketLifecycleConfiguration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Returns a configuration object for the supplied bucket name.
 /// </summary>
 /// <param name="client">The S3 client object used to call
 /// the GetLifecycleConfigurationAsync method.</param>
 /// <param name="bucketName">The name of the S3 bucket for which a
 /// configuration will be created.</param>
 /// <returns>Returns a new LifecycleConfiguration object.</returns>
 public static async Task<LifecycleConfiguration>
 RetrieveLifecycleConfigAsync(IAmazonS3 client, string bucketName)
 {
 var request = new GetLifecycleConfigurationRequest()
 {
 BucketName = bucketName,
 };
 var response = await client.GetLifecycleConfigurationAsync(request);
 var configuration = response.Configuration;
 return configuration;
 }

Actions 1400

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetBucketEncryption
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

• For API details, see GetBucketLifecycleConfiguration in AWS SDK for .NET API Reference.

GetBucketWebsite

The following code example shows how to use GetBucketWebsite.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 // Get the website configuration.
 GetBucketWebsiteRequest getRequest = new GetBucketWebsiteRequest()
 {
 BucketName = bucketName,
 };
 GetBucketWebsiteResponse getResponse = await
 client.GetBucketWebsiteAsync(getRequest);
 Console.WriteLine($"Index document:
 {getResponse.WebsiteConfiguration.IndexDocumentSuffix}");
 Console.WriteLine($"Error document:
 {getResponse.WebsiteConfiguration.ErrorDocument}");

• For API details, see GetBucketWebsite in AWS SDK for .NET API Reference.

GetObject

The following code example shows how to use GetObject.

Actions 1401

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetBucketLifecycleConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetBucketWebsite

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Shows how to download an object from an Amazon S3 bucket to the
 /// local computer.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <param name="bucketName">The name of the bucket where the object is
 /// currently stored.</param>
 /// <param name="objectName">The name of the object to download.</param>
 /// <param name="filePath">The path, including filename, where the
 /// downloaded object will be stored.</param>
 /// <returns>A boolean value indicating the success or failure of the
 /// download process.</returns>
 public static async Task<bool> DownloadObjectFromBucketAsync(
 IAmazonS3 client,
 string bucketName,
 string objectName,
 string filePath)
 {
 // Create a GetObject request
 var request = new GetObjectRequest
 {
 BucketName = bucketName,
 Key = objectName,
 };

 // Issue request and remember to dispose of the response
 using GetObjectResponse response = await client.GetObjectAsync(request);

 try
 {
 // Save object to local file
 await response.WriteResponseStreamToFileAsync($"{filePath}\
\{objectName}", true, CancellationToken.None);

Actions 1402

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error saving {objectName}: {ex.Message}");
 return false;
 }
 }

Get an object using a conditional request.

 /// <summary>
 /// Retrieves an object from Amazon S3 with a conditional request.
 /// </summary>
 /// <param name="objectKey">The key of the object to retrieve.</param>
 /// <param name="sourceBucket">The source bucket of the object.</param>
 /// <param name="conditionType">The type of condition: 'IfMatch', 'IfNoneMatch',
 'IfModifiedSince', 'IfUnmodifiedSince'.</param>
 /// <param name="conditionDateValue">The value to use for the condition for
 dates.</param>
 /// <param name="etagConditionalValue">The value to use for the condition for
 etags.</param>
 /// <returns>True if the conditional read is successful, False otherwise.</
returns>
 public async Task<bool> GetObjectConditional(string objectKey, string
 sourceBucket,
 S3ConditionType conditionType, DateTime? conditionDateValue = null, string?
 etagConditionalValue = null)
 {
 try
 {
 var getObjectRequest = new GetObjectRequest
 {
 BucketName = sourceBucket,
 Key = objectKey
 };

 switch (conditionType)
 {
 case S3ConditionType.IfMatch:
 getObjectRequest.EtagToMatch = etagConditionalValue;

Actions 1403

AWS SDK for .NET Developer Guide

 break;
 case S3ConditionType.IfNoneMatch:
 getObjectRequest.EtagToNotMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfModifiedSince:
 getObjectRequest.ModifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 case S3ConditionType.IfUnmodifiedSince:
 getObjectRequest.UnmodifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 default:
 throw new ArgumentOutOfRangeException(nameof(conditionType),
 conditionType, null);
 }

 var response = await _amazonS3.GetObjectAsync(getObjectRequest);
 var sampleBytes = new byte[20];
 await response.ResponseStream.ReadAsync(sampleBytes, 0, 20);
 _logger.LogInformation($"Conditional read successful. Here are the first
 20 bytes of the object:\n{System.Text.Encoding.UTF8.GetString(sampleBytes)}");
 return true;
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "PreconditionFailed")
 {
 _logger.LogError("Conditional read failed: Precondition failed");
 }
 else if (e.ErrorCode == "NotModified")
 {
 _logger.LogError("Conditional read failed: Object not modified");
 }
 else
 {
 _logger.LogError($"Unexpected error: {e.ErrorCode}");
 throw;
 }
 return false;
 }
 }

Actions 1404

AWS SDK for .NET Developer Guide

• For API details, see GetObject in AWS SDK for .NET API Reference.

GetObjectLegalHold

The following code example shows how to use GetObjectLegalHold.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the legal hold details for an S3 object.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The object key.</param>
 /// <returns>The object legal hold details.</returns>
 public async Task<ObjectLockLegalHold> GetObjectLegalHold(string bucketName,
 string objectKey)
 {
 try
 {
 var request = new GetObjectLegalHoldRequest()
 {
 BucketName = bucketName,
 Key = objectKey
 };

 var response = await _amazonS3.GetObjectLegalHoldAsync(request);
 Console.WriteLine($"\tObject legal hold for {objectKey} in {bucketName}:
 " +
 $"\n\tStatus: {response.LegalHold.Status}");
 return response.LegalHold;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to fetch legal hold: '{ex.Message}'");
 return new ObjectLockLegalHold();
 }

Actions 1405

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 }

• For API details, see GetObjectLegalHold in AWS SDK for .NET API Reference.

GetObjectLockConfiguration

The following code example shows how to use GetObjectLockConfiguration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the object lock configuration details for an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket to get details.</param>
 /// <returns>The bucket's object lock configuration details.</returns>
 public async Task<ObjectLockConfiguration>
 GetBucketObjectLockConfiguration(string bucketName)
 {
 try
 {
 var request = new GetObjectLockConfigurationRequest()
 {
 BucketName = bucketName
 };

 var response = await _amazonS3.GetObjectLockConfigurationAsync(request);
 Console.WriteLine($"\tBucket object lock config for {bucketName} in
 {bucketName}: " +
 $"\n\tEnabled:
 {response.ObjectLockConfiguration.ObjectLockEnabled}" +
 $"\n\tRule:
 {response.ObjectLockConfiguration.Rule?.DefaultRetention}");

 return response.ObjectLockConfiguration;

Actions 1406

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectLegalHold
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to fetch object lock config:
 '{ex.Message}'");
 return new ObjectLockConfiguration();
 }
 }

• For API details, see GetObjectLockConfiguration in AWS SDK for .NET API Reference.

GetObjectRetention

The following code example shows how to use GetObjectRetention.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the retention period for an S3 object.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The object key.</param>
 /// <returns>The object retention details.</returns>
 public async Task<ObjectLockRetention> GetObjectRetention(string bucketName,
 string objectKey)
 {
 try
 {
 var request = new GetObjectRetentionRequest()
 {
 BucketName = bucketName,
 Key = objectKey
 };

Actions 1407

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectLockConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 var response = await _amazonS3.GetObjectRetentionAsync(request);
 Console.WriteLine($"\tObject retention for {objectKey} in {bucketName}:
 " +
 $"\n\t{response.Retention.Mode} until
 {response.Retention.RetainUntilDate:d}.");
 return response.Retention;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to fetch object lock retention:
 '{ex.Message}'");
 return new ObjectLockRetention();
 }
 }

• For API details, see GetObjectRetention in AWS SDK for .NET API Reference.

ListBuckets

The following code example shows how to use ListBuckets.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace ListBucketsExample
{
 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example uses the AWS SDK for .NET to list the Amazon Simple Storage
 /// Service (Amazon S3) buckets belonging to the default account.

Actions 1408

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectRetention
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 public class ListBuckets
 {
 private static IAmazonS3 _s3Client;

 /// <summary>
 /// Get a list of the buckets owned by the default user.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <returns>The response from the ListingBuckets call that contains a
 /// list of the buckets owned by the default user.</returns>
 public static async Task<ListBucketsResponse> GetBuckets(IAmazonS3 client)
 {
 return await client.ListBucketsAsync();
 }

 /// <summary>
 /// This method lists the name and creation date for the buckets in
 /// the passed List of S3 buckets.
 /// </summary>
 /// <param name="bucketList">A List of S3 bucket objects.</param>
 public static void DisplayBucketList(List<S3Bucket> bucketList)
 {
 bucketList
 .ForEach(b => Console.WriteLine($"Bucket name: {b.BucketName},
 created on: {b.CreationDate}"));
 }

 public static async Task Main()
 {
 // The client uses the AWS Region of the default user.
 // If the Region where the buckets were created is different,
 // pass the Region to the client constructor. For example:
 // _s3Client = new AmazonS3Client(RegionEndpoint.USEast1);
 _s3Client = new AmazonS3Client();
 var response = await GetBuckets(_s3Client);
 DisplayBucketList(response.Buckets);
 }
 }
}

• For API details, see ListBuckets in AWS SDK for .NET API Reference.

Actions 1409

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/ListBuckets

AWS SDK for .NET Developer Guide

ListObjectVersions

The following code example shows how to use ListObjectVersions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example lists the versions of the objects in a version enabled
 /// Amazon Simple Storage Service (Amazon S3) bucket.
 /// </summary>
 public class ListObjectVersions
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";

 // If the AWS Region where your bucket is defined is different from
 // the AWS Region where the Amazon S3 bucket is defined, pass the
 constant
 // for the AWS Region to the client constructor like this:
 // var client = new AmazonS3Client(RegionEndpoint.USWest2);
 IAmazonS3 client = new AmazonS3Client();
 await GetObjectListWithAllVersionsAsync(client, bucketName);
 }

 /// <summary>
 /// This method lists all versions of the objects within an Amazon S3
 /// version enabled bucket.
 /// </summary>
 /// <param name="client">The initialized client object used to call
 /// ListVersionsAsync.</param>

Actions 1410

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="bucketName">The name of the version enabled Amazon S3
 bucket
 /// for which you want to list the versions of the contained objects.</
param>
 public static async Task GetObjectListWithAllVersionsAsync(IAmazonS3 client,
 string bucketName)
 {
 try
 {
 // When you instantiate the ListVersionRequest, you can
 // optionally specify a key name prefix in the request
 // if you want a list of object versions of a specific object.

 // For this example we set a small limit in MaxKeys to return
 // a small list of versions.
 ListVersionsRequest request = new ListVersionsRequest()
 {
 BucketName = bucketName,
 MaxKeys = 2,
 };

 do
 {
 ListVersionsResponse response = await
 client.ListVersionsAsync(request);

 // Process response.
 foreach (S3ObjectVersion entry in response.Versions)
 {
 Console.WriteLine($"key: {entry.Key} size: {entry.Size}");
 }

 // If response is truncated, set the marker to get the next
 // set of keys.
 if (response.IsTruncated)
 {
 request.KeyMarker = response.NextKeyMarker;
 request.VersionIdMarker = response.NextVersionIdMarker;
 }
 else
 {
 request = null;
 }
 }

Actions 1411

AWS SDK for .NET Developer Guide

 while (request != null);
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error: '{ex.Message}'");
 }
 }
 }

• For API details, see ListObjectVersions in AWS SDK for .NET API Reference.

ListObjectsV2

The following code example shows how to use ListObjectsV2.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Shows how to list the objects in an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <param name="bucketName">The name of the bucket for which to list
 /// the contents.</param>
 /// <returns>A boolean value indicating the success or failure of the
 /// copy operation.</returns>
 public static async Task<bool> ListBucketContentsAsync(IAmazonS3 client,
 string bucketName)
 {
 try
 {
 var request = new ListObjectsV2Request
 {
 BucketName = bucketName,

Actions 1412

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/ListObjectVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 MaxKeys = 5,
 };

 Console.WriteLine("--------------------------------------");
 Console.WriteLine($"Listing the contents of {bucketName}:");
 Console.WriteLine("--------------------------------------");

 ListObjectsV2Response response;

 do
 {
 response = await client.ListObjectsV2Async(request);

 response.S3Objects
 .ForEach(obj => Console.WriteLine($"{obj.Key,-35}
{obj.LastModified.ToShortDateString(),10}{obj.Size,10}"));

 // If the response is truncated, set the request
 ContinuationToken
 // from the NextContinuationToken property of the response.
 request.ContinuationToken = response.NextContinuationToken;
 }
 while (response.IsTruncated);

 return true;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error encountered on server.
 Message:'{ex.Message}' getting list of objects.");
 return false;
 }
 }

List objects with a paginator.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

Actions 1413

AWS SDK for .NET Developer Guide

 /// <summary>
 /// The following example lists objects in an Amazon Simple Storage
 /// Service (Amazon S3) bucket.
 /// </summary>
 public class ListObjectsPaginator
 {
 private const string BucketName = "amzn-s3-demo-bucket";

 public static async Task Main()
 {
 IAmazonS3 s3Client = new AmazonS3Client();

 Console.WriteLine($"Listing the objects contained in {BucketName}:\n");
 await ListingObjectsAsync(s3Client, BucketName);
 }

 /// <summary>
 /// This method uses a paginator to retrieve the list of objects in an
 /// an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">An Amazon S3 client object.</param>
 /// <param name="bucketName">The name of the S3 bucket whose objects
 /// you want to list.</param>
 public static async Task ListingObjectsAsync(IAmazonS3 client, string
 bucketName)
 {
 var listObjectsV2Paginator = client.Paginators.ListObjectsV2(new
 ListObjectsV2Request
 {
 BucketName = bucketName,
 });

 await foreach (var response in listObjectsV2Paginator.Responses)
 {
 Console.WriteLine($"HttpStatusCode: {response.HttpStatusCode}");
 Console.WriteLine($"Number of Keys: {response.KeyCount}");
 foreach (var entry in response.S3Objects)
 {
 Console.WriteLine($"Key = {entry.Key} Size = {entry.Size}");
 }
 }
 }
 }

Actions 1414

AWS SDK for .NET Developer Guide

• For API details, see ListObjectsV2 in AWS SDK for .NET API Reference.

PutBucketAccelerateConfiguration

The following code example shows how to use PutBucketAccelerateConfiguration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// Amazon Simple Storage Service (Amazon S3) Transfer Acceleration is a
 /// bucket-level feature that enables you to perform faster data transfers
 /// to Amazon S3. This example shows how to configure Transfer
 /// Acceleration.
 /// </summary>
 public class TransferAcceleration
 {
 /// <summary>
 /// The main method initializes the client object and sets the
 /// Amazon Simple Storage Service (Amazon S3) bucket name before
 /// calling EnableAccelerationAsync.
 /// </summary>
 public static async Task Main()
 {
 var s3Client = new AmazonS3Client();
 const string bucketName = "amzn-s3-demo-bucket";

 await EnableAccelerationAsync(s3Client, bucketName);
 }

Actions 1415

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/ListObjectsV2
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// This method sets the configuration to enable transfer acceleration
 /// for the bucket referred to in the bucketName parameter.
 /// </summary>
 /// <param name="client">An Amazon S3 client used to enable the
 /// acceleration on an Amazon S3 bucket.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket for which the
 /// method will be enabling acceleration.</param>
 private static async Task EnableAccelerationAsync(AmazonS3Client client,
 string bucketName)
 {
 try
 {
 var putRequest = new PutBucketAccelerateConfigurationRequest
 {
 BucketName = bucketName,
 AccelerateConfiguration = new AccelerateConfiguration
 {
 Status = BucketAccelerateStatus.Enabled,
 },
 };
 await client.PutBucketAccelerateConfigurationAsync(putRequest);

 var getRequest = new GetBucketAccelerateConfigurationRequest
 {
 BucketName = bucketName,
 };
 var response = await
 client.GetBucketAccelerateConfigurationAsync(getRequest);

 Console.WriteLine($"Acceleration state = '{response.Status}' ");
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error occurred. Message:'{ex.Message}' when
 setting transfer acceleration");
 }
 }
 }

• For API details, see PutBucketAccelerateConfiguration in AWS SDK for .NET API Reference.

Actions 1416

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketAccelerateConfiguration

AWS SDK for .NET Developer Guide

PutBucketAcl

The following code example shows how to use PutBucketAcl.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates an Amazon S3 bucket with an ACL to control access to the
 /// bucket and the objects stored in it.
 /// </summary>
 /// <param name="client">The initialized client object used to create
 /// an Amazon S3 bucket, with an ACL applied to the bucket.
 /// </param>
 /// <param name="region">The AWS Region where the bucket will be created.</
param>
 /// <param name="newBucketName">The name of the bucket to create.</param>
 /// <returns>A boolean value indicating success or failure.</returns>
 public static async Task<bool> CreateBucketUseCannedACLAsync(IAmazonS3
 client, S3Region region, string newBucketName)
 {
 try
 {
 // Create a new Amazon S3 bucket with Canned ACL.
 var putBucketRequest = new PutBucketRequest()
 {
 BucketName = newBucketName,
 BucketRegion = region,
 CannedACL = S3CannedACL.LogDeliveryWrite,
 };

 PutBucketResponse putBucketResponse = await
 client.PutBucketAsync(putBucketRequest);

 return putBucketResponse.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;
 }

Actions 1417

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Amazon S3 error: {ex.Message}");
 }

 return false;
 }

• For API details, see PutBucketAcl in AWS SDK for .NET API Reference.

PutBucketCors

The following code example shows how to use PutBucketCors.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Add CORS configuration to the Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used
 /// to apply the CORS configuration to an Amazon S3 bucket.</param>
 /// <param name="configuration">The CORS configuration to apply.</param>
 private static async Task PutCORSConfigurationAsync(AmazonS3Client client,
 CORSConfiguration configuration)
 {
 PutCORSConfigurationRequest request = new PutCORSConfigurationRequest()
 {
 BucketName = BucketName,
 Configuration = configuration,
 };

 _ = await client.PutCORSConfigurationAsync(request);
 }

Actions 1418

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketAcl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

• For API details, see PutBucketCors in AWS SDK for .NET API Reference.

PutBucketEncryption

The following code example shows how to use PutBucketEncryption.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Set the bucket server side encryption to use AWSKMS with a customer-managed
 key id.
 /// </summary>
 /// <param name="bucketName">Name of the bucket.</param>
 /// <param name="kmsKeyId">The Id of the KMS Key.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> SetBucketServerSideEncryption(string bucketName,
 string kmsKeyId)
 {
 var serverSideEncryptionByDefault = new ServerSideEncryptionConfiguration
 {
 ServerSideEncryptionRules = new List<ServerSideEncryptionRule>
 {
 new ServerSideEncryptionRule
 {
 ServerSideEncryptionByDefault = new
 ServerSideEncryptionByDefault
 {
 ServerSideEncryptionAlgorithm =
 ServerSideEncryptionMethod.AWSKMS,
 ServerSideEncryptionKeyManagementServiceKeyId = kmsKeyId
 }
 }
 }

Actions 1419

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketCors
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/PutBucketEncryption#code-examples

AWS SDK for .NET Developer Guide

 };
 try
 {
 var encryptionResponse = await _s3Client.PutBucketEncryptionAsync(new
 PutBucketEncryptionRequest
 {
 BucketName = bucketName,
 ServerSideEncryptionConfiguration = serverSideEncryptionByDefault,
 });

 return encryptionResponse.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine(ex.ErrorCode == "AccessDenied"
 ? $"This account does not have permission to set encryption on
 {bucketName}, please try again."
 : $"Unable to set bucket encryption for bucket {bucketName},
 {ex.Message}");
 }
 return false;
 }

• For API details, see PutBucketEncryption in AWS SDK for .NET API Reference.

PutBucketLifecycleConfiguration

The following code example shows how to use PutBucketLifecycleConfiguration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Adds lifecycle configuration information to the S3 bucket named in
 /// the bucketName parameter.

Actions 1420

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketEncryption
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="client">The S3 client used to call the
 /// PutLifecycleConfigurationAsync method.</param>
 /// <param name="bucketName">A string representing the S3 bucket to
 /// which configuration information will be added.</param>
 /// <param name="configuration">A LifecycleConfiguration object that
 /// will be applied to the S3 bucket.</param>
 public static async Task AddExampleLifecycleConfigAsync(IAmazonS3 client,
 string bucketName, LifecycleConfiguration configuration)
 {
 var request = new PutLifecycleConfigurationRequest()
 {
 BucketName = bucketName,
 Configuration = configuration,
 };
 var response = await client.PutLifecycleConfigurationAsync(request);
 }

• For API details, see PutBucketLifecycleConfiguration in AWS SDK for .NET API Reference.

PutBucketLogging

The following code example shows how to use PutBucketLogging.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;
 using Microsoft.Extensions.Configuration;

 /// <summary>

Actions 1421

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketLifecycleConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// This example shows how to enable logging on an Amazon Simple Storage
 /// Service (Amazon S3) bucket. You need to have two Amazon S3 buckets for
 /// this example. The first is the bucket for which you wish to enable
 /// logging, and the second is the location where you want to store the
 /// logs.
 /// </summary>
 public class ServerAccessLogging
 {
 private static IConfiguration _configuration = null!;

 public static async Task Main()
 {
 LoadConfig();

 string bucketName = _configuration["BucketName"];
 string logBucketName = _configuration["LogBucketName"];
 string logObjectKeyPrefix = _configuration["LogObjectKeyPrefix"];
 string accountId = _configuration["AccountId"];

 // If the AWS Region defined for your default user is different
 // from the Region where your Amazon S3 bucket is located,
 // pass the Region name to the Amazon S3 client object's constructor.
 // For example: RegionEndpoint.USWest2 or RegionEndpoint.USEast2.
 IAmazonS3 client = new AmazonS3Client();

 try
 {
 // Update bucket policy for target bucket to allow delivery of logs
 to it.
 await SetBucketPolicyToAllowLogDelivery(
 client,
 bucketName,
 logBucketName,
 logObjectKeyPrefix,
 accountId);

 // Enable logging on the source bucket.
 await EnableLoggingAsync(
 client,
 bucketName,
 logBucketName,
 logObjectKeyPrefix);
 }
 catch (AmazonS3Exception e)

Actions 1422

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Error: {e.Message}");
 }
 }

 /// <summary>
 /// This method grants appropriate permissions for logging to the
 /// Amazon S3 bucket where the logs will be stored.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client which will be used
 /// to apply the bucket policy.</param>
 /// <param name="sourceBucketName">The name of the source bucket.</param>
 /// <param name="logBucketName">The name of the bucket where logging
 /// information will be stored.</param>
 /// <param name="logPrefix">The logging prefix where the logs should be
 delivered.</param>
 /// <param name="accountId">The account id of the account where the source
 bucket exists.</param>
 /// <returns>Async task.</returns>
 public static async Task SetBucketPolicyToAllowLogDelivery(
 IAmazonS3 client,
 string sourceBucketName,
 string logBucketName,
 string logPrefix,
 string accountId)
 {
 var resourceArn = @"""arn:aws:s3:::" + logBucketName + "/" + logPrefix +
 @"*""";

 var newPolicy = @"{
 ""Statement"":[{
 ""Sid"": ""S3ServerAccessLogsPolicy"",
 ""Effect"": ""Allow"",
 ""Principal"": { ""Service"":
 ""logging.s3.amazonaws.com"" },
 ""Action"": [""s3:PutObject""],
 ""Resource"": [" + resourceArn + @"],
 ""Condition"": {
 ""ArnLike"": { ""aws:SourceArn"": ""arn:aws:s3:::" +
 sourceBucketName + @""" },
 ""StringEquals"": { ""aws:SourceAccount"": """ +
 accountId + @""" }
 }
 }]

Actions 1423

AWS SDK for .NET Developer Guide

 }";
 Console.WriteLine($"The policy to apply to bucket {logBucketName} to
 enable logging:");
 Console.WriteLine(newPolicy);

 PutBucketPolicyRequest putRequest = new PutBucketPolicyRequest
 {
 BucketName = logBucketName,
 Policy = newPolicy,
 };
 await client.PutBucketPolicyAsync(putRequest);
 Console.WriteLine("Policy applied.");
 }

 /// <summary>
 /// This method enables logging for an Amazon S3 bucket. Logs will be stored
 /// in the bucket you selected for logging. Selected prefix
 /// will be prepended to each log object.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client which will be used
 /// to configure and apply logging to the selected Amazon S3 bucket.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket for which you
 /// wish to enable logging.</param>
 /// <param name="logBucketName">The name of the Amazon S3 bucket where
 logging
 /// information will be stored.</param>
 /// <param name="logObjectKeyPrefix">The prefix to prepend to each
 /// object key.</param>
 /// <returns>Async task.</returns>
 public static async Task EnableLoggingAsync(
 IAmazonS3 client,
 string bucketName,
 string logBucketName,
 string logObjectKeyPrefix)
 {
 Console.WriteLine($"Enabling logging for bucket {bucketName}.");
 var loggingConfig = new S3BucketLoggingConfig
 {
 TargetBucketName = logBucketName,
 TargetPrefix = logObjectKeyPrefix,
 };

 var putBucketLoggingRequest = new PutBucketLoggingRequest
 {

Actions 1424

AWS SDK for .NET Developer Guide

 BucketName = bucketName,
 LoggingConfig = loggingConfig,
 };
 await client.PutBucketLoggingAsync(putBucketLoggingRequest);
 Console.WriteLine($"Logging enabled.");
 }

 /// <summary>
 /// Loads configuration from settings files.
 /// </summary>
 public static void LoadConfig()
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json", true) // Optionally, load local
 settings.
 .Build();
 }
 }

• For API details, see PutBucketLogging in AWS SDK for .NET API Reference.

PutBucketNotificationConfiguration

The following code example shows how to use PutBucketNotificationConfiguration.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

Actions 1425

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketLogging
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// This example shows how to enable notifications for an Amazon Simple
 /// Storage Service (Amazon S3) bucket.
 /// </summary>
 public class EnableNotifications
 {
 public static async Task Main()
 {
 const string bucketName = "amzn-s3-demo-bucket1";
 const string snsTopic = "arn:aws:sns:us-east-2:0123456789ab:bucket-
notify";
 const string sqsQueue = "arn:aws:sqs:us-
east-2:0123456789ab:Example_Queue";

 IAmazonS3 client = new AmazonS3Client(Amazon.RegionEndpoint.USEast2);
 await EnableNotificationAsync(client, bucketName, snsTopic, sqsQueue);
 }

 /// <summary>
 /// This method makes the call to the PutBucketNotificationAsync method.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client used to call
 /// the PutBucketNotificationAsync method.</param>
 /// <param name="bucketName">The name of the bucket for which
 /// notifications will be turned on.</param>
 /// <param name="snsTopic">The ARN for the Amazon Simple Notification
 /// Service (Amazon SNS) topic associated with the S3 bucket.</param>
 /// <param name="sqsQueue">The ARN of the Amazon Simple Queue Service
 /// (Amazon SQS) queue to which notifications will be pushed.</param>
 public static async Task EnableNotificationAsync(
 IAmazonS3 client,
 string bucketName,
 string snsTopic,
 string sqsQueue)
 {
 try
 {
 // The bucket for which we are setting up notifications.
 var request = new PutBucketNotificationRequest()
 {
 BucketName = bucketName,
 };

Actions 1426

AWS SDK for .NET Developer Guide

 // Defines the topic to use when sending a notification.
 var topicConfig = new TopicConfiguration()
 {
 Events = new List<EventType> { EventType.ObjectCreatedCopy },
 Topic = snsTopic,
 };
 request.TopicConfigurations = new List<TopicConfiguration>
 {
 topicConfig,
 };
 request.QueueConfigurations = new List<QueueConfiguration>
 {
 new QueueConfiguration()
 {
 Events = new List<EventType> { EventType.ObjectCreatedPut },
 Queue = sqsQueue,
 },
 };

 // Now apply the notification settings to the bucket.
 PutBucketNotificationResponse response = await
 client.PutBucketNotificationAsync(request);
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
 }

• For API details, see PutBucketNotificationConfiguration in AWS SDK for .NET API Reference.

PutBucketWebsite

The following code example shows how to use PutBucketWebsite.

Actions 1427

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketNotificationConfiguration

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 // Put the website configuration.
 PutBucketWebsiteRequest putRequest = new PutBucketWebsiteRequest()
 {
 BucketName = bucketName,
 WebsiteConfiguration = new WebsiteConfiguration()
 {
 IndexDocumentSuffix = indexDocumentSuffix,
 ErrorDocument = errorDocument,
 },
 };
 PutBucketWebsiteResponse response = await
 client.PutBucketWebsiteAsync(putRequest);

• For API details, see PutBucketWebsite in AWS SDK for .NET API Reference.

PutObject

The following code example shows how to use PutObject.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Shows how to upload a file from the local computer to an Amazon S3

Actions 1428

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketWebsite
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 /// bucket.
 /// </summary>
 /// <param name="client">An initialized Amazon S3 client object.</param>
 /// <param name="bucketName">The Amazon S3 bucket to which the object
 /// will be uploaded.</param>
 /// <param name="objectName">The object to upload.</param>
 /// <param name="filePath">The path, including file name, of the object
 /// on the local computer to upload.</param>
 /// <returns>A boolean value indicating the success or failure of the
 /// upload procedure.</returns>
 public static async Task<bool> UploadFileAsync(
 IAmazonS3 client,
 string bucketName,
 string objectName,
 string filePath)
 {
 var request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = objectName,
 FilePath = filePath,
 };

 var response = await client.PutObjectAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Successfully uploaded {objectName} to
 {bucketName}.");
 return true;
 }
 else
 {
 Console.WriteLine($"Could not upload {objectName} to
 {bucketName}.");
 return false;
 }
 }

Upload an object with server-side encryption.

 using System;

Actions 1429

AWS SDK for .NET Developer Guide

 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to upload an object to an Amazon Simple Storage
 /// Service (Amazon S3) bucket with server-side encryption enabled.
 /// </summary>
 public class ServerSideEncryption
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string keyName = "samplefile.txt";

 // If the AWS Region defined for your default user is different
 // from the Region where your Amazon S3 bucket is located,
 // pass the Region name to the Amazon S3 client object's constructor.
 // For example: RegionEndpoint.USWest2.
 IAmazonS3 client = new AmazonS3Client();

 await WritingAnObjectAsync(client, bucketName, keyName);
 }

 /// <summary>
 /// Upload a sample object include a setting for encryption.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 /// to upload a file and apply server-side encryption.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket where the
 /// encrypted object will reside.</param>
 /// <param name="keyName">The name for the object that you want to
 /// create in the supplied bucket.</param>
 public static async Task WritingAnObjectAsync(IAmazonS3 client, string
 bucketName, string keyName)
 {
 try
 {
 var putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "sample text",
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AES256,

Actions 1430

AWS SDK for .NET Developer Guide

 };

 var putResponse = await client.PutObjectAsync(putRequest);

 // Determine the encryption state of an object.
 GetObjectMetadataRequest metadataRequest = new
 GetObjectMetadataRequest
 {
 BucketName = bucketName,
 Key = keyName,
 };
 GetObjectMetadataResponse response = await
 client.GetObjectMetadataAsync(metadataRequest);
 ServerSideEncryptionMethod objectEncryption =
 response.ServerSideEncryptionMethod;

 Console.WriteLine($"Encryption method used: {0}",
 objectEncryption.ToString());
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error: '{ex.Message}' when writing an object");
 }
 }
 }

Put an object using a conditional request.

 /// <summary>
 /// Uploads an object to Amazon S3 with a conditional request. Prevents
 overwrite using an IfNoneMatch condition for the object key.
 /// </summary>
 /// <param name="objectKey">The key of the object to upload.</param>
 /// <param name="bucket">The source bucket of the object.</param>
 /// <param name="content">The content to upload as a string.</param>
 /// <returns>The ETag if the conditional write is successful, empty otherwise.</
returns>
 public async Task<string> PutObjectConditional(string objectKey, string bucket,
 string content)
 {
 try

Actions 1431

AWS SDK for .NET Developer Guide

 {
 var putObjectRequest = new PutObjectRequest
 {
 BucketName = bucket,
 Key = objectKey,
 ContentBody = content,
 IfNoneMatch = "*"
 };

 var putResult = await _amazonS3.PutObjectAsync(putObjectRequest);
 _logger.LogInformation($"Conditional write successful for key
 {objectKey} in bucket {bucket}.");
 return putResult.ETag;
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "PreconditionFailed")
 {
 _logger.LogError("Conditional write failed: Precondition failed");
 }
 else
 {
 _logger.LogError($"Unexpected error: {e.ErrorCode}");
 throw;
 }
 return string.Empty;
 }
 }

• For API details, see PutObject in AWS SDK for .NET API Reference.

PutObjectLegalHold

The following code example shows how to use PutObjectLegalHold.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1432

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Set or modify a legal hold on an object in an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The key of the object.</param>
 /// <param name="holdStatus">The On or Off status for the legal hold.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ModifyObjectLegalHold(string bucketName,
 string objectKey, ObjectLockLegalHoldStatus holdStatus)
 {
 try
 {
 var request = new PutObjectLegalHoldRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 LegalHold = new ObjectLockLegalHold()
 {
 Status = holdStatus
 }
 };

 var response = await _amazonS3.PutObjectLegalHoldAsync(request);
 Console.WriteLine($"\tModified legal hold for {objectKey} in
 {bucketName}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tError modifying legal hold: '{ex.Message}'");
 return false;
 }
 }

• For API details, see PutObjectLegalHold in AWS SDK for .NET API Reference.

PutObjectLockConfiguration

The following code example shows how to use PutObjectLockConfiguration.

Actions 1433

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectLegalHold

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Set the object lock configuration of a bucket.

 /// <summary>
 /// Enable object lock on an existing bucket.
 /// </summary>
 /// <param name="bucketName">The name of the bucket to modify.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableObjectLockOnBucket(string bucketName)
 {
 try
 {
 // First, enable Versioning on the bucket.
 await _amazonS3.PutBucketVersioningAsync(new
 PutBucketVersioningRequest()
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig()
 {
 EnableMfaDelete = false,
 Status = VersionStatus.Enabled
 }
 });

 var request = new PutObjectLockConfigurationRequest()
 {
 BucketName = bucketName,
 ObjectLockConfiguration = new ObjectLockConfiguration()
 {
 ObjectLockEnabled = new ObjectLockEnabled("Enabled"),
 },
 };

 var response = await _amazonS3.PutObjectLockConfigurationAsync(request);
 Console.WriteLine($"\tAdded an object lock policy to bucket
 {bucketName}.");

Actions 1434

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error modifying object lock: '{ex.Message}'");
 return false;
 }
 }

Set the default retention period of a bucket.

 /// <summary>
 /// Set or modify a retention period on an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket to modify.</param>
 /// <param name="retention">The retention mode.</param>
 /// <param name="retainUntilDate">The date for retention until.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ModifyBucketDefaultRetention(string bucketName, bool
 enableObjectLock, ObjectLockRetentionMode retention, DateTime retainUntilDate)
 {
 var enabledString = enableObjectLock ? "Enabled" : "Disabled";
 var timeDifference = retainUntilDate.Subtract(DateTime.Now);
 try
 {
 // First, enable Versioning on the bucket.
 await _amazonS3.PutBucketVersioningAsync(new
 PutBucketVersioningRequest()
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig()
 {
 EnableMfaDelete = false,
 Status = VersionStatus.Enabled
 }
 });

 var request = new PutObjectLockConfigurationRequest()
 {
 BucketName = bucketName,
 ObjectLockConfiguration = new ObjectLockConfiguration()
 {

Actions 1435

AWS SDK for .NET Developer Guide

 ObjectLockEnabled = new ObjectLockEnabled(enabledString),
 Rule = new ObjectLockRule()
 {
 DefaultRetention = new DefaultRetention()
 {
 Mode = retention,
 Days = timeDifference.Days // Can be specified in days
 or years but not both.
 }
 }
 }
 };

 var response = await _amazonS3.PutObjectLockConfigurationAsync(request);
 Console.WriteLine($"\tAdded a default retention to bucket
 {bucketName}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tError modifying object lock: '{ex.Message}'");
 return false;
 }
 }

• For API details, see PutObjectLockConfiguration in AWS SDK for .NET API Reference.

PutObjectRetention

The following code example shows how to use PutObjectRetention.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 1436

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectLockConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 /// Set or modify a retention period on an object in an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The key of the object.</param>
 /// <param name="retention">The retention mode.</param>
 /// <param name="retainUntilDate">The date retention expires.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ModifyObjectRetentionPeriod(string bucketName,
 string objectKey, ObjectLockRetentionMode retention, DateTime
 retainUntilDate)
 {
 try
 {
 var request = new PutObjectRetentionRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 Retention = new ObjectLockRetention()
 {
 Mode = retention,
 RetainUntilDate = retainUntilDate
 }
 };

 var response = await _amazonS3.PutObjectRetentionAsync(request);
 Console.WriteLine($"\tSet retention for {objectKey} in {bucketName}
 until {retainUntilDate:d}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tError modifying retention period:
 '{ex.Message}'");
 return false;
 }
 }

• For API details, see PutObjectRetention in AWS SDK for .NET API Reference.

RestoreObject

The following code example shows how to use RestoreObject.

Actions 1437

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectRetention

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to restore an archived object in an Amazon
 /// Simple Storage Service (Amazon S3) bucket.
 /// </summary>
 public class RestoreArchivedObject
 {
 public static void Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string objectKey = "archived-object.txt";

 // Specify your bucket region (an example region is shown).
 RegionEndpoint bucketRegion = RegionEndpoint.USWest2;

 IAmazonS3 client = new AmazonS3Client(bucketRegion);
 RestoreObjectAsync(client, bucketName, objectKey).Wait();
 }

 /// <summary>
 /// This method restores an archived object from an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// RestoreObjectAsync.</param>
 /// <param name="bucketName">A string representing the name of the
 /// bucket where the object was located before it was archived.</param>
 /// <param name="objectKey">A string representing the name of the
 /// archived object to restore.</param>

Actions 1438

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3#code-examples

AWS SDK for .NET Developer Guide

 public static async Task RestoreObjectAsync(IAmazonS3 client, string
 bucketName, string objectKey)
 {
 try
 {
 var restoreRequest = new RestoreObjectRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Days = 2,
 };
 RestoreObjectResponse response = await
 client.RestoreObjectAsync(restoreRequest);

 // Check the status of the restoration.
 await CheckRestorationStatusAsync(client, bucketName, objectKey);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine($"Error: {amazonS3Exception.Message}");
 }
 }

 /// <summary>
 /// This method retrieves the status of the object's restoration.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// GetObjectMetadataAsync.</param>
 /// <param name="bucketName">A string representing the name of the Amazon
 /// S3 bucket which contains the archived object.</param>
 /// <param name="objectKey">A string representing the name of the
 /// archived object you want to restore.</param>
 public static async Task CheckRestorationStatusAsync(IAmazonS3 client,
 string bucketName, string objectKey)
 {
 GetObjectMetadataRequest metadataRequest = new
 GetObjectMetadataRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 };

Actions 1439

AWS SDK for .NET Developer Guide

 GetObjectMetadataResponse response = await
 client.GetObjectMetadataAsync(metadataRequest);

 var restStatus = response.RestoreInProgress ? "in-progress" : "finished
 or failed";
 Console.WriteLine($"Restoration status: {restStatus}");
 }
 }

• For API details, see RestoreObject in AWS SDK for .NET API Reference.

Scenarios

Create a presigned URL

The following code example shows how to create a presigned URL for Amazon S3 and upload an
object.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Generate a presigned URL that can perform an Amazon S3 action for a limited time.

 using System;
 using Amazon;
 using Amazon.S3;
 using Amazon.S3.Model;

 public class GenPresignedUrl
 {
 public static void Main()
 {
 const string bucketName = "amzn-s3-demo-bucket";
 const string objectKey = "sample.txt";

Scenarios 1440

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/RestoreObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/#code-examples

AWS SDK for .NET Developer Guide

 // Specify how long the presigned URL lasts, in hours
 const double timeoutDuration = 12;

 // Specify the AWS Region of your Amazon S3 bucket. If it is
 // different from the Region defined for the default user,
 // pass the Region to the constructor for the client. For
 // example: new AmazonS3Client(RegionEndpoint.USEast1);

 // If using the Region us-east-1, and server-side encryption with AWS
 KMS, you must specify Signature Version 4.
 // Region us-east-1 defaults to Signature Version 2 unless explicitly
 set to Version 4 as shown below.
 // For more details, see https://docs.aws.amazon.com/AmazonS3/latest/
userguide/UsingAWSSDK.html#specify-signature-version
 // and https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/
TAWSConfigsS3.html
 AWSConfigsS3.UseSignatureVersion4 = true;
 IAmazonS3 s3Client = new AmazonS3Client(RegionEndpoint.USEast1);

 string urlString = GeneratePresignedURL(s3Client, bucketName, objectKey,
 timeoutDuration);
 Console.WriteLine($"The generated URL is: {urlString}.");
 }

 /// <summary>
 /// Generate a presigned URL that can be used to access the file named
 /// in the objectKey parameter for the amount of time specified in the
 /// duration parameter.
 /// </summary>
 /// <param name="client">An initialized S3 client object used to call
 /// the GetPresignedUrl method.</param>
 /// <param name="bucketName">The name of the S3 bucket containing the
 /// object for which to create the presigned URL.</param>
 /// <param name="objectKey">The name of the object to access with the
 /// presigned URL.</param>
 /// <param name="duration">The length of time for which the presigned
 /// URL will be valid.</param>
 /// <returns>A string representing the generated presigned URL.</returns>
 public static string GeneratePresignedURL(IAmazonS3 client, string
 bucketName, string objectKey, double duration)
 {
 string urlString = string.Empty;
 try
 {

Scenarios 1441

AWS SDK for .NET Developer Guide

 var request = new GetPreSignedUrlRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 Expires = DateTime.UtcNow.AddHours(duration),
 };
 urlString = client.GetPreSignedURL(request);
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error:'{ex.Message}'");
 }

 return urlString;
 }
 }

Generate a presigned URL and perform an upload using that URL.

 using System;
 using System.IO;
 using System.Net.Http;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to upload an object to an Amazon Simple Storage
 /// Service (Amazon S3) bucket using a presigned URL. The code first
 /// creates a presigned URL and then uses it to upload an object to an
 /// Amazon S3 bucket using that URL.
 /// </summary>
 public class UploadUsingPresignedURL
 {
 private static HttpClient httpClient = new HttpClient();

 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string keyName = "samplefile.txt";

Scenarios 1442

AWS SDK for .NET Developer Guide

 string filePath = $"source\\{keyName}";

 // Specify how long the signed URL will be valid in hours.
 double timeoutDuration = 12;

 // Specify the AWS Region of your Amazon S3 bucket. If it is
 // different from the Region defined for the default user,
 // pass the Region to the constructor for the client. For
 // example: new AmazonS3Client(RegionEndpoint.USEast1);

 // If using the Region us-east-1, and server-side encryption with AWS
 KMS, you must specify Signature Version 4.
 // Region us-east-1 defaults to Signature Version 2 unless explicitly
 set to Version 4 as shown below.
 // For more details, see https://docs.aws.amazon.com/AmazonS3/latest/
userguide/UsingAWSSDK.html#specify-signature-version
 // and https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/
TAWSConfigsS3.html
 AWSConfigsS3.UseSignatureVersion4 = true;
 IAmazonS3 client = new AmazonS3Client(RegionEndpoint.USEast1);

 var url = GeneratePreSignedURL(client, bucketName, keyName,
 timeoutDuration);
 var success = await UploadObject(filePath, url);

 if (success)
 {
 Console.WriteLine("Upload succeeded.");
 }
 else
 {
 Console.WriteLine("Upload failed.");
 }
 }

 /// <summary>
 /// Uploads an object to an Amazon S3 bucket using the presigned URL passed
 in
 /// the url parameter.
 /// </summary>
 /// <param name="filePath">The path (including file name) to the local
 /// file you want to upload.</param>
 /// <param name="url">The presigned URL that will be used to upload the
 /// file to the Amazon S3 bucket.</param>

Scenarios 1443

AWS SDK for .NET Developer Guide

 /// <returns>A Boolean value indicating the success or failure of the
 /// operation, based on the HttpWebResponse.</returns>
 public static async Task<bool> UploadObject(string filePath, string url)
 {
 using var streamContent = new StreamContent(
 new FileStream(filePath, FileMode.Open, FileAccess.Read));

 var response = await httpClient.PutAsync(url, streamContent);
 return response.IsSuccessStatusCode;
 }

 /// <summary>
 /// Generates a presigned URL which will be used to upload an object to
 /// an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// GetPreSignedURL.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket to which the
 /// presigned URL will point.</param>
 /// <param name="objectKey">The name of the file that will be uploaded.</
param>
 /// <param name="duration">How long (in hours) the presigned URL will
 /// be valid.</param>
 /// <returns>The generated URL.</returns>
 public static string GeneratePreSignedURL(
 IAmazonS3 client,
 string bucketName,
 string objectKey,
 double duration)
 {
 var request = new GetPreSignedUrlRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Verb = HttpVerb.PUT,
 Expires = DateTime.UtcNow.AddHours(duration),
 };

 string url = client.GetPreSignedURL(request);
 return url;
 }
 }

Scenarios 1444

AWS SDK for .NET Developer Guide

Create a serverless application to manage photos

The following code example shows how to create a serverless application that lets users manage
photos using labels.

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Detect objects in images

The following code example shows how to build an app that uses Amazon Rekognition to detect
objects by category in images.

AWS SDK for .NET

Shows how to use Amazon Rekognition .NET API to create an app that uses Amazon
Rekognition to identify objects by category in images located in an Amazon Simple Storage
Service (Amazon S3) bucket. The app sends the admin an email notification with the results
using Amazon Simple Email Service (Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Scenarios 1445

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAnalyzerApp

AWS SDK for .NET Developer Guide

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

Get started with encryption

The following code example shows how to get started with encryption for Amazon S3 objects.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Security.Cryptography;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to apply client encryption to an object in an
 /// Amazon Simple Storage Service (Amazon S3) bucket.
 /// </summary>
 public class SSEClientEncryption
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string keyName = "exampleobject.txt";
 string copyTargetKeyName = "examplecopy.txt";

 // If the AWS Region defined for your default user is different
 // from the Region where your Amazon S3 bucket is located,
 // pass the Region name to the Amazon S3 client object's constructor.
 // For example: RegionEndpoint.USWest2.

Scenarios 1446

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/SSEClientEncryptionExample#code-examples

AWS SDK for .NET Developer Guide

 IAmazonS3 client = new AmazonS3Client();

 try
 {
 // Create an encryption key.
 Aes aesEncryption = Aes.Create();
 aesEncryption.KeySize = 256;
 aesEncryption.GenerateKey();
 string base64Key = Convert.ToBase64String(aesEncryption.Key);

 // Upload the object.
 PutObjectRequest putObjectRequest = await UploadObjectAsync(client,
 bucketName, keyName, base64Key);

 // Download the object and verify that its contents match what you
 uploaded.
 await DownloadObjectAsync(client, bucketName, keyName, base64Key,
 putObjectRequest);

 // Get object metadata and verify that the object uses AES-256
 encryption.
 await GetObjectMetadataAsync(client, bucketName, keyName,
 base64Key);

 // Copy both the source and target objects using server-side
 encryption with
 // an encryption key.
 await CopyObjectAsync(client, bucketName, keyName,
 copyTargetKeyName, aesEncryption, base64Key);
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }

 /// <summary>
 /// Uploads an object to an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// PutObjectAsync.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket to which the
 /// object will be uploaded.</param>

Scenarios 1447

AWS SDK for .NET Developer Guide

 /// <param name="keyName">The name of the object to upload to the Amazon S3
 /// bucket.</param>
 /// <param name="base64Key">The encryption key.</param>
 /// <returns>The PutObjectRequest object for use by DownloadObjectAsync.</
returns>
 public static async Task<PutObjectRequest> UploadObjectAsync(
 IAmazonS3 client,
 string bucketName,
 string keyName,
 string base64Key)
 {
 PutObjectRequest putObjectRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "sample text",
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
 };
 PutObjectResponse putObjectResponse = await
 client.PutObjectAsync(putObjectRequest);
 return putObjectRequest;
 }

 /// <summary>
 /// Downloads an encrypted object from an Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// GetObjectAsync.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket where the
 object
 /// is located.</param>
 /// <param name="keyName">The name of the Amazon S3 object to download.</
param>
 /// <param name="base64Key">The encryption key used to encrypt the
 /// object.</param>
 /// <param name="putObjectRequest">The PutObjectRequest used to upload
 /// the object.</param>
 public static async Task DownloadObjectAsync(
 IAmazonS3 client,
 string bucketName,
 string keyName,

Scenarios 1448

AWS SDK for .NET Developer Guide

 string base64Key,
 PutObjectRequest putObjectRequest)
 {
 GetObjectRequest getObjectRequest = new GetObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,

 // Provide encryption information for the object stored in Amazon
 S3.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
 };

 using (GetObjectResponse getResponse = await
 client.GetObjectAsync(getObjectRequest))
 using (StreamReader reader = new
 StreamReader(getResponse.ResponseStream))
 {
 string content = reader.ReadToEnd();
 if (string.Compare(putObjectRequest.ContentBody, content) == 0)
 {
 Console.WriteLine("Object content is same as we uploaded");
 }
 else
 {
 Console.WriteLine("Error...Object content is not same.");
 }

 if (getResponse.ServerSideEncryptionCustomerMethod ==
 ServerSideEncryptionCustomerMethod.AES256)
 {
 Console.WriteLine("Object encryption method is AES256, same as
 we set");
 }
 else
 {
 Console.WriteLine("Error...Object encryption method is not the
 same as AES256 we set");
 }
 }
 }

Scenarios 1449

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Retrieves the metadata associated with an Amazon S3 object.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used
 /// to call GetObjectMetadataAsync.</param>
 /// <param name="bucketName">The name of the Amazon S3 bucket containing the
 /// object for which we want to retrieve metadata.</param>
 /// <param name="keyName">The name of the object for which we wish to
 /// retrieve the metadata.</param>
 /// <param name="base64Key">The encryption key associated with the
 /// object.</param>
 public static async Task GetObjectMetadataAsync(
 IAmazonS3 client,
 string bucketName,
 string keyName,
 string base64Key)
 {
 GetObjectMetadataRequest getObjectMetadataRequest = new
 GetObjectMetadataRequest
 {
 BucketName = bucketName,
 Key = keyName,

 // The object stored in Amazon S3 is encrypted, so provide the
 necessary encryption information.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
 };

 GetObjectMetadataResponse getObjectMetadataResponse = await
 client.GetObjectMetadataAsync(getObjectMetadataRequest);
 Console.WriteLine("The object metadata show encryption method used is:
 {0}", getObjectMetadataResponse.ServerSideEncryptionCustomerMethod);
 }

 /// <summary>
 /// Copies an encrypted object from one Amazon S3 bucket to another.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// CopyObjectAsync.</param>
 /// <param name="bucketName">The Amazon S3 bucket containing the object
 /// to copy.</param>

Scenarios 1450

AWS SDK for .NET Developer Guide

 /// <param name="keyName">The name of the object to copy.</param>
 /// <param name="copyTargetKeyName">The Amazon S3 bucket to which the object
 /// will be copied.</param>
 /// <param name="aesEncryption">The encryption type to use.</param>
 /// <param name="base64Key">The encryption key to use.</param>
 public static async Task CopyObjectAsync(
 IAmazonS3 client,
 string bucketName,
 string keyName,
 string copyTargetKeyName,
 Aes aesEncryption,
 string base64Key)
 {
 aesEncryption.GenerateKey();
 string copyBase64Key = Convert.ToBase64String(aesEncryption.Key);

 CopyObjectRequest copyRequest = new CopyObjectRequest
 {
 SourceBucket = bucketName,
 SourceKey = keyName,
 DestinationBucket = bucketName,
 DestinationKey = copyTargetKeyName,

 // Information about the source object's encryption.
 CopySourceServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 CopySourceServerSideEncryptionCustomerProvidedKey = base64Key,

 // Information about the target object's encryption.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = copyBase64Key,
 };
 await client.CopyObjectAsync(copyRequest);
 }
 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CopyObject

• GetObject

Scenarios 1451

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CopyObject
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObject

AWS SDK for .NET Developer Guide

• GetObjectMetadata

Get started with tags

The following code example shows how to get started with tags for Amazon S3 objects.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to work with tags in Amazon Simple Storage
 /// Service (Amazon S3) objects.
 /// </summary>
 public class ObjectTag
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string keyName = "newobject.txt";
 string filePath = @"*** file path ***";

 // Specify your bucket region (an example region is shown).
 RegionEndpoint bucketRegion = RegionEndpoint.USWest2;

 var client = new AmazonS3Client(bucketRegion);
 await PutObjectsWithTagsAsync(client, bucketName, keyName, filePath);
 }

 /// <summary>
 /// This method uploads an object with tags. It then shows the tag

Scenarios 1452

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectMetadata
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/ObjectTagExample#code-examples

AWS SDK for .NET Developer Guide

 /// values, changes the tags, and shows the new tags.
 /// </summary>
 /// <param name="client">The Initialized Amazon S3 client object used
 /// to call the methods to create and change an objects tags.</param>
 /// <param name="bucketName">A string representing the name of the
 /// bucket where the object will be stored.</param>
 /// <param name="keyName">A string representing the key name of the
 /// object to be tagged.</param>
 /// <param name="filePath">The directory location and file name of the
 /// object to be uploaded to the Amazon S3 bucket.</param>
 public static async Task PutObjectsWithTagsAsync(IAmazonS3 client, string
 bucketName, string keyName, string filePath)
 {
 try
 {
 // Create an object with tags.
 var putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 FilePath = filePath,
 TagSet = new List<Tag>
 {
 new Tag { Key = "Keyx1", Value = "Value1" },
 new Tag { Key = "Keyx2", Value = "Value2" },
 },
 };

 PutObjectResponse response = await
 client.PutObjectAsync(putRequest);

 // Now retrieve the new object's tags.
 GetObjectTaggingRequest getTagsRequest = new
 GetObjectTaggingRequest()
 {
 BucketName = bucketName,
 Key = keyName,
 };

 GetObjectTaggingResponse objectTags = await
 client.GetObjectTaggingAsync(getTagsRequest);

 // Display the tag values.
 objectTags.Tagging

Scenarios 1453

AWS SDK for .NET Developer Guide

 .ForEach(t => Console.WriteLine($"Key: {t.Key}, Value:
 {t.Value}"));

 Tagging newTagSet = new Tagging()
 {
 TagSet = new List<Tag>
 {
 new Tag { Key = "Key3", Value = "Value3" },
 new Tag { Key = "Key4", Value = "Value4" },
 },
 };

 PutObjectTaggingRequest putObjTagsRequest = new
 PutObjectTaggingRequest()
 {
 BucketName = bucketName,
 Key = keyName,
 Tagging = newTagSet,
 };

 PutObjectTaggingResponse response2 = await
 client.PutObjectTaggingAsync(putObjTagsRequest);

 // Retrieve the tags again and show the values.
 GetObjectTaggingRequest getTagsRequest2 = new
 GetObjectTaggingRequest()
 {
 BucketName = bucketName,
 Key = keyName,
 };
 GetObjectTaggingResponse objectTags2 = await
 client.GetObjectTaggingAsync(getTagsRequest2);

 objectTags2.Tagging
 .ForEach(t => Console.WriteLine($"Key: {t.Key}, Value:
 {t.Value}"));
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine(
 $"Error: '{ex.Message}'");
 }
 }
 }

Scenarios 1454

AWS SDK for .NET Developer Guide

• For API details, see GetObjectTagging in AWS SDK for .NET API Reference.

Lock Amazon S3 objects

The following code example shows how to work with S3 object lock features.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario demonstrating Amazon S3 object lock features.

using Amazon.S3;
using Amazon.S3.Model;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

namespace S3ObjectLockScenario;

public static class S3ObjectLockWorkflow
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. Create test Amazon Simple Storage Service (S3) buckets with different
 lock policies.
 2. Upload sample objects to each bucket.
 3. Set some Legal Hold and Retention Periods on objects and buckets.

Scenarios 1455

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectTagging
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ObjectLockScenario#code-examples

AWS SDK for .NET Developer Guide

 4. Investigate lock policies by viewing settings or attempting to delete or
 overwrite objects.
 5. Clean up objects and buckets.
 */

 public static S3ActionsWrapper _s3ActionsWrapper = null!;
 public static IConfiguration _configuration = null!;
 private static string _resourcePrefix = null!;
 private static string noLockBucketName = null!;
 private static string lockEnabledBucketName = null!;
 private static string retentionAfterCreationBucketName = null!;
 private static List<string> bucketNames = new List<string>();
 private static List<string> fileNames = new List<string>();

 public static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonS3>()
 .AddTransient<S3ActionsWrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 ConfigurationSetup();

 ServicesSetup(host);

 try
 {
 Console.WriteLine(new string('-', 80));

Scenarios 1456

AWS SDK for .NET Developer Guide

 Console.WriteLine("Welcome to the Amazon Simple Storage Service (S3)
 Object Locking Workflow Scenario.");
 Console.WriteLine(new string('-', 80));
 await Setup(true);

 await DemoActionChoices();

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Cleaning up resources.");
 Console.WriteLine(new string('-', 80));
 await Cleanup(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Amazon S3 Object Locking Workflow is complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem: {ex.Message}");
 await Cleanup(true);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _s3ActionsWrapper = host.Services.GetRequiredService<S3ActionsWrapper>();
 }

 /// <summary>
 /// Any setup operations needed.
 /// </summary>
 public static void ConfigurationSetup()
 {
 _resourcePrefix = _configuration["resourcePrefix"] ?? "dotnet-example";

 noLockBucketName = _resourcePrefix + "-no-lock";
 lockEnabledBucketName = _resourcePrefix + "-lock-enabled";

Scenarios 1457

AWS SDK for .NET Developer Guide

 retentionAfterCreationBucketName = _resourcePrefix + "-retention-after-
creation";

 bucketNames.Add(noLockBucketName);
 bucketNames.Add(lockEnabledBucketName);
 bucketNames.Add(retentionAfterCreationBucketName);
 }

 // <summary>
 /// Deploy necessary resources for the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Setup(bool interactive)
 {
 Console.WriteLine(
 "\nFor this workflow, we will use the AWS SDK for .NET to create several
 S3\n" +
 "buckets and files to demonstrate working with S3 locking features.\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you are ready to start.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("\nS3 buckets can be created either with or without object
 lock enabled.");
 await _s3ActionsWrapper.CreateBucketWithObjectLock(noLockBucketName, false);
 await _s3ActionsWrapper.CreateBucketWithObjectLock(lockEnabledBucketName,
 true);
 await
 _s3ActionsWrapper.CreateBucketWithObjectLock(retentionAfterCreationBucketName,
 false);

 Console.WriteLine("Press Enter to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("\nA bucket can be configured to use object locking with a
 default retention period.");
 await
 _s3ActionsWrapper.ModifyBucketDefaultRetention(retentionAfterCreationBucketName,
 true,
 ObjectLockRetentionMode.Governance, DateTime.UtcNow.AddDays(1));

Scenarios 1458

AWS SDK for .NET Developer Guide

 Console.WriteLine("Press Enter to continue.");
 if (interactive)
 Console.ReadLine();

 Console.WriteLine("\nObject lock policies can also be added to existing
 buckets.");
 await _s3ActionsWrapper.EnableObjectLockOnBucket(lockEnabledBucketName);

 Console.WriteLine("Press Enter to continue.");
 if (interactive)
 Console.ReadLine();

 // Upload some files to the buckets.
 Console.WriteLine("\nNow let's add some test files:");
 var fileName = _configuration["exampleFileName"] ?? "exampleFile.txt";
 int fileCount = 2;
 // Create the file if it does not already exist.
 if (!File.Exists(fileName))
 {
 await using StreamWriter sw = File.CreateText(fileName);
 await sw.WriteLineAsync(
 "This is a sample file for uploading to a bucket.");
 }

 foreach (var bucketName in bucketNames)
 {
 for (int i = 0; i < fileCount; i++)
 {
 var numberedFileName = Path.GetFileNameWithoutExtension(fileName) +
 i + Path.GetExtension(fileName);
 fileNames.Add(numberedFileName);
 await _s3ActionsWrapper.UploadFileAsync(bucketName,
 numberedFileName, fileName);
 }
 }
 Console.WriteLine("Press Enter to continue.");
 if (interactive)
 Console.ReadLine();

 if (!interactive)
 return true;
 Console.WriteLine("\nNow we can set some object lock policies on individual
 files:");

Scenarios 1459

AWS SDK for .NET Developer Guide

 foreach (var bucketName in bucketNames)
 {
 for (int i = 0; i < fileNames.Count; i++)
 {
 // No modifications to the objects in the first bucket.
 if (bucketName != bucketNames[0])
 {
 var exampleFileName = fileNames[i];
 switch (i)
 {
 case 0:
 {
 var question =
 $"\nWould you like to add a legal hold to
 {exampleFileName} in {bucketName}? (y/n)";
 if (GetYesNoResponse(question))
 {
 // Set a legal hold.
 await
 _s3ActionsWrapper.ModifyObjectLegalHold(bucketName, exampleFileName,
 ObjectLockLegalHoldStatus.On);

 }
 break;
 }
 case 1:
 {
 var question =
 $"\nWould you like to add a 1 day Governance
 retention period to {exampleFileName} in {bucketName}? (y/n)" +
 "\nReminder: Only a user with the
 s3:BypassGovernanceRetention permission will be able to delete this file or its
 bucket until the retention period has expired.";
 if (GetYesNoResponse(question))
 {
 // Set a Governance mode retention period for 1
 day.
 await
 _s3ActionsWrapper.ModifyObjectRetentionPeriod(
 bucketName, exampleFileName,
 ObjectLockRetentionMode.Governance,
 DateTime.UtcNow.AddDays(1));
 }
 break;

Scenarios 1460

AWS SDK for .NET Developer Guide

 }
 }
 }
 }
 }
 Console.WriteLine(new string('-', 80));
 return true;
 }

 // <summary>
 /// List all of the current buckets and objects.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>The list of buckets and objects.</returns>
 public static async Task<List<S3ObjectVersion>> ListBucketsAndObjects(bool
 interactive)
 {
 var allObjects = new List<S3ObjectVersion>();
 foreach (var bucketName in bucketNames)
 {
 var objectsInBucket = await
 _s3ActionsWrapper.ListBucketObjectsAndVersions(bucketName);
 foreach (var objectKey in objectsInBucket.Versions)
 {
 allObjects.Add(objectKey);
 }
 }

 if (interactive)
 {
 Console.WriteLine("\nCurrent buckets and objects:\n");
 int i = 0;
 foreach (var bucketObject in allObjects)
 {
 i++;
 Console.WriteLine(
 $"{i}: {bucketObject.Key} \n\tBucket:
 {bucketObject.BucketName}\n\tVersion: {bucketObject.VersionId}");
 }
 }

 return allObjects;
 }

Scenarios 1461

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Present the user with the demo action choices.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task<bool> DemoActionChoices()
 {
 var choices = new string[]{
 "List all files in buckets.",
 "Attempt to delete a file.",
 "Attempt to delete a file with retention period bypass.",
 "Attempt to overwrite a file.",
 "View the object and bucket retention settings for a file.",
 "View the legal hold settings for a file.",
 "Finish the workflow."};

 var choice = 0;
 // Keep asking the user until they choose to move on.
 while (choice != 6)
 {
 Console.WriteLine(new string('-', 80));
 choice = GetChoiceResponse(
 "\nExplore the S3 locking features by selecting one of the following
 choices:"
 , choices);
 Console.WriteLine(new string('-', 80));
 switch (choice)
 {
 case 0:
 {
 await ListBucketsAndObjects(true);
 break;
 }
 case 1:
 {
 Console.WriteLine("\nEnter the number of the object to
 delete:");
 var allFiles = await ListBucketsAndObjects(true);
 var fileChoice = GetChoiceResponse(null, allFiles.Select(f
 => f.Key).ToArray());
 await
 _s3ActionsWrapper.DeleteObjectFromBucket(allFiles[fileChoice].BucketName,
 allFiles[fileChoice].Key, false, allFiles[fileChoice].VersionId);
 break;
 }

Scenarios 1462

AWS SDK for .NET Developer Guide

 case 2:
 {
 Console.WriteLine("\nEnter the number of the object to
 delete:");
 var allFiles = await ListBucketsAndObjects(true);
 var fileChoice = GetChoiceResponse(null, allFiles.Select(f
 => f.Key).ToArray());
 await
 _s3ActionsWrapper.DeleteObjectFromBucket(allFiles[fileChoice].BucketName,
 allFiles[fileChoice].Key, true, allFiles[fileChoice].VersionId);
 break;
 }
 case 3:
 {
 var allFiles = await ListBucketsAndObjects(true);
 Console.WriteLine("\nEnter the number of the object to
 overwrite:");
 var fileChoice = GetChoiceResponse(null, allFiles.Select(f
 => f.Key).ToArray());
 // Create the file if it does not already exist.
 if (!File.Exists(allFiles[fileChoice].Key))
 {
 await using StreamWriter sw =
 File.CreateText(allFiles[fileChoice].Key);
 await sw.WriteLineAsync(
 "This is a sample file for uploading to a bucket.");
 }
 await
 _s3ActionsWrapper.UploadFileAsync(allFiles[fileChoice].BucketName,
 allFiles[fileChoice].Key, allFiles[fileChoice].Key);
 break;
 }
 case 4:
 {
 var allFiles = await ListBucketsAndObjects(true);
 Console.WriteLine("\nEnter the number of the object and
 bucket to view:");
 var fileChoice = GetChoiceResponse(null, allFiles.Select(f
 => f.Key).ToArray());
 await
 _s3ActionsWrapper.GetObjectRetention(allFiles[fileChoice].BucketName,
 allFiles[fileChoice].Key);
 await
 _s3ActionsWrapper.GetBucketObjectLockConfiguration(allFiles[fileChoice].BucketName);

Scenarios 1463

AWS SDK for .NET Developer Guide

 break;
 }
 case 5:
 {
 var allFiles = await ListBucketsAndObjects(true);
 Console.WriteLine("\nEnter the number of the object to
 view:");
 var fileChoice = GetChoiceResponse(null, allFiles.Select(f
 => f.Key).ToArray());
 await
 _s3ActionsWrapper.GetObjectLegalHold(allFiles[fileChoice].BucketName,
 allFiles[fileChoice].Key);
 break;
 }
 }
 }
 return true;
 }

 // <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Cleanup(bool interactive)
 {
 Console.WriteLine(new string('-', 80));

 if (!interactive || GetYesNoResponse("Do you want to clean up all files and
 buckets? (y/n) "))
 {
 // Remove all locks and delete all buckets and objects.
 var allFiles = await ListBucketsAndObjects(false);
 foreach (var fileInfo in allFiles)
 {
 // Check for a legal hold.
 var legalHold = await
 _s3ActionsWrapper.GetObjectLegalHold(fileInfo.BucketName, fileInfo.Key);
 if (legalHold?.Status?.Value == ObjectLockLegalHoldStatus.On)
 {
 await
 _s3ActionsWrapper.ModifyObjectLegalHold(fileInfo.BucketName, fileInfo.Key,
 ObjectLockLegalHoldStatus.Off);
 }

Scenarios 1464

AWS SDK for .NET Developer Guide

 // Check for a retention period.
 var retention = await
 _s3ActionsWrapper.GetObjectRetention(fileInfo.BucketName, fileInfo.Key);
 var hasRetentionPeriod = retention?.Mode ==
 ObjectLockRetentionMode.Governance && retention.RetainUntilDate >
 DateTime.UtcNow.Date;
 await _s3ActionsWrapper.DeleteObjectFromBucket(fileInfo.BucketName,
 fileInfo.Key, hasRetentionPeriod, fileInfo.VersionId);
 }

 foreach (var bucketName in bucketNames)
 {
 await _s3ActionsWrapper.DeleteBucketByName(bucketName);
 }

 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you might
 incur unexpected charges."
);
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

Scenarios 1465

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Helper method to get a choice response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <param name="choices">The choices to print on the console.</param>
 /// <returns>The index of the selected choice</returns>
 private static int GetChoiceResponse(string? question, string[] choices)
 {
 if (question != null)
 {
 Console.WriteLine(question);

 for (int i = 0; i < choices.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {choices[i]}");
 }
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > choices.Length)
 {
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 return choiceNumber - 1;
 }
}

A wrapper class for S3 functions.

using System.Net;
using Amazon.S3;
using Amazon.S3.Model;
using Microsoft.Extensions.Configuration;

namespace S3ObjectLockScenario;

/// <summary>
/// Encapsulate the Amazon S3 operations.
/// </summary>

Scenarios 1466

AWS SDK for .NET Developer Guide

public class S3ActionsWrapper
{
 private readonly IAmazonS3 _amazonS3;

 /// <summary>
 /// Constructor for the S3ActionsWrapper.
 /// </summary>
 /// <param name="amazonS3">The injected S3 client.</param>
 public S3ActionsWrapper(IAmazonS3 amazonS3, IConfiguration configuration)
 {
 _amazonS3 = amazonS3;
 }

 /// <summary>
 /// Create a new Amazon S3 bucket with object lock actions.
 /// </summary>
 /// <param name="bucketName">The name of the bucket to create.</param>
 /// <param name="enableObjectLock">True to enable object lock on the bucket.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateBucketWithObjectLock(string bucketName, bool
 enableObjectLock)
 {
 Console.WriteLine($"\tCreating bucket {bucketName} with object lock
 {enableObjectLock}.");
 try
 {
 var request = new PutBucketRequest
 {
 BucketName = bucketName,
 UseClientRegion = true,
 ObjectLockEnabledForBucket = enableObjectLock,
 };

 var response = await _amazonS3.PutBucketAsync(request);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error creating bucket: '{ex.Message}'");
 return false;
 }
 }

Scenarios 1467

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Enable object lock on an existing bucket.
 /// </summary>
 /// <param name="bucketName">The name of the bucket to modify.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> EnableObjectLockOnBucket(string bucketName)
 {
 try
 {
 // First, enable Versioning on the bucket.
 await _amazonS3.PutBucketVersioningAsync(new
 PutBucketVersioningRequest()
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig()
 {
 EnableMfaDelete = false,
 Status = VersionStatus.Enabled
 }
 });

 var request = new PutObjectLockConfigurationRequest()
 {
 BucketName = bucketName,
 ObjectLockConfiguration = new ObjectLockConfiguration()
 {
 ObjectLockEnabled = new ObjectLockEnabled("Enabled"),
 },
 };

 var response = await _amazonS3.PutObjectLockConfigurationAsync(request);
 Console.WriteLine($"\tAdded an object lock policy to bucket
 {bucketName}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error modifying object lock: '{ex.Message}'");
 return false;
 }
 }

 /// <summary>

Scenarios 1468

AWS SDK for .NET Developer Guide

 /// Set or modify a retention period on an object in an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The key of the object.</param>
 /// <param name="retention">The retention mode.</param>
 /// <param name="retainUntilDate">The date retention expires.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ModifyObjectRetentionPeriod(string bucketName,
 string objectKey, ObjectLockRetentionMode retention, DateTime
 retainUntilDate)
 {
 try
 {
 var request = new PutObjectRetentionRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 Retention = new ObjectLockRetention()
 {
 Mode = retention,
 RetainUntilDate = retainUntilDate
 }
 };

 var response = await _amazonS3.PutObjectRetentionAsync(request);
 Console.WriteLine($"\tSet retention for {objectKey} in {bucketName}
 until {retainUntilDate:d}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tError modifying retention period:
 '{ex.Message}'");
 return false;
 }
 }

 /// <summary>
 /// Set or modify a retention period on an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket to modify.</param>
 /// <param name="retention">The retention mode.</param>
 /// <param name="retainUntilDate">The date for retention until.</param>
 /// <returns>True if successful.</returns>

Scenarios 1469

AWS SDK for .NET Developer Guide

 public async Task<bool> ModifyBucketDefaultRetention(string bucketName, bool
 enableObjectLock, ObjectLockRetentionMode retention, DateTime retainUntilDate)
 {
 var enabledString = enableObjectLock ? "Enabled" : "Disabled";
 var timeDifference = retainUntilDate.Subtract(DateTime.Now);
 try
 {
 // First, enable Versioning on the bucket.
 await _amazonS3.PutBucketVersioningAsync(new
 PutBucketVersioningRequest()
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig()
 {
 EnableMfaDelete = false,
 Status = VersionStatus.Enabled
 }
 });

 var request = new PutObjectLockConfigurationRequest()
 {
 BucketName = bucketName,
 ObjectLockConfiguration = new ObjectLockConfiguration()
 {
 ObjectLockEnabled = new ObjectLockEnabled(enabledString),
 Rule = new ObjectLockRule()
 {
 DefaultRetention = new DefaultRetention()
 {
 Mode = retention,
 Days = timeDifference.Days // Can be specified in days
 or years but not both.
 }
 }
 }
 };

 var response = await _amazonS3.PutObjectLockConfigurationAsync(request);
 Console.WriteLine($"\tAdded a default retention to bucket
 {bucketName}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {

Scenarios 1470

AWS SDK for .NET Developer Guide

 Console.WriteLine($"\tError modifying object lock: '{ex.Message}'");
 return false;
 }
 }

 /// <summary>
 /// Get the retention period for an S3 object.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The object key.</param>
 /// <returns>The object retention details.</returns>
 public async Task<ObjectLockRetention> GetObjectRetention(string bucketName,
 string objectKey)
 {
 try
 {
 var request = new GetObjectRetentionRequest()
 {
 BucketName = bucketName,
 Key = objectKey
 };

 var response = await _amazonS3.GetObjectRetentionAsync(request);
 Console.WriteLine($"\tObject retention for {objectKey} in {bucketName}:
 " +
 $"\n\t{response.Retention.Mode} until
 {response.Retention.RetainUntilDate:d}.");
 return response.Retention;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to fetch object lock retention:
 '{ex.Message}'");
 return new ObjectLockRetention();
 }
 }

 /// <summary>
 /// Set or modify a legal hold on an object in an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The key of the object.</param>
 /// <param name="holdStatus">The On or Off status for the legal hold.</param>
 /// <returns>True if successful.</returns>

Scenarios 1471

AWS SDK for .NET Developer Guide

 public async Task<bool> ModifyObjectLegalHold(string bucketName,
 string objectKey, ObjectLockLegalHoldStatus holdStatus)
 {
 try
 {
 var request = new PutObjectLegalHoldRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 LegalHold = new ObjectLockLegalHold()
 {
 Status = holdStatus
 }
 };

 var response = await _amazonS3.PutObjectLegalHoldAsync(request);
 Console.WriteLine($"\tModified legal hold for {objectKey} in
 {bucketName}.");
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tError modifying legal hold: '{ex.Message}'");
 return false;
 }
 }

 /// <summary>
 /// Get the legal hold details for an S3 object.
 /// </summary>
 /// <param name="bucketName">The bucket of the object.</param>
 /// <param name="objectKey">The object key.</param>
 /// <returns>The object legal hold details.</returns>
 public async Task<ObjectLockLegalHold> GetObjectLegalHold(string bucketName,
 string objectKey)
 {
 try
 {
 var request = new GetObjectLegalHoldRequest()
 {
 BucketName = bucketName,
 Key = objectKey
 };

Scenarios 1472

AWS SDK for .NET Developer Guide

 var response = await _amazonS3.GetObjectLegalHoldAsync(request);
 Console.WriteLine($"\tObject legal hold for {objectKey} in {bucketName}:
 " +
 $"\n\tStatus: {response.LegalHold.Status}");
 return response.LegalHold;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to fetch legal hold: '{ex.Message}'");
 return new ObjectLockLegalHold();
 }
 }

 /// <summary>
 /// Get the object lock configuration details for an S3 bucket.
 /// </summary>
 /// <param name="bucketName">The bucket to get details.</param>
 /// <returns>The bucket's object lock configuration details.</returns>
 public async Task<ObjectLockConfiguration>
 GetBucketObjectLockConfiguration(string bucketName)
 {
 try
 {
 var request = new GetObjectLockConfigurationRequest()
 {
 BucketName = bucketName
 };

 var response = await _amazonS3.GetObjectLockConfigurationAsync(request);
 Console.WriteLine($"\tBucket object lock config for {bucketName} in
 {bucketName}: " +
 $"\n\tEnabled:
 {response.ObjectLockConfiguration.ObjectLockEnabled}" +
 $"\n\tRule:
 {response.ObjectLockConfiguration.Rule?.DefaultRetention}");

 return response.ObjectLockConfiguration;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to fetch object lock config:
 '{ex.Message}'");
 return new ObjectLockConfiguration();
 }

Scenarios 1473

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Upload a file from the local computer to an Amazon S3 bucket.
 /// </summary>
 /// <param name="bucketName">The Amazon S3 bucket to use.</param>
 /// <param name="objectName">The object to upload.</param>
 /// <param name="filePath">The path, including file name, of the object to
 upload.</param>
 /// <returns>True if success.<returns>
 public async Task<bool> UploadFileAsync(string bucketName, string objectName,
 string filePath)
 {
 var request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = objectName,
 FilePath = filePath,
 ChecksumAlgorithm = ChecksumAlgorithm.SHA256
 };

 var response = await _amazonS3.PutObjectAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"\tSuccessfully uploaded {objectName} to
 {bucketName}.");
 return true;
 }
 else
 {
 Console.WriteLine($"\tCould not upload {objectName} to {bucketName}.");
 return false;
 }
 }

 /// <summary>
 /// List bucket objects and versions.
 /// </summary>
 /// <param name="bucketName">The Amazon S3 bucket to use.</param>
 /// <returns>The list of objects and versions.</returns>
 public async Task<ListVersionsResponse> ListBucketObjectsAndVersions(string
 bucketName)
 {
 var request = new ListVersionsRequest()

Scenarios 1474

AWS SDK for .NET Developer Guide

 {
 BucketName = bucketName
 };

 var response = await _amazonS3.ListVersionsAsync(request);
 return response;
 }

 /// <summary>
 /// Delete an object from a specific bucket.
 /// </summary>
 /// <param name="bucketName">The Amazon S3 bucket to use.</param>
 /// <param name="objectKey">The key of the object to delete.</param>
 /// <param name="hasRetention">True if the object has retention settings.</
param>
 /// <param name="versionId">Optional versionId.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteObjectFromBucket(string bucketName, string
 objectKey, bool hasRetention, string? versionId = null)
 {
 try
 {
 var request = new DeleteObjectRequest()
 {
 BucketName = bucketName,
 Key = objectKey,
 VersionId = versionId,
 };
 if (hasRetention)
 {
 // Set the BypassGovernanceRetention header
 // if the file has retention settings.
 request.BypassGovernanceRetention = true;
 }
 await _amazonS3.DeleteObjectAsync(request);
 Console.WriteLine(
 $"Deleted {objectKey} in {bucketName}.");
 return true;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to delete object {objectKey} in bucket
 {bucketName}: " + ex.Message);
 return false;

Scenarios 1475

AWS SDK for .NET Developer Guide

 }
 }

 /// <summary>
 /// Delete a specific bucket.
 /// </summary>
 /// <param name="bucketName">The Amazon S3 bucket to use.</param>
 /// <param name="objectKey">The key of the object to delete.</param>
 /// <param name="versionId">Optional versionId.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteBucketByName(string bucketName)
 {
 try
 {
 var request = new DeleteBucketRequest() { BucketName = bucketName, };
 var response = await _amazonS3.DeleteBucketAsync(request);
 Console.WriteLine($"\tDelete for {bucketName} complete.");
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to delete bucket {bucketName}: " +
 ex.Message);
 return false;
 }

 }

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• GetObjectLegalHold

• GetObjectLockConfiguration

• GetObjectRetention

• PutObjectLegalHold

• PutObjectLockConfiguration

• PutObjectRetention

Scenarios 1476

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectLegalHold
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectLockConfiguration
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectRetention
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectLegalHold
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectLockConfiguration
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectRetention

AWS SDK for .NET Developer Guide

Make conditional requests

The following code example shows how to add preconditions to Amazon S3 requests.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario demonstrating Amazon S3 conditional request features.

using Amazon.S3;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

namespace S3ConditionalRequestsScenario;

public static class S3ConditionalRequestsScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This example demonstrates the use of conditional requests for S3 operations.
 You can use conditional requests to add preconditions to S3 read requests to
 return or copy
 an object based on its Entity tag (ETag), or last modified date.
 You can use a conditional write requests to prevent overwrites by ensuring
 there is no existing object with the same key.
 */

 public static S3ActionsWrapper _s3ActionsWrapper = null!;
 public static IConfiguration _configuration = null!;
 public static string _resourcePrefix = null!;
 public static string _sourceBucketName = null!;

Scenarios 1477

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/scenarios/S3ConditionalRequestsScenario#code-examples

AWS SDK for .NET Developer Guide

 public static string _destinationBucketName = null!;
 public static string _sampleObjectKey = null!;
 public static string _sampleObjectEtag = null!;
 public static bool _interactive = true;

 public static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonS3>()
 .AddTransient<S3ActionsWrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.
 .Build();

 ServicesSetup(host);

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon Simple Storage Service (S3)
 Conditional Requests Feature Scenario.");
 Console.WriteLine(new string('-', 80));
 ConfigurationSetup();
 _sampleObjectEtag = await Setup(_sourceBucketName,
 _destinationBucketName, _sampleObjectKey);

 await DisplayDemoChoices(_sourceBucketName, _destinationBucketName,
 _sampleObjectKey, _sampleObjectEtag, 0);

 Console.WriteLine(new string('-', 80));

Scenarios 1478

AWS SDK for .NET Developer Guide

 Console.WriteLine("Cleaning up resources.");
 Console.WriteLine(new string('-', 80));
 await Cleanup(true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Amazon S3 Conditional Requests Feature Scenario is
 complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem: {ex.Message}");
 await CleanupScenario(_sourceBucketName, _destinationBucketName);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _s3ActionsWrapper = host.Services.GetRequiredService<S3ActionsWrapper>();
 }

 /// <summary>
 /// Any setup operations needed.
 /// </summary>
 public static void ConfigurationSetup()
 {
 _resourcePrefix = _configuration["resourcePrefix"] ?? "dotnet-example";

 _sourceBucketName = _resourcePrefix + "-source";
 _destinationBucketName = _resourcePrefix + "-dest";
 _sampleObjectKey = _resourcePrefix + "-sample-object.txt";
 }

 /// <summary>
 /// Sets up the scenario by creating a source and destination bucket, and
 uploading a test file to the source bucket.
 /// </summary>
 /// <param name="sourceBucket">The name of the source bucket.</param>

Scenarios 1479

AWS SDK for .NET Developer Guide

 /// <param name="destBucket">The name of the destination bucket.</param>
 /// <param name="objectKey">The name of the test file to add to the source
 bucket.</param>
 /// <returns>The ETag of the uploaded test file.</returns>
 public static async Task<string> Setup(string sourceBucket, string destBucket,
 string objectKey)
 {
 Console.WriteLine(
 "\nFor this scenario, we will use the AWS SDK for .NET to create several
 S3\n" +
 "buckets and files to demonstrate working with S3 conditional requests.
\n" +
 "This example demonstrates the use of conditional requests for S3
 operations.\r\n" +
 "You can use conditional requests to add preconditions to S3 read
 requests to return or copy\r\n" +
 "an object based on its Entity tag (ETag), or last modified date. \r\n"
 +
 "You can use a conditional write requests to prevent overwrites by
 ensuring \r\n" +
 "there is no existing object with the same key. \r\n\r\n" +
 "This example will allow you to perform conditional reads\r\n" +
 "and writes that will succeed or fail based on your selected options.\r
\n\r\n" +
 "Sample buckets and a sample object will be created as part of the
 example.");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Press Enter when you are ready to start.");
 if (_interactive)
 Console.ReadLine();

 await _s3ActionsWrapper.CreateBucketWithName(sourceBucket);
 await _s3ActionsWrapper.CreateBucketWithName(destBucket);

 var eTag = await _s3ActionsWrapper.PutObjectConditional(objectKey,
 sourceBucket,
 "Test file content.");

 return eTag;
 }

 /// <summary>
 /// Cleans up the scenario by deleting the source and destination buckets.

Scenarios 1480

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="sourceBucket">The name of the source bucket.</param>
 /// <param name="destBucket">The name of the destination bucket.</param>
 public static async Task CleanupScenario(string sourceBucket, string destBucket)
 {
 await _s3ActionsWrapper.CleanupBucketByName(sourceBucket);
 await _s3ActionsWrapper.CleanupBucketByName(destBucket);
 }

 /// <summary>
 /// Displays a list of the objects in the test buckets.
 /// </summary>
 /// <param name="sourceBucket">The name of the source bucket.</param>
 /// <param name="destBucket">The name of the destination bucket.</param>
 public static async Task DisplayBuckets(string sourceBucket, string destBucket)
 {
 await _s3ActionsWrapper.ListBucketContentsByName(sourceBucket);
 await _s3ActionsWrapper.ListBucketContentsByName(destBucket);
 }

 /// <summary>
 /// Displays the menu of conditional request options for the user.
 /// </summary>
 /// <param name="sourceBucket">The name of the source bucket.</param>
 /// <param name="destBucket">The name of the destination bucket.</param>
 /// <param name="objectKey">The key of the test object in the source bucket.</
param>
 /// <param name="etag">The ETag of the test object in the source bucket.</param>
 public static async Task DisplayDemoChoices(string sourceBucket, string
 destBucket, string objectKey, string etag, int defaultChoice)
 {
 var actions = new[]
 {
 "Print a list of bucket items.",
 "Perform a conditional read.",
 "Perform a conditional copy.",
 "Perform a conditional write.",
 "Clean up and exit."
 };

 var conditions = new[]
 {
 "If-Match: using the object's ETag. This condition should succeed.",
 "If-None-Match: using the object's ETag. This condition should fail.",

Scenarios 1481

AWS SDK for .NET Developer Guide

 "If-Modified-Since: using yesterday's date. This condition should
 succeed.",
 "If-Unmodified-Since: using yesterday's date. This condition should
 fail."
 };

 var conditionTypes = new[]
 {
 S3ConditionType.IfMatch,
 S3ConditionType.IfNoneMatch,
 S3ConditionType.IfModifiedSince,
 S3ConditionType.IfUnmodifiedSince,
 };

 var yesterdayDate = DateTime.UtcNow.AddDays(-1);

 int choice;
 while ((choice = GetChoiceResponse("\nExplore the S3 conditional request
 features by selecting one of the following choices:", actions, defaultChoice)) !=
 4)
 {
 switch (choice)
 {
 case 0:
 Console.WriteLine("Listing the objects and buckets.");
 await DisplayBuckets(sourceBucket, destBucket);
 break;
 case 1:
 int conditionTypeIndex = GetChoiceResponse("Perform a
 conditional read:", conditions, 1);
 if (conditionTypeIndex == 0 || conditionTypeIndex == 1)
 {
 await _s3ActionsWrapper.GetObjectConditional(objectKey,
 sourceBucket, conditionTypes[conditionTypeIndex], null, _sampleObjectEtag);
 }
 else if (conditionTypeIndex == 2 || conditionTypeIndex == 3)
 {
 await _s3ActionsWrapper.GetObjectConditional(objectKey,
 sourceBucket, conditionTypes[conditionTypeIndex], yesterdayDate);
 }
 break;
 case 2:
 int copyConditionTypeIndex = GetChoiceResponse("Perform a
 conditional copy:", conditions, 1);

Scenarios 1482

AWS SDK for .NET Developer Guide

 string destKey = GetStringResponse("Enter an object key:",
 "sampleObjectKey");
 if (copyConditionTypeIndex == 0 || copyConditionTypeIndex == 1)
 {
 await _s3ActionsWrapper.CopyObjectConditional(objectKey,
 destKey, sourceBucket, destBucket, conditionTypes[copyConditionTypeIndex], null,
 etag);
 }
 else if (copyConditionTypeIndex == 2 || copyConditionTypeIndex
 == 3)
 {
 await _s3ActionsWrapper.CopyObjectConditional(objectKey,
 destKey, sourceBucket, destBucket, conditionTypes[copyConditionTypeIndex],
 yesterdayDate);
 }
 break;
 case 3:
 Console.WriteLine("Perform a conditional write using IfNoneMatch
 condition on the object key.");
 Console.WriteLine("If the key is a duplicate, the write will
 fail.");
 string newObjectKey = GetStringResponse("Enter an object key:",
 "newObjectKey");
 await _s3ActionsWrapper.PutObjectConditional(newObjectKey,
 sourceBucket, "Conditional write example data.");
 break;
 }

 if (!_interactive)
 {
 break;
 }
 }

 Console.WriteLine("Proceeding to cleanup.");
 }

 // <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="interactive">True to run as interactive.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> Cleanup(bool interactive)
 {

Scenarios 1483

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('-', 80));

 if (!interactive || GetYesNoResponse("Do you want to clean up all files and
 buckets? (y/n) "))
 {
 await _s3ActionsWrapper.CleanUpBucketByName(_sourceBucketName);
 await _s3ActionsWrapper.CleanUpBucketByName(_destinationBucketName);

 }
 else
 {
 Console.WriteLine(
 "Ok, we'll leave the resources intact.\n" +
 "Don't forget to delete them when you're done with them or you might
 incur unexpected charges."
);
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

 /// <summary>
 /// Helper method to get a choice response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <param name="choices">The choices to print on the console.</param>
 /// <returns>The index of the selected choice</returns>
 private static int GetChoiceResponse(string? question, string[] choices, int
 defaultChoice)

Scenarios 1484

AWS SDK for .NET Developer Guide

 {
 if (question != null)
 {
 Console.WriteLine(question);

 for (int i = 0; i < choices.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {choices[i]}");
 }
 }

 if (!_interactive)
 return defaultChoice;

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > choices.Length)
 {
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 return choiceNumber - 1;
 }

 /// <summary>
 /// Get a string response from the user.
 /// </summary>
 /// <param name="question">The question to print.</param>
 /// <param name="defaultAnswer">A default answer to use when not interactive.</
param>
 /// <returns>The string response.</returns>
 public static string GetStringResponse(string? question, string defaultAnswer)
 {
 string? answer = "";
 if (_interactive)
 {
 do
 {
 Console.WriteLine(question);
 answer = Console.ReadLine();
 } while (string.IsNullOrWhiteSpace(answer));
 }
 else
 {

Scenarios 1485

AWS SDK for .NET Developer Guide

 answer = defaultAnswer;
 }

 return answer;
 }
}

A wrapper class for S3 functions.

using System.Net;
using Amazon.S3;
using Amazon.S3.Model;
using Microsoft.Extensions.Logging;

namespace S3ConditionalRequestsScenario;

/// <summary>
/// Encapsulate the Amazon S3 operations.
/// </summary>
public class S3ActionsWrapper
{
 private readonly IAmazonS3 _amazonS3;
 private readonly ILogger<S3ActionsWrapper> _logger;

 /// <summary>
 /// Constructor for the S3ActionsWrapper.
 /// </summary>
 /// <param name="amazonS3">The injected S3 client.</param>
 /// <param name="logger">The class logger.</param>
 public S3ActionsWrapper(IAmazonS3 amazonS3, ILogger<S3ActionsWrapper> logger)
 {
 _amazonS3 = amazonS3;
 _logger = logger;
 }

 /// <summary>
 /// Retrieves an object from Amazon S3 with a conditional request.
 /// </summary>
 /// <param name="objectKey">The key of the object to retrieve.</param>
 /// <param name="sourceBucket">The source bucket of the object.</param>

Scenarios 1486

AWS SDK for .NET Developer Guide

 /// <param name="conditionType">The type of condition: 'IfMatch', 'IfNoneMatch',
 'IfModifiedSince', 'IfUnmodifiedSince'.</param>
 /// <param name="conditionDateValue">The value to use for the condition for
 dates.</param>
 /// <param name="etagConditionalValue">The value to use for the condition for
 etags.</param>
 /// <returns>True if the conditional read is successful, False otherwise.</
returns>
 public async Task<bool> GetObjectConditional(string objectKey, string
 sourceBucket,
 S3ConditionType conditionType, DateTime? conditionDateValue = null, string?
 etagConditionalValue = null)
 {
 try
 {
 var getObjectRequest = new GetObjectRequest
 {
 BucketName = sourceBucket,
 Key = objectKey
 };

 switch (conditionType)
 {
 case S3ConditionType.IfMatch:
 getObjectRequest.EtagToMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfNoneMatch:
 getObjectRequest.EtagToNotMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfModifiedSince:
 getObjectRequest.ModifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 case S3ConditionType.IfUnmodifiedSince:
 getObjectRequest.UnmodifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 default:
 throw new ArgumentOutOfRangeException(nameof(conditionType),
 conditionType, null);
 }

 var response = await _amazonS3.GetObjectAsync(getObjectRequest);
 var sampleBytes = new byte[20];

Scenarios 1487

AWS SDK for .NET Developer Guide

 await response.ResponseStream.ReadAsync(sampleBytes, 0, 20);
 _logger.LogInformation($"Conditional read successful. Here are the first
 20 bytes of the object:\n{System.Text.Encoding.UTF8.GetString(sampleBytes)}");
 return true;
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "PreconditionFailed")
 {
 _logger.LogError("Conditional read failed: Precondition failed");
 }
 else if (e.ErrorCode == "NotModified")
 {
 _logger.LogError("Conditional read failed: Object not modified");
 }
 else
 {
 _logger.LogError($"Unexpected error: {e.ErrorCode}");
 throw;
 }
 return false;
 }
 }

 /// <summary>
 /// Uploads an object to Amazon S3 with a conditional request. Prevents
 overwrite using an IfNoneMatch condition for the object key.
 /// </summary>
 /// <param name="objectKey">The key of the object to upload.</param>
 /// <param name="bucket">The source bucket of the object.</param>
 /// <param name="content">The content to upload as a string.</param>
 /// <returns>The ETag if the conditional write is successful, empty otherwise.</
returns>
 public async Task<string> PutObjectConditional(string objectKey, string bucket,
 string content)
 {
 try
 {
 var putObjectRequest = new PutObjectRequest
 {
 BucketName = bucket,
 Key = objectKey,
 ContentBody = content,
 IfNoneMatch = "*"

Scenarios 1488

AWS SDK for .NET Developer Guide

 };

 var putResult = await _amazonS3.PutObjectAsync(putObjectRequest);
 _logger.LogInformation($"Conditional write successful for key
 {objectKey} in bucket {bucket}.");
 return putResult.ETag;
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "PreconditionFailed")
 {
 _logger.LogError("Conditional write failed: Precondition failed");
 }
 else
 {
 _logger.LogError($"Unexpected error: {e.ErrorCode}");
 throw;
 }
 return string.Empty;
 }
 }

 /// <summary>
 /// Copies an object from one Amazon S3 bucket to another with a conditional
 request.
 /// </summary>
 /// <param name="sourceKey">The key of the source object to copy.</param>
 /// <param name="destKey">The key of the destination object.</param>
 /// <param name="sourceBucket">The source bucket of the object.</param>
 /// <param name="destBucket">The destination bucket of the object.</param>
 /// <param name="conditionType">The type of condition to apply, e.g.
 'CopySourceIfMatch', 'CopySourceIfNoneMatch', 'CopySourceIfModifiedSince',
 'CopySourceIfUnmodifiedSince'.</param>
 /// <param name="conditionDateValue">The value to use for the condition for
 dates.</param>
 /// <param name="etagConditionalValue">The value to use for the condition for
 etags.</param>
 /// <returns>True if the conditional copy is successful, False otherwise.</
returns>
 public async Task<bool> CopyObjectConditional(string sourceKey, string destKey,
 string sourceBucket, string destBucket,
 S3ConditionType conditionType, DateTime? conditionDateValue = null, string?
 etagConditionalValue = null)
 {

Scenarios 1489

AWS SDK for .NET Developer Guide

 try
 {
 var copyObjectRequest = new CopyObjectRequest
 {
 DestinationBucket = destBucket,
 DestinationKey = destKey,
 SourceBucket = sourceBucket,
 SourceKey = sourceKey
 };

 switch (conditionType)
 {
 case S3ConditionType.IfMatch:
 copyObjectRequest.ETagToMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfNoneMatch:
 copyObjectRequest.ETagToNotMatch = etagConditionalValue;
 break;
 case S3ConditionType.IfModifiedSince:
 copyObjectRequest.ModifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 case S3ConditionType.IfUnmodifiedSince:
 copyObjectRequest.UnmodifiedSinceDateUtc =
 conditionDateValue.GetValueOrDefault();
 break;
 default:
 throw new ArgumentOutOfRangeException(nameof(conditionType),
 conditionType, null);
 }

 await _amazonS3.CopyObjectAsync(copyObjectRequest);
 _logger.LogInformation($"Conditional copy successful for key {destKey}
 in bucket {destBucket}.");
 return true;
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "PreconditionFailed")
 {
 _logger.LogError("Conditional copy failed: Precondition failed");
 }
 else if (e.ErrorCode == "304")
 {

Scenarios 1490

AWS SDK for .NET Developer Guide

 _logger.LogError("Conditional copy failed: Object not modified");
 }
 else
 {
 _logger.LogError($"Unexpected error: {e.ErrorCode}");
 throw;
 }
 return false;
 }
 }

 /// <summary>
 /// Create a new Amazon S3 bucket with a specified name and check that the
 bucket is ready.
 /// </summary>
 /// <param name="bucketName">The name of the bucket to create.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateBucketWithName(string bucketName)
 {
 Console.WriteLine($"\tCreating bucket {bucketName}.");
 try
 {
 var request = new PutBucketRequest
 {
 BucketName = bucketName,
 UseClientRegion = true
 };

 await _amazonS3.PutBucketAsync(request);
 var bucketReady = false;
 var retries = 5;
 while (!bucketReady && retries > 0)
 {
 Thread.Sleep(5000);
 bucketReady = await
 Amazon.S3.Util.AmazonS3Util.DoesS3BucketExistV2Async(_amazonS3, bucketName);
 retries--;
 }

 return bucketReady;
 }
 catch (BucketAlreadyExistsException ex)
 {
 Console.WriteLine($"Bucket already exists: '{ex.Message}'");

Scenarios 1491

AWS SDK for .NET Developer Guide

 return true;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error creating bucket: '{ex.Message}'");
 return false;
 }
 }

 /// <summary>
 /// Cleans up objects and deletes the bucket by name.
 /// </summary>
 /// <param name="bucketName">The name of the bucket.</param>
 /// <returns>Async task.</returns>
 public async Task CleanupBucketByName(string bucketName)
 {
 try
 {
 var listObjectsResponse = await _amazonS3.ListObjectsV2Async(new
 ListObjectsV2Request { BucketName = bucketName });
 foreach (var obj in listObjectsResponse.S3Objects)
 {
 await _amazonS3.DeleteObjectAsync(new DeleteObjectRequest
 { BucketName = bucketName, Key = obj.Key });
 }
 await _amazonS3.DeleteBucketAsync(new DeleteBucketRequest { BucketName =
 bucketName });
 Console.WriteLine($"Cleaned up bucket: {bucketName}.");
 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "NoSuchBucket")
 {
 Console.WriteLine($"Bucket {bucketName} does not exist, skipping
 cleanup.");
 }
 else
 {
 Console.WriteLine($"Error deleting bucket: {e.ErrorCode}");
 throw;
 }
 }
 }

Scenarios 1492

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List the contents of the bucket with their ETag.
 /// </summary>
 /// <param name="bucketName">The name of the bucket.</param>
 /// <returns>Async task.</returns>
 public async Task<List<S3Object>> ListBucketContentsByName(string bucketName)
 {
 var results = new List<S3Object>();
 try
 {
 Console.WriteLine($"\t Items in bucket {bucketName}");
 var listObjectsResponse = await _amazonS3.ListObjectsV2Async(new
 ListObjectsV2Request { BucketName = bucketName });
 if (listObjectsResponse.S3Objects.Count == 0)
 {
 Console.WriteLine("\t\tNo objects found.");
 }
 else
 {
 foreach (var obj in listObjectsResponse.S3Objects)
 {
 Console.WriteLine($"\t\t object: {obj.Key} ETag {obj.ETag}");
 }
 }
 results = listObjectsResponse.S3Objects;

 }
 catch (AmazonS3Exception e)
 {
 if (e.ErrorCode == "NoSuchBucket")
 {
 _logger.LogError($"Bucket {bucketName} does not exist.");
 }
 else
 {
 _logger.LogError($"Error listing bucket and objects:
 {e.ErrorCode}");
 throw;
 }
 }

 return results;
 }

Scenarios 1493

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an object from a specific bucket.
 /// </summary>
 /// <param name="bucketName">The Amazon S3 bucket to use.</param>
 /// <param name="objectKey">The key of the object to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteObjectFromBucket(string bucketName, string
 objectKey)
 {
 try
 {
 var request = new DeleteObjectRequest()
 {
 BucketName = bucketName,
 Key = objectKey
 };
 await _amazonS3.DeleteObjectAsync(request);
 Console.WriteLine($"Deleted {objectKey} in {bucketName}.");
 return true;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to delete object {objectKey} in bucket
 {bucketName}: " + ex.Message);
 return false;
 }
 }

 /// <summary>
 /// Delete a specific bucket by deleting the objects and then the bucket itself.
 /// </summary>
 /// <param name="bucketName">The Amazon S3 bucket to use.</param>
 /// <param name="objectKey">The key of the object to delete.</param>
 /// <param name="versionId">Optional versionId.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CleanUpBucketByName(string bucketName)
 {
 try
 {
 var allFiles = await ListBucketContentsByName(bucketName);

 foreach (var fileInfo in allFiles)
 {
 await DeleteObjectFromBucket(fileInfo.BucketName, fileInfo.Key);

Scenarios 1494

AWS SDK for .NET Developer Guide

 }

 var request = new DeleteBucketRequest() { BucketName = bucketName, };
 var response = await _amazonS3.DeleteBucketAsync(request);
 Console.WriteLine($"\tDelete for {bucketName} complete.");
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"\tUnable to delete bucket {bucketName}: " +
 ex.Message);
 return false;
 }

 }

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CopyObject

• GetObject

• PutObject

Manage access control lists (ACLs)

The following code example shows how to manage access control lists (ACLs) for Amazon S3
buckets.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;

Scenarios 1495

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CopyObject
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObject
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObject
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/ManageACLsExample#code-examples

AWS SDK for .NET Developer Guide

 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to manage Amazon Simple Storage Service
 /// (Amazon S3) access control lists (ACLs) to control Amazon S3 bucket
 /// access.
 /// </summary>
 public class ManageACLs
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket1";
 string newBucketName = "amzn-s3-demo-bucket2";
 string keyName = "sample-object.txt";
 string emailAddress = "someone@example.com";

 // If the AWS Region where your bucket is located is different from
 // the Region defined for the default user, pass the Amazon S3 bucket's
 // name to the client constructor. It should look like this:
 // RegionEndpoint bucketRegion = RegionEndpoint.USEast1;
 IAmazonS3 client = new AmazonS3Client();

 await TestBucketObjectACLsAsync(client, bucketName, newBucketName,
 keyName, emailAddress);
 }

 /// <summary>
 /// Creates a new Amazon S3 bucket with a canned ACL, then retrieves the ACL
 /// information and then adds a new ACL to one of the objects in the
 /// Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 call
 /// methods to create a bucket, get an ACL, and add a different ACL to
 /// one of the objects.</param>
 /// <param name="bucketName">A string representing the original Amazon S3
 /// bucket name.</param>
 /// <param name="newBucketName">A string representing the name of the
 /// new bucket that will be created.</param>
 /// <param name="keyName">A string representing the key name of an Amazon S3
 /// object for which we will change the ACL.</param>
 /// <param name="emailAddress">A string representing the email address
 /// belonging to the person to whom access to the Amazon S3 bucket will be

Scenarios 1496

AWS SDK for .NET Developer Guide

 /// granted.</param>
 public static async Task TestBucketObjectACLsAsync(
 IAmazonS3 client,
 string bucketName,
 string newBucketName,
 string keyName,
 string emailAddress)
 {
 try
 {
 // Create a new Amazon S3 bucket and specify canned ACL.
 var success = await CreateBucketWithCannedACLAsync(client,
 newBucketName);

 // Get the ACL on a bucket.
 await GetBucketACLAsync(client, bucketName);

 // Add (replace) the ACL on an object in a bucket.
 await AddACLToExistingObjectAsync(client, bucketName, keyName,
 emailAddress);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine($"Exception: {amazonS3Exception.Message}");
 }
 }

 /// <summary>
 /// Creates a new Amazon S3 bucket with a canned ACL attached.
 /// </summary>
 /// <param name="client">The initialized client object used to call
 /// PutBucketAsync.</param>
 /// <param name="newBucketName">A string representing the name of the
 /// new Amazon S3 bucket.</param>
 /// <returns>Returns a boolean value indicating success or failure.</
returns>
 public static async Task<bool> CreateBucketWithCannedACLAsync(IAmazonS3
 client, string newBucketName)
 {
 var request = new PutBucketRequest()
 {
 BucketName = newBucketName,
 BucketRegion = S3Region.EUWest1,

Scenarios 1497

AWS SDK for .NET Developer Guide

 // Add a canned ACL.
 CannedACL = S3CannedACL.LogDeliveryWrite,
 };

 var response = await client.PutBucketAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Retrieves the ACL associated with the Amazon S3 bucket name in the
 /// bucketName parameter.
 /// </summary>
 /// <param name="client">The initialized client object used to call
 /// PutBucketAsync.</param>
 /// <param name="bucketName">The Amazon S3 bucket for which we want to get
 the
 /// ACL list.</param>
 /// <returns>Returns an S3AccessControlList returned from the call to
 /// GetACLAsync.</returns>
 public static async Task<S3AccessControlList> GetBucketACLAsync(IAmazonS3
 client, string bucketName)
 {
 GetACLResponse response = await client.GetACLAsync(new GetACLRequest
 {
 BucketName = bucketName,
 });

 return response.AccessControlList;
 }

 /// <summary>
 /// Adds a new ACL to an existing object in the Amazon S3 bucket.
 /// </summary>
 /// <param name="client">The initialized client object used to call
 /// PutBucketAsync.</param>
 /// <param name="bucketName">A string representing the name of the Amazon S3
 /// bucket containing the object to which we want to apply a new ACL.</
param>
 /// <param name="keyName">A string representing the name of the object
 /// to which we want to apply the new ACL.</param>
 /// <param name="emailAddress">The email address of the person to whom

Scenarios 1498

AWS SDK for .NET Developer Guide

 /// we will be applying to whom access will be granted.</param>
 public static async Task AddACLToExistingObjectAsync(IAmazonS3 client,
 string bucketName, string keyName, string emailAddress)
 {
 // Retrieve the ACL for an object.
 GetACLResponse aclResponse = await client.GetACLAsync(new GetACLRequest
 {
 BucketName = bucketName,
 Key = keyName,
 });

 S3AccessControlList acl = aclResponse.AccessControlList;

 // Retrieve the owner.
 Owner owner = acl.Owner;

 // Clear existing grants.
 acl.Grants.Clear();

 // Add a grant to reset the owner's full permission
 // (the previous clear statement removed all permissions).
 var fullControlGrant = new S3Grant
 {
 Grantee = new S3Grantee { CanonicalUser = acl.Owner.Id },
 };
 acl.AddGrant(fullControlGrant.Grantee, S3Permission.FULL_CONTROL);

 // Specify email to identify grantee for granting permissions.
 var grantUsingEmail = new S3Grant
 {
 Grantee = new S3Grantee { EmailAddress = emailAddress },
 Permission = S3Permission.WRITE_ACP,
 };

 // Specify log delivery group as grantee.
 var grantLogDeliveryGroup = new S3Grant
 {
 Grantee = new S3Grantee { URI = "http://acs.amazonaws.com/groups/s3/
LogDelivery" },
 Permission = S3Permission.WRITE,
 };

 // Create a new ACL.
 var newAcl = new S3AccessControlList

Scenarios 1499

AWS SDK for .NET Developer Guide

 {
 Grants = new List<S3Grant> { grantUsingEmail,
 grantLogDeliveryGroup },
 Owner = owner,
 };

 // Set the new ACL. We're throwing away the response here.
 _ = await client.PutACLAsync(new PutACLRequest
 {
 BucketName = bucketName,
 Key = keyName,
 AccessControlList = newAcl,
 });
 }

 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• GetBucketAcl

• GetObjectAcl

• PutBucketAcl

• PutObjectAcl

Perform a multipart copy

The following code example shows how to perform a multipart copy of an Amazon S3 object.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;

Scenarios 1500

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetBucketAcl
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectAcl
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutBucketAcl
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/PutObjectAcl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/MPUapiCopyObjExample#code-examples

AWS SDK for .NET Developer Guide

 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// This example shows how to perform a multi-part copy from one Amazon
 /// Simple Storage Service (Amazon S3) bucket to another.
 /// </summary>
 public class MPUapiCopyObj
 {
 private const string SourceBucket = "amzn-s3-demo-bucket1";
 private const string TargetBucket = "amzn-s3-demo-bucket2";
 private const string SourceObjectKey = "example.mov";
 private const string TargetObjectKey = "copied_video_file.mov";

 /// <summary>
 /// This method starts the multi-part upload.
 /// </summary>
 public static async Task Main()
 {
 var s3Client = new AmazonS3Client();
 Console.WriteLine("Copying object...");
 await MPUCopyObjectAsync(s3Client);
 }

 /// <summary>
 /// This method uses the passed client object to perform a multipart
 /// copy operation.
 /// </summary>
 /// <param name="client">An Amazon S3 client object that will be used
 /// to perform the copy.</param>
 public static async Task MPUCopyObjectAsync(AmazonS3Client client)
 {
 // Create a list to store the copy part responses.
 var copyResponses = new List<CopyPartResponse>();

 // Setup information required to initiate the multipart upload.
 var initiateRequest = new InitiateMultipartUploadRequest
 {
 BucketName = TargetBucket,
 Key = TargetObjectKey,
 };

 // Initiate the upload.
 InitiateMultipartUploadResponse initResponse =

Scenarios 1501

AWS SDK for .NET Developer Guide

 await client.InitiateMultipartUploadAsync(initiateRequest);

 // Save the upload ID.
 string uploadId = initResponse.UploadId;

 try
 {
 // Get the size of the object.
 var metadataRequest = new GetObjectMetadataRequest
 {
 BucketName = SourceBucket,
 Key = SourceObjectKey,
 };

 GetObjectMetadataResponse metadataResponse =
 await client.GetObjectMetadataAsync(metadataRequest);
 var objectSize = metadataResponse.ContentLength; // Length in bytes.

 // Copy the parts.
 var partSize = 5 * (long)Math.Pow(2, 20); // Part size is 5 MB.

 long bytePosition = 0;
 for (int i = 1; bytePosition < objectSize; i++)
 {
 var copyRequest = new CopyPartRequest
 {
 DestinationBucket = TargetBucket,
 DestinationKey = TargetObjectKey,
 SourceBucket = SourceBucket,
 SourceKey = SourceObjectKey,
 UploadId = uploadId,
 FirstByte = bytePosition,
 LastByte = bytePosition + partSize - 1 >= objectSize ?
 objectSize - 1 : bytePosition + partSize - 1,
 PartNumber = i,
 };

 copyResponses.Add(await client.CopyPartAsync(copyRequest));

 bytePosition += partSize;
 }

 // Set up to complete the copy.
 var completeRequest = new CompleteMultipartUploadRequest

Scenarios 1502

AWS SDK for .NET Developer Guide

 {
 BucketName = TargetBucket,
 Key = TargetObjectKey,
 UploadId = initResponse.UploadId,
 };
 completeRequest.AddPartETags(copyResponses);

 // Complete the copy.
 CompleteMultipartUploadResponse completeUploadResponse =
 await client.CompleteMultipartUploadAsync(completeRequest);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine($"Error encountered on server.
 Message:'{e.Message}' when writing an object");
 }
 catch (Exception e)
 {
 Console.WriteLine($"Unknown encountered on server.
 Message:'{e.Message}' when writing an object");
 }
 }
 }

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CompleteMultipartUpload

• CreateMultipartUpload

• GetObjectMetadata

• UploadPartCopy

Transform data with S3 Object Lambda

The following code example shows how to transform data for your application with S3 Object
Lambda.

AWS SDK for .NET

Shows how to add custom code to standard S3 GET requests to modify the requested object
retrieved from S3 so that the object suit the needs of the requesting client or application.

Scenarios 1503

https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CompleteMultipartUpload
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/CreateMultipartUpload
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/GetObjectMetadata
https://docs.aws.amazon.com/goto/DotNetSDKV3/s3-2006-03-01/UploadPartCopy

AWS SDK for .NET Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Lambda

• Amazon S3

Upload or download large files

The following code example shows how to upload or download large files to and from Amazon S3.

For more information, see Uploading an object using multipart upload.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Call functions that transfer files to and from an S3 bucket using the Amazon S3 TransferUtility.

global using System.Text;
global using Amazon.S3;
global using Amazon.S3.Model;
global using Amazon.S3.Transfer;
global using TransferUtilityBasics;

// This Amazon S3 client uses the default user credentials
// defined for this computer.
using Microsoft.Extensions.Configuration;

IAmazonS3 client = new AmazonS3Client();
var transferUtil = new TransferUtility(client);
IConfiguration _configuration;

_configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())

Scenarios 1504

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/S3ObjectLambdaFunction
https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-upload-object.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/S3/#code-examples

AWS SDK for .NET Developer Guide

 .AddJsonFile("settings.json") // Load test settings from JSON file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

// Edit the values in settings.json to use an S3 bucket and files that
// exist on your AWS account and on the local computer where you
// run this scenario.
var bucketName = _configuration["BucketName"];
var localPath =
 $"{Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData)}\
\TransferFolder";

DisplayInstructions();

PressEnter();

Console.WriteLine();

// Upload a single file to an S3 bucket.
DisplayTitle("Upload a single file");

var fileToUpload = _configuration["FileToUpload"];
Console.WriteLine($"Uploading {fileToUpload} to the S3 bucket, {bucketName}.");

var success = await TransferMethods.UploadSingleFileAsync(transferUtil, bucketName,
 fileToUpload, localPath);
if (success)
{
 Console.WriteLine($"Successfully uploaded the file, {fileToUpload} to
 {bucketName}.");
}

PressEnter();

// Upload a local directory to an S3 bucket.
DisplayTitle("Upload all files from a local directory");
Console.WriteLine("Upload all the files in a local folder to an S3 bucket.");
const string keyPrefix = "UploadFolder";
var uploadPath = $"{localPath}\\UploadFolder";

Console.WriteLine($"Uploading the files in {uploadPath} to {bucketName}");
DisplayTitle($"{uploadPath} files");
DisplayLocalFiles(uploadPath);

Scenarios 1505

AWS SDK for .NET Developer Guide

Console.WriteLine();

PressEnter();

success = await TransferMethods.UploadFullDirectoryAsync(transferUtil, bucketName,
 keyPrefix, uploadPath);
if (success)
{
 Console.WriteLine($"Successfully uploaded the files in {uploadPath} to
 {bucketName}.");
 Console.WriteLine($"{bucketName} currently contains the following files:");
 await DisplayBucketFiles(client, bucketName, keyPrefix);
 Console.WriteLine();
}

PressEnter();

// Download a single file from an S3 bucket.
DisplayTitle("Download a single file");
Console.WriteLine("Now we will download a single file from an S3 bucket.");

var keyName = _configuration["FileToDownload"];

Console.WriteLine($"Downloading {keyName} from {bucketName}.");

success = await TransferMethods.DownloadSingleFileAsync(transferUtil, bucketName,
 keyName, localPath);
if (success)
{
 Console.WriteLine("$Successfully downloaded the file, {keyName} from
 {bucketName}.");
}

PressEnter();

// Download the contents of a directory from an S3 bucket.
DisplayTitle("Download the contents of an S3 bucket");
var s3Path = _configuration["S3Path"];
var downloadPath = $"{localPath}\\{s3Path}";

Console.WriteLine($"Downloading the contents of {bucketName}\\{s3Path}");
Console.WriteLine($"{bucketName}\\{s3Path} contains the following files:");
await DisplayBucketFiles(client, bucketName, s3Path);
Console.WriteLine();

Scenarios 1506

AWS SDK for .NET Developer Guide

success = await TransferMethods.DownloadS3DirectoryAsync(transferUtil, bucketName,
 s3Path, downloadPath);
if (success)
{
 Console.WriteLine($"Downloaded the files in {bucketName} to {downloadPath}.");
 Console.WriteLine($"{downloadPath} now contains the following files:");
 DisplayLocalFiles(downloadPath);
}

Console.WriteLine("\nThe TransferUtility Basics application has completed.");
PressEnter();

// Displays the title for a section of the scenario.
static void DisplayTitle(string titleText)
{
 var sepBar = new string('-', Console.WindowWidth);

 Console.WriteLine(sepBar);
 Console.WriteLine(CenterText(titleText));
 Console.WriteLine(sepBar);
}

// Displays a description of the actions to be performed by the scenario.
static void DisplayInstructions()
{
 var sepBar = new string('-', Console.WindowWidth);

 DisplayTitle("Amazon S3 Transfer Utility Basics");
 Console.WriteLine("This program shows how to use the Amazon S3 Transfer
 Utility.");
 Console.WriteLine("It performs the following actions:");
 Console.WriteLine("\t1. Upload a single object to an S3 bucket.");
 Console.WriteLine("\t2. Upload an entire directory from the local computer to an
\n\t S3 bucket.");
 Console.WriteLine("\t3. Download a single object from an S3 bucket.");
 Console.WriteLine("\t4. Download the objects in an S3 bucket to a local
 directory.");
 Console.WriteLine($"\n{sepBar}");
}

// Pauses the scenario.
static void PressEnter()
{

Scenarios 1507

AWS SDK for .NET Developer Guide

 Console.WriteLine("Press <Enter> to continue.");
 _ = Console.ReadLine();
 Console.WriteLine("\n");
}

// Returns the string textToCenter, padded on the left with spaces
// that center the text on the console display.
static string CenterText(string textToCenter)
{
 var centeredText = new StringBuilder();
 var screenWidth = Console.WindowWidth;
 centeredText.Append(new string(' ', (int)(screenWidth - textToCenter.Length) /
 2));
 centeredText.Append(textToCenter);
 return centeredText.ToString();
}

// Displays a list of file names included in the specified path.
static void DisplayLocalFiles(string localPath)
{
 var fileList = Directory.GetFiles(localPath);
 if (fileList.Length > 0)
 {
 foreach (var fileName in fileList)
 {
 Console.WriteLine(fileName);
 }
 }
}

// Displays a list of the files in the specified S3 bucket and prefix.
static async Task DisplayBucketFiles(IAmazonS3 client, string bucketName, string
 s3Path)
{
 ListObjectsV2Request request = new()
 {
 BucketName = bucketName,
 Prefix = s3Path,
 MaxKeys = 5,
 };

 var response = new ListObjectsV2Response();

 do

Scenarios 1508

AWS SDK for .NET Developer Guide

 {
 response = await client.ListObjectsV2Async(request);

 response.S3Objects
 .ForEach(obj => Console.WriteLine($"{obj.Key}"));

 // If the response is truncated, set the request ContinuationToken
 // from the NextContinuationToken property of the response.
 request.ContinuationToken = response.NextContinuationToken;
 } while (response.IsTruncated);
}

Upload a single file.

 /// <summary>
 /// Uploads a single file from the local computer to an S3 bucket.
 /// </summary>
 /// <param name="transferUtil">The transfer initialized TransferUtility
 /// object.</param>
 /// <param name="bucketName">The name of the S3 bucket where the file
 /// will be stored.</param>
 /// <param name="fileName">The name of the file to upload.</param>
 /// <param name="localPath">The local path where the file is stored.</param>
 /// <returns>A boolean value indicating the success of the action.</returns>
 public static async Task<bool> UploadSingleFileAsync(
 TransferUtility transferUtil,
 string bucketName,
 string fileName,
 string localPath)
 {
 if (File.Exists($"{localPath}\\{fileName}"))
 {
 try
 {
 await transferUtil.UploadAsync(new TransferUtilityUploadRequest
 {
 BucketName = bucketName,
 Key = fileName,
 FilePath = $"{localPath}\\{fileName}",
 });

Scenarios 1509

AWS SDK for .NET Developer Guide

 return true;
 }
 catch (AmazonS3Exception s3Ex)
 {
 Console.WriteLine($"Could not upload {fileName} from {localPath}
 because:");
 Console.WriteLine(s3Ex.Message);
 return false;
 }
 }
 else
 {
 Console.WriteLine($"{fileName} does not exist in {localPath}");
 return false;
 }
 }

Upload an entire local directory.

 /// <summary>
 /// Uploads all the files in a local directory to a directory in an S3
 /// bucket.
 /// </summary>
 /// <param name="transferUtil">The transfer initialized TransferUtility
 /// object.</param>
 /// <param name="bucketName">The name of the S3 bucket where the files
 /// will be stored.</param>
 /// <param name="keyPrefix">The key prefix is the S3 directory where
 /// the files will be stored.</param>
 /// <param name="localPath">The local directory that contains the files
 /// to be uploaded.</param>
 /// <returns>A Boolean value representing the success of the action.</
returns>
 public static async Task<bool> UploadFullDirectoryAsync(
 TransferUtility transferUtil,
 string bucketName,
 string keyPrefix,
 string localPath)
 {
 if (Directory.Exists(localPath))

Scenarios 1510

AWS SDK for .NET Developer Guide

 {
 try
 {
 await transferUtil.UploadDirectoryAsync(new
 TransferUtilityUploadDirectoryRequest
 {
 BucketName = bucketName,
 KeyPrefix = keyPrefix,
 Directory = localPath,
 });

 return true;
 }
 catch (AmazonS3Exception s3Ex)
 {
 Console.WriteLine($"Can't upload the contents of {localPath}
 because:");
 Console.WriteLine(s3Ex?.Message);
 return false;
 }
 }
 else
 {
 Console.WriteLine($"The directory {localPath} does not exist.");
 return false;
 }
 }

Download a single file.

 /// <summary>
 /// Download a single file from an S3 bucket to the local computer.
 /// </summary>
 /// <param name="transferUtil">The transfer initialized TransferUtility
 /// object.</param>
 /// <param name="bucketName">The name of the S3 bucket containing the
 /// file to download.</param>
 /// <param name="keyName">The name of the file to download.</param>
 /// <param name="localPath">The path on the local computer where the
 /// downloaded file will be saved.</param>

Scenarios 1511

AWS SDK for .NET Developer Guide

 /// <returns>A Boolean value indicating the results of the action.</returns>
 public static async Task<bool> DownloadSingleFileAsync(
 TransferUtility transferUtil,
 string bucketName,
 string keyName,
 string localPath)
 {
 await transferUtil.DownloadAsync(new TransferUtilityDownloadRequest
 {
 BucketName = bucketName,
 Key = keyName,
 FilePath = $"{localPath}\\{keyName}",
 });

 return (File.Exists($"{localPath}\\{keyName}"));
 }

Download contents of an S3 bucket.

 /// <summary>
 /// Downloads the contents of a directory in an S3 bucket to a
 /// directory on the local computer.
 /// </summary>
 /// <param name="transferUtil">The transfer initialized TransferUtility
 /// object.</param>
 /// <param name="bucketName">The bucket containing the files to download.</
param>
 /// <param name="s3Path">The S3 directory where the files are located.</
param>
 /// <param name="localPath">The local path to which the files will be
 /// saved.</param>
 /// <returns>A Boolean value representing the success of the action.</
returns>
 public static async Task<bool> DownloadS3DirectoryAsync(
 TransferUtility transferUtil,
 string bucketName,
 string s3Path,
 string localPath)
 {
 int fileCount = 0;

Scenarios 1512

AWS SDK for .NET Developer Guide

 // If the directory doesn't exist, it will be created.
 if (Directory.Exists(s3Path))
 {
 var files = Directory.GetFiles(localPath);
 fileCount = files.Length;
 }

 await transferUtil.DownloadDirectoryAsync(new
 TransferUtilityDownloadDirectoryRequest
 {
 BucketName = bucketName,
 LocalDirectory = localPath,
 S3Directory = s3Path,
 });

 if (Directory.Exists(localPath))
 {
 var files = Directory.GetFiles(localPath);
 if (files.Length > fileCount)
 {
 return true;
 }

 // No change in the number of files. Assume
 // the download failed.
 return false;
 }

 // The local directory doesn't exist. No files
 // were downloaded.
 return false;
 }

Track the progress of an upload using the TransferUtility.

 using System;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Transfer;

Scenarios 1513

AWS SDK for .NET Developer Guide

 /// <summary>
 /// This example shows how to track the progress of a multipart upload
 /// using the Amazon Simple Storage Service (Amazon S3) TransferUtility to
 /// upload to an Amazon S3 bucket.
 /// </summary>
 public class TrackMPUUsingHighLevelAPI
 {
 public static async Task Main()
 {
 string bucketName = "amzn-s3-demo-bucket";
 string keyName = "sample_pic.png";
 string path = "filepath/directory/";
 string filePath = $"{path}{keyName}";

 // If the AWS Region defined for your default user is different
 // from the Region where your Amazon S3 bucket is located,
 // pass the Region name to the Amazon S3 client object's constructor.
 // For example: RegionEndpoint.USWest2 or RegionEndpoint.USEast2.
 IAmazonS3 client = new AmazonS3Client();

 await TrackMPUAsync(client, bucketName, filePath, keyName);
 }

 /// <summary>
 /// Starts an Amazon S3 multipart upload and assigns an event handler to
 /// track the progress of the upload.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 client object used to
 /// perform the multipart upload.</param>
 /// <param name="bucketName">The name of the bucket to which to upload
 /// the file.</param>
 /// <param name="filePath">The path, including the file name of the
 /// file to be uploaded to the Amazon S3 bucket.</param>
 /// <param name="keyName">The file name to be used in the
 /// destination Amazon S3 bucket.</param>
 public static async Task TrackMPUAsync(
 IAmazonS3 client,
 string bucketName,
 string filePath,
 string keyName)
 {
 try
 {
 var fileTransferUtility = new TransferUtility(client);

Scenarios 1514

AWS SDK for .NET Developer Guide

 // Use TransferUtilityUploadRequest to configure options.
 // In this example we subscribe to an event.
 var uploadRequest =
 new TransferUtilityUploadRequest
 {
 BucketName = bucketName,
 FilePath = filePath,
 Key = keyName,
 };

 uploadRequest.UploadProgressEvent +=
 new EventHandler<UploadProgressArgs>(
 UploadRequest_UploadPartProgressEvent);

 await fileTransferUtility.UploadAsync(uploadRequest);
 Console.WriteLine("Upload completed");
 }
 catch (AmazonS3Exception ex)
 {
 Console.WriteLine($"Error:: {ex.Message}");
 }
 }

 /// <summary>
 /// Event handler to check the progress of the multipart upload.
 /// </summary>
 /// <param name="sender">The object that raised the event.</param>
 /// <param name="e">The object that contains multipart upload
 /// information.</param>
 public static void UploadRequest_UploadPartProgressEvent(object sender,
 UploadProgressArgs e)
 {
 // Process event.
 Console.WriteLine($"{e.TransferredBytes}/{e.TotalBytes}");
 }
 }

Upload an object with encryption.

 using System;

Scenarios 1515

AWS SDK for .NET Developer Guide

 using System.Collections.Generic;
 using System.IO;
 using System.Security.Cryptography;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Model;

 /// <summary>
 /// Uses the Amazon Simple Storage Service (Amazon S3) low level API to
 /// perform a multipart upload to an Amazon S3 bucket.
 /// </summary>
 public class SSECLowLevelMPUcopyObject
 {
 public static async Task Main()
 {
 string existingBucketName = "amzn-s3-demo-bucket";
 string sourceKeyName = "sample_file.txt";
 string targetKeyName = "sample_file_copy.txt";
 string filePath = $"sample\\{targetKeyName}";

 // If the AWS Region defined for your default user is different
 // from the Region where your Amazon S3 bucket is located,
 // pass the Region name to the Amazon S3 client object's constructor.
 // For example: RegionEndpoint.USEast1.
 IAmazonS3 client = new AmazonS3Client();

 // Create the encryption key.
 var base64Key = CreateEncryptionKey();

 await CreateSampleObjUsingClientEncryptionKeyAsync(
 client,
 existingBucketName,
 sourceKeyName,
 filePath,
 base64Key);
 }

 /// <summary>
 /// Creates the encryption key to use with the multipart upload.
 /// </summary>
 /// <returns>A string containing the base64-encoded key for encrypting
 /// the multipart upload.</returns>
 public static string CreateEncryptionKey()
 {

Scenarios 1516

AWS SDK for .NET Developer Guide

 Aes aesEncryption = Aes.Create();
 aesEncryption.KeySize = 256;
 aesEncryption.GenerateKey();
 string base64Key = Convert.ToBase64String(aesEncryption.Key);
 return base64Key;
 }

 /// <summary>
 /// Creates and uploads an object using a multipart upload.
 /// </summary>
 /// <param name="client">The initialized Amazon S3 object used to
 /// initialize and perform the multipart upload.</param>
 /// <param name="existingBucketName">The name of the bucket to which
 /// the object will be uploaded.</param>
 /// <param name="sourceKeyName">The source object name.</param>
 /// <param name="filePath">The location of the source object.</param>
 /// <param name="base64Key">The encryption key to use with the upload.</
param>
 public static async Task CreateSampleObjUsingClientEncryptionKeyAsync(
 IAmazonS3 client,
 string existingBucketName,
 string sourceKeyName,
 string filePath,
 string base64Key)
 {
 List<UploadPartResponse> uploadResponses = new
 List<UploadPartResponse>();

 InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
 };

 InitiateMultipartUploadResponse initResponse =
 await client.InitiateMultipartUploadAsync(initiateRequest);

 long contentLength = new FileInfo(filePath).Length;
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB

Scenarios 1517

AWS SDK for .NET Developer Guide

 try
 {
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++)
 {
 UploadPartRequest uploadRequest = new UploadPartRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 UploadId = initResponse.UploadId,
 PartNumber = i,
 PartSize = partSize,
 FilePosition = filePosition,
 FilePath = filePath,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
 };

 // Upload part and add response to our list.
 uploadResponses.Add(await
 client.UploadPartAsync(uploadRequest));

 filePosition += partSize;
 }

 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 UploadId = initResponse.UploadId,
 };
 completeRequest.AddPartETags(uploadResponses);

 CompleteMultipartUploadResponse completeUploadResponse =
 await client.CompleteMultipartUploadAsync(completeRequest);
 }
 catch (Exception exception)
 {
 Console.WriteLine($"Exception occurred: {exception.Message}");

 // If there was an error, abort the multipart upload.

Scenarios 1518

AWS SDK for .NET Developer Guide

 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 UploadId = initResponse.UploadId,
 };

 await client.AbortMultipartUploadAsync(abortMPURequest);
 }
 }
 }

Serverless examples

Invoke a Lambda function from an Amazon S3 trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by uploading an object to an S3 bucket. The function retrieves the S3 bucket name and
object key from the event parameter and calls the Amazon S3 API to retrieve and log the content
type of the object.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an S3 event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using System;
using Amazon.Lambda.S3Events;

Serverless examples 1519

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS SDK for .NET Developer Guide

using System.Web;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace S3Integration
{
 public class Function
 {
 private static AmazonS3Client _s3Client;
 public Function() : this(null)
 {
 }

 internal Function(AmazonS3Client s3Client)
 {
 _s3Client = s3Client ?? new AmazonS3Client();
 }

 public async Task<string> Handler(S3Event evt, ILambdaContext context)
 {
 try
 {
 if (evt.Records.Count <= 0)
 {
 context.Logger.LogLine("Empty S3 Event received");
 return string.Empty;
 }

 var bucket = evt.Records[0].S3.Bucket.Name;
 var key = HttpUtility.UrlDecode(evt.Records[0].S3.Object.Key);

 context.Logger.LogLine($"Request is for {bucket} and {key}");

 var objectResult = await _s3Client.GetObjectAsync(bucket, key);

 context.Logger.LogLine($"Returning {objectResult.Key}");

 return objectResult.Key;
 }
 catch (Exception e)
 {

Serverless examples 1520

AWS SDK for .NET Developer Guide

 context.Logger.LogLine($"Error processing request - {e.Message}");

 return string.Empty;
 }
 }
 }
}

S3 Glacier examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with S3 Glacier.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon S3 Glacier

The following code example shows how to get started using Amazon S3 Glacier.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.Glacier;
using Amazon.Glacier.Model;

namespace GlacierActions;

S3 Glacier 1521

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/EventBridge#code-examples

AWS SDK for .NET Developer Guide

public static class HelloGlacier
{
 static async Task Main()
 {
 var glacierService = new AmazonGlacierClient();

 Console.WriteLine("Hello Amazon Glacier!");
 Console.WriteLine("Let's list your Glacier vaults:");

 // You can use await and any of the async methods to get a response.
 // Let's get the vaults using a paginator.
 var glacierVaultPaginator = glacierService.Paginators.ListVaults(
 new ListVaultsRequest { AccountId = "-" });

 await foreach (var vault in glacierVaultPaginator.VaultList)
 {
 Console.WriteLine($"{vault.CreationDate}:{vault.VaultName}, ARN:
{vault.VaultARN}");
 }
 }
}

• For API details, see ListVaults in AWS SDK for .NET API Reference.

Topics

• Actions

Actions

AddTagsToVault

The following code example shows how to use AddTagsToVault.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1522

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/ListVaults
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Add tags to the items in an Amazon S3 Glacier vault.
 /// </summary>
 /// <param name="vaultName">The name of the vault to add tags to.</param>
 /// <param name="key">The name of the object to tag.</param>
 /// <param name="value">The tag value to add.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AddTagsToVaultAsync(string vaultName, string key, string
 value)
 {
 var request = new AddTagsToVaultRequest
 {
 Tags = new Dictionary<string, string>
 {
 { key, value },
 },
 AccountId = "-",
 VaultName = vaultName,
 };

 var response = await _glacierService.AddTagsToVaultAsync(request);
 return response.HttpStatusCode == HttpStatusCode.NoContent;
 }

• For API details, see AddTagsToVault in AWS SDK for .NET API Reference.

CreateVault

The following code example shows how to use CreateVault.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an Amazon S3 Glacier vault.

Actions 1523

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/AddTagsToVault
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="vaultName">The name of the vault to create.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> CreateVaultAsync(string vaultName)
 {
 var request = new CreateVaultRequest
 {
 // Setting the AccountId to "-" means that
 // the account associated with the current
 // account will be used.
 AccountId = "-",
 VaultName = vaultName,
 };

 var response = await _glacierService.CreateVaultAsync(request);

 Console.WriteLine($"Created {vaultName} at: {response.Location}");

 return response.HttpStatusCode == HttpStatusCode.Created;
 }

• For API details, see CreateVault in AWS SDK for .NET API Reference.

DescribeVault

The following code example shows how to use DescribeVault.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe an Amazon S3 Glacier vault.
 /// </summary>
 /// <param name="vaultName">The name of the vault to describe.</param>
 /// <returns>The Amazon Resource Name (ARN) of the vault.</returns>
 public async Task<string> DescribeVaultAsync(string vaultName)

Actions 1524

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/CreateVault
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples

AWS SDK for .NET Developer Guide

 {
 var request = new DescribeVaultRequest
 {
 AccountId = "-",
 VaultName = vaultName,
 };

 var response = await _glacierService.DescribeVaultAsync(request);

 // Display the information about the vault.
 Console.WriteLine($"{response.VaultName}\tARN: {response.VaultARN}");
 Console.WriteLine($"Created on: {response.CreationDate}\tNumber of Archives:
 {response.NumberOfArchives}\tSize (in bytes): {response.SizeInBytes}");
 if (response.LastInventoryDate != DateTime.MinValue)
 {
 Console.WriteLine($"Last inventory: {response.LastInventoryDate}");
 }

 return response.VaultARN;
 }

• For API details, see DescribeVault in AWS SDK for .NET API Reference.

InitiateJob

The following code example shows how to use InitiateJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Retrieve an archive from a vault. This example uses the ArchiveTransferManager class. For API
details see ArchiveTransferManager.

 /// <summary>
 /// Download an archive from an Amazon S3 Glacier vault using the Archive

Actions 1525

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/DescribeVault
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/TArchiveTransferManager

AWS SDK for .NET Developer Guide

 /// Transfer Manager.
 /// </summary>
 /// <param name="vaultName">The name of the vault containing the object.</param>
 /// <param name="archiveId">The Id of the archive to download.</param>
 /// <param name="localFilePath">The local directory where the file will
 /// be stored after download.</param>
 /// <returns>Async Task.</returns>
 public async Task<bool> DownloadArchiveWithArchiveManagerAsync(string vaultName,
 string archiveId, string localFilePath)
 {
 try
 {
 var manager = new ArchiveTransferManager(_glacierService);

 var options = new DownloadOptions
 {
 StreamTransferProgress = Progress!,
 };

 // Download an archive.
 Console.WriteLine("Initiating the archive retrieval job and then polling
 SQS queue for the archive to be available.");
 Console.WriteLine("When the archive is available, downloading will
 begin.");
 await manager.DownloadAsync(vaultName, archiveId, localFilePath,
 options);

 return true;
 }
 catch (AmazonGlacierException ex)
 {
 Console.WriteLine(ex.Message);
 return false;
 }
 }

 /// <summary>
 /// Event handler to track the progress of the Archive Transfer Manager.
 /// </summary>
 /// <param name="sender">The object that raised the event.</param>
 /// <param name="args">The argument values from the object that raised the
 /// event.</param>
 static void Progress(object sender, StreamTransferProgressArgs args)
 {

Actions 1526

AWS SDK for .NET Developer Guide

 if (args.PercentDone != _currentPercentage)
 {
 _currentPercentage = args.PercentDone;
 Console.WriteLine($"Downloaded {_currentPercentage}%");
 }
 }

• For API details, see InitiateJob in AWS SDK for .NET API Reference.

ListJobs

The following code example shows how to use ListJobs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List Amazon S3 Glacier jobs.
 /// </summary>
 /// <param name="vaultName">The name of the vault to list jobs for.</param>
 /// <returns>A list of Amazon S3 Glacier jobs.</returns>
 public async Task<List<GlacierJobDescription>> ListJobsAsync(string vaultName)
 {
 var request = new ListJobsRequest
 {
 // Using a hyphen "-" for the Account Id will
 // cause the SDK to use the Account Id associated
 // with the current account.
 AccountId = "-",
 VaultName = vaultName,
 };

 var response = await _glacierService.ListJobsAsync(request);

Actions 1527

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/InitiateJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples

AWS SDK for .NET Developer Guide

 return response.JobList;
 }

• For API details, see ListJobs in AWS SDK for .NET API Reference.

ListTagsForVault

The following code example shows how to use ListTagsForVault.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List tags for an Amazon S3 Glacier vault.
 /// </summary>
 /// <param name="vaultName">The name of the vault to list tags for.</param>
 /// <returns>A dictionary listing the tags attached to each object in the
 /// vault and its tags.</returns>
 public async Task<Dictionary<string, string>> ListTagsForVaultAsync(string
 vaultName)
 {
 var request = new ListTagsForVaultRequest
 {
 // Using a hyphen "-" for the Account Id will
 // cause the SDK to use the Account Id associated
 // with the default user.
 AccountId = "-",
 VaultName = vaultName,
 };

 var response = await _glacierService.ListTagsForVaultAsync(request);

 return response.Tags;
 }

Actions 1528

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/ListJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples

AWS SDK for .NET Developer Guide

• For API details, see ListTagsForVault in AWS SDK for .NET API Reference.

ListVaults

The following code example shows how to use ListVaults.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List the Amazon S3 Glacier vaults associated with the current account.
 /// </summary>
 /// <returns>A list containing information about each vault.</returns>
 public async Task<List<DescribeVaultOutput>> ListVaultsAsync()
 {
 var glacierVaultPaginator = _glacierService.Paginators.ListVaults(
 new ListVaultsRequest { AccountId = "-" });
 var vaultList = new List<DescribeVaultOutput>();

 await foreach (var vault in glacierVaultPaginator.VaultList)
 {
 vaultList.Add(vault);
 }

 return vaultList;
 }

• For API details, see ListVaults in AWS SDK for .NET API Reference.

UploadArchive

The following code example shows how to use UploadArchive.

Actions 1529

https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/ListTagsForVault
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/ListVaults

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Upload an object to an Amazon S3 Glacier vault.
 /// </summary>
 /// <param name="vaultName">The name of the Amazon S3 Glacier vault to upload
 /// the archive to.</param>
 /// <param name="archiveFilePath">The file path of the archive to upload to the
 vault.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<string> UploadArchiveWithArchiveManager(string vaultName,
 string archiveFilePath)
 {
 try
 {
 var manager = new ArchiveTransferManager(_glacierService);

 // Upload an archive.
 var response = await manager.UploadAsync(vaultName, "upload archive
 test", archiveFilePath);
 return response.ArchiveId;
 }
 catch (AmazonGlacierException ex)
 {
 Console.WriteLine(ex.Message);
 return string.Empty;
 }
 }

• For API details, see UploadArchive in AWS SDK for .NET API Reference.

Actions 1530

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Glacier#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/glacier-2012-06-01/UploadArchive

AWS SDK for .NET Developer Guide

SageMaker AI examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with SageMaker AI.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello SageMaker AI

The following code examples show how to get started using SageMaker AI.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.SageMaker;
using Amazon.SageMaker.Model;

namespace SageMakerActions;

public static class HelloSageMaker
{
 static async Task Main(string[] args)
 {
 var sageMakerClient = new AmazonSageMakerClient();

 Console.WriteLine($"Hello Amazon SageMaker! Let's list some of your notebook
 instances:");

SageMaker AI 1531

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first five notebook instances.
 var response = await sageMakerClient.ListNotebookInstancesAsync(
 new ListNotebookInstancesRequest()
 {
 MaxResults = 5
 });

 if (!response.NotebookInstances.Any())
 {
 Console.WriteLine($"No notebook instances found.");
 Console.WriteLine("See https://docs.aws.amazon.com/sagemaker/latest/dg/
howitworks-create-ws.html to create one.");
 }

 foreach (var notebookInstance in response.NotebookInstances)
 {
 Console.WriteLine($"\tInstance:
 {notebookInstance.NotebookInstanceName}");
 Console.WriteLine($"\tArn: {notebookInstance.NotebookInstanceArn}");
 Console.WriteLine($"\tCreation Date:
 {notebookInstance.CreationTime.ToShortDateString()}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListNotebookInstances in AWS SDK for .NET API Reference.

Topics

• Actions

• Scenarios

Actions

CreatePipeline

The following code example shows how to use CreatePipeline.

Actions 1532

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/ListNotebookInstances

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a pipeline from a JSON definition, or update it if the pipeline
 already exists.
 /// </summary>
 /// <returns>The Amazon Resource Name (ARN) of the pipeline.</returns>
 public async Task<string> SetupPipeline(string pipelineJson, string roleArn,
 string name, string description, string displayName)
 {
 try
 {
 var updateResponse = await _amazonSageMaker.UpdatePipelineAsync(
 new UpdatePipelineRequest()
 {
 PipelineDefinition = pipelineJson,
 PipelineDescription = description,
 PipelineDisplayName = displayName,
 PipelineName = name,
 RoleArn = roleArn
 });
 return updateResponse.PipelineArn;
 }
 catch (Amazon.SageMaker.Model.ResourceNotFoundException)
 {
 var createResponse = await _amazonSageMaker.CreatePipelineAsync(
 new CreatePipelineRequest()
 {
 PipelineDefinition = pipelineJson,
 PipelineDescription = description,
 PipelineDisplayName = displayName,
 PipelineName = name,
 RoleArn = roleArn
 });

 return createResponse.PipelineArn;

Actions 1533

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see CreatePipeline in AWS SDK for .NET API Reference.

DeletePipeline

The following code example shows how to use DeletePipeline.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a SageMaker pipeline by name.
 /// </summary>
 /// <param name="pipelineName">The name of the pipeline to delete.</param>
 /// <returns>The ARN of the pipeline.</returns>
 public async Task<string> DeletePipelineByName(string pipelineName)
 {
 var deleteResponse = await _amazonSageMaker.DeletePipelineAsync(
 new DeletePipelineRequest()
 {
 PipelineName = pipelineName
 });

 return deleteResponse.PipelineArn;
 }

• For API details, see DeletePipeline in AWS SDK for .NET API Reference.

DescribePipelineExecution

The following code example shows how to use DescribePipelineExecution.

Actions 1534

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreatePipeline
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeletePipeline

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Check the status of a run.
 /// </summary>
 /// <param name="pipelineExecutionArn">The ARN.</param>
 /// <returns>The status of the pipeline.</returns>
 public async Task<PipelineExecutionStatus> CheckPipelineExecutionStatus(string
 pipelineExecutionArn)
 {
 var describeResponse = await
 _amazonSageMaker.DescribePipelineExecutionAsync(
 new DescribePipelineExecutionRequest()
 {
 PipelineExecutionArn = pipelineExecutionArn
 });

 return describeResponse.PipelineExecutionStatus;
 }

• For API details, see DescribePipelineExecution in AWS SDK for .NET API Reference.

StartPipelineExecution

The following code example shows how to use StartPipelineExecution.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1535

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribePipelineExecution
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Run a pipeline with input and output file locations.
 /// </summary>
 /// <param name="queueUrl">The URL for the queue to use for pipeline
 callbacks.</param>
 /// <param name="inputLocationUrl">The input location in Amazon Simple Storage
 Service (Amazon S3).</param>
 /// <param name="outputLocationUrl">The output location in Amazon S3.</param>
 /// <param name="pipelineName">The name of the pipeline.</param>
 /// <param name="executionRoleArn">The ARN of the role.</param>
 /// <returns>The ARN of the pipeline run.</returns>
 public async Task<string> ExecutePipeline(
 string queueUrl,
 string inputLocationUrl,
 string outputLocationUrl,
 string pipelineName,
 string executionRoleArn)
 {
 var inputConfig = new VectorEnrichmentJobInputConfig()
 {
 DataSourceConfig = new()
 {
 S3Data = new VectorEnrichmentJobS3Data()
 {
 S3Uri = inputLocationUrl
 }
 },
 DocumentType = VectorEnrichmentJobDocumentType.CSV
 };

 var exportConfig = new ExportVectorEnrichmentJobOutputConfig()
 {
 S3Data = new VectorEnrichmentJobS3Data()
 {
 S3Uri = outputLocationUrl
 }
 };

 var jobConfig = new VectorEnrichmentJobConfig()
 {
 ReverseGeocodingConfig = new ReverseGeocodingConfig()
 {
 XAttributeName = "Longitude",

Actions 1536

AWS SDK for .NET Developer Guide

 YAttributeName = "Latitude"
 }
 };

#pragma warning disable SageMaker1002 // Property value does not match required
 pattern is allowed here to match the pipeline definition.
 var startExecutionResponse = await
 _amazonSageMaker.StartPipelineExecutionAsync(
 new StartPipelineExecutionRequest()
 {
 PipelineName = pipelineName,
 PipelineExecutionDisplayName = pipelineName + "-example-execution",
 PipelineParameters = new List<Parameter>()
 {
 new Parameter() { Name = "parameter_execution_role", Value =
 executionRoleArn },
 new Parameter() { Name = "parameter_queue_url", Value =
 queueUrl },
 new Parameter() { Name = "parameter_vej_input_config", Value =
 JsonSerializer.Serialize(inputConfig) },
 new Parameter() { Name = "parameter_vej_export_config", Value =
 JsonSerializer.Serialize(exportConfig) },
 new Parameter() { Name = "parameter_step_1_vej_config", Value =
 JsonSerializer.Serialize(jobConfig) }
 }
 });
#pragma warning restore SageMaker1002
 return startExecutionResponse.PipelineExecutionArn;
 }

• For API details, see StartPipelineExecution in AWS SDK for .NET API Reference.

UpdatePipeline

The following code example shows how to use UpdatePipeline.

Actions 1537

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StartPipelineExecution

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a pipeline from a JSON definition, or update it if the pipeline
 already exists.
 /// </summary>
 /// <returns>The Amazon Resource Name (ARN) of the pipeline.</returns>
 public async Task<string> SetupPipeline(string pipelineJson, string roleArn,
 string name, string description, string displayName)
 {
 try
 {
 var updateResponse = await _amazonSageMaker.UpdatePipelineAsync(
 new UpdatePipelineRequest()
 {
 PipelineDefinition = pipelineJson,
 PipelineDescription = description,
 PipelineDisplayName = displayName,
 PipelineName = name,
 RoleArn = roleArn
 });
 return updateResponse.PipelineArn;
 }
 catch (Amazon.SageMaker.Model.ResourceNotFoundException)
 {
 var createResponse = await _amazonSageMaker.CreatePipelineAsync(
 new CreatePipelineRequest()
 {
 PipelineDefinition = pipelineJson,
 PipelineDescription = description,
 PipelineDisplayName = displayName,
 PipelineName = name,
 RoleArn = roleArn
 });

 return createResponse.PipelineArn;

Actions 1538

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see UpdatePipeline in AWS SDK for .NET API Reference.

Scenarios

Get started with geospatial jobs and pipelines

The following code example shows how to:

• Set up resources for a pipeline.

• Set up a pipeline that executes a geospatial job.

• Start a pipeline execution.

• Monitor the status of the execution.

• View the output of the pipeline.

• Clean up resources.

For more information, see Create and run SageMaker pipelines using AWS SDKs on
Community.aws.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create a class that wraps SageMaker AI operations.

using System.Text.Json;
using Amazon.SageMaker;
using Amazon.SageMaker.Model;
using Amazon.SageMakerGeospatial;
using Amazon.SageMakerGeospatial.Model;

Scenarios 1539

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdatePipeline
https://community.aws/posts/create-and-run-sagemaker-pipelines-using-aws-sdks
https://community.aws/posts/create-and-run-sagemaker-pipelines-using-aws-sdks
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SageMaker#code-examples

AWS SDK for .NET Developer Guide

namespace SageMakerActions;

/// <summary>
/// Wrapper class for Amazon SageMaker actions and logic.
/// </summary>
public class SageMakerWrapper
{
 private readonly IAmazonSageMaker _amazonSageMaker;
 public SageMakerWrapper(IAmazonSageMaker amazonSageMaker)
 {
 _amazonSageMaker = amazonSageMaker;
 }

 /// <summary>
 /// Create a pipeline from a JSON definition, or update it if the pipeline
 already exists.
 /// </summary>
 /// <returns>The Amazon Resource Name (ARN) of the pipeline.</returns>
 public async Task<string> SetupPipeline(string pipelineJson, string roleArn,
 string name, string description, string displayName)
 {
 try
 {
 var updateResponse = await _amazonSageMaker.UpdatePipelineAsync(
 new UpdatePipelineRequest()
 {
 PipelineDefinition = pipelineJson,
 PipelineDescription = description,
 PipelineDisplayName = displayName,
 PipelineName = name,
 RoleArn = roleArn
 });
 return updateResponse.PipelineArn;
 }
 catch (Amazon.SageMaker.Model.ResourceNotFoundException)
 {
 var createResponse = await _amazonSageMaker.CreatePipelineAsync(
 new CreatePipelineRequest()
 {
 PipelineDefinition = pipelineJson,
 PipelineDescription = description,
 PipelineDisplayName = displayName,
 PipelineName = name,
 RoleArn = roleArn

Scenarios 1540

AWS SDK for .NET Developer Guide

 });

 return createResponse.PipelineArn;
 }
 }

 /// <summary>
 /// Run a pipeline with input and output file locations.
 /// </summary>
 /// <param name="queueUrl">The URL for the queue to use for pipeline
 callbacks.</param>
 /// <param name="inputLocationUrl">The input location in Amazon Simple Storage
 Service (Amazon S3).</param>
 /// <param name="outputLocationUrl">The output location in Amazon S3.</param>
 /// <param name="pipelineName">The name of the pipeline.</param>
 /// <param name="executionRoleArn">The ARN of the role.</param>
 /// <returns>The ARN of the pipeline run.</returns>
 public async Task<string> ExecutePipeline(
 string queueUrl,
 string inputLocationUrl,
 string outputLocationUrl,
 string pipelineName,
 string executionRoleArn)
 {
 var inputConfig = new VectorEnrichmentJobInputConfig()
 {
 DataSourceConfig = new()
 {
 S3Data = new VectorEnrichmentJobS3Data()
 {
 S3Uri = inputLocationUrl
 }
 },
 DocumentType = VectorEnrichmentJobDocumentType.CSV
 };

 var exportConfig = new ExportVectorEnrichmentJobOutputConfig()
 {
 S3Data = new VectorEnrichmentJobS3Data()
 {
 S3Uri = outputLocationUrl
 }
 };

Scenarios 1541

AWS SDK for .NET Developer Guide

 var jobConfig = new VectorEnrichmentJobConfig()
 {
 ReverseGeocodingConfig = new ReverseGeocodingConfig()
 {
 XAttributeName = "Longitude",
 YAttributeName = "Latitude"
 }
 };

#pragma warning disable SageMaker1002 // Property value does not match required
 pattern is allowed here to match the pipeline definition.
 var startExecutionResponse = await
 _amazonSageMaker.StartPipelineExecutionAsync(
 new StartPipelineExecutionRequest()
 {
 PipelineName = pipelineName,
 PipelineExecutionDisplayName = pipelineName + "-example-execution",
 PipelineParameters = new List<Parameter>()
 {
 new Parameter() { Name = "parameter_execution_role", Value =
 executionRoleArn },
 new Parameter() { Name = "parameter_queue_url", Value =
 queueUrl },
 new Parameter() { Name = "parameter_vej_input_config", Value =
 JsonSerializer.Serialize(inputConfig) },
 new Parameter() { Name = "parameter_vej_export_config", Value =
 JsonSerializer.Serialize(exportConfig) },
 new Parameter() { Name = "parameter_step_1_vej_config", Value =
 JsonSerializer.Serialize(jobConfig) }
 }
 });
#pragma warning restore SageMaker1002
 return startExecutionResponse.PipelineExecutionArn;
 }

 /// <summary>
 /// Check the status of a run.
 /// </summary>
 /// <param name="pipelineExecutionArn">The ARN.</param>
 /// <returns>The status of the pipeline.</returns>
 public async Task<PipelineExecutionStatus> CheckPipelineExecutionStatus(string
 pipelineExecutionArn)
 {

Scenarios 1542

AWS SDK for .NET Developer Guide

 var describeResponse = await
 _amazonSageMaker.DescribePipelineExecutionAsync(
 new DescribePipelineExecutionRequest()
 {
 PipelineExecutionArn = pipelineExecutionArn
 });

 return describeResponse.PipelineExecutionStatus;
 }

 /// <summary>
 /// Delete a SageMaker pipeline by name.
 /// </summary>
 /// <param name="pipelineName">The name of the pipeline to delete.</param>
 /// <returns>The ARN of the pipeline.</returns>
 public async Task<string> DeletePipelineByName(string pipelineName)
 {
 var deleteResponse = await _amazonSageMaker.DeletePipelineAsync(
 new DeletePipelineRequest()
 {
 PipelineName = pipelineName
 });

 return deleteResponse.PipelineArn;
 }
}

Create a function that handles callbacks from the SageMaker AI pipeline.

using System.Text.Json;
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;
using Amazon.SageMaker;
using Amazon.SageMaker.Model;
using Amazon.SageMakerGeospatial;
using Amazon.SageMakerGeospatial.Model;

// Assembly attribute to enable the AWS Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

Scenarios 1543

AWS SDK for .NET Developer Guide

namespace SageMakerLambda;

/// <summary>
/// The AWS Lambda function handler for the Amazon SageMaker pipeline.
/// </summary>
public class SageMakerLambdaFunction
{
 /// <summary>
 /// Default constructor. This constructor is used by AWS Lambda to construct the
 instance. When invoked in a Lambda environment
 /// the AWS credentials will come from the AWS Identity and Access Management
 (IAM) role associated with the function. The AWS Region will be set to the
 /// Region that the Lambda function is running in.
 /// </summary>
 public SageMakerLambdaFunction()
 {
 }

 /// <summary>
 /// The AWS Lambda function handler that processes events from the SageMaker
 pipeline and starts a job or export.
 /// </summary>
 /// <param name="request">The custom SageMaker pipeline request object.</param>
 /// <param name="context">The Lambda context.</param>
 /// <returns>The dictionary of output parameters.</returns>
 public async Task<Dictionary<string, string>> FunctionHandler(PipelineRequest
 request, ILambdaContext context)
 {
 var geoSpatialClient = new AmazonSageMakerGeospatialClient();
 var sageMakerClient = new AmazonSageMakerClient();
 var responseDictionary = new Dictionary<string, string>();
 context.Logger.LogInformation("Function handler started with request: " +
 JsonSerializer.Serialize(request));
 if (request.Records != null && request.Records.Any())
 {
 context.Logger.LogInformation("Records found, this is a queue event.
 Processing the queue records.");
 foreach (var message in request.Records)
 {
 await ProcessMessageAsync(message, context, geoSpatialClient,
 sageMakerClient);
 }
 }

Scenarios 1544

AWS SDK for .NET Developer Guide

 else if (!string.IsNullOrEmpty(request.vej_export_config))
 {
 context.Logger.LogInformation("Export configuration found, this is an
 export. Start the Vector Enrichment Job (VEJ) export.");

 var outputConfig =
 JsonSerializer.Deserialize<ExportVectorEnrichmentJobOutputConfig>(
 request.vej_export_config);

 var exportResponse = await
 geoSpatialClient.ExportVectorEnrichmentJobAsync(
 new ExportVectorEnrichmentJobRequest()
 {
 Arn = request.vej_arn,
 ExecutionRoleArn = request.Role,
 OutputConfig = outputConfig
 });
 context.Logger.LogInformation($"Export response:
 {JsonSerializer.Serialize(exportResponse)}");
 responseDictionary = new Dictionary<string, string>
 {
 { "export_eoj_status", exportResponse.ExportStatus.ToString() },
 { "vej_arn", exportResponse.Arn }
 };
 }
 else if (!string.IsNullOrEmpty(request.vej_name))
 {
 context.Logger.LogInformation("Vector Enrichment Job name found,
 starting the job.");
 var inputConfig =
 JsonSerializer.Deserialize<VectorEnrichmentJobInputConfig>(
 request.vej_input_config);

 var jobConfig =
 JsonSerializer.Deserialize<VectorEnrichmentJobConfig>(
 request.vej_config);

 var jobResponse = await geoSpatialClient.StartVectorEnrichmentJobAsync(
 new StartVectorEnrichmentJobRequest()
 {
 ExecutionRoleArn = request.Role,
 InputConfig = inputConfig,
 Name = request.vej_name,
 JobConfig = jobConfig

Scenarios 1545

AWS SDK for .NET Developer Guide

 });
 context.Logger.LogInformation("Job response: " +
 JsonSerializer.Serialize(jobResponse));
 responseDictionary = new Dictionary<string, string>
 {
 { "vej_arn", jobResponse.Arn },
 { "statusCode", jobResponse.HttpStatusCode.ToString() }
 };
 }
 return responseDictionary;
 }

 /// <summary>
 /// Process a queue message and check the status of a SageMaker job.
 /// </summary>
 /// <param name="message">The queue message.</param>
 /// <param name="context">The Lambda context.</param>
 /// <param name="geoClient">The SageMaker GeoSpatial client.</param>
 /// <param name="sageMakerClient">The SageMaker client.</param>
 /// <returns>Async task.</returns>
 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context,
 AmazonSageMakerGeospatialClient geoClient, AmazonSageMakerClient
 sageMakerClient)
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // Get information about the SageMaker job.
 var payload = JsonSerializer.Deserialize<QueuePayload>(message.Body);
 context.Logger.LogInformation($"Payload token {payload!.token}");
 var token = payload.token;

 if (payload.arguments.ContainsKey("vej_arn"))
 {
 // Use the job ARN and the token to get the job status.
 var job_arn = payload.arguments["vej_arn"];
 context.Logger.LogInformation($"Token: {token}, arn {job_arn}");

 var jobInfo = geoClient.GetVectorEnrichmentJobAsync(
 new GetVectorEnrichmentJobRequest()
 {
 Arn = job_arn
 });

Scenarios 1546

AWS SDK for .NET Developer Guide

 context.Logger.LogInformation("Job info: " +
 JsonSerializer.Serialize(jobInfo));
 if (jobInfo.Result.Status == VectorEnrichmentJobStatus.COMPLETED)
 {
 context.Logger.LogInformation($"Status completed, resuming
 pipeline...");
 await sageMakerClient.SendPipelineExecutionStepSuccessAsync(
 new SendPipelineExecutionStepSuccessRequest()
 {
 CallbackToken = token,
 OutputParameters = new List<OutputParameter>()
 {
 new OutputParameter()
 { Name = "export_status", Value =
 jobInfo.Result.Status }
 }
 });
 }
 else if (jobInfo.Result.Status == VectorEnrichmentJobStatus.FAILED)
 {
 context.Logger.LogInformation($"Status failed, stopping
 pipeline...");
 await sageMakerClient.SendPipelineExecutionStepFailureAsync(
 new SendPipelineExecutionStepFailureRequest()
 {
 CallbackToken = token,
 FailureReason = jobInfo.Result.ErrorDetails.ErrorMessage
 });
 }
 else if (jobInfo.Result.Status == VectorEnrichmentJobStatus.IN_PROGRESS)
 {
 // Put this message back in the queue to reprocess later.
 context.Logger.LogInformation(
 $"Status still in progress, check back later.");
 throw new("Job still running.");
 }
 }
 }
}

Run an interactive scenario at a command prompt.

Scenarios 1547

AWS SDK for .NET Developer Guide

public static class PipelineWorkflow
{
 public static IAmazonIdentityManagementService _iamClient = null!;
 public static SageMakerWrapper _sageMakerWrapper = null!;
 public static IAmazonSQS _sqsClient = null!;
 public static IAmazonS3 _s3Client = null!;
 public static IAmazonLambda _lambdaClient = null!;
 public static IConfiguration _configuration = null!;

 public static string lambdaFunctionName = "SageMakerExampleFunction";
 public static string sageMakerRoleName = "SageMakerExampleRole";
 public static string lambdaRoleName = "SageMakerExampleLambdaRole";

 private static string[] lambdaRolePolicies = null!;
 private static string[] sageMakerRolePolicies = null!;

 static async Task Main(string[] args)
 {
 var options = new AWSOptions() { Region = RegionEndpoint.USWest2 };
 // Set up dependency injection for the AWS service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonIdentityManagementService>(options)
 .AddAWSService<IAmazonEC2>(options)
 .AddAWSService<IAmazonSageMaker>(options)
 .AddAWSService<IAmazonSageMakerGeospatial>(options)
 .AddAWSService<IAmazonSQS>(options)
 .AddAWSService<IAmazonS3>(options)
 .AddAWSService<IAmazonLambda>(options)
 .AddTransient<SageMakerWrapper>()
)
 .Build();

 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally, load local settings.

Scenarios 1548

AWS SDK for .NET Developer Guide

 .Build();

 ServicesSetup(host);
 string queueUrl = "";
 string queueName = _configuration["queueName"];
 string bucketName = _configuration["bucketName"];
 var pipelineName = _configuration["pipelineName"];

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "Welcome to the Amazon SageMaker pipeline example scenario.");
 Console.WriteLine(
 "\nThis example workflow will guide you through setting up and
 running an" +
 "\nAmazon SageMaker pipeline. The pipeline uses an AWS Lambda
 function and an" +
 "\nAmazon SQS Queue. It runs a vector enrichment reverse geocode job
 to" +
 "\nreverse geocode addresses in an input file and store the results
 in an export file.");
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 "First, we will set up the roles, functions, and queue needed by the
 SageMaker pipeline.");
 Console.WriteLine(new string('-', 80));

 var lambdaRoleArn = await CreateLambdaRole();
 var sageMakerRoleArn = await CreateSageMakerRole();
 var functionArn = await SetupLambda(lambdaRoleArn, true);
 queueUrl = await SetupQueue(queueName);
 await SetupBucket(bucketName);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Now we can create and run our pipeline.");
 Console.WriteLine(new string('-', 80));

 await SetupPipeline(sageMakerRoleArn, functionArn, pipelineName);
 var executionArn = await ExecutePipeline(queueUrl, sageMakerRoleArn,
 pipelineName, bucketName);
 await WaitForPipelineExecution(executionArn);

Scenarios 1549

AWS SDK for .NET Developer Guide

 await GetOutputResults(bucketName);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("The pipeline has completed. To view the pipeline and
 runs " +
 "in SageMaker Studio, follow these instructions:" +
 "\nhttps://docs.aws.amazon.com/sagemaker/latest/dg/
pipelines-studio.html");
 Console.WriteLine(new string('-', 80));

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Finally, let's clean up our resources.");
 Console.WriteLine(new string('-', 80));

 await CleanupResources(true, queueUrl, pipelineName, bucketName);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("SageMaker pipeline scenario is complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await CleanupResources(true, queueUrl, pipelineName, bucketName);
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _sageMakerWrapper = host.Services.GetRequiredService<SageMakerWrapper>();
 _iamClient =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();
 _sqsClient = host.Services.GetRequiredService<IAmazonSQS>();
 _s3Client = host.Services.GetRequiredService<IAmazonS3>();
 _lambdaClient = host.Services.GetRequiredService<IAmazonLambda>();
 }

Scenarios 1550

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Set up AWS Lambda, either by updating an existing function or creating a new
 function.
 /// </summary>
 /// <param name="roleArn">The role Amazon Resource Name (ARN) to use for the
 Lambda function.</param>
 /// <param name="askUser">True to ask the user before updating.</param>
 /// <returns>The ARN of the function.</returns>
 public static async Task<string> SetupLambda(string roleArn, bool askUser)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Setting up the Lambda function for the pipeline.");
 var handlerName =
 "SageMakerLambda::SageMakerLambda.SageMakerLambdaFunction::FunctionHandler";
 var functionArn = "";
 try
 {
 var functionInfo = await _lambdaClient.GetFunctionAsync(new
 GetFunctionRequest()
 {
 FunctionName = lambdaFunctionName
 });

 var updateFunction = true;
 if (askUser)
 {
 updateFunction = GetYesNoResponse(
 $"\tThe Lambda function {lambdaFunctionName} already exists, do
 you want to update it?");
 }

 if (updateFunction)
 {
 // Update the Lambda function.
 using var zipMemoryStream = new MemoryStream(await
 File.ReadAllBytesAsync("SageMakerLambda.zip"));
 await _lambdaClient.UpdateFunctionCodeAsync(
 new UpdateFunctionCodeRequest()
 {
 FunctionName = lambdaFunctionName,
 ZipFile = zipMemoryStream,
 });
 }

Scenarios 1551

AWS SDK for .NET Developer Guide

 functionArn = functionInfo.Configuration.FunctionArn;
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine($"\tThe Lambda function {lambdaFunctionName} was not
 found, creating the new function.");

 // Create the function if it does not already exist.
 using var zipMemoryStream = new MemoryStream(await
 File.ReadAllBytesAsync("SageMakerLambda.zip"));
 var createResult = await _lambdaClient.CreateFunctionAsync(
 new CreateFunctionRequest()
 {
 FunctionName = lambdaFunctionName,
 Runtime = Runtime.Dotnet6,
 Description = "SageMaker example function.",
 Code = new FunctionCode()
 {
 ZipFile = zipMemoryStream
 },
 Handler = handlerName,
 Role = roleArn,
 Timeout = 30
 });

 functionArn = createResult.FunctionArn;
 }

 Console.WriteLine($"\tLambda ready with ARN {functionArn}.");
 Console.WriteLine(new string('-', 80));
 return functionArn;
 }

 /// <summary>
 /// Create a role to be used by AWS Lambda. Does not create the role if it
 already exists.
 /// </summary>
 /// <returns>The role ARN.</returns>
 public static async Task<string> CreateLambdaRole()
 {
 Console.WriteLine(new string('-', 80));

 lambdaRolePolicies = new string[]{

Scenarios 1552

AWS SDK for .NET Developer Guide

 "arn:aws:iam::aws:policy/AmazonSageMakerFullAccess",
 "arn:aws:iam::aws:policy/AmazonSQSFullAccess",
 "arn:aws:iam::aws:policy/service-role/" +
 "AmazonSageMakerGeospatialFullAccess",
 "arn:aws:iam::aws:policy/service-role/" +
 "AmazonSageMakerServiceCatalogProductsLambdaServiceRolePolicy",
 "arn:aws:iam::aws:policy/service-role/" +
 "AWSLambdaSQSQueueExecutionRole"
 };

 var roleArn = await GetRoleArnIfExists(lambdaRoleName);
 if (!string.IsNullOrEmpty(roleArn))
 {
 return roleArn;
 }

 Console.WriteLine("\tCreating a role to for AWS Lambda to use.");

 var assumeRolePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": [" +
 "\"sagemaker.amazonaws.com\"," +
 "\"sagemaker-geospatial.amazonaws.com
\"," +
 "\"lambda.amazonaws.com\"," +
 "\"s3.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var roleResult = await _iamClient!.CreateRoleAsync(
 new CreateRoleRequest()
 {
 AssumeRolePolicyDocument = assumeRolePolicy,
 Path = "/",
 RoleName = lambdaRoleName
 });
 foreach (var policy in lambdaRolePolicies)
 {

Scenarios 1553

AWS SDK for .NET Developer Guide

 await _iamClient.AttachRolePolicyAsync(
 new AttachRolePolicyRequest()
 {
 PolicyArn = policy,
 RoleName = lambdaRoleName
 });
 }

 // Allow time for the role to be ready.
 Thread.Sleep(10000);
 Console.WriteLine($"\tRole ready with ARN {roleResult.Role.Arn}.");
 Console.WriteLine(new string('-', 80));

 return roleResult.Role.Arn;
 }

 /// <summary>
 /// Create a role to be used by SageMaker.
 /// </summary>
 /// <returns>The role Amazon Resource Name (ARN).</returns>
 public static async Task<string> CreateSageMakerRole()
 {
 Console.WriteLine(new string('-', 80));

 sageMakerRolePolicies = new string[]{
 "arn:aws:iam::aws:policy/AmazonSageMakerFullAccess",
 "arn:aws:iam::aws:policy/AmazonSageMakerGeospatialFullAccess",
 };

 var roleArn = await GetRoleArnIfExists(sageMakerRoleName);
 if (!string.IsNullOrEmpty(roleArn))
 {
 return roleArn;
 }

 Console.WriteLine("\tCreating a role to use with SageMaker.");

 var assumeRolePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": [" +

Scenarios 1554

AWS SDK for .NET Developer Guide

 "\"sagemaker.amazonaws.com\"," +
 "\"sagemaker-
geospatial.amazonaws.com\"," +
 "\"lambda.amazonaws.com\"," +
 "\"s3.amazonaws.com\"" +
 "]" +
 "}," +
 "\"Action\": \"sts:AssumeRole\"" +
 "}]" +
 "}";

 var roleResult = await _iamClient!.CreateRoleAsync(
 new CreateRoleRequest()
 {
 AssumeRolePolicyDocument = assumeRolePolicy,
 Path = "/",
 RoleName = sageMakerRoleName
 });

 foreach (var policy in sageMakerRolePolicies)
 {
 await _iamClient.AttachRolePolicyAsync(
 new AttachRolePolicyRequest()
 {
 PolicyArn = policy,
 RoleName = sageMakerRoleName
 });
 }

 // Allow time for the role to be ready.
 Thread.Sleep(10000);
 Console.WriteLine($"\tRole ready with ARN {roleResult.Role.Arn}.");
 Console.WriteLine(new string('-', 80));
 return roleResult.Role.Arn;
 }

 /// <summary>
 /// Set up the SQS queue to use with the pipeline.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <returns>The URL for the queue.</returns>
 public static async Task<string> SetupQueue(string queueName)
 {
 Console.WriteLine(new string('-', 80));

Scenarios 1555

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Setting up queue {queueName}.");

 try
 {
 var queueInfo = await _sqsClient.GetQueueUrlAsync(new
 GetQueueUrlRequest()
 { QueueName = queueName });
 return queueInfo.QueueUrl;
 }
 catch (QueueDoesNotExistException)
 {
 var attrs = new Dictionary<string, string>
 {
 {
 QueueAttributeName.DelaySeconds,
 "5"
 },
 {
 QueueAttributeName.ReceiveMessageWaitTimeSeconds,
 "5"
 },
 {
 QueueAttributeName.VisibilityTimeout,
 "300"
 },
 };

 var request = new CreateQueueRequest
 {
 Attributes = attrs,
 QueueName = queueName,
 };

 var response = await _sqsClient.CreateQueueAsync(request);
 Thread.Sleep(10000);
 await ConnectLambda(response.QueueUrl);
 Console.WriteLine($"\tQueue ready with Url {response.QueueUrl}.");
 Console.WriteLine(new string('-', 80));
 return response.QueueUrl;
 }
 }

 /// <summary>
 /// Connect the queue to the Lambda function as an event source.

Scenarios 1556

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="queueUrl">The URL for the queue.</param>
 /// <returns>Async task.</returns>
 public static async Task ConnectLambda(string queueUrl)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Connecting the Lambda function and queue for the
 pipeline.");

 var queueAttributes = await _sqsClient.GetQueueAttributesAsync(
 new GetQueueAttributesRequest() { QueueUrl = queueUrl, AttributeNames =
 new List<string>() { "All" } });
 var queueArn = queueAttributes.QueueARN;

 var eventSource = await _lambdaClient.ListEventSourceMappingsAsync(
 new ListEventSourceMappingsRequest()
 {
 FunctionName = lambdaFunctionName
 });

 if (!eventSource.EventSourceMappings.Any())
 {
 // Only add the event source mapping if it does not already exist.
 await _lambdaClient.CreateEventSourceMappingAsync(
 new CreateEventSourceMappingRequest()
 {
 EventSourceArn = queueArn,
 FunctionName = lambdaFunctionName,
 Enabled = true
 });
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up the bucket to use for pipeline input and output.
 /// </summary>
 /// <param name="bucketName">The name for the bucket.</param>
 /// <returns>Async task.</returns>
 public static async Task SetupBucket(string bucketName)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Setting up bucket {bucketName}.");

Scenarios 1557

AWS SDK for .NET Developer Guide

 var bucketExists = await
 Amazon.S3.Util.AmazonS3Util.DoesS3BucketExistV2Async(_s3Client,
 bucketName);

 if (!bucketExists)
 {
 await _s3Client.PutBucketAsync(new PutBucketRequest()
 {
 BucketName = bucketName,
 BucketRegion = S3Region.USWest2
 });

 Thread.Sleep(5000);

 await _s3Client.PutObjectAsync(new PutObjectRequest()
 {
 BucketName = bucketName,
 Key = "samplefiles/latlongtest.csv",
 FilePath = "latlongtest.csv"
 });
 }

 Console.WriteLine($"\tBucket {bucketName} ready.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Display some results from the output directory.
 /// </summary>
 /// <param name="bucketName">The name for the bucket.</param>
 /// <returns>Async task.</returns>
 public static async Task<string> GetOutputResults(string bucketName)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Getting output results {bucketName}.");
 string outputKey = "";
 Thread.Sleep(15000);
 var outputFiles = await _s3Client.ListObjectsAsync(
 new ListObjectsRequest()
 {
 BucketName = bucketName,
 Prefix = "outputfiles/"
 });

Scenarios 1558

AWS SDK for .NET Developer Guide

 if (outputFiles.S3Objects.Any())
 {
 var sampleOutput = outputFiles.S3Objects.OrderBy(s =>
 s.LastModified).Last();
 Console.WriteLine($"\tOutput file: {sampleOutput.Key}");
 var outputSampleResponse = await _s3Client.GetObjectAsync(
 new GetObjectRequest()
 {
 BucketName = bucketName,
 Key = sampleOutput.Key
 });
 outputKey = sampleOutput.Key;
 StreamReader reader = new
 StreamReader(outputSampleResponse.ResponseStream);
 await reader.ReadLineAsync();
 Console.WriteLine("\tOutput file contents: \n");
 for (int i = 0; i < 10; i++)
 {
 if (!reader.EndOfStream)
 {
 Console.WriteLine("\t" + await reader.ReadLineAsync());
 }
 }
 }

 Console.WriteLine(new string('-', 80));
 return outputKey;
 }

 /// <summary>
 /// Create a pipeline from the example pipeline JSON
 /// that includes the Lambda, callback, processing, and export jobs.
 /// </summary>
 /// <param name="roleArn">The ARN of the role for the pipeline.</param>
 /// <param name="functionArn">The ARN of the Lambda function for the pipeline.</
param>
 /// <param name="pipelineName">The name for the pipeline.</param>
 /// <returns>The ARN of the pipeline.</returns>
 public static async Task<string> SetupPipeline(string roleArn, string
 functionArn, string pipelineName)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Setting up the pipeline.");

Scenarios 1559

AWS SDK for .NET Developer Guide

 var pipelineJson = await File.ReadAllTextAsync("GeoSpatialPipeline.json");

 // Add the correct function ARN instead of the placeholder.
 pipelineJson = pipelineJson.Replace("*FUNCTION_ARN*", functionArn);

 var pipelineArn = await _sageMakerWrapper.SetupPipeline(pipelineJson,
 roleArn, pipelineName,
 "sdk example pipeline", pipelineName);

 Console.WriteLine($"\tPipeline set up with ARN {pipelineArn}.");
 Console.WriteLine(new string('-', 80));

 return pipelineArn;
 }

 /// <summary>
 /// Start a pipeline run with job configurations.
 /// </summary>
 /// <param name="queueUrl">The URL for the queue used in the pipeline.</param>
 /// <param name="roleArn">The ARN of the role.</param>
 /// <param name="pipelineName">The name of the pipeline.</param>
 /// <param name="bucketName">The name of the bucket.</param>
 /// <returns>The pipeline run ARN.</returns>
 public static async Task<string> ExecutePipeline(
 string queueUrl,
 string roleArn,
 string pipelineName,
 string bucketName)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Starting pipeline execution.");

 var input = $"s3://{bucketName}/samplefiles/latlongtest.csv";
 var output = $"s3://{bucketName}/outputfiles/";

 var executionARN =
 await _sageMakerWrapper.ExecutePipeline(queueUrl, input, output,
 pipelineName, roleArn);

 Console.WriteLine($"\tRun started with ARN {executionARN}.");
 Console.WriteLine(new string('-', 80));

 return executionARN;

Scenarios 1560

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Wait for a pipeline run to complete.
 /// </summary>
 /// <param name="executionArn">The pipeline run ARN.</param>
 /// <returns>Async task.</returns>
 public static async Task WaitForPipelineExecution(string executionArn)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Waiting for pipeline to finish.");

 PipelineExecutionStatus status;
 do
 {
 status = await
 _sageMakerWrapper.CheckPipelineExecutionStatus(executionArn);
 Thread.Sleep(30000);
 Console.WriteLine($"\tStatus is {status}.");
 } while (status == PipelineExecutionStatus.Executing);

 Console.WriteLine($"\tPipeline finished with status {status}.");
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <param name="askUser">True to ask the user for cleanup.</param>
 /// <param name="queueUrl">The URL of the queue to clean up.</param>
 /// <param name="pipelineName">The name of the pipeline.</param>
 /// <param name="bucketName">The name of the bucket.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> CleanupResources(
 bool askUser,
 string queueUrl,
 string pipelineName,
 string bucketName)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 if (!askUser || GetYesNoResponse($"\tDelete pipeline {pipelineName}? (y/
n)"))

Scenarios 1561

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"\tDeleting pipeline.");
 // Delete the pipeline.
 await _sageMakerWrapper.DeletePipelineByName(pipelineName);
 }

 if (!string.IsNullOrEmpty(queueUrl) && (!askUser ||
 GetYesNoResponse($"\tDelete queue {queueUrl}? (y/n)")))
 {
 Console.WriteLine($"\tDeleting queue.");
 // Delete the queue.
 await _sqsClient.DeleteQueueAsync(new DeleteQueueRequest(queueUrl));
 }

 if (!askUser || GetYesNoResponse($"\tDelete Amazon S3 bucket {bucketName}?
 (y/n)"))
 {
 Console.WriteLine($"\tDeleting bucket.");
 // Delete all objects in the bucket.
 var deleteList = await _s3Client.ListObjectsV2Async(new
 ListObjectsV2Request()
 {
 BucketName = bucketName
 });
 if (deleteList.KeyCount > 0)
 {
 await _s3Client.DeleteObjectsAsync(new DeleteObjectsRequest()
 {
 BucketName = bucketName,
 Objects = deleteList.S3Objects
 .Select(o => new KeyVersion { Key = o.Key }).ToList()
 });
 }

 // Now delete the bucket.
 await _s3Client.DeleteBucketAsync(new DeleteBucketRequest()
 {
 BucketName = bucketName
 });
 }

 if (!askUser || GetYesNoResponse($"\tDelete lambda {lambdaFunctionName}? (y/
n)"))
 {

Scenarios 1562

AWS SDK for .NET Developer Guide

 Console.WriteLine($"\tDeleting lambda function.");

 await _lambdaClient.DeleteFunctionAsync(new DeleteFunctionRequest()
 {
 FunctionName = lambdaFunctionName
 });
 }

 if (!askUser || GetYesNoResponse($"\tDelete role {lambdaRoleName}? (y/n)"))
 {
 Console.WriteLine($"\tDetaching policies and deleting role.");

 foreach (var policy in lambdaRolePolicies)
 {
 await _iamClient!.DetachRolePolicyAsync(new
 DetachRolePolicyRequest()
 {
 RoleName = lambdaRoleName,
 PolicyArn = policy
 });
 }

 await _iamClient!.DeleteRoleAsync(new DeleteRoleRequest()
 {
 RoleName = lambdaRoleName
 });
 }

 if (!askUser || GetYesNoResponse($"\tDelete role {sageMakerRoleName}? (y/
n)"))
 {
 Console.WriteLine($"\tDetaching policies and deleting role.");

 foreach (var policy in sageMakerRolePolicies)
 {
 await _iamClient!.DetachRolePolicyAsync(new
 DetachRolePolicyRequest()
 {
 RoleName = sageMakerRoleName,
 PolicyArn = policy
 });
 }

 await _iamClient!.DeleteRoleAsync(new DeleteRoleRequest()

Scenarios 1563

AWS SDK for .NET Developer Guide

 {
 RoleName = sageMakerRoleName
 });
 }

 Console.WriteLine(new string('-', 80));
 return true;
 }

 /// <summary>
 /// Helper method to get a role's ARN if it already exists.
 /// </summary>
 /// <param name="roleName">The name of the AWS Identity and Access Management
 (IAM) Role to look for.</param>
 /// <returns>The role ARN if it exists, otherwise an empty string.</returns>
 private static async Task<string> GetRoleArnIfExists(string roleName)
 {
 Console.WriteLine($"Checking for role named {roleName}.");

 try
 {
 var existingRole = await _iamClient.GetRoleAsync(new GetRoleRequest()
 {
 RoleName = lambdaRoleName
 });
 return existingRole.Role.Arn;
 }
 catch (NoSuchEntityException)
 {
 return string.Empty;
 }
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",

Scenarios 1564

AWS SDK for .NET Developer Guide

 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreatePipeline

• DeletePipeline

• DescribePipelineExecution

• StartPipelineExecution

• UpdatePipeline

Secrets Manager examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Secrets Manager.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

GetSecretValue

The following code example shows how to use GetSecretValue.

Secrets Manager 1565

https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/CreatePipeline
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DeletePipeline
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/DescribePipelineExecution
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/StartPipelineExecution
https://docs.aws.amazon.com/goto/DotNetSDKV3/sagemaker-2017-07-24/UpdatePipeline

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.SecretsManager;
 using Amazon.SecretsManager.Model;

 /// <summary>
 /// This example uses the Amazon Web Service Secrets Manager to retrieve
 /// the secret value for the provided secret name.
 /// </summary>
 public class GetSecretValue
 {
 /// <summary>
 /// The main method initializes the necessary values and then calls
 /// the GetSecretAsync and DecodeString methods to get the decoded
 /// secret value for the secret named in secretName.
 /// </summary>
 public static async Task Main()
 {
 string secretName = "<<{{MySecretName}}>>";
 string secret;

 IAmazonSecretsManager client = new AmazonSecretsManagerClient();

 var response = await GetSecretAsync(client, secretName);

 if (response is not null)
 {
 secret = DecodeString(response);

 if (!string.IsNullOrEmpty(secret))
 {
 Console.WriteLine($"The decoded secret value is: {secret}.");
 }

Actions 1566

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SecretsManager#code-examples

AWS SDK for .NET Developer Guide

 else
 {
 Console.WriteLine("No secret value was returned.");
 }
 }
 }

 /// <summary>
 /// Retrieves the secret value given the name of the secret to
 /// retrieve.
 /// </summary>
 /// <param name="client">The client object used to retrieve the secret
 /// value for the given secret name.</param>
 /// <param name="secretName">The name of the secret value to retrieve.</
param>
 /// <returns>The GetSecretValueReponse object returned by
 /// GetSecretValueAsync.</returns>
 public static async Task<GetSecretValueResponse> GetSecretAsync(
 IAmazonSecretsManager client,
 string secretName)
 {
 GetSecretValueRequest request = new GetSecretValueRequest()
 {
 SecretId = secretName,
 VersionStage = "AWSCURRENT", // VersionStage defaults to AWSCURRENT
 if unspecified.
 };

 GetSecretValueResponse response = null;

 // For the sake of simplicity, this example handles only the most
 // general SecretsManager exception.
 try
 {
 response = await client.GetSecretValueAsync(request);
 }
 catch (AmazonSecretsManagerException e)
 {
 Console.WriteLine($"Error: {e.Message}");
 }

 return response;
 }

Actions 1567

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Decodes the secret returned by the call to GetSecretValueAsync and
 /// returns it to the calling program.
 /// </summary>
 /// <param name="response">A GetSecretValueResponse object containing
 /// the requested secret value returned by GetSecretValueAsync.</param>
 /// <returns>A string representing the decoded secret value.</returns>
 public static string DecodeString(GetSecretValueResponse response)
 {
 // Decrypts secret using the associated AWS Key Management Service
 // Customer Master Key (CMK.) Depending on whether the secret is a
 // string or binary value, one of these fields will be populated.
 if (response.SecretString is not null)
 {
 var secret = response.SecretString;
 return secret;
 }
 else if (response.SecretBinary is not null)
 {
 var memoryStream = response.SecretBinary;
 StreamReader reader = new StreamReader(memoryStream);
 string decodedBinarySecret =
 System.Text.Encoding.UTF8.GetString(Convert.FromBase64String(reader.ReadToEnd()));
 return decodedBinarySecret;
 }
 else
 {
 return string.Empty;
 }
 }
 }

• For API details, see GetSecretValue in AWS SDK for .NET API Reference.

Amazon SES examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon SES.

Amazon SES 1568

https://docs.aws.amazon.com/goto/DotNetSDKV3/secretsmanager-2017-10-17/GetSecretValue

AWS SDK for .NET Developer Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

CreateTemplate

The following code example shows how to use CreateTemplate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create an email template.
 /// </summary>
 /// <param name="name">Name of the template.</param>
 /// <param name="subject">Email subject.</param>
 /// <param name="text">Email body text.</param>
 /// <param name="html">Email HTML body text.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateEmailTemplateAsync(string name, string subject,
 string text,
 string html)
 {

Actions 1569

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.CreateTemplateAsync(
 new CreateTemplateRequest
 {
 Template = new Template
 {
 TemplateName = name,
 SubjectPart = subject,
 TextPart = text,
 HtmlPart = html
 }
 });
 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("CreateEmailTemplateAsync failed with exception: " +
 ex.Message);
 }

 return success;
 }

• For API details, see CreateTemplate in AWS SDK for .NET API Reference.

DeleteIdentity

The following code example shows how to use DeleteIdentity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1570

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/CreateTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an email identity.
 /// </summary>
 /// <param name="identityEmail">The identity email to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteIdentityAsync(string identityEmail)
 {
 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.DeleteIdentityAsync(
 new DeleteIdentityRequest
 {
 Identity = identityEmail
 });
 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("DeleteIdentityAsync failed with exception: " +
 ex.Message);
 }

 return success;
 }

• For API details, see DeleteIdentity in AWS SDK for .NET API Reference.

DeleteTemplate

The following code example shows how to use DeleteTemplate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1571

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/DeleteIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete an email template.
 /// </summary>
 /// <param name="templateName">Name of the template.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailTemplateAsync(string templateName)
 {
 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.DeleteTemplateAsync(
 new DeleteTemplateRequest
 {
 TemplateName = templateName
 });
 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("DeleteEmailTemplateAsync failed with exception: " +
 ex.Message);
 }

 return success;
 }

• For API details, see DeleteTemplate in AWS SDK for .NET API Reference.

GetIdentityVerificationAttributes

The following code example shows how to use GetIdentityVerificationAttributes.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1572

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/DeleteTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Get identity verification status for an email.
 /// </summary>
 /// <returns>The verification status of the email.</returns>
 public async Task<VerificationStatus> GetIdentityStatusAsync(string email)
 {
 var result = VerificationStatus.TemporaryFailure;
 try
 {
 var response =
 await
 _amazonSimpleEmailService.GetIdentityVerificationAttributesAsync(
 new GetIdentityVerificationAttributesRequest
 {
 Identities = new List<string> { email }
 });

 if (response.VerificationAttributes.ContainsKey(email))
 result = response.VerificationAttributes[email].VerificationStatus;
 }
 catch (Exception ex)
 {
 Console.WriteLine("GetIdentityStatusAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

• For API details, see GetIdentityVerificationAttributes in AWS SDK for .NET API Reference.

GetSendQuota

The following code example shows how to use GetSendQuota.

Actions 1573

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/GetIdentityVerificationAttributes

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information on the current account's send quota.
 /// </summary>
 /// <returns>The send quota response data.</returns>
 public async Task<GetSendQuotaResponse> GetSendQuotaAsync()
 {
 var result = new GetSendQuotaResponse();
 try
 {
 var response = await _amazonSimpleEmailService.GetSendQuotaAsync(
 new GetSendQuotaRequest());
 result = response;
 }
 catch (Exception ex)
 {
 Console.WriteLine("GetSendQuotaAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

• For API details, see GetSendQuota in AWS SDK for .NET API Reference.

ListIdentities

The following code example shows how to use ListIdentities.

Actions 1574

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/GetSendQuota

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the identities of a specified type for the current account.
 /// </summary>
 /// <param name="identityType">IdentityType to list.</param>
 /// <returns>The list of identities.</returns>
 public async Task<List<string>> ListIdentitiesAsync(IdentityType identityType)
 {
 var result = new List<string>();
 try
 {
 var response = await _amazonSimpleEmailService.ListIdentitiesAsync(
 new ListIdentitiesRequest
 {
 IdentityType = identityType
 });
 result = response.Identities;
 }
 catch (Exception ex)
 {
 Console.WriteLine("ListIdentitiesAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

• For API details, see ListIdentities in AWS SDK for .NET API Reference.

Actions 1575

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/ListIdentities

AWS SDK for .NET Developer Guide

ListTemplates

The following code example shows how to use ListTemplates.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List email templates for the current account.
 /// </summary>
 /// <returns>A list of template metadata.</returns>
 public async Task<List<TemplateMetadata>> ListEmailTemplatesAsync()
 {
 var result = new List<TemplateMetadata>();
 try
 {
 var response = await _amazonSimpleEmailService.ListTemplatesAsync(
 new ListTemplatesRequest());
 result = response.TemplatesMetadata;
 }
 catch (Exception ex)
 {
 Console.WriteLine("ListEmailTemplatesAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

• For API details, see ListTemplates in AWS SDK for .NET API Reference.

SendEmail

The following code example shows how to use SendEmail.

Actions 1576

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/ListTemplates

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Send an email by using Amazon SES.
 /// </summary>
 /// <param name="toAddresses">List of recipients.</param>
 /// <param name="ccAddresses">List of cc recipients.</param>
 /// <param name="bccAddresses">List of bcc recipients.</param>
 /// <param name="bodyHtml">Body of the email in HTML.</param>
 /// <param name="bodyText">Body of the email in plain text.</param>
 /// <param name="subject">Subject line of the email.</param>
 /// <param name="senderAddress">From address.</param>
 /// <returns>The messageId of the email.</returns>
 public async Task<string> SendEmailAsync(List<string> toAddresses,
 List<string> ccAddresses, List<string> bccAddresses,
 string bodyHtml, string bodyText, string subject, string senderAddress)
 {
 var messageId = "";
 try
 {
 var response = await _amazonSimpleEmailService.SendEmailAsync(
 new SendEmailRequest
 {
 Destination = new Destination
 {
 BccAddresses = bccAddresses,
 CcAddresses = ccAddresses,
 ToAddresses = toAddresses
 },
 Message = new Message
 {
 Body = new Body
 {
 Html = new Content
 {

Actions 1577

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 Charset = "UTF-8",
 Data = bodyHtml
 },
 Text = new Content
 {
 Charset = "UTF-8",
 Data = bodyText
 }
 },
 Subject = new Content
 {
 Charset = "UTF-8",
 Data = subject
 }
 },
 Source = senderAddress
 });
 messageId = response.MessageId;
 }
 catch (Exception ex)
 {
 Console.WriteLine("SendEmailAsync failed with exception: " +
 ex.Message);
 }

 return messageId;
 }

• For API details, see SendEmail in AWS SDK for .NET API Reference.

SendTemplatedEmail

The following code example shows how to use SendTemplatedEmail.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1578

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Send an email using a template.
 /// </summary>
 /// <param name="sender">Address of the sender.</param>
 /// <param name="recipients">Addresses of the recipients.</param>
 /// <param name="templateName">Name of the email template.</param>
 /// <param name="templateDataObject">Data for the email template.</param>
 /// <returns>The messageId of the email.</returns>
 public async Task<string> SendTemplateEmailAsync(string sender, List<string>
 recipients,
 string templateName, object templateDataObject)
 {
 var messageId = "";
 try
 {
 // Template data should be serialized JSON from either a class or a
 dynamic object.
 var templateData = JsonSerializer.Serialize(templateDataObject);

 var response = await _amazonSimpleEmailService.SendTemplatedEmailAsync(
 new SendTemplatedEmailRequest
 {
 Source = sender,
 Destination = new Destination
 {
 ToAddresses = recipients
 },
 Template = templateName,
 TemplateData = templateData
 });
 messageId = response.MessageId;
 }
 catch (Exception ex)
 {
 Console.WriteLine("SendTemplateEmailAsync failed with exception: " +
 ex.Message);
 }

 return messageId;
 }

Actions 1579

AWS SDK for .NET Developer Guide

• For API details, see SendTemplatedEmail in AWS SDK for .NET API Reference.

VerifyEmailIdentity

The following code example shows how to use VerifyEmailIdentity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Starts verification of an email identity. This request sends an email
 /// from Amazon SES to the specified email address. To complete
 /// verification, follow the instructions in the email.
 /// </summary>
 /// <param name="recipientEmailAddress">Email address to verify.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> VerifyEmailIdentityAsync(string recipientEmailAddress)
 {
 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.VerifyEmailIdentityAsync(
 new VerifyEmailIdentityRequest
 {
 EmailAddress = recipientEmailAddress
 });

 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("VerifyEmailIdentityAsync failed with exception: " +
 ex.Message);
 }

 return success;

Actions 1580

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/SendTemplatedEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

AWS SDK for .NET Developer Guide

 }

• For API details, see VerifyEmailIdentity in AWS SDK for .NET API Reference.

Scenarios

Create a web application to track DynamoDB data

The following code example shows how to create a web application that tracks work items in an
Amazon DynamoDB table and uses Amazon Simple Email Service (Amazon SES) to send reports.

AWS SDK for .NET

Shows how to use the Amazon DynamoDB .NET API to create a dynamic web application that
tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Create an Aurora Serverless work item tracker

The following code example shows how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

AWS SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work items in
an Amazon Aurora database and emails reports by using Amazon Simple Email Service (Amazon
SES). This example uses a front end built with React.js to interact with a RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

Scenarios 1581

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/VerifyEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/DynamoDbItemTracker

AWS SDK for .NET Developer Guide

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Detect objects in images

The following code example shows how to build an app that uses Amazon Rekognition to detect
objects by category in images.

AWS SDK for .NET

Shows how to use Amazon Rekognition .NET API to create an app that uses Amazon
Rekognition to identify objects by category in images located in an Amazon Simple Storage
Service (Amazon S3) bucket. The app sends the admin an email notification with the results
using Amazon Simple Email Service (Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

Amazon SES API v2 examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon SES API v2.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Amazon SES API v2 1582

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAnalyzerApp

AWS SDK for .NET Developer Guide

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

• Scenarios

Actions

CreateContact

The following code example shows how to use CreateContact.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates a contact and adds it to the specified contact list.
 /// </summary>
 /// <param name="emailAddress">The email address of the contact.</param>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The response from the CreateContact operation.</returns>
 public async Task<bool> CreateContactAsync(string emailAddress, string
 contactListName)
 {
 var request = new CreateContactRequest
 {
 EmailAddress = emailAddress,
 ContactListName = contactListName
 };

 try

Actions 1583

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 {
 var response = await _sesClient.CreateContactAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact with email address {emailAddress} already
 exists in the contact list {contactListName}.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact:
 {ex.Message}");
 }
 return false;
 }

• For API details, see CreateContact in AWS SDK for .NET API Reference.

CreateContactList

The following code example shows how to use CreateContactList.

Actions 1584

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContact

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates a contact list with the specified name.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateContactListAsync(string contactListName)
 {
 var request = new CreateContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact list with name {contactListName} already
 exists.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for contact lists has been exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);

Actions 1585

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact list:
 {ex.Message}");
 }
 return false;
 }

• For API details, see CreateContactList in AWS SDK for .NET API Reference.

CreateEmailIdentity

The following code example shows how to use CreateEmailIdentity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates an email identity (email address or domain) and starts the
 verification process.
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to create and
 verify.</param>
 /// <returns>The response from the CreateEmailIdentity operation.</returns>
 public async Task<CreateEmailIdentityResponse> CreateEmailIdentityAsync(string
 emailIdentity)
 {
 var request = new CreateEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.CreateEmailIdentityAsync(request);

Actions 1586

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 return response;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email identity {emailIdentity} already exists.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being modified
 by another operation or thread.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email identities has been exceeded.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email identity:
 {ex.Message}");
 throw;
 }
 }

Actions 1587

AWS SDK for .NET Developer Guide

• For API details, see CreateEmailIdentity in AWS SDK for .NET API Reference.

CreateEmailTemplate

The following code example shows how to use CreateEmailTemplate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Creates an email template with the specified content.
 /// </summary>
 /// <param name="templateName">The name of the email template.</param>
 /// <param name="subject">The subject of the email template.</param>
 /// <param name="htmlContent">The HTML content of the email template.</param>
 /// <param name="textContent">The text content of the email template.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateEmailTemplateAsync(string templateName, string
 subject, string htmlContent, string textContent)
 {
 var request = new CreateEmailTemplateRequest
 {
 TemplateName = templateName,
 TemplateContent = new EmailTemplateContent
 {
 Subject = subject,
 Html = htmlContent,
 Text = textContent
 }
 };

 try
 {
 var response = await _sesClient.CreateEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)

Actions 1588

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine($"Email template with name {templateName} already
 exists.");
 Console.WriteLine(ex.Message);
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email templates has been exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email template:
 {ex.Message}");
 }

 return false;
 }

• For API details, see CreateEmailTemplate in AWS SDK for .NET API Reference.

DeleteContactList

The following code example shows how to use DeleteContactList.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes a contact list and all contacts within it.

Actions 1589

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="contactListName">The name of the contact list to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteContactListAsync(string contactListName)
 {
 var request = new DeleteContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.DeleteContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The contact list {contactListName} is being modified
 by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the contact list:
 {ex.Message}");
 }

 return false;
 }

Actions 1590

AWS SDK for .NET Developer Guide

• For API details, see DeleteContactList in AWS SDK for .NET API Reference.

DeleteEmailIdentity

The following code example shows how to use DeleteEmailIdentity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes an email identity (email address or domain).
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailIdentityAsync(string emailIdentity)
 {
 var request = new DeleteEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.DeleteEmailIdentityAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being modified
 by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);

Actions 1591

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email identity:
 {ex.Message}");
 }

 return false;
 }

• For API details, see DeleteEmailIdentity in AWS SDK for .NET API Reference.

DeleteEmailTemplate

The following code example shows how to use DeleteEmailTemplate.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Deletes an email template.
 /// </summary>
 /// <param name="templateName">The name of the email template to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailTemplateAsync(string templateName)
 {
 var request = new DeleteEmailTemplateRequest
 {
 TemplateName = templateName
 };

Actions 1592

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 try
 {
 var response = await _sesClient.DeleteEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email template {templateName} does not exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email template:
 {ex.Message}");
 }

 return false;
 }

• For API details, see DeleteEmailTemplate in AWS SDK for .NET API Reference.

ListContacts

The following code example shows how to use ListContacts.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 1593

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 /// Lists the contacts in the specified contact list.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The list of contacts response from the ListContacts operation.</
returns>
 public async Task<List<Contact>> ListContactsAsync(string contactListName)
 {
 var request = new ListContactsRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.ListContactsAsync(request);
 return response.Contacts;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while listing the contacts:
 {ex.Message}");
 }

 return new List<Contact>();
 }

• For API details, see ListContacts in AWS SDK for .NET API Reference.

Actions 1594

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/ListContacts

AWS SDK for .NET Developer Guide

SendEmail

The following code example shows how to use SendEmail.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Sends an email with the specified content and options.
 /// </summary>
 /// <param name="fromEmailAddress">The email address to send the email from.</
param>
 /// <param name="toEmailAddresses">The email addresses to send the email to.</
param>
 /// <param name="subject">The subject of the email.</param>
 /// <param name="htmlContent">The HTML content of the email.</param>
 /// <param name="textContent">The text content of the email.</param>
 /// <param name="templateName">The name of the email template to use
 (optional).</param>
 /// <param name="templateData">The data to replace placeholders in the email
 template (optional).</param>
 /// <param name="contactListName">The name of the contact list for unsubscribe
 functionality (optional).</param>
 /// <returns>The MessageId response from the SendEmail operation.</returns>
 public async Task<string> SendEmailAsync(string fromEmailAddress, List<string>
 toEmailAddresses, string? subject,
 string? htmlContent, string? textContent, string? templateName = null,
 string? templateData = null, string? contactListName = null)
 {
 var request = new SendEmailRequest
 {
 FromEmailAddress = fromEmailAddress
 };

 if (toEmailAddresses.Any())
 {
 request.Destination = new Destination { ToAddresses =
 toEmailAddresses };

Actions 1595

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 }

 if (!string.IsNullOrEmpty(templateName))
 {
 request.Content = new EmailContent()
 {
 Template = new Template
 {
 TemplateName = templateName,
 TemplateData = templateData
 }
 };
 }
 else
 {
 request.Content = new EmailContent
 {
 Simple = new Message
 {
 Subject = new Content { Data = subject },
 Body = new Body
 {
 Html = new Content { Data = htmlContent },
 Text = new Content { Data = textContent }
 }
 }
 };
 }

 if (!string.IsNullOrEmpty(contactListName))
 {
 request.ListManagementOptions = new ListManagementOptions
 {
 ContactListName = contactListName
 };
 }

 try
 {
 var response = await _sesClient.SendEmailAsync(request);
 return response.MessageId;
 }
 catch (AccountSuspendedException ex)
 {

Actions 1596

AWS SDK for .NET Developer Guide

 Console.WriteLine("The account's ability to send email has been
 permanently restricted.");
 Console.WriteLine(ex.Message);
 }
 catch (MailFromDomainNotVerifiedException ex)
 {
 Console.WriteLine("The sending domain is not verified.");
 Console.WriteLine(ex.Message);
 }
 catch (MessageRejectedException ex)
 {
 Console.WriteLine("The message content is invalid.");
 Console.WriteLine(ex.Message);
 }
 catch (SendingPausedException ex)
 {
 Console.WriteLine("The account's ability to send email is currently
 paused.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while sending the email:
 {ex.Message}");
 }

 return string.Empty;
 }

• For API details, see SendEmail in AWS SDK for .NET API Reference.

Scenarios

Newsletter workflow

The following code example shows how to run the Amazon SES API v2 newsletter workflow.

Scenarios 1597

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/SendEmail

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run the workflow.

using System.Diagnostics;
using System.Text.RegularExpressions;
using Amazon.SimpleEmailV2;
using Amazon.SimpleEmailV2.Model;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

namespace Sesv2Scenario;

public static class NewsletterWorkflow
{
 /*
 This workflow demonstrates how to use the Amazon Simple Email Service (SES) v2
 to send a coupon newsletter to a list of subscribers.
 The workflow performs the following tasks:

 1. Prepare the application:
 - Create a verified email identity for sending and replying to emails.
 - Create a contact list to store the subscribers' email addresses.
 - Create an email template for the coupon newsletter.

 2. Gather subscriber email addresses:
 - Prompt the user for a base email address.
 - Create 3 variants of the email address using subaddress extensions (e.g.,
 user+ses-weekly-newsletter-1@example.com).
 - Add each variant as a contact to the contact list.
 - Send a welcome email to each new contact.

 3. Send the coupon newsletter:
 - Retrieve the list of contacts from the contact list.

Scenarios 1598

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

AWS SDK for .NET Developer Guide

 - Send the coupon newsletter using the email template to each contact.

 4. Monitor and review:
 - Provide instructions for the user to review the sending activity and
 metrics in the AWS console.

 5. Clean up resources:
 - Delete the contact list (which also deletes all contacts within it).
 - Delete the email template.
 - Optionally delete the verified email identity.

 */

 public static SESv2Wrapper _sesv2Wrapper;
 public static string? _baseEmailAddress = null;
 public static string? _verifiedEmail = null;
 private static string _contactListName = "weekly-coupons-newsletter";
 private static string _templateName = "weekly-coupons";
 private static string _subject = "Weekly Coupons Newsletter";
 private static string _htmlContentFile = "coupon-newsletter.html";
 private static string _textContentFile = "coupon-newsletter.txt";
 private static string _htmlWelcomeFile = "welcome.html";
 private static string _textWelcomeFile = "welcome.txt";
 private static string _couponsDataFile = "sample_coupons.json";

 // Relative location of the resources folder.
 private static string _resourcesFilePathLocation = "../../../../resources/";

 public static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonSimpleEmailServiceV2>()
 .AddTransient<SESv2Wrapper>()
)
 .Build();

 ServicesSetup(host);

Scenarios 1599

AWS SDK for .NET Developer Guide

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon SES v2 Coupon Newsletter
 Workflow.");
 Console.WriteLine("This workflow demonstrates how to use the Amazon
 Simple Email Service (SES) v2 " +
 "\r\nto send a coupon newsletter to a list of
 subscribers.");

 // Prepare the application.
 var emailIdentity = await PrepareApplication();

 // Gather subscriber email addresses.
 await GatherSubscriberEmailAddresses(emailIdentity);

 // Send the coupon newsletter.
 await SendCouponNewsletter(emailIdentity);

 // Monitor and review.
 MonitorAndReview(true);

 // Clean up resources.
 await Cleanup(emailIdentity, true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Amazon SES v2 Coupon Newsletter Workflow is
 complete.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred: {ex.Message}");
 }
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)

Scenarios 1600

AWS SDK for .NET Developer Guide

 {
 _sesv2Wrapper = host.Services.GetRequiredService<SESv2Wrapper>();
 }

 /// <summary>
 /// Set up the resources for the workflow.
 /// </summary>
 /// <returns>The email address of the verified identity.</returns>
 public static async Task<string?> PrepareApplication()
 {
 var htmlContent = await File.ReadAllTextAsync(_resourcesFilePathLocation +
 _htmlContentFile);
 var textContent = await File.ReadAllTextAsync(_resourcesFilePathLocation +
 _textContentFile);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("1. In this step, we will prepare the application:" +
 "\r\n - Create a verified email identity for sending and
 replying to emails." +
 "\r\n - Create a contact list to store the subscribers'
 email addresses." +
 "\r\n - Create an email template for the coupon
 newsletter.\r\n");

 // Prompt the user for a verified email address.
 while (!IsEmail(_verifiedEmail))
 {
 Console.Write("Enter a verified email address or an email to verify: ");
 _verifiedEmail = Console.ReadLine();
 }

 try
 {
 // Create an email identity and start the verification process.
 await _sesv2Wrapper.CreateEmailIdentityAsync(_verifiedEmail);
 Console.WriteLine($"Identity {_verifiedEmail} created.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Identity {_verifiedEmail} already exists.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating email identity: {ex.Message}");

Scenarios 1601

AWS SDK for .NET Developer Guide

 }

 // Create a contact list.
 try
 {
 await _sesv2Wrapper.CreateContactListAsync(_contactListName);
 Console.WriteLine($"Contact list {_contactListName} created.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Contact list {_contactListName} already exists.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating contact list: {ex.Message}");
 }

 // Create an email template.
 try
 {
 await _sesv2Wrapper.CreateEmailTemplateAsync(_templateName, _subject,
 htmlContent, textContent);
 Console.WriteLine($"Email template {_templateName} created.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Email template {_templateName} already exists.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating email template: {ex.Message}");
 }

 return _verifiedEmail;
 }

 /// <summary>
 /// Generate subscriber addresses and send welcome emails.
 /// </summary>
 /// <param name="fromEmailAddress">The verified email address from
 PrepareApplication.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> GatherSubscriberEmailAddresses(string
 fromEmailAddress)

Scenarios 1602

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("2. In Step 2, we will gather subscriber email addresses:"
 +
 "\r\n - Prompt the user for a base email address." +
 "\r\n - Create 3 variants of the email address using
 subaddress extensions (e.g., user+ses-weekly-newsletter-1@example.com)." +
 "\r\n - Add each variant as a contact to the contact
 list." +
 "\r\n - Send a welcome email to each new contact.\r\n");

 // Prompt the user for a base email address.
 while (!IsEmail(_baseEmailAddress))
 {
 Console.Write("Enter a base email address (e.g., user@example.com): ");
 _baseEmailAddress = Console.ReadLine();
 }

 // Create 3 variants of the email address using +ses-weekly-newsletter-1,
 +ses-weekly-newsletter-2, etc.
 var baseEmailAddressParts = _baseEmailAddress!.Split("@");
 for (int i = 1; i <= 3; i++)
 {
 string emailAddress = $"{baseEmailAddressParts[0]}+ses-weekly-
newsletter-{i}@{baseEmailAddressParts[1]}";

 try
 {
 // Create a contact with the email address in the contact list.
 await _sesv2Wrapper.CreateContactAsync(emailAddress,
 _contactListName);
 Console.WriteLine($"Contact {emailAddress} added to the
 {_contactListName} contact list.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Contact {emailAddress} already exists in the
 {_contactListName} contact list.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating contact {emailAddress}:
 {ex.Message}");
 return false;

Scenarios 1603

AWS SDK for .NET Developer Guide

 }

 // Send a welcome email to the new contact.
 try
 {
 string subject = "Welcome to the Weekly Coupons Newsletter";
 string htmlContent = await
 File.ReadAllTextAsync(_resourcesFilePathLocation + _htmlWelcomeFile);
 string textContent = await
 File.ReadAllTextAsync(_resourcesFilePathLocation + _textWelcomeFile);

 await _sesv2Wrapper.SendEmailAsync(fromEmailAddress, new
 List<string> { emailAddress }, subject, htmlContent, textContent);
 Console.WriteLine($"Welcome email sent to {emailAddress}.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error sending welcome email to {emailAddress}:
 {ex.Message}");
 return false;
 }

 // Wait 2 seconds before sending the next email (if the account is in
 the SES Sandbox).
 await Task.Delay(2000);
 }

 return true;
 }

 /// <summary>
 /// Send the coupon newsletter to the subscribers in the contact list.
 /// </summary>
 /// <param name="fromEmailAddress">The verified email address from
 PrepareApplication.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> SendCouponNewsletter(string fromEmailAddress)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("3. In this step, we will send the coupon newsletter:" +
 "\r\n - Retrieve the list of contacts from the contact
 list." +
 "\r\n - Send the coupon newsletter using the email
 template to each contact.\r\n");

Scenarios 1604

AWS SDK for .NET Developer Guide

 // Retrieve the list of contacts from the contact list.
 var contacts = await _sesv2Wrapper.ListContactsAsync(_contactListName);
 if (!contacts.Any())
 {
 Console.WriteLine($"No contacts found in the {_contactListName} contact
 list.");
 return false;
 }

 // Load the coupon data from the sample_coupons.json file.
 string couponsData = await File.ReadAllTextAsync(_resourcesFilePathLocation
 + _couponsDataFile);

 // Send the coupon newsletter to each contact using the email template.
 try
 {
 foreach (var contact in contacts)
 {
 // To use the Contact List for list management, send to only one
 address at a time.
 await _sesv2Wrapper.SendEmailAsync(fromEmailAddress,
 new List<string> { contact.EmailAddress },
 null, null, null, _templateName, couponsData, _contactListName);
 }

 Console.WriteLine($"Coupon newsletter sent to contact list
 {_contactListName}.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error sending coupon newsletter to contact list
 {_contactListName}: {ex.Message}");
 return false;
 }

 return true;
 }

 /// <summary>
 /// Provide instructions for monitoring sending activity and metrics.
 /// </summary>
 /// <param name="interactive">True to run in interactive mode.</param>

Scenarios 1605

AWS SDK for .NET Developer Guide

 /// <returns>True if successful.</returns>
 public static bool MonitorAndReview(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("4. In step 4, we will monitor and review:" +
 "\r\n - Provide instructions for the user to review the
 sending activity and metrics in the AWS console.\r\n");

 Console.WriteLine("Review your sending activity using the SES Homepage in
 the AWS console.");
 Console.WriteLine("Press Enter to open the SES Homepage in your default
 browser...");
 if (interactive)
 {
 Console.ReadLine();
 try
 {
 // Open the SES Homepage in the default browser.
 Process.Start(new ProcessStartInfo
 {
 FileName = "https://console.aws.amazon.com/ses/home",
 UseShellExecute = true
 });
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error opening the SES Homepage: {ex.Message}");
 return false;
 }
 }

 Console.WriteLine("Review the sending activity and email metrics, then press
 Enter to continue...");
 if (interactive)
 Console.ReadLine();
 return true;
 }

 /// <summary>
 /// Clean up the resources used in the workflow.
 /// </summary>
 /// <param name="verifiedEmailAddress">The verified email address from
 PrepareApplication.</param>
 /// <param name="interactive">True if interactive.</param>

Scenarios 1606

AWS SDK for .NET Developer Guide

 /// <returns>Async task.</returns>
 public static async Task<bool> Cleanup(string verifiedEmailAddress, bool
 interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("5. Finally, we clean up resources:" +
 "\r\n - Delete the contact list (which also deletes all
 contacts within it)." +
 "\r\n - Delete the email template." +
 "\r\n - Optionally delete the verified email identity.\r
\n");

 Console.WriteLine("Cleaning up resources...");

 // Delete the contact list (this also deletes all contacts in the list).
 try
 {
 await _sesv2Wrapper.DeleteContactListAsync(_contactListName);
 Console.WriteLine($"Contact list {_contactListName} deleted.");
 }
 catch (NotFoundException)
 {
 Console.WriteLine($"Contact list {_contactListName} not found.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error deleting contact list {_contactListName}:
 {ex.Message}");
 return false;
 }

 // Delete the email template.
 try
 {
 await _sesv2Wrapper.DeleteEmailTemplateAsync(_templateName);
 Console.WriteLine($"Email template {_templateName} deleted.");
 }
 catch (NotFoundException)
 {
 Console.WriteLine($"Email template {_templateName} not found.");
 }
 catch (Exception ex)
 {

Scenarios 1607

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Error deleting email template {_templateName}:
 {ex.Message}");
 return false;
 }

 // Ask the user if they want to delete the email identity.
 var deleteIdentity = !interactive ||
 GetYesNoResponse(
 $"Do you want to delete the email identity {verifiedEmailAddress}?
 (y/n) ");
 if (deleteIdentity)
 {
 try
 {
 await _sesv2Wrapper.DeleteEmailIdentityAsync(verifiedEmailAddress);
 Console.WriteLine($"Email identity {verifiedEmailAddress}
 deleted.");
 }
 catch (NotFoundException)
 {
 Console.WriteLine(
 $"Email identity {verifiedEmailAddress} not found.");
 }
 catch (Exception ex)
 {
 Console.WriteLine(
 $"Error deleting email identity {verifiedEmailAddress}:
 {ex.Message}");
 return false;
 }
 }
 else
 {
 Console.WriteLine(
 $"Skipping deletion of email identity {verifiedEmailAddress}.");
 }

 return true;
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>

Scenarios 1608

AWS SDK for .NET Developer Guide

 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

 /// <summary>
 /// Simple check to verify a string is an email address.
 /// </summary>
 /// <param name="email">The string to verify.</param>
 /// <returns>True if a valid email.</returns>
 private static bool IsEmail(string? email)
 {
 if (string.IsNullOrEmpty(email))
 return false;
 return Regex.IsMatch(email, @"^[^@\s]+@[^@\s]+\.[^@\s]+$",
 RegexOptions.IgnoreCase);
 }
}

Wrapper for service operations.

using System.Net;
using Amazon.SimpleEmailV2;
using Amazon.SimpleEmailV2.Model;

namespace Sesv2Scenario;

/// <summary>
/// Wrapper class for Amazon Simple Email Service (SES) v2 operations.
/// </summary>
public class SESv2Wrapper
{

 private readonly IAmazonSimpleEmailServiceV2 _sesClient;

 /// <summary>
 /// Constructor for the SESv2Wrapper.

Scenarios 1609

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="sesClient">The injected SES v2 client.</param>
 public SESv2Wrapper(IAmazonSimpleEmailServiceV2 sesClient)
 {
 _sesClient = sesClient;
 }

 /// <summary>
 /// Creates a contact and adds it to the specified contact list.
 /// </summary>
 /// <param name="emailAddress">The email address of the contact.</param>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The response from the CreateContact operation.</returns>
 public async Task<bool> CreateContactAsync(string emailAddress, string
 contactListName)
 {
 var request = new CreateContactRequest
 {
 EmailAddress = emailAddress,
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact with email address {emailAddress} already
 exists in the contact list {contactListName}.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");

Scenarios 1610

AWS SDK for .NET Developer Guide

 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact:
 {ex.Message}");
 }
 return false;
 }

 /// <summary>
 /// Creates a contact list with the specified name.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateContactListAsync(string contactListName)
 {
 var request = new CreateContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact list with name {contactListName} already
 exists.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for contact lists has been exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);

Scenarios 1611

AWS SDK for .NET Developer Guide

 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact list:
 {ex.Message}");
 }
 return false;
 }

 /// <summary>
 /// Creates an email identity (email address or domain) and starts the
 verification process.
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to create and
 verify.</param>
 /// <returns>The response from the CreateEmailIdentity operation.</returns>
 public async Task<CreateEmailIdentityResponse> CreateEmailIdentityAsync(string
 emailIdentity)
 {
 var request = new CreateEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.CreateEmailIdentityAsync(request);
 return response;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email identity {emailIdentity} already exists.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being modified
 by another operation or thread.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (LimitExceededException ex)
 {

Scenarios 1612

AWS SDK for .NET Developer Guide

 Console.WriteLine("The limit for email identities has been exceeded.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email identity:
 {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Creates an email template with the specified content.
 /// </summary>
 /// <param name="templateName">The name of the email template.</param>
 /// <param name="subject">The subject of the email template.</param>
 /// <param name="htmlContent">The HTML content of the email template.</param>
 /// <param name="textContent">The text content of the email template.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateEmailTemplateAsync(string templateName, string
 subject, string htmlContent, string textContent)
 {
 var request = new CreateEmailTemplateRequest
 {
 TemplateName = templateName,
 TemplateContent = new EmailTemplateContent
 {
 Subject = subject,
 Html = htmlContent,

Scenarios 1613

AWS SDK for .NET Developer Guide

 Text = textContent
 }
 };

 try
 {
 var response = await _sesClient.CreateEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email template with name {templateName} already
 exists.");
 Console.WriteLine(ex.Message);
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email templates has been exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email template:
 {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Deletes a contact list and all contacts within it.
 /// </summary>
 /// <param name="contactListName">The name of the contact list to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteContactListAsync(string contactListName)
 {
 var request = new DeleteContactListRequest

Scenarios 1614

AWS SDK for .NET Developer Guide

 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.DeleteContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The contact list {contactListName} is being modified
 by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the contact list:
 {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Deletes an email identity (email address or domain).
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailIdentityAsync(string emailIdentity)
 {
 var request = new DeleteEmailIdentityRequest

Scenarios 1615

AWS SDK for .NET Developer Guide

 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.DeleteEmailIdentityAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being modified
 by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email identity:
 {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Deletes an email template.
 /// </summary>
 /// <param name="templateName">The name of the email template to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailTemplateAsync(string templateName)
 {
 var request = new DeleteEmailTemplateRequest

Scenarios 1616

AWS SDK for .NET Developer Guide

 {
 TemplateName = templateName
 };

 try
 {
 var response = await _sesClient.DeleteEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email template {templateName} does not exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email template:
 {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Lists the contacts in the specified contact list.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The list of contacts response from the ListContacts operation.</
returns>
 public async Task<List<Contact>> ListContactsAsync(string contactListName)
 {
 var request = new ListContactsRequest
 {
 ContactListName = contactListName
 };

 try
 {

Scenarios 1617

AWS SDK for .NET Developer Guide

 var response = await _sesClient.ListContactsAsync(request);
 return response.Contacts;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while listing the contacts:
 {ex.Message}");
 }

 return new List<Contact>();
 }

 /// <summary>
 /// Sends an email with the specified content and options.
 /// </summary>
 /// <param name="fromEmailAddress">The email address to send the email from.</
param>
 /// <param name="toEmailAddresses">The email addresses to send the email to.</
param>
 /// <param name="subject">The subject of the email.</param>
 /// <param name="htmlContent">The HTML content of the email.</param>
 /// <param name="textContent">The text content of the email.</param>
 /// <param name="templateName">The name of the email template to use
 (optional).</param>
 /// <param name="templateData">The data to replace placeholders in the email
 template (optional).</param>
 /// <param name="contactListName">The name of the contact list for unsubscribe
 functionality (optional).</param>
 /// <returns>The MessageId response from the SendEmail operation.</returns>
 public async Task<string> SendEmailAsync(string fromEmailAddress, List<string>
 toEmailAddresses, string? subject,

Scenarios 1618

AWS SDK for .NET Developer Guide

 string? htmlContent, string? textContent, string? templateName = null,
 string? templateData = null, string? contactListName = null)
 {
 var request = new SendEmailRequest
 {
 FromEmailAddress = fromEmailAddress
 };

 if (toEmailAddresses.Any())
 {
 request.Destination = new Destination { ToAddresses =
 toEmailAddresses };
 }

 if (!string.IsNullOrEmpty(templateName))
 {
 request.Content = new EmailContent()
 {
 Template = new Template
 {
 TemplateName = templateName,
 TemplateData = templateData
 }
 };
 }
 else
 {
 request.Content = new EmailContent
 {
 Simple = new Message
 {
 Subject = new Content { Data = subject },
 Body = new Body
 {
 Html = new Content { Data = htmlContent },
 Text = new Content { Data = textContent }
 }
 }
 };
 }

 if (!string.IsNullOrEmpty(contactListName))
 {
 request.ListManagementOptions = new ListManagementOptions

Scenarios 1619

AWS SDK for .NET Developer Guide

 {
 ContactListName = contactListName
 };
 }

 try
 {
 var response = await _sesClient.SendEmailAsync(request);
 return response.MessageId;
 }
 catch (AccountSuspendedException ex)
 {
 Console.WriteLine("The account's ability to send email has been
 permanently restricted.");
 Console.WriteLine(ex.Message);
 }
 catch (MailFromDomainNotVerifiedException ex)
 {
 Console.WriteLine("The sending domain is not verified.");
 Console.WriteLine(ex.Message);
 }
 catch (MessageRejectedException ex)
 {
 Console.WriteLine("The message content is invalid.");
 Console.WriteLine(ex.Message);
 }
 catch (SendingPausedException ex)
 {
 Console.WriteLine("The account's ability to send email is currently
 paused.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while sending the email:
 {ex.Message}");
 }

Scenarios 1620

AWS SDK for .NET Developer Guide

 return string.Empty;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateContact

• CreateContactList

• CreateEmailIdentity

• CreateEmailTemplate

• DeleteContactList

• DeleteEmailIdentity

• DeleteEmailTemplate

• ListContacts

• SendEmail.simple

• SendEmail.template

Amazon SNS examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon SNS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon SNS

The following code examples show how to get started using Amazon SNS.
Amazon SNS 1621

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContact
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContactList
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailIdentity
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteContactList
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailIdentity
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/ListContacts
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/SendEmail.simple
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/SendEmail.template

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SNSActions;

public static class HelloSNS
{
 static async Task Main(string[] args)
 {
 var snsClient = new AmazonSimpleNotificationServiceClient();

 Console.WriteLine($"Hello Amazon SNS! Following are some of your topics:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get a list of topics.
 var response = await snsClient.ListTopicsAsync(
 new ListTopicsRequest());

 foreach (var topic in response.Topics)
 {
 Console.WriteLine($"\tTopic ARN: {topic.TopicArn}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListTopics in AWS SDK for .NET API Reference.

Topics

• Actions

Amazon SNS 1622

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListTopics

AWS SDK for .NET Developer Guide

• Scenarios

• Serverless examples

Actions

CheckIfPhoneNumberIsOptedOut

The following code example shows how to use CheckIfPhoneNumberIsOptedOut.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example shows how to use the Amazon Simple Notification Service
 /// (Amazon SNS) to check whether a phone number has been opted out.
 /// </summary>
 public class IsPhoneNumOptedOut
 {
 public static async Task Main()
 {
 string phoneNumber = "+15551112222";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await CheckIfOptedOutAsync(client, phoneNumber);
 }

 /// <summary>
 /// Checks to see if the supplied phone number has been opted out.
 /// </summary>

Actions 1623

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="client">The initialized Amazon SNS Client object used
 /// to check if the phone number has been opted out.</param>
 /// <param name="phoneNumber">A string representing the phone number
 /// to check.</param>
 public static async Task
 CheckIfOptedOutAsync(IAmazonSimpleNotificationService client, string phoneNumber)
 {
 var request = new CheckIfPhoneNumberIsOptedOutRequest
 {
 PhoneNumber = phoneNumber,
 };

 try
 {
 var response = await
 client.CheckIfPhoneNumberIsOptedOutAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 string optOutStatus = response.IsOptedOut ? "opted out" : "not
 opted out.";
 Console.WriteLine($"The phone number: {phoneNumber} is
 {optOutStatus}");
 }
 }
 catch (AuthorizationErrorException ex)
 {
 Console.WriteLine($"{ex.Message}");
 }
 }
 }

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for .NET API Reference.

CreateTopic

The following code example shows how to use CreateTopic.

Actions 1624

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create a topic with a specific name.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example shows how to use Amazon Simple Notification Service
 /// (Amazon SNS) to add a new Amazon SNS topic.
 /// </summary>
 public class CreateSNSTopic
 {
 public static async Task Main()
 {
 string topicName = "ExampleSNSTopic";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 var topicArn = await CreateSNSTopicAsync(client, topicName);
 Console.WriteLine($"New topic ARN: {topicArn}");
 }

 /// <summary>
 /// Creates a new SNS topic using the supplied topic name.
 /// </summary>
 /// <param name="client">The initialized SNS client object used to
 /// create the new topic.</param>
 /// <param name="topicName">A string representing the topic name.</param>
 /// <returns>The Amazon Resource Name (ARN) of the created topic.</returns>
 public static async Task<string>
 CreateSNSTopicAsync(IAmazonSimpleNotificationService client, string topicName)
 {
 var request = new CreateTopicRequest

Actions 1625

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 {
 Name = topicName,
 };

 var response = await client.CreateTopicAsync(request);

 return response.TopicArn;
 }
 }

Create a new topic with a name and specific FIFO and de-duplication attributes.

 /// <summary>
 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.
 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>
 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.
 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }

Actions 1626

AWS SDK for .NET Developer Guide

 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

• For API details, see CreateTopic in AWS SDK for .NET API Reference.

DeleteTopic

The following code example shows how to use DeleteTopic.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Delete a topic by its topic ARN.

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn

Actions 1627

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTopic in AWS SDK for .NET API Reference.

GetTopicAttributes

The following code example shows how to use GetTopicAttributes.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;

 /// <summary>
 /// This example shows how to retrieve the attributes of an Amazon Simple
 /// Notification Service (Amazon SNS) topic.
 /// </summary>
 public class GetTopicAttributes
 {
 public static async Task Main()
 {
 string topicArn = "arn:aws:sns:us-west-2:000000000000:ExampleSNSTopic";
 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 var attributes = await GetTopicAttributesAsync(client, topicArn);
 DisplayTopicAttributes(attributes);
 }

 /// <summary>

Actions 1628

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 /// Given the ARN of the Amazon SNS topic, this method retrieves the topic
 /// attributes.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object used
 /// to retrieve the attributes for the Amazon SNS topic.</param>
 /// <param name="topicArn">The ARN of the topic for which to retrieve
 /// the attributes.</param>
 /// <returns>A Dictionary of topic attributes.</returns>
 public static async Task<Dictionary<string, string>>
 GetTopicAttributesAsync(
 IAmazonSimpleNotificationService client,
 string topicArn)
 {
 var response = await client.GetTopicAttributesAsync(topicArn);

 return response.Attributes;
 }

 /// <summary>
 /// This method displays the attributes for an Amazon SNS topic.
 /// </summary>
 /// <param name="topicAttributes">A Dictionary containing the
 /// attributes for an Amazon SNS topic.</param>
 public static void DisplayTopicAttributes(Dictionary<string, string>
 topicAttributes)
 {
 foreach (KeyValuePair<string, string> entry in topicAttributes)
 {
 Console.WriteLine($"{entry.Key}: {entry.Value}\n");
 }
 }
 }

• For API details, see GetTopicAttributes in AWS SDK for .NET API Reference.

ListSubscriptions

The following code example shows how to use ListSubscriptions.

Actions 1629

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/GetTopicAttributes

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example will retrieve a list of the existing Amazon Simple
 /// Notification Service (Amazon SNS) subscriptions.
 /// </summary>
 public class ListSubscriptions
 {
 public static async Task Main()
 {
 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 Console.WriteLine("Enter a topic ARN to list subscriptions for a
 specific topic, " +
 "or press Enter to list subscriptions for all
 topics.");
 var topicArn = Console.ReadLine();
 Console.WriteLine();

 var subscriptions = await GetSubscriptionsListAsync(client, topicArn);

 DisplaySubscriptionList(subscriptions);
 }

 /// <summary>
 /// Gets a list of the existing Amazon SNS subscriptions, optionally by
 specifying a topic ARN.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object used

Actions 1630

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 /// to obtain the list of subscriptions.</param>
 /// <param name="topicArn">The optional ARN of a specific topic. Defaults to
 null.</param>
 /// <returns>A list containing information about each subscription.</
returns>
 public static async Task<List<Subscription>>
 GetSubscriptionsListAsync(IAmazonSimpleNotificationService client, string topicArn
 = null)
 {
 var results = new List<Subscription>();

 if (!string.IsNullOrEmpty(topicArn))
 {
 var paginateByTopic = client.Paginators.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest()
 {
 TopicArn = topicArn,
 });

 // Get the entire list using the paginator.
 await foreach (var subscription in paginateByTopic.Subscriptions)
 {
 results.Add(subscription);
 }
 }
 else
 {
 var paginateAllSubscriptions =
 client.Paginators.ListSubscriptions(new ListSubscriptionsRequest());

 // Get the entire list using the paginator.
 await foreach (var subscription in
 paginateAllSubscriptions.Subscriptions)
 {
 results.Add(subscription);
 }
 }

 return results;
 }

 /// <summary>
 /// Display a list of Amazon SNS subscription information.
 /// </summary>

Actions 1631

AWS SDK for .NET Developer Guide

 /// <param name="subscriptionList">A list containing details for existing
 /// Amazon SNS subscriptions.</param>
 public static void DisplaySubscriptionList(List<Subscription>
 subscriptionList)
 {
 foreach (var subscription in subscriptionList)
 {
 Console.WriteLine($"Owner: {subscription.Owner}");
 Console.WriteLine($"Subscription ARN:
 {subscription.SubscriptionArn}");
 Console.WriteLine($"Topic ARN: {subscription.TopicArn}");
 Console.WriteLine($"Endpoint: {subscription.Endpoint}");
 Console.WriteLine($"Protocol: {subscription.Protocol}");
 Console.WriteLine();
 }
 }
 }

• For API details, see ListSubscriptions in AWS SDK for .NET API Reference.

ListTopics

The following code example shows how to use ListTopics.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// Lists the Amazon Simple Notification Service (Amazon SNS)

Actions 1632

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 /// topics for the current account.
 /// </summary>
 public class ListSNSTopics
 {
 public static async Task Main()
 {
 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await GetTopicListAsync(client);
 }

 /// <summary>
 /// Retrieves the list of Amazon SNS topics in groups of up to 100
 /// topics.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object used
 /// to retrieve the list of topics.</param>
 public static async Task GetTopicListAsync(IAmazonSimpleNotificationService
 client)
 {
 // If there are more than 100 Amazon SNS topics, the call to
 // ListTopicsAsync will return a value to pass to the
 // method to retrieve the next 100 (or less) topics.
 string nextToken = string.Empty;

 do
 {
 var response = await client.ListTopicsAsync(nextToken);
 DisplayTopicsList(response.Topics);
 nextToken = response.NextToken;
 }
 while (!string.IsNullOrEmpty(nextToken));
 }

 /// <summary>
 /// Displays the list of Amazon SNS Topic ARNs.
 /// </summary>
 /// <param name="topicList">The list of Topic ARNs.</param>
 public static void DisplayTopicsList(List<Topic> topicList)
 {
 foreach (var topic in topicList)
 {
 Console.WriteLine($"{topic.TopicArn}");

Actions 1633

AWS SDK for .NET Developer Guide

 }
 }
 }

• For API details, see ListTopics in AWS SDK for .NET API Reference.

Publish

The following code example shows how to use Publish.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Publish a message to a topic.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example publishes a message to an Amazon Simple Notification
 /// Service (Amazon SNS) topic.
 /// </summary>
 public class PublishToSNSTopic
 {
 public static async Task Main()
 {
 string topicArn = "arn:aws:sns:us-east-2:000000000000:ExampleSNSTopic";
 string messageText = "This is an example message to publish to the
 ExampleSNSTopic.";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

Actions 1634

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 await PublishToTopicAsync(client, topicArn, messageText);
 }

 /// <summary>
 /// Publishes a message to an Amazon SNS topic.
 /// </summary>
 /// <param name="client">The initialized client object used to publish
 /// to the Amazon SNS topic.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="messageText">The text of the message.</param>
 public static async Task PublishToTopicAsync(
 IAmazonSimpleNotificationService client,
 string topicArn,
 string messageText)
 {
 var request = new PublishRequest
 {
 TopicArn = topicArn,
 Message = messageText,
 };

 var response = await client.PublishAsync(request);

 Console.WriteLine($"Successfully published message ID:
 {response.MessageId}");
 }
 }

Publish a message to a topic with group, duplication, and attribute options.

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

 var keepSendingMessages = true;
 string? deduplicationId = null;
 string? toneAttribute = null;

Actions 1635

AWS SDK for .NET Developer Guide

 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is a
 sample message");

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must set
 a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID for
 this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +
 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this message.");
 deduplicationId = GetUserResponse("Enter a deduplication ID for
 this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {
 toneAttribute = _tones[selectionNumber - 1];
 }

Actions 1636

AWS SDK for .NET Developer Guide

 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(
 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?", false);
 }
 }

Apply the user's selections to the publish action.

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</param>
 /// <param name="attributeValue">The optional attribute value for the message.</
param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,
 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {
 var publishRequest = new PublishRequest()
 {
 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId

Actions 1637

AWS SDK for .NET Developer Guide

 };

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {
 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;
 }

• For API details, see Publish in AWS SDK for .NET API Reference.

Subscribe

The following code example shows how to use Subscribe.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Subscribe an email address to a topic.

 /// <summary>
 /// Creates a new subscription to a topic.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object, used
 /// to create an Amazon SNS subscription.</param>
 /// <param name="topicArn">The ARN of the topic to subscribe to.</param>

Actions 1638

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 /// <returns>A SubscribeResponse object which includes the subscription
 /// ARN for the new subscription.</returns>
 public static async Task<SubscribeResponse> TopicSubscribeAsync(
 IAmazonSimpleNotificationService client,
 string topicArn)
 {
 SubscribeRequest request = new SubscribeRequest()
 {
 TopicArn = topicArn,
 ReturnSubscriptionArn = true,
 Protocol = "email",
 Endpoint = "recipient@example.com",
 };

 var response = await client.SubscribeAsync(request);

 return response;
 }

Subscribe a queue to a topic with optional filters.

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>
 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {

Actions 1639

AWS SDK for .NET Developer Guide

 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };
 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;
 }

• For API details, see Subscribe in AWS SDK for .NET API Reference.

Unsubscribe

The following code example shows how to use Unsubscribe.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Unsubscribe from a topic by a subscription ARN.

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()
 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

Actions 1640

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

• For API details, see Unsubscribe in AWS SDK for .NET API Reference.

Scenarios

Building an Amazon SNS application

The following code example shows how to create an application that has subscription and publish
functionality and translates messages.

AWS SDK for .NET

Shows how to use the Amazon Simple Notification Service .NET API to create a web application
that has subscription and publish functionality. In addition, this example application also
translates messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon SNS

• Amazon Translate

Create a serverless application to manage photos

The following code example shows how to create a serverless application that lets users manage
photos using labels.

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

Scenarios 1641

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/SubscribePublishTranslate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

AWS SDK for .NET Developer Guide

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Publish an SMS text message

The following code example shows how to publish SMS messages using Amazon SNS.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace SNSMessageExample
{
 using System;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 public class SNSMessage
 {
 private AmazonSimpleNotificationServiceClient snsClient;

 /// <summary>
 /// Initializes a new instance of the <see cref="SNSMessage"/> class.
 /// Constructs a new SNSMessage object initializing the Amazon Simple
 /// Notification Service (Amazon SNS) client using the supplied
 /// Region endpoint.
 /// </summary>
 /// <param name="regionEndpoint">The Amazon Region endpoint to use in
 /// sending test messages with this object.</param>
 public SNSMessage(RegionEndpoint regionEndpoint)
 {
 snsClient = new AmazonSimpleNotificationServiceClient(regionEndpoint);

Scenarios 1642

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Sends the SMS message passed in the text parameter to the phone number
 /// in phoneNum.
 /// </summary>
 /// <param name="phoneNum">The ten-digit phone number to which the text
 /// message will be sent.</param>
 /// <param name="text">The text of the message to send.</param>
 /// <returns>Async task.</returns>
 public async Task SendTextMessageAsync(string phoneNum, string text)
 {
 if (string.IsNullOrEmpty(phoneNum) || string.IsNullOrEmpty(text))
 {
 return;
 }

 // Now actually send the message.
 var request = new PublishRequest
 {
 Message = text,
 PhoneNumber = phoneNum,
 };

 try
 {
 var response = await snsClient.PublishAsync(request);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error sending message: {ex}");
 }
 }
 }
}

• For API details, see Publish in AWS SDK for .NET API Reference.

Publish messages to queues

The following code example shows how to:

Scenarios 1643

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish

AWS SDK for .NET Developer Guide

• Create topic (FIFO or non-FIFO).

• Subscribe several queues to the topic with an option to apply a filter.

• Publish messages to the topic.

• Poll the queues for messages received.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Console application to run a workflow scenario for topics and queues.
/// </summary>
public static class TopicsAndQueues
{
 private static bool _useFifoTopic = false;
 private static bool _useContentBasedDeduplication = false;
 private static string _topicName = null!;
 private static string _topicArn = null!;

 private static readonly int _queueCount = 2;
 private static readonly string[] _queueUrls = new string[_queueCount];
 private static readonly string[] _subscriptionArns = new string[_queueCount];
 private static readonly string[] _tones = { "cheerful", "funny", "serious",
 "sincere" };
 public static SNSWrapper SnsWrapper { get; set; } = null!;
 public static SQSWrapper SqsWrapper { get; set; } = null!;
 public static bool UseConsole { get; set; } = true;
 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EventBridge.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)

Scenarios 1644

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonSQS>()
 .AddAWSService<IAmazonSimpleNotificationService>()
 .AddTransient<SNSWrapper>()
 .AddTransient<SQSWrapper>()
)
 .Build();

 ServicesSetup(host);
 PrintDescription();

 await RunScenario();

 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 SnsWrapper = host.Services.GetRequiredService<SNSWrapper>();
 SqsWrapper = host.Services.GetRequiredService<SQSWrapper>();
 }

 /// <summary>
 /// Run the scenario for working with topics and queues.
 /// </summary>
 /// <returns>True if successful.</returns>
 public static async Task<bool> RunScenario()
 {
 try
 {
 await SetupTopic();

 await SetupQueues();

 await PublishMessages();

 foreach (var queueUrl in _queueUrls)
 {
 var messages = await PollForMessages(queueUrl);
 if (messages.Any())

Scenarios 1645

AWS SDK for .NET Developer Guide

 {
 await DeleteMessages(queueUrl, messages);
 }
 }
 await CleanupResources();

 Console.WriteLine("Messaging with topics and queues workflow is
 complete.");
 return true;
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await CleanupResources();
 Console.WriteLine(new string('-', 80));
 return false;
 }
 }

 /// <summary>
 /// Print a description for the tasks in the workflow.
 /// </summary>
 /// <returns>Async task.</returns>
 private static void PrintDescription()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Welcome to messaging with topics and queues.");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"In this workflow, you will create an SNS topic and
 subscribe {_queueCount} SQS queues to the topic." +
 $"\r\nYou can select from several options for configuring
 the topic and the subscriptions for the 2 queues." +
 $"\r\nYou can then post to the topic and see the results
 in the queues.\r\n");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up the SNS topic to be used with the queues.
 /// </summary>

Scenarios 1646

AWS SDK for .NET Developer Guide

 /// <returns>Async task.</returns>
 private static async Task<string> SetupTopic()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"SNS topics can be configured as FIFO (First-In-First-
Out)." +
 $"\r\nFIFO topics deliver messages in order and support
 deduplication and message filtering." +
 $"\r\nYou can then post to the topic and see the results
 in the queues.\r\n");

 _useFifoTopic = GetYesNoResponse("Would you like to work with FIFO
 topics?");

 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 _topicName = GetUserResponse("Enter a name for your SNS topic: ",
 "example-topic");
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be appended to
 the topic name.\r\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Because you have chosen a FIFO topic, deduplication
 is supported." +
 $"\r\nDeduplication IDs are either set in the message
 or automatically generated " +
 $"\r\nfrom content using a hash function.\r\n" +
 $"\r\nIf a message is successfully published to an SNS
 FIFO topic, any message " +
 $"\r\npublished and determined to have the same
 deduplication ID, " +
 $"\r\nwithin the five-minute deduplication interval,
 is accepted but not delivered.\r\n" +
 $"\r\nFor more information about deduplication, " +
 $"\r\nsee https://docs.aws.amazon.com/sns/latest/dg/
fifo-message-dedup.html.");

 _useContentBasedDeduplication = GetYesNoResponse("Use content-based
 deduplication instead of entering a deduplication ID?");
 Console.WriteLine(new string('-', 80));
 }

Scenarios 1647

AWS SDK for .NET Developer Guide

 _topicArn = await SnsWrapper.CreateTopicWithName(_topicName, _useFifoTopic,
 _useContentBasedDeduplication);

 Console.WriteLine($"Your new topic with the name {_topicName}" +
 $"\r\nand Amazon Resource Name (ARN) {_topicArn}" +
 $"\r\nhas been created.\r\n");

 Console.WriteLine(new string('-', 80));
 return _topicArn;
 }

 /// <summary>
 /// Set up the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task SetupQueues()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now you will create {_queueCount} Amazon Simple Queue
 Service (Amazon SQS) queues to subscribe to the topic.");

 // Repeat this section for each queue.
 for (int i = 0; i < _queueCount; i++)
 {
 var queueName = GetUserResponse("Enter a name for an Amazon SQS queue:
 ", $"example-queue-{i}");
 if (_useFifoTopic)
 {
 // Only explain this once.
 if (i == 0)
 {
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be
 appended to the queue name.");
 }

 var queueUrl = await SqsWrapper.CreateQueueWithName(queueName,
 _useFifoTopic);

 _queueUrls[i] = queueUrl;

 Console.WriteLine($"Your new queue with the name {queueName}" +
 $"\r\nand queue URL {queueUrl}" +
 $"\r\nhas been created.\r\n");

Scenarios 1648

AWS SDK for .NET Developer Guide

 if (i == 0)
 {
 Console.WriteLine(
 $"The queue URL is used to retrieve the queue ARN,\r\n" +
 $"which is used to create a subscription.");
 Console.WriteLine(new string('-', 80));
 }

 var queueArn = await SqsWrapper.GetQueueArnByUrl(queueUrl);

 if (i == 0)
 {
 Console.WriteLine(
 $"An AWS Identity and Access Management (IAM) policy must be
 attached to an SQS queue, enabling it to receive\r\n" +
 $"messages from an SNS topic");
 }

 await SqsWrapper.SetQueuePolicyForTopic(queueArn, _topicArn,
 queueUrl);

 await SetupFilters(i, queueArn, queueName);
 }
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up filters with user options for a queue.
 /// </summary>
 /// <param name="queueCount">The number of this queue.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="queueName">The name of the queue.</param>
 /// <returns>Async Task.</returns>
 public static async Task SetupFilters(int queueCount, string queueArn, string
 queueName)
 {
 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 // Only explain this once.
 if (queueCount == 0)

Scenarios 1649

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine(
 "Subscriptions to a FIFO topic can have filters." +
 "If you add a filter to this subscription, then only the
 filtered messages " +
 "will be received in the queue.");

 Console.WriteLine(
 "For information about message filtering, " +
 "see https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html");

 Console.WriteLine(
 "For this example, you can filter messages by a" +
 "TONE attribute.");
 }

 var useFilter = GetYesNoResponse($"Filter messages for {queueName}'s
 subscription to the topic?");

 string? filterPolicy = null;
 if (useFilter)
 {
 filterPolicy = CreateFilterPolicy();
 }
 var subscriptionArn = await
 SnsWrapper.SubscribeTopicWithFilter(_topicArn, filterPolicy,
 queueArn);
 _subscriptionArns[queueCount] = subscriptionArn;

 Console.WriteLine(
 $"The queue {queueName} has been subscribed to the topic
 {_topicName} " +
 $"with the subscription ARN {subscriptionArn}");
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Use user input to create a filter policy for a subscription.
 /// </summary>
 /// <returns>The serialized filter policy.</returns>
 public static string CreateFilterPolicy()
 {

Scenarios 1650

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 $"You can filter messages by one or more of the following" +
 $"TONE attributes.");

 List<string> filterSelections = new List<string>();

 var selectionNumber = 0;
 do
 {
 Console.WriteLine(
 $"Enter a number to add a TONE filter, or enter 0 to stop adding
 filters.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", filterSelections.Any() ? "0" : "1");
 int.TryParse(selection, out selectionNumber);
 if (selectionNumber > 0 && !
filterSelections.Contains(_tones[selectionNumber - 1]))
 {
 filterSelections.Add(_tones[selectionNumber - 1]);
 }
 } while (selectionNumber != 0);

 var filters = new Dictionary<string, List<string>>
 {
 { "tone", filterSelections }
 };
 string filterPolicy = JsonSerializer.Serialize(filters);
 return filterPolicy;
 }

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

 var keepSendingMessages = true;

Scenarios 1651

AWS SDK for .NET Developer Guide

 string? deduplicationId = null;
 string? toneAttribute = null;
 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is a
 sample message");

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must set
 a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID for
 this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +
 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this message.");
 deduplicationId = GetUserResponse("Enter a deduplication ID for
 this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {

Scenarios 1652

AWS SDK for .NET Developer Guide

 toneAttribute = _tones[selectionNumber - 1];
 }
 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(
 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?", false);
 }
 }

 /// <summary>
 /// Poll for the published messages to see the results of the user's choices.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task<List<Message>> PollForMessages(string queueUrl)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now the SQS queue at {queueUrl} will be polled to
 retrieve the messages." +
 "\r\nPress any key to continue.");
 if (UseConsole)
 {
 Console.ReadLine();
 }

 var moreMessages = true;
 var messages = new List<Message>();
 while (moreMessages)
 {
 var newMessages = await SqsWrapper.ReceiveMessagesByUrl(queueUrl, 10);

 moreMessages = newMessages.Any();
 if (moreMessages)
 {
 messages.AddRange(newMessages);
 }
 }

Scenarios 1653

AWS SDK for .NET Developer Guide

 Console.WriteLine($"{messages.Count} message(s) were received by the queue
 at {queueUrl}.");

 foreach (var message in messages)
 {
 Console.WriteLine("\tMessage:" +
 $"\n\t{message.Body}");
 }

 Console.WriteLine(new string('-', 80));
 return messages;
 }

 /// <summary>
 /// Delete the message using handles in a batch.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task DeleteMessages(string queueUrl, List<Message> messages)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Now we can delete the messages in this queue in a
 batch.");
 await SqsWrapper.DeleteMessageBatchByUrl(queueUrl, messages);
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 try
 {
 foreach (var queueUrl in _queueUrls)
 {
 if (!string.IsNullOrEmpty(queueUrl))
 {
 var deleteQueue =
 GetYesNoResponse($"Delete queue with url {queueUrl}?");
 if (deleteQueue)

Scenarios 1654

AWS SDK for .NET Developer Guide

 {
 await SqsWrapper.DeleteQueueByUrl(queueUrl);
 }
 }
 }

 foreach (var subscriptionArn in _subscriptionArns)
 {
 if (!string.IsNullOrEmpty(subscriptionArn))
 {
 await SnsWrapper.UnsubscribeByArn(subscriptionArn);
 }
 }

 var deleteTopic = GetYesNoResponse($"Delete topic {_topicName}?");
 if (deleteTopic)
 {
 await SnsWrapper.DeleteTopicByArn(_topicArn);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Unable to clean up resources. Here's why:
 {ex.Message}.");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question, bool defaultAnswer = true)
 {
 if (UseConsole)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);

Scenarios 1655

AWS SDK for .NET Developer Guide

 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }

 /// <summary>
 /// Helper method to get a string response from the user through the console.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static string GetUserResponse(string question, string defaultAnswer)
 {
 if (UseConsole)
 {
 var response = "";
 while (string.IsNullOrEmpty(response))
 {
 Console.WriteLine(question);
 response = Console.ReadLine();
 }
 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }
}

Create a class that wraps Amazon SQS operations.

/// <summary>
/// Wrapper for Amazon Simple Queue Service (SQS) operations.
/// </summary>
public class SQSWrapper
{
 private readonly IAmazonSQS _amazonSQSClient;

 /// <summary>
 /// Constructor for the Amazon SQS wrapper.
 /// </summary>

Scenarios 1656

AWS SDK for .NET Developer Guide

 /// <param name="amazonSQS">The injected Amazon SQS client.</param>
 public SQSWrapper(IAmazonSQS amazonSQS)
 {
 _amazonSQSClient = amazonSQS;
 }

 /// <summary>
 /// Create a queue with a specific name.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <param name="useFifoQueue">True to use a FIFO queue.</param>
 /// <returns>The url for the queue.</returns>
 public async Task<string> CreateQueueWithName(string queueName, bool
 useFifoQueue)
 {
 int maxMessage = 256 * 1024;
 var queueAttributes = new Dictionary<string, string>
 {
 {
 QueueAttributeName.MaximumMessageSize,
 maxMessage.ToString()
 }
 };

 var createQueueRequest = new CreateQueueRequest()
 {
 QueueName = queueName,
 Attributes = queueAttributes
 };

 if (useFifoQueue)
 {
 // Update the name if it is not correct for a FIFO queue.
 if (!queueName.EndsWith(".fifo"))
 {
 createQueueRequest.QueueName = queueName + ".fifo";
 }

 // Add an attribute for a FIFO queue.
 createQueueRequest.Attributes.Add(
 QueueAttributeName.FifoQueue, "true");
 }

 var createResponse = await _amazonSQSClient.CreateQueueAsync(

Scenarios 1657

AWS SDK for .NET Developer Guide

 new CreateQueueRequest()
 {
 QueueName = queueName
 });
 return createResponse.QueueUrl;
 }

 /// <summary>
 /// Get the ARN for a queue from its URL.
 /// </summary>
 /// <param name="queueUrl">The URL of the queue.</param>
 /// <returns>The ARN of the queue.</returns>
 public async Task<string> GetQueueArnByUrl(string queueUrl)
 {
 var getAttributesRequest = new GetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 AttributeNames = new List<string>() { QueueAttributeName.QueueArn }
 };

 var getAttributesResponse = await _amazonSQSClient.GetQueueAttributesAsync(
 getAttributesRequest);

 return getAttributesResponse.QueueARN;
 }

 /// <summary>
 /// Set the policy attribute of a queue for a topic.
 /// </summary>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="queueUrl">The url for the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> SetQueuePolicyForTopic(string queueArn, string topicArn,
 string queueUrl)
 {
 var queuePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": " +
 "\"sns.amazonaws.com\"" +
 "}," +

Scenarios 1658

AWS SDK for .NET Developer Guide

 "\"Action\": \"sqs:SendMessage\"," +
 $"\"Resource\": \"{queueArn}\"," +
 "\"Condition\": {" +
 "\"ArnEquals\": {" +
 $"\"aws:SourceArn\": \"{topicArn}\""
 +
 "}" +
 "}" +
 "}]" +
 "}";
 var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync(
 new SetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 Attributes = new Dictionary<string, string>() { { "Policy",
 queuePolicy } }
 });
 return attributesResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Receive messages from a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>The list of messages.</returns>
 public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int
 maxMessages)
 {
 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 var messageResponse = await _amazonSQSClient.ReceiveMessageAsync(
 new ReceiveMessageRequest()
 {
 QueueUrl = queueUrl,
 MaxNumberOfMessages = maxMessages,
 WaitTimeSeconds = 1
 });
 return messageResponse.Messages;
 }

 /// <summary>
 /// Delete a batch of messages from a queue by its url.

Scenarios 1659

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteMessageBatchByUrl(string queueUrl, List<Message>
 messages)
 {
 var deleteRequest = new DeleteMessageBatchRequest()
 {
 QueueUrl = queueUrl,
 Entries = new List<DeleteMessageBatchRequestEntry>()
 };
 foreach (var message in messages)
 {
 deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry()
 {
 ReceiptHandle = message.ReceiptHandle,
 Id = message.MessageId
 });
 }

 var deleteResponse = await
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest);

 return deleteResponse.Failed.Any();
 }

 /// <summary>
 /// Delete a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteQueueByUrl(string queueUrl)
 {
 var deleteResponse = await _amazonSQSClient.DeleteQueueAsync(
 new DeleteQueueRequest()
 {
 QueueUrl = queueUrl
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

Scenarios 1660

AWS SDK for .NET Developer Guide

Create a class that wraps Amazon SNS operations.

/// <summary>
/// Wrapper for Amazon Simple Notification Service (SNS) operations.
/// </summary>
public class SNSWrapper
{
 private readonly IAmazonSimpleNotificationService _amazonSNSClient;

 /// <summary>
 /// Constructor for the Amazon SNS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SNS client.</param>
 public SNSWrapper(IAmazonSimpleNotificationService amazonSNS)
 {
 _amazonSNSClient = amazonSNS;
 }

 /// <summary>
 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.
 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>
 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.
 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

Scenarios 1661

AWS SDK for .NET Developer Guide

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }
 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>
 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {
 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };
 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;

Scenarios 1662

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</param>
 /// <param name="attributeValue">The optional attribute value for the message.</
param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,
 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {
 var publishRequest = new PublishRequest()
 {
 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId
 };

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {
 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;

Scenarios 1663

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()
 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

Scenarios 1664

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic

AWS SDK for .NET Developer Guide

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Serverless examples

Invoke a Lambda function from an Amazon SNS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

Serverless examples 1665

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS SDK for .NET Developer Guide

public class Function
{
 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record, ILambdaContext
 context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Amazon SQS examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon SQS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Amazon SQS 1666

AWS SDK for .NET Developer Guide

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Amazon SQS

The following code examples show how to get started using Amazon SQS.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSActions;

public static class HelloSQS
{
 static async Task Main(string[] args)
 {
 var sqsClient = new AmazonSQSClient();

 Console.WriteLine($"Hello Amazon SQS! Following are some of your queues:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first five queues.
 var response = await sqsClient.ListQueuesAsync(
 new ListQueuesRequest()
 {
 MaxResults = 5
 });

 foreach (var queue in response.QueueUrls)
 {

Amazon SQS 1667

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"\tQueue Url: {queue}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListQueues in AWS SDK for .NET API Reference.

Topics

• Actions

• Scenarios

• Serverless examples

Actions

CreateQueue

The following code example shows how to use CreateQueue.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create a queue with a specific name.

 /// <summary>
 /// Create a queue with a specific name.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <param name="useFifoQueue">True to use a FIFO queue.</param>
 /// <returns>The url for the queue.</returns>
 public async Task<string> CreateQueueWithName(string queueName, bool
 useFifoQueue)
 {

Actions 1668

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 int maxMessage = 256 * 1024;
 var queueAttributes = new Dictionary<string, string>
 {
 {
 QueueAttributeName.MaximumMessageSize,
 maxMessage.ToString()
 }
 };

 var createQueueRequest = new CreateQueueRequest()
 {
 QueueName = queueName,
 Attributes = queueAttributes
 };

 if (useFifoQueue)
 {
 // Update the name if it is not correct for a FIFO queue.
 if (!queueName.EndsWith(".fifo"))
 {
 createQueueRequest.QueueName = queueName + ".fifo";
 }

 // Add an attribute for a FIFO queue.
 createQueueRequest.Attributes.Add(
 QueueAttributeName.FifoQueue, "true");
 }

 var createResponse = await _amazonSQSClient.CreateQueueAsync(
 new CreateQueueRequest()
 {
 QueueName = queueName
 });
 return createResponse.QueueUrl;
 }

Create an Amazon SQS queue and send a message to it.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon;

Actions 1669

AWS SDK for .NET Developer Guide

 using Amazon.SQS;
 using Amazon.SQS.Model;

 public class CreateSendExample
 {
 // Specify your AWS Region (an example Region is shown).
 private static readonly string QueueName = "Example_Queue";
 private static readonly RegionEndpoint ServiceRegion =
 RegionEndpoint.USWest2;
 private static IAmazonSQS client;

 public static async Task Main()
 {
 client = new AmazonSQSClient(ServiceRegion);
 var createQueueResponse = await CreateQueue(client, QueueName);

 string queueUrl = createQueueResponse.QueueUrl;

 Dictionary<string, MessageAttributeValue> messageAttributes = new
 Dictionary<string, MessageAttributeValue>
 {
 { "Title", new MessageAttributeValue { DataType = "String",
 StringValue = "The Whistler" } },
 { "Author", new MessageAttributeValue { DataType = "String",
 StringValue = "John Grisham" } },
 { "WeeksOn", new MessageAttributeValue { DataType = "Number",
 StringValue = "6" } },
 };

 string messageBody = "Information about current NY Times fiction
 bestseller for week of 12/11/2016.";

 var sendMsgResponse = await SendMessage(client, queueUrl, messageBody,
 messageAttributes);
 }

 /// <summary>
 /// Creates a new Amazon SQS queue using the queue name passed to it
 /// in queueName.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueName">A string representing the name of the queue
 /// to create.</param>

Actions 1670

AWS SDK for .NET Developer Guide

 /// <returns>A CreateQueueResponse that contains information about the
 /// newly created queue.</returns>
 public static async Task<CreateQueueResponse> CreateQueue(IAmazonSQS client,
 string queueName)
 {
 var request = new CreateQueueRequest
 {
 QueueName = queueName,
 Attributes = new Dictionary<string, string>
 {
 { "DelaySeconds", "60" },
 { "MessageRetentionPeriod", "86400" },
 },
 };

 var response = await client.CreateQueueAsync(request);
 Console.WriteLine($"Created a queue with URL : {response.QueueUrl}");

 return response;
 }

 /// <summary>
 /// Sends a message to an SQS queue.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueUrl">The URL of the queue to which to send the
 /// message.</param>
 /// <param name="messageBody">A string representing the body of the
 /// message to be sent to the queue.</param>
 /// <param name="messageAttributes">Attributes for the message to be
 /// sent to the queue.</param>
 /// <returns>A SendMessageResponse object that contains information
 /// about the message that was sent.</returns>
 public static async Task<SendMessageResponse> SendMessage(
 IAmazonSQS client,
 string queueUrl,
 string messageBody,
 Dictionary<string, MessageAttributeValue> messageAttributes)
 {
 var sendMessageRequest = new SendMessageRequest
 {
 DelaySeconds = 10,
 MessageAttributes = messageAttributes,

Actions 1671

AWS SDK for .NET Developer Guide

 MessageBody = messageBody,
 QueueUrl = queueUrl,
 };

 var response = await client.SendMessageAsync(sendMessageRequest);
 Console.WriteLine($"Sent a message with id : {response.MessageId}");

 return response;
 }
 }

• For API details, see CreateQueue in AWS SDK for .NET API Reference.

DeleteMessage

The following code example shows how to use DeleteMessage.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Receive a message from an Amazon SQS queue and then delete the message.

 public static async Task Main()
 {
 // If the AWS Region you want to use is different from
 // the AWS Region defined for the default user, supply
 // the specify your AWS Region to the client constructor.
 var client = new AmazonSQSClient();
 string queueName = "Example_Queue";

 var queueUrl = await GetQueueUrl(client, queueName);
 Console.WriteLine($"The SQS queue's URL is {queueUrl}");

 var response = await ReceiveAndDeleteMessage(client, queueUrl);

Actions 1672

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Message: {response.Messages[0]}");
 }

 /// <summary>
 /// Retrieve the queue URL for the queue named in the queueName
 /// property using the client object.
 /// </summary>
 /// <param name="client">The Amazon SQS client used to retrieve the
 /// queue URL.</param>
 /// <param name="queueName">A string representing name of the queue
 /// for which to retrieve the URL.</param>
 /// <returns>The URL of the queue.</returns>
 public static async Task<string> GetQueueUrl(IAmazonSQS client, string
 queueName)
 {
 var request = new GetQueueUrlRequest
 {
 QueueName = queueName,
 };

 GetQueueUrlResponse response = await client.GetQueueUrlAsync(request);
 return response.QueueUrl;
 }

 /// <summary>
 /// Retrieves the message from the quque at the URL passed in the
 /// queueURL parameters using the client.
 /// </summary>
 /// <param name="client">The SQS client used to retrieve a message.</param>
 /// <param name="queueUrl">The URL of the queue from which to retrieve
 /// a message.</param>
 /// <returns>The response from the call to ReceiveMessageAsync.</returns>
 public static async Task<ReceiveMessageResponse>
 ReceiveAndDeleteMessage(IAmazonSQS client, string queueUrl)
 {
 // Receive a single message from the queue.
 var receiveMessageRequest = new ReceiveMessageRequest
 {
 AttributeNames = { "SentTimestamp" },
 MaxNumberOfMessages = 1,
 MessageAttributeNames = { "All" },
 QueueUrl = queueUrl,
 VisibilityTimeout = 0,
 WaitTimeSeconds = 0,

Actions 1673

AWS SDK for .NET Developer Guide

 };

 var receiveMessageResponse = await
 client.ReceiveMessageAsync(receiveMessageRequest);

 // Delete the received message from the queue.
 var deleteMessageRequest = new DeleteMessageRequest
 {
 QueueUrl = queueUrl,
 ReceiptHandle = receiveMessageResponse.Messages[0].ReceiptHandle,
 };

 await client.DeleteMessageAsync(deleteMessageRequest);

 return receiveMessageResponse;
 }
 }

• For API details, see DeleteMessage in AWS SDK for .NET API Reference.

DeleteMessageBatch

The following code example shows how to use DeleteMessageBatch.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a batch of messages from a queue by its url.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteMessageBatchByUrl(string queueUrl, List<Message>
 messages)
 {

Actions 1674

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 var deleteRequest = new DeleteMessageBatchRequest()
 {
 QueueUrl = queueUrl,
 Entries = new List<DeleteMessageBatchRequestEntry>()
 };
 foreach (var message in messages)
 {
 deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry()
 {
 ReceiptHandle = message.ReceiptHandle,
 Id = message.MessageId
 });
 }

 var deleteResponse = await
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest);

 return deleteResponse.Failed.Any();
 }

• For API details, see DeleteMessageBatch in AWS SDK for .NET API Reference.

DeleteQueue

The following code example shows how to use DeleteQueue.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Delete a queue by using its URL.

 /// <summary>
 /// Delete a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>

Actions 1675

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 public async Task<bool> DeleteQueueByUrl(string queueUrl)
 {
 var deleteResponse = await _amazonSQSClient.DeleteQueueAsync(
 new DeleteQueueRequest()
 {
 QueueUrl = queueUrl
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteQueue in AWS SDK for .NET API Reference.

GetQueueAttributes

The following code example shows how to use GetQueueAttributes.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the ARN for a queue from its URL.
 /// </summary>
 /// <param name="queueUrl">The URL of the queue.</param>
 /// <returns>The ARN of the queue.</returns>
 public async Task<string> GetQueueArnByUrl(string queueUrl)
 {
 var getAttributesRequest = new GetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 AttributeNames = new List<string>() { QueueAttributeName.QueueArn }
 };

 var getAttributesResponse = await _amazonSQSClient.GetQueueAttributesAsync(
 getAttributesRequest);

 return getAttributesResponse.QueueARN;

Actions 1676

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 }

• For API details, see GetQueueAttributes in AWS SDK for .NET API Reference.

GetQueueUrl

The following code example shows how to use GetQueueUrl.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.SQS;
 using Amazon.SQS.Model;

 public class GetQueueUrl
 {
 /// <summary>
 /// Initializes the Amazon SQS client object and then calls the
 /// GetQueueUrlAsync method to retrieve the URL of an Amazon SQS
 /// queue.
 /// </summary>
 public static async Task Main()
 {
 // If the Amazon SQS message queue is not in the same AWS Region as your
 // default user, you need to provide the AWS Region as a parameter to
 the
 // client constructor.
 var client = new AmazonSQSClient();

 string queueName = "New-Example-Queue";

 try
 {
 var response = await client.GetQueueUrlAsync(queueName);

Actions 1677

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples

AWS SDK for .NET Developer Guide

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"The URL for {queueName} is:
 {response.QueueUrl}");
 }
 }
 catch (QueueDoesNotExistException ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine($"The queue {queueName} was not found.");
 }
 }
 }

• For API details, see GetQueueUrl in AWS SDK for .NET API Reference.

ReceiveMessage

The following code example shows how to use ReceiveMessage.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Receive messages from a queue by using its URL.

 /// <summary>
 /// Receive messages from a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>The list of messages.</returns>
 public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int
 maxMessages)
 {
 // Setting WaitTimeSeconds to non-zero enables long polling.

Actions 1678

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueUrl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 var messageResponse = await _amazonSQSClient.ReceiveMessageAsync(
 new ReceiveMessageRequest()
 {
 QueueUrl = queueUrl,
 MaxNumberOfMessages = maxMessages,
 WaitTimeSeconds = 1
 });
 return messageResponse.Messages;
 }

Receive a message from an Amazon SQS queue, and then delete the message.

 public static async Task Main()
 {
 // If the AWS Region you want to use is different from
 // the AWS Region defined for the default user, supply
 // the specify your AWS Region to the client constructor.
 var client = new AmazonSQSClient();
 string queueName = "Example_Queue";

 var queueUrl = await GetQueueUrl(client, queueName);
 Console.WriteLine($"The SQS queue's URL is {queueUrl}");

 var response = await ReceiveAndDeleteMessage(client, queueUrl);

 Console.WriteLine($"Message: {response.Messages[0]}");
 }

 /// <summary>
 /// Retrieve the queue URL for the queue named in the queueName
 /// property using the client object.
 /// </summary>
 /// <param name="client">The Amazon SQS client used to retrieve the
 /// queue URL.</param>
 /// <param name="queueName">A string representing name of the queue
 /// for which to retrieve the URL.</param>
 /// <returns>The URL of the queue.</returns>
 public static async Task<string> GetQueueUrl(IAmazonSQS client, string
 queueName)

Actions 1679

AWS SDK for .NET Developer Guide

 {
 var request = new GetQueueUrlRequest
 {
 QueueName = queueName,
 };

 GetQueueUrlResponse response = await client.GetQueueUrlAsync(request);
 return response.QueueUrl;
 }

 /// <summary>
 /// Retrieves the message from the quque at the URL passed in the
 /// queueURL parameters using the client.
 /// </summary>
 /// <param name="client">The SQS client used to retrieve a message.</param>
 /// <param name="queueUrl">The URL of the queue from which to retrieve
 /// a message.</param>
 /// <returns>The response from the call to ReceiveMessageAsync.</returns>
 public static async Task<ReceiveMessageResponse>
 ReceiveAndDeleteMessage(IAmazonSQS client, string queueUrl)
 {
 // Receive a single message from the queue.
 var receiveMessageRequest = new ReceiveMessageRequest
 {
 AttributeNames = { "SentTimestamp" },
 MaxNumberOfMessages = 1,
 MessageAttributeNames = { "All" },
 QueueUrl = queueUrl,
 VisibilityTimeout = 0,
 WaitTimeSeconds = 0,
 };

 var receiveMessageResponse = await
 client.ReceiveMessageAsync(receiveMessageRequest);

 // Delete the received message from the queue.
 var deleteMessageRequest = new DeleteMessageRequest
 {
 QueueUrl = queueUrl,
 ReceiptHandle = receiveMessageResponse.Messages[0].ReceiptHandle,
 };

 await client.DeleteMessageAsync(deleteMessageRequest);

Actions 1680

AWS SDK for .NET Developer Guide

 return receiveMessageResponse;
 }
 }

• For API details, see ReceiveMessage in AWS SDK for .NET API Reference.

SendMessage

The following code example shows how to use SendMessage.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Create an Amazon SQS queue and send a message to it.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.SQS;
 using Amazon.SQS.Model;

 public class CreateSendExample
 {
 // Specify your AWS Region (an example Region is shown).
 private static readonly string QueueName = "Example_Queue";
 private static readonly RegionEndpoint ServiceRegion =
 RegionEndpoint.USWest2;
 private static IAmazonSQS client;

 public static async Task Main()
 {
 client = new AmazonSQSClient(ServiceRegion);
 var createQueueResponse = await CreateQueue(client, QueueName);

Actions 1681

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples

AWS SDK for .NET Developer Guide

 string queueUrl = createQueueResponse.QueueUrl;

 Dictionary<string, MessageAttributeValue> messageAttributes = new
 Dictionary<string, MessageAttributeValue>
 {
 { "Title", new MessageAttributeValue { DataType = "String",
 StringValue = "The Whistler" } },
 { "Author", new MessageAttributeValue { DataType = "String",
 StringValue = "John Grisham" } },
 { "WeeksOn", new MessageAttributeValue { DataType = "Number",
 StringValue = "6" } },
 };

 string messageBody = "Information about current NY Times fiction
 bestseller for week of 12/11/2016.";

 var sendMsgResponse = await SendMessage(client, queueUrl, messageBody,
 messageAttributes);
 }

 /// <summary>
 /// Creates a new Amazon SQS queue using the queue name passed to it
 /// in queueName.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueName">A string representing the name of the queue
 /// to create.</param>
 /// <returns>A CreateQueueResponse that contains information about the
 /// newly created queue.</returns>
 public static async Task<CreateQueueResponse> CreateQueue(IAmazonSQS client,
 string queueName)
 {
 var request = new CreateQueueRequest
 {
 QueueName = queueName,
 Attributes = new Dictionary<string, string>
 {
 { "DelaySeconds", "60" },
 { "MessageRetentionPeriod", "86400" },
 },
 };

 var response = await client.CreateQueueAsync(request);

Actions 1682

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Created a queue with URL : {response.QueueUrl}");

 return response;
 }

 /// <summary>
 /// Sends a message to an SQS queue.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueUrl">The URL of the queue to which to send the
 /// message.</param>
 /// <param name="messageBody">A string representing the body of the
 /// message to be sent to the queue.</param>
 /// <param name="messageAttributes">Attributes for the message to be
 /// sent to the queue.</param>
 /// <returns>A SendMessageResponse object that contains information
 /// about the message that was sent.</returns>
 public static async Task<SendMessageResponse> SendMessage(
 IAmazonSQS client,
 string queueUrl,
 string messageBody,
 Dictionary<string, MessageAttributeValue> messageAttributes)
 {
 var sendMessageRequest = new SendMessageRequest
 {
 DelaySeconds = 10,
 MessageAttributes = messageAttributes,
 MessageBody = messageBody,
 QueueUrl = queueUrl,
 };

 var response = await client.SendMessageAsync(sendMessageRequest);
 Console.WriteLine($"Sent a message with id : {response.MessageId}");

 return response;
 }
 }

• For API details, see SendMessage in AWS SDK for .NET API Reference.

Actions 1683

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SendMessage

AWS SDK for .NET Developer Guide

SetQueueAttributes

The following code example shows how to use SetQueueAttributes.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Set the policy attribute of a queue for a topic.

 /// <summary>
 /// Set the policy attribute of a queue for a topic.
 /// </summary>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="queueUrl">The url for the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> SetQueuePolicyForTopic(string queueArn, string topicArn,
 string queueUrl)
 {
 var queuePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": " +
 "\"sns.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sqs:SendMessage\"," +
 $"\"Resource\": \"{queueArn}\"," +
 "\"Condition\": {" +
 "\"ArnEquals\": {" +
 $"\"aws:SourceArn\": \"{topicArn}\""
 +
 "}" +
 "}" +
 "}]" +
 "}";
 var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync(

Actions 1684

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 new SetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 Attributes = new Dictionary<string, string>() { { "Policy",
 queuePolicy } }
 });
 return attributesResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see SetQueueAttributes in AWS SDK for .NET API Reference.

Scenarios

Publish messages to queues

The following code example shows how to:

• Create topic (FIFO or non-FIFO).

• Subscribe several queues to the topic with an option to apply a filter.

• Publish messages to the topic.

• Poll the queues for messages received.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Console application to run a workflow scenario for topics and queues.
/// </summary>
public static class TopicsAndQueues
{
 private static bool _useFifoTopic = false;
 private static bool _useContentBasedDeduplication = false;

Scenarios 1685

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

AWS SDK for .NET Developer Guide

 private static string _topicName = null!;
 private static string _topicArn = null!;

 private static readonly int _queueCount = 2;
 private static readonly string[] _queueUrls = new string[_queueCount];
 private static readonly string[] _subscriptionArns = new string[_queueCount];
 private static readonly string[] _tones = { "cheerful", "funny", "serious",
 "sincere" };
 public static SNSWrapper SnsWrapper { get; set; } = null!;
 public static SQSWrapper SqsWrapper { get; set; } = null!;
 public static bool UseConsole { get; set; } = true;
 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EventBridge.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonSQS>()
 .AddAWSService<IAmazonSimpleNotificationService>()
 .AddTransient<SNSWrapper>()
 .AddTransient<SQSWrapper>()
)
 .Build();

 ServicesSetup(host);
 PrintDescription();

 await RunScenario();

 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 SnsWrapper = host.Services.GetRequiredService<SNSWrapper>();
 SqsWrapper = host.Services.GetRequiredService<SQSWrapper>();
 }

Scenarios 1686

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Run the scenario for working with topics and queues.
 /// </summary>
 /// <returns>True if successful.</returns>
 public static async Task<bool> RunScenario()
 {
 try
 {
 await SetupTopic();

 await SetupQueues();

 await PublishMessages();

 foreach (var queueUrl in _queueUrls)
 {
 var messages = await PollForMessages(queueUrl);
 if (messages.Any())
 {
 await DeleteMessages(queueUrl, messages);
 }
 }
 await CleanupResources();

 Console.WriteLine("Messaging with topics and queues workflow is
 complete.");
 return true;
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await CleanupResources();
 Console.WriteLine(new string('-', 80));
 return false;
 }
 }

 /// <summary>
 /// Print a description for the tasks in the workflow.
 /// </summary>
 /// <returns>Async task.</returns>

Scenarios 1687

AWS SDK for .NET Developer Guide

 private static void PrintDescription()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Welcome to messaging with topics and queues.");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"In this workflow, you will create an SNS topic and
 subscribe {_queueCount} SQS queues to the topic." +
 $"\r\nYou can select from several options for configuring
 the topic and the subscriptions for the 2 queues." +
 $"\r\nYou can then post to the topic and see the results
 in the queues.\r\n");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up the SNS topic to be used with the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string> SetupTopic()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"SNS topics can be configured as FIFO (First-In-First-
Out)." +
 $"\r\nFIFO topics deliver messages in order and support
 deduplication and message filtering." +
 $"\r\nYou can then post to the topic and see the results
 in the queues.\r\n");

 _useFifoTopic = GetYesNoResponse("Would you like to work with FIFO
 topics?");

 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 _topicName = GetUserResponse("Enter a name for your SNS topic: ",
 "example-topic");
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be appended to
 the topic name.\r\n");

 Console.WriteLine(new string('-', 80));

Scenarios 1688

AWS SDK for .NET Developer Guide

 Console.WriteLine($"Because you have chosen a FIFO topic, deduplication
 is supported." +
 $"\r\nDeduplication IDs are either set in the message
 or automatically generated " +
 $"\r\nfrom content using a hash function.\r\n" +
 $"\r\nIf a message is successfully published to an SNS
 FIFO topic, any message " +
 $"\r\npublished and determined to have the same
 deduplication ID, " +
 $"\r\nwithin the five-minute deduplication interval,
 is accepted but not delivered.\r\n" +
 $"\r\nFor more information about deduplication, " +
 $"\r\nsee https://docs.aws.amazon.com/sns/latest/dg/
fifo-message-dedup.html.");

 _useContentBasedDeduplication = GetYesNoResponse("Use content-based
 deduplication instead of entering a deduplication ID?");
 Console.WriteLine(new string('-', 80));
 }

 _topicArn = await SnsWrapper.CreateTopicWithName(_topicName, _useFifoTopic,
 _useContentBasedDeduplication);

 Console.WriteLine($"Your new topic with the name {_topicName}" +
 $"\r\nand Amazon Resource Name (ARN) {_topicArn}" +
 $"\r\nhas been created.\r\n");

 Console.WriteLine(new string('-', 80));
 return _topicArn;
 }

 /// <summary>
 /// Set up the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task SetupQueues()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now you will create {_queueCount} Amazon Simple Queue
 Service (Amazon SQS) queues to subscribe to the topic.");

 // Repeat this section for each queue.
 for (int i = 0; i < _queueCount; i++)
 {

Scenarios 1689

AWS SDK for .NET Developer Guide

 var queueName = GetUserResponse("Enter a name for an Amazon SQS queue:
 ", $"example-queue-{i}");
 if (_useFifoTopic)
 {
 // Only explain this once.
 if (i == 0)
 {
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be
 appended to the queue name.");
 }

 var queueUrl = await SqsWrapper.CreateQueueWithName(queueName,
 _useFifoTopic);

 _queueUrls[i] = queueUrl;

 Console.WriteLine($"Your new queue with the name {queueName}" +
 $"\r\nand queue URL {queueUrl}" +
 $"\r\nhas been created.\r\n");

 if (i == 0)
 {
 Console.WriteLine(
 $"The queue URL is used to retrieve the queue ARN,\r\n" +
 $"which is used to create a subscription.");
 Console.WriteLine(new string('-', 80));
 }

 var queueArn = await SqsWrapper.GetQueueArnByUrl(queueUrl);

 if (i == 0)
 {
 Console.WriteLine(
 $"An AWS Identity and Access Management (IAM) policy must be
 attached to an SQS queue, enabling it to receive\r\n" +
 $"messages from an SNS topic");
 }

 await SqsWrapper.SetQueuePolicyForTopic(queueArn, _topicArn,
 queueUrl);

 await SetupFilters(i, queueArn, queueName);
 }

Scenarios 1690

AWS SDK for .NET Developer Guide

 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up filters with user options for a queue.
 /// </summary>
 /// <param name="queueCount">The number of this queue.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="queueName">The name of the queue.</param>
 /// <returns>Async Task.</returns>
 public static async Task SetupFilters(int queueCount, string queueArn, string
 queueName)
 {
 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 // Only explain this once.
 if (queueCount == 0)
 {
 Console.WriteLine(
 "Subscriptions to a FIFO topic can have filters." +
 "If you add a filter to this subscription, then only the
 filtered messages " +
 "will be received in the queue.");

 Console.WriteLine(
 "For information about message filtering, " +
 "see https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html");

 Console.WriteLine(
 "For this example, you can filter messages by a" +
 "TONE attribute.");
 }

 var useFilter = GetYesNoResponse($"Filter messages for {queueName}'s
 subscription to the topic?");

 string? filterPolicy = null;
 if (useFilter)
 {
 filterPolicy = CreateFilterPolicy();

Scenarios 1691

AWS SDK for .NET Developer Guide

 }
 var subscriptionArn = await
 SnsWrapper.SubscribeTopicWithFilter(_topicArn, filterPolicy,
 queueArn);
 _subscriptionArns[queueCount] = subscriptionArn;

 Console.WriteLine(
 $"The queue {queueName} has been subscribed to the topic
 {_topicName} " +
 $"with the subscription ARN {subscriptionArn}");
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Use user input to create a filter policy for a subscription.
 /// </summary>
 /// <returns>The serialized filter policy.</returns>
 public static string CreateFilterPolicy()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 $"You can filter messages by one or more of the following" +
 $"TONE attributes.");

 List<string> filterSelections = new List<string>();

 var selectionNumber = 0;
 do
 {
 Console.WriteLine(
 $"Enter a number to add a TONE filter, or enter 0 to stop adding
 filters.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", filterSelections.Any() ? "0" : "1");
 int.TryParse(selection, out selectionNumber);
 if (selectionNumber > 0 && !
filterSelections.Contains(_tones[selectionNumber - 1]))
 {
 filterSelections.Add(_tones[selectionNumber - 1]);

Scenarios 1692

AWS SDK for .NET Developer Guide

 }
 } while (selectionNumber != 0);

 var filters = new Dictionary<string, List<string>>
 {
 { "tone", filterSelections }
 };
 string filterPolicy = JsonSerializer.Serialize(filters);
 return filterPolicy;
 }

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

 var keepSendingMessages = true;
 string? deduplicationId = null;
 string? toneAttribute = null;
 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is a
 sample message");

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must set
 a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID for
 this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +

Scenarios 1693

AWS SDK for .NET Developer Guide

 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this message.");
 deduplicationId = GetUserResponse("Enter a deduplication ID for
 this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {
 toneAttribute = _tones[selectionNumber - 1];
 }
 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(
 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?", false);
 }
 }

 /// <summary>
 /// Poll for the published messages to see the results of the user's choices.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task<List<Message>> PollForMessages(string queueUrl)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now the SQS queue at {queueUrl} will be polled to
 retrieve the messages." +

Scenarios 1694

AWS SDK for .NET Developer Guide

 "\r\nPress any key to continue.");
 if (UseConsole)
 {
 Console.ReadLine();
 }

 var moreMessages = true;
 var messages = new List<Message>();
 while (moreMessages)
 {
 var newMessages = await SqsWrapper.ReceiveMessagesByUrl(queueUrl, 10);

 moreMessages = newMessages.Any();
 if (moreMessages)
 {
 messages.AddRange(newMessages);
 }
 }

 Console.WriteLine($"{messages.Count} message(s) were received by the queue
 at {queueUrl}.");

 foreach (var message in messages)
 {
 Console.WriteLine("\tMessage:" +
 $"\n\t{message.Body}");
 }

 Console.WriteLine(new string('-', 80));
 return messages;
 }

 /// <summary>
 /// Delete the message using handles in a batch.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task DeleteMessages(string queueUrl, List<Message> messages)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Now we can delete the messages in this queue in a
 batch.");
 await SqsWrapper.DeleteMessageBatchByUrl(queueUrl, messages);
 Console.WriteLine(new string('-', 80));
 }

Scenarios 1695

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 try
 {
 foreach (var queueUrl in _queueUrls)
 {
 if (!string.IsNullOrEmpty(queueUrl))
 {
 var deleteQueue =
 GetYesNoResponse($"Delete queue with url {queueUrl}?");
 if (deleteQueue)
 {
 await SqsWrapper.DeleteQueueByUrl(queueUrl);
 }
 }
 }

 foreach (var subscriptionArn in _subscriptionArns)
 {
 if (!string.IsNullOrEmpty(subscriptionArn))
 {
 await SnsWrapper.UnsubscribeByArn(subscriptionArn);
 }
 }

 var deleteTopic = GetYesNoResponse($"Delete topic {_topicName}?");
 if (deleteTopic)
 {
 await SnsWrapper.DeleteTopicByArn(_topicArn);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Unable to clean up resources. Here's why:
 {ex.Message}.");
 }

Scenarios 1696

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question, bool defaultAnswer = true)
 {
 if (UseConsole)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }

 /// <summary>
 /// Helper method to get a string response from the user through the console.
 /// </summary>
 /// <param name="question">The question string to print on the console.</param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static string GetUserResponse(string question, string defaultAnswer)
 {
 if (UseConsole)
 {
 var response = "";
 while (string.IsNullOrEmpty(response))
 {
 Console.WriteLine(question);
 response = Console.ReadLine();
 }
 return response;
 }
 // If not using the console, use the default.

Scenarios 1697

AWS SDK for .NET Developer Guide

 return defaultAnswer;
 }
}

Create a class that wraps Amazon SQS operations.

/// <summary>
/// Wrapper for Amazon Simple Queue Service (SQS) operations.
/// </summary>
public class SQSWrapper
{
 private readonly IAmazonSQS _amazonSQSClient;

 /// <summary>
 /// Constructor for the Amazon SQS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SQS client.</param>
 public SQSWrapper(IAmazonSQS amazonSQS)
 {
 _amazonSQSClient = amazonSQS;
 }

 /// <summary>
 /// Create a queue with a specific name.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <param name="useFifoQueue">True to use a FIFO queue.</param>
 /// <returns>The url for the queue.</returns>
 public async Task<string> CreateQueueWithName(string queueName, bool
 useFifoQueue)
 {
 int maxMessage = 256 * 1024;
 var queueAttributes = new Dictionary<string, string>
 {
 {
 QueueAttributeName.MaximumMessageSize,
 maxMessage.ToString()
 }
 };

 var createQueueRequest = new CreateQueueRequest()

Scenarios 1698

AWS SDK for .NET Developer Guide

 {
 QueueName = queueName,
 Attributes = queueAttributes
 };

 if (useFifoQueue)
 {
 // Update the name if it is not correct for a FIFO queue.
 if (!queueName.EndsWith(".fifo"))
 {
 createQueueRequest.QueueName = queueName + ".fifo";
 }

 // Add an attribute for a FIFO queue.
 createQueueRequest.Attributes.Add(
 QueueAttributeName.FifoQueue, "true");
 }

 var createResponse = await _amazonSQSClient.CreateQueueAsync(
 new CreateQueueRequest()
 {
 QueueName = queueName
 });
 return createResponse.QueueUrl;
 }

 /// <summary>
 /// Get the ARN for a queue from its URL.
 /// </summary>
 /// <param name="queueUrl">The URL of the queue.</param>
 /// <returns>The ARN of the queue.</returns>
 public async Task<string> GetQueueArnByUrl(string queueUrl)
 {
 var getAttributesRequest = new GetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 AttributeNames = new List<string>() { QueueAttributeName.QueueArn }
 };

 var getAttributesResponse = await _amazonSQSClient.GetQueueAttributesAsync(
 getAttributesRequest);

 return getAttributesResponse.QueueARN;
 }

Scenarios 1699

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Set the policy attribute of a queue for a topic.
 /// </summary>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="queueUrl">The url for the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> SetQueuePolicyForTopic(string queueArn, string topicArn,
 string queueUrl)
 {
 var queuePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": " +
 "\"sns.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sqs:SendMessage\"," +
 $"\"Resource\": \"{queueArn}\"," +
 "\"Condition\": {" +
 "\"ArnEquals\": {" +
 $"\"aws:SourceArn\": \"{topicArn}\""
 +
 "}" +
 "}" +
 "}]" +
 "}";
 var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync(
 new SetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 Attributes = new Dictionary<string, string>() { { "Policy",
 queuePolicy } }
 });
 return attributesResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Receive messages from a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>The list of messages.</returns>

Scenarios 1700

AWS SDK for .NET Developer Guide

 public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int
 maxMessages)
 {
 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 var messageResponse = await _amazonSQSClient.ReceiveMessageAsync(
 new ReceiveMessageRequest()
 {
 QueueUrl = queueUrl,
 MaxNumberOfMessages = maxMessages,
 WaitTimeSeconds = 1
 });
 return messageResponse.Messages;
 }

 /// <summary>
 /// Delete a batch of messages from a queue by its url.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteMessageBatchByUrl(string queueUrl, List<Message>
 messages)
 {
 var deleteRequest = new DeleteMessageBatchRequest()
 {
 QueueUrl = queueUrl,
 Entries = new List<DeleteMessageBatchRequestEntry>()
 };
 foreach (var message in messages)
 {
 deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry()
 {
 ReceiptHandle = message.ReceiptHandle,
 Id = message.MessageId
 });
 }

 var deleteResponse = await
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest);

 return deleteResponse.Failed.Any();
 }

Scenarios 1701

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteQueueByUrl(string queueUrl)
 {
 var deleteResponse = await _amazonSQSClient.DeleteQueueAsync(
 new DeleteQueueRequest()
 {
 QueueUrl = queueUrl
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

Create a class that wraps Amazon SNS operations.

/// <summary>
/// Wrapper for Amazon Simple Notification Service (SNS) operations.
/// </summary>
public class SNSWrapper
{
 private readonly IAmazonSimpleNotificationService _amazonSNSClient;

 /// <summary>
 /// Constructor for the Amazon SNS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SNS client.</param>
 public SNSWrapper(IAmazonSimpleNotificationService amazonSNS)
 {
 _amazonSNSClient = amazonSNS;
 }

 /// <summary>
 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.
 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>

Scenarios 1702

AWS SDK for .NET Developer Guide

 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.
 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }
 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>

Scenarios 1703

AWS SDK for .NET Developer Guide

 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {
 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };
 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;
 }

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</param>
 /// <param name="attributeValue">The optional attribute value for the message.</
param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,
 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {
 var publishRequest = new PublishRequest()
 {

Scenarios 1704

AWS SDK for .NET Developer Guide

 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId
 };

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {
 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;
 }

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()
 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {

Scenarios 1705

AWS SDK for .NET Developer Guide

 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Use the AWS Message Processing Framework for .NET with Amazon SQS

The following code example shows how to create applications that publish and receive Amazon
SQS messages using the AWS Message Processing Framework for .NET.

AWS SDK for .NET

Provides a tutorial for the AWS Message Processing Framework for .NET. The tutorial creates a
web application that allows the user to publish an Amazon SQS message and a command-line
application that receives the message.

For complete source code and instructions on how to set up and run, see the full tutorial in the
AWS SDK for .NET Developer Guide and the example on GitHub.

Scenarios 1706

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/msg-proc-fw-get-started.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/MessageProcessingFramework

AWS SDK for .NET Developer Guide

Services used in this example

• Amazon SQS

Serverless examples

Invoke a Lambda function from an Amazon SQS trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

Serverless examples 1707

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS SDK for .NET Developer Guide

 context.Logger.LogInformation("done");
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }
}

Reporting batch item failures for Lambda functions with an Amazon SQS trigger

The following code example shows how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the Serverless examples repository.

Reporting SQS batch item failures with Lambda using .NET.

Serverless examples 1708

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS SDK for .NET Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)
 {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }
 context.Logger.LogInformation($"Processed message {message.Body}");

Serverless examples 1709

AWS SDK for .NET Developer Guide

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

Step Functions examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Step Functions.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Step Functions

The following code examples show how to get started using Step Functions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

namespace StepFunctionsActions;

using Amazon.StepFunctions;
using Amazon.StepFunctions.Model;

public class HelloStepFunctions
{
 static async Task Main()

Step Functions 1710

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 {
 var stepFunctionsClient = new AmazonStepFunctionsClient();

 Console.Clear();
 Console.WriteLine("Welcome to AWS Step Functions");
 Console.WriteLine("Let's list up to 10 of your state machines:");
 var stateMachineListRequest = new ListStateMachinesRequest { MaxResults =
 10 };

 // Get information for up to 10 Step Functions state machines.
 var response = await
 stepFunctionsClient.ListStateMachinesAsync(stateMachineListRequest);

 if (response.StateMachines.Count > 0)
 {
 response.StateMachines.ForEach(stateMachine =>
 {
 Console.WriteLine($"State Machine Name: {stateMachine.Name}\tAmazon
 Resource Name (ARN): {stateMachine.StateMachineArn}");
 });
 }
 else
 {
 Console.WriteLine("\tNo state machines were found.");
 }
 }
}

• For API details, see ListStateMachines in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

Basics 1711

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/ListStateMachines

AWS SDK for .NET Developer Guide

• Create an activity.

• Create a state machine from an Amazon States Language definition that contains the previously
created activity as a step.

• Run the state machine and respond to the activity with user input.

• Get the final status and output after the run completes, then clean up resources.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

global using System.Text.Json;
global using Amazon.StepFunctions;
global using Microsoft.Extensions.Configuration;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;
global using StepFunctionsActions;
global using LogLevel = Microsoft.Extensions.Logging.LogLevel;

using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;
using Amazon.StepFunctions.Model;

namespace StepFunctionsBasics;

public class StepFunctionsBasics
{
 private static ILogger _logger = null!;
 private static IConfigurationRoot _configuration = null!;
 private static IAmazonIdentityManagementService _iamService = null!;

Basics 1712

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 static async Task Main(string[] args)
 {
 // Set up dependency injection for AWS Step Functions.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonStepFunctions>()
 .AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<StepFunctionsWrapper>()
)
 .Build();

 _logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<StepFunctionsBasics>();

 // Load configuration settings.
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 var activityName = _configuration["ActivityName"];
 var stateMachineName = _configuration["StateMachineName"];

 var roleName = _configuration["RoleName"];
 var repoBaseDir = _configuration["RepoBaseDir"];
 var jsonFilePath = _configuration["JsonFilePath"];
 var jsonFileName = _configuration["JsonFileName"];

 var uiMethods = new UiMethods();
 var stepFunctionsWrapper =
 host.Services.GetRequiredService<StepFunctionsWrapper>();

 _iamService =
 host.Services.GetRequiredService<IAmazonIdentityManagementService>();

 // Load definition for the state machine from a JSON file.

Basics 1713

AWS SDK for .NET Developer Guide

 var stateDefinitionJson = File.ReadAllText($"{repoBaseDir}{jsonFilePath}
{jsonFileName}");

 Console.Clear();
 uiMethods.DisplayOverview();
 uiMethods.PressEnter();

 uiMethods.DisplayTitle("Create activity");
 Console.WriteLine("Let's start by creating an activity.");
 string activityArn;
 string stateMachineArn;

 // Check to see if the activity already exists.
 var activityList = await stepFunctionsWrapper.ListActivitiesAsync();
 var existingActivity = activityList.FirstOrDefault(activity => activity.Name
 == activityName);
 if (existingActivity is not null)
 {
 activityArn = existingActivity.ActivityArn;
 Console.WriteLine($"Activity, {activityName}, already exists.");
 }
 else
 {
 activityArn = await stepFunctionsWrapper.CreateActivity(activityName);
 }

 // Swap the placeholder in the JSON file with the Amazon Resource Name (ARN)
 // of the recently created activity.
 var stateDefinition =
 stateDefinitionJson.Replace("{{DOC_EXAMPLE_ACTIVITY_ARN}}", activityArn);

 uiMethods.DisplayTitle("Create state machine");
 Console.WriteLine("Now we'll create a state machine.");

 // Find or create an IAM role that can be assumed by Step Functions.
 var role = await GetOrCreateStateMachineRole(roleName);

 // See if the state machine already exists.
 var stateMachineList = await stepFunctionsWrapper.ListStateMachinesAsync();
 var existingStateMachine =
 stateMachineList.FirstOrDefault(stateMachine => stateMachine.Name ==
 stateMachineName);
 if (existingStateMachine is not null)
 {

Basics 1714

AWS SDK for .NET Developer Guide

 Console.WriteLine($"State machine, {stateMachineName}, already
 exists.");
 stateMachineArn = existingStateMachine.StateMachineArn;
 }
 else
 {
 // Create the state machine.
 stateMachineArn =
 await stepFunctionsWrapper.CreateStateMachine(stateMachineName,
 stateDefinition, role.Arn);
 uiMethods.PressEnter();
 }

 Console.WriteLine("The state machine has been created.");
 var describeStateMachineResponse = await
 stepFunctionsWrapper.DescribeStateMachineAsync(stateMachineArn);

 Console.WriteLine($"{describeStateMachineResponse.Name}\t{describeStateMachineResponse.StateMachineArn}");
 Console.WriteLine($"Current status: {describeStateMachineResponse.Status}");
 Console.WriteLine($"Amazon Resource Name (ARN) of the role assumed by the
 state machine: {describeStateMachineResponse.RoleArn}");

 var userName = string.Empty;
 Console.Write("Before we start the state machine, tell me what should
 ChatSFN call you? ");
 userName = Console.ReadLine();

 // Keep asking until the user enters a string value.
 while (string.IsNullOrEmpty(userName))
 {
 Console.Write("Enter your name: ");
 userName = Console.ReadLine();
 }

 var executionJson = @"{""name"": """ + userName + @"""}";

 // Start the state machine execution.
 Console.WriteLine("Now we'll start execution of the state machine.");
 var executionArn = await
 stepFunctionsWrapper.StartExecutionAsync(executionJson, stateMachineArn);
 Console.WriteLine("State machine started.");

 Console.WriteLine($"Thank you, {userName}. Now let's get started...");

Basics 1715

AWS SDK for .NET Developer Guide

 uiMethods.PressEnter();

 uiMethods.DisplayTitle("ChatSFN");

 var isDone = false;
 var response = new GetActivityTaskResponse();
 var taskToken = string.Empty;
 var userChoice = string.Empty;

 while (!isDone)
 {
 response = await stepFunctionsWrapper.GetActivityTaskAsync(activityArn,
 "MvpWorker");
 taskToken = response.TaskToken;

 // Parse the returned JSON string.
 var taskJsonResponse = JsonDocument.Parse(response.Input);
 var taskJsonObject = taskJsonResponse.RootElement;
 var message = taskJsonObject.GetProperty("message").GetString();
 var actions =
 taskJsonObject.GetProperty("actions").EnumerateArray().Select(x =>
 x.ToString()).ToList();
 Console.WriteLine($"\n{message}\n");

 // Prompt the user for another choice.
 Console.WriteLine("ChatSFN: What would you like me to do?");
 actions.ForEach(action => Console.WriteLine($"\t{action}"));
 Console.Write($"\n{userName}, tell me your choice: ");
 userChoice = Console.ReadLine();
 if (userChoice?.ToLower() == "done")
 {
 isDone = true;
 }

 Console.WriteLine($"You have selected: {userChoice}");
 var jsonResponse = @"{""action"": """ + userChoice + @"""}";

 await stepFunctionsWrapper.SendTaskSuccessAsync(taskToken,
 jsonResponse);
 }

 await stepFunctionsWrapper.StopExecution(executionArn);
 Console.WriteLine("Now we will wait for the execution to stop.");
 DescribeExecutionResponse executionResponse;

Basics 1716

AWS SDK for .NET Developer Guide

 do
 {
 executionResponse = await
 stepFunctionsWrapper.DescribeExecutionAsync(executionArn);
 } while (executionResponse.Status == ExecutionStatus.RUNNING);

 Console.WriteLine("State machine stopped.");
 uiMethods.PressEnter();

 uiMethods.DisplayTitle("State machine executions");
 Console.WriteLine("Now let's take a look at the execution values for the
 state machine.");

 // List the executions.
 var executions = await
 stepFunctionsWrapper.ListExecutionsAsync(stateMachineArn);

 uiMethods.DisplayTitle("Step function execution values");
 executions.ForEach(execution =>
 {
 Console.WriteLine($"{execution.Name}\t{execution.StartDate} to
 {execution.StopDate}");
 });

 uiMethods.PressEnter();

 // Now delete the state machine and the activity.
 uiMethods.DisplayTitle("Clean up resources");
 Console.WriteLine("Deleting the state machine...");

 await stepFunctionsWrapper.DeleteStateMachine(stateMachineArn);
 Console.WriteLine("State machine deleted.");

 Console.WriteLine("Deleting the activity...");
 await stepFunctionsWrapper.DeleteActivity(activityArn);
 Console.WriteLine("Activity deleted.");

 Console.WriteLine("The Amazon Step Functions scenario is now complete.");
 }

 static async Task<Role> GetOrCreateStateMachineRole(string roleName)
 {
 // Define the policy document for the role.
 var stateMachineRolePolicy = @"{

Basics 1717

AWS SDK for .NET Developer Guide

 ""Version"": ""2012-10-17"",
 ""Statement"": [{
 ""Sid"": """",
 ""Effect"": ""Allow"",
 ""Principal"": {
 ""Service"": ""states.amazonaws.com""},
 ""Action"": ""sts:AssumeRole""}]}";

 var role = new Role();
 var roleExists = false;

 try
 {
 var getRoleResponse = await _iamService.GetRoleAsync(new GetRoleRequest
 { RoleName = roleName });
 roleExists = true;
 role = getRoleResponse.Role;
 }
 catch (NoSuchEntityException)
 {
 // The role doesn't exist. Create it.
 Console.WriteLine($"Role, {roleName} doesn't exist. Creating it...");
 }

 if (!roleExists)
 {
 var request = new CreateRoleRequest
 {
 RoleName = roleName,
 AssumeRolePolicyDocument = stateMachineRolePolicy,
 };

 var createRoleResponse = await _iamService.CreateRoleAsync(request);
 role = createRoleResponse.Role;
 }

 return role;
 }
}

namespace StepFunctionsBasics;

/// <summary>

Basics 1718

AWS SDK for .NET Developer Guide

/// Some useful methods to make screen display easier.
/// </summary>
public class UiMethods
{
 private readonly string _sepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the scenario.
 /// </summary>
 public void DisplayOverview()
 {
 Console.Clear();
 DisplayTitle("Welcome to the AWS Step Functions Demo");

 Console.WriteLine("This example application will do the following:");
 Console.WriteLine("\t 1. Create an activity.");
 Console.WriteLine("\t 2. Create a state machine.");
 Console.WriteLine("\t 3. Start an execution.");
 Console.WriteLine("\t 4. Run the worker, then stop it.");
 Console.WriteLine("\t 5. List executions.");
 Console.WriteLine("\t 6. Clean up the resources created for the example.");
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue.");
 _ = Console.ReadLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter"></param>
 /// <returns></returns>
 private string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

Basics 1719

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Display a line of hyphens, the centered text of the title, and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(_sepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(_sepBar);
 }
}

Define a class that wraps state machine and activity actions.

namespace StepFunctionsActions;

using Amazon.StepFunctions;
using Amazon.StepFunctions.Model;

/// <summary>
/// Wrapper that performs AWS Step Functions actions.
/// </summary>
public class StepFunctionsWrapper
{
 private readonly IAmazonStepFunctions _amazonStepFunctions;

 /// <summary>
 /// The constructor for the StepFunctionsWrapper. Initializes the
 /// client object passed to it.
 /// </summary>
 /// <param name="amazonStepFunctions">An initialized Step Functions client
 object.</param>
 public StepFunctionsWrapper(IAmazonStepFunctions amazonStepFunctions)
 {
 _amazonStepFunctions = amazonStepFunctions;
 }

 /// <summary>
 /// Create a Step Functions activity using the supplied name.

Basics 1720

AWS SDK for .NET Developer Guide

 /// </summary>
 /// <param name="activityName">The name for the new Step Functions activity.</
param>
 /// <returns>The Amazon Resource Name (ARN) for the new activity.</returns>
 public async Task<string> CreateActivity(string activityName)
 {
 var response = await _amazonStepFunctions.CreateActivityAsync(new
 CreateActivityRequest { Name = activityName });
 return response.ActivityArn;
 }

 /// <summary>
 /// Create a Step Functions state machine.
 /// </summary>
 /// <param name="stateMachineName">Name for the new Step Functions state
 /// machine.</param>
 /// <param name="definition">A JSON string that defines the Step Functions
 /// state machine.</param>
 /// <param name="roleArn">The Amazon Resource Name (ARN) of the role.</param>
 /// <returns></returns>
 public async Task<string> CreateStateMachine(string stateMachineName, string
 definition, string roleArn)
 {
 var request = new CreateStateMachineRequest
 {
 Name = stateMachineName,
 Definition = definition,
 RoleArn = roleArn
 };

 var response =
 await _amazonStepFunctions.CreateStateMachineAsync(request);
 return response.StateMachineArn;
 }

 /// <summary>
 /// Delete a Step Machine activity.
 /// </summary>
 /// <param name="activityArn">The Amazon Resource Name (ARN) of
 /// the activity.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteActivity(string activityArn)

Basics 1721

AWS SDK for .NET Developer Guide

 {
 var response = await _amazonStepFunctions.DeleteActivityAsync(new
 DeleteActivityRequest { ActivityArn = activityArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete a Step Functions state machine.
 /// </summary>
 /// <param name="stateMachineArn">The Amazon Resource Name (ARN) of the
 /// state machine.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteStateMachine(string stateMachineArn)
 {
 var response = await _amazonStepFunctions.DeleteStateMachineAsync(new
 DeleteStateMachineRequest
 { StateMachineArn = stateMachineArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Retrieve information about the specified Step Functions execution.
 /// </summary>
 /// <param name="executionArn">The Amazon Resource Name (ARN) of the
 /// Step Functions execution.</param>
 /// <returns>The API response returned by the API.</returns>
 public async Task<DescribeExecutionResponse> DescribeExecutionAsync(string
 executionArn)
 {
 var response = await _amazonStepFunctions.DescribeExecutionAsync(new
 DescribeExecutionRequest { ExecutionArn = executionArn });
 return response;
 }

 /// <summary>
 /// Retrieve information about the specified Step Functions state machine.
 /// </summary>
 /// <param name="StateMachineArn">The Amazon Resource Name (ARN) of the
 /// Step Functions state machine to retrieve.</param>
 /// <returns>Information about the specified Step Functions state machine.</
returns>

Basics 1722

AWS SDK for .NET Developer Guide

 public async Task<DescribeStateMachineResponse> DescribeStateMachineAsync(string
 StateMachineArn)
 {
 var response = await _amazonStepFunctions.DescribeStateMachineAsync(new
 DescribeStateMachineRequest { StateMachineArn = StateMachineArn });
 return response;
 }

 /// <summary>
 /// Retrieve a task with the specified Step Functions activity
 /// with the specified Amazon Resource Name (ARN).
 /// </summary>
 /// <param name="activityArn">The Amazon Resource Name (ARN) of
 /// the Step Functions activity.</param>
 /// <param name="workerName">The name of the Step Functions worker.</param>
 /// <returns>The response from the Step Functions activity.</returns>
 public async Task<GetActivityTaskResponse> GetActivityTaskAsync(string
 activityArn, string workerName)
 {
 var response = await _amazonStepFunctions.GetActivityTaskAsync(new
 GetActivityTaskRequest
 { ActivityArn = activityArn, WorkerName = workerName });
 return response;
 }

 /// <summary>
 /// List the Step Functions activities for the current account.
 /// </summary>
 /// <returns>A list of ActivityListItems.</returns>
 public async Task<List<ActivityListItem>> ListActivitiesAsync()
 {
 var request = new ListActivitiesRequest();
 var activities = new List<ActivityListItem>();

 do
 {
 var response = await _amazonStepFunctions.ListActivitiesAsync(request);

 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }

Basics 1723

AWS SDK for .NET Developer Guide

 activities.AddRange(response.Activities);
 }
 while (request.NextToken is not null);

 return activities;
 }

 /// <summary>
 /// Retrieve information about executions of a Step Functions
 /// state machine.
 /// </summary>
 /// <param name="stateMachineArn">The Amazon Resource Name (ARN) of the
 /// Step Functions state machine.</param>
 /// <returns>A list of ExecutionListItem objects.</returns>
 public async Task<List<ExecutionListItem>> ListExecutionsAsync(string
 stateMachineArn)
 {
 var executions = new List<ExecutionListItem>();
 ListExecutionsResponse response;
 var request = new ListExecutionsRequest { StateMachineArn =
 stateMachineArn };

 do
 {
 response = await _amazonStepFunctions.ListExecutionsAsync(request);
 executions.AddRange(response.Executions);
 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }
 } while (response.NextToken is not null);

 return executions;
 }

 /// <summary>
 /// Retrieve a list of Step Functions state machines.
 /// </summary>
 /// <returns>A list of StateMachineListItem objects.</returns>
 public async Task<List<StateMachineListItem>> ListStateMachinesAsync()
 {

Basics 1724

AWS SDK for .NET Developer Guide

 var stateMachines = new List<StateMachineListItem>();
 var listStateMachinesPaginator =
 _amazonStepFunctions.Paginators.ListStateMachines(new
 ListStateMachinesRequest());

 await foreach (var response in listStateMachinesPaginator.Responses)
 {
 stateMachines.AddRange(response.StateMachines);
 }

 return stateMachines;
 }

 /// <summary>
 /// Indicate that the Step Functions task, indicated by the
 /// task token, has completed successfully.
 /// </summary>
 /// <param name="taskToken">Identifies the task.</param>
 /// <param name="taskResponse">The response received from executing the task.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> SendTaskSuccessAsync(string taskToken, string
 taskResponse)
 {
 var response = await _amazonStepFunctions.SendTaskSuccessAsync(new
 SendTaskSuccessRequest
 { TaskToken = taskToken, Output = taskResponse });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Start execution of an AWS Step Functions state machine.
 /// </summary>
 /// <param name="executionName">The name to use for the execution.</param>
 /// <param name="executionJson">The JSON string to pass for execution.</param>
 /// <param name="stateMachineArn">The Amazon Resource Name (ARN) of the
 /// Step Functions state machine.</param>
 /// <returns>The Amazon Resource Name (ARN) of the AWS Step Functions
 /// execution.</returns>
 public async Task<string> StartExecutionAsync(string executionJson, string
 stateMachineArn)

Basics 1725

AWS SDK for .NET Developer Guide

 {
 var executionRequest = new StartExecutionRequest
 {
 Input = executionJson,
 StateMachineArn = stateMachineArn
 };

 var response = await
 _amazonStepFunctions.StartExecutionAsync(executionRequest);
 return response.ExecutionArn;
 }

 /// <summary>
 /// Stop execution of a Step Functions workflow.
 /// </summary>
 /// <param name="executionArn">The Amazon Resource Name (ARN) of
 /// the Step Functions execution to stop.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> StopExecution(string executionArn)
 {
 var response =
 await _amazonStepFunctions.StopExecutionAsync(new StopExecutionRequest
 { ExecutionArn = executionArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateActivity

• CreateStateMachine

• DeleteActivity

• DeleteStateMachine

• DescribeExecution

• DescribeStateMachine

• GetActivityTask

Basics 1726

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/CreateActivity
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/CreateStateMachine
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DeleteActivity
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DeleteStateMachine
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DescribeExecution
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DescribeStateMachine
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/GetActivityTask

AWS SDK for .NET Developer Guide

• ListActivities

• ListStateMachines

• SendTaskSuccess

• StartExecution

• StopExecution

Actions

CreateActivity

The following code example shows how to use CreateActivity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a Step Functions activity using the supplied name.
 /// </summary>
 /// <param name="activityName">The name for the new Step Functions activity.</
param>
 /// <returns>The Amazon Resource Name (ARN) for the new activity.</returns>
 public async Task<string> CreateActivity(string activityName)
 {
 var response = await _amazonStepFunctions.CreateActivityAsync(new
 CreateActivityRequest { Name = activityName });
 return response.ActivityArn;
 }

• For API details, see CreateActivity in AWS SDK for .NET API Reference.

Actions 1727

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/ListActivities
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/ListStateMachines
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/SendTaskSuccess
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/StartExecution
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/StopExecution
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/CreateActivity

AWS SDK for .NET Developer Guide

CreateStateMachine

The following code example shows how to use CreateStateMachine.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a Step Functions state machine.
 /// </summary>
 /// <param name="stateMachineName">Name for the new Step Functions state
 /// machine.</param>
 /// <param name="definition">A JSON string that defines the Step Functions
 /// state machine.</param>
 /// <param name="roleArn">The Amazon Resource Name (ARN) of the role.</param>
 /// <returns></returns>
 public async Task<string> CreateStateMachine(string stateMachineName, string
 definition, string roleArn)
 {
 var request = new CreateStateMachineRequest
 {
 Name = stateMachineName,
 Definition = definition,
 RoleArn = roleArn
 };

 var response =
 await _amazonStepFunctions.CreateStateMachineAsync(request);
 return response.StateMachineArn;
 }

• For API details, see CreateStateMachine in AWS SDK for .NET API Reference.

Actions 1728

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/CreateStateMachine

AWS SDK for .NET Developer Guide

DeleteActivity

The following code example shows how to use DeleteActivity.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a Step Machine activity.
 /// </summary>
 /// <param name="activityArn">The Amazon Resource Name (ARN) of
 /// the activity.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteActivity(string activityArn)
 {
 var response = await _amazonStepFunctions.DeleteActivityAsync(new
 DeleteActivityRequest { ActivityArn = activityArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteActivity in AWS SDK for .NET API Reference.

DeleteStateMachine

The following code example shows how to use DeleteStateMachine.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1729

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DeleteActivity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Delete a Step Functions state machine.
 /// </summary>
 /// <param name="stateMachineArn">The Amazon Resource Name (ARN) of the
 /// state machine.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteStateMachine(string stateMachineArn)
 {
 var response = await _amazonStepFunctions.DeleteStateMachineAsync(new
 DeleteStateMachineRequest
 { StateMachineArn = stateMachineArn });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see DeleteStateMachine in AWS SDK for .NET API Reference.

DescribeExecution

The following code example shows how to use DescribeExecution.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve information about the specified Step Functions execution.
 /// </summary>
 /// <param name="executionArn">The Amazon Resource Name (ARN) of the
 /// Step Functions execution.</param>
 /// <returns>The API response returned by the API.</returns>
 public async Task<DescribeExecutionResponse> DescribeExecutionAsync(string
 executionArn)
 {
 var response = await _amazonStepFunctions.DescribeExecutionAsync(new
 DescribeExecutionRequest { ExecutionArn = executionArn });

Actions 1730

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DeleteStateMachine
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 return response;
 }

• For API details, see DescribeExecution in AWS SDK for .NET API Reference.

DescribeStateMachine

The following code example shows how to use DescribeStateMachine.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve information about the specified Step Functions state machine.
 /// </summary>
 /// <param name="StateMachineArn">The Amazon Resource Name (ARN) of the
 /// Step Functions state machine to retrieve.</param>
 /// <returns>Information about the specified Step Functions state machine.</
returns>
 public async Task<DescribeStateMachineResponse> DescribeStateMachineAsync(string
 StateMachineArn)
 {
 var response = await _amazonStepFunctions.DescribeStateMachineAsync(new
 DescribeStateMachineRequest { StateMachineArn = StateMachineArn });
 return response;
 }

• For API details, see DescribeStateMachine in AWS SDK for .NET API Reference.

GetActivityTask

The following code example shows how to use GetActivityTask.

Actions 1731

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DescribeExecution
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/DescribeStateMachine

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve a task with the specified Step Functions activity
 /// with the specified Amazon Resource Name (ARN).
 /// </summary>
 /// <param name="activityArn">The Amazon Resource Name (ARN) of
 /// the Step Functions activity.</param>
 /// <param name="workerName">The name of the Step Functions worker.</param>
 /// <returns>The response from the Step Functions activity.</returns>
 public async Task<GetActivityTaskResponse> GetActivityTaskAsync(string
 activityArn, string workerName)
 {
 var response = await _amazonStepFunctions.GetActivityTaskAsync(new
 GetActivityTaskRequest
 { ActivityArn = activityArn, WorkerName = workerName });
 return response;
 }

• For API details, see GetActivityTask in AWS SDK for .NET API Reference.

ListActivities

The following code example shows how to use ListActivities.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1732

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/GetActivityTask
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List the Step Functions activities for the current account.
 /// </summary>
 /// <returns>A list of ActivityListItems.</returns>
 public async Task<List<ActivityListItem>> ListActivitiesAsync()
 {
 var request = new ListActivitiesRequest();
 var activities = new List<ActivityListItem>();

 do
 {
 var response = await _amazonStepFunctions.ListActivitiesAsync(request);

 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }

 activities.AddRange(response.Activities);
 }
 while (request.NextToken is not null);

 return activities;
 }

• For API details, see ListActivities in AWS SDK for .NET API Reference.

ListExecutions

The following code example shows how to use ListExecutions.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1733

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/ListActivities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Retrieve information about executions of a Step Functions
 /// state machine.
 /// </summary>
 /// <param name="stateMachineArn">The Amazon Resource Name (ARN) of the
 /// Step Functions state machine.</param>
 /// <returns>A list of ExecutionListItem objects.</returns>
 public async Task<List<ExecutionListItem>> ListExecutionsAsync(string
 stateMachineArn)
 {
 var executions = new List<ExecutionListItem>();
 ListExecutionsResponse response;
 var request = new ListExecutionsRequest { StateMachineArn =
 stateMachineArn };

 do
 {
 response = await _amazonStepFunctions.ListExecutionsAsync(request);
 executions.AddRange(response.Executions);
 if (response.NextToken is not null)
 {
 request.NextToken = response.NextToken;
 }
 } while (response.NextToken is not null);

 return executions;
 }

• For API details, see ListExecutions in AWS SDK for .NET API Reference.

ListStateMachines

The following code example shows how to use ListStateMachines.

Actions 1734

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/ListExecutions

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Retrieve a list of Step Functions state machines.
 /// </summary>
 /// <returns>A list of StateMachineListItem objects.</returns>
 public async Task<List<StateMachineListItem>> ListStateMachinesAsync()
 {
 var stateMachines = new List<StateMachineListItem>();
 var listStateMachinesPaginator =
 _amazonStepFunctions.Paginators.ListStateMachines(new
 ListStateMachinesRequest());

 await foreach (var response in listStateMachinesPaginator.Responses)
 {
 stateMachines.AddRange(response.StateMachines);
 }

 return stateMachines;
 }

• For API details, see ListStateMachines in AWS SDK for .NET API Reference.

SendTaskSuccess

The following code example shows how to use SendTaskSuccess.

Actions 1735

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/ListStateMachines

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Indicate that the Step Functions task, indicated by the
 /// task token, has completed successfully.
 /// </summary>
 /// <param name="taskToken">Identifies the task.</param>
 /// <param name="taskResponse">The response received from executing the task.</
param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> SendTaskSuccessAsync(string taskToken, string
 taskResponse)
 {
 var response = await _amazonStepFunctions.SendTaskSuccessAsync(new
 SendTaskSuccessRequest
 { TaskToken = taskToken, Output = taskResponse });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see SendTaskSuccess in AWS SDK for .NET API Reference.

StartExecution

The following code example shows how to use StartExecution.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1736

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/SendTaskSuccess
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/StepFunctions#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Start execution of an AWS Step Functions state machine.
 /// </summary>
 /// <param name="executionName">The name to use for the execution.</param>
 /// <param name="executionJson">The JSON string to pass for execution.</param>
 /// <param name="stateMachineArn">The Amazon Resource Name (ARN) of the
 /// Step Functions state machine.</param>
 /// <returns>The Amazon Resource Name (ARN) of the AWS Step Functions
 /// execution.</returns>
 public async Task<string> StartExecutionAsync(string executionJson, string
 stateMachineArn)
 {
 var executionRequest = new StartExecutionRequest
 {
 Input = executionJson,
 StateMachineArn = stateMachineArn
 };

 var response = await
 _amazonStepFunctions.StartExecutionAsync(executionRequest);
 return response.ExecutionArn;
 }

• For API details, see StartExecution in AWS SDK for .NET API Reference.

AWS STS examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with AWS STS.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

AWS STS 1737

https://docs.aws.amazon.com/goto/DotNetSDKV3/states-2016-11-23/StartExecution

AWS SDK for .NET Developer Guide

Actions

AssumeRole

The following code example shows how to use AssumeRole.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

namespace AssumeRoleExample
{
 class AssumeRole
 {
 /// <summary>
 /// This example shows how to use the AWS Security Token
 /// Service (AWS STS) to assume an IAM role.
 ///
 /// NOTE: It is important that the role that will be assumed has a
 /// trust relationship with the account that will assume the role.
 ///
 /// Before you run the example, you need to create the role you want to
 /// assume and have it trust the IAM account that will assume that role.
 ///
 /// See https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_create.html
 /// for help in working with roles.
 /// </summary>

 private static readonly RegionEndpoint REGION = RegionEndpoint.USWest2;

 static async Task Main()

Actions 1738

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/STS#code-examples

AWS SDK for .NET Developer Guide

 {
 // Create the SecurityToken client and then display the identity of the
 // default user.
 var roleArnToAssume = "arn:aws:iam::123456789012:role/testAssumeRole";

 var client = new
 Amazon.SecurityToken.AmazonSecurityTokenServiceClient(REGION);

 // Get and display the information about the identity of the default
 user.
 var callerIdRequest = new GetCallerIdentityRequest();
 var caller = await client.GetCallerIdentityAsync(callerIdRequest);
 Console.WriteLine($"Original Caller: {caller.Arn}");

 // Create the request to use with the AssumeRoleAsync call.
 var assumeRoleReq = new AssumeRoleRequest()
 {
 DurationSeconds = 1600,
 RoleSessionName = "Session1",
 RoleArn = roleArnToAssume
 };

 var assumeRoleRes = await client.AssumeRoleAsync(assumeRoleReq);

 // Now create a new client based on the credentials of the caller
 assuming the role.
 var client2 = new AmazonSecurityTokenServiceClient(credentials:
 assumeRoleRes.Credentials);

 // Get and display information about the caller that has assumed the
 defined role.
 var caller2 = await client2.GetCallerIdentityAsync(callerIdRequest);
 Console.WriteLine($"AssumedRole Caller: {caller2.Arn}");
 }
 }
}

• For API details, see AssumeRole in AWS SDK for .NET API Reference.

Actions 1739

https://docs.aws.amazon.com/goto/DotNetSDKV3/sts-2011-06-15/AssumeRole

AWS SDK for .NET Developer Guide

Support examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Support.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Get started

Hello Support

The following code examples show how to get started using Support.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

using Amazon.AWSSupport;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

public static class HelloSupport
{
 static async Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the AWS Support service.
 // Use your AWS profile name, or leave it blank to use the default profile.
 // You must have one of the following AWS Support plans: Business,
 Enterprise On-Ramp, or Enterprise. Otherwise, an exception will be thrown.

Support 1740

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonAWSSupport>()
).Build();

 // Now the client is available for injection.
 var supportClient = host.Services.GetRequiredService<IAmazonAWSSupport>();

 // You can use await and any of the async methods to get a response.
 var response = await supportClient.DescribeServicesAsync();
 Console.WriteLine($"\tHello AWS Support! There are {response.Services.Count}
 services available.");
 }
}

• For API details, see DescribeServices in AWS SDK for .NET API Reference.

Topics

• Basics

• Actions

Basics

Learn the basics

The following code example shows how to:

• Get and display available services and severity levels for cases.

• Create a support case using a selected service, category, and severity level.

• Get and display a list of open cases for the current day.

• Add an attachment set and a communication to the new case.

• Describe the new attachment and communication for the case.

• Resolve the case.

• Get and display a list of resolved cases for the current day.

Basics 1741

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeServices

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Hello AWS Support example.
/// </summary>
public static class SupportCaseScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.
 To use the AWS Support API, you must have one of the following AWS Support
 plans: Business, Enterprise On-Ramp, or Enterprise.

 This .NET example performs the following tasks:
 1. Get and display services. Select a service from the list.
 2. Select a category from the selected service.
 3. Get and display severity levels and select a severity level from the list.
 4. Create a support case using the selected service, category, and severity
 level.
 5. Get and display a list of open support cases for the current day.
 6. Create an attachment set with a sample text file to add to the case.
 7. Add a communication with the attachment to the support case.
 8. List the communications of the support case.
 9. Describe the attachment set.
 10. Resolve the support case.
 11. Get a list of resolved cases for the current day.
 */

 private static SupportWrapper _supportWrapper = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the AWS Support service.
 // Use your AWS profile name, or leave it blank to use the default profile.

Basics 1742

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft", LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonAWSSupport>(new AWSOptions() { Profile
 = "default" })
 .AddTransient<SupportWrapper>()
)
 .Build();

 var logger = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 }).CreateLogger(typeof(SupportCaseScenario));

 _supportWrapper = host.Services.GetRequiredService<SupportWrapper>();

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the AWS Support case example scenario.");
 Console.WriteLine(new string('-', 80));

 try
 {
 var apiSupported = await _supportWrapper.VerifySubscription();
 if (!apiSupported)
 {
 logger.LogError("You must have a Business, Enterprise On-Ramp, or
 Enterprise Support " +
 "plan to use the AWS Support API. \n\tPlease
 upgrade your subscription to run these examples.");
 return;
 }

 var service = await DisplayAndSelectServices();

 var category = DisplayAndSelectCategories(service);

 var severityLevel = await DisplayAndSelectSeverity();

 var caseId = await CreateSupportCase(service, category, severityLevel);

Basics 1743

AWS SDK for .NET Developer Guide

 await DescribeTodayOpenCases();

 var attachmentSetId = await CreateAttachmentSet();

 await AddCommunicationToCase(attachmentSetId, caseId);

 var attachmentId = await ListCommunicationsForCase(caseId);

 await DescribeCaseAttachment(attachmentId);

 await ResolveCase(caseId);

 await DescribeTodayResolvedCases();

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("AWS Support case example scenario complete.");
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "There was a problem executing the scenario.");
 }
 }

 /// <summary>
 /// List some available services from AWS Support, and select a service for the
 example.
 /// </summary>
 /// <returns>The selected service.</returns>
 private static async Task<Service> DisplayAndSelectServices()
 {
 Console.WriteLine(new string('-', 80));
 var services = await _supportWrapper.DescribeServices();
 Console.WriteLine($"AWS Support client returned {services.Count}
 services.");

 Console.WriteLine($"1. Displaying first 10 services:");
 for (int i = 0; i < 10 && i < services.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {services[i].Name}");
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > services.Count)

Basics 1744

AWS SDK for .NET Developer Guide

 {
 Console.WriteLine(
 "Select an example support service by entering a number from the
 preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }
 Console.WriteLine(new string('-', 80));

 return services[choiceNumber - 1];
 }

 /// <summary>
 /// List the available categories for a service and select a category for the
 example.
 /// </summary>
 /// <param name="service">Service to use for displaying categories.</param>
 /// <returns>The selected category.</returns>
 private static Category DisplayAndSelectCategories(Service service)
 {
 Console.WriteLine(new string('-', 80));

 Console.WriteLine($"2. Available support categories for Service
 \"{service.Name}\":");
 for (int i = 0; i < service.Categories.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {service.Categories[i].Name}");
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > service.Categories.Count)
 {
 Console.WriteLine(
 "Select an example support category by entering a number from the
 preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 Console.WriteLine(new string('-', 80));

 return service.Categories[choiceNumber - 1];
 }

Basics 1745

AWS SDK for .NET Developer Guide

 /// <summary>
 /// List available severity levels from AWS Support, and select a level for the
 example.
 /// </summary>
 /// <returns>The selected severity level.</returns>
 private static async Task<SeverityLevel> DisplayAndSelectSeverity()
 {
 Console.WriteLine(new string('-', 80));
 var severityLevels = await _supportWrapper.DescribeSeverityLevels();

 Console.WriteLine($"3. Get and display available severity levels:");
 for (int i = 0; i < 10 && i < severityLevels.Count; i++)
 {
 Console.WriteLine($"\t{i + 1}. {severityLevels[i].Name}");
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > severityLevels.Count)
 {
 Console.WriteLine(
 "Select an example severity level by entering a number from the
 preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }
 Console.WriteLine(new string('-', 80));

 return severityLevels[choiceNumber - 1];
 }

 /// <summary>
 /// Create an example support case.
 /// </summary>
 /// <param name="service">Service to use for the new case.</param>
 /// <param name="category">Category to use for the new case.</param>
 /// <param name="severity">Severity to use for the new case.</param>
 /// <returns>The caseId of the new support case.</returns>
 private static async Task<string> CreateSupportCase(Service service,
 Category category, SeverityLevel severity)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"4. Create an example support case" +
 $" with the following settings:" +

Basics 1746

AWS SDK for .NET Developer Guide

 $" \n\tService: {service.Name}, Category: {category.Name}
 " +
 $"and Severity Level: {severity.Name}.");
 var caseId = await _supportWrapper.CreateCase(service.Code, category.Code,
 severity.Code,
 "Example case for testing, ignore.", "This is my example support
 case.");

 Console.WriteLine($"\tNew case created with ID {caseId}");

 Console.WriteLine(new string('-', 80));

 return caseId;
 }

 /// <summary>
 /// List open cases for the current day.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task DescribeTodayOpenCases()
 {
 Console.WriteLine($"5. List the open support cases for the current day.");
 // Describe the cases. If it is empty, try again and allow time for the new
 case to appear.
 List<CaseDetails> currentOpenCases = null!;
 while (currentOpenCases == null || currentOpenCases.Count == 0)
 {
 Thread.Sleep(1000);
 currentOpenCases = await _supportWrapper.DescribeCases(
 new List<string>(),
 null,
 false,
 false,
 DateTime.UtcNow.Date,
 DateTime.UtcNow);
 }

 foreach (var openCase in currentOpenCases)
 {
 Console.WriteLine($"\tCase: {openCase.CaseId} created
 {openCase.TimeCreated}");
 }

 Console.WriteLine(new string('-', 80));

Basics 1747

AWS SDK for .NET Developer Guide

 }

 /// <summary>
 /// Create an attachment set for a support case.
 /// </summary>
 /// <returns>The attachment set id.</returns>
 private static async Task<string> CreateAttachmentSet()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"6. Create an attachment set for a support case.");
 var fileName = "example_attachment.txt";

 // Create the file if it does not already exist.
 if (!File.Exists(fileName))
 {
 await using StreamWriter sw = File.CreateText(fileName);
 await sw.WriteLineAsync(
 "This is a sample file for attachment to a support case.");
 }

 await using var ms = new MemoryStream(await
 File.ReadAllBytesAsync(fileName));

 var attachmentSetId = await _supportWrapper.AddAttachmentToSet(
 ms,
 fileName);

 Console.WriteLine($"\tNew attachment set created with id: \n
\t{attachmentSetId.Substring(0, 65)}...");

 Console.WriteLine(new string('-', 80));

 return attachmentSetId;
 }

 /// <summary>
 /// Add an attachment set and communication to a case.
 /// </summary>
 /// <param name="attachmentSetId">Id of the attachment set.</param>
 /// <param name="caseId">Id of the case to receive the attachment set.</param>
 /// <returns>Async task.</returns>
 private static async Task AddCommunicationToCase(string attachmentSetId, string
 caseId)
 {

Basics 1748

AWS SDK for .NET Developer Guide

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"7. Add attachment set and communication to {caseId}.");

 await _supportWrapper.AddCommunicationToCase(
 caseId,
 "This is an example communication added to a support case.",
 attachmentSetId);

 Console.WriteLine($"\tNew attachment set and communication added to
 {caseId}");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List the communications for a case.
 /// </summary>
 /// <param name="caseId">Id of the case to describe.</param>
 /// <returns>An attachment id.</returns>
 private static async Task<string> ListCommunicationsForCase(string caseId)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"8. List communications for case {caseId}.");

 var communications = await _supportWrapper.DescribeCommunications(caseId);
 var attachmentId = "";
 foreach (var communication in communications)
 {
 Console.WriteLine(
 $"\tCommunication created on: {communication.TimeCreated} has
 {communication.AttachmentSet.Count} attachments.");
 if (communication.AttachmentSet.Any())
 {
 attachmentId = communication.AttachmentSet.First().AttachmentId;
 }
 }

 Console.WriteLine(new string('-', 80));
 return attachmentId;
 }

 /// <summary>
 /// Describe an attachment by id.
 /// </summary>

Basics 1749

AWS SDK for .NET Developer Guide

 /// <param name="attachmentId">Id of the attachment to describe.</param>
 /// <returns>Async task.</returns>
 private static async Task DescribeCaseAttachment(string attachmentId)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"9. Describe the attachment set.");

 var attachment = await _supportWrapper.DescribeAttachment(attachmentId);
 var data = Encoding.ASCII.GetString(attachment.Data.ToArray());
 Console.WriteLine($"\tAttachment includes {attachment.FileName} with data:
 \n\t{data}");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Resolve the support case.
 /// </summary>
 /// <param name="caseId">Id of the case to resolve.</param>
 /// <returns>Async task.</returns>
 private static async Task ResolveCase(string caseId)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"10. Resolve case {caseId}.");

 var status = await _supportWrapper.ResolveCase(caseId);
 Console.WriteLine($"\tCase {caseId} has final status {status}");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// List resolved cases for the current day.
 /// </summary>
 /// <returns>Async Task.</returns>
 private static async Task DescribeTodayResolvedCases()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"11. List the resolved support cases for the current
 day.");
 var currentCases = await _supportWrapper.DescribeCases(
 new List<string>(),
 null,
 false,

Basics 1750

AWS SDK for .NET Developer Guide

 true,
 DateTime.UtcNow.Date,
 DateTime.UtcNow);

 foreach (var currentCase in currentCases)
 {
 if (currentCase.Status == "resolved")
 {
 Console.WriteLine(
 $"\tCase: {currentCase.CaseId}: status {currentCase.Status}");
 }
 }

 Console.WriteLine(new string('-', 80));
 }
}

Wrapper methods used by the scenario for Support actions.

/// <summary>
/// Wrapper methods to use AWS Support for working with support cases.
/// </summary>
public class SupportWrapper
{
 private readonly IAmazonAWSSupport _amazonSupport;
 public SupportWrapper(IAmazonAWSSupport amazonSupport)
 {
 _amazonSupport = amazonSupport;
 }

 /// <summary>
 /// Get the descriptions of AWS services.
 /// </summary>
 /// <param name="name">Optional language for services.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <returns>The list of AWS service descriptions.</returns>
 public async Task<List<Service>> DescribeServices(string language = "en")
 {
 var response = await _amazonSupport.DescribeServicesAsync(

Basics 1751

AWS SDK for .NET Developer Guide

 new DescribeServicesRequest()
 {
 Language = language
 });
 return response.Services;
 }

 /// <summary>
 /// Get the descriptions of support severity levels.
 /// </summary>
 /// <param name="name">Optional language for severity levels.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <returns>The list of support severity levels.</returns>
 public async Task<List<SeverityLevel>> DescribeSeverityLevels(string language =
 "en")
 {
 var response = await _amazonSupport.DescribeSeverityLevelsAsync(
 new DescribeSeverityLevelsRequest()
 {
 Language = language
 });
 return response.SeverityLevels;
 }

 /// <summary>
 /// Create a new support case.
 /// </summary>
 /// <param name="serviceCode">Service code for the new case.</param>
 /// <param name="categoryCode">Category for the new case.</param>
 /// <param name="severityCode">Severity code for the new case.</param>
 /// <param name="subject">Subject of the new case.</param>
 /// <param name="body">Body text of the new case.</param>
 /// <param name="language">Optional language support for your case.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <param name="attachmentSetId">Optional Id for an attachment set for the new
 case.</param>
 /// <param name="issueType">Optional issue type for the new case. Options are
 "customer-service" or "technical".</param>

Basics 1752

AWS SDK for .NET Developer Guide

 /// <returns>The caseId of the new support case.</returns>
 public async Task<string> CreateCase(string serviceCode, string categoryCode,
 string severityCode, string subject,
 string body, string language = "en", string? attachmentSetId = null, string
 issueType = "customer-service")
 {
 var response = await _amazonSupport.CreateCaseAsync(
 new CreateCaseRequest()
 {
 ServiceCode = serviceCode,
 CategoryCode = categoryCode,
 SeverityCode = severityCode,
 Subject = subject,
 Language = language,
 AttachmentSetId = attachmentSetId,
 IssueType = issueType,
 CommunicationBody = body
 });
 return response.CaseId;
 }

 /// <summary>
 /// Add an attachment to a set, or create a new attachment set if one does not
 exist.
 /// </summary>
 /// <param name="data">The data for the attachment.</param>
 /// <param name="fileName">The file name for the attachment.</param>
 /// <param name="attachmentSetId">Optional setId for the attachment. Creates a
 new attachment set if empty.</param>
 /// <returns>The setId of the attachment.</returns>
 public async Task<string> AddAttachmentToSet(MemoryStream data, string fileName,
 string? attachmentSetId = null)
 {
 var response = await _amazonSupport.AddAttachmentsToSetAsync(
 new AddAttachmentsToSetRequest
 {
 AttachmentSetId = attachmentSetId,
 Attachments = new List<Attachment>
 {
 new Attachment
 {
 Data = data,

Basics 1753

AWS SDK for .NET Developer Guide

 FileName = fileName
 }
 }
 });
 return response.AttachmentSetId;
 }

 /// <summary>
 /// Get description of a specific attachment.
 /// </summary>
 /// <param name="attachmentId">Id of the attachment, usually fetched by
 describing the communications of a case.</param>
 /// <returns>The attachment object.</returns>
 public async Task<Attachment> DescribeAttachment(string attachmentId)
 {
 var response = await _amazonSupport.DescribeAttachmentAsync(
 new DescribeAttachmentRequest()
 {
 AttachmentId = attachmentId
 });
 return response.Attachment;
 }

 /// <summary>
 /// Add communication to a case, including optional attachment set ID and CC
 email addresses.
 /// </summary>
 /// <param name="caseId">Id for the support case.</param>
 /// <param name="body">Body text of the communication.</param>
 /// <param name="attachmentSetId">Optional Id for an attachment set.</param>
 /// <param name="ccEmailAddresses">Optional list of CC email addresses.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> AddCommunicationToCase(string caseId, string body,
 string? attachmentSetId = null, List<string>? ccEmailAddresses = null)
 {
 var response = await _amazonSupport.AddCommunicationToCaseAsync(
 new AddCommunicationToCaseRequest()
 {
 CaseId = caseId,
 CommunicationBody = body,

Basics 1754

AWS SDK for .NET Developer Guide

 AttachmentSetId = attachmentSetId,
 CcEmailAddresses = ccEmailAddresses
 });
 return response.Result;
 }

 /// <summary>
 /// Describe the communications for a case, optionally with a date filter.
 /// </summary>
 /// <param name="caseId">The ID of the support case.</param>
 /// <param name="afterTime">The optional start date for a filtered search.</
param>
 /// <param name="beforeTime">The optional end date for a filtered search.</
param>
 /// <returns>The list of communications for the case.</returns>
 public async Task<List<Communication>> DescribeCommunications(string caseId,
 DateTime? afterTime = null, DateTime? beforeTime = null)
 {
 var results = new List<Communication>();
 var paginateCommunications =
 _amazonSupport.Paginators.DescribeCommunications(
 new DescribeCommunicationsRequest()
 {
 CaseId = caseId,
 AfterTime = afterTime?.ToString("s"),
 BeforeTime = beforeTime?.ToString("s")
 });
 // Get the entire list using the paginator.
 await foreach (var communications in paginateCommunications.Communications)
 {
 results.Add(communications);
 }
 return results;
 }

 /// <summary>
 /// Get case details for a list of case ids, optionally with date filters.
 /// </summary>
 /// <param name="caseIds">The list of case IDs.</param>
 /// <param name="displayId">Optional display ID.</param>

Basics 1755

AWS SDK for .NET Developer Guide

 /// <param name="includeCommunication">True to include communication. Defaults
 to true.</param>
 /// <param name="includeResolvedCases">True to include resolved cases. Defaults
 to false.</param>
 /// <param name="afterTime">The optional start date for a filtered search.</
param>
 /// <param name="beforeTime">The optional end date for a filtered search.</
param>
 /// <param name="language">Optional language support for your case.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <returns>A list of CaseDetails.</returns>
 public async Task<List<CaseDetails>> DescribeCases(List<string> caseIds, string?
 displayId = null, bool includeCommunication = true,
 bool includeResolvedCases = false, DateTime? afterTime = null, DateTime?
 beforeTime = null,
 string language = "en")
 {
 var results = new List<CaseDetails>();
 var paginateCases = _amazonSupport.Paginators.DescribeCases(
 new DescribeCasesRequest()
 {
 CaseIdList = caseIds,
 DisplayId = displayId,
 IncludeCommunications = includeCommunication,
 IncludeResolvedCases = includeResolvedCases,
 AfterTime = afterTime?.ToString("s"),
 BeforeTime = beforeTime?.ToString("s"),
 Language = language
 });
 // Get the entire list using the paginator.
 await foreach (var cases in paginateCases.Cases)
 {
 results.Add(cases);
 }
 return results;
 }

 /// <summary>
 /// Resolve a support case by caseId.
 /// </summary>
 /// <param name="caseId">Id for the support case.</param>

Basics 1756

AWS SDK for .NET Developer Guide

 /// <returns>The final status of the case after resolving.</returns>
 public async Task<string> ResolveCase(string caseId)
 {
 var response = await _amazonSupport.ResolveCaseAsync(
 new ResolveCaseRequest()
 {
 CaseId = caseId
 });
 return response.FinalCaseStatus;
 }

 /// <summary>
 /// Verify the support level for AWS Support API access.
 /// </summary>
 /// <returns>True if the subscription level supports API access.</returns>
 public async Task<bool> VerifySubscription()
 {
 try
 {
 var response = await _amazonSupport.DescribeServicesAsync(
 new DescribeServicesRequest()
 {
 Language = "en"
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Amazon.AWSSupport.AmazonAWSSupportException ex)
 {
 if (ex.ErrorCode == "SubscriptionRequiredException")
 {
 return false;
 }
 else throw;
 }
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• AddAttachmentsToSet

• AddCommunicationToCase

Basics 1757

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/AddAttachmentsToSet
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/AddCommunicationToCase

AWS SDK for .NET Developer Guide

• CreateCase

• DescribeAttachment

• DescribeCases

• DescribeCommunications

• DescribeServices

• DescribeSeverityLevels

• ResolveCase

Actions

AddAttachmentsToSet

The following code example shows how to use AddAttachmentsToSet.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Add an attachment to a set, or create a new attachment set if one does not
 exist.
 /// </summary>
 /// <param name="data">The data for the attachment.</param>
 /// <param name="fileName">The file name for the attachment.</param>
 /// <param name="attachmentSetId">Optional setId for the attachment. Creates a
 new attachment set if empty.</param>
 /// <returns>The setId of the attachment.</returns>
 public async Task<string> AddAttachmentToSet(MemoryStream data, string fileName,
 string? attachmentSetId = null)
 {
 var response = await _amazonSupport.AddAttachmentsToSetAsync(
 new AddAttachmentsToSetRequest
 {

Actions 1758

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/CreateCase
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeAttachment
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeCases
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeCommunications
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeServices
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeSeverityLevels
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/ResolveCase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 AttachmentSetId = attachmentSetId,
 Attachments = new List<Attachment>
 {
 new Attachment
 {
 Data = data,
 FileName = fileName
 }
 }
 });
 return response.AttachmentSetId;
 }

• For API details, see AddAttachmentsToSet in AWS SDK for .NET API Reference.

AddCommunicationToCase

The following code example shows how to use AddCommunicationToCase.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Add communication to a case, including optional attachment set ID and CC
 email addresses.
 /// </summary>
 /// <param name="caseId">Id for the support case.</param>
 /// <param name="body">Body text of the communication.</param>
 /// <param name="attachmentSetId">Optional Id for an attachment set.</param>
 /// <param name="ccEmailAddresses">Optional list of CC email addresses.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> AddCommunicationToCase(string caseId, string body,
 string? attachmentSetId = null, List<string>? ccEmailAddresses = null)

Actions 1759

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/AddAttachmentsToSet
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 {
 var response = await _amazonSupport.AddCommunicationToCaseAsync(
 new AddCommunicationToCaseRequest()
 {
 CaseId = caseId,
 CommunicationBody = body,
 AttachmentSetId = attachmentSetId,
 CcEmailAddresses = ccEmailAddresses
 });
 return response.Result;
 }

• For API details, see AddCommunicationToCase in AWS SDK for .NET API Reference.

CreateCase

The following code example shows how to use CreateCase.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a new support case.
 /// </summary>
 /// <param name="serviceCode">Service code for the new case.</param>
 /// <param name="categoryCode">Category for the new case.</param>
 /// <param name="severityCode">Severity code for the new case.</param>
 /// <param name="subject">Subject of the new case.</param>
 /// <param name="body">Body text of the new case.</param>
 /// <param name="language">Optional language support for your case.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <param name="attachmentSetId">Optional Id for an attachment set for the new
 case.</param>

Actions 1760

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/AddCommunicationToCase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="issueType">Optional issue type for the new case. Options are
 "customer-service" or "technical".</param>
 /// <returns>The caseId of the new support case.</returns>
 public async Task<string> CreateCase(string serviceCode, string categoryCode,
 string severityCode, string subject,
 string body, string language = "en", string? attachmentSetId = null, string
 issueType = "customer-service")
 {
 var response = await _amazonSupport.CreateCaseAsync(
 new CreateCaseRequest()
 {
 ServiceCode = serviceCode,
 CategoryCode = categoryCode,
 SeverityCode = severityCode,
 Subject = subject,
 Language = language,
 AttachmentSetId = attachmentSetId,
 IssueType = issueType,
 CommunicationBody = body
 });
 return response.CaseId;
 }

• For API details, see CreateCase in AWS SDK for .NET API Reference.

DescribeAttachment

The following code example shows how to use DescribeAttachment.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 1761

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/CreateCase
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 /// Get description of a specific attachment.
 /// </summary>
 /// <param name="attachmentId">Id of the attachment, usually fetched by
 describing the communications of a case.</param>
 /// <returns>The attachment object.</returns>
 public async Task<Attachment> DescribeAttachment(string attachmentId)
 {
 var response = await _amazonSupport.DescribeAttachmentAsync(
 new DescribeAttachmentRequest()
 {
 AttachmentId = attachmentId
 });
 return response.Attachment;
 }

• For API details, see DescribeAttachment in AWS SDK for .NET API Reference.

DescribeCases

The following code example shows how to use DescribeCases.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get case details for a list of case ids, optionally with date filters.
 /// </summary>
 /// <param name="caseIds">The list of case IDs.</param>
 /// <param name="displayId">Optional display ID.</param>
 /// <param name="includeCommunication">True to include communication. Defaults
 to true.</param>
 /// <param name="includeResolvedCases">True to include resolved cases. Defaults
 to false.</param>

Actions 1762

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeAttachment
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples

AWS SDK for .NET Developer Guide

 /// <param name="afterTime">The optional start date for a filtered search.</
param>
 /// <param name="beforeTime">The optional end date for a filtered search.</
param>
 /// <param name="language">Optional language support for your case.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <returns>A list of CaseDetails.</returns>
 public async Task<List<CaseDetails>> DescribeCases(List<string> caseIds, string?
 displayId = null, bool includeCommunication = true,
 bool includeResolvedCases = false, DateTime? afterTime = null, DateTime?
 beforeTime = null,
 string language = "en")
 {
 var results = new List<CaseDetails>();
 var paginateCases = _amazonSupport.Paginators.DescribeCases(
 new DescribeCasesRequest()
 {
 CaseIdList = caseIds,
 DisplayId = displayId,
 IncludeCommunications = includeCommunication,
 IncludeResolvedCases = includeResolvedCases,
 AfterTime = afterTime?.ToString("s"),
 BeforeTime = beforeTime?.ToString("s"),
 Language = language
 });
 // Get the entire list using the paginator.
 await foreach (var cases in paginateCases.Cases)
 {
 results.Add(cases);
 }
 return results;
 }

• For API details, see DescribeCases in AWS SDK for .NET API Reference.

DescribeCommunications

The following code example shows how to use DescribeCommunications.

Actions 1763

https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeCases

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Describe the communications for a case, optionally with a date filter.
 /// </summary>
 /// <param name="caseId">The ID of the support case.</param>
 /// <param name="afterTime">The optional start date for a filtered search.</
param>
 /// <param name="beforeTime">The optional end date for a filtered search.</
param>
 /// <returns>The list of communications for the case.</returns>
 public async Task<List<Communication>> DescribeCommunications(string caseId,
 DateTime? afterTime = null, DateTime? beforeTime = null)
 {
 var results = new List<Communication>();
 var paginateCommunications =
 _amazonSupport.Paginators.DescribeCommunications(
 new DescribeCommunicationsRequest()
 {
 CaseId = caseId,
 AfterTime = afterTime?.ToString("s"),
 BeforeTime = beforeTime?.ToString("s")
 });
 // Get the entire list using the paginator.
 await foreach (var communications in paginateCommunications.Communications)
 {
 results.Add(communications);
 }
 return results;
 }

• For API details, see DescribeCommunications in AWS SDK for .NET API Reference.

Actions 1764

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeCommunications

AWS SDK for .NET Developer Guide

DescribeServices

The following code example shows how to use DescribeServices.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the descriptions of AWS services.
 /// </summary>
 /// <param name="name">Optional language for services.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <returns>The list of AWS service descriptions.</returns>
 public async Task<List<Service>> DescribeServices(string language = "en")
 {
 var response = await _amazonSupport.DescribeServicesAsync(
 new DescribeServicesRequest()
 {
 Language = language
 });
 return response.Services;
 }

• For API details, see DescribeServices in AWS SDK for .NET API Reference.

DescribeSeverityLevels

The following code example shows how to use DescribeSeverityLevels.

Actions 1765

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeServices

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get the descriptions of support severity levels.
 /// </summary>
 /// <param name="name">Optional language for severity levels.
 /// Currently Chinese (“zh”), English ("en"), Japanese ("ja") and Korean (“ko”)
 are supported.</param>
 /// <returns>The list of support severity levels.</returns>
 public async Task<List<SeverityLevel>> DescribeSeverityLevels(string language =
 "en")
 {
 var response = await _amazonSupport.DescribeSeverityLevelsAsync(
 new DescribeSeverityLevelsRequest()
 {
 Language = language
 });
 return response.SeverityLevels;
 }

• For API details, see DescribeSeverityLevels in AWS SDK for .NET API Reference.

ResolveCase

The following code example shows how to use ResolveCase.

Actions 1766

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/DescribeSeverityLevels

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Resolve a support case by caseId.
 /// </summary>
 /// <param name="caseId">Id for the support case.</param>
 /// <returns>The final status of the case after resolving.</returns>
 public async Task<string> ResolveCase(string caseId)
 {
 var response = await _amazonSupport.ResolveCaseAsync(
 new ResolveCaseRequest()
 {
 CaseId = caseId
 });
 return response.FinalCaseStatus;
 }

• For API details, see ResolveCase in AWS SDK for .NET API Reference.

Amazon Textract examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Textract.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

Amazon Textract 1767

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Support#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/support-2013-04-15/ResolveCase

AWS SDK for .NET Developer Guide

• Scenarios

Scenarios

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment instructions,
see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Amazon Transcribe examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Transcribe.

Scenarios 1768

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer

AWS SDK for .NET Developer Guide

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Actions

CreateVocabulary

The following code example shows how to use CreateVocabulary.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Create a custom vocabulary using a list of phrases. Custom vocabularies
 /// improve transcription accuracy for one or more specific words.
 /// </summary>
 /// <param name="languageCode">The language code of the vocabulary.</param>
 /// <param name="phrases">Phrases to use in the vocabulary.</param>
 /// <param name="vocabularyName">Name for the vocabulary.</param>
 /// <returns>The state of the custom vocabulary.</returns>
 public async Task<VocabularyState> CreateCustomVocabulary(LanguageCode
 languageCode,
 List<string> phrases, string vocabularyName)
 {
 var response = await _amazonTranscribeService.CreateVocabularyAsync(
 new CreateVocabularyRequest
 {
 LanguageCode = languageCode,

Actions 1769

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 Phrases = phrases,
 VocabularyName = vocabularyName
 });
 return response.VocabularyState;
 }

• For API details, see CreateVocabulary in AWS SDK for .NET API Reference.

DeleteMedicalTranscriptionJob

The following code example shows how to use DeleteMedicalTranscriptionJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a medical transcription job. Also deletes the transcript associated
 with the job.
 /// </summary>
 /// <param name="jobName">Name of the medical transcription job to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteMedicalTranscriptionJob(string jobName)
 {
 var response = await
 _amazonTranscribeService.DeleteMedicalTranscriptionJobAsync(
 new DeleteMedicalTranscriptionJobRequest()
 {
 MedicalTranscriptionJobName = jobName
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Actions 1770

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/CreateVocabulary
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

• For API details, see DeleteMedicalTranscriptionJob in AWS SDK for .NET API Reference.

DeleteTranscriptionJob

The following code example shows how to use DeleteTranscriptionJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete a transcription job. Also deletes the transcript associated with the
 job.
 /// </summary>
 /// <param name="jobName">Name of the transcription job to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTranscriptionJob(string jobName)
 {
 var response = await _amazonTranscribeService.DeleteTranscriptionJobAsync(
 new DeleteTranscriptionJobRequest()
 {
 TranscriptionJobName = jobName
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTranscriptionJob in AWS SDK for .NET API Reference.

DeleteVocabulary

The following code example shows how to use DeleteVocabulary.

Actions 1771

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/DeleteMedicalTranscriptionJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/DeleteTranscriptionJob

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Delete an existing custom vocabulary.
 /// </summary>
 /// <param name="vocabularyName">Name of the vocabulary to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteCustomVocabulary(string vocabularyName)
 {
 var response = await _amazonTranscribeService.DeleteVocabularyAsync(
 new DeleteVocabularyRequest
 {
 VocabularyName = vocabularyName
 });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteVocabulary in AWS SDK for .NET API Reference.

GetTranscriptionJob

The following code example shows how to use GetTranscriptionJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Actions 1772

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/DeleteVocabulary
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 /// <summary>
 /// Get details about a transcription job.
 /// </summary>
 /// <param name="jobName">A unique name for the transcription job.</param>
 /// <returns>A TranscriptionJob instance with information on the requested
 job.</returns>
 public async Task<TranscriptionJob> GetTranscriptionJob(string jobName)
 {
 var response = await _amazonTranscribeService.GetTranscriptionJobAsync(
 new GetTranscriptionJobRequest()
 {
 TranscriptionJobName = jobName
 });
 return response.TranscriptionJob;
 }

• For API details, see GetTranscriptionJob in AWS SDK for .NET API Reference.

GetVocabulary

The following code example shows how to use GetVocabulary.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Get information about a custom vocabulary.
 /// </summary>
 /// <param name="vocabularyName">Name of the vocabulary.</param>
 /// <returns>The state of the custom vocabulary.</returns>
 public async Task<VocabularyState> GetCustomVocabulary(string vocabularyName)
 {

Actions 1773

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/GetTranscriptionJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 var response = await _amazonTranscribeService.GetVocabularyAsync(
 new GetVocabularyRequest()
 {
 VocabularyName = vocabularyName
 });
 return response.VocabularyState;
 }

• For API details, see GetVocabulary in AWS SDK for .NET API Reference.

ListMedicalTranscriptionJobs

The following code example shows how to use ListMedicalTranscriptionJobs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List medical transcription jobs, optionally with a name filter.
 /// </summary>
 /// <param name="jobNameContains">Optional name filter for the medical
 transcription jobs.</param>
 /// <returns>A list of summaries about medical transcription jobs.</returns>
 public async Task<List<MedicalTranscriptionJobSummary>>
 ListMedicalTranscriptionJobs(
 string? jobNameContains = null)
 {
 var response = await
 _amazonTranscribeService.ListMedicalTranscriptionJobsAsync(
 new ListMedicalTranscriptionJobsRequest()
 {
 JobNameContains = jobNameContains
 });

Actions 1774

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/GetVocabulary
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 return response.MedicalTranscriptionJobSummaries;
 }

• For API details, see ListMedicalTranscriptionJobs in AWS SDK for .NET API Reference.

ListTranscriptionJobs

The following code example shows how to use ListTranscriptionJobs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List transcription jobs, optionally with a name filter.
 /// </summary>
 /// <param name="jobNameContains">Optional name filter for the transcription
 jobs.</param>
 /// <returns>A list of transcription job summaries.</returns>
 public async Task<List<TranscriptionJobSummary>> ListTranscriptionJobs(string?
 jobNameContains = null)
 {
 var response = await _amazonTranscribeService.ListTranscriptionJobsAsync(
 new ListTranscriptionJobsRequest()
 {
 JobNameContains = jobNameContains
 });
 return response.TranscriptionJobSummaries;
 }

• For API details, see ListTranscriptionJobs in AWS SDK for .NET API Reference.

Actions 1775

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/ListMedicalTranscriptionJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/ListTranscriptionJobs

AWS SDK for .NET Developer Guide

ListVocabularies

The following code example shows how to use ListVocabularies.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// List custom vocabularies for the current account. Optionally specify a name
 /// filter and a specific state to filter the vocabularies list.
 /// </summary>
 /// <param name="nameContains">Optional string the vocabulary name must
 contain.</param>
 /// <param name="stateEquals">Optional state of the vocabulary.</param>
 /// <returns>List of information about the vocabularies.</returns>
 public async Task<List<VocabularyInfo>> ListCustomVocabularies(string?
 nameContains = null,
 VocabularyState? stateEquals = null)
 {
 var response = await _amazonTranscribeService.ListVocabulariesAsync(
 new ListVocabulariesRequest()
 {
 NameContains = nameContains,
 StateEquals = stateEquals
 });
 return response.Vocabularies;
 }

• For API details, see ListVocabularies in AWS SDK for .NET API Reference.

StartMedicalTranscriptionJob

The following code example shows how to use StartMedicalTranscriptionJob.

Actions 1776

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/ListVocabularies

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Start a medical transcription job for a media file. This method returns
 /// as soon as the job is started.
 /// </summary>
 /// <param name="jobName">A unique name for the medical transcription job.</
param>
 /// <param name="mediaFileUri">The URI of the media file, typically an Amazon S3
 location.</param>
 /// <param name="mediaFormat">The format of the media file.</param>
 /// <param name="outputBucketName">Location for the output, typically an Amazon
 S3 location.</param>
 /// <param name="transcriptionType">Conversation or dictation transcription
 type.</param>
 /// <returns>A MedicalTransactionJob instance with information on the new job.</
returns>
 public async Task<MedicalTranscriptionJob> StartMedicalTranscriptionJob(
 string jobName, string mediaFileUri,
 MediaFormat mediaFormat, string outputBucketName,
 Amazon.TranscribeService.Type transcriptionType)
 {
 var response = await
 _amazonTranscribeService.StartMedicalTranscriptionJobAsync(
 new StartMedicalTranscriptionJobRequest()
 {
 MedicalTranscriptionJobName = jobName,
 Media = new Media()
 {
 MediaFileUri = mediaFileUri
 },
 MediaFormat = mediaFormat,
 LanguageCode =
 LanguageCode

Actions 1777

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 .EnUS, // The value must be en-US for medical
 transcriptions.
 OutputBucketName = outputBucketName,
 OutputKey =
 jobName, // The value is a key used to fetch the output of the
 transcription.
 Specialty = Specialty.PRIMARYCARE, // The value PRIMARYCARE must be
 set.
 Type = transcriptionType
 });
 return response.MedicalTranscriptionJob;
 }

• For API details, see StartMedicalTranscriptionJob in AWS SDK for .NET API Reference.

StartTranscriptionJob

The following code example shows how to use StartTranscriptionJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>
 /// Start a transcription job for a media file. This method returns
 /// as soon as the job is started.
 /// </summary>
 /// <param name="jobName">A unique name for the transcription job.</param>
 /// <param name="mediaFileUri">The URI of the media file, typically an Amazon S3
 location.</param>
 /// <param name="mediaFormat">The format of the media file.</param>
 /// <param name="languageCode">The language code of the media file, such as en-
US.</param>
 /// <param name="vocabularyName">Optional name of a custom vocabulary.</param>

Actions 1778

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/StartMedicalTranscriptionJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 /// <returns>A TranscriptionJob instance with information on the new job.</
returns>
 public async Task<TranscriptionJob> StartTranscriptionJob(string jobName, string
 mediaFileUri,
 MediaFormat mediaFormat, LanguageCode languageCode, string? vocabularyName)
 {
 var response = await _amazonTranscribeService.StartTranscriptionJobAsync(
 new StartTranscriptionJobRequest()
 {
 TranscriptionJobName = jobName,
 Media = new Media()
 {
 MediaFileUri = mediaFileUri
 },
 MediaFormat = mediaFormat,
 LanguageCode = languageCode,
 Settings = vocabularyName != null ? new Settings()
 {
 VocabularyName = vocabularyName
 } : null
 });
 return response.TranscriptionJob;
 }

• For API details, see StartTranscriptionJob in AWS SDK for .NET API Reference.

UpdateVocabulary

The following code example shows how to use UpdateVocabulary.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 /// <summary>

Actions 1779

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/StartTranscriptionJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Transcribe#code-examples

AWS SDK for .NET Developer Guide

 /// Update a custom vocabulary with new values. Update overwrites all existing
 information.
 /// </summary>
 /// <param name="languageCode">The language code of the vocabulary.</param>
 /// <param name="phrases">Phrases to use in the vocabulary.</param>
 /// <param name="vocabularyName">Name for the vocabulary.</param>
 /// <returns>The state of the custom vocabulary.</returns>
 public async Task<VocabularyState> UpdateCustomVocabulary(LanguageCode
 languageCode,
 List<string> phrases, string vocabularyName)
 {
 var response = await _amazonTranscribeService.UpdateVocabularyAsync(
 new UpdateVocabularyRequest()
 {
 LanguageCode = languageCode,
 Phrases = phrases,
 VocabularyName = vocabularyName
 });
 return response.VocabularyState;
 }

• For API details, see UpdateVocabulary in AWS SDK for .NET API Reference.

Amazon Translate examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios
by using the AWS SDK for .NET with Amazon Translate.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how
to set up and run the code in context.

Topics

• Actions

Amazon Translate 1780

https://docs.aws.amazon.com/goto/DotNetSDKV3/transcribe-2017-10-26/UpdateVocabulary

AWS SDK for .NET Developer Guide

• Scenarios

Actions

DescribeTextTranslationJob

The following code example shows how to use DescribeTextTranslationJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Translate;
 using Amazon.Translate.Model;

 /// <summary>
 /// The following example shows how to retrieve the details of
 /// a text translation job using Amazon Translate.
 /// </summary>
 public class DescribeTextTranslation
 {
 public static async Task Main()
 {
 var client = new AmazonTranslateClient();

 // The Job Id is generated when the text translation job is started
 // with a call to the StartTextTranslationJob method.
 var jobId = "1234567890abcdef01234567890abcde";

 var request = new DescribeTextTranslationJobRequest
 {
 JobId = jobId,
 };

 var jobProperties = await DescribeTranslationJobAsync(client, request);

Actions 1781

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Translate#code-examples

AWS SDK for .NET Developer Guide

 DisplayTranslationJobDetails(jobProperties);
 }

 /// <summary>
 /// Retrieve information about an Amazon Translate text translation job.
 /// </summary>
 /// <param name="client">The initialized Amazon Translate client object.</
param>
 /// <param name="request">The DescribeTextTranslationJobRequest object.</
param>
 /// <returns>The TextTranslationJobProperties object containing
 /// information about the text translation job..</returns>
 public static async Task<TextTranslationJobProperties>
 DescribeTranslationJobAsync(
 AmazonTranslateClient client,
 DescribeTextTranslationJobRequest request)
 {
 var response = await client.DescribeTextTranslationJobAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 return response.TextTranslationJobProperties;
 }
 else
 {
 return null;
 }
 }

 /// <summary>
 /// Displays the properties of the text translation job.
 /// </summary>
 /// <param name="jobProperties">The properties of the text translation
 /// job returned by the call to DescribeTextTranslationJobAsync.</param>
 public static void DisplayTranslationJobDetails(TextTranslationJobProperties
 jobProperties)
 {
 if (jobProperties is null)
 {
 Console.WriteLine("No text translation job properties found.");
 return;
 }

 // Display the details of the text translation job.
 Console.WriteLine($"{jobProperties.JobId}: {jobProperties.JobName}");

Actions 1782

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see DescribeTextTranslationJob in AWS SDK for .NET API Reference.

ListTextTranslationJobs

The following code example shows how to use ListTextTranslationJobs.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Translate;
 using Amazon.Translate.Model;

 /// <summary>
 /// List Amazon Translate translation jobs, along with details about each job.
 /// </summary>
 public class ListTranslationJobs
 {
 public static async Task Main()
 {
 var client = new AmazonTranslateClient();
 var filter = new TextTranslationJobFilter
 {
 JobStatus = "COMPLETED",
 };

 var request = new ListTextTranslationJobsRequest
 {
 MaxResults = 10,
 Filter = filter,

Actions 1783

https://docs.aws.amazon.com/goto/DotNetSDKV3/translate-2017-07-01/DescribeTextTranslationJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Translate#code-examples

AWS SDK for .NET Developer Guide

 };

 await ListJobsAsync(client, request);
 }

 /// <summary>
 /// List Amazon Translate text translation jobs.
 /// </summary>
 /// <param name="client">The initialized Amazon Translate client object.</
param>
 /// <param name="request">An Amazon Translate
 /// ListTextTranslationJobsRequest object detailing which text
 /// translation jobs are of interest.</param>
 public static async Task ListJobsAsync(
 AmazonTranslateClient client,
 ListTextTranslationJobsRequest request)
 {
 ListTextTranslationJobsResponse response;

 do
 {
 response = await client.ListTextTranslationJobsAsync(request);

 ShowTranslationJobDetails(response.TextTranslationJobPropertiesList);

 request.NextToken = response.NextToken;
 }
 while (response.NextToken is not null);
 }

 /// <summary>
 /// List existing translation job details.
 /// </summary>
 /// <param name="properties">A list of Amazon Translate text
 /// translation jobs.</param>
 public static void
 ShowTranslationJobDetails(List<TextTranslationJobProperties> properties)
 {
 properties.ForEach(prop =>
 {
 Console.WriteLine($"{prop.JobId}: {prop.JobName}");
 Console.WriteLine($"Status: {prop.JobStatus}");
 Console.WriteLine($"Submitted time: {prop.SubmittedTime}");
 });

Actions 1784

AWS SDK for .NET Developer Guide

 }
 }

• For API details, see ListTextTranslationJobs in AWS SDK for .NET API Reference.

StartTextTranslationJob

The following code example shows how to use StartTextTranslationJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.Translate;
 using Amazon.Translate.Model;

 /// <summary>
 /// This example shows how to use Amazon Translate to process the files in
 /// an Amazon Simple Storage Service (Amazon S3) bucket. The translated results
 /// will also be stored in an Amazon S3 bucket.
 /// </summary>
 public class BatchTranslate
 {
 public static async Task Main()
 {
 var contentType = "text/plain";

 // Set this variable to an S3 bucket location with a folder."
 // Input files must be in a folder and not at the bucket root."
 var s3InputUri = "s3://amzn-s3-demo-bucket1/FOLDER/";
 var s3OutputUri = "s3://amzn-s3-demo-bucket2/";

Actions 1785

https://docs.aws.amazon.com/goto/DotNetSDKV3/translate-2017-07-01/ListTextTranslationJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Translate#code-examples

AWS SDK for .NET Developer Guide

 // This role must have permissions to read the source bucket and to read
 and
 // write to the destination bucket where the translated text will be
 stored.
 var dataAccessRoleArn = "arn:aws:iam::0123456789ab:role/
S3TranslateRole";

 var client = new AmazonTranslateClient();

 var inputConfig = new InputDataConfig
 {
 ContentType = contentType,
 S3Uri = s3InputUri,
 };

 var outputConfig = new OutputDataConfig
 {
 S3Uri = s3OutputUri,
 };

 var request = new StartTextTranslationJobRequest
 {
 JobName = "ExampleTranslationJob",
 DataAccessRoleArn = dataAccessRoleArn,
 InputDataConfig = inputConfig,
 OutputDataConfig = outputConfig,
 SourceLanguageCode = "en",
 TargetLanguageCodes = new List<string> { "fr" },
 };

 var response = await StartTextTranslationAsync(client, request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"{response.JobId}: {response.JobStatus}");
 }
 }

 /// <summary>
 /// Start the Amazon Translate text translation job.
 /// </summary>
 /// <param name="client">The initialized AmazonTranslateClient object.</
param>
 /// <param name="request">The request object that includes details such

Actions 1786

AWS SDK for .NET Developer Guide

 /// as source and destination bucket names and the IAM Role that will
 /// be used to access the buckets.</param>
 /// <returns>The StartTextTranslationResponse object that includes the
 /// details of the request response.</returns>
 public static async Task<StartTextTranslationJobResponse>
 StartTextTranslationAsync(AmazonTranslateClient client,
 StartTextTranslationJobRequest request)
 {
 var response = await client.StartTextTranslationJobAsync(request);
 return response;
 }
 }

• For API details, see StartTextTranslationJob in AWS SDK for .NET API Reference.

StopTextTranslationJob

The following code example shows how to use StopTextTranslationJob.

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Translate;
 using Amazon.Translate.Model;

 /// <summary>
 /// Shows how to stop a running Amazon Translation Service text translation
 /// job.
 /// </summary>
 public class StopTextTranslationJob
 {
 public static async Task Main()

Actions 1787

https://docs.aws.amazon.com/goto/DotNetSDKV3/translate-2017-07-01/StartTextTranslationJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Translate#code-examples

AWS SDK for .NET Developer Guide

 {
 var client = new AmazonTranslateClient();
 var jobId = "1234567890abcdef01234567890abcde";

 var request = new StopTextTranslationJobRequest
 {
 JobId = jobId,
 };

 await StopTranslationJobAsync(client, request);
 }

 /// <summary>
 /// Sends a request to stop a text translation job.
 /// </summary>
 /// <param name="client">Initialized AmazonTrnslateClient object.</param>
 /// <param name="request">The request object to be passed to the
 /// StopTextJobAsync method.</param>
 public static async Task StopTranslationJobAsync(
 AmazonTranslateClient client,
 StopTextTranslationJobRequest request)
 {
 var response = await client.StopTextTranslationJobAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"{response.JobId} as status:
 {response.JobStatus}");
 }
 }
 }

• For API details, see StopTextTranslationJob in AWS SDK for .NET API Reference.

TranslateText

The following code example shows how to use TranslateText.

Actions 1788

https://docs.aws.amazon.com/goto/DotNetSDKV3/translate-2017-07-01/StopTextTranslationJob

AWS SDK for .NET Developer Guide

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.S3;
 using Amazon.S3.Transfer;
 using Amazon.Translate;
 using Amazon.Translate.Model;

 /// <summary>
 /// Take text from a file stored a Amazon Simple Storage Service (Amazon S3)
 /// object and translate it using the Amazon Transfer Service.
 /// </summary>
 public class TranslateText
 {
 public static async Task Main()
 {
 // If the region you want to use is different from the region
 // defined for the default user, supply it as a parameter to the
 // Amazon Translate client object constructor.
 var client = new AmazonTranslateClient();

 // Set the source language to "auto" to request Amazon Translate to
 // automatically detect te language of the source text.

 // You can get a list of the languages supposed by Amazon Translate
 // in the Amazon Translate Developer's Guide here:
 // https://docs.aws.amazon.com/translate/latest/dg/what-is.html
 string srcLang = "en"; // English.
 string destLang = "fr"; // French.

 // The Amazon Simple Storage Service (Amazon S3) bucket where the
 // source text file is stored.
 string srcBucket = "amzn-s3-demo-bucket";
 string srcTextFile = "source.txt";

Actions 1789

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Translate#code-examples

AWS SDK for .NET Developer Guide

 var srcText = await GetSourceTextAsync(srcBucket, srcTextFile);
 var destText = await TranslatingTextAsync(client, srcLang, destLang,
 srcText);

 ShowText(srcText, destText);
 }

 /// <summary>
 /// Use the Amazon S3 TransferUtility to retrieve the text to translate
 /// from an object in an S3 bucket.
 /// </summary>
 /// <param name="srcBucket">The name of the S3 bucket where the
 /// text is stored.
 /// </param>
 /// <param name="srcTextFile">The key of the S3 object that
 /// contains the text to translate.</param>
 /// <returns>A string representing the source text.</returns>
 public static async Task<string> GetSourceTextAsync(string srcBucket, string
 srcTextFile)
 {
 string srcText = string.Empty;

 var s3Client = new AmazonS3Client();
 TransferUtility utility = new TransferUtility(s3Client);

 using var stream = await utility.OpenStreamAsync(srcBucket,
 srcTextFile);

 StreamReader file = new System.IO.StreamReader(stream);

 srcText = file.ReadToEnd();
 return srcText;
 }

 /// <summary>
 /// Use the Amazon Translate Service to translate the document from the
 /// source language to the specified destination language.
 /// </summary>
 /// <param name="client">The Amazon Translate Service client used to
 /// perform the translation.</param>
 /// <param name="srcLang">The language of the source text.</param>
 /// <param name="destLang">The destination language for the translated
 /// text.</param>

Actions 1790

AWS SDK for .NET Developer Guide

 /// <param name="text">A string representing the text to ranslate.</param>
 /// <returns>The text that has been translated to the destination
 /// language.</returns>
 public static async Task<string> TranslatingTextAsync(AmazonTranslateClient
 client, string srcLang, string destLang, string text)
 {
 var request = new TranslateTextRequest
 {
 SourceLanguageCode = srcLang,
 TargetLanguageCode = destLang,
 Text = text,
 };

 var response = await client.TranslateTextAsync(request);

 return response.TranslatedText;
 }

 /// <summary>
 /// Show the original text followed by the translated text.
 /// </summary>
 /// <param name="srcText">The original text to be translated.</param>
 /// <param name="destText">The translated text.</param>
 public static void ShowText(string srcText, string destText)
 {
 Console.WriteLine("Source text:");
 Console.WriteLine(srcText);
 Console.WriteLine();
 Console.WriteLine("Translated text:");
 Console.WriteLine(destText);
 }
 }

• For API details, see TranslateText in AWS SDK for .NET API Reference.

Actions 1791

https://docs.aws.amazon.com/goto/DotNetSDKV3/translate-2017-07-01/TranslateText

AWS SDK for .NET Developer Guide

Scenarios

Building an Amazon SNS application

The following code example shows how to create an application that has subscription and publish
functionality and translates messages.

AWS SDK for .NET

Shows how to use the Amazon Simple Notification Service .NET API to create a web application
that has subscription and publish functionality. In addition, this example application also
translates messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon SNS

• Amazon Translate

Create an application to analyze customer feedback

The following code example shows how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the
need of a fictitious hotel in New York City. The hotel receives feedback from guests in various
languages in the form of physical comment cards. That feedback is uploaded into the app
through a web client. After an image of a comment card is uploaded, the following steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment instructions,
see the project in GitHub.

Scenarios 1792

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/SubscribePublishTranslate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer

AWS SDK for .NET Developer Guide

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Scenarios 1793

AWS SDK for .NET Developer Guide

Security for this AWS Product or Service

Cloud security at Amazon Web Services (AWS) is the highest priority. As an AWS customer, you
benefit from a data center and network architecture that is built to meet the requirements of the
most security-sensitive organizations. Security is a shared responsibility between AWS and you. The
Shared Responsibility Model describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the
services offered in the AWS Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at AWS, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the AWS Compliance Programs.

Security in the Cloud – Your responsibility is determined by the AWS service you are using,
and other factors including the sensitivity of your data, your organization’s requirements, and
applicable laws and regulations.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Topics

• Data protection in this AWS Product or Service

• Identity and Access Management

• Compliance Validation for this AWS Product or Service

• Resilience for this AWS Product or Service

• Infrastructure Security for this AWS Product or Service

• Enforcing a minimum TLS version in the AWS SDK for .NET

• Amazon S3 Encryption Client Migration

Data protection in this AWS Product or Service

The AWS shared responsibility model applies to data protection in this AWS product or service. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on

Data protection 1794

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS SDK for .NET Developer Guide

this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with this AWS product or service or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS resources. IAM is an AWS service that you can use
with no additional charge.

Identity and Access Management 1795

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS SDK for .NET Developer Guide

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS services work with IAM

• Troubleshooting AWS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS.

Service user – If you use AWS services to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more AWS features to do your work,
you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in AWS, see
Troubleshooting AWS identity and access or the user guide of the AWS service you are using.

Service administrator – If you're in charge of AWS resources at your company, you probably have
full access to AWS. It's your job to determine which AWS features and resources your service users
should access. You must then submit requests to your IAM administrator to change the permissions
of your service users. Review the information on this page to understand the basic concepts of
IAM. To learn more about how your company can use IAM with AWS, see the user guide of the AWS
service you are using.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS. To view example AWS identity-based policies that you
can use in IAM, see the user guide of the AWS service you are using.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on

Audience 1796

AWS SDK for .NET Developer Guide

authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

Authenticating with identities 1797

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS SDK for .NET Developer Guide

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider

Authenticating with identities 1798

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

AWS SDK for .NET Developer Guide

(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile

Authenticating with identities 1799

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK for .NET Developer Guide

that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 1800

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS SDK for .NET Developer Guide

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to

Managing access using policies 1801

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS SDK for .NET Developer Guide

any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS services work with IAM

To get a high-level view of how AWS services work with most IAM features, see AWS services that
work with IAM in the IAM User Guide.

To learn how to use a specific AWS service with IAM, see the security section of the relevant
service's User Guide.

Troubleshooting AWS identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS and IAM.

Topics

• I am not authorized to perform an action in AWS

• I am not authorized to perform iam:PassRole

How AWS services work with IAM 1802

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK for .NET Developer Guide

• I want to allow people outside of my AWS account to access my AWS resources

I am not authorized to perform an action in AWS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the awes:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS. However, the action requires the service to have permissions that are
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting AWS identity and access 1803

AWS SDK for .NET Developer Guide

I want to allow people outside of my AWS account to access my AWS resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS supports these features, see How AWS services work with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance Validation for this AWS Product or Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance Validation 1804

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html

AWS SDK for .NET Developer Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Resilience for this AWS Product or Service

The AWS global infrastructure is built around AWS Regions and Availability Zones.

Resilience 1805

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK for .NET Developer Guide

AWS Regions provide multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between zones without interruption. Availability Zones are more highly available, fault
tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Infrastructure Security for this AWS Product or Service

This AWS product or service uses managed services, and therefore is protected by the AWS
global network security. For information about AWS security services and how AWS protects
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices
for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected
Framework.

You use AWS published API calls to access this AWS Product or Service through the network.
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

This AWS product or service follows the shared responsibility model through the specific Amazon
Web Services (AWS) services it supports. For AWS service security information, see the AWS service
security documentation page and AWS services that are in scope of AWS compliance efforts by
compliance program.

Infrastructure Security 1806

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK for .NET Developer Guide

Enforcing a minimum TLS version in the AWS SDK for .NET

To increase security when communicating with AWS services, you should configure the AWS SDK
for .NET to use TLS 1.2 or later.

The AWS SDK for .NET uses the underlying .NET runtime to determine which security protocol
to use. By default, current versions of .NET use the latest configured protocol that the operating
system supports. Your application can override this SDK behavior, but it's not recommended to do
so.

.NET Core

By default, .NET Core uses the latest configured protocol that the operating system supports. The
AWS SDK for .NET doesn't provide a mechanism to override this.

If you're using a .NET Core version earlier than 2.1, we strongly recommend you upgrade your .NET
Core version.

See the following for information specific to each operating system.

Windows

Modern distributions of Windows have TLS 1.2 support enabled by default. If you're running
on Windows 7 SP1 or Windows Server 2008 R2 SP1, you need to ensure that TLS 1.2 support
is enabled in the registry, as described at https://learn.microsoft.com/en-us/windows-server/
security/tls/tls-registry-settings#tls-12. If you're running an earlier distribution, you must upgrade
your operating system. For information about TLS 1.3 support in Windows, check the latest
Microsoft documentation for the minimum required client or server versions.

macOS

If you're running .NET Core 2.1 or later, TLS 1.2 is enabled by default. TLS 1.2 is supported
by OS X Mavericks v10.9 or later. .NET Core version 2.1 and later require newer versions of
macOS, as described at https://learn.microsoft.com/en-us/dotnet/core/install/windows?
tabs=net80&pivots=os-macos.

If you're using .NET Core 1.0, .NET Core uses OpenSSL on macOS, a dependency that must be
installed separately. OpenSSL added support for TLS 1.2 in version 1.0.1, and added support for
TLS 1.3 in version 1.1.1.

Enforcing a minimum TLS version 1807

https://learn.microsoft.com/en-us/windows/win32/secauthn/protocols-in-tls-ssl--schannel-ssp-
https://learn.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12
https://learn.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12
https://support.apple.com/en-us/103373
https://learn.microsoft.com/en-us/dotnet/core/install/windows?tabs=net80&pivots=os-macos
https://learn.microsoft.com/en-us/dotnet/core/install/windows?tabs=net80&pivots=os-macos
https://github.com/dotnet/announcements/issues/21

AWS SDK for .NET Developer Guide

Linux

.NET Core on Linux requires OpenSSL, which comes bundled with many Linux distributions. But it
can also be installed separately. OpenSSL added support for TLS 1.2 in version 1.0.1, and added
support for TLS 1.3 in version 1.1.1. If you're using a modern version of .NET Core (2.1 or later) and
have installed a package manager, it's likely that a more modern version of OpenSSL was installed
for you.

To be sure, you can run openssl version in a terminal and verify that the version is later than
1.0.1.

.NET Framework

If you're running a modern version of .NET Framework (4.7 or later) and a modern version of
Windows (at least Windows 8 for clients, Windows Server 2012 or later for servers), TLS 1.2 is
enabled and used by default.

If you're using a .NET Framework runtime that doesn't use the operating system settings (.NET
Framework 3.5 through 4.5.2), the AWS SDK for .NET will attempt to add support for TLS 1.1 and
TLS 1.2 to the supported protocols. If you're using .NET Framework 3.5, this will be successful only
if the appropriate hot patch is installed, as follows:

• Windows 10 version 1511 and Windows Server 2016 – KB3156421

• Windows 8.1 and Windows Server 2012 R2 – KB3154520

• Windows Server 2012 – KB3154519

• Windows 7 SP1 and Server 2008 R2 SP1 – KB3154518

Warning

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET Framework
3.5 and will change the minimum .NET Framework version to 4.7.2. For more information,
see the blog post Important changes coming for .NET Framework 3.5 and 4.5 targets of the
AWS SDK for .NET.

If your application is running on a newer .NET Framework on Windows 7 SP1 or Windows Server
2008 R2 SP1, you need to ensure that TLS 1.2 support is enabled in the registry, as described at

.NET Framework 1808

https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/Amazon.Runtime/Pipeline/HttpHandler/AmazonSecurityProtocolManager.cs
https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/Amazon.Runtime/Pipeline/HttpHandler/AmazonSecurityProtocolManager.cs
https://support.microsoft.com/kb/3156421
https://support.microsoft.com/kb/3154520
https://support.microsoft.com/kb/3154519
https://support.microsoft.com/kb/3154518
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/

AWS SDK for .NET Developer Guide

https://learn.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12. Newer
versions of Windows have it enabled by default.

For detailed best practices for using TLS with .NET Framework, see the Microsoft article at https://
learn.microsoft.com/en-us/dotnet/framework/network-programming/tls.

AWS Tools for PowerShell

AWS Tools for PowerShell use the AWS SDK for .NET for all calls to AWS services. The behavior of
your environment depends on the version of Windows PowerShell you're running, as follows.

Windows PowerShell 2.0 through 5.x

Windows PowerShell 2.0 through 5.x run on .NET Framework. You can verify which .NET runtime
(2.0 or 4.0) is being used by PowerShell by using the following command.

$PSVersionTable.CLRVersion

• When using .NET Runtime 2.0, follow the instructions provided earlier regarding the AWS SDK
for .NET and .NET Framework 3.5.

Warning

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET Framework
3.5 and will change the minimum .NET Framework version to 4.7.2. For more
information, see the blog post Important changes coming for .NET Framework 3.5 and
4.5 targets of the AWS SDK for .NET.

• When using .NET Runtime 4.0, follow the instructions provided earlier regarding the AWS SDK
for .NET and .NET Framework 4+.

Windows PowerShell 6.0

Windows PowerShell 6.0 and newer run on .NET Core. You can verify which version of .NET Core is
being used by running the following command.

[System.Reflection.Assembly]::GetEntryAssembly().GetCustomAttributes([System.Runtime.Versioning.TargetFrameworkAttribute],
 $true).FrameworkName

AWS Tools for PowerShell 1809

https://learn.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12
https://learn.microsoft.com/en-us/windows/win32/secauthn/protocols-in-tls-ssl--schannel-ssp-
https://learn.microsoft.com/en-us/dotnet/framework/network-programming/tls
https://learn.microsoft.com/en-us/dotnet/framework/network-programming/tls
https://docs.aws.amazon.com/powershell/latest/userguide/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/

AWS SDK for .NET Developer Guide

Follow the instructions provided earlier regarding the AWS SDK for .NET and the relevant version
of .NET Core.

Xamarin

For Xamarin, see the directions at https://learn.microsoft.com/en-us/xamarin/cross-platform/app-
fundamentals/transport-layer-security. In summary:

For Android

• Requires Android 5.0 or later.

• Project Properties, Android Options: HttpClient implementation must be set to Android and
the SSL/TLS implementation set to Native TLS 1.2+.

For iOS

• Requires iOS 7 or later.

• Project Properties, iOS Build: HttpClient implementation must be set to NSUrlSession.

For macOS

• Requires macOS 10.9 or later.

• Project Options, Build, Mac Build: HttpClient implementation must be set to NSUrlSession.

Unity

You must use Unity 2018.2 or later, and use the .NET 4.x Equivalent scripting runtime. You can set
this in Project Settings, Configuration, Player, as described at https://docs.unity3d.com/2019.1/
Documentation/Manual/ScriptingRuntimeUpgrade.html. The .NET 4.x Equivalent scripting runtime
enables TLS 1.2 support to all Unity platforms running Mono or IL2CPP.

Browser (for Blazor WebAssembly)

WebAssembly runs in the browser instead of on the server, and uses the browser for handling HTTP
traffic. Therefore, TLS support is determined by browser support.

Blazor WebAssembly, in preview for ASP.NET Core 3.1, is supported only in browsers that support
WebAssembly, as described at https://learn.microsoft.com/en-us/aspnet/core/blazor/supported-

Xamarin 1810

https://learn.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/transport-layer-security
https://learn.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/transport-layer-security
https://docs.unity3d.com/2019.1/Documentation/Manual/ScriptingRuntimeUpgrade.html
https://docs.unity3d.com/2019.1/Documentation/Manual/ScriptingRuntimeUpgrade.html
https://learn.microsoft.com/en-us/aspnet/core/blazor/supported-platforms

AWS SDK for .NET Developer Guide

platforms. All mainstream browsers supported TLS 1.2 before supporting WebAssembly. If this is
the case for your browser, then if your app runs, it can communicate over TLS 1.2.

See your browser's documentation for more information and verification.

Amazon S3 Encryption Client Migration

This topic shows how to migrate your applications from Version 1 (V1) of the Amazon Simple
Storage Service (Amazon S3) encryption client to Version 2 (V2), and ensure application availability
throughout the migration process.

Objects that are encrypted with the V2 client can't be decrypted with the V1 client. In order to ease
migration to the new client without having to re-encrypt all objects at once, a "V1-transitional"
client has been provided. This client can decrypt both V1- and V2-encrypted objects, but encrypts
objects only in V1-compatible format. The V2 client can decrypt both V1- and V2-encrypted objects
(when enabled for V1 objects), but encrypts objects only in V2-compatible format.

Migration Overview

This migration happens in three phases. These phases are introduced here and described in detail
later. Each phase must be completed for all clients that use shared objects before the next phase is
started.

1. Update existing clients to V1-transitional clients to read new formats. First, update your
applications to take a dependency on the V1-transitional client instead of the V1 client. The
V1-transitional client enables your existing code to decrypt objects written by the new V2
clients and objects written in V1-compatible format.

Note

The V1-transitional client is provided for migration purposes only. Proceed to
upgrading to the V2 client after moving to the V1-transitional client.

2. Migrate V1-transitional clients to V2 clients to write new formats. Next, replace all
V1-transitional clients in your applications with V2 clients, and set the security profile to
V2AndLegacy. Setting this security profile on V2 clients enables those clients to decrypt
objects that were encrypted in V1-compatible format.

3. Update V2 clients to no longer read V1 formats. Finally, after all clients have been migrated
to V2 and all objects have been encrypted or re-encrypted in V2-compatible format, set the

S3 Encryption Client Migration 1811

https://learn.microsoft.com/en-us/aspnet/core/blazor/supported-platforms

AWS SDK for .NET Developer Guide

V2 security profile to V2 instead of V2AndLegacy. This prevents the decryption of objects that
are in V1-compatible format.

Update Existing Clients to V1-transitional Clients to Read New Formats

The V2 encryption client uses encryption algorithms that older versions of the client don't support.
The first step in the migration is to update your V1 decryption clients so that they can read the new
format.

The V1-transitional client enables your applications to decrypt both V1- and V2-encrypted objects.
This client is a part of the Amazon.Extensions.S3.Encryption NuGet package. Perform the following
steps on each of your applications to use the V1-transitional client.

1. Take a new dependency on the Amazon.Extensions.S3.Encryption package. If your project
depends directly on the AWSSDK.S3 or AWSSDK.KeyManagementService packages, you
must either update those dependencies or remove them so that their updated versions will be
pulled in with this new package.

2. Change the appropriate using statement from Amazon.S3.Encryption to
Amazon.Extensions.S3.Encryption, as follows:

// using Amazon.S3.Encryption;
 using Amazon.Extensions.S3.Encryption;

3. Rebuild and redeploy your application.

The V1-transitional client is fully API-compatible with the V1 client, so no other code changes are
required.

Migrate V1-transitional Clients to V2 Clients to Write New Formats

The V2 client is a part of the Amazon.Extensions.S3.Encryption NuGet package. It enables your
applications to decrypt both V1- and V2-encrypted objects (if configured to do so), but encrypts
objects only in V2-compatible format.

After updating your existing clients to read the new encryption format, you can proceed to safely
update your applications to the V2 encryption and decryption clients. Perform the following steps
on each of your applications to use the V2 client:

1. Change EncryptionMaterials to EncryptionMaterialsV2.

Update Existing Clients to V1-transitional Clients to Read New Formats 1812

https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption
https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption
https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption

AWS SDK for .NET Developer Guide

a. When using KMS:

i. Provide a KMS key ID.

ii. Declare the encryption method that you are using; that is, KmsType.KmsContext.

iii. Provide an encryption context to KMS to associate with this data key. You can send an
empty dictionary (Amazon encryption context will still be merged in), but providing
additional context is encouraged.

b. When using user-provided key wrap methods (symmetric or asymmetric encryption):

i. Provide an AES or an RSA instance that contains the encryption materials.

ii. Declare which encryption algorithm to use; that is,
SymmetricAlgorithmType.AesGcm or
AsymmetricAlgorithmType.RsaOaepSha1.

2. Change AmazonS3CryptoConfiguration to AmazonS3CryptoConfigurationV2 with the
SecurityProfile property set to SecurityProfile.V2AndLegacy.

3. Change AmazonS3EncryptionClient to AmazonS3EncryptionClientV2. This client takes
the newly converted AmazonS3CryptoConfigurationV2 and EncryptionMaterialsV2
objects from the previous steps.

Example: KMS to KMS+Context

Pre-migration

using System.Security.Cryptography;
using Amazon.S3.Encryption;

var encryptionMaterial = new
 EncryptionMaterials("1234abcd-12ab-34cd-56ef-1234567890ab");
var configuration = new AmazonS3CryptoConfiguration()
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClient(configuration, encryptionMaterial);

Post-migration

using System.Security.Cryptography;

Migrate V1-transitional Clients to V2 Clients to Write New Formats 1813

AWS SDK for .NET Developer Guide

using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;

var encryptionContext = new Dictionary<string, string>();
var encryptionMaterial = new
 EncryptionMaterialsV2("1234abcd-12ab-34cd-56ef-1234567890ab", KmsType.KmsContext,
 encryptionContext);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClientV2(configuration,
 encryptionMaterial);

Example: Symmetric Algorithm (AES-CBC to AES-GCM Key Wrap)

StorageMode can be either ObjectMetadata or InstructionFile.

Pre-migration

using System.Security.Cryptography;
using Amazon.S3.Encryption;

var symmetricAlgorithm = Aes.Create();
var encryptionMaterial = new EncryptionMaterials(symmetricAlgorithm);
var configuration = new AmazonS3CryptoConfiguration()
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClient(configuration, encryptionMaterial);

Post-migration

using System.Security.Cryptography;
using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;

var symmetricAlgorithm = Aes.Create();
var encryptionMaterial = new EncryptionMaterialsV2(symmetricAlgorithm,
 SymmetricAlgorithmType.AesGcm);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
{
 StorageMode = CryptoStorageMode.ObjectMetadata

Migrate V1-transitional Clients to V2 Clients to Write New Formats 1814

AWS SDK for .NET Developer Guide

};
var encryptionClient = new AmazonS3EncryptionClientV2(configuration,
 encryptionMaterial);

Note

When decrypting with AES-GCM, read the entire object to the end before you start using
the decrypted data. This is to verify that the object hasn't been modified since it was
encrypted.

Example: Asymmetric Algorithm (RSA to RSA-OAEP-SHA1 Key Wrap)

StorageMode can be either ObjectMetadata or InstructionFile.

Pre-migration

using System.Security.Cryptography;
using Amazon.S3.Encryption;

var asymmetricAlgorithm = RSA.Create();
var encryptionMaterial = new EncryptionMaterials(asymmetricAlgorithm);
var configuration = new AmazonS3CryptoConfiguration()
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClient(configuration, encryptionMaterial);

Post-migration

using System.Security.Cryptography;
using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;

var asymmetricAlgorithm = RSA.Create();
var encryptionMaterial = new EncryptionMaterialsV2(asymmetricAlgorithm,
 AsymmetricAlgorithmType.RsaOaepSha1);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};

Migrate V1-transitional Clients to V2 Clients to Write New Formats 1815

AWS SDK for .NET Developer Guide

var encryptionClient = new AmazonS3EncryptionClientV2(configuration,
 encryptionMaterial);

Update V2 Clients to No Longer Read V1 Formats

Eventually, all objects will have been encrypted or re-encrypted using a V2 client. After this
conversion is complete, you can disable V1 compatibility in the V2 clients by setting the
SecurityProfile property to SecurityProfile.V2, as shown in the following snippet.

//var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2);

Update V2 Clients to No Longer Read V1 Formats 1816

AWS SDK for .NET Developer Guide

Special considerations for the AWS SDK for .NET

This section contains considerations for special cases where the normal configurations or
procedures aren't appropriate or sufficient.

Topics

• Obtaining assemblies for the AWS SDK for .NET

• Accessing credentials and profiles in an application

• Special considerations for Unity support

• Special considerations for Xamarin support

Obtaining assemblies for the AWS SDK for .NET

This topic describes how you can obtain the AWSSDK assemblies and store them locally (or
on premises) for use in your projects. This is not the recommended method for handling SDK
references, but is required in some environments.

Note

The recommended method for handling SDK references is to download and install just
the NuGet packages that each project needs. That method is described in Install AWSSDK
packages with NuGet.

If you can't or aren't allowed to download and install NuGet packages on a per-project basis, the
following options are available to you.

Download and extract ZIP files

(Remember that this isn't the recommended method for handling references to the AWS SDK
for .NET.)

1. Download one of the following ZIP files:

• aws-sdk-net8.0.zip - Assemblies that support .NET 8 and later.

• aws-sdk-netcoreapp3.1.zip - Assemblies that support .NET Core 3.1 and later.

Obtaining AWSSDK assemblies 1817

https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-net8.0.zip
https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-netcoreapp3.1.zip

AWS SDK for .NET Developer Guide

• aws-sdk-netstandard2.0.zip - Assemblies that support .NET Standard 2.0 and 2.1.

• aws-sdk-net45.zip - Assemblies that support .NET Framework 4.5 and later.

• aws-sdk-net35.zip - Assemblies that support .NET Framework 3.5.

Warning

Starting August 15th, 2024, the AWS SDK for .NET will end support for .NET
Framework 3.5 and will change the minimum .NET Framework version to 4.7.2. For
more information, see the blog post Important changes coming for .NET Framework
3.5 and 4.5 targets of the AWS SDK for .NET.

2. Extract the assemblies to some "download" folder on your file system; it doesn't matter where.
Make note of this folder.

3. When you set up your project, you get the required assemblies from this folder, as described in
Install AWSSDK assemblies without NuGet.

Accessing credentials and profiles in an application

The preferred method for using credentials is to allow the AWS SDK for .NET to find and retrieve
them for you, as described in Credential and profile resolution.

However, you can also configure your application to actively retrieve profiles and credentials, and
then explicitly use those credentials when creating an AWS service client.

To actively retrieve profiles and credentials, use classes from the
Amazon.Runtime.CredentialManagement namespace.

• To find a profile in a file that uses the AWS credentials file format (either the shared AWS
credentials file in its default location or a custom credentials file), use the SharedCredentialsFile
class. Files in this format are sometimes simply called credentials files in this text for brevity.

• To find a profile in the SDK Store, use the NetSDKCredentialsFile class.

• To search in both a credentials file and the SDK Store, depending on the configuration of a class
property, use the CredentialProfileStoreChain class.

You can use this class to find profiles. You can also use this class to request AWS credentials
directly instead of using the AWSCredentialsFactory class (described next).

Accessing credentials and profiles in an application 1818

https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-netstandard2.0.zip
https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-net45.zip
https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-net35.zip
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://aws.amazon.com/blogs/developer/important-changes-coming-for-net-framework-3-5-and-4-5-targets-of-the-aws-sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TNetSDKCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileStoreChain.html

AWS SDK for .NET Developer Guide

• To retrieve or create various types of credentials from a profile, use the AWSCredentialsFactory
class.

The following sections provide examples for these classes.

Examples for class CredentialProfileStoreChain

You can get credentials or profiles from the CredentialProfileStoreChain class by using the
TryGetAWSCredentials or TryGetProfile methods. The ProfilesLocation property of the class
determines the behavior of the methods, as follows:

• If ProfilesLocation is null or empty, search the SDK Store if the platform supports it, and
then search the shared AWS credentials file in the default location.

• If the ProfilesLocation property contains a value, search the credentials file specified in the
property.

Get credentials from the SDK Store or the shared AWS credentials file

This example shows you how to get credentials by using the CredentialProfileStoreChain
class and then use the credentials to create an AmazonS3Client object. The credentials can come
from the SDK Store or from the shared AWS credentials file at the default location.

This example also uses the Amazon.Runtime.AWSCredentials class.

var chain = new CredentialProfileStoreChain();
AWSCredentials awsCredentials;
if (chain.TryGetAWSCredentials("some_profile", out awsCredentials))
{
 // Use awsCredentials to create an Amazon S3 service client
 using (var client = new AmazonS3Client(awsCredentials))
 {
 var response = await client.ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {response.Buckets.Count}");
 }
}

Examples for class CredentialProfileStoreChain 1819

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentialsFactory.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileStoreChain.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MCredentialProfileStoreChainTryGetAWSCredentialsStringAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MCredentialProfileStoreChainTryGetProfileStringCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentials.html

AWS SDK for .NET Developer Guide

Get a profile from the SDK Store or the shared AWS credentials file

This example shows you how to get a profile by using the CredentialProfileStoreChain class. The
credentials can come from the SDK Store or from the shared AWS credentials file at the default
location.

This example also uses the CredentialProfile class.

var chain = new CredentialProfileStoreChain();
CredentialProfile basicProfile;
if (chain.TryGetProfile("basic_profile", out basicProfile))
{
 // Use basicProfile
}

Get credentials from a custom credentials file

This example shows you how to get credentials by using the CredentialProfileStoreChain class.
The credentials come from a file that uses the AWS credentials file format but is at an alternate
location.

This example also uses the Amazon.Runtime.AWSCredentials class.

var chain = new
 CredentialProfileStoreChain("c:\\Users\\sdkuser\\customCredentialsFile.ini");
AWSCredentials awsCredentials;
if (chain.TryGetAWSCredentials("basic_profile", out awsCredentials))
{
 // Use awsCredentials to create an AWS service client
}

Examples for classes SharedCredentialsFile and AWSCredentialsFactory

Create an AmazonS3Client by using the SharedCredentialsFile class

This examples shows you how to find a profile in the shared AWS credentials file, create AWS
credentials from the profile, and then use the credentials to create an AmazonS3Client object. The
example uses the SharedCredentialsFile class.

This example also uses the CredentialProfile class and the Amazon.Runtime.AWSCredentials class.

Examples for classes SharedCredentialsFile and AWSCredentialsFactory 1820

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentials.html

AWS SDK for .NET Developer Guide

CredentialProfile basicProfile;
AWSCredentials awsCredentials;
var sharedFile = new SharedCredentialsFile();
if (sharedFile.TryGetProfile("basic_profile", out basicProfile) &&
 AWSCredentialsFactory.TryGetAWSCredentials(basicProfile, sharedFile, out
 awsCredentials))
{
 // use awsCredentials to create an Amazon S3 service client
 using (var client = new AmazonS3Client(awsCredentials, basicProfile.Region))
 {
 var response = await client.ListBucketsAsync();
 Console.WriteLine($"Number of buckets: {response.Buckets.Count}");
 }
}

Note

The NetSDKCredentialsFile class can be used in exactly the same way, except you would
instantiate a new NetSDKCredentialsFile object instead of a SharedCredentialsFile object.

Special considerations for Unity support

When using the AWS SDK for .NET and .NET Standard 2.0 for your Unity application, your
application must reference the AWS SDK for .NET assemblies (DLL files) directly rather than using
NuGet. Given this requirement, the following are important actions you will need to perform.

• You need to obtain the AWS SDK for .NET assemblies and apply them to your project. For
information about how to do this, see Download and extract ZIP files in the topic Obtaining
AWSSDK assemblies.

• You need to include the following DLLs in your Unity project alongside the DLLs for
AWSSDK.Core and the other AWS services you're using. Starting with version 3.5.109 of the AWS
SDK for .NET, the .NET Standard ZIP file contains these additional DLLs.

• Microsoft.Bcl.AsyncInterfaces.dll

• System.Runtime.CompilerServices.Unsafe.dll

• System.Threading.Tasks.Extensions.dll

Unity support 1821

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TNetSDKCredentialsFile.html
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://www.nuget.org/packages/Microsoft.Bcl.AsyncInterfaces/
https://www.nuget.org/packages/System.Runtime.CompilerServices.Unsafe/
https://www.nuget.org/packages/System.Threading.Tasks.Extensions/

AWS SDK for .NET Developer Guide

• If you're using IL2CPP to build your Unity project, you must add a link.xml file to your Asset
folder to prevent code stripping. The link.xml file must list all of the AWSSDK assemblies you
are using, and each must include the preserve="all" attribute. The following snippet shows
an example of this file.

<linker>
 <assembly fullname="AWSSDK.Core" preserve="all"/>
 <assembly fullname="AWSSDK.DynamoDBv2" preserve="all"/>
 <assembly fullname="AWSSDK.Lambda" preserve="all"/>
</linker>

Note

To read interesting background information related to this requirement, see the article at
https://aws.amazon.com/blogs/developer/referencing-the-aws-sdk-for-net-standard-2-0-
from-unity-xamarin-or-uwp/.

In addition to these special considerations, see What's changed for version 3.5 for information
about migrating your Unity application to version 3.5 of the AWS SDK for .NET.

Special considerations for Xamarin support

Xamarin projects (new and existing) must target .NET Standard 2.0. See .NET Standard 2.0 Support
in Xamarin.Forms and .NET implementation support.

Also see the information about Portable Class Library and Xamarin.

Xamarin support 1822

https://docs.unity3d.com/Manual/IL2CPP.html
https://aws.amazon.com/blogs/developer/referencing-the-aws-sdk-for-net-standard-2-0-from-unity-xamarin-or-uwp/
https://aws.amazon.com/blogs/developer/referencing-the-aws-sdk-for-net-standard-2-0-from-unity-xamarin-or-uwp/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/internals/net-standard
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/internals/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support

AWS SDK for .NET Developer Guide

API reference for the AWS SDK for .NET

The AWS SDK for .NET provides an API that you can use to access AWS services. To see what classes
and methods are available in the API, see the AWS SDK for .NET API Reference.

In addition to the general reference given above, each of the examples under the Code examples
with guidance section contains references to the specific methods and classes that are used in that
example.

About API reference versions

The API reference described earlier is for version 3.0 and later of the AWS SDK for .NET.

For information about migrating from older versions of the SDK, see Migrate your project

To find deprecated content for earlier versions of the SDK API reference, see the following item(s):

• AWS SDK for .NET API Reference V1 (deprecated)

• AWS SDK for .NET API Reference V2 (deprecated)

To view a deprecated AWS SDK for .NET API reference, you will need to extract it and configure a
web browser. The instructions shown next are examples of how to do this. They are based on using
the Google Chrome web browser on a Windows system. Adapt them to your specific web browser
and operating system.

View the deprecated API Reference V1

1. Download the ZIP file for the deprecated AWS SDK for .NET API Reference V1. By default, the
name of the ZIP file is sdkfornet-api-ref_v1_deprecated.zip. That name will be used
throughout these instructions.

2. Place the ZIP file in a folder of your choice. For these instructions, the folder name is assumed
to be C:\work\temp\api-refs\V1.

3. Right-click on the ZIP file and choose Extract All. Accept the default location, which is C:
\work\temp\api-refs\V1\sdkfornet-api-ref_v1 for these instructions.

4. Create a shortcut for Google Chrome in the C:\work\temp\api-refs\V1 folder. Be careful
not to move the original application.

About API reference versions 1823

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
samples/sdkfornet-api-ref_v1_deprecated.zip
samples/sdkfornet-api-ref_v2_deprecated.zip

AWS SDK for .NET Developer Guide

5. In the properties of the new shortcut, set the following fields:

• Target: "<path to the Google Chrome application>" --disable-web-security
--user-data-dir=C:\work\temp\api-refs\V1\data "C:\work\temp\api-refs
\V1\sdkfornet-api-ref_v1\Index.html"

For the --user-data-dir argument, use a folder name that works for your environment.
The folder doesn't have to exist.

• Start in: C:\work\temp\api-refs\V1

6. Give the shortcut an appropriate name.

7. Open the shortcut to view the old API reference.

View the deprecated API Reference V2

1. Download the ZIP file for the deprecated AWS SDK for .NET API Reference V2. By default, the
name of the ZIP file is sdkfornet-api-ref_v2_deprecated.zip. That name will be used
throughout these instructions.

2. Place the ZIP file in a folder of your choice. For these instructions, the folder name is assumed
to be C:\work\temp\api-refs\V2.

3. Right-click on the ZIP file and choose Extract All. Accept the default location, which is C:
\work\temp\api-refs\V2\sdkfornet-api-ref_v2 for these instructions.

4. Create a shortcut for Google Chrome in the C:\work\temp\api-refs\V2 folder. Be careful
not to move the original application.

5. In the properties of the new shortcut, set the following fields:

• Target: "<path to the Google Chrome application>" --disable-web-security
--user-data-dir=C:\work\temp\api-refs\V2\data "C:\work\temp\api-refs
\V2\sdkfornet-api-ref_v2\Index.html"

For the --user-data-dir argument, use a folder name that works for your environment.
The folder doesn't have to exist.

• Start in: C:\work\temp\api-refs\V2

6. Give the shortcut an appropriate name.

7. Open the shortcut to view the old API reference.

About API reference versions 1824

AWS SDK for .NET Developer Guide

Document history

The following table describes the important changes since the last release of the AWS SDK for .NET
Developer Guide. For notification about updates to this documentation, you can subscribe to an RSS
feed.

Change Description Date

What's new Added information about new
default behavior for integrity
protection.

January 15, 2025

What's new Added information about the
fourth preview release of the
AWS SDK for .NET version 4.

November 15, 2024

Observability Added preview information
about observability in the
AWS SDK for .NET, which
enables the gathering of
telemetry data.

September 13, 2024

API reference for the AWS
SDK for .NET

The AWS SDK for .NET API
references for V1 and V2 have
been deprecated. Informati
on has been included about
this deprecation and how to
obtain and view the deprecate
d references.

September 4, 2024

What's new Added information about the
first preview release of the
AWS SDK for .NET version 4.

August 16, 2024

What's new Updated information about
upcoming changes to .NET
Framework support.

June 20, 2024

1825

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/amazon-aws-sdk-for-net-dev-guide-doc-history.rss
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/amazon-aws-sdk-for-net-dev-guide-doc-history.rss

AWS SDK for .NET Developer Guide

What's new Added information about
the preview release of the
AWS Message Processing
Framework for .NET

March 28, 2024

What's new Included information about
support for .NET 8.

February 23, 2024

What's new Included information about
upcoming changes to .NET
Framework support.

February 18, 2024

Obtaining AWSSDK assemblie
s

Included information about
assemblies that support .NET
8 and later.

January 8, 2024

AWS Message Processing
Framework for .NET

Included information
about the Beta release of
the Message Processing
Framework.

December 10, 2023

AWS OpsWorks Added note about End of Life
for AWS OpsWorks.

December 8, 2023

Using Amazon DynamoDB
NoSQL databases

Updated information about
the document and object
persistence programming
models. It is now possible to
prevent certain latency or
deadlock conditions due to
cold-start and thread-pool
behaviors.

November 15, 2023

Included more IAM best
practices updates

Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

October 5, 2023

1826

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK for .NET Developer Guide

Obtaining AWSSDK assemblie
s

Removed information about
installing the AWS SDK
for .NET by using AWS Tools
for Windows installer (that
is, the MSI), which has been
deprecated.

September 25, 2023

IAM best practices updates Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

July 18, 2023

Lambda Annotations The AWS Lambda Annotatio
ns framework has been
released for general availabil
ity.

July 17, 2023

What's new Added information about
the preview release of the
Distributed Cache Provider for
DynamoDB.

July 15, 2023

Table of contents Updated table of contents to
make code examples more
easily discoverable.

June 8, 2023

Region resolution Added information about how
the SDK resolves a missing
Region specification.

March 14, 2023

Support for the MSI Added note about ending
support for the AWS Tools for
Windows installer.

March 6, 2023

Lambda Annotations
(Preview)

Preview of the AWS Lambda
Annotations framework.

September 22, 2022

1827

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK for .NET Developer Guide

Deploy applications to AWS Moved main content to a
GitHub Pages site: https://a
ws.github.io/aws-dotnet-dep
loy/

June 28, 2022

Retiring EC2-Classic Added notes about retiring
EC2-Classic.

April 13, 2022

Single sign-on with the AWS
SDK for .NET

Added information about
single sign-on (SSO) when
using the AWS SDK for .NET.

March 17, 2022

Enforcing a minimum TLS
version

Added information about TLS
1.3.

March 16, 2022

Work with AWS services Included lists of the code
examples that are available
on GitHub.

February 28, 2022

Enabling SDK Metrics Removed information about
enabling SDK metrics, which
has been deprecated.

January 20, 2022

Deploy applications to AWS Added a reference to the
AWS Toolkit for Visual Studio,
which provides deployment
functionality that is similar to
the AWS Deploy Tool.

October 26, 2021

AWS SDK for .NET version 3
guide consolidation

The two AWS SDK for .NET
version 3 developer guides,
"V3" and "latest", have been
consolidated into one guide
under the "v3" URL.

August 18, 2021

Migrating from .NET Standard
1.3

Support for .NET Standard 1.3
on the AWS SDK for .NET has
come to its end of life.

March 25, 2021

1828

AWS SDK for .NET Developer Guide

Deploy applications to AWS
(preview)

Added preview information
about the AWS Deploy Tool,
which you can use to deploy
an application from the .NET
CLI.

March 15, 2021

Version 3.5 of the AWS SDK
for .NET

Version 3.5 of the AWS SDK
for .NET has been released.

August 25, 2020

Paginators Added paginators to many
service clients, which make
pagination of API results
more convenient.

August 24, 2020

Retries and timeouts Added information about
retry modes.

August 20, 2020

S3 encryption client
migration

Added information about how
to migrate your Amazon S3
encryption clients from V1 to
V2.

August 7, 2020

Using KMS keys for S3
encryption

Updated example to use
version 2 of the S3 encryption
client.

August 6, 2020

Migrating from .NET Standard
1.3

Added information about
ending support for .NET
Standard 1.3 at the end of
2020.

May 18, 2020

Quick start Added a quick-start section
with basic setup and tutorials
to introduce the reader to the
AWS SDK for .NET.

March 27, 2020

Enforcing TLS 1.2 Added information about how
to enforce TLS 1.2 in the SDK.

March 10, 2020

1829

	AWS SDK for .NET
	Table of Contents
	What is the AWS SDK for .NET
	About this version
	Maintenance and support for SDK major versions
	Common use cases
	Additional topics in this section
	AWS tools related to the AWS SDK for .NET
	Tools for Windows PowerShell and Tools for PowerShell Core
	Toolkit for VS Code
	Toolkit for Visual Studio
	Toolkit for Azure DevOps

	AWS SDKs and Tools Reference Guide
	Additional resources

	Get started with the AWS SDK for .NET
	Install and configure your toolchain
	Cross-platform development
	Windows with Visual Studio and .NET Core
	Next step

	Configure SDK authentication with AWS
	Enable and configure IAM Identity Center
	Configure the SDK to use IAM Identity Center.
	Start an AWS access portal session
	Additional information

	Take a quick tour of the AWS SDK for .NET
	Simple cross-platform application using the AWS SDK for .NET
	Steps
	Create the project
	Create the code
	Run the application
	Cleanup
	Where to go next

	Simple Windows-based application using the AWS SDK for .NET
	Steps
	Create the project
	Create the code
	Run the application
	Cleanup
	Where to go next

	Next steps

	Start a new project
	Configure the AWS Region
	Create a service client with a particular Region
	Existing Region
	New Region using RegionEndpoint class
	New Region using the service client configuration class

	Specify a Region for all service clients
	Profiles
	Environment variables
	AWSConfigs class

	Region resolution
	Special information about the China (Beijing) Region
	Special information about new AWS services

	Install AWSSDK packages with NuGet
	Using NuGet from the Command prompt or terminal
	Using NuGet from Visual Studio Solution Explorer
	Using NuGet from the Package Manager Console

	Install AWSSDK assemblies without NuGet
	Credential and profile resolution
	Profile resolution
	Using federated user account credentials
	Specifying roles or temporary credentials
	Using proxy credentials

	Additional information about users and roles
	Users and permission sets
	Service roles

	Advanced configuration for your AWS SDK for .NET project
	Using AWSSDK.Extensions.NETCore.Setup and the IConfiguration interface
	Using AWSSDK.Extensions.NETCore.Setup
	Allowed values in appsettings file

	ASP.NET Core dependency injection

	Configuring Other Application Parameters
	Open to view .NET Framework content
	AWSLogging
	AWSLogMetrics
	AWSRegion
	AWSResponseLogging
	AWS.DynamoDBContext.TableNamePrefix
	AWS.S3.UseSignatureVersion4
	AWSEndpointDefinition
	AWS Service-Generated Endpoints
	Amazon CloudSearch Endpoints Example
	AWS IoT Endpoints Example

	Configuration Files Reference for AWS SDK for .NET
	Open to view .NET Framework content
	Declaring an AWS Settings Section
	Allowed Elements
	Elements Reference
	alias
	aws
	dynamoDB
	dynamoDBContext
	ec2
	logging
	map
	property
	proxy
	s3

	Using legacy credentials
	Important warnings and guidance for credentials
	Using the shared AWS credentials file
	General information
	Examples of profile management
	The default profile
	Create a profile programmatically
	Update an existing profile programmatically

	Using the SDK Store (Windows only)
	General information
	Examples of profile management
	Create a profile programmatically
	Update an existing profile programmatically

	Features of the AWS SDK for .NET
	AWS asynchronous APIs for .NET
	Retries and timeouts
	Retries
	Overview
	Behavior

	Timeouts
	Example

	Paginators
	Where do I find paginators?
	What do paginators give me?
	Synchronous vs. asynchronous pagination
	Example
	Complete code
	SDK references
	Full code

	Additional considerations for paginators

	Observability
	Additional resources
	Configure a TelemetryProvider
	Configure the default global telemetry provider
	Configure a telemetry provider for a specific service client

	Metrics
	Telemetry providers
	Configure the OpenTelemetry-based telemetry provider

	Additional tools
	AWS Deploy Tool
	AWS Message Processing Framework for .NET

	Advanced authentication and authorization with the AWS SDK for .NET
	Single sign-on with the AWS SDK for .NET
	High-level pattern of interaction
	Prerequisites
	Setting up an SSO profile
	Generating and using SSO tokens
	.NET application only
	Generate and use an SSO token programmatically

	AWS CLI and .NET application
	Generate an SSO token by using the AWS CLI
	Use the generated SSO token in a .NET application

	Additional resources
	Tutorials
	Tutorial for SSO using only .NET applications
	Prerequisites
	Set up AWS
	Amazon S3
	AWS IAM
	AWS Organizations
	IAM Identity Center
	Configure IAM Identity Center

	Create example applications
	List Amazon S3 buckets
	List IAM users

	Instruct SSO user
	Cleanup

	Tutorial for SSO using the AWS CLI and .NET applications
	Prerequisites
	Set up AWS
	Amazon S3
	AWS IAM
	AWS Organizations
	IAM Identity Center
	Configure IAM Identity Center

	Create example applications
	List Amazon S3 buckets
	List IAM users

	Instruct SSO user
	Cleanup

	Deploy applications to AWS
	Deploy from the .NET CLI
	Deploy from the IDE toolkits
	Use cases
	ASP.NET Core apps
	.NET Console apps
	Blazor WebAssembly apps
	AWS Lambda projects
	Prerequisites
	Available Lambda commands
	Steps to deploy

	Migrate your project for the AWS SDK for .NET
	What's new in the AWS SDK for .NET
	Platforms supported by the AWS SDK for .NET
	.NET Core
	.NET Standard 2.0
	.NET Framework 4.5
	.NET Framework 3.5
	Portable Class Library and Xamarin
	Unity support
	More information

	Migrating to Version 3 of the AWS SDK for .NET
	About the AWS SDK for .NET Versions
	Architecture Redesign for the SDK
	Breaking Changes
	AWSClientFactory Removed
	Amazon.Runtime.AssumeRoleAWSCredentials Removed
	SetACL Method Removed from S3Link
	Removal of Obsolete Result Classes
	AWS Config Section Changes

	Migrating to version 3.5 of the AWS SDK for .NET
	What's changed for version 3.5
	.NET Framework and .NET Core
	Xamarin
	Unity
	Universal Windows Platform (UWP)
	Windows Phone and Silverlight
	Legacy portable class libraries (profile-based PCLs)
	Amazon Cognito Sync Manager and Amazon Mobile Analytics Manager

	Migrating synchronous code

	Migrating to version 3.7 of the AWS SDK for .NET
	Migrating from .NET Standard 1.3

	Work with AWS services in the AWS SDK for .NET
	Code examples with guidance for the AWS SDK for .NET
	Accessing AWS CloudFormation with the AWS SDK for .NET
	APIs
	Prerequisites
	Topics
	Listing AWS resources using AWS CloudFormation
	SDK references

	Authenticating users with Amazon Cognito
	Amazon Cognito credentials provider
	Set up CognitoAWSCredentials
	Use AWS as an unauthenticated user

	Amazon CognitoAuthentication extension library examples
	Using the CognitoAuthentication extension library
	Use basic authentication
	Authenticate with challenges
	Use AWS resources after authentication

	More authentication options

	Using Amazon DynamoDB NoSQL databases
	Low-Level Model
	Creating a Table
	Verifying That a Table is Ready to Modify
	Inserting an Item into a Table

	Document Model
	Create a representation of the table
	Inserting an item into a table
	Getting an item from a table

	Object Persistence Model
	Defining a .NET class that represents an item in a table
	Creating a context for the object persistence model
	Using an instance of the .NET class to insert an item into a table
	Using an instance of a .NET class to get items from a table
	Additional information about the object persistence model

	More information
	Using Expressions with Amazon DynamoDB and the AWS SDK for .NET
	Sample Data
	Get a Single Item by Using Expressions and the Item’s Primary Key
	Get Multiple Items by Using Expressions and the Table’s Primary Key
	Get Multiple Items by Using Expressions and Other Item Attributes
	Print an Item
	Create or Replace an Item by Using Expressions
	Update an Item by Using Expressions
	Delete an Item by Using Expressions
	More Info

	JSON support in Amazon DynamoDB
	Get Data from a DynamoDB Table in JSON Format
	Insert JSON Format Data into a DynamoDB Table
	DynamoDB Data Type Conversions to JSON
	More Info

	Working with Amazon EC2
	APIs
	Prerequisites
	About the examples
	Working with security groups in Amazon EC2
	Enumerating security groups
	Enumerate security groups
	Complete code
	SDK references
	The Code

	Additional considerations

	Creating security groups
	Find existing security groups
	Create a security group
	Complete code
	SDK references
	The code

	Updating security groups
	Add an inbound rule
	Complete code
	SDK references
	The code

	Additional considerations

	Working with Amazon EC2 key pairs
	Creating and displaying key pairs
	Create the key pair
	Display available key pairs
	Complete code
	SDK references
	The code

	Additional considerations

	Deleting key pairs
	Delete the key pair
	Display available key pairs
	Complete code
	SDK references
	The code

	Seeing your Amazon EC2 Regions and Availability Zones
	SDK references

	Working with Amazon EC2 instances
	Launching an Amazon EC2 instance
	Gather what you need
	Launch an instance
	Monitor the instance
	Complete code
	SDK references
	The code

	Additional considerations
	(optional) Connect to the instance
	SDK references
	The code

	Clean up

	Terminating an Amazon EC2 instance
	SDK references

	Amazon EC2 Spot Instance tutorial
	Overview
	About this tutorial
	Prerequisites
	Gather what you need
	Reduce cost below On-Demand
	Pay no more than the value of the result
	Acquire computing capacity quickly

	Creating a Spot Instance request
	Determine the state of your Spot Instance request
	Clean up your Spot Instance requests
	Clean up your Spot Instances
	Complete code
	SDK references
	The code

	Additional considerations

	Accessing AWS Identity and Access Management (IAM) with the AWS SDK for .NET
	APIs
	Prerequisites
	Topics
	Creating IAM managed policies from JSON
	Create the policy
	Complete code
	SDK references
	The code

	Additional considerations

	Display the policy document of an IAM managed policy
	Find the default version
	Display the policy document
	Complete code
	SDK references
	The code

	Granting access by using an IAM role
	Overview
	About this tutorial
	Create a sample Amazon S3 application
	SDK references
	The code

	Create an IAM role
	Launch an EC2 instance and attach the IAM role
	Connect to the EC2 instance
	Run the sample application on the EC2 instance
	Clean up

	Using Amazon Simple Storage Service Internet storage
	APIs
	Prerequisites
	Examples in this document
	Examples in other documents
	Using AWS KMS keys for Amazon S3 encryption in the AWS SDK for .NET
	Create encryption materials
	Create and encrypt an Amazon S3 object
	Complete code
	SDK references
	The code

	Additional considerations

	Sending Notifications From the Cloud Using Amazon Simple Notification Service
	Listing Your Amazon SNS Topics
	Sending a Message to an Amazon SNS Topic
	Sending an SMS Message to a Phone Number

	Messaging using Amazon SQS
	APIs
	Prerequisites
	Topics
	Creating Amazon SQS queues
	Show existing queues
	Create the queue
	Get a queue's ARN
	Complete code
	SDK references
	The code

	Additional considerations

	Updating Amazon SQS queues
	Show queue attributes
	Validate attribute name
	Update queue attribute
	Complete code
	SDK references
	The code

	Additional considerations

	Deleting Amazon SQS queues
	Delete the queue
	Wait for the queue to be gone
	Show a list of existing queues
	Complete code
	SDK references
	The code

	Additional considerations

	Sending Amazon SQS messages
	Send a message
	Send a batch of messages
	Delete all messages from the queue
	Complete code
	SDK references
	The code

	Additional considerations

	Receiving Amazon SQS messages
	Receive a message
	Delete a message
	Complete code
	SDK references
	The code

	Additional considerations

	Using AWS Lambda for compute service
	APIs
	Prerequisites
	Topics
	Using annotations to write AWS Lambda functions

	High-level libraries and frameworks for the AWS SDK for .NET
	AWS Message Processing Framework for .NET
	Get started with the AWS Message Processing Framework for .NET
	Prerequisites and configuration
	Tutorial
	Steps
	Create an SQS queue
	Create and run the publishing application
	Create and run the handling application
	Cleanup

	Publish messages with the AWS Message Processing Framework for .NET
	Service-specific publishers

	Consume messages with the AWS Message Processing Framework for .NET
	Message Handlers
	Handling Messages in a Long-Running Process
	Configuring the SQS Message Poller

	Handling messages in AWS Lambda functions

	Using FIFO with the AWS Message Processing Framework for .NET
	Publishing
	Subscribing

	Logging and Open Telemetry for the AWS Message Processing Framework for .NET
	Customize the AWS Message Processing Framework for .NET
	Security for the AWS Message Processing Framework for .NET

	Programming AWS OpsWorks to Work with stacks and applications
	APIs
	Prerequisites

	Support for other AWS services and configuration

	AWS SDK for .NET code examples
	ACM examples using AWS SDK for .NET
	Actions
	DescribeCertificate
	ListCertificates

	API Gateway examples using AWS SDK for .NET
	Scenarios
	Create a serverless application to manage photos

	AWS community contributions
	Build and test a serverless application

	Aurora examples using AWS SDK for .NET
	Hello Aurora
	Basics
	Learn the basics

	Actions
	CreateDBCluster
	CreateDBClusterParameterGroup
	CreateDBClusterSnapshot
	CreateDBInstance
	DeleteDBCluster
	DeleteDBClusterParameterGroup
	DeleteDBInstance
	DescribeDBClusterParameterGroups
	DescribeDBClusterParameters
	DescribeDBClusterSnapshots
	DescribeDBClusters
	DescribeDBEngineVersions
	DescribeDBInstances
	DescribeOrderableDBInstanceOptions
	ModifyDBClusterParameterGroup

	Scenarios
	Create an Aurora Serverless work item tracker

	Auto Scaling examples using AWS SDK for .NET
	Hello Auto Scaling
	Basics
	Learn the basics

	Actions
	AttachLoadBalancerTargetGroups
	CreateAutoScalingGroup
	DeleteAutoScalingGroup
	DescribeAutoScalingGroups
	DescribeAutoScalingInstances
	DescribeScalingActivities
	DisableMetricsCollection
	EnableMetricsCollection
	SetDesiredCapacity
	TerminateInstanceInAutoScalingGroup
	UpdateAutoScalingGroup

	Scenarios
	Build and manage a resilient service

	Amazon Bedrock examples using AWS SDK for .NET
	Hello Amazon Bedrock
	Actions
	ListFoundationModels

	Amazon Bedrock Runtime examples using AWS SDK for .NET
	Scenarios
	Create a playground application to interact with Amazon Bedrock foundation models

	AI21 Labs Jurassic-2
	Converse
	InvokeModel

	Amazon Titan Text
	Converse
	ConverseStream
	InvokeModel
	InvokeModelWithResponseStream

	Anthropic Claude
	Converse
	ConverseStream
	InvokeModel
	InvokeModelWithResponseStream

	Cohere Command
	Converse
	ConverseStream
	InvokeModel: Command R and R+
	InvokeModel: Command and Command Light
	InvokeModelWithResponseStream: Command R and R+
	InvokeModelWithResponseStream: Command and Command Light

	Meta Llama
	Converse
	ConverseStream
	InvokeModel: Llama 3
	InvokeModelWithResponseStream: Llama 3

	Mistral AI
	Converse
	ConverseStream
	InvokeModel
	InvokeModelWithResponseStream

	AWS CloudFormation examples using AWS SDK for .NET
	Hello AWS CloudFormation

	CloudWatch examples using AWS SDK for .NET
	Hello CloudWatch
	Basics
	Learn the basics

	Actions
	DeleteAlarms
	DeleteAnomalyDetector
	DeleteDashboards
	DescribeAlarmHistory
	DescribeAlarms
	DescribeAlarmsForMetric
	DescribeAnomalyDetectors
	DisableAlarmActions
	EnableAlarmActions
	GetDashboard
	GetMetricData
	GetMetricStatistics
	GetMetricWidgetImage
	ListDashboards
	ListMetrics
	PutAnomalyDetector
	PutDashboard
	PutMetricAlarm
	PutMetricData

	CloudWatch Logs examples using AWS SDK for .NET
	Actions
	AssociateKmsKey
	CancelExportTask
	CreateExportTask
	CreateLogGroup
	CreateLogStream
	DeleteLogGroup
	DescribeExportTasks
	DescribeLogGroups
	StartLiveTail

	Amazon Cognito Identity Provider examples using AWS SDK for .NET
	Actions
	AdminGetUser
	AdminInitiateAuth
	AdminRespondToAuthChallenge
	AssociateSoftwareToken
	ConfirmDevice
	ConfirmSignUp
	InitiateAuth
	ListUserPools
	ListUsers
	ResendConfirmationCode
	SignUp
	VerifySoftwareToken

	Scenarios
	Sign up a user with a user pool that requires MFA

	Amazon Comprehend examples using AWS SDK for .NET
	Actions
	DetectDominantLanguage
	DetectEntities
	DetectKeyPhrases
	DetectPiiEntities
	DetectSentiment
	DetectSyntax
	StartTopicsDetectionJob

	Scenarios
	Create an application to analyze customer feedback

	Amazon DocumentDB examples using AWS SDK for .NET
	Serverless examples
	Invoke a Lambda function from a Amazon DocumentDB trigger

	DynamoDB examples using AWS SDK for .NET
	Hello DynamoDB
	Basics
	Learn the basics

	Actions
	BatchExecuteStatement
	BatchGetItem
	BatchWriteItem
	CreateTable
	DeleteItem
	DeleteTable
	DescribeTable
	ExecuteStatement
	GetItem
	ListTables
	PutItem
	Query
	Scan
	UpdateItem

	Scenarios
	Create a serverless application to manage photos
	Create a web application to track DynamoDB data
	Query a table by using batches of PartiQL statements
	Query a table using PartiQL
	Use a document model
	Use a high-level object persistence model

	Serverless examples
	Invoke a Lambda function from a DynamoDB trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger

	AWS community contributions
	Build and test a serverless application

	Amazon EC2 examples using AWS SDK for .NET
	Hello Amazon EC2
	Basics
	Learn the basics

	Actions
	AllocateAddress
	AssociateAddress
	AuthorizeSecurityGroupIngress
	CreateKeyPair
	CreateLaunchTemplate
	CreateSecurityGroup
	DeleteKeyPair
	DeleteLaunchTemplate
	DeleteSecurityGroup
	DescribeAvailabilityZones
	DescribeIamInstanceProfileAssociations
	DescribeInstanceTypes
	DescribeInstances
	DescribeKeyPairs
	DescribeSecurityGroups
	DescribeSubnets
	DescribeVpcs
	DisassociateAddress
	RebootInstances
	ReleaseAddress
	ReplaceIamInstanceProfileAssociation
	RunInstances
	StartInstances
	StopInstances
	TerminateInstances

	Scenarios
	Build and manage a resilient service

	Amazon ECS examples using AWS SDK for .NET
	Hello Amazon ECS
	Actions
	ListClusters
	ListServices
	ListTasks

	Scenarios
	Get ARN information for clusters, services, and tasks

	Elastic Load Balancing - Version 2 examples using AWS SDK for .NET
	Actions
	CreateListener
	CreateLoadBalancer
	CreateTargetGroup
	DeleteLoadBalancer
	DeleteTargetGroup
	DescribeLoadBalancers
	DescribeTargetHealth

	Scenarios
	Build and manage a resilient service

	EventBridge examples using AWS SDK for .NET
	Hello EventBridge
	Basics
	Learn the basics

	Actions
	DeleteRule
	DescribeRule
	DisableRule
	EnableRule
	ListRuleNamesByTarget
	ListRules
	ListTargetsByRule
	PutEvents
	PutRule
	PutTargets
	RemoveTargets

	EventBridge Scheduler examples using AWS SDK for .NET
	Hello EventBridge Scheduler
	Actions
	CreateSchedule
	CreateScheduleGroup
	DeleteSchedule
	DeleteScheduleGroup

	Scenarios
	Scheduled Events workflow

	AWS Glue examples using AWS SDK for .NET
	Hello AWS Glue
	Basics
	Learn the basics

	Actions
	CreateCrawler
	CreateJob
	DeleteCrawler
	DeleteDatabase
	DeleteJob
	DeleteTable
	GetCrawler
	GetDatabase
	GetJobRun
	GetJobRuns
	GetTables
	ListJobs
	StartCrawler
	StartJobRun

	IAM examples using AWS SDK for .NET
	Hello IAM
	Basics
	Learn the basics

	Actions
	AttachRolePolicy
	CreateAccessKey
	CreateInstanceProfile
	CreatePolicy
	CreateRole
	CreateServiceLinkedRole
	CreateUser
	DeleteAccessKey
	DeleteInstanceProfile
	DeletePolicy
	DeleteRole
	DeleteRolePolicy
	DeleteUser
	DeleteUserPolicy
	DetachRolePolicy
	GetAccountPasswordPolicy
	GetPolicy
	GetRole
	GetUser
	ListAttachedRolePolicies
	ListGroups
	ListPolicies
	ListRolePolicies
	ListRoles
	ListSAMLProviders
	ListUsers
	PutRolePolicy

	Scenarios
	Build and manage a resilient service

	Amazon Keyspaces examples using AWS SDK for .NET
	Hello Amazon Keyspaces
	Basics
	Learn the basics

	Actions
	CreateKeyspace
	CreateTable
	DeleteKeyspace
	DeleteTable
	GetKeyspace
	GetTable
	ListKeyspaces
	ListTables
	RestoreTable
	UpdateTable

	Kinesis examples using AWS SDK for .NET
	Actions
	AddTagsToStream
	CreateStream
	DeleteStream
	DeregisterStreamConsumer
	ListStreamConsumers
	ListStreams
	ListTagsForStream
	RegisterStreamConsumer

	Serverless examples
	Invoke a Lambda function from a Kinesis trigger
	Reporting batch item failures for Lambda functions with a Kinesis trigger

	AWS KMS examples using AWS SDK for .NET
	Actions
	CreateAlias
	CreateGrant
	CreateKey
	DescribeKey
	DisableKey
	EnableKey
	ListAliases
	ListGrants
	ListKeys

	Lambda examples using AWS SDK for .NET
	Hello Lambda
	Basics
	Learn the basics

	Actions
	CreateFunction
	DeleteFunction
	GetFunction
	Invoke
	ListFunctions
	UpdateFunctionCode
	UpdateFunctionConfiguration

	Scenarios
	Create a serverless application to manage photos
	Create an application to analyze customer feedback
	Transform data with S3 Object Lambda

	Serverless examples
	Connecting to an Amazon RDS database in a Lambda function
	Invoke a Lambda function from a Kinesis trigger
	Invoke a Lambda function from a DynamoDB trigger
	Invoke a Lambda function from a Amazon DocumentDB trigger
	Invoke a Lambda function from an Amazon MSK trigger
	Invoke a Lambda function from an Amazon S3 trigger
	Invoke a Lambda function from an Amazon SNS trigger
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with a Kinesis trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	AWS community contributions
	Build and test a serverless application

	MediaConvert examples using AWS SDK for .NET
	Hello MediaConvert
	Actions
	CreateJob
	GetJob
	ListJobs

	Amazon MSK examples using AWS SDK for .NET
	Serverless examples
	Invoke a Lambda function from an Amazon MSK trigger

	Organizations examples using AWS SDK for .NET
	Actions
	AttachPolicy
	CreateAccount
	CreateOrganization
	CreateOrganizationalUnit
	CreatePolicy
	DeleteOrganization
	DeleteOrganizationalUnit
	DeletePolicy
	DetachPolicy
	ListAccounts
	ListOrganizationalUnitsForParent
	ListPolicies

	Amazon Pinpoint examples using AWS SDK for .NET
	Actions
	SendMessages

	Amazon Polly examples using AWS SDK for .NET
	Actions
	DeleteLexicon
	DescribeVoices
	GetLexicon
	ListLexicons
	PutLexicon
	SynthesizeSpeech

	Scenarios
	Create an application to analyze customer feedback

	Amazon RDS examples using AWS SDK for .NET
	Hello Amazon RDS
	Basics
	Learn the basics

	Actions
	CreateDBInstance
	CreateDBParameterGroup
	CreateDBSnapshot
	DeleteDBInstance
	DeleteDBParameterGroup
	DescribeDBEngineVersions
	DescribeDBInstances
	DescribeDBParameterGroups
	DescribeDBParameters
	DescribeDBSnapshots
	DescribeOrderableDBInstanceOptions
	ModifyDBParameterGroup

	Scenarios
	Create an Aurora Serverless work item tracker

	Serverless examples
	Connecting to an Amazon RDS database in a Lambda function

	Amazon RDS Data Service examples using AWS SDK for .NET
	Scenarios
	Create an Aurora Serverless work item tracker

	Amazon Rekognition examples using AWS SDK for .NET
	Actions
	CompareFaces
	CreateCollection
	DeleteCollection
	DeleteFaces
	DescribeCollection
	DetectFaces
	DetectLabels
	DetectModerationLabels
	DetectText
	GetCelebrityInfo
	IndexFaces
	ListCollections
	ListFaces
	RecognizeCelebrities
	SearchFaces
	SearchFacesByImage

	Scenarios
	Create a serverless application to manage photos
	Detect objects in images

	Route 53 domain registration examples using AWS SDK for .NET
	Hello Route 53 domain registration
	Basics
	Learn the basics

	Actions
	CheckDomainAvailability
	CheckDomainTransferability
	GetDomainDetail
	GetDomainSuggestions
	GetOperationDetail
	ListDomains
	ListOperations
	ListPrices
	RegisterDomain
	ViewBilling

	Amazon S3 examples using AWS SDK for .NET
	Basics
	Learn the basics

	Actions
	CopyObject
	CreateBucket
	DeleteBucket
	DeleteBucketCors
	DeleteBucketLifecycle
	DeleteObject
	DeleteObjects
	GetBucketAcl
	GetBucketCors
	GetBucketEncryption
	GetBucketLifecycleConfiguration
	GetBucketWebsite
	GetObject
	GetObjectLegalHold
	GetObjectLockConfiguration
	GetObjectRetention
	ListBuckets
	ListObjectVersions
	ListObjectsV2
	PutBucketAccelerateConfiguration
	PutBucketAcl
	PutBucketCors
	PutBucketEncryption
	PutBucketLifecycleConfiguration
	PutBucketLogging
	PutBucketNotificationConfiguration
	PutBucketWebsite
	PutObject
	PutObjectLegalHold
	PutObjectLockConfiguration
	PutObjectRetention
	RestoreObject

	Scenarios
	Create a presigned URL
	Create a serverless application to manage photos
	Detect objects in images
	Get started with encryption
	Get started with tags
	Lock Amazon S3 objects
	Make conditional requests
	Manage access control lists (ACLs)
	Perform a multipart copy
	Transform data with S3 Object Lambda
	Upload or download large files

	Serverless examples
	Invoke a Lambda function from an Amazon S3 trigger

	S3 Glacier examples using AWS SDK for .NET
	Hello Amazon S3 Glacier
	Actions
	AddTagsToVault
	CreateVault
	DescribeVault
	InitiateJob
	ListJobs
	ListTagsForVault
	ListVaults
	UploadArchive

	SageMaker AI examples using AWS SDK for .NET
	Hello SageMaker AI
	Actions
	CreatePipeline
	DeletePipeline
	DescribePipelineExecution
	StartPipelineExecution
	UpdatePipeline

	Scenarios
	Get started with geospatial jobs and pipelines

	Secrets Manager examples using AWS SDK for .NET
	Actions
	GetSecretValue

	Amazon SES examples using AWS SDK for .NET
	Actions
	CreateTemplate
	DeleteIdentity
	DeleteTemplate
	GetIdentityVerificationAttributes
	GetSendQuota
	ListIdentities
	ListTemplates
	SendEmail
	SendTemplatedEmail
	VerifyEmailIdentity

	Scenarios
	Create a web application to track DynamoDB data
	Create an Aurora Serverless work item tracker
	Detect objects in images

	Amazon SES API v2 examples using AWS SDK for .NET
	Actions
	CreateContact
	CreateContactList
	CreateEmailIdentity
	CreateEmailTemplate
	DeleteContactList
	DeleteEmailIdentity
	DeleteEmailTemplate
	ListContacts
	SendEmail

	Scenarios
	Newsletter workflow

	Amazon SNS examples using AWS SDK for .NET
	Hello Amazon SNS
	Actions
	CheckIfPhoneNumberIsOptedOut
	CreateTopic
	DeleteTopic
	GetTopicAttributes
	ListSubscriptions
	ListTopics
	Publish
	Subscribe
	Unsubscribe

	Scenarios
	Building an Amazon SNS application
	Create a serverless application to manage photos
	Publish an SMS text message
	Publish messages to queues

	Serverless examples
	Invoke a Lambda function from an Amazon SNS trigger

	Amazon SQS examples using AWS SDK for .NET
	Hello Amazon SQS
	Actions
	CreateQueue
	DeleteMessage
	DeleteMessageBatch
	DeleteQueue
	GetQueueAttributes
	GetQueueUrl
	ReceiveMessage
	SendMessage
	SetQueueAttributes

	Scenarios
	Publish messages to queues
	Use the AWS Message Processing Framework for .NET with Amazon SQS

	Serverless examples
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	Step Functions examples using AWS SDK for .NET
	Hello Step Functions
	Basics
	Learn the basics

	Actions
	CreateActivity
	CreateStateMachine
	DeleteActivity
	DeleteStateMachine
	DescribeExecution
	DescribeStateMachine
	GetActivityTask
	ListActivities
	ListExecutions
	ListStateMachines
	SendTaskSuccess
	StartExecution

	AWS STS examples using AWS SDK for .NET
	Actions
	AssumeRole

	Support examples using AWS SDK for .NET
	Hello Support
	Basics
	Learn the basics

	Actions
	AddAttachmentsToSet
	AddCommunicationToCase
	CreateCase
	DescribeAttachment
	DescribeCases
	DescribeCommunications
	DescribeServices
	DescribeSeverityLevels
	ResolveCase

	Amazon Textract examples using AWS SDK for .NET
	Scenarios
	Create an application to analyze customer feedback

	Amazon Transcribe examples using AWS SDK for .NET
	Actions
	CreateVocabulary
	DeleteMedicalTranscriptionJob
	DeleteTranscriptionJob
	DeleteVocabulary
	GetTranscriptionJob
	GetVocabulary
	ListMedicalTranscriptionJobs
	ListTranscriptionJobs
	ListVocabularies
	StartMedicalTranscriptionJob
	StartTranscriptionJob
	UpdateVocabulary

	Amazon Translate examples using AWS SDK for .NET
	Actions
	DescribeTextTranslationJob
	ListTextTranslationJobs
	StartTextTranslationJob
	StopTextTranslationJob
	TranslateText

	Scenarios
	Building an Amazon SNS application
	Create an application to analyze customer feedback

	Security for this AWS Product or Service
	Data protection in this AWS Product or Service
	Identity and Access Management
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS services work with IAM
	Troubleshooting AWS identity and access
	I am not authorized to perform an action in AWS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS resources

	Compliance Validation for this AWS Product or Service
	Resilience for this AWS Product or Service
	Infrastructure Security for this AWS Product or Service
	Enforcing a minimum TLS version in the AWS SDK for .NET
	.NET Core
	.NET Framework
	AWS Tools for PowerShell
	Xamarin
	Unity
	Browser (for Blazor WebAssembly)

	Amazon S3 Encryption Client Migration
	Migration Overview
	Update Existing Clients to V1-transitional Clients to Read New Formats
	Migrate V1-transitional Clients to V2 Clients to Write New Formats
	Example: KMS to KMS+Context
	Example: Symmetric Algorithm (AES-CBC to AES-GCM Key Wrap)
	Example: Asymmetric Algorithm (RSA to RSA-OAEP-SHA1 Key Wrap)

	Update V2 Clients to No Longer Read V1 Formats

	Special considerations for the AWS SDK for .NET
	Obtaining assemblies for the AWS SDK for .NET
	Download and extract ZIP files

	Accessing credentials and profiles in an application
	Examples for class CredentialProfileStoreChain
	Get credentials from the SDK Store or the shared AWS credentials file
	Get a profile from the SDK Store or the shared AWS credentials file
	Get credentials from a custom credentials file

	Examples for classes SharedCredentialsFile and AWSCredentialsFactory
	Create an AmazonS3Client by using the SharedCredentialsFile class

	Special considerations for Unity support
	Special considerations for Xamarin support

	API reference for the AWS SDK for .NET
	About API reference versions
	View the deprecated API Reference V1
	View the deprecated API Reference V2

	Document history

