
Developer Guide

Amazon Simple Email Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Simple Email Service Developer Guide

Amazon Simple Email Service: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Simple Email Service Developer Guide

Table of Contents

What is Amazon SES? .. 1
Benefits ... 1
Related services .. 1
Pricing ... 2
Regions .. 2

Amazon SES regions and endpoints ... 3
Sandbox removal and sending limit increases .. 4
Verification of email addresses and domains ... 4
Easy DKIM ... 4
Account-level suppression list .. 4
Feedback notifications ... 5
SMTP credentials ... 5
Custom MAIL FROM domains ... 5
Sending authorization .. 7
Email receiving ... 7

Quotas ... 9
Email sending quotas ... 9
Email receiving quotas ... 13
Mail Manager quotas ... 14
General quotas .. 15

Types of credentials ... 16
How Amazon SES works ... 20

After a sender sends an email request to SES ... 21
After Amazon SES sends an email .. 22
Email format .. 24
Understanding deliverability .. 28
Email best practices ... 33

Working with AWS SDKs .. 40
Getting started .. 42

Setting up .. 42
Sign up for AWS ... 42
Set up your SES account ... 43
Grant programmatic access (To interact with SES outside of the console) 43
Download an AWS SDK (For using the SES APIs) .. 45

iii

Amazon Simple Email Service Developer Guide

Migrating to Amazon SES .. 45
Step 1. Verify your domain .. 45
Step 2. Request production access ... 45
Step 3. Configure domain authentication systems .. 46
Step 4. Generate your SMTP credentials ... 46
Step 5. Connect to an SMTP endpoint .. 46
Next steps ... 46

Request production access ... 47
Sending limits .. 51

Increasing your sending quotas .. 52
Automatically increased sending quotas ... 53
User requested increased sending quotas ... 53

Monitoring your sending quotas ... 54
Monitoring your sending quotas using the Amazon SES console ... 55
Monitoring your sending quotas using the Amazon SES API .. 56

Sending quota errors ... 56
Reaching sending limits with the Amazon SES API ... 56
Reaching sending limits with SMTP .. 57

Set up email sending .. 58
Using the SMTP interface .. 58

Requirements to send email over SMTP .. 59
Methods to send email over SMTP ... 59
Email information to provide ... 60
Obtaining SMTP credentials ... 60
Connecting to an SMTP endpoint ... 66
Using software packages to send email .. 67
Sending emails programmatically ... 69
Integrating with your existing email server .. 70
Testing your connection to the Amazon SES SMTP interface ... 72

Using the API .. 75
Sending formatted email .. 77
Sending raw email .. 77
Using templates to send email .. 89
Sending email using an AWS SDK .. 107
Content encodings ... 126

Supported security protocols .. 127

iv

Amazon Simple Email Service Developer Guide

Email sender to Amazon SES ... 127
Amazon SES to receiver .. 128
End-to-end encryption .. 128

Supported header fields ... 129
Unsupported attachment types .. 131

Email receiving .. 133
Email receiving concepts & use cases ... 134

Recipient-based control using receipt rules .. 134
IP-based control using IP address filters ... 136
Email-receiving process ... 137
Use cases & restrictions .. 138
Email authentication and malware detection .. 141

Setting up email receiving ... 142
Verifying your domain ... 143
Publishing an MX record ... 143
Giving permission ... 146

Email receiving console walkthroughs .. 151
Creating receipt rules .. 152
Create IP filters ... 189

Email receiving metrics ... 191
Verified identities .. 195

Creating & verifying identities .. 195
Creating a domain identity .. 198
Verifying a domain identity ... 202
Creating an email address identity ... 206
Verifying an email address identity .. 207
Create & verify an identity and assign a default configuration set at the same time (API) .. 208
Using custom verification email templates ... 209

Managing identities ... 221
Viewing identities from the console ... 222
Deleting an identity using the console .. 223
Editing an identity using the console .. 223
Edit an identity to use a default configuration set using the API .. 224
Retrieve the default configuration set used by the identity (API) .. 225
Override the current default configuration set used by the identity (API) 226

Configuring identities .. 226

v

Amazon Simple Email Service Developer Guide

Email authentication methods .. 227
Setting up event notifications ... 269
Using identity authorization .. 307
Using sending authorization .. 321

Sending test emails with the simulator .. 351
Using the mailbox simulator from the console .. 352
Using the mailbox simulator manually .. 353

Configuration sets ... 358
Create configuration sets ... 359

Create a configuration set .. 359
Create a configuration set (AWS CLI) ... 362

Manage configuration sets .. 364
View, edit, & delete configuration set (console) .. 364
List configuration sets (AWS CLI) .. 367
Get configuration set details (AWS CLI) .. 367
Delete a configuration set (AWS CLI) ... 367
Stop sending email from a configuration set (AWS CLI) .. 367
Understanding default configuration sets .. 367
Create event destinations ... 369
Assign IP pools .. 374
Configure custom open and click domains ... 375

Specify configuration sets in email .. 381
View and export reputation metrics .. 382

Enabling the export of reputation metrics ... 382
Disabling the export of reputation metrics .. 383

Dedicated IP addresses ... 384
Ease of setup .. 386
Reputation management .. 386
Predictability of sending patterns .. 387
Volume of outbound email ... 387
Additional costs .. 388
Control over sender reputation .. 388
Ability to isolate sender reputation ... 388
Known, unchanging IP addresses ... 388
Standard ... 389

Request & relinquish .. 389

vi

Amazon Simple Email Service Developer Guide

Warming up ... 393
Creating pools ... 397

Managed .. 399
Benefits and features .. 400
Importance of warmup ... 401
Creating a managed IP pool .. 402
Viewing pool sending and capacity .. 406
Deleting a managed IP pool .. 408

Bring your own IP addresses ... 408
Requirements ... 409
Considerations ... 409
Using your own IP addresses with Amazon SES .. 410

Virtual Deliverability Manager ... 411
Getting started ... 412

Getting started (console) .. 413
Getting started (AWS CLI) .. 414

Dashboard .. 415
Using the dashboard (console) .. 418
Accessing metric data (AWS CLI) ... 422
Filtering and exporting metric data (AWS CLI) .. 423
Finding messages, their status, & exporting results (AWS CLI) ... 424
Managing export jobs (AWS CLI) ... 429
Seeing message details (AWS CLI) .. 431
How dashboard metrics are calculated .. 431

Advisor .. 433
What the advisor's looking for .. 435
Using the advisor (console) .. 437
Accessing recommendations (AWS CLI) ... 438

Settings .. 439
Changing Virtual Deliverability Manager settings (console) .. 439
Changing Virtual Deliverability Manager settings (AWS CLI) .. 440

NEW - Mail Manager ... 443
Getting started ... 444

Getting started .. 444
Ingress endpoints ... 446

Configuring your environment .. 446

vii

Amazon Simple Email Service Developer Guide

Creating an ingress endpoint (console) ... 447
Traffic policies & policy statements ... 449

Creating traffic policies & policy statements (console) .. 451
Policy statement conditions ... 452

Rule sets & rules .. 452
Creating rule sets & rules (console) .. 454
Rule conditions & actions ... 455

SMTP relay ... 458
Creating an SMTP relay (console) ... 459
Setting up Google Workspaces ... 462
Setting up Microsoft Office 365 ... 464

Email archiving ... 470
Using email archiving (console) ... 470

Email Add Ons .. 475
Subscribing to Add Ons (console) ... 475

Permission policies .. 478
Ingress endpoint policies .. 478
SMTP relay policies .. 479
Email archiving policies ... 481
Rule action policies .. 487

Lists and subscriptions .. 489
Global suppression list .. 491

Global suppression list considerations ... 491
Using the account-level suppression list .. 492

Account-level suppression list considerations .. 493
Enabling the account-level suppression list .. 494
Enabling your account-level suppression list for a configuration set 495
Adding individual email addresses to your account-level suppression list 497
Adding email addresses in bulk to your account-level suppression list 499
Viewing a list of addresses that are on your account-level suppression list 503
Removing individual email addresses from your account-level suppression list 506
Removing email addresses in bulk from your account-level suppression list 507
Viewing a list of import jobs for the account .. 511
Getting information about an import job for the account .. 512
Disabling the account-level suppression list ... 514

Using configuration set-level suppression .. 515

viii

Amazon Simple Email Service Developer Guide

Enabling configuration set-level suppression ... 517
Using list management .. 518

List management overview .. 518
Configuring list management .. 519
List management walkthrough with examples .. 525

Using subscription management .. 527
Subscription management overview .. 527
Unsubscribe header considerations .. 528
Adding an unsubscribe footer link ... 529

Monitoring sending activity .. 531
Monitoring using the console ... 537

Account dashboard ... 538
Reputation metrics ... 539
SMTP settings .. 540
Using the console to monitor metrics ... 540

Monitor using the API ... 542
Calling the GetSendStatistics API operation using the AWS CLI 542
Calling the GetSendStatistics operation programmatically .. 543

Monitor email sending using event publishing ... 546
How event publishing works with configuration sets and message tags 546
Fine-grained feedback for email campaigns .. 547
How to use event publishing ... 549
Event publishing terminology .. 549
Setting up event publishing ... 551
Working with event data .. 566

Monitoring sender reputation .. 637
Using reputation metrics .. 637
Reputation metrics messages .. 639

General Status Messages .. 640
Bounce Rate Notification .. 641
Complaint Rate Notification ... 643
Anti-Spam Organization Notification ... 644
Listbombing Notification .. 645
Direct Feedback Notification .. 647
Domain Blocklist Notification .. 648
Internal Review Notification ... 649

ix

Amazon Simple Email Service Developer Guide

Mailbox Provider Notification .. 651
Recipient Feedback Notification .. 652
Related Account Notification ... 654
Spamtrap Notification ... 654
Vulnerable Site Notification ... 656
Compromised Credentials Notification .. 657
Other Notification .. 658

Creating alarms using CloudWatch .. 658
SNDS metrics for dedicated IPs .. 660

Troubleshooting questions ... 662
Automatically pausing email sending ... 663

For your entire account ... 663
For a configuration set .. 670

Monitoring using EventBridge .. 680
SES events ... 680
Events schema reference .. 682

Virtual Deliverability Manager advisor status schema .. 683
SES email sending status schema ... 684

Using EventBridge ... 687
Specify a sample event in EventBridge ... 687
Event patterns for SES events ... 688

Additional EventBridge resources ... 690
Code examples ... 691

Amazon SES .. 693
Actions .. 695
Scenarios ... 809
Cross-service examples .. 834

Amazon SES API v2 ... 850
Actions .. 851
Scenarios ... 905

Security .. 946
Data protection .. 947

Data at rest encryption ... 948
Encryption in transit .. 958
Deleting personal data .. 958

Identity and access management ... 965

x

Amazon Simple Email Service Developer Guide

Creating IAM Policies for Access to SES .. 966
Example IAM Policies for SES .. 969
AWS managed policies .. 974
Using service-linked roles ... 977

Logging and monitoring .. 979
Logging API calls .. 980

Compliance validation .. 983
Resilience ... 984
Infrastructure security in SES .. 984
VPC endpoints .. 985

Walkthrough example of setting up SES in Amazon VPC .. 986
Troubleshooting ... 989

General issues ... 990
Changes that I make are not immediately visible ... 990

Verification problems .. 991
Domain verification problems .. 991
Checking domain verification settings ... 992
Email verification problems .. 994

DKIM problems ... 994
Delivery problems .. 997
Problems with received emails ... 998
Notification problems ... 999
Email sending errors ... 1000
Increasing throughput .. 1002
SMTP issues .. 1004

SMTP response codes .. 1006
FAQs .. 1013

Sending review process FAQs ... 1013
Account Under Review .. 1014
Sending Pauses ... 1017
Bounces .. 1020
Complaints ... 1023
Spamtraps .. 1030
Manual investigations .. 1032

DNS Blackhole List (DNSBL) FAQs ... 1034
DNSBL FAQ Q1 ... 1034

xi

Amazon Simple Email Service Developer Guide

DNSBL FAQ Q2 ... 1034
DNSBL FAQ Q3 ... 1035
DNSBL FAQ Q4 ... 1035
DNSBL FAQ Q5 ... 1035
DNSBL FAQ Q6 ... 1036

Email metrics FAQs ... 1037
General ... 1038
Open Tracking ... 1039
Click Tracking .. 1040

Quick Find Index ... 1044
How-tos & concepts .. 1044

xii

Amazon Simple Email Service Developer Guide

What is Amazon SES?

Amazon Simple Email Service (SES) is an email platform that provides an easy, cost-effective way
for you to send and receive email using your own email addresses and domains.

For example, you can send marketing emails such as special offers, transactional emails such
as order confirmations, and other types of correspondence such as newsletters. When you use
Amazon SES to receive mail, you can develop software solutions such as email autoresponders,
email unsubscribe systems, and applications that generate customer support tickets from incoming
emails.

For more information about topics related to Amazon SES, see the AWS Messaging and Targeting
Blog.

Benefits

Building a large-scale email solution is often a complex and costly challenge for a business. You
must deal with infrastructure challenges such as email server management, network configuration,
and IP address reputation. Additionally, many third-party email solutions require contract and
price negotiations, as well as significant up-front costs. Amazon SES eliminates these challenges
and enables you to benefit from the years of experience and sophisticated email infrastructure
Amazon.com has built to serve its own large-scale customer base.

Related services

Amazon SES integrates seamlessly with other AWS products. For example, you can:

• Add email-sending capabilities to any application.

• You can send email from Amazon EC2 by using an AWS SDK, by using the Amazon SES SMTP
interface, or by making calls directly to the Amazon SES API.

• Use AWS Elastic Beanstalk to create an email-enabled application such as a program that uses
Amazon SES to send a newsletter to customers.

• Set up Amazon Simple Notification Service (Amazon SNS) to notify you of your emails that
bounced, produced a complaint, or were successfully delivered to the recipient's mail server.
When you use Amazon SES to receive emails, your email content can be published to Amazon
SNS topics.

Benefits 1

https://aws.amazon.com/ses
https://aws.amazon.com//blogs/messaging-and-targeting/
https://aws.amazon.com//blogs/messaging-and-targeting/
https://aws.amazon.com/tools/#sdk
https://docs.aws.amazon.com/ses/latest/APIReference/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/sns/

Amazon Simple Email Service Developer Guide

• Use the AWS Management Console to set up Easy DKIM, which is a way to authenticate your
emails. Although you can use Easy DKIM with any DNS provider, it is especially easy to set up
when you manage your domain with Route 53.

• Control user access to your email sending by using AWS Identity and Access Management (IAM).

• Store emails you receive in Amazon Simple Storage Service (Amazon S3).

• Take action on your received emails by triggering AWS Lambda functions.

• Use AWS Key Management Service (AWS KMS) to optionally encrypt the mail you receive in your
Amazon S3 bucket.

• Use AWS CloudTrail to log Amazon SES API calls that you make using the console or the Amazon
SES API.

• Publish your email sending events to Amazon CloudWatch or Amazon Data Firehose. If you
publish your email sending events to Firehose, you can access them in Amazon Redshift, Amazon
OpenSearch Service, or Amazon S3.

Pricing

With Amazon SES, you pay based on the volume of emails sent and received. For more information,
see Amazon SES pricing.

Regions and Amazon SES

Amazon SES is available in several AWS Regions around the world. In each Region, AWS maintains
multiple Availability Zones. These Availability Zones are physically isolated from each other, but are
united by private, low-latency, high-throughput, and highly redundant network connections. These
Availability Zones enable us to provide very high levels of availability and redundancy, while also
minimizing latency.

For a list of all of the Amazon SES Regional endpoints, see Amazon Simple Email Service endpoints
and quotas in the AWS General Reference. To learn more about the number of Availability Zones
that are available in each Region, see AWS Global Infrastructure.

This section contains information that you need to know if you plan to use Amazon SES in multiple
AWS Regions. It discusses the following subjects:

• Amazon SES regions and endpoints

Pricing 2

https://aws.amazon.com/route53/
https://aws.amazon.com/iam/
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/kms/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/firehose/
https://aws.amazon.com/redshift/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/s3/
https://aws.amazon.com/ses/pricing/
https://docs.aws.amazon.com/general/latest/gr/ses.html
https://docs.aws.amazon.com/general/latest/gr/ses.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Simple Email Service Developer Guide

• Sandbox removal and sending limit increases

• Verification of email addresses and domains

• Easy DKIM

• Account-level suppression list

• Feedback notifications

• SMTP credentials

• Sending authorization

• Custom MAIL FROM domains

• Email receiving

• Setting up (MX) records

For general information about AWS Regions, see AWS service endpoints in the AWS General
Reference.

Amazon SES regions and endpoints

When you use Amazon SES to send email, you connect to a URL that provides an endpoint for the
SES API or SMTP interface. The AWS General Reference contains a complete list of endpoints that
you use to send and receive email through Amazon SES. For more information, see Amazon Simple
Email Service endpoints and quotas in the AWS General Reference.

When you send email through Amazon SES, you can use the URLs in the rows specified with HTTPS
in the Protocol column to make HTTPS requests to the SES API. You can also use the URLs in the
rows specified with SMTP in the Protocol column to send email by using the SMTP interface.

If you've configured Amazon SES to receive email that's sent to your domain, you can use the
inbound SMTP endpoint URLs (that is, the URLs that begin with "inbound-smtp.") when you set up
the mail exchanger (MX) records in the DNS settings for your domain.

Note

The inbound SMTP URLs aren't IMAP server addresses. In other words, you can't use them
to receive email by using an application such as Outlook. For a service that provides an
IMAP server for incoming email, see Amazon WorkMail.

Amazon SES regions and endpoints 3

https://docs.aws.amazon.com/ses/latest/dg/receiving-email-mx-record.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/ses.html
https://docs.aws.amazon.com/general/latest/gr/ses.html
https://docs.aws.amazon.com/general/latest/gr/ses.html#ses_region
https://docs.aws.amazon.com/general/latest/gr/ses.html#ses_region
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-mx-record.html
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-mx-record.html
https://aws.amazon.com/workmail

Amazon Simple Email Service Developer Guide

Sandbox removal and sending limit increases

The sandbox status for your account can differ between AWS Regions. In other words, if your
account has been removed from the sandbox in the US West (Oregon) Region, it might still be
in the sandbox in the US East (N. Virginia) Region, unless you've also had it removed from the
sandbox in that Region.

Sending limits can also be different depending on the AWS Region. For example, if your account
is able to send 10 messages per second in the Europe (Ireland) Region, you might be able to send
more or fewer messages in other Regions.

When you submit a request to have your account removed from the sandbox, or when you submit a
request to have your account's sending quotas increased, be sure to choose all of the AWS Regions
that your request applies to. You can submit several requests in a single Support Center case.

Verification of email addresses and domains

Before you can send email using Amazon SES, you have to verify that you own the email address
or domain that you plan to send from. The verification status of email addresses and domains also
differs across AWS Regions. For example, if you verify a domain in the US West (Oregon) Region,
you can't use that domain to send email in the US East (N. Virginia) Region until you complete the
verification process again for that Region. For more information about verifying email addresses
and domains, see Verified identities in Amazon SES.

Easy DKIM

You have to perform the Easy DKIM setup process for each Region where you want to use Easy
DKIM. That is, in each Region, you have to use the Amazon SES console or the Amazon SES API to
generate TXT records. Next, you have to add all of the TXT records to the DNS configuration for
your domain. For more information about setting up Easy DKIM, see Easy DKIM in Amazon SES.

Account-level suppression list

Your Amazon SES account-level suppression list applies to your AWS account only in the current
AWS Region. You can manually add or remove, individually or in bulk, addresses from your account-
level suppression list by using the SES API v2 or console. For more information about using your
account-level suppression list, see Using the Amazon SES account-level suppression list.

Sandbox removal and sending limit increases 4

Amazon Simple Email Service Developer Guide

Feedback notifications

There are two important points to note about setting up feedback notifications in multiple
Regions:

• Verified identity settings, such as whether you receive feedback by email or through Amazon
Simple Notification Service (Amazon SNS), only apply to the Region that you set them in. For
example, if you verify user@example.com in the US West (Oregon) and US East (N. Virginia)
Regions and you want to receive bounced emails via Amazon SNS notifications, you have to use
the Amazon SES API or the Amazon SES console to set up Amazon SNS feedback notifications
for user@example.com in both Regions.

• Amazon SNS topics that you use for feedback forwarding have to be in the same Region where
you use Amazon SES.

SMTP credentials

The credentials that you use to send email through the Amazon SES SMTP interface are unique
to each AWS Region. If you use the Amazon SES SMTP interface to send email in more than one
Region, you have to generate a set of SMTP credentials for each Region.

Note

If you created your SMTP credentials before January 10, 2019, your SMTP credentials
were created using an older version of the AWS Signature. For security purposes, you
should delete credentials that you created before this date, and replace them with newer
credentials. You can delete older credentials by using the IAM console.

Custom MAIL FROM domains

You can use the same custom MAIL FROM domain for verified identities in different AWS Regions.
If that is what you want to do, you only need to publish one MX record to the MAIL FROM domain's
DNS server. In this situation, bounce notifications are sent to the Amazon SES feedback endpoint in
the Region that you specified in the MX record first. Next Amazon SES redirects the bounces to the
verified identity in the Region that sent the email.

Use the MX record settings that Amazon SES provides during the custom MAIL FROM setup process
for an identity in one of the Regions. The custom MAIL FROM setup process is described in Using

Feedback notifications 5

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting

Amazon Simple Email Service Developer Guide

a custom MAIL FROM domain. For reference, you can find the feedback endpoints for all of the
Regions in the following table.

Region Name Feedback Endpoints for Custom MAIL FROM
Sending Configurations

US East (Ohio) feedback-smtp.us-east-2.amazonses.com

US East (N. Virginia) feedback-smtp.us-east-1.amazonses.com

US West (N. California) feedback-smtp.us-west-1.amazonses.com

US West (Oregon) feedback-smtp.us-west-2.amazonses.com

Africa (Cape Town) feedback-smtp.af-south-1.amazonses.com

Asia Pacific (Jakarta) feedback-smtp.ap-southeast-3.amazons
es.com

Asia Pacific (Mumbai) feedback-smtp.ap-south-1.amazonses.com

Asia Pacific (Osaka) feedback-smtp.ap-northeast-3.amazons
es.com

Asia Pacific (Seoul) feedback-smtp.ap-northeast-2.amazons
es.com

Asia Pacific (Singapore) feedback-smtp.ap-southeast-1.amazons
es.com

Asia Pacific (Sydney) feedback-smtp.ap-southeast-2.amazons
es.com

Asia Pacific (Tokyo) feedback-smtp.ap-northeast-1.amazons
es.com

Canada (Central) feedback-smtp.ca-central-1.amazonses.com

Europe (Frankfurt) feedback-smtp.eu-central-1.amazonses.com

Europe (Ireland) feedback-smtp.eu-west-1.amazonses.com

Custom MAIL FROM domains 6

Amazon Simple Email Service Developer Guide

Region Name Feedback Endpoints for Custom MAIL FROM
Sending Configurations

Europe (London) feedback-smtp.eu-west-2.amazonses.com

Europe (Milan) feedback-smtp.eu-south-1.amazonses.com

Europe (Paris) feedback-smtp.eu-west-3.amazonses.com

Europe (Stockholm) feedback-smtp.eu-north-1.amazonses.com

Israel (Tel Aviv) feedback-smtp.il-central-1.amazonses.com

Middle East (Bahrain) feedback-smtp.me-south-1.amazonses.com

South America (São Paulo) feedback-smtp.sa-east-1.amazonses.com

AWS GovCloud (US-West) feedback-smtp.us-gov-west-1.amazonses.com

AWS GovCloud (US-East) feedback-smtp.us-gov-east-1.amazonses.com

Sending authorization

Delegate senders can only send emails from the AWS Region where the identity owner's identity
is verified. The sending authorization policy that gives permission to the delegate sender must be
attached to the identity in that Region. For more information about sending authorization, see
Using sending authorization with Amazon SES.

Email receiving

With the exception of Amazon S3 buckets, all of the AWS resources that you use for receiving email
with Amazon SES have to be in the same AWS Region as the Amazon SES endpoint. For example, if
you use Amazon SES in the US West (Oregon) Region, then any Amazon SNS topics, AWS KMS keys,
and Lambda functions that you use also have to be in the US West (Oregon) Region. Similarly, to
receive email with Amazon SES within a Region, you have to create an active receipt rule set in that
Region.

The following table lists the email receiving endpoints for all of the AWS Regions where Amazon
SES supports email receiving:

Sending authorization 7

Amazon Simple Email Service Developer Guide

Region Name Region Email Receiving Endpoint

US East (N. Virginia) us-east-1 inbound-smtp.us-east-1.amaz
onaws.com

US East (Ohio) us-east-2 inbound-smtp.us-east-2.amaz
onaws.com

US West (Oregon) us-west-2 inbound-smtp.us-we
st-2.amazonaws.com

Asia Pacific (Jakarta) ap-southeast-3 inbound-smtp.ap-southeast-3
.amazonaws.com

Asia Pacific (Singapore) ap-southeast-1 inbound-smtp.ap-southeast-1
.amazonaws.com

Asia Pacific (Sydney) ap-southeast-2 inbound-smtp.ap-southeast-2
.amazonaws.com

Asia Pacific (Tokyo) ap-northeast-1 inbound-smtp.ap-northeast-1
.amazonaws.com

Canada (Central) ca-central-1 inbound-smtp.ca-central-1.a
mazonaws.com

Europe (Frankfurt) eu-central-1 inbound-smtp.eu-central-1.a
mazonaws.com

Europe (Ireland) eu-west-1 inbound-smtp.eu-we
st-1.amazonaws.com

Europe (London) eu-west-2 inbound-smtp.eu-we
st-2.amazonaws.com

SES does not support email receiving in the following Regions: US West (N. California), Africa
(Cape Town), Asia Pacific (Mumbai), Asia Pacific (Osaka), Asia Pacific (Seoul), Europe (Milan), Europe
(Paris), Europe (Stockholm), Israel (Tel Aviv), Middle East (Bahrain), South America (São Paulo), AWS
GovCloud (US-West), and AWS GovCloud (US-East).

Email receiving 8

Amazon Simple Email Service Developer Guide

Service quotas in Amazon SES

The following sections list and describe the quotas that apply to Amazon SES resources and
operations. Some quotas can be increased, while others can't. To determine whether you can
request an increase for a quota, refer to the Adjustable column.

Note

SES quotas are for each AWS Region that you use in your AWS account.

Email sending quotas

The following quotas apply to sending email through SES.

Sending quotas

Quotas are based on the number of recipients, rather than on the number of messages.

Resource Default Quota Adjustable

Number of emails that can be
sent per 24-hour period

If your account is in the
sandbox, you can send up
to 200 emails per 24-hour
period.

If your account is out of the
sandbox, this number varies
based on your specific use
case.

Yes

Number of emails that can be
sent per second (sending rate)

If your account is in the
sandbox, you can send 1
email per second.

If your account is out of the
sandbox, this rate varies
based on your specific use
case.

Yes

Quotas 9

Amazon Simple Email Service Developer Guide

Message quotas

Resource Default Quota Adjustable

Using the SES v1 API -
Maximum message size
(including attachments)

10 MB per message (after
base64 encoding).

No (For workloads with
message sizes in excess of
10MB, consider migrating to
the SES v2 API.)

Using the SES v2 API or
SMTP - Maximum message
size (including attachments)

40 MB per message (after
base64 encoding).

No

Note

Messages larger than 10MB are subject to bandwidth throttling, and depending on your
sending rate, you may be throttled to as low as 40MB/s. For example, you could send a
40MB message at the rate of 1 message per second, or two 20MB messages per second.

Sender and recipient quotas

Resource Default Quota Adjustable

Maximum number of recipient
s per message

50 recipients per message.

Note

A recipient is any "To",
"CC", or "BCC" address.

Recipient limit is not
adjustable. Please contact
your AWS Account Manager
to request this feature after
reading the note below.

Maximum number of identitie
s that you can verify

10,000 identities per AWS
Region.

Please contact your AWS
Account Manager to discuss
your use case.

Email sending quotas 10

https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/

Amazon Simple Email Service Developer Guide

Resource Default Quota Adjustable

Note

An identity is a
domain or email
address that you use
to send email through
SES.

Maximum number of
dedicated IP pools (inclusiv
e of both managed and
standard IP pools)

50 No

Note

Before requesting a recipient limit increase per message, please read this blog and be
prepared to describe in detail why your use case cannot be met using the default limit
of 50 recipients per message or by sending messages to individual recipients. Defining
multiple recipients in a message destination can lead to poor observability as well as poor
deliverability and should not be used unless your use case specifically requires it.

Quotas related to event publishing

Resource Default Quota Adjustable

Maximum number of
configuration sets

10,000 No

Maximum length of configura
tion set name

Configuration set names can
contain up to 64 alphanume
ric characters. They can also
contain hyphens (-) and
underscores (_). Names can't

No

Email sending quotas 11

https://aws.amazon.com//blogs/messaging-and-targeting/how-to-send-messages-to-multiple-recipients-with-amazon-simple-email-service-ses/

Amazon Simple Email Service Developer Guide

Resource Default Quota Adjustable

contain spaces, accented
characters, or any other
special characters.

Maximum number of event
destinations per configuration
set

10 No

Maximum number of
dimensions per CloudWatch
event destination

10 No

Email template quotas

Resource Default Quota Adjustable

Maximum number of email
templates in each AWS
Region

20,000 No

Maximum template size 500 KB No

Maximum number of
replacement values in each
template

Unlimited N/A

Maximum number of recipient
s for each templated email

50 destinations. A destinati
on is any email address on the
"To", "CC", or "BCC" lines.

Note

The number of
destinations you can
contact in a single
call to the API may

No

Email sending quotas 12

Amazon Simple Email Service Developer Guide

Resource Default Quota Adjustable

be limited by your
account's maximum
sending rate.

Email receiving quotas

The following table lists the quotas associated with receiving email through SES.

Resource Default Quota Adjustable

Maximum number of rules per
receipt rule set

200 No

Maximum number of actions
per receipt rule

10 No

Maximum number of recipient
s per receipt rule

100 No

Maximum number of receipt
rule sets per AWS account

40 No

Maximum number of IP
address filters per AWS
account

100 No

Maximum email size (includin
g headers) that can be stored
in an Amazon S3 bucket

40 MB No

Maximum email size (includin
g headers) that can be
published using an Amazon
SNS notification

150 KB No

Email receiving quotas 13

Amazon Simple Email Service Developer Guide

Mail Manager quotas

The following table lists the quotas associated with Mail Manager.

Resource Default Quota Adjustable

Maximum number of open
ingress endpoints

10 No

Maximum number of
authorized ingress endpoints

50 No

Maximum number of recipient
s per message

100 No

Maximum email size (includin
g headers)

40 MB No

Maximum number of traffic
policy statements

20 No

Maximum number of traffic
policy statement conditions

10 No

Maximum number of traffic
policies per region

100 No

Maximum number of SMTP
relays

100 No

Maximum number of rule sets 40 No

Maximum number of rule
executions per message

200 No

Maximum number of
conditions per rule

10 No

Maximum number of actions
per rule

10 No

Mail Manager quotas 14

Amazon Simple Email Service Developer Guide

Resource Default Quota Adjustable

Maximum number of relay or
send actions per rule set

10 No

Maximum number of active
archives

10 No

Maximum number of running
search requests in parallel

1 No

Maximum number of running
export requests in parallel

1 No

Maximum number of
retention changes for archive
per week

1 No

General quotas

The following table lists quotas that apply to both sending and receiving email through SES.

SES API sending quotas

Resource Default Quota Adjustable

Rate at which you can call
Amazon SES API actions

All actions (except for
SendEmail , SendRawEm
ail , and SendTempl
atedEmail) are throttled
at one request per second.

No

MIME parts 500 No

General quotas 15

Amazon Simple Email Service Developer Guide

Types of Amazon SES credentials

To interact with Amazon Simple Email Service (Amazon SES), you use security credentials to verify
who you are and whether you have permission to interact with Amazon SES. There are different
types of credentials, and the credentials you use depend on what you want to do. For example,
you use AWS access keys when you send an email using the Amazon SES API, and SMTP credentials
when you send an email using the Amazon SES SMTP interface.

The following table lists the types of credentials you might use with Amazon SES, depending on
what you are doing.

If you want to
access the...

Use these
credentials

What the
credentials consist
of

How to get the credentials

Amazon SES API

(You might access
the Amazon SES
API directly, or
indirectly through
an AWS SDK, the
AWS Command
Line Interface, or
the AWS Tools
for Windows
PowerShell.)

AWS access keys Access key ID and
secret access key

See Access Keys in the AWS
General Reference.

Note

For security best
practice, use AWS
Identity and Access
Management (IAM)
user access keys
instead of AWS
account access keys.
Your AWS account
credentials grant full
access to all your AWS
resources, so you
should store them
in a safe place and
instead use IAM user
credentials for day-
to-day interaction
with AWS. For more

Types of credentials 16

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

Amazon Simple Email Service Developer Guide

If you want to
access the...

Use these
credentials

What the
credentials consist
of

How to get the credentials

information, see Root
Account Credentials
vs. IAM User Credentia
ls in the AWS General
Reference.

Types of credentials 17

https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html

Amazon Simple Email Service Developer Guide

If you want to
access the...

Use these
credentials

What the
credentials consist
of

How to get the credentials

Amazon SES SMTP
interface

SMTP credentials User name and
password

See Obtaining Amazon SES
SMTP credentials.

Note

Although your
Amazon SES SMTP
credentials are
different than your
AWS access keys
and IAM user access
keys, Amazon SES
SMTP credentials are
actually a type of
IAM credentials. An
IAM user can create
Amazon SES SMTP
credentials, but the
root account owner
must ensure that the
IAM user's policy gives
them permission to
access the following
 IAM actions: "iam:List
Users", "iam:Crea
teUser", "iam:Crea
teAccessKey", and
"iam:PutUserPolicy".

Types of credentials 18

Amazon Simple Email Service Developer Guide

If you want to
access the...

Use these
credentials

What the
credentials consist
of

How to get the credentials

Amazon SES
console

IAM user name and
password

OR

Email address and
password

IAM user name and
password

OR

Email address and
password

See IAM User Name and
Password and Email Address
and Password of the AWS
General Reference.

Note

For security best
practice, use an
IAM user name and
password instead of
an email address and
password. The email
address and password
combination are for
your AWS account, so
you should store them
in a safe place instead
of using them for day-
to-day interaction
with AWS. For more
information, see Root
Account Credentials
vs. IAM User Credentia
ls in the AWS General
Reference.

For more information about different types of AWS security credentials (except for SMTP
credentials, which are used only for Amazon SES), see AWS Security Credentials in the AWS General
Reference.

Types of credentials 19

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#iam-user-name-and-password
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#iam-user-name-and-password
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#email-and-password-for-your-AWS-account
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#email-and-password-for-your-AWS-account
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Amazon Simple Email Service Developer Guide

How email sending works in Amazon SES

This topic describes what happens when you send an email with SES, and the various outcomes
that can occur after the email is sent. The following figure is a high-level overview of the sending
process:

1. A client application, acting as an email sender, makes a request to SES to send email to one or
more recipients.

2. If the request is valid, SES accepts the email.

3. SES sends the message over the Internet to the recipient's receiver. Once the message is
passed to SES, it is usually sent immediately, with the first delivery attempt normally occurring
within milliseconds.

4. At this point, there are different possibilities. For example:

a. The ISP successfully delivers the message to the recipient's inbox.

b. The recipient's email address does not exist, so the ISP sends a bounce notification to SES.
SES then forwards the notification to the sender.

c. The recipient receives the message but considers it to be spam and registers a complaint
with the ISP. The ISP, which has a feedback loop set up with SES, sends the complaint to
SES, which then forwards it to the sender.

The following sections review the individual possible outcomes after a sender sends an email
request to SES and after SES sends an email message to the recipient.

How Amazon SES works 20

Amazon Simple Email Service Developer Guide

After a sender sends an email request to SES

When the sender makes a request to SES to send an email, the call may succeed or fail. The
following sections describe what happens in each case.

Successful sending request

If the request to SES succeeds, SES returns a success response to the sender. This message includes
the message ID, a string of characters that uniquely identifies the request. You can use the message
ID to identify the sent email or to track problems encountered during sending (you must store your
own mapping between an identifier and the SES message ID that SES passes back to you when it
accepts the email). SES then assembles an email message based on the request parameters, scans
the message for questionable content and viruses and then sends it out over the Internet using
Simple Mail Transfer Protocol (SMTP). Your message is usually sent immediately; the first delivery
attempt typically occurs within milliseconds.

Note

If SES accepts the sender's request and then determines that the message contains a virus,
SES stops processing the message and doesn't attempt to deliver it to the recipient's mail
server.

Failed sending request

If the sender's email-sending request to SES fails, SES responds to the sender with an error and
drops the email. The request could fail for several reasons. For example, the request may not be
formatted properly or the email address may not have been verified by the sender.

The method through which you can determine if the request has failed depends on how you call
SES. The following are examples of how errors and exceptions are returned:

• If you are calling SES through the Query (HTTPS) API (SendEmail or SendRawEmail), the
actions will return an error. For more information, see the Amazon Simple Email Service API
Reference.

• If you are using an AWS SDK for a programming language that uses exceptions, the call to SES
will throw a MessageRejectedException. (The name of the exception may vary slightly depending
on the SDK.)

After a sender sends an email request to SES 21

https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference/

Amazon Simple Email Service Developer Guide

• If you are using the SMTP interface, then the sender receives an SMTP response code, but how
the error is conveyed depends on the sender's client. Some clients may display an error code;
others may not.

For information about errors that can occur when you send an email with SES, see Amazon SES
email sending errors.

After Amazon SES sends an email

If the sender's request to SES succeeds, then SES sends the email and one of the following
outcomes occurs:

• Successful delivery and the recipient does not object to the email – The email is accepted
by the ISP, and the ISP delivers the email to the recipient. A successful delivery is shown in the
following figure.

• Hard bounce – The email is rejected by the ISP because of a persistent condition or rejected by
SES because the email address is on the SES suppression list. An email address is on the SES
suppression list if it has recently caused a hard bounce for any SES customer. A hard bounce with
an ISP can occur because the recipient's address is invalid. A hard bounce notification is sent
from the ISP back to SES, which notifies the sender through email or through Amazon Simple
Notification Service (Amazon SNS), depending on the sender's setup. SES notifies the sender of
suppression list bounces by the same means. The path of a hard bounce from an ISP is shown in
the following figure.

• Soft bounce – The ISP cannot deliver the email to the recipient because of a temporary
condition, such as the ISP is too busy to handle the request or the recipient's mailbox is full. A
soft bounce can also occur if the domain does not exist. The ISP sends a soft bounce notification
back to SES, or, in the case of a nonexistent domain, SES cannot find an email server for the
domain. In either case, SES retries the email for an extended period of time. If SES cannot
deliver the email in that time period, it sends you a bounce notification through email or
through Amazon SNS. If SES can deliver the email to the recipient during a retry, the delivery is

After Amazon SES sends an email 22

Amazon Simple Email Service Developer Guide

successful. A soft bounce is shown in the following figure. In this case, SES retries sending the
email, and the ISP is eventually able to deliver it to the recipient.

• Complaint – The email is accepted by the ISP and delivered to the recipient, but the recipient
considers the email to be spam and clicks a button such as "Mark as spam" in his or her email
client. If SES has a feedback loop set up with the ISP, then a complaint notification is sent to
SES, which forwards the complaint notification to the sender. Most ISPs do not provide the
email address of the recipient who submitted the complaint, so the complaint notification from
SES provides the sender a list of recipients who might have sent the complaint, based on the
recipients of the original message and the ISP from which SES received the complaint. The path
of a complaint is shown in the following figure.

• Auto response – The email is accepted by the ISP, and the ISP delivers it to the recipient. The
ISP then sends an automatic response such as an out-of-the-office (OOTO) message to SES.
SES forwards the auto response notification to the sender. An auto response is shown in the
following figure.

Make sure that your SES-enabled program does not retry sending messages that generate an
auto response.

Tip

You can use the SES mailbox simulator to test a successful delivery, bounce, complaint,
OOTO, or what happens when an address is on the suppression list. For more
information, see Using the mailbox simulator manually.

After Amazon SES sends an email 23

Amazon Simple Email Service Developer Guide

Email format in Amazon SES

When a client makes a request to Amazon SES, Amazon SES constructs an email message
compliant with the Internet Message Format specification (RFC 5322). An email consists of a
header, a body, and an envelope, as described below.

• Header—Contains routing instructions and information about the message. Examples are the
sender's address, the recipient's address, the subject, and the date. The header is analogous
to the information at the top of a postal letter, though it can contain many other types of
information, such as the format of the message.

• Body—Contains the text of the message itself.

• Envelope—Contains the actual routing information that is communicated between the email
client and the mail server during the SMTP session. This email envelope information is analogous
to the information on a postal envelope. The routing information of the email envelope is usually
the same as the routing information in the email header, but not always. For example, when
you send a blind carbon copy (BCC), the actual recipient address (derived from the envelope) is
not the same as the "To" address that is displayed in the recipient's email client, which is derived
from the header.

The following is a simple example of an email. The header is followed by a blank line and then the
body of the email. The envelope isn't shown because it is communicated between the client and
the mail server during the SMTP session, rather than a part of the email itself.

Received: from abc.smtp-out.amazonses.com (123.45.67.89) by in.example.com
 (87.65.43.210); Fri, 17 Dec 2010 14:26:22
From: "Andrew" <andrew@example.com>;
To: "Bob" <bob@example.com>
Date: Fri, 17 Dec 2010 14:26:21 -0800
Subject: Hello
Message-ID: <61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>
Accept-Language: en-US
Content-Language: en-US
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: quoted-printable
MIME-Version: 1.0

Hello, I hope you are having a good day.

Email format 24

https://www.ietf.org/rfc/rfc5322.txt

Amazon Simple Email Service Developer Guide

-Andrew

The following sections review email headers and bodies and identify the information that you need
to provide when you use Amazon SES.

Email header

There is one header per email message. Each line of the header contains a field followed by a
colon followed by a field body. When you read an email in an email client, the email client typically
displays the values of the following header fields:

• To—The email addresses of the message's recipients.

• CC—The email addresses of the message's carbon copy recipients.

• From—The email address from which the email is sent.

• Subject—A summary of the message topic.

• Date—The time and date the email is sent.

There are many additional header fields that provide routing information and describe the content
of the message. Email clients typically do not display these fields to the user. For a full list of the
header fields that Amazon SES accepts, see Amazon SES header fields. When you use Amazon SES,
you particularly need to understand the difference between "From," "Reply-To," and "Return-Path"
header fields. As noted previously, the "From" address is the email address of the message sender,
whereas "Reply-To" and "Return-Path" are as follows:

• Reply-To—The email address to which replies will be sent. By default, replies are sent to the
original sender's email address.

• Return-Path—The email address to which message bounces and complaints should be sent.
"Return-Path" is sometimes called "envelope from," "envelope sender," or "MAIL FROM."

Note

When you use Amazon SES, we recommend that you always set the "Return-Path"
parameter so that you can be aware of bounces and take corrective action if they occur.

Email format 25

Amazon Simple Email Service Developer Guide

To easily match a bounced message with its intended recipient, you can use Variable Envelope
Return Path (VERP). With VERP, you set a different "Return-Path" for each recipient, so that if
the message bounces back, you automatically know which recipient it bounced from, rather than
having to open the bounce message and parse it.

Email body

The email body contains the text of the message. The body can be sent in the following formats:

• HTML—If the recipient's email client can interpret HTML, the body can include formatted text
and hyperlinks

• Plain text—If the recipient's email client is text-based, the body must not contain any
nonprintable characters.

• Both HTML and plain text—When you use both formats to send the same content in a single
message, the recipient's email client decides which to display, based upon its capabilities.

If you are sending an email message to a large number of recipients, then it makes sense to send
it in both HTML and text. Some recipients will have HTML-enabled email clients, so that they can
click embedded hyperlinks in the message. Recipients using text-based email clients will need you
to include URLs that they can copy and open using a web browser.

Email information you need to provide to Amazon SES

When you send an email with Amazon SES, the email information you need to provide depends
on how you call Amazon SES. You can provide a minimal amount of information and have Amazon
SES take care of all of the formatting for you. Or, if you want to do something more advanced like
send an attachment, you can provide the raw message yourself. The following sections review what
you need to provide when you send an email by using the Amazon SES API, the Amazon SES SMTP
interface, or the Amazon SES console.

Amazon SES API

If you call the Amazon SES API directly, you call either the SendEmail or the SendRawEmail API.
The amount of information you need to provide depends on which API you call.

• The SendEmail API requires you to provide only a source address, destination address,
message subject, and a message body. You can optionally provide "Reply-To" addresses.
When you call this API, Amazon SES automatically assembles a properly formatted multi-part

Email format 26

Amazon Simple Email Service Developer Guide

Multipurpose Internet Mail Extensions (MIME) email message optimized for display by email
client software. For more information, see Sending formatted email using the Amazon SES API.

• The SendRawEmail API provides you the flexibility to format and send your own raw email
message by specifying headers, MIME parts, and content types. SendRawEmail is typically
used by advanced users. You need to provide the body of the message and all header fields that
are specified as required in the Internet Message Format specification (RFC 5322). For more
information, see Sending raw email using the Amazon SES API v2.

If you use an AWS SDK to call the Amazon SES API, you provide the information listed above to the
corresponding functions (for example, SendEmail and SendRawEmail for Java).

For more information about sending email using the Amazon SES API, see Using the Amazon SES
API to send email.

Amazon SES SMTP interface

When you access Amazon SES through the SMTP interface, your SMTP client application assembles
the message, so the information you need to provide depends on the application you are using.
At a minimum, the SMTP exchange between a client and a server requires a source address, a
destination address, and message data.

For more information about sending email using the Amazon SES SMTP interface, see Using the
Amazon SES SMTP interface to send email.

Amazon SES console

When you send an email by using the Amazon SES console, the amount of information you need to
provide depends on whether you choose to send a formatted or raw email.

• To send a formatted email, you need to provide a source address, a destination address,
a message subject, and a message body. Amazon SES automatically assembles a properly
formatted multi-part MIME email message optimized for display by email client software. You
can also specify a reply-to and a return path field.

• To send a raw email, you provide the source address, a destination address, and the message
content, which must contain the body of the message and all header fields that are specified as
required in the Internet Message Format specification (RFC 5322).

Email format 27

https://www.ietf.org/rfc/rfc5322.txt
https://www.ietf.org/rfc/rfc5322.txt

Amazon Simple Email Service Developer Guide

Understanding email deliverability in Amazon SES

You want your recipients to read your emails, find them valuable, and not label them as spam.
In other words, you want to maximize email deliverability—the percentage of your emails that
arrive in your recipients' inboxes. This topic reviews email deliverability concepts that you should be
familiar with when you use Amazon SES.

To maximize email deliverability, you need to understand email delivery issues, proactively take
steps to prevent them, stay informed of the status of the emails that you send, and then improve
your email-sending program, if necessary, to further increase the likelihood of successful deliveries.
The following sections review the concepts behind these steps and how Amazon SES helps you
through the process.

Understand email delivery issues

In most cases, your messages are delivered successfully to recipients who expect them. In some
cases, however, a delivery might fail, or a recipient might not want to receive the mail that you are

Understanding deliverability 28

Amazon Simple Email Service Developer Guide

sending. Bounces, complaints, and the suppression list are related to these delivery issues and are
described in the following sections.

Bounce

If your recipient's receiver (for example, an email provider) fails to deliver your message to the
recipient, the receiver bounces the message back to Amazon SES. Amazon SES then notifies you
of the bounced email through email or through Amazon Simple Notification Service (Amazon
SNS), depending on how you have your system set up. For more information, see Setting up event
notifications for Amazon SES.

There are hard bounces and soft bounces, as follows:

• Hard bounce – A persistent email delivery failure. For example, the mailbox does not exist.
Amazon SES does not retry hard bounces, with the exception of DNS lookup failures. We strongly
recommend that you do not make repeated delivery attempts to email addresses that hard
bounce.

• Soft bounce – A temporary email delivery failure. For example, the mailbox is full, there are too
many connections (also called throttling), or the connection times out. Amazon SES retries soft
bounces multiple times. If the email still cannot be delivered, then Amazon SES stops retrying it.

Amazon SES notifies you of hard bounces and soft bounces that will no longer be retried. However,
only hard bounces count toward your bounce rate and the bounce metric that you retrieve using
the Amazon SES console or the GetSendStatistics API.

Bounces can also be synchronous or asynchronous. A synchronous bounce occurs while the email
servers of the sender and receiver are actively communicating. An asynchronous bounce occurs
when a receiver initially accepts an email message for delivery and then subsequently fails to
deliver it to the recipient.

Complaint

Most email client programs provide a button labeled "Mark as Spam," or similar, which moves the
message to a spam folder, and forwards it to the email provider. Additionally, most email providers
maintain an abuse address (e.g., abuse@example.net), where users can forward unwanted email
messages and request that the email provider take action to prevent them. In both of these cases,
the recipient is making a complaint. If the email provider concludes that you are a spammer, and
Amazon SES has a feedback loop set up with the email provider, then the email provider will send
the complaint back to Amazon SES. When Amazon SES receives such a complaint, it forwards the

Understanding deliverability 29

Amazon Simple Email Service Developer Guide

complaint to you either by email or by using an Amazon SNS notification, depending on how you
have your system set up. For more information, see Setting up event notifications for Amazon SES.
We recommend that you do not make repeated delivery attempts to email addresses that generate
complaints.

Global suppression list

The Amazon SES global suppression list, owned and managed by SES to protect the reputation of
addresses in the SES shared IP pool, contains recipient email addresses that have recently caused a
hard bounce for any SES customer. If you try to send an email through SES to an address that is on
the suppression list, the call to SES succeeds, but SES treats the email as a hard bounce instead of
attempting to send it. Like any hard bounce, suppression list bounces count towards your sending
quota and your bounce rate. An email address can remain on the suppression list for up to 14 days.
If you're sure that the email address that you're trying to send to is valid, you can override the
global suppression list by making sure the address isn't listed in your account-level suppression list
and SES will still attempt delivery, but if it bounces, the bounce will affect your own reputation, but
no one else will get bounces because they can’t send to that email address if they aren’t using their
own account-level suppression list. To understand more about the account-level suppression list,
see Using the Amazon SES account-level suppression list.

Be proactive

One of the biggest issues with email on the Internet is unsolicited bulk email (spam). Email
providers take extensive measures to prevent their customers from receiving spam. Amazon SES
also takes steps to decrease the likelihood that email providers consider your email to be spam.
Amazon SES uses verification, authentication, sending quotas, and content filtering. Amazon
SES also maintains a trusted reputation with email providers and requires you to send high-
quality email. Amazon SES does some of those things for you automatically (for example, content
filtering); in other cases, it provides the tools (such as authentication), or guides you in the right
direction (sending quotas). The following sections provide more information about each concept.

Verification

Unfortunately, it's possible for a spammer to falsify an email header and spoof the originating
email address so that it appears as though the email originated from a different source. To
maintain trust between email providers and Amazon SES, Amazon SES needs to ensure that its
senders are who they say they are. You are therefore required to verify all email addresses from
which you send emails through Amazon SES to protect your sending identity. You can verify email
addresses by using the Amazon SES console or by using the Amazon SES API. You can also verify

Understanding deliverability 30

Amazon Simple Email Service Developer Guide

entire domains. For more information, see Creating an email address identity and Creating a
domain identity.

If your account is still in the Amazon SES sandbox, you also need to verify all recipient addresses
except for addresses provided by the Amazon SES mailbox simulator. For information about
getting out of the sandbox, see Request production access (Moving out of the Amazon SES
sandbox). For more information about the mailbox simulator, see Using the mailbox simulator
manually.

Authentication

Authentication is another way that you can indicate to email providers that you are who you
say you are. When you authenticate an email, you provide evidence that you are the owner
of the account and that your emails have not been modified in transit. In some cases, email
providers refuse to forward email that is not authenticated. Amazon SES supports two methods of
authentication: Sender Policy Framework (SPF) and DomainKeys Identified Mail (DKIM). For more
information, see Configuring identities in Amazon SES.

Sending quotas

If an email provider detects sudden, unexpected spikes in the volume or rate of your emails, the
email provider might suspect you are a spammer and block your emails. Therefore, every Amazon
SES account has a set of sending quotas. These quotas restrict the number of emails that you can
send in a 24-hour period, and the number that you can send per second. These sending quotas
help protect your trustworthiness with email providers.

In most cases, if you're a brand-new user, Amazon SES lets you send a small amount of email each
day. If the mail that you send is acceptable to email providers, we automatically increase this quota.
Your sending quotas steadily increase over time so that you can send larger quantities of email at
faster rates. You can also create an SES Sending Limits Increase case to request additional quota
increases.

For more information about sending quotas and how to increase them, see Managing your Amazon
SES sending limits.

Content filtering

Many email providers use content filtering to determine if incoming emails are spam. Content
filters look for questionable content and block the email if the email fits the profile of spam.
Amazon SES uses content filters also. When your application sends a request to Amazon SES,

Understanding deliverability 31

https://aws.amazon.com/ses/extendedaccessrequest/

Amazon Simple Email Service Developer Guide

Amazon SES assembles an email message on your behalf and then scans the message header
and body to determine if they contain content that email providers might consider spam. If your
messages look like spam to the content filters that Amazon SES uses, your reputation with Amazon
SES will be negatively affected.

Amazon SES also scans all messages for viruses. If a message contains a virus, Amazon SES doesn't
attempt to deliver the message to the recipient's mail server.

Reputation

When it comes to email sending, reputation—a measure of confidence that an IP address, email
address, or sending domain is not the source of spam—is important. Amazon SES maintains a
strong reputation with email providers so that they deliver your email to your recipients' inboxes.
Similarly, you need to maintain a trusted reputation with Amazon SES. You build your reputation
with Amazon SES by sending high-quality content. When you send high-quality content, your
reputation becomes more trusted over time and Amazon SES increases your sending quotas.
Excessive bounces and complaints negatively impact your reputation and can cause Amazon SES to
reduce the sending quotas for your account, or terminate your Amazon SES account.

One way to help maintain your reputation is to use the mailbox simulator when you test your
system, instead of sending to email addresses that you have created yourself. Emails to the mailbox
simulator do not count toward your bounce and complaint metrics. For more information about
the mailbox simulator, see Using the mailbox simulator manually.

High-quality email

High-quality email is email that recipients find valuable and want to receive. Value means different
things to different recipients and can come in the form of offers, order confirmations, receipts,
newsletters, etc. Ultimately, your deliverability rests on the quality of the emails that you send
because email providers block emails that they consider to be low quality.

Stay informed

Whether your deliveries fail, your recipients complain about your emails, or Amazon SES
successfully delivers an email to a recipient's mail server, Amazon SES helps you to track down the
issue by providing notifications and by enabling you to easily monitor your usage statistics.

Notifications

When an email bounces, the email provider notifies Amazon SES, and Amazon SES notifies
you. Amazon SES notifies you of hard bounces and soft bounces that Amazon SES will no

Understanding deliverability 32

Amazon Simple Email Service Developer Guide

longer retry. Many email providers also forward complaints, and Amazon SES sets up complaint
feedback loops with the major email providers so you don't have to. Amazon SES can notify you
of bounces, complaints, and successful deliveries in two ways: you can set your account up to
receive notifications through Amazon SNS, or you can receive notifications by email (bounces and
complaints only). For more information, see Setting up event notifications for Amazon SES.

Usage statistics

Amazon SES provides usage statistics so that you can view your failed deliveries to determine and
resolve the root causes. You can view your usage statistics by using the Amazon SES console or by
calling the Amazon SES API. You can view how many deliveries, bounces, complaints, and virus-
infected rejected emails you have, and you can also view your sending quotas to ensure that you
stay within them.

Improve your email-sending program

If you are getting large numbers of bounces and complaints, it's time to reassess your email-
sending strategy. Remember that excessive bounces, complaints, and attempts to send low-quality
email constitute abuse and put your AWS account at risk of termination. Ultimately, you need to
be sure that you use Amazon SES to send high-quality emails and to only send emails to recipients
who want to receive them.

At-least-once delivery

Amazon SES stores copies of your messages on multiple servers for redundancy and high
availability. On rare occasions, one of the servers that stores a copy of a message might be
unavailable when you receive or delete a message.

If this occurs, the copy of the message isn't deleted on that unavailable server, and you might get
that message copy again when you receive messages. Design your applications to be idempotent
(they should not be affected adversely when processing the same message more than once).

Best practices for sending email using Amazon SES

The way you manage email communications with your customers is referred to as your email
program. There are several factors that can lead to the success or failure of your email program;
these factors may seem confusing or mysterious at first. However, by understanding how email
is delivered, and by following certain best practices, you can increase the chances of your email
successfully reaching your customers' inboxes.

Email best practices 33

Amazon Simple Email Service Developer Guide

Topics

• Email program success metrics

• Tips and best practices

Email program success metrics

There are several metrics that help measure the success of your email program.

This section provides information about the following metrics:

• Bounces

• Complaints

• Message quality

Bounces

A bounce occurs when an email cannot be delivered to the intended recipient. There are two
types of bounces: hard bounces and soft bounces. A hard bounce occurs when the email cannot be
delivered because of a persistent issue, such as when an email address doesn't exist. A soft bounce
occurs when a temporary issue prevents the delivery of an email. Soft bounces can occur when
a recipient's inbox is full, or when the receiving server is temporarily unavailable. Amazon SES
handles soft bounces by attempting to re-deliver soft bounced emails for a certain period of time.

It's essential that you monitor the number of hard bounces in your email program, and that you
remove hard-bouncing email addresses from your recipient lists. When email receivers detect a
high rate of hard bounces, they assume that you don't know your recipients well. As a result, a high
hard bounce rate can negatively impact the deliverability of your email messages.

The following guidelines can help you avoid bounces and improve your sender reputation:

• Try to keep your hard bounce rate below 5%. The fewer hard bounces in your email program,
the more likely ISPs will see your messages as legitimate and valuable. This rate should be
considered a reasonable and attainable goal, but isn't a universal rule across all ISPs.

• Never rent or buy email lists. These lists may contain large numbers of invalid addresses, which
could cause your hard bounce rates to increase dramatically. Furthermore, these lists could
contain spam traps—email addresses specifically used to catch illegitimate senders. If your
messages land in a spam trap, your delivery rates and sender reputation could be irrevocably
damaged.

Email best practices 34

Amazon Simple Email Service Developer Guide

• Keep your list up to date. If you haven't emailed your recipients in a long time, try to validate
your customers' statuses through some other means (such as website login activity or purchase
history).

• If you don't have a method of verifying your customers' statuses, consider sending a win-back
email. A typical win-back email mentions that you haven't heard from the customer in a while,
and encourages the customer to confirm that they still want to receive your email. After sending
a win-back email, purge all of the recipients who did not respond from your lists.

When you receive bounces, it's vital that you respond to them appropriately by observing the
following rules:

• If an email address hard bounces, immediately remove that address from your lists. Do not
attempt to re-send messages to hard-bouncing addresses. Repeated hard bounces add up, and
ultimately harm your reputation with the recipient's ISP.

• Make sure that the address you use to receive bounce notifications is able to receive email. For
more information about setting up bounce and complaint notifications, see Setting up event
notifications for Amazon SES.

• If your inbound email comes to you from an ISP, instead of through your own internal servers,
an influx of bounce notifications can land in your spam folder or be dropped completely. Ideally,
you should not use a hosted email address to receive bounces. If you must, however, then check
the spam folder often, and don't mark the bounce messages as spam. In Amazon SES, you can
specify the address that bounce notifications are sent to.

• Usually, a bounce provides the address of the mailbox refusing delivery. However, if you need
more granular data to map a recipient address to a particular email campaign, include an X-
header with a value you can trace back to your internal tracking system. For more information,
see Amazon SES header fields.

Complaints

A complaint occurs when an email recipient clicks the "Mark as Spam" (or equivalent) button
in their web-based email client. If you accumulate a large number of these complaints, the ISP
assumes that you are sending spam. This has a negative impact on your deliverability rate and
sender reputation. Some, but not all, ISPs will notify you when a complaint is reported; this is
known as a feedback loop. Amazon SES automatically forwards complaints from ISPs that offer
feedback loops to you.

Email best practices 35

Amazon Simple Email Service Developer Guide

The following guidelines can help you avoid complaints and improve your sender reputation:

• Try to keep your complaint rate below 0.1%. The fewer complaints in your email program,
the more likely ISPs will see your messages as legitimate and valuable. This rate should be
considered a reasonable and attainable goal, but isn't a universal rule across all ISPs.

• If a customer complains about a marketing email, you should immediately stop sending that
customer marketing emails. However, if your email program also includes other types of emails
(such as notification or transactional emails), it may be acceptable to continue to send those
types of messages to the recipient who issued the complaint.

• As with hard bounces, if you have a list that you haven't sent email to in a while, ensure that
your recipients understand why they're receiving your messages. We recommend that you send a
welcome message reminding them of who you are and why you're contacting them.

When you receive complaints, it's vital that you respond to them appropriately by observing the
following rules:

• Make sure that the address you use to receive complaint notifications is able to receive email.
For more information about setting up bounce and complaint notifications, see Setting up event
notifications for Amazon SES.

• Make sure that your complaint notifications aren't being marked as spam by your ISP or mail
system.

• Complaint notifications usually contain the body of the email; this is different from bounce
notifications, which only include the email headers. However, in complaint notifications, the
email address of the individual who issued the complaint is removed. Use custom X-headers or
special identifiers embedded in the email body so that you can identify the email address that
issued the complaint. This technique makes it easier to identify addresses that complained so
that you can remove them from your recipient lists.

Message quality

Email receivers use content filters to detect certain attributes in your messages to identify whether
your message is legitimate. These content filters automatically review the content of your
messages to identify common traits of unwanted to malicious messages. Amazon SES uses content
filtering technologies to help detect and block messages that contain malware before they are
sent.

Email best practices 36

Amazon Simple Email Service Developer Guide

If an email receiver's content filters determine that your message contains the characteristics of
spam or malicious email, your message will most likely be flagged and diverted from recipients'
inboxes.

Remember the following when designing your email:

• Modern content filters are intelligent, continuously adapting and changing. They don't rely on
a predefined set of rules. Third-party services such as ReturnPath or Litmus can help identify
content in your email that may trigger content filters.

• If your email contains links, check the URLs for those links against DNS-based Blackhole Lists
(DNSBLs), such as those found at URIBL.com and SURBL.org.

• Avoid using link shorteners. Malicious senders may use link shorteners to hide the actual
destination of a link. When ISPs notice that link shortening services—even the most reputable
ones—are being used for nefarious purposes, they may deny access to those services altogether.
If your email contains a link to a link shortening service that has been added to a deny list, it
won't reach your customers' inboxes, and the success of your email campaign suffers.

• Test every link in your email to ensure that it points to the intended page.

• Make sure your website includes Privacy Policy and Terms of Use documents, and that these
documents are up to date. It's a good practice to link to these documents from each email you
send. Providing links to these documents demonstrates that you have nothing to hide from your
customers, which can help build a relationship of trust.

• If you plan to send high-frequency content (such as "daily deals" messages), ensure that the
content of your email is different with each deployment. When you send messages with high
frequency, you must ensure that those messages are timely and relevant, rather than repetitive
and annoying.

Tips and best practices

Even when you have your customers' best interests in mind, you may still encounter situations that
impact the deliverability of your messages. The following sections contain recommendations to
help ensure that your email communications reach your intended audience.

General recommendations

• Put yourself in your customer's shoes. Ask yourself if the message you are sending is something
you would want to receive in your own inbox. If the answer is anything less than an enthusiastic
"yes!" then you probably shouldn't send it.

Email best practices 37

https://returnpath.com/
https://litmus.com/
http://uribl.com/
http://www.surbl.org/

Amazon Simple Email Service Developer Guide

• Some industries have a reputation for poor quality or even malicious email practices. If you are
involved in the following industries, you must monitor your reputation very closely and resolve
issues immediately:

• Home mortgage

• Credit

• Pharmaceuticals and supplements

• Alcohol and tobacco

• Adult entertainment

• Casinos and gambling

• Work-from-home programs

Domain and "From" address considerations

• Think carefully about the addresses you send email from. The "From" address is one of the first
pieces of information your recipients see, and therefore can leave a lasting first impression.
Additionally, some ISPs associate your reputation with your "From" address.

• Consider using subdomains for different types of communications. For example, assume you
are sending email from the domain example.com, and you plan to send both marketing and
transactional messages. Rather than sending all of your messages from example.com, send your
marketing messages from a subdomain such as marketing.example.com, and your transactional
messages from a subdomain such as orders.example.com. Unique subdomains develop their own
reputations. Using subdomains reduces the risk of damage to your reputation if, for example,
your marketing communications land in a spam trap or trigger a content filter.

• If you plan to send a large number of messages, don't send those messages from an ISP-based
address such as sender@hotmail.com. If an ISP notices a large volume of messages coming
from sender@hotmail.com, that email is treated differently than an email that comes from an
outbound email sending domain that you own.

• Work with your domain registrar to ensure that the WHOIS information for your domain is
accurate. Maintaining an honest and up-to-date WHOIS record demonstrates that you value
transparency, and allows users to quickly identify whether or not your domain is legitimate.

• Avoid using a no-reply address, such as no-reply@example.com, as your "From" or "Reply-to"
address. Using a no-reply@ email address sends your recipients a clear message: that you aren't
offering them a way to contact you, and that you're not interested in their feedback.

Email best practices 38

Amazon Simple Email Service Developer Guide

Authentication

• Authenticate your domain with SPF and SenderID. These authentication methods confirm to
email recipients that each email you send is actually from the domain it claims to be from.

• Sign your outbound mail with DKIM. This step confirms to recipients that the content has not
been changed in transit between sender and receiver.

• You can test your authentication settings for both SPF and DKIM by sending an email to an
ISP-based email address that you own, such as a personal Gmail or Hotmail account, and then
viewing the message's headers. The headers indicate whether your attempts to authenticate and
sign the message were successful.

Building and maintaining your lists

• Implement a double opt-in strategy. When users sign up to receive email from you, send them a
message with a confirmation link, and do not start sending them email until they confirm their
address by clicking that link. A double opt-in strategy helps reduce the number of hard bounces
resulting from typographical errors.

• When collecting email addresses with a web-based form, perform minimal validation on those
addresses upon submission. For example, ensure that the addresses you collect are well-formed
(that is, they are in the format recipient@example.com), and that they refer to domains with valid
MX records.

• Use caution when allowing user-defined input to be passed to Amazon SES unchecked. Forums
registrations and form submissions present unique risks because the content is completely user-
generated, and spammers can fill out forms with their own content. It's your responsibility to
ensure that you only send email with high-quality content.

• It is highly unlikely that a standard alias (such as postmaster@, abuse@, or noc@) will ever
sign up for your email intentionally. Ensure that you are only sending messages to real people
who actually want to receive them. This rule is especially true for standard aliases, which are
customarily reserved for email watchdogs. These aliases can be maliciously added to your list as
a form of sabotage, in order to damage your reputation.

Compliance

• Be aware of the email marketing and anti-spam laws and regulations in the countries and regions
you send email to. You're responsible for ensuring that the email you send complies with these

Email best practices 39

Amazon Simple Email Service Developer Guide

laws. This guide doesn't cover these laws, so it's important that you research them. For a list of
laws, see Email Spam Legislation by Country on Wikipedia.

• Always consult an attorney to obtain legal advice.

Using Amazon SES with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Working with AWS SDKs 40

https://en.wikipedia.org/wiki/Email_spam_legislation_by_country
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon Simple Email Service Developer Guide

For examples specific to Amazon SES, see Code examples for Amazon SES using AWS SDKs.

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 41

Amazon Simple Email Service Developer Guide

Getting started with Amazon Simple Email Service

This chapter guides you through tasks required for initial set up of Amazon SES as well as tutorials
to help you get started.

Topics

• Setting up Amazon Simple Email Service

• Migrating to Amazon SES from another email-sending solution

• Request production access (Moving out of the Amazon SES sandbox)

Setting up Amazon Simple Email Service

Before you start using Amazon SES, you must complete the following tasks.

Tasks

• Sign up for AWS

• Set up your SES account

• Grant programmatic access (To interact with SES outside of the console)

• Download an AWS SDK (For using the SES APIs)

Sign up for AWS

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Setting up 42

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Simple Email Service Developer Guide

Set up your SES account

Get started with SES by verifying an email address and sending domain so that you can start
sending email through SES and request production access for your account by using the SES
account set up wizard.

Using the SES account set up wizard to set up your account

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. Select Get started from the SES console home page and the wizard will walk you through the
steps of setting up your SES account.

The SES account set up wizard will only be presented if you have not yet created any identities (email
address or domain) in SES.

Grant programmatic access (To interact with SES outside of the
console)

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS

Set up your SES account 43

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

Amazon Simple Email Service Developer Guide

Which user needs
programmatic access?

To By

Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Grant programmatic access (To interact with SES outside of the console) 44

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Simple Email Service Developer Guide

Download an AWS SDK (For using the SES APIs)

To call the SES APIs without having to handle low-level details like assembling raw HTTP requests,
you can use an AWS SDK. The AWS SDKs provide functions and data types that encapsulate the
functionality of SES and other AWS services. To download an AWS SDK, go to SDKs. After you
download the SDK, create a shared credentials file and specify your AWS access keys.

Migrating to Amazon SES from another email-sending solution

This topic provides an overview of the steps that you have to take if you want to move your email-
sending solution to Amazon SES from a solution that's hosted on-premises, or from one hosted on
an Amazon EC2 instance.

Topics in this section:

• Step 1. Verify your domain

• Step 2. Request production access

• Step 3. Configure domain authentication systems

• Step 4. Generate your SMTP credentials

• Step 5. Connect to an SMTP endpoint

• Next steps

Step 1. Verify your domain

Before you can use Amazon SES to send email, you have to verify the identities that you plan to
send email from. In Amazon SES, an identity can be an email address or an entire domain. When
you verify a domain, you can use Amazon SES to send email from any address on that domain. For
more information about verifying a domain, see Creating a domain identity.

Step 2. Request production access

When you first start using Amazon SES, your account is in a sandbox environment. While your
account is in the sandbox, you can only send email to addresses that you've verified. Additionally,
there are restrictions on the number of messages that you can send per day, and the number that
you can send per second. For more information about requesting production access, see Request
production access (Moving out of the Amazon SES sandbox).

Download an AWS SDK (For using the SES APIs) 45

https://aws.amazon.com/tools/#sdk
https://docs.aws.amazon.com/credref/latest/refdocs/creds-config-files.html

Amazon Simple Email Service Developer Guide

Step 3. Configure domain authentication systems

You can configure your domain to use authentication systems such as DKIM and SPF. This step is
technically optional. However, by setting up either DKIM or SPF (or both) for your domain, you can
improve the deliverability of your emails, and increase the amount of trust that your customers
have in you. For more information about setting up SPF, see Authenticating Email with SPF in
Amazon SES. For more information about setting up DKIM, see Authenticating Email with DKIM in
Amazon SES.

Step 4. Generate your SMTP credentials

If you plan to send email using an application that uses SMTP, you have to generate SMTP
credentials. Your SMTP credentials are different from your regular AWS credentials. These
credentials are also unique in each AWS Region. For more information about generating your SMTP
credentials, see Obtaining Amazon SES SMTP credentials.

Step 5. Connect to an SMTP endpoint

If you use a message transfer agent such as postfix or sendmail, you have to update the
configuration for that application to refer to an Amazon SES SMTP endpoint. For a complete
list of SMTP endpoints, see Connecting to an Amazon SES SMTP endpoint. Note that the SMTP
credentials that you created in the previous step are associated with a specific AWS Region. You
have to connect to the SMTP endpoint in the region that you created the SMTP credentials in.

Next steps

At this point, you're ready to start sending email using Amazon SES. However, there are a few
optional steps that you can take.

• You can create configuration sets, which are sets of rules that are applied to the emails that
you send. For example, you can use configuration sets to specify where notifications are sent
when an email is delivered, when a recipient opens a message or clicks a link in it, when an
email bounces, and when a recipient marks your email as spam. For more information, see Using
configuration sets in Amazon SES.

• When you send email through Amazon SES, it's important to monitor the bounces and
complaints for your account. Amazon SES includes a reputation metrics console page that you
can use to keep track of the bounces and complaints for your account. For more information, see
Using reputation metrics to track bounce and complaint rates. You can also create CloudWatch

Step 3. Configure domain authentication systems 46

Amazon Simple Email Service Developer Guide

alarms that alert you when these rates get too high. For more information about creating
CloudWatch alarms, see Creating reputation monitoring alarms using CloudWatch.

• Customers who send a large volume of email, or those who simply want to have full control over
the reputations of their IP addresses, can lease dedicated IP addresses for an additional monthly
charge. For more information, see Dedicated IP addresses for Amazon SES.

Request production access (Moving out of the Amazon SES
sandbox)

To help prevent fraud and abuse, and to help protect your reputation as a sender, we apply certain
restrictions to new Amazon SES accounts.

We place all new accounts in the Amazon SES sandbox. The sandbox status for your account is
unique per each AWS Region. While your account is in the sandbox, you can use all of the features
of Amazon SES. However, when your account is in the sandbox, we apply the following restrictions
to your account:

• You can only send mail to verified email addresses and domains, or to the Amazon SES mailbox
simulator.

• You can send a maximum of 200 messages per 24-hour period.

• You can send a maximum of 1 message per second.

• For sending authorization, neither you nor the delegate sender can send email to non-verified
email addresses.

• For account-level suppression, bulk actions and SES API calls related to suppression list
management are disabled.

When your account has moved out of the sandbox and into production, you can send email to any
recipient, regardless of whether the recipient's address or domain is verified. However, you still
have to verify all identities that you use as "From", "Source", "Sender", or "Return-Path" addresses.

Complete the procedures in this section to request that your account be removed from the sandbox
and placed into production.

Request production access 47

Amazon Simple Email Service Developer Guide

Note

• If you have not yet created any identities (email address or domain) in SES, you can skip
the procedures on this page and request production access for your account by using the
SES account set up wizard. See Set up your SES account for instructions on how to access
the wizard.

• If you're using Amazon SES to send email from an Amazon EC2 instance, you might
also need to request that the throttle be removed from port 25 on your Amazon EC2
instance. For more information, see How do I remove the throttle on port 25 from my
EC2 instance? in the AWS Knowledge Center.

To request production access (remove your account from the sandbox) using the AWS
Management Console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. In the navigation panel, choose Account dashboard.

3. In the warning box at the top of the console that says, "Your Amazon SES account is in the
sandbox", on the right-hand side, choose Request production access.

4. In the account details modal, select either the Marketing or Transactional radio button that
best describes the majority of mail you'll be sending.

• Marketing email - Sent on a one-to-many basis to a targeted list of prospects or customers
containing marketing and promotional content such as to make a purchase, download
information, etc.

• Transactional email - Sent on a one-to-one basis unique to each recipient usually triggered
by a user action such as a website purchase, a password reset request, etc.

5. In Website URL, enter the URL of your website to help us better understand the kind of
content you plan on sending.

6. In Use case description, explain how you plan to use Amazon SES to send email. To help us
process your request, you should answer the following questions:

• How do you plan to build or acquire your mailing list?

• How do you plan to handle bounces and complaints?

• How can recipients opt out of receiving email from you?

Request production access 48

https://aws.amazon.com/premiumsupport/knowledge-center/ec2-port-25-throttle/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-port-25-throttle/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• How did you choose the sending rate or sending quota that you specified in this request?

7. In Additional contacts, tell us where you want to receive communications about your account.
This can be a comma-separated list of up to 4 email addresses.

8. In Preferred contact language, choose whether you want to receive communications in
English or Japanese.

9. In Acknowledgement, check the box that you agree to only send email to individuals who've
explicitly requested it and confirm that you have a process in place for handling bounce and
complaint notifications.

10. Choose the Submit request button - a banner will display to confirm your request was
submitted and is currently under review.

Once you submit a review of your account details, you can’t edit your details until the review is
complete. The AWS Support team provides an initial response to your request within 24 hours.

In order to prevent our systems from being used to send unsolicited or malicious content, we have
to consider each request carefully. If we're able to do so, we'll grant your request within this 24-
hour period. However, if we need to obtain additional information from you, it might take longer to
resolve your request. We might not be able to grant your request if your use case doesn't align with
our policies.

Optionally, you can also submit your request for production access using the AWS CLI. Submitting
your request using the AWS CLI is helpful when you want to request production access for a large
number of identities, or when you want to automate the process of setting up Amazon SES.

To request that your account be removed from the Amazon SES sandbox using the AWS CLI

1. Prerequisite: you have to install and configure the AWS CLI. For more information, see the
AWS Command Line Interface User Guide.

2. At the command line, enter the following command:

aws sesv2 put-account-details \
--production-access-enabled \
--mail-type TRANSACTIONAL \
--website-url https://example.com \
--use-case-description "Use case description" \
--additional-contact-email-addresses info@example.com \
--contact-language EN

Request production access 49

https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

In the preceding command, do the following:

a. Replace TRANSACTIONAL with the type of email that you plan to send through Amazon
SES. You can specify either TRANSACTIONAL or PROMOTIONAL. If more than one value
applies, specify the option that applies to the majority of the email that you plan to send.

b. Replace https://example.com with the URL of your website. Providing this information
helps us better understand the type of content that you plan to send.

c. Replace Use case description with a description of how you plan to use Amazon SES
to send email. To help us process your request, you should answer the following questions:

i. How do you plan to build or acquire your mailing list?

ii. How do you plan to handle bounces and complaints?

iii. How can recipients opt out of receiving email from you?

iv. How did you choose the sending rate or sending quota that you specified in this
request?

d. Replace info@example.com with the email addresses where you want to receive
communications about your account. This can be a comma-separated list of up to 4 email
addresses.

e. Replace EN with your preferred language. You can specify EN for English or JA for
Japanese.

Once you submit a review of your account details, you can’t edit your details until the review is
complete. The AWS Support team provides an initial response to your request within 24 hours.

In order to prevent our systems from being used to send unsolicited or malicious content, we have
to consider each request carefully. If we're able to do so, we'll grant your request within this 24-
hour period. However, if we need to obtain additional information from you, it might take longer to
resolve your request. We might not be able to grant your request if your use case doesn't align with
our policies.

Request production access 50

Amazon Simple Email Service Developer Guide

Managing your Amazon SES sending limits

Your Amazon SES account has a set of sending quotas that regulate the number of email messages
that you can send and the rate at which you can send them. Sending quotas benefit all Amazon
SES customers because they help to maintain the trusted relationship between Amazon SES and
email providers. Sending quotas help you to gradually ramp up your sending activity and decrease
the likelihood that email providers block your emails because of sudden, unexpected spikes in your
email sending volume or rate.

The following quotas apply to sending email through Amazon SES:

• Sending quota—The maximum number of emails that you can send in a 24-hour period. This
quota is calculated on a rolling time period. Every time you try to send an email, Amazon SES
determines the number of emails that you sent in the previous 24 hours. As long as the total
number of emails that you have sent in the past 24 hours is less than this daily maximum, your
send request is accepted and your email is sent.

If sending a message would exceed the daily maximum for your account, your call to Amazon
SES is rejected.

• Sending rate—The maximum number of emails that Amazon SES can accept from your account
each second. You can exceed this quota for short bursts, but not for sustained periods of time.

Note

The rate at which Amazon SES accepts your messages can be less than the maximum
send rate for your account.

• Maximum message size (MB)—The maximum email size that you can send. This includes any
images and attachments that are part of the email after MIME encoding. For example, if you
attach a 5MB file, the attachment size in the email after MIME encoding will be ~6.85MB (about
137% of the original file size).

Note

We recommend you upload your attachments to cloud drives and include the URL of
cloud drive attachment to reduce email size and improve deliverability. SES cannot

51

Amazon Simple Email Service Developer Guide

guarantee that large emails will end up in the recipient mailbox as different mail servers
will have varying size based policies.

Your Amazon SES sending quotas are separate for each AWS Region. For information about using
Amazon SES in multiple AWS Regions, see Regions and Amazon SES.

When your account is in the Amazon SES sandbox, you can only send 200 messages per 24-hour
period, and your maximum sending rate is one message per second. When you submit a request to
have your account removed from the sandbox, you can also request that your quotas are increased
at the same time. For more information about having your account removed from the sandbox, see
Request production access (Moving out of the Amazon SES sandbox).

When your account has been removed from the sandbox, you can request additional quota
increases at any time by creating a new case in the AWS Support Center. For more information, see
Increasing your Amazon SES sending quotas.

Note

Sending quotas are based on recipients rather than on messages. For example, an email
that has 10 recipients counts as 10 against your quota. However, we don't recommend
that you send an email to multiple recipients in a single call to the SendEmail API
operation, because if the call fails, the entire email is rejected. We recommend that you call
SendEmail once for every recipient.

• To increase your sending quotas, see Increasing your Amazon SES sending quotas.

• To monitor your sending quotas by using the Amazon SES console or the Amazon SES API, see
Monitoring your Amazon SES sending quotas.

• For information about the errors your application receives when you reach your sending quotas,
see Errors related to the sending quotas for your Amazon SES account.

Increasing your Amazon SES sending quotas

Your account has the following quotas per your current region that can be increased.

Increasing your sending quotas 52

Amazon Simple Email Service Developer Guide

Resource Default
quota

Description

Sending quota 200 Maximum number of emails that you can send
in a 24-hour period for this account in the
current AWS Region.

Sending rate 1 Maximum number of emails that Amazon SES
can accept each second for this account in the
current AWS Region.

Automatically increased sending quotas

When your account is out of the sandbox and you're sending high-quality production email,
we might automatically increase the sending quotas for your account. Often, we automatically
increase these quotas before you actually need them to be increased.

To qualify for automatic rate increases, all of the following statements have to be true:

• You send high-quality content that your recipients want to receive –Send content that
recipients want and expect. Stop sending email to customers who don't open your email.

• You send actual production content – Sending test messages to fake email addresses can have
a negative effect on your bounce and complaint rates. Also, sending messages only to internal
recipients makes it difficult to determine if you're sending content that customers want to
receive. However, when you send your production messages to non-internal recipients, we can
accurately assess your email-sending practices.

• You send near your current quota – To qualify for an automatic quota increase, your daily email
volume should regularly approach the daily maximum for your account without exceeding it.

• You have low bounce and complaint rates – Minimize the number of bounces and complaints
that you receive. Having a high number of bounces and complaints can have a negative impact
on your sending quotas.

User requested increased sending quotas

If your current sending quotas aren't adequate for your needs and we haven't automatically
increased them, you can request an increase:

Automatically increased sending quotas 53

Amazon Simple Email Service Developer Guide

• Sending quota or Sending rate – Increase requests for either of these can be submitted through
the AWS Service Quotas console.

To request an increase on your Amazon SES sending quotas using the Service Quotas console.

1. Open the Service Quotas console.

2. Select the region that you want the increase for by using the dropdown in the upper right-
hand corner of the console (next to your account number).

3. In the navigation pane, choose AWS services.

4. Choose Amazon Simple Email Service (SES).

5. Choose a quota, and follow the directions to request a quota increase.

AWS Support team SLA for increase requests types

In order to prevent our systems from being used to send unsolicited or malicious content,
we have to consider each request carefully. If we're able to do so, we'll grant your request
within the specified times listed below for the type of increase requested. However, if
we need to obtain additional information from you, it might take longer to resolve your
request. We reserve the right not to grant your request if your use case doesn't align with
our policies.

• Sending quota or Sending rate: Up to 24 hours.

Note

While the Service Quotas console is available in many different languages, the actual
support is only provided in English.

Monitoring your Amazon SES sending quotas

You can monitor your sending quotas by using the Amazon SES console or through the Amazon
SES API, whether by calling the Query (HTTPS) interface directly or indirectly through an AWS SDK,
the AWS Command Line Interface, or the AWS Tools for Windows PowerShell.

Monitoring your sending quotas 54

https://console.aws.amazon.com/servicequotas/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/

Amazon Simple Email Service Developer Guide

Important

We recommend that you frequently check your sending statistics to ensure that you are not
close to your sending quotas. If you are close to your sending quotas, see Increasing your
Amazon SES sending quotas for information about how to increase them. Don't wait until
you reach your sending quotas to consider increasing them.

Monitoring your sending quotas using the Amazon SES console

The following procedure shows you how to view your sending quotas using the Amazon SES
console.

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, choose Account dashboard. Your sending quotas are shown under
Sending Limits. Total emails sent, remaining sends, and percentage of sending quota used is
displayed under Daily email usage.

3. To update the display, select the refresh icon in the upper right-hand corner of the Daily email
usage box.

Monitoring your sending quotas using the Amazon SES console 55

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Monitoring your sending quotas using the Amazon SES API

The Amazon SES API provides the GetSendQuota action, which returns your sending quotas.
When you call GetSendQuota action, you receive the following information:

• Number of emails you have sent during the past 24 hours

• Sending quota for the current 24-hour period

• Maximum send rate

Note

For a description of GetSendQuota, see Amazon Simple Email Service API Reference.

Errors related to the sending quotas for your Amazon SES
account

If you attempt to send an email after reaching your daily sending quota (the maximum amount
of email you can send in a 24-hour period) or your maximum sending rate (the maximum number
of messages you can send per second), Amazon SES drops the message and doesn't attempt to
redeliver it. Amazon SES also provides an error message that explains the issue. The way that
Amazon SES produces this error message depends on how you attempted to send the email. This
topic includes information about the messages you receive through the Amazon SES API and
through the SMTP interface.

For a technique that you can use when you reach your maximum send rate, see How to handle a
"Throttling – Maximum sending rate exceeded" error on the AWS Messaging and Targeting Blog.

Reaching sending limits with the Amazon SES API

If you attempt to send an email by using the Amazon SES API (or an AWS SDK), but you've already
exceeded your account's sending limits, the API produces a ThrottlingException error. The
error message includes one of the following messages:

• Daily message quota exceeded

• Maximum sending rate exceeded

Monitoring your sending quotas using the Amazon SES API 56

https://docs.aws.amazon.com/ses/latest/APIReference/
https://aws.amazon.com//blogs/messaging-and-targeting/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/
https://aws.amazon.com//blogs/messaging-and-targeting/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/

Amazon Simple Email Service Developer Guide

If you encounter a throttling error, you should program your application to wait for an interval of
up to 10 minutes, and then retry the send request.

Reaching sending limits with SMTP

If you attempt to send an email by using the Amazon SES SMTP interface, but you've already
exceeded your account's sending limits, your SMTP client might display one of the following errors:

• 454 Throttling failure: Maximum sending rate exceeded

• 454 Throttling failure: Daily message quota exceeded

Different SMTP clients handle these errors in different ways.

Reaching sending limits with SMTP 57

Amazon Simple Email Service Developer Guide

Set up email sending with Amazon SES

You can send an email with Amazon Simple Email Service (Amazon SES) using the Amazon SES
console, the Amazon SES Simple Mail Transfer Protocol (SMTP) interface, or the Amazon SES API.
You typically use the console to send test emails and manage your sending activity. To send bulk
emails, you use either the SMTP interface or the API. For information about Amazon SES email
pricing, see Amazon SES Pricing.

• If you want to use an SMTP-enabled software package, application, or programming language
to send email through Amazon SES, or integrate Amazon SES with your existing mail server, use
the Amazon SES SMTP interface. For more information, see Sending emails programmatically
through the Amazon SES SMTP interface.

• If you want to call Amazon SES by using raw HTTP requests, use the Amazon SES API. For more
information, see Using the Amazon SES API to send email.

Important

When you send an email to multiple recipients (recipients are "To", "CC", and "BCC"
addresses) and the call to Amazon SES fails, the entire email is rejected and none of the
recipients will receive the intended email. Therefore, we recommend that you send an email
to one recipient at a time.

Using the Amazon SES SMTP interface to send email

To send production email through Amazon SES, you can use the Simple Mail Transfer Protocol
(SMTP) interface or the Amazon SES API. For more information about the Amazon SES API, see
Using the Amazon SES API to send email. This section describes the SMTP interface.

Amazon SES sends email using SMTP, which is the most common email protocol on the internet.
You can send email through Amazon SES by using a variety of SMTP-enabled programming
languages and software to connect to the Amazon SES SMTP interface. This section explains how
to get your Amazon SES SMTP credentials, how to send email by using the SMTP interface, and
how to configure several pieces of software and mail servers to use Amazon SES for email sending.

For solutions to common problems that you might encounter when you use Amazon SES through
its SMTP interface, see Amazon SES SMTP issues.

Using the SMTP interface 58

https://aws.amazon.com/ses/pricing

Amazon Simple Email Service Developer Guide

Requirements to send email over SMTP

To send email using the Amazon SES SMTP interface, you need the following:

• The SMTP endpoint address. For a list of Amazon SES SMTP endpoints, see Connecting to an
Amazon SES SMTP endpoint.

• The SMTP interface port number. The port number varies with the connection method. For more
information, see Connecting to an Amazon SES SMTP endpoint.

• An SMTP user name and password. SMTP credentials are unique to each AWS Region. If you plan
to use the SMTP interface to send email in multiple AWS Regions, you need SMTP credentials for
each Region.

Important

Your SMTP credentials aren't identical to your AWS access keys or the credentials that
you use to sign in to the Amazon SES console. For information about how to generate
your SMTP credentials, see Obtaining Amazon SES SMTP credentials.

• Client software that can communicate using Transport Layer Security (TLS). For more
information, see Connecting to an Amazon SES SMTP endpoint.

• An email address that you've verified with Amazon SES. For more information, see Verified
identities in Amazon SES.

• Increased sending quotas, if you want to send large quantities of email. For more information,
see Managing your Amazon SES sending limits.

Methods to send email over SMTP

You can send email over SMTP through any of the following methods:

• To configure SMTP-enabled software to send email through the Amazon SES SMTP interface, see
Sending email through Amazon SES using software packages.

• To program an application to send email through Amazon SES, see Sending emails
programmatically through the Amazon SES SMTP interface.

• To configure your existing email server to send all of your outgoing mail through Amazon SES,
see Integrating Amazon SES with your existing email server.

Requirements to send email over SMTP 59

Amazon Simple Email Service Developer Guide

• To interact with the Amazon SES SMTP interface using the command line, which can be useful
for testing, see Testing your connection to the Amazon SES SMTP interface using the command
line.

For a list of SMTP response codes, see SMTP response codes returned by Amazon SES.

Email information to provide

When you access Amazon SES through the SMTP interface, your SMTP client application assembles
the message, so the information you need to provide depends on the application that you're using.
At a minimum, the SMTP exchange between a client and a server requires the following:

• a source address

• a destination address

• message data

If you're using the SMTP interface and have feedback forwarding enabled, then your bounces,
complaints, and delivery notifications are sent to the "MAIL FROM" address. Any "Reply-To" address
that you specify isn't used.

Obtaining Amazon SES SMTP credentials

You need Amazon SES SMTP credentials to access the SES SMTP interface.

The credentials that you use to send email through the SES SMTP interface are unique to each
AWS Region. If you use the SES SMTP interface to send email in more than one Region, you must
generate a set of SMTP credentials for each Region that you plan to use.

Your SMTP password is different from your AWS secret access key. For more information about
credentials, see Types of Amazon SES credentials.

Note

SMTP endpoints are not currently available in Africa (Cape Town), Asia Pacific (Jakarta),
Europe (Milan), Israel (Tel Aviv), and Middle East (Bahrain).

Email information to provide 60

Amazon Simple Email Service Developer Guide

Obtaining SES SMTP credentials using the SES console

When you use the SES workflow below to generate SMTP credentials by using the console, you are
taken to the IAM console to create an user with the appropriate policies to call SES and provides
you with the SMTP credentials associated with that user.

Requirement

An IAM user can create SES SMTP credentials, but the user's policy must give them permission
to use IAM itself, because SES SMTP credentials are created by using IAM. Your IAM policy
must allow you to perform the following IAM actions: iam:ListUsers, iam:CreateUser,
iam:CreateAccessKey, and iam:PutUserPolicy. If you try to create SES SMTP credentials
using the console and your IAM user doesn't have these permissions, you see an error that states
that your account is "not authorized to perform iam:ListUsers."

To create your SMTP credentials

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. Choose SMTP settings in the left navigation pane - this will open the Simple Mail Transfer
Protocol (SMTP) settings page.

3. Choose Create SMTP Credentials in the upper-right corner - the IAM console will open.

4. (Optional) If you need to view, edit, or delete SMTP users you’ve already created, choose
Manage my existing SMTP credentials in the lower-right corner - the IAM console will open.
Details for managing SMTP credentials is given following these procedures.

5. For Create User for SMTP, type a name for your SMTP user in the User Name field.
Alternatively, you can use the default value that is provided in this field. When you finish,
choose Create user in the bottom-right corner.

6. Select Show under SMTP password - your SMTP credentials are shown on the screen.

7. Download these credentials by choosing Download .csv file or copy them and store them in a
safe place, because you can't view or save your credentials after you close this dialog box.

8. Choose Return to SES console.

You can view a list of the SMTP credentials you've created using this procedure in the IAM console
under Access management and choosing Users followed by using the search bar to find all users
that you've assigned SMTP credentials.

Obtaining SMTP credentials 61

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

You can also use the IAM console to delete existing SMTP users. To learn more about deleting
users, see Managing IAM Users in the IAM Getting Started Guide.

If you want to change your SMTP password, delete your existing SMTP user in the IAM console.
Then, to generate a new set of SMTP credentials, complete the previous procedures.

Obtaining SES SMTP credentials by converting existing AWS credentials

If you have an user that you set up using the IAM interface, you can derive the user's SES SMTP
credentials from their AWS credentials.

Important

Don't use temporary AWS credentials to derive SMTP credentials. The SES SMTP interface
doesn't support SMTP credentials that have been generated from temporary security
credentials.

To enable the IAM user to send email using the SES SMTP interface, do the following.

• Derive the user's SMTP credentials from their AWS credentials by using the algorithm provided
in this section. Because you're starting from AWS credentials, the SMTP user name is the same as
the AWS access key ID, so you only need to generate the SMTP password.

• Apply the following policy to the IAM user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ses:SendRawEmail",
 "Resource": "*"
 }
]
}

For more information about using SES with IAM, see Identity and access management in Amazon
SES.

Obtaining SMTP credentials 62

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html

Amazon Simple Email Service Developer Guide

Note

Although you can generate SES SMTP credentials for any IAM user, we recommend that
you create a separate IAM user when you generate your SMTP credentials. For information
about why it's good practice to create users for specific purposes, go to IAM Best Practices.

The following pseudocode shows the algorithm that converts an AWS secret access key to an SES
SMTP password.

// Modify this variable to include your AWS secret access key
key = "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY";

// Modify this variable to refer to the AWS Region that you want to use to send email.
region = "us-west-2";

// The values of the following variables should always stay the same.
date = "11111111";
service = "ses";
terminal = "aws4_request";
message = "SendRawEmail";
version = 0x04;

kDate = HmacSha256(date, "AWS4" + key);
kRegion = HmacSha256(region, kDate);
kService = HmacSha256(service, kRegion);
kTerminal = HmacSha256(terminal, kService);
kMessage = HmacSha256(message, kTerminal);
signatureAndVersion = Concatenate(version, kMessage);
smtpPassword = Base64(signatureAndVersion);

Some programming languages include libraries that you can use to convert an IAM secret access
key into an SMTP password. This section includes a code example that you can use to convert an
AWS secret access key to an SES SMTP password using Python.

Note

The following example uses f-strings that were introduced in Python 3.6; if using an older
version, they won't work.

Obtaining SMTP credentials 63

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html

Amazon Simple Email Service Developer Guide

Currently, the Python SDK (Boto3) officially supports 2.7 and 3.6 (or later). However, 2.7
support is deprecated and will be dropped on 7/15/2021, so you'll need to upgrade to at
least 3.6.

Python

#!/usr/bin/env python3

import hmac
import hashlib
import base64
import argparse

SMTP_REGIONS = [
 "us-east-2", # US East (Ohio)
 "us-east-1", # US East (N. Virginia)
 "us-west-2", # US West (Oregon)
 "ap-south-1", # Asia Pacific (Mumbai)
 "ap-northeast-2", # Asia Pacific (Seoul)
 "ap-southeast-1", # Asia Pacific (Singapore)
 "ap-southeast-2", # Asia Pacific (Sydney)
 "ap-northeast-1", # Asia Pacific (Tokyo)
 "ca-central-1", # Canada (Central)
 "eu-central-1", # Europe (Frankfurt)
 "eu-west-1", # Europe (Ireland)
 "eu-west-2", # Europe (London)
 "eu-south-1", # Europe (Milan)
 "eu-north-1", # Europe (Stockholm)
 "sa-east-1", # South America (Sao Paulo)
 "us-gov-west-1", # AWS GovCloud (US)
]

These values are required to calculate the signature. Do not change them.
DATE = "11111111"
SERVICE = "ses"
MESSAGE = "SendRawEmail"
TERMINAL = "aws4_request"
VERSION = 0x04

def sign(key, msg):
 return hmac.new(key, msg.encode("utf-8"), hashlib.sha256).digest()

Obtaining SMTP credentials 64

Amazon Simple Email Service Developer Guide

def calculate_key(secret_access_key, region):
 if region not in SMTP_REGIONS:
 raise ValueError(f"The {region} Region doesn't have an SMTP endpoint.")

 signature = sign(("AWS4" + secret_access_key).encode("utf-8"), DATE)
 signature = sign(signature, region)
 signature = sign(signature, SERVICE)
 signature = sign(signature, TERMINAL)
 signature = sign(signature, MESSAGE)
 signature_and_version = bytes([VERSION]) + signature
 smtp_password = base64.b64encode(signature_and_version)
 return smtp_password.decode("utf-8")

def main():
 parser = argparse.ArgumentParser(
 description="Convert a Secret Access Key to an SMTP password."
)
 parser.add_argument("secret", help="The Secret Access Key to convert.")
 parser.add_argument(
 "region",
 help="The AWS Region where the SMTP password will be used.",
 choices=SMTP_REGIONS,
)
 args = parser.parse_args()
 print(calculate_key(args.secret, args.region))

if __name__ == "__main__":
 main()

To obtain your SMTP password by using this script, save the preceding code as
smtp_credentials_generate.py. Then, at the command line, run the following command:

python path/to/smtp_credentials_generate.py wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY us-east-1

In the preceding command, do the following:

• Replace path/to/ with the path to the location where you saved
smtp_credentials_generate.py.

Obtaining SMTP credentials 65

Amazon Simple Email Service Developer Guide

• Replace wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY with the secret access key that
you want to convert into an SMTP password.

• Replace us-east-1 with the AWS Region in which you want to use the SMTP credentials.

When this script runs successfully, the only output is your SMTP password.

Connecting to an Amazon SES SMTP endpoint

To send email using the Amazon SES SMTP interface, you connect to an SMTP endpoint. For a
complete list of Amazon SES SMTP endpoints, see Amazon Simple Email Service endpoints and
quotas in the AWS General Reference.

The Amazon SES SMTP endpoint requires that all connections be encrypted using Transport Layer
Security (TLS). (Note that TLS is often referred to by the name of its predecessor protocol, SSL.)
Amazon SES supports two mechanisms for establishing a TLS-encrypted connection: STARTTLS
and TLS Wrapper. Check the documentation for your software to determine whether it supports
STARTTLS, TLS Wrapper, or both.

Amazon Elastic Compute Cloud (Amazon EC2) throttles email traffic over port 25 by default. To
avoid timeouts when sending email through the SMTP endpoint from EC2, submit a Request to
Remove Email Sending Limitations to remove the throttle. Alternatively, you can send email using a
different port, or use an Amazon VPC endpoint.

For SMTP connection issues, see SMTP issues.

STARTTLS

STARTTLS is a means of upgrading an unencrypted connection to an encrypted connection. There
are versions of STARTTLS for a variety of protocols; the SMTP version is defined in RFC 3207.

To set up a STARTTLS connection, the SMTP client connects to the Amazon SES SMTP endpoint
on port 25, 587, or 2587, issues an EHLO command, and waits for the server to announce that it
supports the STARTTLS SMTP extension. The client then issues the STARTTLS command, initiating
TLS negotiation. When negotiation is complete, the client issues an EHLO command over the new
encrypted connection, and the SMTP session proceeds normally.

Connecting to an SMTP endpoint 66

https://docs.aws.amazon.com/general/latest/gr/ses.html
https://docs.aws.amazon.com/general/latest/gr/ses.html
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://www.ietf.org/rfc/rfc3207.txt

Amazon Simple Email Service Developer Guide

TLS Wrapper

TLS Wrapper (also known as SMTPS or the Handshake Protocol) is a means of initiating an
encrypted connection without first establishing an unencrypted connection. With TLS Wrapper,
the Amazon SES SMTP endpoint doesn't perform TLS negotiation: it's the client's responsibility
to connect to the endpoint using TLS, and to continue using TLS for the entire conversation. TLS
Wrapper is an older protocol, but many clients still support it.

To set up a TLS Wrapper connection, the SMTP client connects to the Amazon SES SMTP endpoint
on port 465 or 2465. The server presents its certificate, the client issues an EHLO command, and
the SMTP session proceeds normally.

Sending email through Amazon SES using software packages

There are a number of commercial and open source software packages that support sending email
through SMTP. Here are some examples:

• Blogging platforms

• RSS aggregators

• List management software

• Workflow systems

You can configure any such SMTP-enabled software to send email through the Amazon SES SMTP
interface. For instructions on how to configure SMTP for a particular software package, see the
documentation for that software.

The following procedure shows how to set up Amazon SES sending in JIRA, a popular issue-
tracking solution. With this configuration, JIRA can notify users through email whenever there is a
change in the status of a software issue.

To configure JIRA to send email using Amazon SES

1. Using your web browser, log in to JIRA with administrator credentials.

2. In the browser window, choose Administration.

3. On the System menu, choose Mail.

4. On the Mail administration page, choose Mail Servers.

5. Choose Configure new SMTP mail server.

Using software packages to send email 67

Amazon Simple Email Service Developer Guide

6. On the Add SMTP Mail Server form, fill in the following fields:

a. Name—A descriptive name for this server.

b. From address—The address from which email will be sent. You must verify this email
address with Amazon SES before you can send from it. For more information about
verification, see Verified identities in Amazon SES.

c. Email prefix—A string that JIRA prepends to each subject line prior to sending.

d. Protocol—Choose SMTP.

Note

If you can't connect to Amazon SES using this setting, try SECURE_SMTP.

e. Hostname—See Connecting to an Amazon SES SMTP endpoint for a list of Amazon SES
SMTP endpoints. For example, if you want to use the Amazon SES endpoint in the US
West (Oregon) Region, the hostname would be email-smtp.us-west-2.amazonaws.com.

f. SMTP port—25, 587, or 2587 (to connect using STARTTLS), or 465 or 2465 (to connect
using TLS Wrapper).

g. TLS—Select this check box.

h. User name—Your SMTP user name.

i. Password—Your SMTP password.

You can see the settings for TLS Wrapper in the following image.

Using software packages to send email 68

Amazon Simple Email Service Developer Guide

7. Choose Test Connection. If the test email that JIRA sends through Amazon SES arrives
successfully, then your configuration is complete.

Sending emails programmatically through the Amazon SES SMTP
interface

To send an email using the Amazon SES SMTP interface, you can use an SMTP-enabled
programming language, email server, or application. Before you start, complete the tasks in Setting
up Amazon Simple Email Service. You also need to get the following information:

• Your Amazon SES SMTP credentials, which enable you to connect to the Amazon SES SMTP
endpoint. To get your Amazon SES SMTP credentials, see Obtaining Amazon SES SMTP
credentials.

Important

Your SMTP credentials are different from your AWS credentials. For more information
about credentials, see Types of Amazon SES credentials.

Sending emails programmatically 69

Amazon Simple Email Service Developer Guide

• The SMTP endpoint address. For a list of Amazon SES SMTP endpoints, see Connecting to an
Amazon SES SMTP endpoint.

• The Amazon SES SMTP interface port number, which depends on the connection method. For
more information, see Connecting to an Amazon SES SMTP endpoint.

Integrating Amazon SES with your existing email server

If you currently administer your own email server, you can use the Amazon SES SMTP endpoint
to send all of your outgoing email to Amazon SES. There is no need to modify your existing email
clients and applications; the changeover to Amazon SES will be transparent to them.

Several mail transfer agents (MTAs) support sending email through SMTP relays. This section
provides general guidance on how to configure some popular MTAs to send email using Amazon
SES SMTP interface.

The Amazon SES SMTP endpoint requires that all connections be encrypted using Transport Layer
Security (TLS).

Topics

• Integrating Amazon SES with Microsoft Windows Server IIS SMTP

Integrating Amazon SES with Microsoft Windows Server IIS SMTP

You can configure Microsoft Windows Server's IIS SMTP server to send email through Amazon SES.
These instructions were written using Microsoft Windows Server 2012 on an Amazon EC2 instance.
You can use the same configuration on Microsoft Windows Server 2008 and Microsoft Windows
Server 2008 R2.

Note

Windows Server is a third-party application, and isn't developed or supported by Amazon
Web Services. The procedures in this section are provided for informational purposes only,
and are subject to change without notice.

To integrate the Microsoft Windows Server IIS SMTP server with Amazon SES

1. First, set up Microsoft Windows Server 2012 using the following instructions.

Integrating with your existing email server 70

Amazon Simple Email Service Developer Guide

a. From the Amazon EC2 management console, launch a new Microsoft Windows Server
2012 Base Amazon EC2 instance.

b. Connect to the instance and log into it using Remote Desktop by following the
instructions in Getting Started with Amazon EC2 Windows Instances.

c. Launch the Server Manager Dashboard.

d. Install the Web Server role. Be sure to include the IIS 6 Management Compatibility tools
(an option under the Web Server check box).

e. Install the SMTP Server feature.

2. Next, configure the IIS SMTP service using the following instructions.

a. Return to the Server Manager Dashboard.

b. From the Tools menu, choose Internet Information Services (IIS) 6.0 Manager.

c. Right-click SMTP Virtual Server #1 and then select Properties.

d. On the Access tab, under Relay Restrictions, choose Relay.

e. In the Relay Restrictions dialog box, choose Add.

f. Under Single Computer, enter 127.0.0.1 for the IP address. You have now granted access
for this server to relay email to Amazon SES through the IIS SMTP service.

In this procedure, we assume that your emails are generated on this server. If the
application that generates the email runs on a separate server, you must grant relaying
access for that server in IIS SMTP.

Note

To extend the SMTP relay to private subnets, for Relay Restriction, use Single
Computer 127.0.0.1 and Group of Computers 172.1.1.0 - 255.255.255.0 (in the
netmask section). For Connection, use Single Computer 127.0.0.1 and Group of
Computers 172.1.1.0 - 255.255.255.0 (in the netmask section).

3. Finally, configure the server to send email through Amazon SES using the following
instructions.

a. Return to the SMTP Virtual Server #1 Properties dialog box and then choose the
Delivery tab.

b. On the Delivery tab, choose Outbound Security.

Integrating with your existing email server 71

https://console.aws.amazon.com/ec2/home
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html

Amazon Simple Email Service Developer Guide

c. Select Basic Authentication and then enter your Amazon SES SMTP credentials. You can
obtain these credentials from the Amazon SES console using the procedure in Obtaining
Amazon SES SMTP credentials.

Important

Your SMTP credentials are not the same as your AWS access key ID and secret
access key. Do not attempt to use your AWS credentials to authenticate yourself
against the SMTP endpoint. For more information about credentials, see Types of
Amazon SES credentials.

d. Ensure that TLS encryption is selected.

e. Return to the Delivery tab.

f. Choose Outbound Connections.

g. In the Outbound Connections dialog box, ensure that the port is 25 or 587.

h. Choose Advanced.

i. For the Smart host name, enter the Amazon SES endpoint that you will use (for example,
email-smtp.us-west-2.amazonaws.com). For a list of endpoint URLs for the AWS Regions
where Amazon SES is available, see Amazon Simple Email Service (Amazon SES) in the
AWS General Reference.

j. Return to the Server Manager Dashboard.

k. On the Server Manager Dashboard, right-click SMTP Virtual Server #1 and then restart
the service to pick up the new configuration.

l. Send an email through this server. You can examine the message headers to confirm that
it was delivered through Amazon SES.

Testing your connection to the Amazon SES SMTP interface using the
command line

You can use the methods described in this section from the command line to test your connection
to the Amazon SES SMTP endpoint, validate your SMTP credentials, and troubleshoot connection
issues. These procedures use tools and libraries that are included with most common operating
systems.

Testing your connection to the Amazon SES SMTP interface 72

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region

Amazon Simple Email Service Developer Guide

For additional information about troubleshooting SMTP connection problems, see Amazon SES
SMTP issues.

Prerequisites

When you connect to the Amazon SES SMTP interface, you have to provide a set of SMTP
credentials. These SMTP credentials are different from your standard AWS credentials. The two
types of credentials aren't interchangeable. For more information about obtaining your SMTP
credentials, see the section called “Obtaining SMTP credentials”.

Testing your connection to the Amazon SES SMTP interface

You can use the command line to test your connection to the Amazon SES SMTP interface without
authenticating or sending any messages. This procedure is useful for troubleshooting basic
connectivity issues. If your test connection fails, see SMTP issues.

This section includes procedures for testing your connection using both OpenSSL (which is included
with most Linux, macOS, and Unix distributions, and is also available for Windows) and the Test-
NetConnection cmdlet in PowerShell (which is included with most recent versions of Windows).

Linux, macOS, or Unix

There are two ways to connect to the Amazon SES SMTP interface with OpenSSL: using explicit
SSL over port 587, or using implicit SSL over port 465.

To connect to the SMTP interface using explicit SSL

• At the command line, enter the following command to connect to the Amazon SES SMTP
server:

openssl s_client -crlf -quiet -starttls smtp -connect email-smtp.us-
west-2.amazonaws.com:587

In the preceding command, replace email-smtp.us-west-2.amazonaws.com with the
URL of the Amazon SES SMTP endpoint for your AWS Region. For more information, see
the section called “Regions”.

If the connection was successful, you see output similar to the following:

depth=2 C = US, O = Amazon, CN = Amazon Root CA 1

Testing your connection to the Amazon SES SMTP interface 73

Amazon Simple Email Service Developer Guide

verify return:1
depth=1 C = US, O = Amazon, OU = Server CA 1B, CN = Amazon
verify return:1
depth=0 CN = email-smtp.us-west-2.amazonaws.com
verify return:1
250 Ok

The connection automatically closes after about 10 seconds of inactivity.

Alternatively, you can use implicit SSL to connect to the SMTP interface over port 465.

To connect to the SMTP interface using implicit SSL

• At the command line, enter the following command to connect to the Amazon SES SMTP
server:

openssl s_client -crlf -quiet -connect email-smtp.us-west-2.amazonaws.com:465

In the preceding command, replace email-smtp.us-west-2.amazonaws.com with the
URL of the Amazon SES SMTP endpoint for your AWS Region. For more information, see
the section called “Regions”.

If the connection was successful, you see output similar to the following:

depth=2 C = US, O = Amazon, CN = Amazon Root CA 1
verify return:1
depth=1 C = US, O = Amazon, OU = Server CA 1B, CN = Amazon
verify return:1
depth=0 CN = email-smtp.us-west-2.amazonaws.com
verify return:1
220 email-smtp.amazonaws.com ESMTP SimpleEmailService-d-VCSHDP1YZ
 A1b2C3d4E5f6G7h8I9j0

The connection automatically closes after about 10 seconds of inactivity.

PowerShell

You can use the Test-NetConnection cmdlet in PowerShell to connect to the Amazon SES SMTP
server.

Testing your connection to the Amazon SES SMTP interface 74

https://docs.microsoft.com/en-us/powershell/module/nettcpip/test-netconnection

Amazon Simple Email Service Developer Guide

Note

The Test-NetConnection cmdlet can determine whether your computer can connect
to the Amazon SES SMTP endpoint. However, it doesn't test whether your computer
can make an implicit or explicit SSL connection to the SMTP endpoint. To test an SSL
connection, you can install OpenSSL for Windows to send a test email.

To connect to the SMTP interface using the Test-NetConnection cmdlet

• In PowerShell, enter the following command to connect to the Amazon SES SMTP server:

Test-NetConnection -Port 587 -ComputerName email-smtp.us-west-2.amazonaws.com

In the preceding command, replace email-smtp.us-west-2.amazonaws.com with
the URL of the Amazon SES SMTP endpoint for your AWS Region, and replace 587 with
the port number. For more information about regional endpoints in Amazon SES, see the
section called “Regions”.

If the connection was successful, you see output that resembles the following example:

ComputerName : email-smtp.us-west-2.amazonaws.com
RemoteAddress : 198.51.100.126
RemotePort : 587
InterfaceAlias : Ethernet
SourceAddress : 203.0.113.46
TcpTestSucceeded : True

Using the Amazon SES API to send email

To send production email through Amazon SES, you can use the Simple Mail Transfer Protocol
(SMTP) interface or the Amazon SES API. For more information about the SMTP interface, see
Using the Amazon SES SMTP interface to send email. This section describes how to send email by
using the API.

When you send an email using the Amazon SES API, you specify the content of the message, and
Amazon SES assembles a MIME email for you. Alternatively, you can assemble the email yourself so
that you have complete control over the content of the message. For more information about the

Using the API 75

Amazon Simple Email Service Developer Guide

API, see the Amazon Simple Email Service API Reference. For a list of endpoint URLs for the AWS
Regions where Amazon SES is available, see Amazon Simple Email Service endpoints and quotas in
the AWS General Reference.

You can call the API in the following ways:

• Make direct HTTPS requests—This is the most advanced method, because you have to manually
handle authentication and signing of your requests, and then manually construct the requests.
For information about the Amazon SES API, see the Welcome page in the API v2 Reference.

• Use an AWS SDK—AWS SDKs make it easy to access the APIs for several AWS services, including
Amazon SES. When you use an SDK, it takes care of authentication, request signing, retry logic,
error handling, and other low-level functions so that you can focus on building applications that
delight your customers.

• Use a command line interface—The AWS Command Line Interface is the command line tool for
Amazon SES. We also offer the AWS Tools for PowerShell for those who script in the PowerShell
environment.

Regardless of whether you access the Amazon SES API directly or indirectly through an AWS SDK,
the AWS Command Line Interface or the AWS Tools for PowerShell, the Amazon SES API provides
two different ways for you to send an email, depending on how much control you want over the
composition of the email message:

• Formatted—Amazon SES composes and sends a properly formatted email message. You need
only supply "From:" and "To:" addresses, a subject, and a message body. Amazon SES takes care
of all the rest. For more information, see Sending formatted email using the Amazon SES API.

• Raw—You manually compose and send an email message, specifying your own email headers
and MIME types. If you're experienced in formatting your own email, the raw interface gives you
more control over the composition of your message. For more information, see Sending raw
email using the Amazon SES API v2.

Contents

• Sending formatted email using the Amazon SES API

• Sending raw email using the Amazon SES API v2

• Using templates to send personalized email with the Amazon SES API

• Sending email through Amazon SES using an AWS SDK

Using the API 76

https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/general/latest/gr/ses.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/Welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://aws.amazon.com/powershell/

Amazon Simple Email Service Developer Guide

• Content encodings supported by Amazon SES

Sending formatted email using the Amazon SES API

You can send a formatted email by using the AWS Management Console or by calling the Amazon
SES API through an application directly, or indirectly through an AWS SDK, the AWS Command Line
Interface, or the AWS Tools for Windows PowerShell.

The Amazon SES API provides the SendEmail action, which lets you compose and send a
formatted email. SendEmail requires a From: address, To: address, message subject, and message
body—text, HTML, or both. For more information, see SendEmail (API Reference) or SendEmail (API
v2 Reference).

Note

The email address string must be 7-bit ASCII. If you want to send to or from email
addresses that contain Unicode characters in the domain part of an address, you must
encode the domain using Punycode. For more information, see RFC 3492.

For examples of how to compose a formatted message using various programming languages, see
Code examples.

For tips on how to increase your email sending speed when you make multiple calls to SendEmail,
see Increasing throughput with Amazon SES.

Sending raw email using the Amazon SES API v2

You can use the Amazon SES API v2 SendEmail operation with the content type specified as raw
to send customized messages to your recipients using the raw email format.

About email header fields

Simple Mail Transfer Protocol (SMTP) specifies how email messages are to be sent by defining
the mail envelope and some of its parameters, but it does not concern itself with the content of
the message. Instead, the Internet Message Format (RFC 5322) defines how the message is to be
constructed.

Sending formatted email 77

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://tools.ietf.org/html/rfc3492
https://www.ietf.org/rfc/rfc5322.txt

Amazon Simple Email Service Developer Guide

With the Internet Message Format specification, every email message consists of a header and a
body. The header consists of message metadata, and the body contains the message itself. For
more information about email headers and bodies, see Email format in Amazon SES.

Using MIME

The SMTP protocol was originally designed to send email messages that only contained 7-bit
ASCII characters. This specification makes SMTP insufficient for non-ASCII text encodings (such
as Unicode), binary content, or attachments. The Multipurpose Internet Mail Extensions standard
(MIME) was developed to make it possible to send many other kinds of content using SMTP.

The MIME standard works by breaking the message body into multiple parts and then specifying
what is to be done with each part. For example, one part of an email message body might be plain
text, while another might be HTML. In addition, MIME allows email messages to contain one or
more attachments. Message recipients can view the attachments from within their email clients, or
they can save the attachments.

The message header and content are separated by a blank line. Each part of the email is separated
by a boundary, a string of characters that denotes the beginning and ending of each part.

The multipart message in the following example contains a text and an HTML part, and an
attachment. The attachment should be placed just below the attachment headers and is most
often encoded in base64 as shown in this example.

From: "Sender Name" <sender@example.com>
To: recipient@example.com
Subject: Customer service contact info
Content-Type: multipart/mixed;
 boundary="a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a"

--a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a
Content-Type: multipart/alternative;
 boundary="sub_a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a"

--sub_a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable

Please see the attached file for a list of customers to contact.

--sub_a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a

Sending raw email 78

Amazon Simple Email Service Developer Guide

Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable

<html>
<head></head>
<body>
<h1>Hello!</h1>
<p>Please see the attached file for a list of customers to contact.</p>
</body>
</html>

--sub_a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a--

--a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a
Content-Type: text/plain; name="customers.txt"
Content-Description: customers.txt
Content-Disposition: attachment;filename="customers.txt";
 creation-date="Sat, 05 Aug 2017 19:35:36 GMT";
Content-Transfer-Encoding: base64

SUQsRmlyc3ROYW1lLExhc3ROYW1lLENvdW50cnkKMzQ4LEpvaG4sU3RpbGVzLENhbmFkYQo5MjM4
OSxKaWUsTGl1LENoaW5hCjczNCxTaGlybGV5LFJvZHJpZ3VleixVbml0ZWQgU3RhdGVzCjI4OTMs
QW5heWEsSXllbmdhcixJbmRpYQ==

--a3f166a86b56ff6c37755292d690675717ea3cd9de81228ec2b76ed4a15d6d1a--

The content type for the message is multipart/mixed, which indicates that the message has
many parts (in this example, a body and an attachment), and the receiving client must handle each
part separately.

Nested within the body section is a second part that uses the multipart/alternative content
type. This content type indicates that each part contains alternative versions of the same content
(in this case, a text version and an HTML version). If the recipient's email client can display HTML
content, then it shows the HTML version of the message body. If the recipient's email client can't
display HTML content, then it shows the plain text version of the message body.

Both versions of the message also contain an attachment (in this case, a short text file that
contains some customer names).

When you nest a MIME part within another part, as in this example, the nested part must use a
boundary parameter that is distinct from the boundary parameter in the parent part. These
boundaries should be unique strings of characters. To define a boundary between MIME parts, type

Sending raw email 79

Amazon Simple Email Service Developer Guide

two hyphens (--) followed by the boundary string. At the end of a MIME part, place two hyphens at
both the beginning and the end of the boundary string.

Note

A message cannot have more than 500 MIME parts.

MIME Encoding

To maintain compatibility with older systems, Amazon SES honors the 7-bit ASCII limitation of
SMTP as defined in RFC 2821. If you want to send content that contains non-ASCII characters, you
must encode those characters into a format that uses 7-bit ASCII characters.

Email addresses

The email address string must be 7-bit ASCII. If you want to send to or from email addresses that
contain Unicode characters in the domain part of an address, you must encode the domain using
Punycode. Punycode is not permitted in the local part of the email address (the part before the @
sign) nor in the "friendly from" name. If you want to use Unicode characters in the "friendly from"
name, you must encode the "friendly from" name using MIME encoded-word syntax, as described
in Sending raw email using the Amazon SES API v2. For more information about Punycode, see RFC
3492.

Note

This rule only applies to email addresses that you specify in the message envelope, not
the message headers. When you use the Amazon SES API v2 SendEmail operation, the
addresses you specify in the Source and Destinations parameters define the envelope
sender and recipients, respectively.

Email headers

To encode a message header, use MIME encoded-word syntax. MIME encoded word syntax uses the
following format:

=?charset?encoding?encoded-text?=

Sending raw email 80

https://tools.ietf.org/html/rfc2821
http://tools.ietf.org/html/rfc3492
http://tools.ietf.org/html/rfc3492

Amazon Simple Email Service Developer Guide

The value of encoding can be either Q or B. If the value of encoding is Q, then the value encoded-
text has to use Q-encoding. If the value of encoding is B, then the value of encoded-text has to
use base64 encoding.

For example, if you want to use the string "Як ти поживаєш?" in the subject line of an email, you
can use either of the following encodings:

• Q-encoding

=?utf-8?Q?
=D0=AF=D0=BA_=D1=82=D0=B8_=D0=BF=D0=BE=D0=B6=D0=B8=D0=B2=D0=B0=D1=94=D1=88=3F?=

• Base64 encoding

=?utf-8?B?0K/QuiDRgtC4INC/0L7QttC40LLQsNGU0Yg/?=

For more information about Q-encoding, see RFC 2047. For more information about base64
encoding, see RFC 2045.

Message body

To encode the body of a message, you can use quoted-printable encoding or base64 encoding.
Then, use the Content-Transfer-Encoding header to indicate which encoding scheme you
used.

For example, assume the body of your message contains the following text:

१९७२ मे रे टॉमलंिसन ने पहला ई-मेल संेदश भेजा | रे टॉमलंिसन ने ही स्रव्परथम @ चि्नह का चयन किया और इ्नही को
ईेमल का आवि्षकारक माना जाता है

If you choose to encode this text using base64 encoding, first specify the following header:

Content-Transfer-Encoding: base64

Then, in the body section of the email, include the base64-encoded text:

4KWn4KWv4KWt4KWoIOCkruClhyDgpLDgpYcg4KSf4KWJ4KSu4KSy4KS/4KSC4KS44KSoIOCkqOCl
hyDgpKrgpLngpLLgpL4g4KSILeCkruClh+CksiDgpLjgpILgpKbgpYfgpLYg4KSt4KWH4KSc4KS+
IHwg4KSw4KWHIOCkn+ClieCkruCksuCkv+CkguCkuOCkqCDgpKjgpYcg4KS54KWAIOCkuOCksOCl

Sending raw email 81

https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc2045

Amazon Simple Email Service Developer Guide

jeCkteCkquCljeCksOCkpeCkriBAIOCkmuCkv+CkqOCljeCkuSDgpJXgpL4g4KSa4KSv4KSoIOCk
leCkv+Ckr+CkviDgpJTgpLAg4KSH4KSo4KWN4KS54KWAIOCkleCliyDgpIjgpK7gpYfgpLIg4KSV
4KS+IOCkhuCkteCkv+Ckt+CljeCkleCkvuCksOCklSDgpK7gpL7gpKjgpL4g4KSc4KS+4KSk4KS+
IOCkueCliAo=

Note

In some cases, you can use the 8bit Content-Transfer-Encoding in messages that
you send using Amazon SES. However, if Amazon SES has to make any changes to your
messages (for example, when you use open and click tracking), 8-bit-encoded content
might not appear correctly when it arrives in recipients' inboxes. For this reason, you should
always encode content that isn't 7-bit ASCII.

File attachments

To attach a file to an email, you have to encode the attachment using base64 encoding.
Attachments are typically placed in dedicated MIME message parts, which include the following
headers:

• Content-Type – The file type of the attachment. The following are examples of common MIME
Content-Type declarations:

• Plain text file – Content-Type: text/plain; name="sample.txt"

• Microsoft Word Document – Content-Type: application/msword;
name="document.docx"

• JPG image – Content-Type: image/jpeg; name="photo.jpeg"

• Content-Disposition – Specifies how the recipient's email client should handle the content. For
attachments, this value is Content-Disposition: attachment.

• Content-Transfer-Encoding – The scheme that was used to encode the attachment. For file
attachments, this value is almost always base64.

• The encoded attachment – You must encode the actual attachment and include it in the body
below the attachment headers as shown in the example.

Amazon SES accepts most common file types. For a list of file types that Amazon SES doesn't
accept, see Amazon SES unsupported attachment types.

Sending raw email 82

Amazon Simple Email Service Developer Guide

Sending raw email using the Amazon SES API v2

The Amazon SES API v2 provides the SendEmail action, which lets you compose and send an
email message in the format that you specify when you set the content type to either simple, raw,
or templated. For a complete description, see SendEmail. The following example will specify the
content type as raw to send a messages using the raw email format.

Note

For tips on how to increase your email sending speed when you make multiple calls to
SendEmail, see Increasing throughput with Amazon SES.

The message body must contain a properly formatted, raw email message, with appropriate header
fields and message body encoding. Although it's possible to construct the raw message manually
within an application, it's much easier to do so using existing mail libraries.

Java

The following code example shows how to use the JavaMail library and the AWS SDK for Java to
compose and send a raw email.

package com.amazonaws.samples;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.nio.ByteBuffer;
import java.util.Properties;

// JavaMail libraries. Download the JavaMail API
// from https://javaee.github.io/javamail/
import javax.activation.DataHandler;
import javax.activation.DataSource;
import javax.activation.FileDataSource;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMessage;

Sending raw email 83

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://javaee.github.io/javamail/
https://aws.amazon.com/sdk-for-java

Amazon Simple Email Service Developer Guide

import javax.mail.internet.MimeMultipart;

// AWS SDK libraries. Download the AWS SDK for Java
// from https://aws.amazon.com/sdk-for-java
import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleemail.AmazonSimpleEmailService;
import com.amazonaws.services.simpleemail.AmazonSimpleEmailServiceClientBuilder;
import com.amazonaws.services.simpleemail.model.RawMessage;
import com.amazonaws.services.simpleemail.model.SendRawEmailRequest;

public class AmazonSESSample {

 // Replace sender@example.com with your "From" address.
 // This address must be verified with Amazon SES.
 private static String SENDER = "Sender Name <sender@example.com>";

 // Replace recipient@example.com with a "To" address. If your account
 // is still in the sandbox, this address must be verified.
 private static String RECIPIENT = "recipient@example.com";

 // Specify a configuration set. If you do not want to use a configuration
 // set, comment the following variable, and the
 // ConfigurationSetName=CONFIGURATION_SET argument below.
 private static String CONFIGURATION_SET = "ConfigSet";

 // The subject line for the email.
 private static String SUBJECT = "Customer service contact info";

 // The full path to the file that will be attached to the email.
 // If you're using Windows, escape backslashes as shown in this variable.
 private static String ATTACHMENT = "C:\\Users\\sender\\customers-to-contact.xlsx";

 // The email body for recipients with non-HTML email clients.
 private static String BODY_TEXT = "Hello,\r\n"
 + "Please see the attached file for a list "
 + "of customers to contact.";

 // The HTML body of the email.
 private static String BODY_HTML = "<html>"
 + "<head></head>"
 + "<body>"
 + "<h1>Hello!</h1>"
 + "<p>Please see the attached file for a "
 + "list of customers to contact.</p>"

Sending raw email 84

Amazon Simple Email Service Developer Guide

 + "</body>"
 + "</html>";

 public static void main(String[] args) throws AddressException,
 MessagingException, IOException {

 Session session = Session.getDefaultInstance(new Properties());

 // Create a new MimeMessage object.
 MimeMessage message = new MimeMessage(session);

 // Add subject, from and to lines.
 message.setSubject(SUBJECT, "UTF-8");
 message.setFrom(new InternetAddress(SENDER));
 message.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(RECIPIENT));

 // Create a multipart/alternative child container.
 MimeMultipart msg_body = new MimeMultipart("alternative");

 // Create a wrapper for the HTML and text parts.
 MimeBodyPart wrap = new MimeBodyPart();

 // Define the text part.
 MimeBodyPart textPart = new MimeBodyPart();
 textPart.setContent(BODY_TEXT, "text/plain; charset=UTF-8");

 // Define the HTML part.
 MimeBodyPart htmlPart = new MimeBodyPart();
 htmlPart.setContent(BODY_HTML,"text/html; charset=UTF-8");

 // Add the text and HTML parts to the child container.
 msg_body.addBodyPart(textPart);
 msg_body.addBodyPart(htmlPart);

 // Add the child container to the wrapper object.
 wrap.setContent(msg_body);

 // Create a multipart/mixed parent container.
 MimeMultipart msg = new MimeMultipart("mixed");

 // Add the parent container to the message.
 message.setContent(msg);

Sending raw email 85

Amazon Simple Email Service Developer Guide

 // Add the multipart/alternative part to the message.
 msg.addBodyPart(wrap);

 // Define the attachment
 MimeBodyPart att = new MimeBodyPart();
 DataSource fds = new FileDataSource(ATTACHMENT);
 att.setDataHandler(new DataHandler(fds));
 att.setFileName(fds.getName());

 // Add the attachment to the message.
 msg.addBodyPart(att);

 // Try to send the email.
 try {
 System.out.println("Attempting to send an email through Amazon SES "
 +"using the AWS SDK for Java...");

 // Instantiate an Amazon SES client, which will make the service
 // call with the supplied AWS credentials.
 AmazonSimpleEmailService client =
 AmazonSimpleEmailServiceClientBuilder.standard()
 // Replace US_WEST_2 with the AWS Region you're using for
 // Amazon SES.
 .withRegion(Regions.US_WEST_2).build();

 // Print the raw email content on the console
 PrintStream out = System.out;
 message.writeTo(out);

 // Send the email.
 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
 message.writeTo(outputStream);
 RawMessage rawMessage =
 new RawMessage(ByteBuffer.wrap(outputStream.toByteArray()));

 SendRawEmailRequest rawEmailRequest =
 new SendRawEmailRequest(rawMessage)
 .withConfigurationSetName(CONFIGURATION_SET);

 client.sendRawEmail(rawEmailRequest);
 System.out.println("Email sent!");
 // Display an error if something goes wrong.
 } catch (Exception ex) {
 System.out.println("Email Failed");

Sending raw email 86

Amazon Simple Email Service Developer Guide

 System.err.println("Error message: " + ex.getMessage());
 ex.printStackTrace();
 }
 }
}

Python

The following code example shows how to use the Python email.mime packages and the AWS
SDK for Python (Boto) to compose and send a raw email.

import os
import boto3
from botocore.exceptions import ClientError
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.application import MIMEApplication

Replace sender@example.com with your "From" address.
This address must be verified with Amazon SES.
SENDER = "Sender Name <sender@example.com>"

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
RECIPIENT = "recipient@example.com"

Specify a configuration set. If you do not want to use a configuration
set, comment the following variable, and the
ConfigurationSetName=CONFIGURATION_SET argument below.
CONFIGURATION_SET = "ConfigSet"

If necessary, replace us-west-2 with the AWS Region you're using for Amazon SES.
AWS_REGION = "us-west-2"

The subject line for the email.
SUBJECT = "Customer service contact info"

The full path to the file that will be attached to the email.
ATTACHMENT = "path/to/customers-to-contact.xlsx"

The email body for recipients with non-HTML email clients.
BODY_TEXT = "Hello,\r\nPlease see the attached file for a list of customers to
 contact."

Sending raw email 87

https://docs.python.org/2/library/email.mime.html
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-python

Amazon Simple Email Service Developer Guide

The HTML body of the email.
BODY_HTML = """\
<html>
<head></head>
<body>
<h1>Hello!</h1>
<p>Please see the attached file for a list of customers to contact.</p>
</body>
</html>
"""

The character encoding for the email.
CHARSET = "utf-8"

Create a new SES resource and specify a region.
client = boto3.client('ses',region_name=AWS_REGION)

Create a multipart/mixed parent container.
msg = MIMEMultipart('mixed')
Add subject, from and to lines.
msg['Subject'] = SUBJECT
msg['From'] = SENDER
msg['To'] = RECIPIENT

Create a multipart/alternative child container.
msg_body = MIMEMultipart('alternative')

Encode the text and HTML content and set the character encoding. This step is
necessary if you're sending a message with characters outside the ASCII range.
textpart = MIMEText(BODY_TEXT.encode(CHARSET), 'plain', CHARSET)
htmlpart = MIMEText(BODY_HTML.encode(CHARSET), 'html', CHARSET)

Add the text and HTML parts to the child container.
msg_body.attach(textpart)
msg_body.attach(htmlpart)

Define the attachment part and encode it using MIMEApplication.
att = MIMEApplication(open(ATTACHMENT, 'rb').read())

Add a header to tell the email client to treat this part as an attachment,
and to give the attachment a name.
att.add_header('Content-
Disposition','attachment',filename=os.path.basename(ATTACHMENT))

Sending raw email 88

Amazon Simple Email Service Developer Guide

Attach the multipart/alternative child container to the multipart/mixed
parent container.
msg.attach(msg_body)

Add the attachment to the parent container.
msg.attach(att)
#print(msg)
try:
 #Provide the contents of the email.
 response = client.send_raw_email(
 Source=SENDER,
 Destinations=[
 RECIPIENT
],
 RawMessage={
 'Data':msg.as_string(),
 },
 ConfigurationSetName=CONFIGURATION_SET
)
Display an error if something goes wrong.
except ClientError as e:
 print(e.response['Error']['Message'])
else:
 print("Email sent! Message ID:"),
 print(response['MessageId'])

Using templates to send personalized email with the Amazon SES API

You can use the CreateTemplate API operation to create email templates. These templates include
a subject line, and the text and HTML parts of the email body. The subject and body sections may
also contain unique values that are personalized for each recipient.

There are a few limits and other considerations when using these features:

• You can create up to 20,000 email templates in each AWS Region.

• Each template can be up to 500 KB in size, including both the text and HTML parts.

• You can include an unlimited number of replacement variables in each template.

• You can send email to up to 50 destinations in each call to the SendBulkTemplatedEmail
operation. A destination includes a list of recipients,including CC and BCC recipients. The number

Using templates to send email 89

https://docs.aws.amazon.com/ses/latest/APIReference/API_CreateTemplate.html

Amazon Simple Email Service Developer Guide

of destinations you can contact in a single call to the API may be limited by your account's
maximum sending rate. For more information, see Managing your Amazon SES sending limits.

This section includes procedures for creating email templates and for sending personalized emails.

Note

The procedures in this section assume that you've already installed and configured the
AWS CLI. For more information about installing and configuring the AWS CLI, see the AWS
Command Line Interface User Guide.

Part 1: Set up Rendering Failure event notifications

If you send an email that contains invalid personalization content, Amazon SES might accept the
message, but won't be able to deliver it. For this reason, if you plan to send personalized email, you
should configure Amazon SES to send Rendering Failure event notifications through Amazon SNS.
When you receive a Rendering Failure event notification, you can identify which message contained
the invalid content, fix the issues, and send the message again.

The procedure in this section is optional, but highly recommended.

To configure Rendering Failure event notifications

1. Create an Amazon SNS topic. For procedures, see Create a Topic in the Amazon Simple
Notification Service Developer Guide.

2. Subscribe to the Amazon SNS topic. For example, if you want to receive Rendering Failure
notifications by email, subscribe an email endpoint (that is, your email address) to the topic.

For procedures, see Subscribe to a Topic in the Amazon Simple Notification Service Developer
Guide.

3. Complete the procedures in the section called “Set up an Amazon SNS destination” to set up
your configuration sets to publish Rendering Failure events to your Amazon SNS topic.

Part 2: Create an email template

In this section, you use the CreateTemplate API operation to create a new email template with
personalization attributes.

Using templates to send email 90

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html
https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html

Amazon Simple Email Service Developer Guide

This procedure assumes that you've already installed and configured the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line Interface
User Guide.

To create the template

1. In a text editor, create a new file. Paste the following code into the file.

{
 "Template": {
 "TemplateName": "MyTemplate",
 "SubjectPart": "Greetings, {{name}}!",
 "HtmlPart": "<h1>Hello {{name}},</h1><p>Your favorite animal is
 {{favoriteanimal}}.</p>",
 "TextPart": "Dear {{name}},\r\nYour favorite animal is {{favoriteanimal}}."
 }
}

This code contains the following properties:

• TemplateName – The name of the template. When you send the email, you refer to this
name.

• SubjectPart – The subject line of the email. This property may contain replacement tags.
These tags use the following format: {{tagname}}. When you send the email, you can
specify a value for tagname for each destination.

The preceding example includes two tags: {{name}} and {{favoriteanimal}}.

• HtmlPart – The HTML body of the email. This property may contain replacement tags.

• TextPart – The text body of the email. Recipients whose email clients don't display HTML
email see this version of the email. This property may contain replacement tags.

2. Customize the preceding example to fit your needs, and then save the file as
mytemplate.json.

3. At the command line, type the following command to create a new template using the
CreateTemplate API operation:

aws ses create-template --cli-input-json file://mytemplate.json

Using templates to send email 91

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

Part 3: Sending the personalized email

After you create an email template, you can use it to send email. There are two API
operations that you can use to send emails using templates: SendTemplatedEmail, and
SendBulkTemplatedEmail. The SendTemplatedEmail operation is useful for sending a
customized email to a single destination (a collection of "To," "CC," and "BCC" recipients who
will receive the same email). The SendBulkTemplatedEmail operation is useful for sending
unique emails to multiple destinations in a single call to the Amazon SES API. This section provides
examples of how to use the AWS CLI to send email using both of these operations.

Sending templated email to a single destination

You can use the SendTemplatedEmail operation to send an email to a single destination. All of
the recipients in the Destination object will receive the same email.

To send a templated email to a single destination

1. In a text editor, create a new file. Paste the following code into the file.

{
 "Source":"Mary Major <mary.major@example.com>",
 "Template": "MyTemplate",
 "ConfigurationSetName": "ConfigSet",
 "Destination": {
 "ToAddresses": ["alejandro.rosalez@example.com"
]
 },
 "TemplateData": "{ \"name\":\"Alejandro\", \"favoriteanimal\": \"alligator\" }"
}

This code contains the following properties:

• Source – The email address of the sender.

• Template – The name of the template to apply to the email.

• ConfigurationSetName – The name of the configuration set to use when sending the email.

Using templates to send email 92

Amazon Simple Email Service Developer Guide

Note

We recommend that you use a configuration set that is configured to publish
Rendering Failure events to Amazon SNS. For more information, see the section
called “Part 1: Set up notifications”.

• Destination – The recipient addresses. You can include multiple "To," "CC," and "BCC"
addresses. When you use the SendTemplatedEmail operation, all recipients receive the
same email.

• TemplateData – An escaped JSON string that contains key-value pairs. The keys correspond
to the variables in the template (for example, {{name}}). The values represent the content
that replaces the variables in the email.

2. Change the values in the code in the previous step to meet your needs, and then save the file
as myemail.json.

3. At the command line, type the following command to send the email:

aws ses send-templated-email --cli-input-json file://myemail.json

Sending templated email to multiple destinations

You can use the SendBulkTemplatedEmail operation to send an email to several destinations
in a single call to the API. Amazon SES sends a unique email to the recipient or recipients in each
Destination object.

To send a templated email to multiple destinations

1. In a text editor, create a new file. Paste the following code into the file.

{
 "Source":"Mary Major <mary.major@example.com>",
 "Template":"MyTemplate",
 "ConfigurationSetName": "ConfigSet",
 "Destinations":[
 {
 "Destination":{
 "ToAddresses":[
 "anaya.iyengar@example.com"

Using templates to send email 93

Amazon Simple Email Service Developer Guide

]
 },
 "ReplacementTemplateData":"{ \"name\":\"Anaya\", \"favoriteanimal\":
\"angelfish\" }"
 },
 {
 "Destination":{
 "ToAddresses":[
 "liu.jie@example.com"
]
 },
 "ReplacementTemplateData":"{ \"name\":\"Liu\", \"favoriteanimal\":\"lion\" }"
 },
 {
 "Destination":{
 "ToAddresses":[
 "shirley.rodriguez@example.com"
]
 },
 "ReplacementTemplateData":"{ \"name\":\"Shirley\", \"favoriteanimal\":\"shark
\" }"
 },
 {
 "Destination":{
 "ToAddresses":[
 "richard.roe@example.com"
]
 },
 "ReplacementTemplateData":"{}"
 }
],
 "DefaultTemplateData":"{ \"name\":\"friend\", \"favoriteanimal\":\"unknown\" }"
}

This code contains the following properties:

• Source – The email address of the sender.

• Template – The name of the template to apply to the email.

• ConfigurationSetName – The name of the configuration set to use when sending the email.

Using templates to send email 94

Amazon Simple Email Service Developer Guide

Note

We recommend that you use a configuration set that is configured to publish
Rendering Failure events to Amazon SNS. For more information, see the section
called “Part 1: Set up notifications”.

• Destinations – An array that contains one or more Destinations.

• Destination – The recipient addresses. You can include multiple "To," "CC," and "BCC"
addresses. When you use the SendBulkTemplatedEmail operation, all recipients within
the same Destination object receive the same email.

• ReplacementTemplateData – A JSON object that contains key-value pairs. The keys
correspond to the variables in the template (for example, {{name}}). The values
represent the content that replaces the variables in the email.

• DefaultTemplateData – A JSON object that contains key-value pairs. The keys correspond
to the variables in the template (for example, {{name}}). The values represent the content
that replaces the variables in the email. This object contains fallback data. If a Destination
object contains an empty JSON object in the ReplacementTemplateData property, the
values in the DefaultTemplateData property are used.

2. Change the values in the code in the previous step to meet your needs, and then save the file
as mybulkemail.json.

3. At the command line, type the following command to send the bulk email:

aws ses send-bulk-templated-email --cli-input-json file://mybulkemail.json

Advanced email personalization

The template feature in Amazon SES is based on the Handlebars template system. You can use
Handlebars to create templates that include advanced features, such as nested attributes, array
iteration, basic conditional statements, and the creation of inline partials. This section provides
examples of these features.

Handlebars includes additional features beyond those documented in this section. For more
information, see Built-In Helpers at handlebarsjs.com.

Using templates to send email 95

https://handlebarsjs.com/guide/builtin-helpers.html
http://handlebarsjs.com

Amazon Simple Email Service Developer Guide

Note

SES doesn't escape HTML content when rendering the HTML template for a message. This
means if you're including user inputted data, such as from a contact form, you will need to
escape it on the client side.

Topics

• Parsing nested attributes

• Iterating through lists

• Using basic conditional statements

• Creating inline partials

Parsing nested attributes

Handlebars includes support for nested paths, which makes it easy to organize complex customer
data, and then refer to that data in your email templates.

For example, you can organize recipient data into several general categories. Within each of those
categories, you can include detailed information. The following code example shows an example of
this structure for a single recipient:

{
 "meta":{
 "userId":"51806220607"
 },
 "contact":{
 "firstName":"Anaya",
 "lastName":"Iyengar",
 "city":"Bengaluru",
 "country":"India",
 "postalCode":"560052"
 },
 "subscription":[
 {
 "interest":"Sports"
 },
 {
 "interest":"Travel"

Using templates to send email 96

Amazon Simple Email Service Developer Guide

 },
 {
 "interest":"Cooking"
 }
]
}

In your email templates, you can refer to nested attributes by providing the name of the parent
attribute, followed by a period (.), followed by the name of the attribute for which you want to
include the value. For example, if you use the data structure shown in the preceding example, and
you want to include each recipient's first name in the email template, include the following text in
your email template: Hello {{contact.firstName}}!

Handlebars can parse paths that are nested several levels deep, which means you have flexibility in
how you structure your template data.

Iterating through lists

The each helper function iterates through items in an array. The following code is an example of
an email template that uses the each helper function to create an itemized list of each recipient's
interests.

{
 "Template": {
 "TemplateName": "Preferences",
 "SubjectPart": "Subscription Preferences for {{contact.firstName}}
 {{contact.lastName}}",
 "HtmlPart": "<h1>Your Preferences</h1>
 <p>You have indicated that you are interested in receiving
 information about the following subjects:</p>

 {{#each subscription}}
 {{interest}}
 {{/each}}

 <p>You can change these settings at any time by visiting
 the <a href=https://www.example.com/prefererences/i.aspx?
id={{meta.userId}}>
 Preference Center.</p>",
 "TextPart": "Your Preferences\n\nYou have indicated that you are interested in
 receiving information about the following subjects:\n
 {{#each subscription}}

Using templates to send email 97

Amazon Simple Email Service Developer Guide

 - {{interest}}\n
 {{/each}}
 \nYou can change these settings at any time by
 visiting the Preference Center at
 https://www.example.com/prefererences/i.aspx?id={{meta.userId}}"
 }
}

Important

In the preceding code example, the values of the HtmlPart and TextPart attributes
include line breaks to make the example easier to read. The JSON file for your template
can't contain line breaks within these values. If you copied and pasted this example into
your own JSON file, remove the line breaks and extra spaces from the HtmlPart and
TextPart sections before proceeding.

After you create the template, you can use the SendTemplatedEmail or the
SendBulkTemplatedEmail operation to send email to recipients using this template. As long as
each recipient has at least one value in the Interests object, they receive an email that includes
an itemized list of their interests. The following example shows a JSON file that can be used to
send email to multiple recipients using the preceding template:

{
 "Source":"Sender Name <sender@example.com>",
 "Template":"Preferences",
 "Destinations":[
 {
 "Destination":{
 "ToAddresses":[
 "anaya.iyengar@example.com"
]
 },
 "ReplacementTemplateData":"{\"meta\":{\"userId\":\"51806220607\"},\"contact\":
{\"firstName\":\"Anaya\",\"lastName\":\"Iyengar\"},\"subscription\":[{\"interest\":
\"Sports\"},{\"interest\":\"Travel\"},{\"interest\":\"Cooking\"}]}"
 },
 {
 "Destination":{
 "ToAddresses":[
 "shirley.rodriguez@example.com"

Using templates to send email 98

Amazon Simple Email Service Developer Guide

]
 },
 "ReplacementTemplateData":"{\"meta\":{\"userId\":\"1981624758263\"},\"contact\":
{\"firstName\":\"Shirley\",\"lastName\":\"Rodriguez\"},\"subscription\":[{\"interest\":
\"Technology\"},{\"interest\":\"Politics\"}]}"
 }
],
 "DefaultTemplateData":"{\"meta\":{\"userId\":\"\"},\"contact\":{\"firstName\":
\"Friend\",\"lastName\":\"\"},\"subscription\":[]}"
}

When you send an email to the recipients listed in the preceding example using the
SendBulkTemplatedEmail operation, they receive a message that resembles the example shown
in the following image:

Using basic conditional statements

This section builds on the example described in the previous section. The example in the previous
section uses the each helper to iterate through a list of interests. However, recipients for whom
no interests are specified receive an email that contains an empty list. By using the {{if}} helper,
you can format the email differently if a certain attribute is present in the template data. The
following code uses the {{if}} helper to display the bulleted list from the preceding section if
the Subscription array contains any values. If the array is empty, a different block of text is
displayed.

{
 "Template": {
 "TemplateName": "Preferences2",

Using templates to send email 99

Amazon Simple Email Service Developer Guide

 "SubjectPart": "Subscription Preferences for {{contact.firstName}}
 {{contact.lastName}}",
 "HtmlPart": "<h1>Your Preferences</h1>
 <p>Dear {{contact.firstName}},</p>
 {{#if subscription}}
 <p>You have indicated that you are interested in receiving
 information about the following subjects:</p>

 {{#each subscription}}
 {{interest}}
 {{/each}}

 <p>You can change these settings at any time by visiting
 the <a href=https://www.example.com/prefererences/i.aspx?
id={{meta.userId}}>
 Preference Center.</p>
 {{else}}
 <p>Please update your subscription preferences by visiting
 the <a href=https://www.example.com/prefererences/i.aspx?
id={{meta.userId}}>
 Preference Center.
 {{/if}}",
 "TextPart": "Your Preferences\n\nDear {{contact.firstName}},\n\n
 {{#if subscription}}
 You have indicated that you are interested in receiving
 information about the following subjects:\n
 {{#each subscription}}
 - {{interest}}\n
 {{/each}}
 \nYou can change these settings at any time by visiting the
 Preference Center at https://www.example.com/prefererences/i.aspx?
id={{meta.userId}}.
 {{else}}
 Please update your subscription preferences by visiting the
 Preference Center at https://www.example.com/prefererences/i.aspx?
id={{meta.userId}}.
 {{/if}}"
 }
}

Using templates to send email 100

Amazon Simple Email Service Developer Guide

Important

In the preceding code example, the values of the HtmlPart and TextPart attributes
include line breaks to make the example easier to read. The JSON file for your template
can't contain line breaks within these values. If you copied and pasted this example into
your own JSON file, remove the line breaks and extra spaces from the HtmlPart and
TextPart sections before proceeding.

The following example shows a JSON file that can be used to send email to multiple recipients
using the preceding template:

{
 "Source":"Sender Name <sender@example.com>",
 "Template":"Preferences2",
 "Destinations":[
 {
 "Destination":{
 "ToAddresses":[
 "anaya.iyengar@example.com"
]
 },
 "ReplacementTemplateData":"{\"meta\":{\"userId\":\"51806220607\"},\"contact\":
{\"firstName\":\"Anaya\",\"lastName\":\"Iyengar\"},\"subscription\":[{\"interest\":
\"Sports\"},{\"interest\":\"Cooking\"}]}"
 },
 {
 "Destination":{
 "ToAddresses":[
 "shirley.rodriguez@example.com"
]
 },
 "ReplacementTemplateData":"{\"meta\":{\"userId\":\"1981624758263\"},\"contact\":
{\"firstName\":\"Shirley\",\"lastName\":\"Rodriguez\"}}"
 }
],
 "DefaultTemplateData":"{\"meta\":{\"userId\":\"\"},\"contact\":{\"firstName\":
\"Friend\",\"lastName\":\"\"},\"subscription\":[]}"
}

Using templates to send email 101

Amazon Simple Email Service Developer Guide

In this example, the recipient whose template data included a list of interests receives the same
email as the example shown in the previous section. The recipient whose template data did
not include any interests, however, receives an email that resembles the example shown in the
following image:

Creating inline partials

You can use inline partials to simplify templates that include repeated strings. For example, you
could create an inline partial that includes the recipient's first name, and, if it's available, their last
name by adding the following code to the beginning of your template:

{{#* inline \"fullName\"}}{{firstName}}{{#if lastName}} {{lastName}}{{/if}}{{/
inline}}\n

Note

The newline character (\n) is required to separate the {{inline}} block from the content
in your template. The newline isn't rendered in the final output.

After you create the fullName partial, you can include it anywhere in your template by preceding
the name of the partial with a greater-than (>) sign followed by a space, as in the following
example: {{> fullName}}. Inline partials are not transferred between parts of the email. For
example, if you want to use the same inline partial in both the HTML and the text version of the
email, you must define it in both the HtmlPart and the TextPart sections.

You can also use inline partials when iterating through arrays. You can use the following code to
create a template that uses the fullName inline partial. In this example, the inline partial applies
to both the recipient's name and to an array of other names:

{
 "Template": {

Using templates to send email 102

Amazon Simple Email Service Developer Guide

 "TemplateName": "Preferences3",
 "SubjectPart": "{{firstName}}'s Subscription Preferences",
 "HtmlPart": "{{#* inline \"fullName\"}}
 {{firstName}}{{#if lastName}} {{lastName}}{{/if}}
 {{/inline~}}\n
 <h1>Hello {{> fullName}}!</h1>
 <p>You have listed the following people as your friends:</p>

 {{#each friends}}
 {{> fullName}}
 {{/each}}",
 "TextPart": "{{#* inline \"fullName\"}}
 {{firstName}}{{#if lastName}} {{lastName}}{{/if}}
 {{/inline~}}\n
 Hello {{> fullName}}! You have listed the following people
 as your friends:\n
 {{#each friends}}
 - {{> fullName}}\n
 {{/each}}"
 }
}

Important

In the preceding code example, the values of the HtmlPart and TextPart attributes
include line breaks to make the example easier to read. The JSON file for your template
can't contain line breaks within these values. If you copied and pasted this example into
your own JSON file, remove the line breaks and extra spaces from these sections.

Managing email templates

In addition to creating email templates, you can also use the Amazon SES API to update or delete
existing templates, to list all of your existing templates, or to view the contents of a template.

This section contains procedures for using the AWS CLI to perform tasks related to Amazon SES
templates.

Using templates to send email 103

Amazon Simple Email Service Developer Guide

Note

The procedures in this section assume that you've already installed and configured the
AWS CLI. For more information about installing and configuring the AWS CLI, see the AWS
Command Line Interface User Guide.

Viewing a list of email templates

You can use the ListTemplates operation in the Amazon SES API to view a list of all of your existing
email templates.

To view a list of email templates

• At the command line, enter the following command:

aws ses list-templates

If there are existing email templates in your Amazon SES account in the current Region, this
command returns a response that resembles the following example:

{
 "TemplatesMetadata": [
 {
 "Name": "SpecialOffers",
 "CreatedTimestamp": "2020-08-05T16:04:12.640Z"
 },
 {
 "Name": "NewsAndUpdates",
 "CreatedTimestamp": "2019-10-03T20:03:34.574Z"
 }
]
}

If you haven't created any templates, the command returns a TemplatesMetadata object
with no members.

Using templates to send email 104

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference/API_ListTemplates.html

Amazon Simple Email Service Developer Guide

Viewing the contents of a specific email template

You can use the GetTemplate operation in the Amazon SES API to view the contents of a specific
email template.

To view the contents of an email template

• At the command line, enter the following command:

aws ses get-template --template-name MyTemplate

In the preceding command, replace MyTemplate with the name of the template that you want
to view.

If the template name that you provided matches a template that exists in your Amazon SES
account, this command returns a response that resembles the following example:

{
 "Template": {
 "TemplateName": "TestMessage",
 "SubjectPart": "Amazon SES Test Message",
 "TextPart": "Hello! This is the text part of the message.",
 "HtmlPart": "<html>\n<body>\n<h2>Hello!</h2>\n<p>This is the HTML part of
 the message.</p></body>\n</html>"
 }
}

If the template name that you provided doesn't match a template that exists in your Amazon
SES account, the command returns a TemplateDoesNotExist error.

Deleting an email template

You can use the DeleteTemplate operation in the Amazon SES API to delete a specific email
template.

To delete an email template

• At the command line, enter the following command:

aws ses delete-template --template-name MyTemplate

Using templates to send email 105

https://docs.aws.amazon.com/ses/latest/APIReference/API_GetTemplate.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_DeleteTemplate.html

Amazon Simple Email Service Developer Guide

In the preceding command, replace MyTemplate with the name of the template that you want
to delete.

This command doesn't provide any output. You can verify that the template was deleted by
using the GetTemplate operation.

Updating an email template

You can use the UpdateTemplate operation in the Amazon SES API to update an existing email
template. For example, this operation is helpful if you want to change the subject line of the email
template, or if you need to modify the body of the message itself.

To update an email template

1. Use the GetTemplate command to retrieve the existing template by entering the following
command on the command line:

aws ses get-template --template-name MyTemplate

In the preceding command, replace MyTemplate with the name of the template that you want
to update.

If the template name that you provided matches a template that exists in your Amazon SES
account, this command returns a response that resembles the following example:

{
 "Template": {
 "TemplateName": "TestMessage",
 "SubjectPart": "Amazon SES Test Message",
 "TextPart": "Hello! This is the text part of the message.",
 "HtmlPart": "<html>\n<body>\n<h2>Hello!</h2>\n<p>This is the HTML part of
 the message.</p></body>\n</html>"
 }
}

2. In a text editor, create a new file. Paste the output of the previous command into the file.

3. Modify the template as needed. Any lines that you omit are removed from the template. For
example, if you only want to change the SubjectPart of the template, you still need to
include the TextPart and HtmlPart properties.

Using templates to send email 106

https://docs.aws.amazon.com/ses/latest/APIReference/API_UpdateTemplate.html

Amazon Simple Email Service Developer Guide

When you finish, save the file as update_template.json.

4. At the command line, enter the following command:

aws ses update-template --cli-input-json file://path/to/update_template.json

In the preceding command, replace path/to/update_template.json with the path to the
update_template.json file that you created in the previous step.

If the template is updated successfully, this command doesn't provide any output. You can
verify that the template was updated by using the GetTemplate operation.

If the template that you specified doesn't exist, this command returns a
TemplateDoesNotExist error. If the template doesn't contain either the TextPart or
HtmlPart property (or both), this command returns an InvalidParameterValue error.

Sending email through Amazon SES using an AWS SDK

You can use an AWS SDK to send email through Amazon SES. AWS SDKs are available for several
programming languages. For more information, see Tools for Amazon Web Services.

Prerequisites

The following prerequisites must be completed in order to complete any of the code samples in the
next section:

• If you haven't already done so, complete the tasks in Setting up Amazon Simple Email Service.

• Verify your email address with Amazon SES—Before you can send an email with Amazon SES,
you must verify that you own the sender's email address. If your account is still in the Amazon
SES sandbox, you must also verify the recipient email address. We recommend you use the
Amazon SES console to verify email addresses. For more information, see Creating an email
address identity.

• Get your AWS credentials—You need an AWS access key ID and AWS secret access key to access
Amazon SES using an SDK. You can find your credentials by using the Security Credentials page
in the AWS Management Console. For more information about credentials, see Types of Amazon
SES credentials.

Sending email using an AWS SDK 107

https://aws.amazon.com/tools/#sdk
https://console.aws.amazon.com/iam/home?#security_credential

Amazon Simple Email Service Developer Guide

• Create a shared credentials file—For the sample code in this section to function properly, you
must create a shared credentials file. For more information, see Creating a shared credentials file
to use when sending email through Amazon SES using an AWS SDK.

Code examples

Important

In the following tutorials, you send an email to yourself so that you can check to see if
you received it. For further experimentation or load testing, use the Amazon SES mailbox
simulator. Emails that you send to the mailbox simulator do not count toward your sending
quota or your bounce and complaint rates. For more information, see Using the mailbox
simulator manually.

.NET

The following procedure shows you how to send an email through Amazon SES using Visual
Studio and the AWS SDK for .NET.

This solution was tested using the following components:

• Microsoft Visual Studio Community 2017, version 15.4.0.

• Microsoft .NET Framework version 4.6.1.

• The AWSSDK.Core package (version 3.3.19), installed using NuGet.

• The AWSSDK.SimpleEmail package (version 3.3.6.1), installed using NuGet.

Before you begin, perform the following tasks:

• Install Visual Studio—Visual Studio is available at https://www.visualstudio.com/.

To send an email using the AWS SDK for .NET

1. Create a new project by performing the following steps:

a. Start Visual Studio.

b. On the File menu, choose New, Project.

Sending email using an AWS SDK 108

https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/

Amazon Simple Email Service Developer Guide

c. On the New Project window, in the panel on the left, expand Installed, and then
expand Visual C#.

d. In the panel on the right, choose Console App (.NET Framework).

e. For Name, type AmazonSESSample, and then choose OK.

2. Use NuGet to include the Amazon SES packages in your solution by completing the
following steps:

a. In the Solution Explorer pane, right-click your project, and then choose Manage
NuGet Packages.

b. On the NuGet: AmazonSESSample tab, choose Browse.

c. In the search box, type AWSSDK.SimpleEmail.

d. Choose the AWSSDK.SimpleEmail package, and then choose Install.

e. On the Preview Changes window, choose OK.

3. On the Program.cs tab, paste the following code:

using Amazon;
using System;
using System.Collections.Generic;
using Amazon.SimpleEmail;
using Amazon.SimpleEmail.Model;

namespace AmazonSESSample
{
 class Program
 {
 // Replace sender@example.com with your "From" address.
 // This address must be verified with Amazon SES.
 static readonly string senderAddress = "sender@example.com";

 // Replace recipient@example.com with a "To" address. If your account
 // is still in the sandbox, this address must be verified.
 static readonly string receiverAddress = "recipient@example.com";

 // The configuration set to use for this email. If you do not want to
 use a
 // configuration set, comment out the following property and the
 // ConfigurationSetName = configSet argument below.
 static readonly string configSet = "ConfigSet";

Sending email using an AWS SDK 109

Amazon Simple Email Service Developer Guide

 // The subject line for the email.
 static readonly string subject = "Amazon SES test (AWS SDK for .NET)";

 // The email body for recipients with non-HTML email clients.
 static readonly string textBody = "Amazon SES Test (.NET)\r\n"
 + "This email was sent through Amazon
 SES "
 + "using the AWS SDK for .NET.";

 // The HTML body of the email.
 static readonly string htmlBody = @"<html>
<head></head>
<body>
 <h1>Amazon SES Test (AWS SDK for .NET)</h1>
 <p>This email was sent with
 Amazon SES using the

 AWS SDK for .NET.</p>
</body>
</html>";

 static void Main(string[] args)
 {
 // Replace USWest2 with the AWS Region you're using for Amazon SES.
 // Acceptable values are EUWest1, USEast1, and USWest2.
 using (var client = new
 AmazonSimpleEmailServiceClient(RegionEndpoint.USWest2))
 {
 var sendRequest = new SendEmailRequest
 {
 Source = senderAddress,
 Destination = new Destination
 {
 ToAddresses =
 new List<string> { receiverAddress }
 },
 Message = new Message
 {
 Subject = new Content(subject),
 Body = new Body
 {
 Html = new Content
 {
 Charset = "UTF-8",

Sending email using an AWS SDK 110

Amazon Simple Email Service Developer Guide

 Data = htmlBody
 },
 Text = new Content
 {
 Charset = "UTF-8",
 Data = textBody
 }
 }
 },
 // If you are not using a configuration set, comment
 // or remove the following line
 ConfigurationSetName = configSet
 };
 try
 {
 Console.WriteLine("Sending email using Amazon SES...");
 var response = client.SendEmail(sendRequest);
 Console.WriteLine("The email was sent successfully.");
 }
 catch (Exception ex)
 {
 Console.WriteLine("The email was not sent.");
 Console.WriteLine("Error message: " + ex.Message);

 }
 }

 Console.Write("Press any key to continue...");
 Console.ReadKey();
 }
 }
}

4. In the code editor, do the following:

• Replace sender@example.com with the "From:" email address. This address must be
verified. For more information, see Verified identities.

• Replace recipient@example.com with the "To:" address. If your account is still in the
sandbox, this address must also be verified.

• Replace ConfigSet with the name of the configuration set to use when sending this
email.

Sending email using an AWS SDK 111

Amazon Simple Email Service Developer Guide

• Replace USWest2 with the name of the AWS Region endpoint you use to send email
using Amazon SES. For a list of regions where Amazon SES is available, see Amazon
Simple Email Service (Amazon SES) in the AWS General Reference.

When you finish, save Program.cs.

5. Build and run the application by completing the following steps:

a. On the Build menu, choose Build Solution.

b. On the Debug menu, choose Start Debugging. A console window appears.

6. Review the output of the console. If the email was successfully sent, the console displays
"The email was sent successfully."

7. If the email was successfully sent, sign in to the email client of the recipient address. You
will see the message that you sent.

Java

The following procedure shows you how to use Eclipse IDE for Java EE Developers and AWS
Toolkit for Eclipse to create an AWS SDK project and modify the Java code to send an email
through Amazon SES.

Before you begin, perform the following tasks:

• Install Eclipse—Eclipse is available at https://www.eclipse.org/downloads. The code in
this tutorial was tested using Eclipse Neon.3 (version 4.6.3), running version 1.8 of the Java
Runtime Environment.

• Install the AWS Toolkit for Eclipse—Instructions for adding the AWS Toolkit for Eclipse to
your Eclipse installation are available at https://aws.amazon.com/eclipse. The code in this
tutorial was tested using version 2.3.1 of the AWS Toolkit for Eclipse.

To send an email using the AWS SDK for Java

1. Create an AWS Java Project in Eclipse by performing the following steps:

a. Start Eclipse.

b. On the File menu, choose New, and then choose Other. On the New window, expand
the AWS folder, and then choose AWS Java Project.

Sending email using an AWS SDK 112

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
http://www.eclipse.org/
https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
https://www.eclipse.org/downloads
https://aws.amazon.com/eclipse

Amazon Simple Email Service Developer Guide

c. In the New AWS Java Project dialog box, do the following:

i. For Project name, type a project name.

ii. Under AWS SDK for Java Samples, select Amazon Simple Email Service JavaMail
Sample.

iii. Choose Finish.

2. In Eclipse, in the Package Explorer pane, expand your project.

3. Under your project, expand the src/main/java folder, expand the
com.amazon.aws.samples folder, and then double-click AmazonSESSample.java.

4. Replace the entire contents of AmazonSESSample.java with the following code:

package com.amazonaws.samples;

import java.io.IOException;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleemail.AmazonSimpleEmailService;
import com.amazonaws.services.simpleemail.AmazonSimpleEmailServiceClientBuilder;
import com.amazonaws.services.simpleemail.model.Body;
import com.amazonaws.services.simpleemail.model.Content;
import com.amazonaws.services.simpleemail.model.Destination;
import com.amazonaws.services.simpleemail.model.Message;
import com.amazonaws.services.simpleemail.model.SendEmailRequest;

public class AmazonSESSample {

 // Replace sender@example.com with your "From" address.
 // This address must be verified with Amazon SES.
 static final String FROM = "sender@example.com";

 // Replace recipient@example.com with a "To" address. If your account
 // is still in the sandbox, this address must be verified.
 static final String TO = "recipient@example.com";

 // The configuration set to use for this email. If you do not want to use a
 // configuration set, comment the following variable and the
 // .withConfigurationSetName(CONFIGSET); argument below.
 static final String CONFIGSET = "ConfigSet";

 // The subject line for the email.
 static final String SUBJECT = "Amazon SES test (AWS SDK for Java)";

Sending email using an AWS SDK 113

Amazon Simple Email Service Developer Guide

 // The HTML body for the email.
 static final String HTMLBODY = "<h1>Amazon SES test (AWS SDK for Java)</h1>"
 + "<p>This email was sent with "
 + "Amazon SES using the <a href='https://aws.amazon.com/sdk-for-
java/'>"
 + "AWS SDK for Java";

 // The email body for recipients with non-HTML email clients.
 static final String TEXTBODY = "This email was sent through Amazon SES "
 + "using the AWS SDK for Java.";

 public static void main(String[] args) throws IOException {

 try {
 AmazonSimpleEmailService client =
 AmazonSimpleEmailServiceClientBuilder.standard()
 // Replace US_WEST_2 with the AWS Region you're using for
 // Amazon SES.
 .withRegion(Regions.US_WEST_2).build();
 SendEmailRequest request = new SendEmailRequest()
 .withDestination(
 new Destination().withToAddresses(TO))
 .withMessage(new Message()
 .withBody(new Body()
 .withHtml(new Content()
 .withCharset("UTF-8").withData(HTMLBODY))
 .withText(new Content()
 .withCharset("UTF-8").withData(TEXTBODY)))
 .withSubject(new Content()
 .withCharset("UTF-8").withData(SUBJECT)))
 .withSource(FROM)
 // Comment or remove the next line if you are not using a
 // configuration set
 .withConfigurationSetName(CONFIGSET);
 client.sendEmail(request);
 System.out.println("Email sent!");
 } catch (Exception ex) {
 System.out.println("The email was not sent. Error message: "
 + ex.getMessage());
 }
 }
}

Sending email using an AWS SDK 114

Amazon Simple Email Service Developer Guide

5. In AmazonSESSample.java, replace the following with your own values:

Important

The email addresses are case-sensitive. Make sure that the addresses are exactly the
same as the ones you verified.

• SENDER@EXAMPLE.COM—Replace with your "From" email address. You must verify this
address before you run this program. For more information, see Verified identities in
Amazon SES.

• RECIPIENT@EXAMPLE.COM—Replace with your "To" email address. If your account is still
in the sandbox, you must verify this address before you use it. For more information, see
Request production access (Moving out of the Amazon SES sandbox).

• (Optional) us-west-2—If you want to use Amazon SES in a Region other than US
West (Oregon), replace this with the Region you want to use. For a list of Regions where
Amazon SES is available, see Amazon Simple Email Service (Amazon SES) in the AWS
General Reference.

6. Save AmazonSESSample.java.

7. To build the project, choose Project and then choose Build Project.

Note

If this option is disabled, automatic building may be enabled; if so, skip this step.

8. To start the program and send the email, choose Run and then choose Run again.

9. Review the output of the console pane in Eclipse. If the email was successfully sent, the
console displays "Email sent!" Otherwise, it displays an error message.

10. If the email was successfully sent, sign in to the email client of the recipient address. You
will see the message that you sent.

PHP

This topic shows how to use the AWS SDK for PHP to send an email through Amazon SES.

Sending email using an AWS SDK 115

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
https://aws.amazon.com/sdk-for-php/

Amazon Simple Email Service Developer Guide

Before you begin, perform the following tasks:

• Install PHP—PHP is available at http://php.net/downloads.php. This tutorial requires
PHP version 5.5 or higher. After you install PHP, add the path to PHP in your environment
variables so that you can run PHP from any command prompt. The code in this tutorial was
tested using PHP 7.2.7.

• Install the AWS SDK for PHP version 3—For download and installation instructions, see the
AWS SDK for PHP documentation. The code in this tutorial was tested using version 3.64.13
of the SDK.

To send an email through Amazon SES using the AWS SDK for PHP

1. In a text editor, create a file named amazon-ses-sample.php. Paste the following code:

<?php

// If necessary, modify the path in the require statement below to refer to the
// location of your Composer autoload.php file.
require 'vendor/autoload.php';

use Aws\Ses\SesClient;
use Aws\Exception\AwsException;

// Create an SesClient. Change the value of the region parameter if you're
// using an AWS Region other than US West (Oregon). Change the value of the
// profile parameter if you want to use a profile in your credentials file
// other than the default.
$SesClient = new SesClient([
 'profile' => 'default',
 'version' => '2010-12-01',
 'region' => 'us-west-2'
]);

// Replace sender@example.com with your "From" address.
// This address must be verified with Amazon SES.
$sender_email = 'sender@example.com';

// Replace these sample addresses with the addresses of your recipients. If
// your account is still in the sandbox, these addresses must be verified.
$recipient_emails = ['recipient1@example.com','recipient2@example.com'];

Sending email using an AWS SDK 116

http://php.net/downloads.php
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/getting-started/installation.html

Amazon Simple Email Service Developer Guide

// Specify a configuration set. If you do not want to use a configuration
// set, comment the following variable, and the
// 'ConfigurationSetName' => $configuration_set argument below.
$configuration_set = 'ConfigSet';

$subject = 'Amazon SES test (AWS SDK for PHP)';
$plaintext_body = 'This email was sent with Amazon SES using the AWS SDK for
 PHP.' ;
$html_body = '<h1>AWS Amazon Simple Email Service Test Email</h1>'.
 '<p>This email was sent with <a href="https://aws.amazon.com/
ses/">'.
 'Amazon SES using the <a href="https://aws.amazon.com/sdk-for-
php/">'.
 'AWS SDK for PHP.</p>';
$char_set = 'UTF-8';

try {
 $result = $SesClient->sendEmail([
 'Destination' => [
 'ToAddresses' => $recipient_emails,
],
 'ReplyToAddresses' => [$sender_email],
 'Source' => $sender_email,
 'Message' => [
 'Body' => [
 'Html' => [
 'Charset' => $char_set,
 'Data' => $html_body,
],
 'Text' => [
 'Charset' => $char_set,
 'Data' => $plaintext_body,
],
],
 'Subject' => [
 'Charset' => $char_set,
 'Data' => $subject,
],
],
 // If you aren't using a configuration set, comment or delete the
 // following line
 'ConfigurationSetName' => $configuration_set,
]);
 $messageId = $result['MessageId'];

Sending email using an AWS SDK 117

Amazon Simple Email Service Developer Guide

 echo("Email sent! Message ID: $messageId"."\n");
} catch (AwsException $e) {
 // output error message if fails
 echo $e->getMessage();
 echo("The email was not sent. Error message: ".$e-
>getAwsErrorMessage()."\n");
 echo "\n";
}

2. In amazon-ses-sample.php, replace the following with your own values:

• path_to_sdk_inclusion—Replace with the path required to include the AWS SDK for
PHP in the program. For more information, see the AWS SDK for PHP documentation.

• sender@example.com—Replace with an email address that you have verified with
Amazon SES. For more information, see Verified identities. Email addresses in Amazon
SES are case-sensitive. Make sure that the address you enter is exactly the same as the
one you verified.

• recipient1@example.com, recipient2@example.com—Replace with the addresses
of your recipients. If your account is still in the sandbox, your recipients' addresses must
also be verified. For more information, see Request production access (Moving out of the
Amazon SES sandbox). Make sure that the address you enter is exactly the same as the
one you verified.

• (Optional) ConfigSet—If you want to use a configuration set when sending this email,
replace this value with the name of the configuration set. For more information about
configuration sets, see Using configuration sets in Amazon SES.

• (Optional) us-west-2—If you want to use Amazon SES in a Region other than US
West (Oregon), replace this with the Region you want to use. For a list of Regions where
Amazon SES is available, see Amazon Simple Email Service (Amazon SES) in the AWS
General Reference.

3. Save amazon-ses-sample.php.

4. To run the program, open a command prompt in the same directory as amazon-ses-
sample.php, and then type the following command:

$ php amazon-ses-sample.php

5. Review the output. If the email was successfully sent, the console displays "Email sent!"
Otherwise, it displays an error message.

Sending email using an AWS SDK 118

https://docs.aws.amazon.com/aws-sdk-php/v3/guide/getting-started/basic-usage.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region

Amazon Simple Email Service Developer Guide

Note

If you encounter a "cURL error 60: SSL certificate problem" error when you run
the program, download the latest CA bundle as described in the AWS SDK for PHP
documentation. Then, in amazon-ses-sample.php, add the following lines to
the SesClient::factory array, replace path_of_certs with the path to the CA
bundle you downloaded, and re-run the program.

'http' => [
 'verify' => 'path_of_certs\ca-bundle.crt'
]

6. Sign in to the email client of the recipient address. You will see the message that you sent.

Ruby

This topic shows how to use the AWS SDK for Ruby to send an email through Amazon SES.

Before you begin, perform the following tasks:

• Install Ruby—Ruby is available at https://www.ruby-lang.org/en/downloads/. The code in
this tutorial was tested using Ruby 1.9.3. After you install Ruby, add the path to Ruby in your
environment variables so that you can run Ruby from any command prompt.

• Install the AWS SDK for Ruby—For download and installation instructions, see Installing the
AWS SDK for Ruby in the AWS SDK for Ruby Developer Guide. The sample code in this tutorial
was tested using version 2.9.36 of the AWS SDK for Ruby.

• Create a shared credentials file—For the sample code in this section to function properly,
you must create a shared credentials file. For more information, see Creating a shared
credentials file to use when sending email through Amazon SES using an AWS SDK.

To send an email through Amazon SES using the AWS SDK for Ruby

1. In a text editor, create a file named amazon-ses-sample.rb. Paste the following code
into the file:

require 'aws-sdk'

Sending email using an AWS SDK 119

https://docs.aws.amazon.com/aws-sdk-php/v3/guide/faq.html#what-do-i-do-about-a-curl-ssl-certificate-error
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/faq.html#what-do-i-do-about-a-curl-ssl-certificate-error
https://aws.amazon.com/sdk-for-ruby/
https://www.ruby-lang.org/en/downloads/
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/setup-install.html

Amazon Simple Email Service Developer Guide

Replace sender@example.com with your "From" address.
This address must be verified with Amazon SES.
sender = "sender@example.com"

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
recipient = "recipient@example.com"

Specify a configuration set. If you do not want to use a configuration
set, comment the following variable and the
configuration_set_name: configsetname argument below.
configsetname = "ConfigSet"

Replace us-west-2 with the AWS Region you're using for Amazon SES.
awsregion = "us-west-2"

The subject line for the email.
subject = "Amazon SES test (AWS SDK for Ruby)"

The HTML body of the email.
htmlbody =
 '<h1>Amazon SES test (AWS SDK for Ruby)</h1>'\
 '<p>This email was sent with '\
 'Amazon SES using the '\
 'AWS SDK for Ruby.'

The email body for recipients with non-HTML email clients.
textbody = "This email was sent with Amazon SES using the AWS SDK for Ruby."

Specify the text encoding scheme.
encoding = "UTF-8"

Create a new SES resource and specify a region
ses = Aws::SES::Client.new(region: awsregion)

Try to send the email.
begin

 # Provide the contents of the email.
 resp = ses.send_email({
 destination: {
 to_addresses: [
 recipient,
],

Sending email using an AWS SDK 120

Amazon Simple Email Service Developer Guide

 },
 message: {
 body: {
 html: {
 charset: encoding,
 data: htmlbody,
 },
 text: {
 charset: encoding,
 data: textbody,
 },
 },
 subject: {
 charset: encoding,
 data: subject,
 },
 },
 source: sender,
 # Comment or remove the following line if you are not using
 # a configuration set
 configuration_set_name: configsetname,
 })
 puts "Email sent!"

If something goes wrong, display an error message.
rescue Aws::SES::Errors::ServiceError => error
 puts "Email not sent. Error message: #{error}"

end

2. In amazon-ses-sample.rb, replace the following with your own values:

• sender@example.com—Replace with an email address that you have verified with
Amazon SES. For more information, see Verified identities. Email addresses in Amazon
SES are case-sensitive. Make sure that the address you enter is exactly the same as the
one you verified.

• recipient@example.com—Replace with the address of the recipient. If your account is
still in the sandbox, you must verify this address before you use it. For more information,
see Request production access (Moving out of the Amazon SES sandbox). Make sure that
the address you enter is exactly the same as the one you verified.

• (Optional) us-west-2—If you want to use Amazon SES in a Region other than US
West (Oregon), replace this with the Region you want to use. For a list of Regions where

Sending email using an AWS SDK 121

Amazon Simple Email Service Developer Guide

Amazon SES is available, see Amazon Simple Email Service (Amazon SES) in the AWS
General Reference.

3. Save amazon-ses-sample.rb.

4. To run the program, open a command prompt in the same directory as amazon-ses-
sample.rb, and type ruby amazon-ses-sample.rb

5. Review the output. If the email was successfully sent, the console displays "Email sent!"
Otherwise, it displays an error message.

6. Sign in to the email client of the recipient address. You will find the message that you sent.

Python

This topic shows how to use the AWS SDK for Python (Boto) to send an email through Amazon
SES.

Before you begin, perform the following tasks:

• Verify your email address with Amazon SES—Before you can send an email with Amazon
SES, you must verify that you own the sender's email address. If your account is still in the
Amazon SES sandbox, you must also verify the recipient email address. We recommend you
use the Amazon SES console to verify email addresses. For more information, see Creating an
email address identity.

• Get your AWS credentials—You need an AWS access key ID and AWS secret access key
to access Amazon SES using an SDK. You can find your credentials by using the Security
Credentials page of the AWS Management Console. For more information about credentials,
see Types of Amazon SES credentials.

• Install Python—Python is available at https://www.python.org/downloads/. The code in this
tutorial was tested using Python 2.7.6 and Python 3.6.1. After you install Python, add the
path to Python in your environment variables so that you can run Python from any command
prompt.

• Install the AWS SDK for Python (Boto)—For download and installation instructions, see the
AWS SDK for Python (Boto) documentation. The sample code in this tutorial was tested using
version 1.4.4 of the SDK for Python.

Sending email using an AWS SDK 122

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
https://aws.amazon.com/sdk-for-python/
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
https://www.python.org/downloads/
https://boto3.readthedocs.io/en/latest/guide/quickstart.html#installation

Amazon Simple Email Service Developer Guide

To send an email through Amazon SES using the SDK for Python

1. In a text editor, create a file named amazon-ses-sample.py. Paste the following code
into the file:

import boto3
from botocore.exceptions import ClientError

Replace sender@example.com with your "From" address.
This address must be verified with Amazon SES.
SENDER = "Sender Name <sender@example.com>"

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
RECIPIENT = "recipient@example.com"

Specify a configuration set. If you do not want to use a configuration
set, comment the following variable, and the
ConfigurationSetName=CONFIGURATION_SET argument below.
CONFIGURATION_SET = "ConfigSet"

If necessary, replace us-west-2 with the AWS Region you're using for Amazon
 SES.
AWS_REGION = "us-west-2"

The subject line for the email.
SUBJECT = "Amazon SES Test (SDK for Python)"

The email body for recipients with non-HTML email clients.
BODY_TEXT = ("Amazon SES Test (Python)\r\n"
 "This email was sent with Amazon SES using the "
 "AWS SDK for Python (Boto)."
)

The HTML body of the email.
BODY_HTML = """<html>
<head></head>
<body>
 <h1>Amazon SES Test (SDK for Python)</h1>
 <p>This email was sent with
 Amazon SES using the

 AWS SDK for Python (Boto).</p>

Sending email using an AWS SDK 123

Amazon Simple Email Service Developer Guide

</body>
</html>
 """

The character encoding for the email.
CHARSET = "UTF-8"

Create a new SES resource and specify a region.
client = boto3.client('ses',region_name=AWS_REGION)

Try to send the email.
try:
 #Provide the contents of the email.
 response = client.send_email(
 Destination={
 'ToAddresses': [
 RECIPIENT,
],
 },
 Message={
 'Body': {
 'Html': {
 'Charset': CHARSET,
 'Data': BODY_HTML,
 },
 'Text': {
 'Charset': CHARSET,
 'Data': BODY_TEXT,
 },
 },
 'Subject': {
 'Charset': CHARSET,
 'Data': SUBJECT,
 },
 },
 Source=SENDER,
 # If you are not using a configuration set, comment or delete the
 # following line
 ConfigurationSetName=CONFIGURATION_SET,
)
Display an error if something goes wrong.
except ClientError as e:
 print(e.response['Error']['Message'])
else:

Sending email using an AWS SDK 124

Amazon Simple Email Service Developer Guide

 print("Email sent! Message ID:"),
 print(response['MessageId'])

2. In amazon-ses-sample.py, replace the following with your own values:

• sender@example.com—Replace with an email address that you have verified with
Amazon SES. For more information, see Verified identities. Email addresses in Amazon
SES are case sensitive. Make sure that the address you enter is exactly the same as the
one you verified.

• recipient@example.com—Replace with the address of the recipient. If your account is
still in the sandbox, you must verify this address before you use it. For more information,
see Request production access (Moving out of the Amazon SES sandbox). Make sure that
the address you enter is exactly the same as the one you verified.

• (Optional) us-west-2—If you want to use Amazon SES in a Region other than US
West (Oregon), replace this with the Region you want to use. For a list of Regions where
Amazon SES is available, see Amazon Simple Email Service (Amazon SES) in the AWS
General Reference.

3. Save amazon-ses-sample.py.

4. To run the program, open a command prompt in the same directory as amazon-ses-
sample.py, and then type python amazon-ses-sample.py.

5. Review the output. If the email was successfully sent, the console displays "Email sent!"
Otherwise, it displays an error message.

6. Sign in to the email client of the recipient address. You will see the message that you sent.

Creating a shared credentials file to use when sending email through Amazon SES
using an AWS SDK

The following procedure shows how to create a shared credentials file in your home directory. For
the SDK sample code to function properly, you must create this file.

1. In a text editor, create a new file. In the file, paste the following code:

[default]
aws_access_key_id = YOUR_AWS_ACCESS_KEY_ID
aws_secret_access_key = YOUR_AWS_SECRET_ACCESS_KEY

Sending email using an AWS SDK 125

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region

Amazon Simple Email Service Developer Guide

2. In the text file you just created, replace YOUR_AWS_ACCESS_KEY with your unique AWS access
key ID, and replace YOUR_AWS_SECRET_ACCESS_KEY with your unique AWS secret access key.

3. Save the file. The following table shows the correct location and file name for your operating
system.

If you're using... Save the file as...

Windows C:\Users\<yourUserName>\.aws\credent
ials

Linux, macOS, or Unix ~/.aws/credentials

Important

Don't include a file extension when saving the credentials file.

Content encodings supported by Amazon SES

The following is provided for reference.

Amazon SES supports the following content encodings:

• deflate

• gzip

• identity

Amazon SES also supports the following Accept-Encoding header format, according to the RFC
7231 specification:

• Accept-Encoding:deflate,gzip

• Accept-Encoding:

• Accept-Encoding:*

• Accept-Encoding:deflate;q=0.5,gzip;q=1.0

• Accept-Encoding:gzip;q=1.0,identity;q=0.5,*;q=0

Content encodings 126

https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-5.3.4

Amazon Simple Email Service Developer Guide

Amazon SES and security protocols

This topic describes the security protocols that you can use when you connect to Amazon SES, and
when Amazon SES delivers an email to a receiver.

Email sender to Amazon SES

The security protocol that you use to connect to Amazon SES depends on whether you are using
the Amazon SES API or the Amazon SES SMTP interface, as described next.

HTTPS

If you're using the Amazon SES API (either directly or through an AWS SDK), then all
communications are encrypted by TLS through the Amazon SES HTTPS endpoint. The Amazon SES
HTTPS endpoint supports TLS 1.2 and TLS 1.3.

SMTP interface

If you are accessing Amazon SES through the SMTP interface, you're required to encrypt your
connection using Transport Layer Security (TLS). Note that TLS is often referred to by the name of
its predecessor protocol, Secure Sockets Layer (SSL).

Amazon SES supports two mechanisms for establishing a TLS-encrypted connection: STARTTLS
and TLS Wrapper.

• STARTTLS—STARTTLS is a means of upgrading an unencrypted connection to an encrypted
connection. There are versions of STARTTLS for a variety of protocols; the SMTP version is
defined in RFC 3207. For STARTTLS connections, Amazon SES supports TLS 1.2 and TLS 1.3.

• TLS Wrapper—TLS Wrapper (also known as SMTPS or the Handshake Protocol) is a means of
initiating an encrypted connection without first establishing an unencrypted connection. With
TLS Wrapper, the Amazon SES SMTP endpoint does not perform TLS negotiation: it is the client's
responsibility to connect to the endpoint using TLS, and to continue using TLS for the entire
conversation. TLS Wrapper is an older protocol, but many clients still support it. For TLS Wrapper
connections, Amazon SES supports TLS 1.2 and TLS 1.3.

For information about connecting to the Amazon SES SMTP interface using these methods, see
Connecting to an Amazon SES SMTP endpoint.

Supported security protocols 127

https://www.ietf.org/rfc/rfc3207.txt

Amazon Simple Email Service Developer Guide

Amazon SES to receiver

SES supports TLS 1.2 for TLS connections. To learn more, see Infrastructure security in SES.

By default, Amazon SES uses opportunistic TLS. This means that Amazon SES always attempts
to make a secure connection to the receiving mail server. If Amazon SES can't establish a secure
connection, it sends the message unencrypted.

You can change this behavior by using configuration sets. Use the
PutConfigurationSetDeliveryOptions API operation to set the TlsPolicy property for a
configuration set to Require. You can use the AWS CLI to make this change.

To configure Amazon SES to require TLS connections for a configuration set

• At the command line, enter the following command:

aws sesv2 put-configuration-set-delivery-options --configuration-set-
name MyConfigurationSet --tls-policy REQUIRE

In the preceding example, replace MyConfigurationSet with the name of your configuration
set.

When you send an email using this configuration set, Amazon SES only sends the message to
the receiving email server if it can establish a secure connection. If Amazon SES can't make a
secure connection to the receiving email server, it drops the message.

End-to-end encryption

You can use Amazon SES to send messages that are encrypted using S/MIME or PGP. Messages that
use these protocols are encrypted by the sender. Their contents can only be viewed by recipients
who possess the private keys that are required to decrypt the messages.

Amazon SES supports the following MIME types, which you can use to send S/MIME encrypted
email:

• application/pkcs7-mime

• application/pkcs7-signature

• application/x-pkcs7-mime

• application/x-pkcs7-signature

Amazon SES to receiver 128

https://docs.aws.amazon.com/ses/latest/APIReference/API_PutConfigurationSetDeliveryOptions.html
https://aws.amazon.com/cli

Amazon Simple Email Service Developer Guide

Amazon SES also supports the following MIME types, which you can use to send PGP-encrypted
email:

• application/pgp-encrypted

• application/pgp-keys

• application/pgp-signature

Amazon SES header fields

Amazon SES can accept all email headers that follow the format described in RFC 822.

The following fields can't appear more than once in the header section of a message:

• Accept-Language

• acceptLanguage

• Archived-At

• Auto-Submitted

• Bounces-to

• Comments

• Content-Alternative

• Content-Base

• Content-Class

• Content-Description

• Content-Disposition

• Content-Duration

• Content-ID

• Content-Language

• Content-Length

• Content-Location

• Content-MD5

• Content-Transfer-Encoding

• Content-Type

Supported header fields 129

https://www.ietf.org/rfc/rfc0822.txt

Amazon Simple Email Service Developer Guide

• Date

• Delivered-To

• Disposition-Notification-Options

• Disposition-Notification-To

• DKIM-Signature

• DomainKey-Signature

• Errors-To

• From

• Importance

• In-Reply-To

• Keywords

• List-Archive

• List-Help

• List-Id

• List-Owner

• List-Post

• List-Subscribe

• List-Unsubscribe

• List-Unsubscribe-Post

• Message-Context

• Message-ID

• MIME-Version

• Organization

• Original-From

• Original-Message-ID

• Original-Recipient

• Original-Subject

• Precedence

• Priority

• References

Supported header fields 130

Amazon Simple Email Service Developer Guide

• Reply-To

• Return-Path

• Return-Receipt-To

• Sender

• Solicitation

• Sensitivity

• Subject

• Thread-Index

• Thread-Topic

• User-Agent

• VBR-Info

Considerations

• The acceptLanguage field is non-standard. If possible, you should use the Accept-Language
header instead.

• If you specify a Date header, Amazon SES overrides it with a timestamp that corresponds to the
date and time in the UTC time zone when Amazon SES accepted the message.

• If you provide a Message-ID header, Amazon SES overrides the header with its own value.

• If you specify a Return-Path header, Amazon SES sends bounce and complaint notifications
to the address that you specified. However, the message that your recipients receive contains a
different value for the Return-Path header.

• If you use the Amazon SES API v2 SendEmail operation with either Simple or Templated
content, or use the SendBulkEmail operation, you cannot set custom header content for
headers that are set by SES; therefore, the following headers are disallowed as custom headers:

• BCC, CC, Content-Disposition, Content-Type, Date, From, Message-ID, MIME-
Version, Reply-To, Return-Path, Subject, To

Amazon SES unsupported attachment types

You can send messages with attachments through Amazon SES by using the Multipurpose
Internet Mail Extensions (MIME) standard. Amazon SES accepts all file attachment types except for
attachments with the file extensions in the following list.

Unsupported attachment types 131

Amazon Simple Email Service Developer Guide

.ade

.adp

.app

.asp

.bas

.bat

.cer

.chm

.cmd

.com

.cpl

.crt

.csh

.der

.exe

.fxp

.gadget

.hlp

.hta

.inf

.ins

.isp

.its

.js

.jse

.ksh

.lib

.lnk

.mad

.maf

.mag

.mam

.maq

.mar

.mas

.mat

.mau

.mav

.maw

.mda

.mdb

.mde

.mdt

.mdw

.mdz

.msc

.msh

.msh1

.msh2

.mshxml

.msh1xml

.msh2xml

.msi

.msp

.mst

.ops

.pcd

.pif

.plg

.prf

.prg

.reg

.scf

.scr

.sct

.shb

.shs

.sys

.ps1

.ps1xml

.ps2

.ps2xml

.psc1

.psc2

.tmp

.url

.vb

.vbe

.vbs

.vps

.vsmacros

.vss

.vst

.vsw

.vxd

.ws

.wsc

.wsf

.wsh

.xnk

Some ISPs have further restrictions (such as restrictions regarding archived attachments), so we
recommend testing your email sending through major ISPs before you send your production email.

Unsupported attachment types 132

Amazon Simple Email Service Developer Guide

Email receiving with Amazon SES

Besides using Amazon SES to manage your email sending, you can also configure SES to receive
email on behalf of one or more of your domains. As the email receiver, SES handles underlying
mail-receiving operations, such as communicating with other mail servers, scanning for spam and
viruses, blocking mail from untrusted sources (addresses on the block lists of either Spamhaus or
SES), and accepting mail for recipients in your domain.

The extent of processing on your received email is determined by the custom instructions you
specify. These instructions come in two forms:

• Receipt rules (recipient-based control) provide the finest granularity of control over incoming
email. Receipt rules can do advanced processing such as deliver incoming mail to an Amazon S3
bucket, publish it to an Amazon SNS topic, send it to Amazon WorkMail, or automatically send
bounce messages when messages are to specific email addresses, and more.

• IP address filters (IP-based control) provide a broad level of control and are simple to setup.
These filters allow you to explicitly block or allow all messages from specific IP addresses or IP
address ranges.

To get started with learning about email receiving, setting it up, and implementation using either
receipt rules or IP address filters, first read through Email receiving concepts & use cases to get an
overview of how it works and the different ways you can use it. Next, Setting up email receiving
will guide you through the email receiving set up prerequisites. Then, the Email receiving console
walkthroughs will guide you through the wizards used for configuring receipt rules and IP address
filters.

Note

Email receiving can only be used if your account is in an AWS Region where SES supports
email receiving. See SES supported email receiving regions.

Topics in this section:

• Amazon SES email receiving concepts and use cases

• Setting up Amazon SES email receiving

• Amazon SES email receiving console walkthroughs

133

https://www.spamhaus.org/

Amazon Simple Email Service Developer Guide

• Viewing metrics for Amazon SES email receiving

Amazon SES email receiving concepts and use cases

When you use Amazon SES as your email receiver, you tell the service what to do with your mail.
The primary method, receipt rules, gives you fine-grained control over your email receiving by
utilizing recipient-based control to specify a set of actions to take based on the recipient. The other
method, IP address filters, provides a broad level of IP-based control to block or allow mail based
on the originating IP address or range of addresses.

Both of these methods are described in this section along with an overview of how Amazon SES
processes received email, and use cases to help you consider how you want to receive, filter, and
process your email when setting up rules and filters.

Topics in this section:

• Recipient-based control using receipt rules

• IP-based control using IP address filters

• Email-receiving process

• Use cases and restrictions for Amazon SES email receiving

• Email-receiving authentication and malware scanning

Recipient-based control using receipt rules

The primary way to control your incoming mail is to specify how mail is handled through an
ordered list of actions for any of your verified identities which includes domains, sub-domains,
or email addresses - note that email addresses have to belong to one of your verified domain
identities. These actions are defined and ordered in receipt rules that you create within a rule set.

As an option, you can also add recipient conditions as a way to specify that the actions only
be taken if the recipient to whom the incoming mail is addressed matches a recipient identity
specified in the condition. For example, if you own example.com, you can specify that mail for
user@example.com should bounce, and that all other mail for example.com and its subdomains
should be delivered.

Otherwise, if you do not add any recipient conditions, the actions will be applied to everything - all
email addresses, domains, and sub-domains that belong to your verified domains. The following
actions are available to be applied to your receipt rules:

Email receiving concepts & use cases 134

Amazon Simple Email Service Developer Guide

• Add header action—Adds a header to the received email. You typically use this action only in
combination with other actions.

• Return bounce response action—blocks the email by returning a bounce response to the sender
and, optionally, notifies you through Amazon SNS.

• Invoke AWS Lambda function action—Calls your code through a Lambda function and,
optionally, notifies you through Amazon SNS.

• Deliver to S3 bucket action—Delivers the mail to an Amazon S3 bucket and, optionally, notifies
you through Amazon SNS.

• Publish to Amazon SNS topic action—Publishes the complete email to an Amazon SNS topic.

Note

The SNS action includes a complete copy of the email content in the Amazon SNS
notifications. The other Amazon SNS notification options mentioned here simply notify
you of email delivery; they contain information about the email, not the email content
itself.

• Stop rule set action—Terminates the evaluation of the receipt rule set and, optionally, notifies
you through Amazon SNS.

• Integrate with Amazon WorkMail action—Handles the mail with Amazon WorkMail. You will
typically not use this action directly because Amazon WorkMail takes care of the setup.

Receipt rules are grouped together into rule sets. If you don't have an existing rule set, you'll first
have to create a rule set before you start creating receipt rules. You can define multiple rule sets
for your AWS account, but only one rule set is active at any time. The following figure shows how
receipt rules, rule sets, and actions relate to each other.

Recipient-based control using receipt rules 135

Amazon Simple Email Service Developer Guide

IP-based control using IP address filters

You can control your mail flow by setting up IP address filters. IP address filters are optional and
enable you to specify whether to accept or block mail originating from an IP address or range of IP
addresses. Your IP address filters can include block lists (IP addresses from which you want to block
incoming mail) and allow lists (IP addresses from which you want to always accept mail).

IP address filters are useful for blocking spam. Amazon SES maintains its own block list of IP
addresses known to send spam including those listed in Spamhaus. However, you can choose to
receive mail from those IP addresses by adding them to your allow list. Since there are no logs that
show which IP addresses are being blocked, the sender who is being blocked will need to inform
you. This is also a good opportunity to help the sender determine if their IP address is on a block
list, such as Spamhaus, and recommend they request to be unlisted. Doing so will be beneficial to
both you and the sender in that you won't have to maintain an IP address filter for them and they
will improve their email deliverability.

IP-based control using IP address filters 136

https://www.spamhaus.org/

Amazon Simple Email Service Developer Guide

Note

• Independent of your IP address filter configuration, Amazon EC2 will block outbound
traffic on port 25 (mail sending) unless allowlisted. Refer to this AWS re:Post article for
more information.

• If you only want to receive mail from a finite list of known IP addresses, then set up
a block list that contains 0.0.0.0/0, and set up an allow list that contains the IP
addresses that you trust. This configuration blocks all IP addresses by default, and only
allows mail from the IP addresses that you explicitly specify.

Email-receiving process

When Amazon SES receives an email for your domain, the following events occur:

1. Amazon SES first looks at the IP address of the sender. Amazon SES allows the mail to pass this
stage unless:

• The IP address is in your block list.

• The IP address is in the Amazon SES block list, but not on your allow list.

2. Amazon SES examines your active rule set to determine whether any of your receipt rules
contain a recipient condition:

• If there's a recipient condition and it matches any of the incoming email's recipients, Amazon
SES accepts the email. Otherwise, if there aren't any matches, Amazon SES blocks the email.

• If the receipt rule does not contain a recipient condition, Amazon SES accepts the mail - all of
the rule's actions will apply to all the verified identities you own.

3. Amazon SES authenticates the email and scans its content for spam and malware:

• The IP address of the remote host that delivered the email to Amazon SES is checked against
the SPF policy specified under the MAIL FROM's domain used during the SMTP transaction.

• The DKIM signatures present in the email's header section are checked.

• If content scanning is enabled, the email content is scanned for spam and malware.

• The email authentication and content scanning results are made available to you during the
receipt rules evaluation.

See Email authentication and malware detection for more information.
Email-receiving process 137

https://repost.aws/knowledge-center/ec2-port-25-throttle

Amazon Simple Email Service Developer Guide

4. For the email that Amazon SES accepts, all of the receipt rules within your active rule set are
applied in the order you've defined; and within each receipt rule, the actions are executed in the
order you've defined.

Use cases and restrictions for Amazon SES email receiving

This section goes over some general considerations and use cases for Amazon SES email receiving.
Presented in question and answer format, are commonly asked questions and facts to help
determine if it would be beneficial for using Amazon SES to receive and manage email on behalf of
one or more of the verified domains that you own.

Regional availability

Does Amazon SES support email receiving in your Region?

Amazon SES only supports email receiving in certain AWS Regions. For a complete list of Regions
where email receiving is supported, see Amazon Simple Email Service endpoints and quotas in the
AWS General Reference.

POP or IMAP based email clients

Can Microsoft Outlook be used to receive incoming email?

Amazon SES doesn't include POP or IMAP servers for receiving incoming email. This means that
you can't use an email client such as Microsoft Outlook to receive incoming email. If you need a
solution that can both send and receive email by using an email client, consider using Amazon
WorkMail.

Using other AWS services

Have you set up the appropriate permissions?

If you want your mail to be delivered to an S3 bucket, published to an Amazon SNS topic you don't
own, trigger a Lambda function, or use a customer managed key, you need to give Amazon SES
permission to access those resources. To give Amazon SES access, you create policies on resources
from the consoles or APIs for those AWS services. For more information Giving permission.

Email content

How do you want Amazon SES to pass you the email content?

Use cases & restrictions 138

https://docs.aws.amazon.com/general/latest/gr/ses.html
https://aws.amazon.com/workmail
https://aws.amazon.com/workmail

Amazon Simple Email Service Developer Guide

Amazon SES can provide you the email content in two ways: it can store the emails in an S3 bucket
that you specify, or it can send you an Amazon SNS notification that contains a copy of the email.
Amazon SES delivers you the raw, unmodified email in Multipurpose Internet Mail Extensions
(MIME) format. For more information about MIME format, see RFC 2045.

How large are the emails that you'll be receiving?

If you store emails in an S3 bucket, the maximum email size (including headers) is 40 MB. If you
receive your emails through Amazon SNS notifications, the maximum email size (including headers)
is 150 KB.

How do you want to trigger the processing of your mail?

After your mail is delivered, you will want to process it with your own code. For example, your
application might convert the base 64-encoded email into a displayable format and then make
it available to an end user through an email client. There are a couple of ways you can start the
process:

• If your emails are delivered to Amazon S3, your application can listen for Amazon SNS
notifications generated by S3 actions, extract the message ID of the email from the notifications,
and then use the message ID to retrieve the email from Amazon S3.

Alternatively, you can incorporate email processing into your receipt rules by writing a Lambda
function. In this case, your receipt rule should first write the email to Amazon S3, and then
trigger the Lambda function. Lambda actions can be executed synchronously or asynchronously
from within your receipt rules, depending on whether the Lambda function needs to return a
result that influences how other actions are executed. We recommend that you use asynchronous
execution unless synchronous is absolutely necessary for your use case. For more information
about AWS Lambda, see the AWS Lambda Developer Guide.

• If your emails are delivered through an Amazon SNS notification by using the SNS action, your
application can listen for Amazon SNS notifications, and then extract the email messages from
the notifications.

Do you want the emails to be encrypted?

Amazon SES integrates with AWS Key Management Service (AWS KMS) to optionally encrypt the
mail it writes to your S3 bucket. Amazon SES uses client-side encryption to encrypt your mail
before writing it to Amazon S3. This means that you must decrypt the content on your side after
retrieving the mail from Amazon S3. The AWS SDK for Java and AWS SDK for Ruby provide a client

Use cases & restrictions 139

https://tools.ietf.org/html/rfc2045
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-ruby/

Amazon Simple Email Service Developer Guide

that can handle the decryption for you. Amazon SES can encrypt the emails for you only if you
choose for your emails to be delivered to an S3 bucket.

Unwanted mail

At what point in the email-receiving process do you want to block unwanted mail?

When a sender tries to send an email to a recipient, the sender's email server exchanges a sequence
of commands with the recipient's server. This sequence is called the SMTP conversation.

You can block incoming email at two points in the email receiving process: during the SMTP
conversation, and after the SMTP conversation. You use IP address filters to block messages during
the SMTP conversation, and receipt rules to block emails after the SMTP conversation.

You can use IP address filters to block email that originates from specific IP addresses. The benefit
of using IP address filters to block unwanted mail is that we don't charge you for messages that are
blocked during the SMTP conversation. The drawback to using IP address filters is that they block
email from the IP addresses you specify without performing any analysis on the actual content of
the messages. For more information about IP address filters, see Create IP address filters console
walkthrough.

You can use receipt rules to send a bounce notification to the sender of an email based on the
address (or domain, or subdomain) that the message was sent to. The benefit of using receipt
rules is that you can perform additional analysis on incoming messages before you send a bounce
notification to the sender. For example, you can use AWS Lambda to send bounce notifications only
when messages fail DKIM authentication or are identified as spam. The drawback to using receipt
rules is that, because receipt rules are processed after the SMTP conversation, we bill you for each
message that you receive. You might also be charged if you use Lambda to analyze the content of
incoming messages. For more information about receipt rules, see Creating receipt rules console
walkthrough. For more information about using Lambda to analyze incoming email, see Lambda
function examples.

Mail streams

How do you want to divide your mail stream?

Your domain most likely receives different classes of mail. For example, some of your domain's
mail, such as an email to user@example.com, might be intended for a personal inbox. Other
mail, such as an email to unsubscribe@example.com, might be better directed to automated

Use cases & restrictions 140

Amazon Simple Email Service Developer Guide

systems instead. You can use receipt rules to divide your incoming mail so that it can be processed
differently. For information about how to set up receipt rules, see Creating receipt rules.

Email-receiving authentication and malware scanning

Amazon SES authenticates each received email and optionally scans the email’s content for spam
and malware. SES doesn’t take any actions on received email based on the results of the email
authentication or content scanning; however, the results of these operations are provided to you
as attributes that you can use in SES receipt rule actions such as Amazon SNS notifications or as
headers in a message delivered to Amazon S3.

Email authentication

Amazon SES authenticates each received email using SPF, DKIM and DMARC. The results of each
authentication mechanism is provided in the Amazon SNS notifications that SES dispatches
as part of evaluating the rules in the active receipt rule set. In addition, if you chose to receive
a copy of the email in Amazon S3, the result of the email authentication is captured in the
Authentication-Results header that SES adds to the email’s header section:

Authentication-Results: example.com;
spf=pass (spfCheck: 10.0.0.1 is permitted by domain of example.com) client-ip=10.0.0.1;
 envelope-from=example@example.com; helo=10.0.0.1;
dkim=pass header.i=example.com;
dkim=permerror header.i=some-example.com;
dmarc=pass header.from=example@example.com;

The Authentication-Results header is described in RFC 8601

Email content scanning for spam and malware detection

Amazon SES scans received email content for malware depending of the value of the ScanEnabled
(API) or Spam and virus scanning (console) attribute of the receipt rule that matched the email. By
default SES scans received email content for malware. To disable content scanning for received
emails that match a specific receipt rule, you would need to set the receipt rule’s ScanEnabled flag
to false if using the API, or clear the Spam and virus scanning checkbox if using the console. If the
receipt rule that matched an email is scan enabled, the result of the content scanning is provided
in the Amazon SNS notifications that SES dispatches as part of evaluating the rules in the active
receipt rule set. In addition, if you chose to receive a copy of the email in Amazon S3, the result of
the content scanning is captured in the X-SES-Spam-Verdict and the X-SES-Virus-Verdict
headers that SES adds to the email’s header section.

Email authentication and malware detection 141

https://datatracker.ietf.org/doc/html/rfc8601
https://docs.aws.amazon.com/ses/latest/APIReference/API_ReceiptRule.html

Amazon Simple Email Service Developer Guide

X-SES-Spam-Verdict: PASS
X-SES-Virus-Verdict: FAIL

The possible values for the headers above are listed in:

• spam

• virus

Now that you have an understanding of the email receiving concepts, how it works, and it's use
cases, you can get started by going to Setting up email receiving.

Setting up Amazon SES email receiving

This section describes the prerequisites that are required before you can begin to configure
Amazon SES to receive your mail. It's important that you've read Email receiving concepts & use
cases to understand the concepts of how Amazon SES works and to consider how you want to
receive, filter, and process your email.

Before you can configure email receiving by creating a rule set, receipt rules, and IP address filters,
you must first complete the following set up prerequisites:

• Verify your domain with Amazon SES by publishing DNS records to prove that you own it.

• Permit Amazon SES to receive email for your domain by publishing an MX record.

• Give Amazon SES permission to access other AWS resources in order to execute receipt rule
actions.

When you create and verify a domain identity, you're publishing records to your DNS settings to
complete the verification process, but this alone is not enough to use email receiving. Specific
to email receiving, it's also required to publish an MX record for specifying a custom mail-from
domain. This record is used in your domain’s DNS settings to permit SES to receive email for your
domain. Giving permissions is required because the actions you choose in your receipt rules won’t
work unless Amazon SES has permission to use the respective AWS service required for those
actions.

These three prerequisites required to use email receiving are explained in the following topics:

• Verifying your domain for Amazon SES email receiving

Setting up email receiving 142

Amazon Simple Email Service Developer Guide

• Publishing an MX record for Amazon SES email receiving

• Giving permissions to Amazon SES for email receiving

Verifying your domain for Amazon SES email receiving

As with any domain you want to use for sending or receiving email with Amazon SES, you must
first prove that you own it. The verification procedure includes initiating domain verification with
SES and then publishing the DNS records, either CNAME or TXT, to your DNS provider depending
on which verification method you use.

Through the console, you can verify your domains with either Easy DKIM or Bring Your Own
DKIM (BYODKIM) and easily copy their DNS records to publish to your DNS provider - how
to do this is explained in Creating a domain identity. Optionally, you can use either the SES
VerifyDomainDkim or VerifyDomainIdentity APIs.

You can easily confirm that your domain or email address is verified by looking at its
status in the Verified identities table in the SES console or by using either the SES
GetIdentityVerificationAttributes or GetEmailIdentity APIs.

Publishing an MX record for Amazon SES email receiving

A mail exchanger record (MX record) is a configuration that specifies which mail servers can accept
email that's sent to your domain.

To have Amazon SES manage your incoming email, you need to add an MX record to your domain's
DNS configuration. The MX record that you create refers to the endpoint that receives email for
the AWS Region where you use Amazon SES. For example, the endpoint for the US West (Oregon)
Region is inbound-smtp.us-west-2.amazonaws.com. For a complete list of endpoints, see Amazon
SES regions and endpoints.

Note

The endpoints that receive email in Amazon SES aren't IMAP or POP3 email servers. You
can't use these URLs as incoming mail servers in email clients.
If you need a solution that can both send and receive email by using an email client,
consider using Amazon WorkMail.

Verifying your domain 143

https://docs.aws.amazon.com/ses/latest/APIReference/API_VerifyDomainDkim.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_VerifyDomainIdentity.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_GetIdentityVerificationAttributes.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetEmailIdentity.html
https://aws.amazon.com/workmail

Amazon Simple Email Service Developer Guide

The following procedure includes general steps for creating an MX record. The specific procedures
for creating an MX record depend on your DNS or hosting provider. See your provider's
documentation for information about adding an MX record to the DNS configuration for your
domain.

Note

To complete the following procedure, you have to be able to modify the DNS records
for your domain. If you can't access the DNS records for your domain, or you're not
comfortable doing so, contact your system administrator for assistance.

To add an MX record to the DNS configuration for your domain

1. Sign in to the management console for your DNS provider.

2. Create a new MX record.

3. For the MX record Name, enter your domain. For example, if you want Amazon SES to manage
email that's sent to the domain example.com, enter the following:

example.com

Note

Some DNS providers refer to the Name field as the Host, Domain, or Mail Domain.

4. For Type, choose MX.

Note

Some DNS providers refer to the Type field as the Record Type or a similar name.

5. For Value, enter the following:

10 inbound-smtp.region.amazonaws.com

In the preceding example, replace region with the address of the endpoint that receives
email for the AWS Region you use with Amazon SES. For example, if you're using the US East

Publishing an MX record 144

Amazon Simple Email Service Developer Guide

(N. Virginia) Region, replace region with us-east-1. For a complete list of email receiving
endpoints, see Amazon SES regions and endpoints.

Note

The management consoles of some DNS providers include separate fields for the
record Value and the record Priority. If this is the case for your DNS provider, enter 10
for the Priority value, and enter the incoming mail endpoint URL for the Value.

Instructions for creating MX records for various providers

The procedures for creating an MX record for your domain depend on which DNS provider you
use. This section includes links to the documentation for several common DNS providers. This list
isn't a complete list of providers. If your provider isn't listed below, you can probably still use it
with Amazon SES. Inclusion on this list isn’t an endorsement or recommendation of any company’s
products or services.

DNS/Hosting Provider Name Documentation Link

Amazon Route 53 Creating Records by Using the Amazon
Route 53 Console

GoDaddy Add an MX record (external link)

DreamHost How do I change my MX records? (external
link)

Cloudflare Set up email records (external link)

HostGator Changing MX records - Windows (external link)

Namecheap How can I set up MX records required for mail
service? (external link)

Names.co.uk Changing your domain's DNS settings
(external link)

Publishing an MX record 145

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://www.godaddy.com/help/add-an-mx-record-19234
https://help.dreamhost.com/hc/en-us/articles/215035328
https://developers.cloudflare.com/dns/manage-dns-records/how-to/email-records/
https://www.hostgator.com/help/article/changing-mx-records-windows
https://www.namecheap.com/support/knowledgebase/article.aspx/322/2237/how-can-i-set-up-mx-records-required-for-mail-service
https://www.namecheap.com/support/knowledgebase/article.aspx/322/2237/how-can-i-set-up-mx-records-required-for-mail-service
https://www.names.co.uk/support/domains/1156-changing_your_domains_dns_settings.html

Amazon Simple Email Service Developer Guide

DNS/Hosting Provider Name Documentation Link

Wix Adding or Updating MX Records in Your Wix
Account (external link)

Giving permissions to Amazon SES for email receiving

Some of the tasks that you can perform when you receive email in Amazon SES, such as sending
email to an Amazon Simple Storage Service (Amazon S3) bucket or calling a AWS Lambda function,
require special permissions. This section includes example policies for several common use cases.

Topics in this section:

• Give Amazon SES permission to write to an S3 bucket

• Give Amazon SES permission to use your AWS KMS key

• Give Amazon SES permission to invoke a AWS Lambda function

• Give Amazon SES permission to publish to an Amazon SNS topic that belongs to a different AWS
account

Give Amazon SES permission to write to an S3 bucket

When you apply the following policy to an S3 bucket, it gives Amazon SES permission to write to
that bucket. For more information about creating receipt rules that transfer incoming email to
Amazon S3, see Deliver to S3 bucket action.

For more information about attaching policies to S3 buckets, see Using Bucket Policies and User
Policies in the Amazon Simple Storage Service User Guide.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowSESPuts",
 "Effect":"Allow",
 "Principal":{
 "Service":"ses.amazonaws.com"
 },
 "Action":"s3:PutObject",

Giving permission 146

https://support.wix.com/en/article/adding-or-updating-mx-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-mx-records-in-your-wix-account
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html

Amazon Simple Email Service Developer Guide

 "Resource":"arn:aws:s3:::myBucket/*",
 "Condition":{
 "StringEquals":{
 "AWS:SourceAccount":"111122223333",
 "AWS:SourceArn": "arn:aws:ses:region:111122223333:receipt-rule-
set/rule_set_name:receipt-rule/receipt_rule_name"
 }
 }
 }
]
}

Make the following changes to the preceding policy example:

• Replace myBucket with the name of the S3 bucket that you want to write to.

• Replace region with the AWS Region where you created the receipt rule.

• Replace 111122223333 with your AWS account ID.

• Replace rule_set_name with the name of the rule set that contains the receipt rule that
contains the deliver to Amazon S3 bucket action.

• Replace receipt_rule_name with the name of the receipt rule that contains the deliver to
Amazon S3 bucket action.

Give Amazon SES permission to use your AWS KMS key

In order for Amazon SES to encrypt your emails, it must have permission to use the AWS KMS key
that you specified when you set up your receipt rule. You can either use the default KMS key (aws/
ses) in your account, or use a customer managed key that you create. If you use the default KMS
key, you don't need to perform any additional steps to give Amazon SES permission to use it. If
you use a customer managed key, you need to give Amazon SES permission to use it by adding a
statement to the key's policy.

Use the following policy statement as the key policy to allow Amazon SES to use your customer
managed key when it receives email on your domain.

{
 "Sid": "AllowSESToEncryptMessagesBelongingToThisAccount",
 "Effect": "Allow",
 "Principal": {

Giving permission 147

Amazon Simple Email Service Developer Guide

 "Service":"ses.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition":{
 "StringEquals":{
 "AWS:SourceAccount":"111122223333",
 "AWS:SourceArn": "arn:aws:ses:region:111122223333:receipt-rule-
set/rule_set_name:receipt-rule/receipt_rule_name"
 }
 }
}

Make the following changes to the preceding policy example:

• Replace region with the AWS Region where you created the receipt rule.

• Replace 111122223333 with your AWS account ID.

• Replace rule_set_name with the name of the rule set that contains the receipt rule that you've
associated with email receiving.

• Replace receipt_rule_name with the name of the receipt rule that you've associated with
email receiving.

If you're using AWS KMS to send encrypted messages to an S3 bucket with server-side encryption
enabled, then you need to add the policy action, "kms:Decrypt". Using the preceding example,
adding this action to your policy would appear as follows:

{
 "Sid": "AllowSESToEncryptMessagesBelongingToThisAccount",
 "Effect": "Allow",
 "Principal": {
 "Service":"ses.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition":{

Giving permission 148

Amazon Simple Email Service Developer Guide

 "StringEquals":{
 "AWS:SourceAccount":"111122223333",
 "AWS:SourceArn": "arn:aws:ses:region:111122223333:receipt-rule-
set/rule_set_name:receipt-rule/receipt_rule_name"
 }
 }
}

For more information about attaching policies to AWS KMS keys, see Using Key Policies in AWS
KMS in the AWS Key Management Service Developer Guide.

Give Amazon SES permission to invoke a AWS Lambda function

To enable Amazon SES to call a AWS Lambda function, you can choose the function when you
create a receipt rule in the Amazon SES console. When you do, Amazon SES automatically adds the
necessary permissions to the function.

Alternatively, you can use the AddPermission operation in the AWS Lambda API to attach a
policy to a function. The following call to the AddPermission API gives Amazon SES permission
to invoke your Lambda function. For more information about attaching policies to Lambda
functions, see AWS Lambda Permissions in the AWS Lambda Developer Guide.

{
 "Action": "lambda:InvokeFunction",
 "Principal": "ses.amazonaws.com",
 "SourceAccount": "111122223333",
 "SourceArn": "arn:aws:ses:region:111122223333:receipt-rule-set/rule_set_name:receipt-
rule/receipt_rule_name"
 "StatementId": "GiveSESPermissionToInvokeFunction"
}

Make the following changes to the preceding policy example:

• Replace region with the AWS Region where you created the receipt rule.

• Replace 111122223333 with your AWS account ID.

• Replace rule_set_name with the name of the rule set that contains the receipt rule where you
created your Lambda function.

• Replace receipt_rule_name with the name of the receipt rule containing your Lambda
function.

Giving permission 149

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html

Amazon Simple Email Service Developer Guide

Give Amazon SES permission to publish to an Amazon SNS topic that belongs to a
different AWS account

To publish notifications to a topic in a separate AWS account, you must attach a policy to the
Amazon SNS topic. The SNS topic must be in the same Region as the domain and receipt rule set.

The following policy gives Amazon SES permission to publish to an Amazon SNS topic in a separate
AWS account.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"ses.amazonaws.com"
 },
 "Action":"SNS:Publish",
 "Resource":"arn:aws:sns:topic_region:sns_topic_account_id:topic_name",
 "Condition":{
 "StringEquals":{
 "AWS:SourceAccount":"aws_account_id",
 "AWS:SourceArn": "arn:aws:ses:receipt_region:aws_account_id:receipt-rule-
set/rule_set_name:receipt-rule/receipt_rule_name"
 }
 }
 }
]
}

Make the following changes to the preceding policy example:

• Replace topic_region with the AWS Region that the Amazon SNS topic was created in.

• Replace sns_topic_account_id with the ID of the AWS account that owns the Amazon SNS
topic.

• Replace topic_name with the name of the Amazon SNS topic that you want to publish
notifications to.

• Replace aws_account_id with the ID of the AWS account that is configured to receive email.

• Replace receipt_region with the AWS Region where you created the receipt rule.

Giving permission 150

Amazon Simple Email Service Developer Guide

• Replace rule_set_name with the name of the rule set that contains the receipt rule where you
created your publish to Amazon SNS topic action.

• Replace receipt_rule_name with the name of the receipt rule containing the publish to
Amazon SNS topic action.

If your Amazon SNS topic uses AWS KMS for server-side encryption, you have to add permissions
to the AWS KMS key policy. You can add permissions by attaching the following policy to the AWS
KMS key policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSESToUseKMSKey",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}

Amazon SES email receiving console walkthroughs

This section describes the email receiving console wizards that are used for configuring receipt
rules and IP address filters to manage your email receiving. Before using the console wizards, it's
important that you've read both Email receiving concepts & use cases to understand the concepts
of how email receiving works and Setting up email receiving to make sure you've completed the set
up prerequisites.

The console wizards for configuring receipt rules and IP address filters are explained in the
following:

• Creating receipt rules console walkthrough

Email receiving console walkthroughs 151

Amazon Simple Email Service Developer Guide

• Create IP address filters console walkthrough

Creating receipt rules console walkthrough

This section will walk you through creating and defining receipt rules using the Amazon SES
console. The key points to understanding how receipt rules work are:

• Rule sets contain an ordered set of receipt rules; Receipt rules contain an ordered set of actions.

• Receipt rules tell Amazon SES how to handle incoming mail by executing an ordered list of
actions you specify.

• This ordered list of actions can optionally be made dependant on first matching a recipient
condition; if not specified, the actions will be applied to all identities that belong to your verified
domains.

• Receipt rules are created and defined in a container called a rule set - while you can create
multiple rule sets, only one can be active at a time.

• Receipt rules within the active rule set are executed in the order that you specify.

• Before you create your receipt rules, you must first create a rule set to contain them.

Optionally, you can use the CreateReceiptRuleSet API to create an empty receipt rule set, as
described in the Amazon Simple Email Service API Reference. Then, you can use the Amazon SES
console or the CreateReceiptRule API to add receipt rules to it.

Before proceeding with the walkthrough, please ensure you have met all of the necessary
prerequisites that are required in order to use recipient-based email receiving. Also

Prerequisites

The following prerequisites must be met before proceeding with setting up recipient based email
control using receipt rules:

1. Ensure your endpoint is in an AWS Region where Amazon SES supports email receiving. See SES
supported email receiving endpoints.

2. You first need to create and verify a domain identity in Amazon SES.

3. Next, you need to specify which mail servers can accept mail for your domain by publishing
an MX record to your domain's DNS settings. (The MX record should refer to the Amazon SES
endpoint that receives mail for the AWS Region where you use Amazon SES.)

Creating receipt rules 152

https://docs.aws.amazon.com/ses/latest/APIReference/API_CreateReceiptRuleSet.html

Amazon Simple Email Service Developer Guide

4. Lastly, you need to give Amazon SES permission to access other AWS resources in order to
execute receipt rule actions.

Creating rule sets and receipt rules

This walkthrough begins by first creating a rule set to contain your rules and progresses into the
Create rule wizard to create, define, and order your receipt rules. The wizard contains four screens
to define rule settings, add recipient conditions, add actions, and to review all your settings.

To create a rule set and receipt rules using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Email Receiving.

Note

Email receiving will not be visible in the left navigation pane of the SES console if your
account is in an AWS Region where SES doesn't support email receiving. See the first
item listed in the section called “Prerequisites”.

3. Under the Receipt rule sets tab in the Email receiving pane, choose Create rule set.

4. Enter an unique name for your rule set and choose Create rule set.

5. Choose Create rule and this will open the Create rule wizard.

6. On the Define rule settings page, under Receipt rule details, enter a Rule name.

7. For Status, only clear the Enabled checkbox if you don't want Amazon SES to run this rule
after creation; otherwise, leave this option selected.

8. (Optional) Under Security and protection options, for Transport Layer Security (TLS), select
Required if you want Amazon SES to reject incoming messages that aren't sent over a secure
connection.

9. (Optional) For Spam and virus scanning, select Enabled if you want Amazon SES to scan
incoming messages for spam and viruses.

10. To proceed to the next step, choose Next.

11. (Optional) On the Add recipient conditions page, use the following procedure to specify one
or more recipient conditions. You can have a maximum of 100 recipient conditions per receipt
rule.

Creating receipt rules 153

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

a. Under Recipient conditions, choose Add new recipient condition to specify the receiving
email address or domain to which you want to apply the receipt rule. The following table
uses the address user@example.com to show how to specify recipient conditions.

If you want to... Specify the following
recipient...

Notes

Match a specific email
address.

user@example.com Also matches variation
s of the address that
contain labels (such as user
+123@example.com and
user+xyz@example.com).
However, if you specify
an address that contains
a label, only that specific
address is matched.

Match all addresses within
a domain, but not those
within its subdomains.

example.com

Match all addresses within
a specific subdomain,
but not those within the
parent domain.

subdomain.example.com

Match all addresses within
all subdomains, but not
those within the parent
domain.

.example.com Note the period (.) before
the domain name.

Match all addresses
within a domain, and all
addresses within all of its
subdomains.

example.com

.example.com

Create two separate
recipients: one with the
domain name, and one
with a period followed by
the domain name.

Creating receipt rules 154

Amazon Simple Email Service Developer Guide

If you want to... Specify the following
recipient...

Notes

Match all recipients in all
verified domains

[None] Leave the recipient field
blank.

Important

If multiple Amazon SES accounts receive email on a common domain (for example,
if multiple teams in the same company each have separate Amazon SES accounts),
Amazon SES processes all matching receipt rules simultaneously for each of those
accounts. This behavior may result in a situation where one account generates a
bounce, while another account accepts the email.
We recommend that you coordinate with other teams in your organization that
use Amazon SES to ensure that each account uses unique receipt rules, and that
those rules do not overlap. In these situations, it is best to configure your receipt
rules to use only email addresses or subdomains that are unique to your group or
team.

b. Repeat this step for each recipient condition you want to add. When you finish adding
recipient conditions, choose Next.

12. On the Add actions page, use the following procedure to add one or more actions to the
receipt rule.

a. Open the Add new action menu, and then choose one of the following types of actions:

• Add header - This action adds a custom header to the received email.

• Return bounce response - This action rejects the received email by returning a bounce
response to the sender.

• Invoke Lambda function - This action calls your code via an AWS Lambda function.

• Deliver to S3 bucket - This action stores the received email in an Amazon Simple
Storage Service (S3) bucket.

• Publish to Amazon SNS topic - This action publishes the complete email to an Amazon
Simple Notification Service (SNS) topic.

Creating receipt rules 155

Amazon Simple Email Service Developer Guide

• Stop rule set - This action terminates the evaluation of the receipt rule set.

• Integrate with Amazon WorkMail - This action integrates with Amazon WorkMail.

For more information about each of these actions, see Action options.

b. Repeat this step for each action that you want to define. If you have multiple actions
defined, you can reorder them by using the up/down arrows within the action containers.
Choose Next to proceed to the Review page.

13. On the Review page, review the settings and actions of the rule. If you need to make changes,
choose the Edit option, or use the navigation section on the left side of the page to go directly
to the step that contains the content you want to edit. You can optionally make changes to
the order of the actions listed in the Actions table of the Review page by using the up/down
arrows in the Reorder column.

14. When you’re ready to proceed, choose Create rule.

15. On the confirmation page for the rule set, choose Set as active if you want to enforce the rule
set immediately.

Rule modifications after creation

After you've created a rule set, you can edit both the rule set and the receipt rules it contains. Not
only can they be edited, but there's also the option to duplicate either the rule set or its rules so
that new ones can be created quickly. The following list shows the available modifications for the
rule set and the receipt rules:

• Rule set is listed with its name, status and creation date. Modification options for the rule set
are:

• Set as active/inactive toggle button will toggle between setting the status.

• Duplicate button will copy the rule set. You will be prompted to supply a unique name.

• Delete button will delete the rule set. You will be prompted to confirm this irreversible action.

• Receipt rules are listed with their name, status, security, and order. Modification options for the
receipt rules are:

• Up/down arrows to reorder rule execution within the rule set.

• Duplicate button will create a copy of the selected rule. You will be prompted to supply a
unique name.

Creating receipt rules 156

Amazon Simple Email Service Developer Guide

• Edit button will open the selected rule so that any of its parameters such as rule settings,
recipient conditions, and actions can be edited.

• Delete button will delete the selected rule. You will be prompted to confirm this irreversible
action.

• Create rule button will allow you to create and add a new rule to the current rule set.

Action options

Each receipt rule for Amazon SES email receiving contains an ordered list of actions. This section
describes the specific options for each action type.

The action types are the following:

• Add header action

• Return bounce response action

• Invoke Lambda function action

• Deliver to S3 bucket action

• Publish to Amazon SNS topic action

• Stop rule set action

• Integrate with Amazon WorkMail action

Add header action

The Add Header action adds a custom header to the received email. You typically use this action
only in combination with another action. This action has the following options.

• Header name—The name of the header to add. It must be between 1 and 50 characters,
inclusive, and consist of alphanumeric (a-z, A-Z, 0-9) characters and dashes only.

• Header value—The value of the header to add. It must be less than 2048 characters, and must
not contain newline characters ("\r" or "\n").

Return bounce response action

The Bounce action rejects the email by returning a bounce response to the sender and, optionally,
notifies you through Amazon SNS. This action has the following options.

Creating receipt rules 157

Amazon Simple Email Service Developer Guide

• SMTP Reply Code—The SMTP reply code, as defined by RFC 5321.

• SMTP Status Code—The SMTP enhanced status code, as defined by RFC 3463.

• Message—Human-readable text to include in the bounce email.

• Reply Sender—The email address of the sender of the bounced email. This is the address from
which the bounce email will be sent. It must be verified with Amazon SES.

• SNS Topic—The name or ARN of the Amazon SNS topic to optionally notify when
a bounce email is sent. An example of an Amazon SNS topic ARN is arn:aws:sns:us-
east-1:123456789012:MyTopic. You can also create an Amazon SNS topic when you set up your
action by choosing Create SNS Topic. For more information about Amazon SNS topics, see the
Amazon Simple Notification Service Developer Guide.

Note

The Amazon SNS topic you choose must be in the same AWS Region as the Amazon SES
endpoint you use to receive email.

You can type in your own values for these fields, or you can choose a template that fills in the
SMTP Reply Code, SMTP Status Code, and Message fields with values based on the bounce reason.
The following templates are available:

• Mailbox Does Not Exist— SMTP Reply Code = 550, SMTP Status Code = 5.1.1

• Message Too Large— SMTP Reply Code = 552, SMTP Status Code = 5.3.4

• Mailbox Full— SMTP Reply Code = 552, SMTP Status Code = 5.2.2

• Message Content Rejected— SMTP Reply Code = 500, SMTP Status Code = 5.6.1

• Unknown Failure— SMTP Reply Code = 554, SMTP Status Code = 5.0.0

• Temporary Failure— SMTP Reply Code = 450, SMTP Status Code = 4.0.0

For additional bounce codes that you might use by typing custom values in the fields, see RFC
3463.

Invoke Lambda function action

The Lambda action calls your code through a Lambda function and, optionally, notifies you
through Amazon SNS. This action has the following options and requirements.

Creating receipt rules 158

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc3463
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://tools.ietf.org/html/rfc3463
https://tools.ietf.org/html/rfc3463

Amazon Simple Email Service Developer Guide

Options

• Lambda function—The ARN of the Lambda function. An example of a Lambda function ARN is
arn:aws:lambda:us-east-1:account-id:function:MyFunction.

• Invocation type—The invocation type of the Lambda function. An invocation type of
RequestResponse means that the execution of the function results in an immediate response.
An invocation type of Event means that the function is invoked asynchronously. We recommend
that you use Event invocation type unless synchronous execution is required for your use case.

There is a 30-second timeout on RequestResponse invocations.

For more information, see Invoking Lambda functions in the AWS Lambda Developer Guide.

• SNS topic—The name or ARN of the Amazon SNS topic to notify when the specified
Lambda function is triggered. An example of an Amazon SNS topic ARN is arn:aws:sns:us-
east-1:123456789012:MyTopic. For more information, see Creating an Amazon SNS topic in the
Amazon Simple Notification Service Developer Guide.

Requirements

• The Lambda function that you choose must be in the same AWS Region as the Amazon SES
endpoint that you use to receive email.

• The Amazon SNS topic that you choose must be in the same AWS Region as the Amazon SES
endpoint that you use to receive email.

Writing your Lambda function

To process your email, your Lambda function can be invoked asynchronously (that is, using the
Event invocation type). The event object passed to your Lambda function will contain metadata
pertaining to the inbound email event. You can also use the metadata to access the message
content from your Amazon S3 bucket.

If you want to actually control the mail flow, your Lambda function must be invoked synchronously
(that is, using the RequestResponse invocation type) and your Lambda function must call the
callback method with two arguments: the first argument is null, and the second argument is
a disposition property that is set to either STOP_RULE, STOP_RULE_SET, or CONTINUE. If the
second argument is null or does not have a valid disposition property, the mail flow continues
and further actions and rules are processed, which is the same as with CONTINUE.

Creating receipt rules 159

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

Amazon Simple Email Service Developer Guide

For example, you can stop the receipt rule set by writing the following line at the end of your
Lambda function code:

callback(null, { "disposition" : "STOP_RULE_SET" });

For AWS Lambda code samples, see Lambda function examples. For examples of high-level use
cases, see Use case examples.

Input format

Amazon SES passes information to the Lambda function in JSON format. The top-level object
contains a Records array, which is populated with properties eventSource, eventVersion, and
ses. The ses object contains receipt and mail objects, which are in exactly the same format as
in the Amazon SNS notifications described in Notification contents.

The data that Amazon SES passes to Lambda includes metadata about the message, as well as
several email headers. However, it doesn't contain the body of the message.

The following is a high-level view of the structure of the input that Amazon SES provides to the
Lambda function.

{
 "Records": [
 {
 "eventSource": "aws:ses",
 "eventVersion": "1.0",
 "ses": {
 "receipt": {
 <same contents as SNS notification>
 },
 "mail": {
 <same contents as SNS notification>
 }
 }
 }
]
}

Return values

Your Lambda function can control mail flow by returning one of the following values:

Creating receipt rules 160

Amazon Simple Email Service Developer Guide

• STOP_RULE—No further actions in the current receipt rule will be processed, but further receipt
rules can be processed.

• STOP_RULE_SET—No further actions or receipt rules will be processed.

• CONTINUE or any other invalid value—This means that further actions and receipt rules can be
processed.

The following topics cover samples of incoming mail events, examples of high-level use cases,
and AWS Lambda code examples:

• Use case examples

• Lambda function examples

Use case examples

The following examples outline some rules that you might set up to use Lambda function
outcomes to control your mail flow. For demonstration purposes, many of these examples use the
S3 action as the outcome.

Use case 1: Drop spam across all domains

This example demonstrates a global rule that drops spam across all of your domains. Rules 2 and
3 are included to show that you can apply domain-specific rules after the spam is dropped over all
the domains.

Rule 1

Recipient list: Empty. This rule will therefore apply to all recipients under all of your verified
domains.

Actions

1. Lambda action (synchronous) that returns STOP_RULE_SET if the email is spam. Otherwise, it
returns CONTINUE. See the example Lambda function for dropping spam in Lambda function
examples.

Rule 2

Recipient list: example1.com

Actions

Creating receipt rules 161

Amazon Simple Email Service Developer Guide

1. Any action.

Rule 3

Recipient list: example2.com

Actions

1. Any action.

Use case 2: Bounce spam across all domains

This example demonstrates a global rule that bounces spam across all of your domains. Rules 2
and 3 are included to show that you can apply domain-specific rules after the spam is bounced
over all the domains.

Rule 1

Recipient list: Empty. This rule will therefore apply to all recipients under all of your verified
domains.

Actions

1. Lambda action (synchronous) that returns CONTINUE if the email is spam. Otherwise, it returns
STOP_RULE.

2. Bounce action ("500 5.6.1. Message content rejected").

3. Stop action.

Rule 2

Recipient list: example1.com

Actions

1. Any action

Rule 3

Recipient list: example2.com

Creating receipt rules 162

Amazon Simple Email Service Developer Guide

Actions

1. Any action

Use case 3: Apply the most specific rule

This example demonstrates how you can use the Stop action to prevent emails from being
processed by multiple rules. In this example, you have one rule for a specific address, and another
rule for all email addresses under the domain. By using the Stop action, messages that match the
rule for the specific email address are not processed by the more generic rule that applies to the
domain.

Rule 1

Recipient list: user@example.com

Actions

1. Lambda action (asynchronous).

2. Stop action.

Rule 2

Recipient list: example.com

Actions

1. Any action.

Use case 4: Log mail events to CloudWatch

This example demonstrates how to keep an audit log of all mail going through your system before
saving the mail to Amazon SES.

Rule 1

Recipient list: example.com

Actions

Creating receipt rules 163

Amazon Simple Email Service Developer Guide

1. Lambda action (asynchronous) that writes the event object to a CloudWatch log. The example
Lambda functions in Lambda function examples log to CloudWatch.

2. S3 action.

Use case 5: Drops mail that fails DKIM

This example demonstrates how you can save all incoming email to an Amazon S3 bucket, but
only send email that goes to a specific email address, and passes DKIM, to your automated email
application.

Rule 1

Recipient list: example.com

Actions

1. S3 action.

2. Lambda action (synchronous) that returns STOP_RULE_SET if the message fails DKIM.
Otherwise, it returns CONTINUE.

Rule 2

Recipient list: support@example.com

Actions

1. Lambda action (asynchronous) that triggers the automated application.

Use case 6: Filters mail based on subject line

This example demonstrates how you can drop all of a domain's incoming mail that contains the
word "discount" in the subject line, and then process mail intended for an automated system one
way, and process mail addressed to all other recipients in the domain a different way.

Rule 1

Recipient list: example.com

Actions

Creating receipt rules 164

Amazon Simple Email Service Developer Guide

1. Lambda action (synchronous) that returns STOP_RULE_SET if the subject line contains the word
"discount". Otherwise, it returns CONTINUE.

Rule 2

Recipient list: support@example.com

Actions

1. S3 action with bucket 1.

2. Lambda action (asynchronous) that triggers the automated application.

3. Stop action.

Rule 3

Recipient list: example.com

Actions

1. S3 action with bucket 2.

2. Lambda action (asynchronous) that processes email for the rest of the domain.

Lambda function examples

This topic contains examples of Lambda functions that control mail flow.

Example 1: Drop spam

This example stops processing messages that have at least one spam indicator.

exports.handler = function(event, context, callback) {
 console.log('Spam filter');

 var sesNotification = event.Records[0].ses;
 console.log("SES Notification:\n", JSON.stringify(sesNotification, null, 2));

 // Check if any spam check failed
 if (sesNotification.receipt.spfVerdict.status === 'FAIL'
 || sesNotification.receipt.dkimVerdict.status === 'FAIL'
 || sesNotification.receipt.spamVerdict.status === 'FAIL'
 || sesNotification.receipt.virusVerdict.status === 'FAIL') {

Creating receipt rules 165

Amazon Simple Email Service Developer Guide

 console.log('Dropping spam');
 // Stop processing rule set, dropping message
 callback(null, {'disposition':'STOP_RULE_SET'});
 } else {
 callback(null, null);
 }
};

Example 2: Continue if a particular header is found

This example continues processing the current rule only if the email contains a specific header
value.

exports.handler = function(event, context, callback) {
 console.log('Header matcher');

 var sesNotification = event.Records[0].ses;
 console.log("SES Notification:\n", JSON.stringify(sesNotification, null, 2));

 // Iterate over the headers
 for (var index in sesNotification.mail.headers) {
 var header = sesNotification.mail.headers[index];

 // Examine the header values
 if (header.name === 'X-Header' && header.value === 'X-Value') {
 console.log('Found header with value.');
 callback(null, null);
 return;
 }
 }

 // Stop processing the rule if the header value wasn't found
 callback(null, {'disposition':'STOP_RULE'});
};

Example 3: Retrieve email from Amazon S3

This example gets the raw email from Amazon S3 and processes it.

Note

You must first write the email to Amazon S3 using an S3 Action.

Creating receipt rules 166

Amazon Simple Email Service Developer Guide

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

var bucketName = '<YOUR BUCKET GOES HERE>';

exports.handler = function(event, context, callback) {
 console.log('Process email');

 var sesNotification = event.Records[0].ses;
 console.log("SES Notification:\n", JSON.stringify(sesNotification, null, 2));

 // Retrieve the email from your bucket
 s3.getObject({
 Bucket: bucketName,
 Key: sesNotification.mail.messageId
 }, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 callback(err);
 } else {
 console.log("Raw email:\n" + data.Body);

 // Custom email processing goes here

 callback(null, null);
 }
 });
};

Example 4: Bounce messages that fail DMARC authentication

This examples sends a bounce message if an incoming email fails DMARC authentication.

Note

When using this example, set the value of the emailDomain environment variable to your
email receiving domain.

'use strict';

const AWS = require('aws-sdk');

Creating receipt rules 167

Amazon Simple Email Service Developer Guide

// Assign the emailDomain environment variable to a constant.
const emailDomain = process.env.emailDomain;

exports.handler = (event, context, callback) => {
 console.log('Spam filter starting');

 const sesNotification = event.Records[0].ses;
 const messageId = sesNotification.mail.messageId;
 const receipt = sesNotification.receipt;

 console.log('Processing message:', messageId);

 // If DMARC verdict is FAIL and the sending domain's policy is REJECT
 // (p=reject), bounce the email.
 if (receipt.dmarcVerdict.status === 'FAIL'
 && receipt.dmarcPolicy.status === 'REJECT') {
 // The values that make up the body of the bounce message.
 const sendBounceParams = {
 BounceSender: `mailer-daemon@${emailDomain}`,
 OriginalMessageId: messageId,
 MessageDsn: {
 ReportingMta: `dns; ${emailDomain}`,
 ArrivalDate: new Date(),
 ExtensionFields: [],
 },
 // Include custom text explaining why the email was bounced.
 Explanation: "Unauthenticated email is not accepted due to the sending
 domain's DMARC policy.",
 BouncedRecipientInfoList: receipt.recipients.map((recipient) => ({
 Recipient: recipient,
 // Bounce with 550 5.6.1 Message content rejected
 BounceType: 'ContentRejected',
 })),
 };

 console.log('Bouncing message with parameters:');
 console.log(JSON.stringify(sendBounceParams, null, 2));
 // Try to send the bounce.
 new AWS.SES().sendBounce(sendBounceParams, (err, data) => {
 // If something goes wrong, log the issue.
 if (err) {
 console.log(`An error occurred while sending bounce for message:
 ${messageId}`, err);

Creating receipt rules 168

Amazon Simple Email Service Developer Guide

 callback(err);
 // Otherwise, log the message ID for the bounce email.
 } else {
 console.log(`Bounce for message ${messageId} sent, bounce message ID:
 ${data.MessageId}`);
 // Stop processing additional receipt rules in the rule set.
 callback(null, {
 disposition: 'stop_rule_set',
 });
 }
 });
 // If the DMARC verdict is anything else (PASS, QUARANTINE or GRAY), accept
 // the message and process remaining receipt rules in the rule set.
 } else {
 console.log('Accepting message:', messageId);
 callback();
 }
};

Deliver to S3 bucket action

The S3 action delivers the mail to an Amazon S3 bucket and, optionally, notifies you through
Amazon SNS. This action has the following options.

• S3 Bucket—The name of the Amazon S3 bucket to which to save received emails. You can also
create a new Amazon S3 bucket when you set up your action by choosing Create S3 Bucket.
Amazon SES provides you the raw, unmodified email, which is typically in Multipurpose Internet
Mail Extensions (MIME) format. For more information about MIME format, see RFC 2045.

Important

• When you save your emails to an Amazon S3 bucket, the default maximum email size
(including headers) is 40 MB.

• SES does not support receipt rules that upload to S3 buckets enabled with object lock
configured with a default retention period.

• If applying encryption on your S3 bucket by specifying your own KMS key, be sure to
use the fully qualified KMS key ARN, and not the KMS key alias; using the alias can
result in data encrypted with a KMS key that belongs to the requester, and not the
bucket administrator. See Using encryption for cross-account operations.

Creating receipt rules 169

https://tools.ietf.org/html/rfc2045
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/bucket-encryption.html#bucket-encryption-update-bucket-policy

Amazon Simple Email Service Developer Guide

• SES does not support S3 buckets in Opt-in regions as a destination for inbound emails.

• Object Key Prefix—A key name prefix to use within the Amazon S3 bucket. Key name prefixes
enable you to organize your Amazon S3 bucket in a folder structure. For example, if you use
Email as your Object Key Prefix, your emails will appear in your Amazon S3 bucket in a folder
named Email.

• KMS Key (if "Encrypt Message" is selected in the Amazon SES console)—The AWS KMS key
that Amazon SES should use to encrypt your emails before saving them to the Amazon S3
bucket. You can use the default KMS key or a customer managed key that you created in AWS
KMS.

Note

The KMS key you choose must be in the same AWS region as the Amazon SES endpoint
you use to receive email.

• To use the default KMS key, choose aws/ses when you set up the receipt rule in the Amazon
SES console. If you use the Amazon SES API, you can specify the default KMS key by providing
an ARN in the form of arn:aws:kms:REGION:AWSACCOUNTID:alias/aws/ses. For
example, if your AWS account ID is 123456789012 and you want to use the default KMS
key in the us-east-1 region, the ARN of the default KMS key would be arn:aws:kms:us-
east-1:123456789012:alias/aws/ses. If you use the default KMS key, you don't need to
perform any extra steps to give Amazon SES permission to use the key.

• To use a custom managed key that you created in AWS KMS, provide the ARN of the KMS key
and ensure that you add a statement to your key's policy to give Amazon SES permission to
use it. For more information about giving permissions, see Giving permissions to Amazon SES
for email receiving.

For more information about using AWS KMS with Amazon SES, see the AWS Key Management
Service Developer Guide. If you do not specify a KMS key in the console or API, Amazon SES will
not encrypt your emails.

Important

Your mail is encrypted by Amazon SES using the Amazon S3 encryption client before
the mail is submitted to Amazon S3 for storage. It is not encrypted using Amazon S3

Creating receipt rules 170

https://docs.aws.amazon.com/kms/latest/developerguide/services-ses.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-ses.html

Amazon Simple Email Service Developer Guide

server-side encryption. This means that you must use the Amazon S3 encryption client to
decrypt the email after retrieving it from Amazon S3, as the service has no access to use
your AWS KMS keys for decryption. This encryption client is available in the AWS SDK for
Java and the AWS SDK for Ruby. For more information, see the Amazon Simple Storage
Service User Guide.

• SNS Topic—The name or ARN of the Amazon SNS topic to notify when an email is saved
to the Amazon S3 bucket. An example of an Amazon SNS topic ARN is arn:aws:sns:us-
east-1:123456789012:MyTopic. You can also create an Amazon SNS topic when you set up your
action by choosing Create SNS Topic. For more information about Amazon SNS topics, see the
Amazon Simple Notification Service Developer Guide.

Note

The Amazon SNS topic you choose must be in the same AWS region as the Amazon SES
endpoint you use to receive email.

Publish to Amazon SNS topic action

The SNS action publishes the mail using an Amazon SNS notification. The notification includes the
complete email content. This action has the following options.

• SNS Topic—The name or ARN of the Amazon SNS topic to which to publish the emails. The
Amazon SNS notifications will contain a raw, unmodified copy of the email, which is typically in
Multipurpose Internet Mail Extensions (MIME) format. For more information about MIME format,
see RFC 2045.

Important

If you choose to receive your emails through Amazon SNS notifications, the maximum
email size (including headers) is 150 KB. Larger emails will bounce. If you anticipate
emails larger than this size, save the emails to an Amazon S3 bucket instead.

An example of an Amazon SNS topic ARN is arn:aws:sns:us-east-1:123456789012:MyTopic. You
can also create an Amazon SNS topic when you set up your action by choosing Create SNS Topic.

Creating receipt rules 171

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-ruby/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://tools.ietf.org/html/rfc2045

Amazon Simple Email Service Developer Guide

For more information about Amazon SNS topics, see the Amazon Simple Notification Service
Developer Guide.

Note

The Amazon SNS topic you choose must be in the same AWS region as the Amazon SES
endpoint you use to receive email.

• Encoding—The encoding to use for the email within the Amazon SNS notification. UTF-8 is
easier to use, but may not preserve all special characters when a message was encoded with a
different encoding format. Base64 preserves all special characters. For information about UTF-8
and Base64, see RFC 3629 and RFC 4648, respectively.

When you receive an email, Amazon SES executes the rules in the active receipt rule set. You can
configure receipt rules to send you notifications using Amazon SNS. Your receipt rules can send two
different types of notifications:

• Notifications sent from SNS actions – When you add an SNS action to a receipt rule, it sends
information about the email as well as the email's content. If the message is 150KB or smaller,
this notification type also includes the complete MIME body of the email.

• Notifications sent from other action types – When you add any other action type (including
Bounce, Lambda, Stop Rule Set, or WorkMail actions) to a receipt rule, you can optionally specify
an Amazon SNS topic. If you do, you will receive notifications when these actions are performed.
These notifications contain information about the email, but do not contain the content of the
email.

The following topics describe the contents of these notifications and provide an example of
each type of notification:

• Contents of notifications for Amazon SES email receiving

• Examples of notifications for Amazon SES email receiving

Contents of notifications for Amazon SES email receiving

All notifications for email receiving are published to Amazon Simple Notification Service (Amazon
SNS) topics in JavaScript Object Notation (JSON) format.

For example notifications, see Notification examples.

Creating receipt rules 172

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc4648

Amazon Simple Email Service Developer Guide

Contents

• Top-level JSON object

• receipt object

• action object

• dkimVerdict object

• dmarcVerdict object

• spamVerdict object

• spfVerdict object

• virusVerdict object

• mail object

• commonHeaders object

Top-level JSON object

The top-level JSON object contains the following fields.

Field Name Description

notificationType The notification type. For this type of notificat
ion, the value is always Received.

receipt Object that contains information about the
email delivery.

mail Object that contains information about the
email associated with the notification.

content String that contains the raw, unmodified
email, which is typically in Multipurpose
Internet Mail Extensions (MIME) format. For
more information about MIME format, see RFC
2045.

Creating receipt rules 173

https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045

Amazon Simple Email Service Developer Guide

Field Name Description

Note

This field is present only if the notificat
ion was triggered by an SNS action.
Notifications triggered by all other
actions do not contain this field.

receipt object

The receipt object has the following fields.

Field Name Description

action Object that encapsulates information about
the action that was executed. For a list of
possible values, see action object.

dkimVerdict Object that indicates whether the DomainKey
s Identified Mail (DKIM) check passed. For a list
of possible values, see dkimVerdict object.

dmarcPolicy Indicates the Domain-based Message
Authentication, Reporting & Conformance
(DMARC) settings for the sending domain. This
field only appears if the message fails DMARC
authentication.

Possible values for this field are:

• none: The owner of the sending domain
requests that no specific action be taken on
messages that fail DMARC authentication.

• quarantine : The owner of the sending
domain requests that messages that fail

Creating receipt rules 174

Amazon Simple Email Service Developer Guide

Field Name Description

DMARC authentication be treated by
receivers as suspicious.

• reject: The owner of the sending domain
requests that messages that fail DMARC
authentication be rejected.

dmarcVerdict Object that indicates whether the Domain-
based Message Authentication, Reporting &
Conformance (DMARC) check passed. For a list
of possible values, see dmarcVerdict object.

processingTimeMillis String that specifies the period, in milliseco
nds, from the time Amazon SES received the
message to the time it triggered the action.

recipients The recipients (specifically, the envelope RCPT
TO addresses) that were matched by the active
receipt rule. The addresses listed here may
differ from those listed by the destination
field in the the section called “mail object”.

spamVerdict Object that indicates whether the message
is spam. For a list of possible values, see
spamVerdict object.

spfVerdict Object that indicates whether the Sender
Policy Framework (SPF) check passed. For a list
of possible values, see spfVerdict object.

timestamp String that specifies the qualified date and
time at which the action was triggered, in ISO
8601 format.

virusVerdict Object that indicates whether the message
contains a virus. For a list of possible values,
see virusVerdict object.

Creating receipt rules 175

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Amazon Simple Email Service Developer Guide

action object

The action object has the following fields.

Field Name Description

type String that indicates the type of action that
was executed. Possible values are S3, SNS,
Bounce, Lambda, Stop, and WorkMail.

topicArn String that contains the Amazon Resource
Name (ARN) of the Amazon SNS topic to
which the notification was published.

bucketName String that contains the name of the Amazon
S3 bucket to which the message was
published. Present only for the S3 action type.

objectKey String that contains a name that uniquely
identifies the email in the Amazon S3 bucket.
This is the same as the messageId in the the
section called “mail object”. Present only for
the S3 action type.

smtpReplyCode String that contains the SMTP reply code, as
defined by RFC 5321. Present only for the
bounce action type.

statusCode String that contains the SMTP enhanced status
code, as defined by RFC 3463. Present only for
the bounce action type.

message String that contains the human-readable text
to include in the bounce message. Present
only for the bounce action type.

sender String that contains the email address of the
sender of the email that bounced. This is the

Creating receipt rules 176

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc3463

Amazon Simple Email Service Developer Guide

Field Name Description

address from which the bounce message was
sent. Present only for the bounce action type.

functionArn String that contains the ARN of the Lambda
function that was triggered. Present only for
the Lambda action type.

invocationType String that contains the invocation type of
the Lambda function. Possible values are
RequestResponse and Event. Present only
for the Lambda action type.

organizationArn String that contains the ARN of the Amazon
WorkMail organization. Present only for the
WorkMail action type.

dkimVerdict object

The dkimVerdict object has the following fields.

Field Name Description

status String that contains the DKIM verdict. Possible
values are:

• PASS: The message passed DKIM authentic
ation.

• FAIL: The message failed DKIM authentic
ation.

• GRAY: The message is not DKIM-signed
or the from domain and DKIM-signature
domain do not match.

• PROCESSING_FAILED : There is an issue
that prevents Amazon SES from checking
the DKIM signature. For example, DNS

Creating receipt rules 177

Amazon Simple Email Service Developer Guide

Field Name Description

queries are failing or the DKIM signature
 header is not formatted properly.

dmarcVerdict object

The dmarcVerdict object has the following fields.

Field Name Description

status String that contains the DMARC verdict.
Possible values are:

• PASS: The message passed DMARC
authentication.

• FAIL: The message failed DMARC authentic
ation.

• GRAY: At least one of SPF or DKIM passed
authentication, but the sending domain
does not have a DMARC policy or uses the
p=none policy.

• PROCESSING_FAILED : There is an issue
that prevents Amazon SES from providing a
DMARC verdict.

spamVerdict object

The spamVerdict object has the following fields.

Field Name Description

status String that contains the result of spam
scanning. Possible values are:

• PASS: The spam scan determined that the
message is unlikely to contain spam.

Creating receipt rules 178

Amazon Simple Email Service Developer Guide

Field Name Description

• FAIL: The spam scan determined that the
message is likely to contain spam.

• GRAY: Amazon SES scanned the email
but could not determine with confidence
whether it is spam.

• PROCESSING_FAILED : Amazon SES was
unable to scan the email. For example, the
email is not a valid MIME message.

spfVerdict object

The spfVerdict object has the following fields.

Field Name Description

status String that contains the SPF verdict. Possible
values are:

• PASS: The message passed SPF authentic
ation.

• FAIL: The message failed SPF authentic
ation.

• GRAY: The SPF result is none, softfail, or
neutral.

• PROCESSING_FAILED : There is an issue
that prevents Amazon SES from checking
the SPF record. For example, DNS queries
are failing.

virusVerdict object

The virusVerdict object has the following fields.

Creating receipt rules 179

Amazon Simple Email Service Developer Guide

Field Name Description

status String that contains the result of virus
scanning. Possible values are:

• PASS: The message does not contain a virus.

• FAIL: The message contains a virus.

• GRAY: Amazon SES scanned the email
but could not determine with confidence
whether it contains a virus.

• PROCESSING_FAILED : Amazon SES is
unable to scan the content of the email.
For example, the email is not a valid MIME
message.

mail object

The mail object has the following fields.

Field Name Description

 destination A complete list of all recipient addresses
(including To: and CC: recipients) from the
MIME headers of the incoming email.

messageId String that contains the unique ID assigned
to the email by Amazon SES. If the email
was delivered to Amazon S3, the message
ID is also the Amazon S3 object key that was
used to write the message to your Amazon S3
bucket.

source String that contains the email address (specific
ally, the envelope MAIL FROM address) that
the email was sent from.

Creating receipt rules 180

Amazon Simple Email Service Developer Guide

Field Name Description

timestamp String that contains the time at which the
email was received, in ISO8601 format.

headers The Amazon SES headers and your custom
headers. Each header has the following fields:
name and value.

commonHeaders The headers common to all emails. Each
header has the following fields: name and
value.

headersTruncated Specifies whether the headers were truncated
in the notification, which happens if the
headers are larger than 10 KB. Possible values
are true and false.

commonHeaders object

The commonHeaders object can have the fields shown in the following table. The fields present in
this object vary depending on which fields were present in the incoming email.

Field Name Description

messageId The ID of the original message.

date The date and time when Amazon SES received
the message.

to The To header of the email.

cc The CC header of the email.

bcc The BCC header of the email.

from The From header of the email.

sender The Sender header of the email.

Creating receipt rules 181

Amazon Simple Email Service Developer Guide

Field Name Description

returnPath The Return-Path header of the email.

replyTo The Reply-To header of the email.

subject The Subject header of the email.

Examples of notifications for Amazon SES email receiving

This section includes examples of the following types of notifications:

• A notification sent as a result of an SNS action.

• A notification sent as a result of another type of action (an alert notification).

Notification of an SNS action

This section contains an example of an SNS action notification. Unlike the alert notification shown
previously, it includes a content section that contains the email, which is typically in Multipurpose
Internet Mail Extensions (MIME) format.

{
 "notificationType":"Received",
 "receipt":{
 "timestamp":"2015-09-11T20:32:33.936Z",
 "processingTimeMillis":222,
 "recipients":[
 "recipient@example.com"
],
 "spamVerdict":{
 "status":"PASS"
 },
 "virusVerdict":{
 "status":"PASS"
 },
 "spfVerdict":{
 "status":"PASS"
 },
 "dkimVerdict":{
 "status":"PASS"

Creating receipt rules 182

Amazon Simple Email Service Developer Guide

 },
 "action":{
 "type":"SNS",
 "topicArn":"arn:aws:sns:us-east-1:012345678912:example-topic"
 }
 },
 "mail":{
 "timestamp":"2015-09-11T20:32:33.936Z",
 "source":"61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com",
 "messageId":"d6iitobk75ur44p8kdnnp7g2n800",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"Return-Path",

 "value":"<0000014fbe1c09cf-7cb9f704-7531-4e53-89a1-5fa9744f5eb6-000000@amazonses.com>"
 },
 {
 "name":"Received",
 "value":"from a9-183.smtp-out.amazonses.com (a9-183.smtp-out.amazonses.com
 [54.240.9.183]) by inbound-smtp.us-east-1.amazonaws.com with SMTP id
 d6iitobk75ur44p8kdnnp7g2n800 for recipient@example.com; Fri, 11 Sep 2015 20:32:33
 +0000 (UTC)"
 },
 {
 "name":"DKIM-Signature",
 "value":"v=1; a=rsa-sha256; q=dns/txt; c=relaxed/simple;
 s=ug7nbtf4gccmlpwj322ax3p6ow6yfsug; d=amazonses.com; t=1442003552;
 h=From:To:Subject:MIME-Version:Content-Type:Content-Transfer-Encoding:Date:Message-
ID:Feedback-ID; bh=DWr3IOmYWoXCA9ARqGC/UaODfghffiwFNRIb2Mckyt4=;
 b=p4ukUDSFqhqiub+zPR0DW1kp7oJZakrzupr6LBe6sUuvqpBkig56UzUwc29rFbJF
 hlX3Ov7DeYVNoN38stqwsF8ivcajXpQsXRC1cW9z8x875J041rClAjV7EGbLmudVpPX
 4hHst1XPyX5wmgdHIhmUuh8oZKpVqGi6bHGzzf7g="
 },
 {
 "name":"From",
 "value":"sender@example.com"
 },
 {
 "name":"To",
 "value":"recipient@example.com"

Creating receipt rules 183

Amazon Simple Email Service Developer Guide

 },
 {
 "name":"Subject",
 "value":"Example subject"
 },
 {
 "name":"MIME-Version",
 "value":"1.0"
 },
 {
 "name":"Content-Type",
 "value":"text/plain; charset=UTF-8"
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"7bit"
 },
 {
 "name":"Date",
 "value":"Fri, 11 Sep 2015 20:32:32 +0000"
 },
 {
 "name":"Message-ID",
 "value":"<61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>"
 },
 {
 "name":"X-SES-Outgoing",
 "value":"2015.09.11-54.240.9.183"
 },
 {
 "name":"Feedback-ID",
 "value":"1.us-east-1.Krv2FKpFdWV+KUYw3Qd6wcpPJ4Sv/pOPpEPSHn2u2o4=:AmazonSES"
 }
],
 "commonHeaders":{

 "returnPath":"0000014fbe1c09cf-7cb9f704-7531-4e53-89a1-5fa9744f5eb6-000000@amazonses.com",
 "from":[
 "sender@example.com"
],
 "date":"Fri, 11 Sep 2015 20:32:32 +0000",
 "to":[
 "recipient@example.com"
],

Creating receipt rules 184

Amazon Simple Email Service Developer Guide

 "messageId":"<61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>",
 "subject":"Example subject"
 }
 },
 "content":"Return-Path: <61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>\r
\nReceived: from a9-183.smtp-out.amazonses.com (a9-183.smtp-out.amazonses.com
 [54.240.9.183])\r\n by inbound-smtp.us-east-1.amazonaws.com with SMTP id
 d6iitobk75ur44p8kdnnp7g2n800\r\n for recipient@example.com;\r\n Fri, 11 Sep 2015
 20:32:33 +0000 (UTC)\r\nDKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/
simple;\r\n\ts=ug7nbtf4gccmlpwj322ax3p6ow6yfsug; d=amazonses.com; t=1442003552;\r\n
\th=From:To:Subject:MIME-Version:Content-Type:Content-Transfer-Encoding:Date:Message-
ID:Feedback-ID;\r\n\tbh=DWr3IOmYWoXCA9ARqGC/UaODfghffiwFNRIb2Mckyt4=;\r\n
\tb=p4ukUDSFqhqiub+zPR0DW1kp7oJZakrzupr6LBe6sUuvqpBkig56UzUwc29rFbJF\r\n
\thlX3Ov7DeYVNoN38stqwsF8ivcajXpQsXRC1cW9z8x875J041rClAjV7EGbLmudVpPX\r\n
\t4hHst1XPyX5wmgdHIhmUuh8oZKpVqGi6bHGzzf7g=\r\nFrom: sender@example.com\r\nTo:
 recipient@example.com\r\nSubject: Example subject\r\nMIME-Version: 1.0\r\nContent-
Type: text/plain; charset=UTF-8\r\nContent-Transfer-Encoding: 7bit\r\nDate: Fri, 11 Sep
 2015 20:32:32 +0000\r\nMessage-ID: <61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>
\r\nX-SES-Outgoing: 2015.09.11-54.240.9.183\r\nFeedback-ID: 1.us-east-1.Krv2FKpFdWV
+KUYw3Qd6wcpPJ4Sv/pOPpEPSHn2u2o4=:AmazonSES\r\n\r\nExample content\r\n"
}

Alert notification

This section contains an example of an Amazon SNS notification that can be triggered by an S3
action. Notifications triggered by Lambda actions, bounce actions, stop actions, and WorkMail
actions are similar. Although the notification contains information about the email, it does not
contain the content of the email itself.

{
"notificationType": "Received",
"receipt": {
"timestamp": "2015-09-11T20:32:33.936Z",
"processingTimeMillis": 406,
"recipients": [
 "recipient@example.com"
],
"spamVerdict": {
 "status": "PASS"
},
"virusVerdict": {
 "status": "PASS"
},

Creating receipt rules 185

Amazon Simple Email Service Developer Guide

"spfVerdict": {
 "status": "PASS"
},
"dkimVerdict": {
 "status": "PASS"
},
"action": {
 "type": "S3",
 "topicArn": "arn:aws:sns:us-east-1:012345678912:example-topic",
 "bucketName": "my-S3-bucket",
 "objectKey": "\email"
}
},
"mail": {
"timestamp": "2015-09-11T20:32:33.936Z",
"source": "0000014fbe1c09cf-7cb9f704-7531-4e53-89a1-5fa9744f5eb6-000000@amazonses.com",
"messageId": "d6iitobk75ur44p8kdnnp7g2n800",
"destination": [
 "recipient@example.com"
],
"headersTruncated": false,
"headers": [
 {
 "name": "Return-Path",
 "value":
 "<0000014fbe1c09cf-7cb9f704-7531-4e53-89a1-5fa9744f5eb6-000000@amazonses.com>"
 },
 {
 "name": "Received",
 "value": "from a9-183.smtp-out.amazonses.com (a9-183.smtp-out.amazonses.com
 [54.240.9.183]) by inbound-smtp.us-east-1.amazonaws.com with SMTP id
 d6iitobk75ur44p8kdnnp7g2n800 for recipient@example.com; Fri, 11 Sep 2015 20:32:33
 +0000 (UTC)"
 },
 {
 "name": "DKIM-Signature",
 "value": "v=1; a=rsa-sha256; q=dns/txt; c=relaxed/simple;
 s=ug7nbtf4gccmlpwj322ax3p6ow6yfsug; d=amazonses.com; t=1442003552;
 h=From:To:Subject:MIME-Version:Content-Type:Content-Transfer-Encoding:Date:Message-
ID:Feedback-ID; bh=DWr3IOmYWoXCA9ARqGC/UaODfghffiwFNRIb2Mckyt4=;
 b=p4ukUDSFqhqiub+zPR0DW1kp7oJZakrzupr6LBe6sUuvqpBkig56UzUwc29rFbJF
 hlX3Ov7DeYVNoN38stqwsF8ivcajXpQsXRC1cW9z8x875J041rClAjV7EGbLmudVpPX
 4hHst1XPyX5wmgdHIhmUuh8oZKpVqGi6bHGzzf7g="
 },

Creating receipt rules 186

Amazon Simple Email Service Developer Guide

 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Example subject"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "text/plain; charset=UTF-8"
 },
 {
 "name": "Content-Transfer-Encoding",
 "value": "7bit"
 },
 {
 "name": "Date",
 "value": "Fri, 11 Sep 2015 20:32:32 +0000"
 },
 {
 "name": "Message-ID",
 "value": "<61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>"
 },
 {
 "name": "X-SES-Outgoing",
 "value": "2015.09.11-54.240.9.183"
 },
 {
 "name": "Feedback-ID",
 "value": "1.us-east-1.Krv2FKpFdWV+KUYw3Qd6wcpPJ4Sv/pOPpEPSHn2u2o4=:AmazonSES"
 }
],
"commonHeaders": {
 "returnPath":
 "0000014fbe1c09cf-7cb9f704-7531-4e53-89a1-5fa9744f5eb6-000000@amazonses.com",

Creating receipt rules 187

Amazon Simple Email Service Developer Guide

 "from": [
 "sender@example.com"
],
 "date": "Fri, 11 Sep 2015 20:32:32 +0000",
 "to": [
 "recipient@example.com"
],
 "messageId": "<61967230-7A45-4A9D-BEC9-87CBCF2211C9@example.com>",
 "subject": "Example subject"
}
}
}

Stop rule set action

The Stop action terminates the evaluation of the receipt rule set and, optionally, notifies you
through Amazon SNS. This action has the following options.

• SNS Topic—The name or ARN of the Amazon SNS topic to notify when the Stop
action is performed. An example of an Amazon SNS topic ARN is arn:aws:sns:us-
east-1:123456789012:MyTopic. You can also create an Amazon SNS topic when you set up your
action by choosing Create SNS Topic. For more information about Amazon SNS topics, see the
Amazon Simple Notification Service Developer Guide.

Note

The Amazon SNS topic you choose must be in the same AWS Region as the Amazon SES
endpoint you use to receive email.

Integrate with Amazon WorkMail action

The WorkMail action integrates with Amazon WorkMail. If Amazon WorkMail performs all of your
email processing, you will typically not use this action directly because Amazon WorkMail takes
care of the setup. This action has the following options.

• Organization ARN—The ARN of the Amazon WorkMail organization. Amazon WorkMail
organization ARNs are in the form
arn:aws:workmail:region:account_ID:organization/organization_ID, where:

Creating receipt rules 188

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

Amazon Simple Email Service Developer Guide

• region is the region in which you are using Amazon SES and Amazon WorkMail. (You must
use them from the same Region.) An example is us-east-1.

• account_ID is the AWS account ID. You can find your AWS account ID on the Account page of
the AWS Management Console.

• organization_ID is a unique identifier that Amazon WorkMail generates when you create
an organization. You can find the organization ID in the Amazon WorkMail console on the
Organization Settings page of your organization.

An example of a complete Amazon WorkMail organization ARN is arn:aws:workmail:us-
east-1:123456789012:organization/m-68755160c4cb4e29a2b2f8fb58f359d7. For information
about Amazon WorkMail organizations, see the Amazon WorkMail Administrator Guide.

• SNS Topic—The name or ARN of the Amazon SNS topic to notify when the Amazon
WorkMail action is taken. An example of an Amazon SNS topic ARN is arn:aws:sns:us-
east-1:123456789012:MyTopic. You can also create an Amazon SNS topic when you set up your
action by choosing Create SNS Topic. For more information about Amazon SNS topics, see the
Amazon Simple Notification Service Developer Guide.

Note

The Amazon SNS topic you choose must be in the same AWS Region as the Amazon SES
endpoint you use to receive email.

Note

Amazon SES only supports WorkMail actions in regions where WorkMail is available. See
Amazon WorkMail endpoints and quotas in the AWS General Reference.

Create IP address filters console walkthrough

This section will walk you through setting up IP address filters using the Amazon SES console.
IP address filtering allows you to provide a broad level of control. These IP filters allow you to
explicitly block or allow all messages from specific IP addresses or IP address ranges.

Optionally, you can use the CreateReceiptFilter API to create an IP address filter as described
in the Amazon Simple Email Service API Reference.

Create IP filters 189

https://console.aws.amazon.com/billing/home?#/account
https://docs.aws.amazon.com/workmail/latest/adminguide/organizations_overview.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/general/latest/gr/workmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_CreateReceiptFilter.html

Amazon Simple Email Service Developer Guide

Note

If you only want to receive mail from a finite list of known IP addresses, then set up a block
list that contains 0.0.0.0/0, and set up an allow list that contains the IP addresses that
you trust. This configuration blocks all IP addresses by default, and only allows mail from
the IP addresses that you explicitly specify.

Prerequisites

The following prerequisites must be met before proceeding with setting up recipient based email
control using IP address filters:

1. You first need to create and verify a domain identity in Amazon SES.

2. Next, you need to specify which mail servers can accept mail for your domain by publishing
an MX record to your domain's DNS settings. (The MX record should refer to the Amazon SES
endpoint that receives mail for the AWS Region where you use Amazon SES.)

Create IP address filters

To create IP address filters using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Email receiving.

3. Select the IP address filters tab.

4. Choose Create Filter.

5. Enter an unique name for your filter - the field's legend will indicate syntax requirements.
(The name must contain less than 64 alphanumeric, hyphen (-), underscore (_), and period (.)
characters. The name must start and end with a letter or number.)

6. Enter an IP address or a range of IP addresses - the field's legend will give examples specified
in Classless Inter-Domain Routing (CIDR) syntax. (An example of a single IP address is 10.0.0.1.
An example of a range of IP addresses is 10.0.0.1/24. For more information about CIDR
notation, see RFC 2317.)

7. Choose the Policy type by selecting either the Block or Allow radio button.

8. Choose Create filter.

Create IP filters 190

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://tools.ietf.org/html/rfc2317

Amazon Simple Email Service Developer Guide

9. If you want to add another IP filter, choose Create filter and repeat the previous steps for each
additional filter you wish to add.

10. If you want to remove an IP address filter, select it and choose the Delete button.

Viewing metrics for Amazon SES email receiving

If you've enabled email receiving in Amazon SES and you've created receipt rules for your email,
you can view the metrics for those receipt rule sets and rules using Amazon CloudWatch.

In the CloudWatch console, you'll find the metrics under Metrics > All metrics > SES > Receipt Rule
Set Metrics and Receipt Rule Metrics.

Note

Receipt Rule Set Metrics and Receipt Rule Metrics will not appear under SES if you have
not yet:

• enabled email receiving

• created any receipt rules

• received any mail that would match any of your rules.

The following message metrics are available:

• Message receiving

Scope Metric Description Dimension

Receipt Rule Set MetricsReceived SES successfully received a message that has
at least one rule that applies. This metric can
only have a value of 1.

RuleSetNa
me

Receipt Rule MetricsReceived SES successfully received a message and will
try to process the applied rule. This metric
can only have a value of 1.

RuleName

• Message publishing

Email receiving metrics 191

Amazon Simple Email Service Developer Guide

Scope Metric Description Dimension

Receipt Rule Set MetricsPublishSu
ccess

SES successfully executed all rules that apply
within a rule set.

RuleSetNa
me

Receipt Rule MetricsPublishSu
ccess

SES successfully executed a rule that applies
to the receiving message.

RuleName

Receipt Rule Set MetricsPublishFa
ilure

SES encountered an error when it tried to
execute rules within a rule set, execution will
be retried.

RuleSetNa
me

Receipt Rule MetricsPublishFa
ilure

SES encountered an error when it tried to
execute the actions in a rule—depending on
the error, execution may be retried.

RuleName

Receipt Rule Set MetricsPublishEx
pired

SES will no longer retry to execute the rules
because they didn't succeed within 36 hours,
or encountered non-retriable error.

RuleSetNa
me

Receipt Rule MetricsPublishEx
pired

SES will no longer retry to execute the rule's
actions because they didn’t succeed within
36 hours.

RuleName

Note

• In the preceding tables, the term applies means that the sender is not blocklisted by IP
Filters or is on SES's internal blocklist, and the rule has matching recipient conditions and
matching TLS policy.

• Publish failure errors can occur, for example, if you deleted or revoked permissions to an
Amazon S3 bucket, Amazon SNS topic, or Lambda function that an action in one of your
receipt rules was configured to use.

• Because only one rule set can be active at a time, SES publishes an aggregate metric
displayed as RuleSetName:[Active] for all rules sets that were active for the time range

Email receiving metrics 192

Amazon Simple Email Service Developer Guide

you select in CloudWatch. This has the advantage of letting you freely change rule sets
without any change to your alarming setup.

Important

Changes you make to fix your receipt rule set will apply only to emails that Amazon SES
receives after the update. Emails are always evaluated against the receipt rule set that was
in place at the time the email was received.

Metrics for an SES receipt rule set displayed in the CloudWatch console.

Metrics for an SES receipt rule displayed in the CloudWatch console.

Email receiving metrics 193

Amazon Simple Email Service Developer Guide

Email receiving metrics 194

Amazon Simple Email Service Developer Guide

Verified identities in Amazon SES

In Amazon SES, a verified identity is a domain or email address that you use to send or receive
email. Before you can send an email using Amazon SES, you must create and verify each identity
that you're going to use as a "From", "Source", "Sender", or "Return-Path" address. Verifying an
identity with Amazon SES confirms that you own it and helps prevent unauthorized use.

If your account is still in the Amazon SES sandbox, you also need to verify any email addresses
which you plan on sending email to, unless you're sending to test inboxes provided by the Amazon
SES mailbox simulator. For more information, see the section called “Using the mailbox simulator
manually”.

You can create an identity by using the Amazon SES console or the Amazon SES API. The identity
verification process depends on which type of identity you choose to create.

Tip

If you're a first time user of SES, you can use the Get started wizard to create and verify
your first identity (email address or domain).

Contents

• Creating and verifying identities in Amazon SES

• Managing identities in Amazon SES

• Configuring identities in Amazon SES

• Sending test emails in Amazon SES with the simulator

Creating and verifying identities in Amazon SES

In Amazon SES, you can create an identity at the domain level or you can create an email address
identity. These identity types aren’t mutually exclusive. In most cases, creating a domain identity
eliminates the need for creating and verifying individual email address identities, unless you
want to apply custom configurations to a specific email address. Whether you create a domain
and utilize email addresses based on the domain, or create individual email addresses, there are
benefits to both approaches. Which method you choose is dependant on your specific needs as
discussed below.

Creating & verifying identities 195

Amazon Simple Email Service Developer Guide

Creating and verifying an email address identity is the fastest way to get started in SES, but there
are benefits to verifying an identity at the domain level. When you verify an email address identity,
only that email address can be used to send mail, but when you verify a domain identity, you can
send email from any subdomain or email address of the verified domain without having to verify
each one individually. For example, if you create and verify a domain identity called example.com,
you don't need to create separate subdomain identities for a.example.com, a.b.example.com, nor
separate email address identities for user@example.com, user@a.example.com, and so on.

However, keep in mind that an email address identity that's using the inherited verification from
its domain is limited to straightforward email sending. If you want to do more advanced sending,
you'll have to also explicitly verify it as an email address identity. Advanced sending includes
using the email address with configuration sets, policy authorizations for delegate sending, and
configurations that override the domain settings.

To help clarify the verification inheritance and email sending capabilities discussed above, the
following table categorizes each combination of domain/email address verification and lists the
inheritance, sending level, and display status for each:

Only domain verified Only email address
verified

Both domain &
email address
verified

Inheritance level

Subdomains and
email addresses
inherit verification
from the parent
domain.

Email address
explicitly verified.

• Subdomains inherit
verification from
the parent domain.

• Email address
explicitly verified.

Sending level

Email addresses
limited to straightf
orward email
sending.

Email address can
be used in advanced
sending*.

Email address can
be used in advanced
sending*.

Displayed status

Console/API status:

• Domain/Su
bdomains =
Verified

Console/API status:

• Email address =
Verified

Console/API status:

• Domain/Su
bdomains =
Verified

Creating & verifying identities 196

Amazon Simple Email Service Developer Guide

Only domain verified Only email address
verified

Both domain &
email address
verified

• Email address =
Unverified.

• Email address =
Verified.

*Advanced sending includes using the email address with configuration sets, policy authorizations for
delegate sending, and configurations that override the domain settings.

To send email from the same domain or email address in more than one AWS Region, you must
create and verify a separate identity for each Region. You can verify as many as 10,000 identities in
each Region.

When you create and verify domain and email address identities, consider the following:

• You can send email from any subdomain or email address of the verified domain without
having to verify each one individually. For example, if you create and verify an identity for
example.com, you don't need to create separate identities for a.example.com, a.b.example.com,
user@example.com, user@a.example.com, and so on.

• As specified in RFC 1034, each DNS label can have up to 63 characters, and the whole domain
name must not exceed a total length of 255 characters.

• If you verify a domain, subdomain, or email address that shares a root domain, the identity
settings (such as feedback notifications) apply at the most granular level you verified.

• Verified email address identity settings override verified domain identity settings.

• Verified subdomain identity settings override verified domain identity settings, with lower-
level subdomain settings overriding higher-level subdomain settings.

For example, assume you verify user@a.b.example.com, a.b.example.com, b.example.com,
and example.com. These are the verified identity settings that will be used in the following
scenarios:

• Emails sent from user@example.com (an email address that isn’t specifically verified) will
use the settings for example.com.

• Emails sent from user@a.b.example.com (an email address that is specifically verified) will
use the settings for user@a.b.example.com.

Creating & verifying identities 197

https://tools.ietf.org/html/rfc1034#section-3.6

Amazon Simple Email Service Developer Guide

• Emails sent from user@b.example.com (an email address that isn’t specifically verified) will
use the settings for b.example.com.

• You can add labels to verified email addresses without performing additional verification steps.
To add a label to an email address, add a plus sign (+) between the account name and the "at"
sign (@), followed by a text label. For example, if you already verified sender@example.com, you
can use sender+myLabel@example.com as the "From" or "Return-Path" address for your emails.
You can use this feature to implement Variable Envelope Return Path (VERP). Then you can use
VERP to detect and remove undeliverable email addresses from your mailing lists.

• Domain names are case-insensitive. If you verify example.com, you can send from EXAMPLE.com
also.

• Email addresses are case sensitive. If you verify sender@EXAMPLE.com, you can't send email
from sender@example.com unless you verify sender@example.com as well.

• In each AWS Region, you can verify as many as 10,000 identities (domains and email addresses,
in any combination).

Tip

If you're a first time user of SES, you can use the Get started wizard to create and verify
your first identity (email address or domain).

Contents

• Creating a domain identity

• Verifying a DKIM domain identity with your DNS provider

• Creating an email address identity

• Verifying an email address identity

• Create and verify an identity and assign a default configuration set at the same time

• Using custom verification email templates

Creating a domain identity

Part of creating a domain identity is configuring its DKIM-based verification. DomainKeys Identified
Mail (DKIM) is an email authentication method that Amazon SES uses to verify domain ownership,

Creating a domain identity 198

Amazon Simple Email Service Developer Guide

and receiving mail servers use to validate email authenticity. You can choose to configure DKIM by
using either Easy DKIM or Bring Your Own DKIM (BYODKIM), and depending on your choice, you'll
have to configure the signing key length of the private key as follows:

• Easy DKIM - either accept the Amazon SES default of 2048 bits, or override it by selecting 1024
bits.

• BYODKIM - private key length must be at least 1024 bits and up to 2048-bits.

See the section called “DKIM signing key length” to learn more about DKIM signing key lengths and
how to change them.

The following procedure shows you how to create a domain identity using the Amazon SES
console.

• If you've already created your domain and just need to verify it, skip to the procedure the section
called “Verifying a domain identity” on this page.

To create a domain identity

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. Choose Create identity.

4. Under Identity details, select Domain as the type of identity you want to create. You must
have access to the domain’s DNS settings to complete the domain verification process.

5. Enter the name of the domain or subdomain in the Domain field.

Tip

If your domain is www.example.com, enter example.com as your domain. Don't include
the "www." part, because the domain verification process won't succeed if you do.

6.
(Optional) If you want to Assign a default configuration set, select the check box.

1. For Default configuration set, select the existing configuration set that you want to assign
to your identity. If you haven’t created any configuration sets yet, see Configuration sets.

Creating a domain identity 199

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

Amazon SES only defaults to the assigned configuration set when no other set is
specified at the time of sending. If a configuration set is specified, Amazon SES
applies the specified set in place of the default set.

7. (Optional) If you want to Use a custom MAIL FROM domain, select the check box and
complete the following steps. For more information, see the section called “Using a custom
MAIL FROM domain”.

1. For MAIL FROM domain, enter the subdomain that you want to use as the MAIL FROM
domain. This must be a subdomain of the domain identity that you’re verifying. The MAIL
FROM domain shouldn't be a domain from which you send email.

2. For Behavior on MX failure, indicate which action Amazon SES should take if it can’t find
the required MX record at the time of sending. Choose one of the following options:

• Use default MAIL FROM domain - If the custom MAIL FROM domain's MX record is not
set up correctly, Amazon SES will use a subdomain of amazonses.com. The subdomain
varies based on the AWS Region in which you use Amazon SES.

• Reject message - If the custom MAIL FROM domain's MX record is not set up correctly,
Amazon SES will return a MailFromDomainNotVerified error. If you choose this
option, emails that you attempt to send from this domain are automatically rejected.

3. For Publish DNS records to Route53, if your domain is hosted through Amazon Route 53,
you have the option to let SES publish the associated TXT and MX records at the time of
creation by leaving Enabled checked. If you'd rather publish these records later, clear the
Enabled checkbox. (You can come back at a later time to publish the records to Route 53 by
editing the identity - see the section called “Editing an identity using the console”.)

8. (Optional) To configure customized DKIM-based verification outside of the SES default setting
which uses Easy DKIM with a 2048 bit singing length, under Verifying your domain, expand
Advanced DKIM settings and choose the type of DKIM you want to configure:

a. Easy DKIM:

i. In the Identity type field, choose Easy DKIM.

ii. In the DKIM signing key length field, choose either RSA_2048_BIT or RSA_1024_BIT.

iii. For Publish DNS records to Route53, if your domain is hosted through Amazon
Route 53, you have the option to let SES publish the associated CNAME records at

Creating a domain identity 200

Amazon Simple Email Service Developer Guide

the time of creation by leaving Enabled checked. If you'd rather publish these records
later, clear the Enabled checkbox. (You can come back at a later time to publish the
records to Route 53 by editing the identity - see the section called “Editing an identity
using the console”.)

b. Provide DKIM authentication token (BYODKIM):

i. Ensure you've already generated a public-private key pair and have added the
public key to your DNS host provider. For more information, see the section called
“BYODKIM - Bring Your Own DKIM”.

ii. In the Identity type field, choose Provide DKIM authentication token (BYODKIM).

iii. For Private key, paste the private key you generated from your public-private key
pair. The private key must use at least 1024-bit RSA encryption and up to 2048-bit,
and must be encoded using base64 (PEM) encoding.

Note

You have to delete the first and last lines (-----BEGIN PRIVATE KEY-----
and -----END PRIVATE KEY-----, respectively) of the generated private
key. Additionally, you have to remove the line breaks in the generated private
key. The resulting value is a string of characters with no spaces or line breaks.

iv. For Selector name, enter the name of the selector to be specified in your domain’s
DNS settings.

9. Ensure that the Enabled box is checked in the DKIM signatures field.

10. (Optional) Add one or more Tags to your domain identity by including a tag key and an
optional value for the key:

1. Choose Add new tag and enter the Key. You can optionally add a Value for the tag.

2. Repeat for additional tags not to exceed 50, or choose Remove to remove tags.

11. Choose Create identity.

Now that you’ve created and configured your domain identity with DKIM, you must complete the
verification process with your DNS provider - proceed to the section called “Verifying a domain
identity” and follow the DNS authentication procedures for the type of DKIM you configured your
identity with.

Creating a domain identity 201

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Amazon Simple Email Service Developer Guide

Verifying a DKIM domain identity with your DNS provider

After you’ve created your domain identity configured with DKIM, you must complete the
verification process with your DNS provider by following the respective authentication procedures
for the type of DKIM you chose.

If you haven't created a domain identity, see the section called “Creating a domain identity”.

Note

Verifying a domain identity requires access to the domain’s DNS settings. Changes to these
settings can take up to 72 hours to propagate.

To verify a DKIM domain identity with your DNS provider

1. From the Loaded identities table, select the domain you want to verify.

2. On the Authentication tab of the identity details page, expand Publish DNS records.

3. Depending on which flavor of DKIM you configured your domain with, Easy DKIM or
BYODKIM, follow the respective instructions:

Easy DKIM

To verify a domain configured with Easy DKIM

1. From the Publish DNS records table, copy the three CNAME records that appear in this
section to be published (added) to your DNS provider. Alternatively, you can choose
Download .csv record set to save a copy of the records to your computer.

The following image shows an example of the CNAME records to publish to your DNS
provider.

Verifying a domain identity 202

Amazon Simple Email Service Developer Guide

2. Add the CNAME records to your domain’s DNS settings respective of your DNS host
provider:

• All DNS host providers (excluding Route 53) – Login to your domain’s DNS or
web hosting provider, and then add the CNAME records containing the values
that you copied or saved previously. Different providers have different procedures
for updating DNS records. See the DNS/Hosting provider table following these
procedures.

Note

A small number of DNS providers don't allow you to include underscores
(_) in record names. However, the underscore in the DKIM record name is
required. If your DNS provider doesn't allow you to enter an underscore
in the record name, contact the provider's customer support team for
assistance.

• Route 53 as your DNS host provider – If you use Route 53 on the same account
that you use when you send email using SES, and the domain is registered, SES
automatically updates the DNS settings for your domain if you enabled SES to
publish them at the time of creation. Otherwise, you can easily publish them to
Route 53 with a button click after creation - see the section called “Editing an
identity using the console”. If your DNS settings don’t update automatically, or you
want to add CNAME records to Route 53 that aren't on the same account you use
when you send email using SES, complete the procedures in Editing records.

• If you're not sure who your DNS provider is – Ask your system administrator for
more information.

BYODKIM

To verify a domain configured with BYODKIM

1. To recap, when you created your domain with BYODKIM, or you configured an existing
domain with BYODKIM, you added the private key (from your self-generated public-
private key pair) and selector name prefix into their respective fields on the SES
console's Advance DKIM Settings page. Now you must complete the verification
process by updating the following records for your DNS host provider.

Verifying a domain identity 203

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-editing.html

Amazon Simple Email Service Developer Guide

2. From the Publish DNS records table, copy the selector name record that appears in
the Name column to be published (added) to your DNS provider. Alternatively, you can
choose Download .csv record set to save a copy of it to your computer.

The following image shows an example of the selector name record to publish to your
DNS provider.

3. Login to your domain’s DNS or web hosting provider, and then add the selector name
record you copied or saved previously. Different providers have different procedures for
updating DNS records. See the DNS/Hosting provider table following these procedures.

Note

A small number of DNS providers don't allow you to include underscores (_) in
record names. However, the underscore in the DKIM record name is required.
If your DNS provider doesn't allow you to enter an underscore in the record
name, contact the provider's customer support team for assistance.

4. If you haven't done so already, be sure to add the public key from your from your self-
generated public-private key pair to your domain's DNS or web hosting provider.

Note that in the Publish DNS records table, the public key record that appears in the
Value column only displays, “p=customerProvidedPublicKey”, as a placeholder for the
public key value you saved to your computer or supplied to your DNS provider.

Note

When you publish (add) your public key to your DNS provider, it must be
formatted as follows:

• You have to delete the first and last lines (-----BEGIN PUBLIC KEY-----
and -----END PUBLIC KEY-----, respectively) of the generated public

Verifying a domain identity 204

Amazon Simple Email Service Developer Guide

key. Additionally, you have to remove the line breaks in the generated public
key. The resulting value is a string of characters with no spaces or line breaks.

• You must include the p= prefix as shown in the Value column in the Publish
DNS records table.

4. It can take up to 72 hours for changes to DNS settings to propagate. As soon as Amazon SES
detects all of the required DKIM records in your domain’s DNS settings, the verification process
is complete. Your domain’s DKIM configuration appears as Successful and the Identity status
appears as Verified.

5. If want to configure and verify a custom MAIL FROM domain, follow the procedures in
Configuring your custom MAIL FROM domain.

The following table includes links to the documentation for a few widely used DNS providers. This
list isn't exhaustive and doesn't signify endorsement; likewise, if your DNS provider isn't listed, it
doesn't imply you can't use the domain with Amazon SES.

DNS/Hosting provider Documentation link

GoDaddy Add a CNAME record (external link)

DreamHost How do I add custom DNS records? (external
link)

Cloudflare Managing DNS records in Cloudflare (external
link)

HostGator Manage DNS Records with HostGator/eNom
(external link)

Namecheap How do I add TXT/SPF/DKIM/DMARC records
for my domain? (external link)

Names.co.uk Changing your domains DNS Settings
(external link)

Wix Adding or Updating CNAME Records in Your
Wix Account (external link)

Verifying a domain identity 205

https://www.godaddy.com/help/add-a-cname-record-19236
https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-
https://support.cloudflare.com/hc/en-us/articles/360019093151
https://www.hostgator.com/help/article/manage-dns-records-with-hostgatorenom
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.names.co.uk/support/1156-changing_your_domains_dns_settings.html
https://support.wix.com/en/article/adding-or-updating-cname-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-cname-records-in-your-wix-account

Amazon Simple Email Service Developer Guide

Troubleshooting domain verification

If you completed the steps above, but your domain isn't verified after 72 hours, check the
following:

• Make sure that you entered the values for the DNS records in the correct fields. Some DNS
providers refer to the Name/host field as Host or Hostname. In addition, some providers refer to
the Record value field as Points to or Result.

• Make sure that your provider didn't automatically append your domain name to the Name/host
value that you entered in the DNS record. Some providers append the domain name without
indicating that they've done so. If your provider appended your domain name to the Name/host
value, remove the domain name from the end of the value. You can also try adding a period to
the end of the value in the DNS record. This period indicates to the provider that the domain
name is fully qualified.

• The underscore character (_) is required in the Name/host value of each DNS record. If your
provider doesn't allow underscores in DNS record names, contact the provider's customer
support department for additional assistance.

• The validation records that you have to add to your domain’s DNS settings are different for each
AWS Region. If you want to use a domain to send email from multiple AWS Regions, you have to
create and verify a separate domain identity for each of those Regions.

Creating an email address identity

Complete the following procedure to create an email address identity by using the Amazon SES
console.

To create an email address identity (console)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. Choose Create identity.

4. Under Identity details, choose Email address as the identity type you want to create.

5. For Email address, enter the email address that you want to use. The email address must be an
address that’s able to receive mail and that you have access to.

6.

Creating an email address identity 206

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

(Optional) If you want to Assign a default configuration set, select the check box.

1. For Default configuration set, select the existing configuration set that you want to assign
to your identity. If you haven’t created any configuration sets yet, see Configuration sets.

Note

Amazon SES only defaults to the assigned configuration set when no other set is
specified at the time of sending. If a configuration set is specified, Amazon SES
applies the specified set in place of the default set.

7. (Optional) Add one or more Tags to your domain identity by including a tag key and an
optional value for the key:

1. Choose Add new tag and enter the Key. You can optionally add a Value for the tag.

2. Repeat for additional tags not to exceed 50, or choose Remove to remove tags.

8. To create your email address identity, choose Create identity. After it's created, you should
receive a verification email within five minutes. The next step is to verify your email address by
following the verification procedure in the next section.

Note

You can customize the messages that are sent to the email addresses you attempt to
verify. For more information, see the section called “Using custom verification email
templates”.

Now that you’ve created your email address identity, you must complete the verification process -
proceed to the section called “Verifying an email address identity”.

Verifying an email address identity

After you’ve created your email address identity, you must complete the verification process.

If you haven't created an email address identity, see the section called “Creating an email address
identity”.

Verifying an email address identity 207

Amazon Simple Email Service Developer Guide

To verify an email address identity

1. Check the inbox of the email address used to create your identity and look for an email from
no-reply-aws@amazon.com.

2. Open the email and click the link to complete the verification process for the email address.
After it's complete, the Identity status updates to Verified.

Troubleshooting email address verification

If you don't receive the verification email within five minutes of creating your identity, try the
following troubleshooting steps:

• Make sure you entered the email address correctly.

• Make sure the email address that you're attempting to verify can receive email. You can test this
by using another email address to send a test email to the address that you want to verify.

• Check your junk mail folder.

• The link in the verification email expires after 24 hours. To send a new verification email, choose
Resend at the top of the identity details page.

Create and verify an identity and assign a default configuration set at
the same time

You can use the CreateEmailIdentity operation in the Amazon SES API v2 to create a new email
identity and set its default configuration set at the same time.

Note

Before you complete the procedure in this section, you have to install and configure the
AWS CLI. For more information, see the AWS Command Line Interface User Guide.

To set a default configuration set using the AWS CLI

• At the command line, enter the following command to use the CreateEmailIdentity operation.

Create & verify an identity and assign a default configuration set at the same time (API) 208

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateEmailIdentity.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateEmailIdentity.html

Amazon Simple Email Service Developer Guide

aws sesv2 create-email-identity --email-identity ADDRESS-OR-DOMAIN --configuration-set-
name CONFIG-SET

In the preceding commands, replace ADDRESS-OR-DOMAIN with the email identity that you want
to verify. Replace CONFIG-SET with the name of the configuration set you want to set as the
default configuration set for the identity.

If the command executes successfully, it exits without providing any output.

To verify your email address

1. Check the inbox for the email address that you're verifying. You'll receive a message with the
following subject line: "Amazon Web Services - Email Address Verification Request in region
RegionName," where RegionName is the name of the AWS Region that you attempted to verify
the email address in.

Open the message, and then click the link in it.

Note

The link in the verification message expires 24 hours after the message was sent. If 24
hours have passed since you received the verification email, repeat steps 1–5 to receive a
verification email with a valid link.

2. In the Amazon SES console, under Identity Management, choose Email Addresses. In the list of
email addresses, locate the email address you're verifying. If the email address was verified, the
value in the Status column is "verified".

To verify your domain

If you entered a domain name for the --email-identity parameter in the above command line
procedure, see Verifying a domain identity for more information.

Using custom verification email templates

When you attempt to verify an email address, Amazon SES sends an email to that address that
resembles the example shown in the following image.

Using custom verification email templates 209

Amazon Simple Email Service Developer Guide

Several Amazon SES customers build applications (such as email marketing suites or ticketing
systems) that send email through Amazon SES on behalf of their own customers. For the end users
of these applications, the email verification process can be confusing: the verification email uses
Amazon SES branding, rather than the branding of the application, and those end users never
signed up to use Amazon SES directly.

If your Amazon SES use case requires your customers to have their email addresses verified for
use with Amazon SES, you can create customized verification emails. These customized emails
help reduce customer confusion and increase the rates at which your customers complete the
registration process.

Note

To use this feature, your Amazon SES account has to be out of the sandbox. For more
information, see Request production access (Moving out of the Amazon SES sandbox).

Topics in this section:

• Creating a custom verification email template

• Editing a custom verification email template

• Sending verification emails using custom templates

• Custom verification email frequently asked questions

Using custom verification email templates 210

Amazon Simple Email Service Developer Guide

Creating a custom verification email template

To create a custom verification email, use the CreateCustomVerificationEmailTemplate API
operation. This operation takes the following inputs:

Attribute Description

TemplateName The name of the template. The name you specify must be unique.

FromEmailAddress The email address that the verification email is sent from. The
address or domain you specify must be verified for use with your
Amazon SES account.

Note

The FromEmailAddress attribute doesn't support display
names (also known as "friendly from" names).

TemplateSubject The subject line of the verification email.

TemplateContent The body of the email. The email body can contain HTML, with
certain restrictions. For more information, see Custom verification
email frequently asked questions.

SuccessRedirection
URL

The URL that users are sent to, if their email addresses are successfu
lly verified.

FailureRedirection
URL

The URL that users are sent to, if their email addresses are not
successfully verified.

You can use the AWS SDKs or the AWS CLI to create a custom verification email template with the
CreateCustomVerificationEmailTemplate operation. To learn more about the AWS SDKs,
see Tools for Amazon Web Services. For more information about the AWS CLI, see AWS Command
Line Interface.

The following section includes procedures for creating a custom verification email using the AWS
CLI. These procedures assume that you have installed and configured the AWS CLI. For more

Using custom verification email templates 211

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/cli
https://aws.amazon.com/cli

Amazon Simple Email Service Developer Guide

information about installing and configuring the AWS CLI, see the AWS Command Line Interface
User Guide.

Note

To complete the procedure in this section, you must use version 1.14.6 or later of the AWS
CLI. For best results, upgrade to the latest version of the AWS CLI. For more information
about updating the AWS CLI, see Installing the AWS Command Line Interface in the AWS
Command Line Interface User Guide.

1. In a text editor, create a new file. Paste the following content into the editor:

{
 "TemplateName": "SampleTemplate",
 "FromEmailAddress": "sender@example.com",
 "TemplateSubject": "Please confirm your email address",
 "TemplateContent": "<html>
 <head></head>
 <body style='font-family:sans-serif;'>
 <h1 style='text-align:center'>Ready to start sending
 email with ProductName?</h1>
 <p>We here at Example Corp are happy to have you on
 board! There's just one last step to complete before
 you can start sending email. Just click the following
 link to verify your email address. Once we confirm that
 you're really you, we'll give you some additional
 information to help you get started with ProductName.</p>
 </body>
 </html>",
 "SuccessRedirectionURL": "https://www.example.com/verifysuccess",
 "FailureRedirectionURL": "https://www.example.com/verifyfailure"
}

Important

To make the preceding example easier to read, the TemplateContent attribute
contains line breaks. If you paste the preceding example into your text file, remove the
line breaks before proceeding.

Using custom verification email templates 212

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon Simple Email Service Developer Guide

Replace the values of TemplateName, FromEmailAddress, TemplateSubject,
TemplateContent, SuccessRedirectionURL, and FailureRedirectionURL with your
own values.

Note

The email address that you specify for the FromEmailAddress parameter has to
be verified, or has to be an address on a verified domain. For more information, see
Verified identities in Amazon SES.

When you finish, save the file as customverificationemail.json.

2. At the command line, type the following command to create the custom verification email
template:

aws sesv2 create-custom-verification-email-template --cli-input-json file://
customverificationemail.json

3. (Optional) You can confirm that the template was created by typing the following command:

aws sesv2 list-custom-verification-email-templates

Editing a custom verification email template

You can edit a custom verification email template by using the
UpdateCustomVerificationEmailTemplate operation. This operation accepts the
same inputs as the CreateCustomVerificationEmailTemplate operation (that is,
the TemplateName, FromEmailAddress, TemplateSubject, TemplateContent,
SuccessRedirectionURL, and FailureRedirectionURL attributes). However, with the
UpdateCustomVerificationEmailTemplate operation, none of these attributes are required.
When you pass a value for TemplateName that is the same as the name of an existing custom
verification email template, the attributes you specify overwrite the attributes that were originally
in the template.

Using custom verification email templates 213

Amazon Simple Email Service Developer Guide

Sending verification emails using custom templates

After you create at least one custom verification email template, you can send it to your
customers by calling the SendCustomVerificationEmail API operation. You can call the
SendCustomVerificationEmail operation by using any of the AWS SDKs or the AWS CLI. The
SendCustomVerificationEmail operation takes the following inputs:

Attribute Description

EmailAddress The email address that is being verified.

TemplateName The name of the custom verification email template that is sent to
email address that is being verified.

ConfigurationSetNa
me

(Optional) The name of a configuration set to use when sending the
verification email.

For example, assume your customers register for your service using a form in your
application. When the customer completes the form and submits it, your application calls the
SendCustomVerificationEmail operation, passing the customer's email address and the name
of the template you want to use.

Your customer receives an email that uses the customized email template you created. Amazon SES
automatically adds a unique link to the recipient, and also a brief disclaimer. The following image
shows a sample verification email that uses the template created in Creating a custom verification
email template.

Using custom verification email templates 214

http://docs.aws.amazon.com/ses/latest/APIReference/API_SendCustomVerificationEmail.html

Amazon Simple Email Service Developer Guide

Custom verification email frequently asked questions

This section contains answers to frequently asked questions about the custom verification email
template feature.

Q1. How many custom verification email templates can I create?

You can create up to 50 custom verification email templates per Amazon SES account.

Q2. How do custom verification emails appear to recipients?

Custom verification emails include the content you specified when you created the template,
followed by a link that recipients must click to verify their email addresses.

Q3. Can I preview the custom verification email?

To preview a custom verification email, use the SendCustomVerificationEmail operation to
send a verification email to an address you own. If you don't click the verification link, Amazon SES
does not create a new identity. If you do click the verification link, you can optionally delete the
newly created identity by using the DeleteIdentity operation.

Q4. Can I include images in my custom verification email templates?

You can embed images in the HTML for your templates by using base64 encoding. When you
embed images in this way, Amazon SES automatically converts them into attachments. You can
encode an image at the command line by issuing one of the following commands:

Linux, macOS, or Unix

base64 -i imagefile.png | tr -d '\n' > output.txt

Windows

certutil -encodehex -f imagefile.png output.txt 0x40000001

Replace imagefile.png with the name of the file you want to encode. In both of the commands
above, the base64 encoded image is saved to output.txt.

You can embed the base64-encoded image by including the following in the HTML for the
template:

Using custom verification email templates 215

Amazon Simple Email Service Developer Guide

In the previous example, replace png with the file type of the encoded image (such as jpg or gif),
and replace base64EncodedImage with the base64 encoded image (that is, the contents of
output.txt from one of the preceding commands).

Q5. Are there any limits to the content that I can include in custom verification email
templates?

Custom verification email templates can't exceed 10 MB in size. Additionally, custom verification
email templates that contain HTML can only use the tags and attributes listed in the following
table.

HTML tag Allowed attributes

abbr class, id, style, title

acronym class, id, style, title

address class, id, style, title

area class, id, style, title

b class, id, style, title

bdo class, id, style, title

big class, id, style, title

blockquote cite, class, id, style, title

body class, id, style, title

br class, id, style, title

button class, id, style, title

caption class, id, style, title

center class, id, style, title

cite class, id, style, title

Using custom verification email templates 216

Amazon Simple Email Service Developer Guide

HTML tag Allowed attributes

code class, id, style, title

col class, id, span, style, title,
width

colgroup class, id, span, style, title,
width

dd class, id, style, title

del class, id, style, title

dfn class, id, style, title

dir class, id, style, title

div class, id, style, title

dl class, id, style, title

dt class, id, style, title

em class, id, style, title

fieldset class, id, style, title

font class, id, style, title

form class, id, style, title

h1 class, id, style, title

h2 class, id, style, title

h3 class, id, style, title

h4 class, id, style, title

h5 class, id, style, title

Using custom verification email templates 217

Amazon Simple Email Service Developer Guide

HTML tag Allowed attributes

h6 class, id, style, title

head class, id, style, title

hr class, id, style, title

html class, id, style, title

i class, id, style, title

img align, alt, class, height, id, src,
style, title, width

input class, id, style, title

ins class, id, style, title

kbd class, id, style, title

label class, id, style, title

legend class, id, style, title

li class, id, style, title

map class, id, style, title

menu class, id, style, title

ol class, id, start, style, title,
type

optgroup class, id, style, title

option class, id, style, title

p class, id, style, title

pre class, id, style, title

Using custom verification email templates 218

Amazon Simple Email Service Developer Guide

HTML tag Allowed attributes

q cite, class, id, style, title

s class, id, style, title

samp class, id, style, title

select class, id, style, title

small class, id, style, title

span class, id, style, title

strike class, id, style, title

strong class, id, style, title

sub class, id, style, title

sup class, id, style, title

table class, id, style, summary, title,
width

tbody class, id, style, title

td abbr, axis, class, colspan, id,
rowspan, style, title, width

textarea class, id, style, title

tfoot class, id, style, title

th abbr, axis, class, colspan, id,
rowspan, scope, style, title, width

thead class, id, style, title

tr class, id, style, title

Using custom verification email templates 219

Amazon Simple Email Service Developer Guide

HTML tag Allowed attributes

tt class, id, style, title

u class, id, style, title

ul class, id, style, title, type

var class, id, style, title

Note

Custom verification email templates can't include comment tags.

Q6. How many verified email addresses can exist in my account?

Your Amazon SES account can have up to 10,000 verified identities in each AWS Region. In Amazon
SES, identities include both verified domains and email addresses.

Q7. Can I create custom verification email templates using the Amazon SES console?

Currently, it's only possible to create, edit, and delete custom verification emails using the Amazon
SES API.

Q8. Can I track open and click events that occur when customers receive custom verification
emails?

Custom verification emails can't include open or click tracking.

Q9. Can custom verification emails include custom headers?

Custom verification emails can't include custom headers.

Q10. Can I remove the text that appears at the bottom of custom verification emails?

The following text is automatically added to the end of every custom verification email and can't
be removed:

If you did not request to verify this email address, please disregard this message.

Using custom verification email templates 220

Amazon Simple Email Service Developer Guide

Q11. Are custom verification emails DKIM-signed?

In order for verification emails to be DKIM-signed, the email address that you specify in the
FromEmailAddress attribute when you create the verification email template must be configured
to generate a DKIM signature. For more information about setting up DKIM for domains and email
addresses, see the section called “Authenticating Email with DKIM”.

Q12. Why don't the custom verification email template API operations appear in the SDK or
CLI?

If you're unable to use the custom verification email template operations in an SDK or the AWS
CLI, you may be using an older version of the SDK or CLI. The custom verification email template
operations are available in the following SDKs and CLIs:

• Version 1.14.6 or later of the AWS Command Line Interface

• Version 3.3.205.0 or later of the AWS SDK for .NET

• Version 1.3.20170531.19 or later of the AWS SDK for C++

• Version 1.12.43 or later of the AWS SDK for Go

• Version 1.11.245 or later of the AWS SDK for Java

• Version 2.166.0 or later of the AWS SDK for JavaScript

• Version 3.45.2 or later of the AWS SDK for PHP

• Version 1.5.1 or later of the AWS SDK for Python (Boto)

• Version 1.5.0 or later of the aws-sdk-ses gem in the AWS SDK for Ruby

Q13. Why do I receive ProductionAccessNotGranted errors when I send custom verification
emails?

The ProductionAccessNotGranted error indicates that your account is still in the Amazon SES
sandbox. You can only send custom verification emails if your account has been removed from the
sandbox. For more information, see Request production access (Moving out of the Amazon SES
sandbox).

Managing identities in Amazon SES

In the Amazon SES console, you can view a list of identities, open an identity to see and edit its
detail settings, associate a default configuration set, or delete one or more identities.

Managing identities 221

Amazon Simple Email Service Developer Guide

Note

The procedures outlined in this section apply only to identities in the selected AWS Region.
To manage identities that were created in more than one Region, repeat the procedures for
each AWS Region.

Viewing a list of identities in Amazon SES

You can use the Amazon SES console or API to view a list of domain and email address identities
that are verified or are pending verification. You can also view those identifies for which verification
was unsuccessful.

To view your domain and email address identities (console)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the console, use the Region selector to choose the AWS Region for which you want to view
your list of identities.

Note

This procedure only displays a list of identities for the selected AWS Region.

3. In the navigation pane, under Configuration, choose Verified identities. The Loaded
identities table displays both domain and email address identities. The Status column displays
whether an identity has been verified, is pending verification, or has failed the verification
process - definitions of all possible status values are as follows:

• Verified – your identity is successfully verified for sending in SES.

• Failure – SES was unable to verify your identity. If it's a domain, it means SES was unable
to detect the DNS records within 72 hours. If it's an email address, it means the verification
email that was sent to the email address was not acknowledged within 24 hours.

• Pending – SES is still trying to verify the identity.

• Temporary Failure – for a previously verified domain, SES will periodically check for the
DNS record required for verification. If at some point, SES is unable to detect the record, the
status would change to Temporary Failure. SES will recheck for the DNS record for 72 hours,

Viewing identities from the console 222

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

and if it’s unable to detect the record, the domain status would change to Failure. If it’s able
to detect the record, the domain status would change to Verified.

• Not started – you have not yet started the verification process.

4. To sort identities by verification status, choose the Status column.

5. To view an identity’s details page, select the identity that you want to view.

Deleting an identity in Amazon SES

You can use the Amazon SES console or API to remove a domain or email address identity from
your account in the selected AWS Region.

To remove a domain or email address identity (console)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the console, use the Region selector to choose the AWS Region from which you want to
delete one or more identities.

3. In the navigation pane, under Configuration, choose Verified identities.

The Loaded identities table displays a list of both domain and email address identities.

4. In the Identity column, select the identity that you want to delete. You can delete multiple
identities by checking the box next to each identity that you want to delete.

5. Choose Delete.

Editing an existing identity in Amazon SES

You can use the Amazon SES console or API to edit a domain or email address identity in your
account in the selected AWS Region.

To edit a domain or email address identity (console)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the console, use the Region selector to choose the AWS Region from which you want to edit
one or more identities.

3. In the navigation pane, under Configuration, choose Verified identities.

Deleting an identity using the console 223

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

The Loaded identities table displays a list of both domain and email address identities.

4. In the Identity column, select the identity that you want to edit (by clicking directly on the
identity name as opposed to selecting its checkbox).

5. On the identity's detail page, select the tab containing the categories you'd like to edit.

6. In any of the selected tab's categorical containers, choose the Edit button of the attribute you
wish to edit, make your changes, then choose Save changes.

a. If you wish to edit attributes under the Authentication tab and your domain identity is
hosted in Amazon Route 53, and you haven't already published its DNS records, there will
be a Publish DNS records to Route53 button (next to the Edit button) in either or both of
the DomainKeys Identified Mail (DKIM) or Custom MAIL FROM domain containers.

Note

The Authentication tab is only present when your account has a verified domain
or an email address that uses a verified domain in your account.

b. You can publish the DNS records directly from the Publish DNS records to Route53
button - just click it, a confirmation banner will be displayed, and the Publish DNS records
to Route53 button will no longer be visible for the respective container.

7. Repeat steps 5 & 6 for each attribute of the identity you'd like to edit.

Edit an identity to use a default configuration set using the API

You can use the PutEmailIdentityConfigurationSetAttributes operation to add or remove a default
configuration set from an existing email identity.

Note

Before you complete the procedure in this section, you have to install and configure the
AWS CLI. For more information, see the AWS Command Line Interface User Guide.

To add a default configuration set using the AWS CLI

• At the command line, enter the following command to use the
PutEmailIdentityConfigurationSetAttributes operation.

Edit an identity to use a default configuration set using the API 224

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutEmailIdentityConfigurationSetAttributes.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutEmailIdentityConfigurationSetAttributes.html

Amazon Simple Email Service Developer Guide

aws sesv2 put-email-identity-configuration-set-attributes --email-identity ADDRESS-OR-
DOMAIN --configuration-set-name CONFIG-SET

In the preceding commands, replace ADDRESS-OR-DOMAIN with the email identity that you want
to verify. Replace CONFIG-SET with the name of the configuration set you wish to set as the
identity's default configuration set.

If the command executes successfully, it exits without providing any output.

To remove a default configuration set using the AWS CLI

• At the command line, enter the following command to use the
PutEmailIdentityConfigurationSetAttributes operation.

aws sesv2 put-email-identity-configuration-set-attributes --email-identity ADDRESS-OR-
DOMAIN

In the preceding commands, replace ADDRESS-OR-DOMAIN with the email identity that you want
to verify.

If the command executes successfully, it exits without providing any output.

Retrieve the default configuration set used by the identity (API)

You can use the GetEmailIdentity operation to return the default configuration set for an email
identity, if applicable.

Note

Before you complete the procedure in this section, you have to install and configure the
AWS CLI. For more information, see the AWS Command Line Interface User Guide.

To return a default configuration set using the AWS CLI

• At the command line, enter the following command to use the GetEmailIdentity operation.

aws sesv2 get-email-identity --email-identity ADDRESS-OR-DOMAIN

Retrieve the default configuration set used by the identity (API) 225

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutEmailIdentityConfigurationSetAttributes.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetEmailIdentity.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetEmailIdentity.html

Amazon Simple Email Service Developer Guide

In the preceding commands, replace ADDRESS-OR-DOMAIN with with email identity for which you
wish to know the default configuration set, if any.

If the command executes successfully, it provides a JSON object with the email identity details.

Override the current default configuration set used by the identity
(API)

You can use the SendEmail operation to send email with a different configuration set. If you do, the
configuration set that you specify overrides the default configuration set for the identity.

Note

Before you complete the procedure in this section, you have to install and configure the
AWS CLI. For more information, see the AWS Command Line Interface User Guide.

To override a default configuration set using the AWS CLI

• At the command line, enter the following command to use the SendEmail operation.

aws sesv2 send-email --destination file://DESTINATION-JSON --content file://CONTENT-
JSON --from-email-address ADDRESS-OR-DOMAIN --configuration-set-name CONFIG-SET

In the preceding commands, replace DESTINATION-JSON with your destination JSON file,
CONTENT-JSON with your content JSON file, ADDRESS-OR-DOMAIN with your FROM email address,
and CONFIG-SET with the name of the configuration set you wish to use instead of the default
configuration set for the identity.

If the command executes successfully, it outputs a MessageId.

Configuring identities in Amazon SES

Amazon Simple Email Service (Amazon SES) uses the Simple Mail Transfer Protocol (SMTP) to
send email. Because SMTP doesn't provide any authentication by itself, spammers can send email
messages that claim to originate from someone else, while hiding their true origin. By falsifying
email headers and spoofing source IP addresses, spammers can mislead recipients into believing
that the email messages that they are receiving are authentic.

Override the current default configuration set used by the identity (API) 226

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html

Amazon Simple Email Service Developer Guide

Most ISPs that forward email traffic take measures to evaluate whether email is legitimate. One
such measure that ISPs take is to determine whether an email is authenticated. Authentication
requires senders to verify that they're the owner of the account that they are sending from. In
some cases, ISPs refuse to forward email that is not authenticated. To ensure optimal deliverability,
we recommend that you authenticate your emails.

The following sections describe two authentication mechanisms ISPs use—Sender Policy
Framework (SPF) and DomainKeys Identified Mail (DKIM)—and provide instructions for how to use
these standards with Amazon SES.

• To learn about SPF, which provides a way to trace an email message back to the system from
which it was sent, see Authenticating Email with SPF in Amazon SES.

• To learn about DKIM, a standard that allows you to sign your email messages to show ISPs that
your messages are legitimate and have not been modified in transit, see Authenticating Email
with DKIM in Amazon SES.

• To learn how to comply with Domain-based Message Authentication, Reporting and
Conformance (DMARC), which relies on SPF and DKIM, see Complying with DMARC
authentication protocol in Amazon SES.

Email authentication methods

Amazon Simple Email Service (Amazon SES) uses the Simple Mail Transfer Protocol (SMTP) to
send email. Because SMTP does not provide any authentication by itself, spammers can send email
messages that claim to originate from someone else, while hiding their true origin. By falsifying
email headers and spoofing source IP addresses, spammers can mislead recipients into believing
that the email messages that they are receiving are authentic.

Most ISPs that forward email traffic take measures to evaluate whether email is legitimate. One
such measure that ISPs take is to determine whether an email is authenticated. Authentication
requires senders to verify that they are the owner of the account that they are sending from. In
some cases, ISPs refuse to forward email that is not authenticated. To ensure optimal deliverability,
we recommend that you authenticate your emails.

Contents

• Authenticating Email with DKIM in Amazon SES

• Authenticating Email with SPF in Amazon SES

• Using a custom MAIL FROM domain

Email authentication methods 227

Amazon Simple Email Service Developer Guide

• Complying with DMARC authentication protocol in Amazon SES

• Using BIMI in Amazon SES

Authenticating Email with DKIM in Amazon SES

DomainKeys Identified Mail (DKIM) is an email security standard designed to make sure that an
email that claims to have come from a specific domain was indeed authorized by the owner of that
domain. It uses public-key cryptography to sign an email with a private key. Recipient servers can
then use a public key published to a domain's DNS to verify that parts of the email have not been
modified during the transit.

DKIM signatures are optional. You might decide to sign your email using a DKIM signature to
enhance deliverability with DKIM-compliant email providers. Amazon SES provides three options
for signing your messages using a DKIM signature:

• Easy DKIM: SES generates a public-private key pair and automatically adds a DKIM signature to
every message that you send from that identity, see Easy DKIM in Amazon SES.

• BYODKIM (Bring Your Own DKIM): You provide your own public-private key pair and SES adds
a DKIM signature to every message that you send from that identity, see Provide your own DKIM
authentication token (BYODKIM) in Amazon SES.

• Manually add DKIM signature: You add your own DKIM signature to email that you send using
the SendRawEmail API, see Manual DKIM signing in Amazon SES.

DKIM signing key length

Since many DNS providers now fully support DKIM 2048 bit RSA encryption, Amazon SES also
supports DKIM 2048 to allow more secure authentication of emails and therefore uses it as the
default key length when you configure Easy DKIM either from the API or the console. 2048 bit keys
can be setup and used in Bring Your Own DKIM (BYODKIM) as well, where your signing key length
must be at least 1024 bits and no more than 2048 bits.

For the sake of security as well as your email’s deliverability, when configured with Easy DKIM, you
have the choice to use either 1024 and 2048 bit key lengths along with the flexibility of flipping
back to 1024 in the event there are problems caused by any DNS providers who still don’t support
2048. When you create a new identity, it will be created with DKIM 2048 by default unless you specify
1024.

Email authentication methods 228

Amazon Simple Email Service Developer Guide

To preserve the deliverability of in transit emails, there are restrictions on the frequency at which
you can change your DKIM key length. Restrictions include:

• Not being able to switch to the same key length as is already configured.

• Not being able to switch to different key length more than once in a 24 hour period (unless it’s
the first downgrade to 1024 in that period).

When your email is in transit, DNS is using your public key to authenticate your email; therefore, if
you change keys too quickly or frequently, DNS may not be able to DKIM authenticate your email
as the former key may already be invalidated, thus, these restrictions safeguard against that.

DKIM considerations

When you use DKIM to authenticate your email, the following rules apply:

• You only need to set up DKIM for the domain that you use in your "From" address. You don't
need to set up DKIM for domains that you use in "Return-Path" or "Reply-to" addresses.

• Amazon SES is available in several AWS Regions. If you use more than one AWS Region to send
email, you have to complete the DKIM setup process in each of those Regions to ensure that all
of your email is DKIM-signed.

• Because DKIM properties are inherited from the parent domain, when you verify a domain with
DKIM authentication:

• DKIM authentication will also apply to all subdomains of that domain.

• DKIM settings for a subdomain can override the settings for the parent domain by disabling
the inheritance if you don't want the subdomain to use DKIM authentication, as well as the
ability to re-enable later.

• DKIM authentication will also apply to all email sent from an email identity that references the
DKIM verified domain in its address.

• DKIM settings for an email address can override the settings for the subdomain (if
applicable) and the parent domain by disabling the inheritance if you want to send mail
without DKIM authentication, as well as the ability to re-enable later.

Understanding inherited DKIM signing properties

It's important to first understand that an email address identity inherits its DKIM signing properties
from its parent domain if that domain was configured with DKIM, regardless of whether Easy DKIM

Email authentication methods 229

Amazon Simple Email Service Developer Guide

or BYODKIM was used. Therefore, disabling or enabling DKIM signing on the email address identity,
is in effect, overriding the domain's DKIM signing properties based on these key facts:

• If you already set up DKIM for the domain that an email address belongs to, you do not need to
enable DKIM signing for the email address identity as well.

• When you set up DKIM for a domain, Amazon SES automatically authenticates every email
from every address on that domain through the inherited DKIM properties from the parent
domain.

• DKIM settings for a specific email address identity automatically override the settings of the
parent domain or subdomain (if applicable) that the address belongs to.

Since the email address identity's DKIM signing properties are inherited from the parent domain,
if you're planning on overriding these properties, you must keep in mind the hierarchical rules of
overriding as explained in the table below.

Parent domain does not have DKIM signing
enabled

Parent domain has DKIM signing enabled

You can disable DKIM signing on the email
address identity.You cannot enable DKIM signing on the email

address identity. You can re-enable DKIM signing on the email
address identity.

It’s generally never recommended to disable your DKIM signing as it risks tarnishing your sender
reputation, and it increases the risk of having your sent mail go to junk or spam folders or having
your domain spoofed.

However, the capability exists to override the domain inherited DKIM signing properties on an
email address identity for any particular use case or outlying business decision that you might have
to either permanently or temporarily disable DKIM signing, or to re-enable it at a later time. See
the section called “Overriding DKIM signing on email address”.

Email authentication methods 230

Amazon Simple Email Service Developer Guide

Easy DKIM in Amazon SES

When you set up Easy DKIM for a domain identity, Amazon SES automatically adds a 2048-bit
DKIM key to every email that you send from that identity. You can configure Easy DKIM by using
the Amazon SES console, or by using the API.

Note

To set up Easy DKIM, you have to modify the DNS settings for your domain. If you use
Route 53 as your DNS provider, Amazon SES can automatically create the appropriate
records for you. If you use another DNS provider, see your provider's documentation to
learn more about changing the DNS settings for your domain.

Warning

If you currently have BYODKIM enabled and are transitioning over to Easy DKIM, be aware
that Amazon SES will not use BYODKIM to sign your emails while Easy DKIM is being set
up and your DKIM status is in a pending state. Between the moment you make the call
to enable Easy DKIM (either through the API or console) and the moment when SES can
confirm your DNS configuration, your emails may be sent by SES without a DKIM signature.
Therefore, it is advised to use an intermediary step to migrate from one DKIM signing
method to the other (e.g., using a subdomain of your domain with BYODKIM enabled and
then deleting it once Easy DKIM verification has passed), or perform this activity during
your application's downtime, if any.

Setting up Easy DKIM for a verified domain identity

The procedure in this section is streamlined to just show the steps necessary to configure Easy
DKIM on a domain identity that you've already created. If you haven't yet created a domain identity
or you want to see all available options for customizing a domain identity, such as using a default
configuration set, custom MAIL FROM domain, and tags, see the section called “Creating a domain
identity”.

Part of creating an Easy DKIM domain identity is configuring its DKIM-based verification where
you will have the choice to either accept the Amazon SES default of 2048 bits, or to override the
default by selecting 1024 bits. See the section called “DKIM signing key length” to learn more
about DKIM signing key lengths and how to change them.

Email authentication methods 231

Amazon Simple Email Service Developer Guide

To set up Easy DKIM for a domain

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose an identity where the Identity type is Domain.

Note

If you need to create or verify a domain, see Creating a domain identity.

4. Under the Authentication tab, in the DomainKeys Identified Mail (DKIM) container, choose
Edit.

5. In the Advanced DKIM settings container, choose the Easy DKIM button in the Identity type
field.

6. In the DKIM signing key length field, choose either RSA_2048_BIT or RSA_1024_BIT.

7. In the DKIM signatures field, check the Enabled box.

8. Choose Save changes.

9. Now that you’ve configured your domain identity with Easy DKIM, you must complete the
verification process with your DNS provider - proceed to the section called “Verifying a domain
identity” and follow the DNS authentication procedures for Easy DKIM.

Change the Easy DKIM signing key length for an identity

The procedure in this section shows how you can easily change the Easy DKIM bits required for the
signing algorithm. While a signing length of 2048 bits is always preferred for the enhanced security
it provides, there may be situations that require you to use the 1024 bit length, such as having to
use a DNS provider who only supports DKIM 1024.

To preserve the deliverability of in transit emails, there are restrictions on the frequency at which
you can change or flip your DKIM key length.

When your email is in transit, DNS is using your public key to authenticate your email; therefore, if
you change keys too quickly or frequently, DNS may not be able to DKIM authenticate your email
as the former key may already be invalidated, thus, the following restrictions safeguard against
that:

Email authentication methods 232

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• You can't switch to the same key length as is already configured.

• You can't switch to a different key length more than once in a 24 hour period (unless it’s the first
downgrade to 1024 in that period).

In using the following procedures to change your key length, if you violate one of these
restrictions, the console will return an error banner stating that the input you provided is invalid
along with the reason of why it was invalid.

To change the DKIM signing key length bits

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose the identity you want to change the DKIM signing key length
for.

4. Under the Authentication tab, in the DomainKeys Identified Mail (DKIM) container, choose
Edit.

5. In the Advanced DKIM settings container, choose either RSA_2048_BIT or RSA_1024_BIT in
the DKIM signing key length field.

6. Choose Save changes.

Provide your own DKIM authentication token (BYODKIM) in Amazon SES

As an alternative to using Easy DKIM, you can instead configure DKIM authentication by using your
own public-private key pair. This process is known as Bring Your Own DKIM (BYODKIM).

With BYODKIM, you can use a single DNS record to configure DKIM authentication for your
domains, as opposed to Easy DKIM, which requires you to publish three separate DNS records.
Additionally, with BYODKIM you can rotate the DKIM keys for your domains as often as you want.

Topics in this section:

• Step 1: Create the key pair

• Step 2: Add the selector and public key to your DNS provider's domain configuration

• Step 3: Configure and verify a domain to use BYODKIM

Email authentication methods 233

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Warning

If you currently have Easy DKIM enabled and are transitioning over to BYODKIM, be aware
that Amazon SES will not use Easy DKIM to sign your emails while BYODKIM is being set
up and your DKIM status is in a pending state. Between the moment you make the call
to enable BYODKIM (either through the API or console) and the moment when SES can
confirm your DNS configuration, your emails may be sent by SES without a DKIM signature.
Therefore, it is advised to use an intermediary step to migrate from one DKIM signing
method to the other (e.g., using a subdomain of your domain with Easy DKIM enabled and
then deleting it once BYODKIM verification has passed), or perform this activity during your
application's downtime, if any.

Step 1: Create the key pair

To use the Bring Your Own DKIM feature, you first have to create an RSA key pair.

The private key that you generate has to be in either PKCS #1 or PKCS #8 format, must use at least
1024-bit RSA encryption and up to 2048-bit, and be encoded using base64 (PEM) encoding. See
the section called “DKIM signing key length” to learn more about DKIM signing key lengths and
how to change them.

Note

You can use third-party applications and tools to generate RSA key pairs as long as the
private key is generated with at least 1024-bit RSA encryption and up to 2048-bit, and is
encoded using base64 (PEM) encoding.

In the following procedure, the example code which uses the openssl genrsa command that's
built into most Linux, macOS, or Unix operating systems to create the key pair will automatically
use base64 (PEM) encoding.

To create the key pair from the Linux, macOS, or Unix command line

1. At the command line, enter the following command to generate the private key replacing
nnnn with a bit length of at least 1024 and up to 2048:

Email authentication methods 234

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Amazon Simple Email Service Developer Guide

openssl genrsa -f4 -out private.key nnnn

2. At the command line, enter the following command to generate the public key:

openssl rsa -in private.key -outform PEM -pubout -out public.key

Step 2: Add the selector and public key to your DNS provider's domain configuration

Now that you've created a key pair, you have to add the public key as a TXT record to the DNS
configuration for your domain.

To add the public key to the DNS configuration for your domain

1. Sign in to the management console for your DNS or hosting provider.

2. Add a new text record to the DNS configuration for your domain. The record should use the
following format:

Name Type Value

selector._domaink
ey.example.com

TXT p=yourPublicKey

In the preceding example, make the following changes:

• Replace selector with a unique name that identifies the key.

Note

A small number of DNS providers don't allow you to include underscores (_) in record
names. However, the underscore in the DKIM record name is required. If your DNS
provider doesn't allow you to enter an underscore in the record name, contact the
provider's customer support team for assistance.

• Replace example.com with your domain.

• Replace yourPublicKey with the public key that you created earlier and include the p=
prefix as shown in the Value column above.

Email authentication methods 235

Amazon Simple Email Service Developer Guide

Note

When you publish (add) your public key to your DNS provider, it must be formatted
as follows:

• You have to delete the first and last lines (-----BEGIN PUBLIC KEY-----
and -----END PUBLIC KEY-----, respectively) of the generated public key.
Additionally, you have to remove the line breaks in the generated public key. The
resulting value is a string of characters with no spaces or line breaks.

• You must include the p= prefix as shown in the Value column in the table above.

Different providers have different procedures for updating DNS records. The following table
includes links to the documentation for a few widely used DNS providers. This list isn't
exhaustive and doesn't signify endorsement; likewise, if your DNS provider isn't listed, it
doesn't imply you can't use the domain with Amazon SES.

DNS/Hosting provider Documentation link

Amazon Route 53 Editing Records in the Amazon Route 53
Developer Guide

GoDaddy Add a TXT record (external link)

DreamHost How do I add custom DNS records? (external
 link)

Cloudflare Managing DNS records in Cloudflare
(external link)

HostGator Manage DNS Records with HostGator/eNom
(external link)

Namecheap How do I add TXT/SPF/DKIM/DMARC
records for my domain? (external link)

Names.co.uk Changing your domains DNS Settings
(external link)

Email authentication methods 236

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-editing.html
https://www.godaddy.com/help/add-a-txt-record-19232
https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-
https://support.cloudflare.com/hc/en-us/articles/360019093151
https://www.hostgator.com/help/article/manage-dns-records-with-hostgatorenom
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.names.co.uk/support/1156-changing_your_domains_dns_settings.html

Amazon Simple Email Service Developer Guide

DNS/Hosting provider Documentation link

Wix Adding or Updating TXT Records in Your Wix
Account (external link)

Step 3: Configure and verify a domain to use BYODKIM

You can set up BYODKIM for both new domains (that is, domains that you don't currently use
to send email through Amazon SES) and existing domains (that is, domains that you've already
set up to use with Amazon SES) by using either the console or AWS CLI. Before you use the AWS
CLI procedures in this section, you first have to install and configure the AWS CLI. For more
information, see the AWS Command Line Interface User Guide..

Option 1: Creating a new domain identity that uses BYODKIM

This section contains procedures for creating a new domain identity that uses BYODKIM. A new
domain identity is a domain that you haven't previously set up to send email using Amazon SES.

If you want to configure an existing domain to use BYODKIM, complete the procedure in Option 2:
Configuring an existing domain identity instead.

To create an identity using BYODKIM from the console

• Follow the procedures in Creating a domain identity, and when you get to Step 8, follow the
BYODKIM specific instructions.

To create an identity using BYODKIM from the AWS CLI

To configure a new domain, use the CreateEmailIdentity operation in the Amazon SES API.

1. In a text editor, paste the following code:

{
 "EmailIdentity":"example.com",
 "DkimSigningAttributes":{
 "DomainSigningPrivateKey":"privateKey",
 "DomainSigningSelector":"selector"
 }
}

Email authentication methods 237

https://support.wix.com/en/article/adding-or-updating-txt-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-txt-records-in-your-wix-account
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

In the preceding example, make the following changes:

• Replace example.com with the domain that you want to create.

• Replace privateKey with your private key.

Note

You have to delete the first and last lines (-----BEGIN PRIVATE KEY-----
and -----END PRIVATE KEY-----, respectively) of the generated private key.
Additionally, you have to remove the line breaks in the generated private key. The
resulting value is a string of characters with no spaces or line breaks.

• Replace selector with the unique selector that you specified when you created the TXT
record in the DNS configuration for your domain.

When you finish, save the file as create-identity.json.

2. At the command line, enter the following command:

aws sesv2 create-email-identity --cli-input-json file://path/to/create-
identity.json

In the preceding command, replace path/to/create-identity.json with the complete
path to the file that you created in the previous step.

Option 2: Configuring an existing domain identity

This section contains procedures for updating an existing domain identity to use BYODKIM. An
existing domain identity is a domain that you have already set up to send email using Amazon SES.

To update a domain identity using BYODKIM from the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose an identity where the Identity type is Domain.

Email authentication methods 238

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

If you need to create or verify a domain, see Creating a domain identity.

4. Under the Authentication tab, in the DomainKeys Identified Mail (DKIM) pane, choose Edit.

5. In the Advanced DKIM settings pane, choose the Provide DKIM authentication token
(BYODKIM) button in the Identity type field.

6. For Private key, paste the private key you generated earlier.

Note

You have to delete the first and last lines (-----BEGIN PRIVATE KEY-----
and -----END PRIVATE KEY-----, respectively) of the generated private key.
Additionally, you have to remove the line breaks in the generated private key. The
resulting value is a string of characters with no spaces or line breaks.

7. For Selector name, enter the name of the selector that you specified in your domain’s DNS
settings.

8. In the DKIM signatures field, check the Enabled box.

9. Choose Save changes.

To update a domain identity using BYODKIM from the AWS CLI

To configure an existing domain, use the PutEmailIdentityDkimSigningAttributes
operation in the Amazon SES API.

1. In a text editor, paste the following code:

{
 "SigningAttributes":{
 "DomainSigningPrivateKey":"privateKey",
 "DomainSigningSelector":"selector"
 },
 "SigningAttributesOrigin":"EXTERNAL"
}

In the preceding example, make the following changes:

Email authentication methods 239

Amazon Simple Email Service Developer Guide

• Replace privateKey with your private key.

Note

You have to delete the first and last lines (-----BEGIN PRIVATE KEY-----
and -----END PRIVATE KEY-----, respectively) of the generated private key.
Additionally, you have to remove the line breaks in the generated private key. The
resulting value is a string of characters with no spaces or line breaks.

• Replace selector with the unique selector that you specified when you created the TXT
record in the DNS configuration for your domain.

When you finish, save the file as update-identity.json.

2. At the command line, enter the following command:

aws sesv2 put-email-identity-dkim-signing-attributes --email-identity example.com
 --cli-input-json file://path/to/update-identity.json

In the preceding command, make the following changes:

• Replace path/to/update-identity.json with the complete path to the file that you
created in the previous step.

• Replace example.com with the domain that you want to update.

Verifying the DKIM status for a domain that uses BYODKIM

To verify the DKIM status of a domain from the console

After you configure a domain to use BYODKIM, you can use the SES console to verify that DKIM is
properly configured.

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose the identity whose DKIM status you want to verify.

Email authentication methods 240

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

4. It can take up to 72 hours for changes to DNS settings to propagate. As soon as Amazon SES
detects all of the required DKIM records in your domain’s DNS settings, the verification process
is complete. If everything has been configured correctly, your domain’s DKIM configuration
field displays Successful in the DomainKeys Identified Mail (DKIM) pane, and the Identity
status field displays Verified in the Summary pane.

To verify the DKIM status of a domain using the AWS CLI

After you configure a domain to use BYODKIM, you can use the GetEmailIdentity operation to
verify that DKIM is properly configured.

• At the command line, enter the following command:

aws sesv2 get-email-identity --email-identity example.com

In the preceding command, replace example.com with your domain.

This command returns a JSON object that contains a section that resembles the following
example.

{
 ...
 "DkimAttributes": {
 "SigningAttributesOrigin": "EXTERNAL",
 "SigningEnabled": true,
 "Status": "SUCCESS",
 "Tokens": []
 },
 ...
}

If all of the following are true, BYODKIM is properly configured for the domain:

• The value of the SigningAttributesOrigin property is EXTERNAL.

• The value of SigningEnabled is true.

• The value of Status is SUCCESS.

Email authentication methods 241

Amazon Simple Email Service Developer Guide

Managing Easy DKIM and BYODKIM

You can manage the DKIM settings for your identities authenticated with either Easy DKIM or
BYODKIM by using the web-based Amazon SES console, or by using the Amazon SES API. You can
use either of these methods to obtain the DKIM records for an identity, or to enable or disable
DKIM signing for an identity.

Obtaining DKIM Records for an identity

You can obtain the DKIM records for your domain or email address at any time by using the
Amazon SES console.

To obtain the DKIM records for an identity by using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose the identity for which you want to obtain DKIM records.

4. On the Authentication tab of the identity details page, expand View DNS records.

5. Copy either the three CNAME records if you used Easy DKIM, or the TXT record if you used
BYODKIM, that appear in this section. Alternatively, you can choose Download .csv record set
to save a copy of the records to your computer.

The following image shows an example of the expanded View DNS records section revealing
CNAME records associated with Easy DKIM.

Email authentication methods 242

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

You can also obtain the DKIM records for an identity by using the Amazon SES API. A common
method of interacting with the API is to use the AWS CLI.

To obtain the DKIM records for an identity by using the AWS CLI

1. At the command line, type the following command:

aws ses get-identity-dkim-attributes --identities "example.com"

In the preceding example, replace example.com with the identity that you want to obtain
DKIM records for. You can specify either an email address or a domain.

2. The output of this command contains a DkimTokens section, as shown in the following
example:

{
 "DkimAttributes": {
 "example.com": {
 "DkimEnabled": true,
 "DkimVerificationStatus": "Success",
 "DkimTokens": [
 "hirjd4exampled5477y22yd23ettobi",
 "v3rnz522czcl46quexamplek3efo5o6x",
 "y4examplexbhyhnsjcmtvzotfvqjmdqoj"
]
 }
 }
}

You can use the tokens to create the CNAME records that you add to the DNS settings for your
domain. To create the CNAME records, use the following template:

token1._domainkey.example.com CNAME token1.dkim.amazonses.com
token2._domainkey.example.com CNAME token2.dkim.amazonses.com
token3._domainkey.example.com CNAME token3.dkim.amazonses.com

Replace each instance of token1 with the first token in the list you received when you ran
the get-identity-dkim-attributes command, replace all instances of token2 with the
second token in the list, and replace all instances of token3 with the third token in the list.

Email authentication methods 243

Amazon Simple Email Service Developer Guide

For example, applying this template to the tokens shown in the preceding example produces
the following records:

hirjd4exampled5477y22yd23ettobi._domainkey.example.com CNAME
 hirjd4exampled5477y22yd23ettobi.dkim.amazonses.com
v3rnz522czcl46quexamplek3efo5o6x._domainkey.example.com CNAME
 v3rnz522czcl46quexamplek3efo5o6x.dkim.amazonses.com
y4examplexbhyhnsjcmtvzotfvqjmdqoj._domainkey.example.com CNAME
 y4examplexbhyhnsjcmtvzotfvqjmdqoj.dkim.amazonses.com

Note

If your selected AWS Region is Cape Town, Osaka, or Milan, you will need to use region
specific DKIM domains as specified in the DKIM Domains table found in the AWS General
Reference.

Disabling Easy DKIM for an identity

You can quickly disable DKIM authentication for an identity by using the Amazon SES console.

To disable DKIM for an identity

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose the identity for which you want to disable DKIM.

4. Under the Authentication tab, in the DomainKeys Identified Mail (DKIM) container, choose
Edit.

5. In Advanced DKIM settings, clear the Enabled box in the DKIM signatures field.

You can also disable DKIM for an identity by using the Amazon SES API. A common method of
interacting with the API is to use the AWS CLI.

To disable DKIM for an identity by using the AWS CLI

• At the command line, type the following command:

Email authentication methods 244

https://docs.aws.amazon.com/general/latest/gr/ses.html
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

aws ses set-identity-dkim-enabled --identity example.com --no-dkim-enabled

In the preceding example, replace example.com with the identity that you want to disable
DKIM for. You can specify either an email address or a domain.

Enabling Easy DKIM for an identity

If you previously disabled DKIM for an identity, you can enable it again by using the Amazon SES
console.

To enable DKIM for an identity

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose the identity for which you want to enable DKIM.

4. Under the Authentication tab, in the DomainKeys Identified Mail (DKIM) container, choose
Edit.

5. In Advanced DKIM settings, check the Enabled box in the DKIM signatures field.

You can also enable DKIM for an identity by using the Amazon SES API. A common method of
interacting with the API is to use the AWS CLI.

To enable DKIM for an identity by using the AWS CLI

• At the command line, type the following command:

aws ses set-identity-dkim-enabled --identity example.com --dkim-enabled

In the preceding example, replace example.com with the identity that you want to enable
DKIM for. You can specify either an email address or a domain.

Overriding inherited DKIM signing on an email address identity

In this section you'll learn how to override (disable or enable) the inherited DKIM signing properties
from the parent domain on a specific email address identity that you've already verified with

Email authentication methods 245

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Amazon SES. You can only do this for email address identities that belong to domains you already
own because DNS settings are configured at the domain level.

Important

You can't disable/enable DKIM signing for email address identities...

• on domains that you don't own. For example, you can't toggle DKIM signing for a
gmail.com or hotmail.com address,

• on domains that you own, but have not yet been verified in Amazon SES,

• on domains that you own, but have not enabled DKIM signing on the domain.

This section contains the following topics:

• Understanding inherited DKIM signing properties

• Overriding DKIM signing on an email address identity (console)

• Overriding DKIM signing on an email address identity (AWS CLI)

Understanding inherited DKIM signing properties

It's important to first understand that an email address identity inherits its DKIM signing properties
from its parent domain if that domain was configured with DKIM, regardless of whether Easy DKIM
or BYODKIM was used. Therefore, disabling or enabling DKIM signing on the email address identity,
is in effect, overriding the domain's DKIM signing properties based on these key facts:

• If you already set up DKIM for the domain that an email address belongs to, you do not need to
enable DKIM signing for the email address identity as well.

• When you set up DKIM for a domain, Amazon SES automatically authenticates every email
from every address on that domain through the inherited DKIM properties from the parent
domain.

• DKIM settings for a specific email address identity automatically override the settings of the
parent domain or subdomain (if applicable) that the address belongs to.

Since the email address identity's DKIM signing properties are inherited from the parent domain,
if you're planning on overriding these properties, you must keep in mind the hierarchical rules of
overriding as explained in the table below.

Email authentication methods 246

Amazon Simple Email Service Developer Guide

Parent domain does not have DKIM signing
enabled

Parent domain has DKIM signing enabled

You can disable DKIM signing on the email
address identity.You cannot enable DKIM signing on the email

address identity. You can re-enable DKIM signing on the email
address identity.

It’s generally never recommended to disable your DKIM signing as it risks tarnishing your sender
reputation, and it increases the risk of having your sent mail go to junk or spam folders or having
your domain spoofed.

However, the capability exists to override the domain inherited DKIM signing properties on an
email address identity for any particular use case or outlying business decision that you might have
to either permanently or temporarily disable DKIM signing, or to re-enable it at a later time.

Overriding DKIM signing on an email address identity (console)

The following SES console procedure explains how to override (disable or enable) the inherited
DKIM signing properties from the parent domain on a specific email address identity that you've
already verified with Amazon SES.

To disable/enable DKIM signing for an email address identity using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose an identity where the Identity type is Email address and
belongs to one of your verified domains.

4. Under the Authentication tab, in the DomainKeys Identified Mail (DKIM) container, choose
Edit.

Email authentication methods 247

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

The Authentication tab is only present if the selected email address identity belongs
to a domain that has already been verified by SES. If you haven't verified your domain
yet, see Creating a domain identity.

5. Under Advanced DKIM settings, in the DKIM signatures field, clear the Enabled checkbox
to disable DKIM signing, or select it to re-enable DKIM signing (if it had been overridden
previously).

6. Choose Save changes.

Overriding DKIM signing on an email address identity (AWS CLI)

The following example uses the AWS CLI with a SES API command and parameters that will
override (disable or enable) the inherited DKIM signing properties from the parent domain on a
specific email address identity that you've already verified with SES.

To disable/enable DKIM signing for an email address identity using the AWS CLI

• Assuming you own the example.com domain, and you want to disable DKIM signing for one of
the domain's email addresses, at the command line, type the following command:

aws sesv2 put-email-identity-dkim-attributes --email-identity marketing@example.com
 --no-signing-enabled

a. Replace marketing@example.com with the email address identity that you want to
disable DKIM signing for.

b. --no-signing-enabled will disable DKIM signing. To re-enable DKIM signing, use --
signing-enabled.

Manual DKIM signing in Amazon SES

As an alternative to using Easy DKIM, you can instead manually add DKIM signatures to your
messages, and then send those messages using Amazon SES. If you choose to manually sign your
messages, you first have to create a DKIM signature. After you create the message and the DKIM
signature, you can use the SendRawEmail API to send it.

Email authentication methods 248

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendRawEmail.html

Amazon Simple Email Service Developer Guide

If you decide to manually sign your email, consider the following factors:

• Every message that you send by using Amazon SES contains a DKIM header that references a
signing domain of amazonses.com (that is, it contains the following string: d=amazonses.com).
Therefore, if you manually sign your messages, your messages will include two DKIM headers:
one for your domain, and the one that Amazon SES automatically creates for amazonses.com.

• Amazon SES doesn't validate DKIM signatures that you manually add to your messages. If there
are errors with the DKIM signature in a message, it might be rejected by email providers.

• When you sign your messages, you should use a bit length of at least 1024 bits.

• Don't sign the following fields: Message-ID, Date, Return-Path, Bounces-To.

Note

If you use an email client to send email using the Amazon SES SMTP interface, your client
might automatically perform DKIM signing of your messages. Some clients might sign
some of these fields. For information about which fields are signed by default, see the
documentation for your email client.

Authenticating Email with SPF in Amazon SES

Sender Policy Framework (SPF) is an email validation standard that's designed to prevent email
spoofing. Domain owners use SPF to tell email providers which servers are allowed to send email
from their domains. SPF is defined in RFC 7208.

Messages that you send through Amazon SES automatically use a subdomain of amazonses.com
as the default MAIL FROM domain. SPF authentication successfully validates these messages
because the default MAIL FROM domain matches the application that sent the email—in this case,
SES. Therefore, in SES, SPF is implicitly set up for you.

However, if you don't want to use the SES default MAIL FROM domain, and would rather use a
subdomain of a domain that you own, this is referred to in SES as using a custom MAIL FROM
domain. To do this, it requires you to publish your own SPF record for your custom MAIL FROM
domain. In addition, SES also requires you to set up an MX record so that your custom MAIL FROM
domain can receive the bounce and complaint notifications that email providers send you.

Learn how to set up SPF authentication

Email authentication methods 249

https://tools.ietf.org/html/rfc7208

Amazon Simple Email Service Developer Guide

Instructions are given for configuring your domain with SPF and how to publish the MX and SPF
(type TXT) records in the section called “Using a custom MAIL FROM domain”.

Using a custom MAIL FROM domain

When an email is sent, it has two addresses that indicate its source: a From address that's displayed
to the message recipient, and a MAIL FROM address that indicates where the message originated.
The MAIL FROM address is sometimes called the envelope sender, envelope from, bounce address, or
Return Path address. Mail servers use the MAIL FROM address to return bounce messages and other
error notifications. The MAIL FROM address is usually only viewable by recipients if they view the
source code for the message.

Amazon SES sets the MAIL FROM domain for the messages that you send to a default value unless
you specify your own (custom) domain. This section discusses the benefits of setting up a custom
MAIL FROM domain, and includes setup procedures.

Why use a custom MAIL FROM domain?

Messages that you send through Amazon SES automatically use a subdomain of amazonses.com
as the default MAIL FROM domain. Sender Policy Framework (SPF) authentication successfully
validates these messages because the default MAIL FROM domain matches the application that
sent the email—in this case, SES.

If you don't want to use the SES default MAIL FROM domain, and would rather use a subdomain of
a domain that you own, this is referred to in SES as using a custom MAIL FROM domain. To do this,
it requires you to publish your own SPF record for your custom MAIL FROM domain. In addition,
SES also requires you to set up an MX record so that your domain can receive the bounce and
complaint notifications that email providers send you.

By using a custom MAIL FROM domain, you have the flexibility to use SPF, DKIM, or both to achieve
Domain-based Message Authentication, Reporting and Conformance (DMARC) validation. DMARC
enables a sender's domain to indicate that emails sent from the domain are protected by one or
more authentication systems. There are two ways to achieve DMARC validation: the section called
“Complying with DMARC through SPF” and the section called “Complying with DMARC through
DKIM”.

Email authentication methods 250

Amazon Simple Email Service Developer Guide

Choosing a custom MAIL FROM domain

In the following, the term MAIL FROM domain always refers to a subdomain of a domain that you
own - this subdomain that you use for your custom MAIL FROM domain must not be used for
anything else and meets the following requirements:

• The MAIL FROM domain has to be a subdomain of the parent domain of a verified identity (email
address or domain).

• The MAIL FROM domain shouldn't be a subdomain that you also use to send email from.

• The MAIL FROM domain shouldn't be a subdomain that you use to receive email.

Using SPF with your custom MAIL FROM domain

Sender Policy Framework (SPF) is an email validation standard that's designed to prevent email
spoofing. You can configure your custom MAIL FROM domain with SPF to tell email providers
which servers are allowed to send email from your custom MAIL FROM domain. SPF is defined in
RFC 7208.

To set up SPF, you publish a TXT record to the DNS configuration for your custom MAIL FROM
domain. This record contains a list of the servers that you authorize to send email from using your
custom MAIL FROM domain. When an email provider receives a message from your custom MAIL
FROM domain, it checks the DNS records for that domain to make sure that the email was sent
from an authorized server.

If you want to use this SPF record as a way to comply with DMARC, the domain in the From address
must match the MAIL FROM domain. See the section called “Complying with DMARC through SPF”.

The next section, the section called “Configuring your custom MAIL FROM domain”, explains how
to set up SPF for your custom MAIL FROM domain.

Configuring your custom MAIL FROM domain

The process of setting up a custom MAIL FROM domain requires you to add records to the DNS
configuration for the domain. SES requires you to publish an MX record so that your domain can
receive the bounce and complaint notifications that email providers send you. You also have to
publish an SPF (type TXT) record in order to prove that Amazon SES is authorized to send email
from your domain.

You can set up a custom MAIL FROM domain for an entire domain or subdomain, as well as for
individual email addresses. The following procedures show how to use the Amazon SES console to

Email authentication methods 251

https://tools.ietf.org/html/rfc7208

Amazon Simple Email Service Developer Guide

configure a custom MAIL FROM domain. You can also configure a custom MAIL FROM domain using
the SetIdentityMailFromDomain API operation.

Setting up a custom MAIL FROM domain for a verified domain

These procedures show you how to configure a custom MAIL FROM domain for an entire domain or
subdomain so that all messages sent from addresses on that domain will use the this custom MAIL
FROM domain.

To configure a verified domain to use a specified custom MAIL FROM domain

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. In the left navigation panel, under Configuration, choose Identities.

3. In the list of identities, choose the identity you want to configure where the Identity type is
Domain and Status is Verified.

• If the Status is Unverified, complete the procedures at Verifying a DKIM domain identity
with your DNS provider to verify the email address's domain.

4. At the bottom of the screen in the in the Custom MAIL FROM domain pane, choose Edit .

5. In the General details pane, do the following:

a. Select the Use a custom MAIL FROM domain checkbox.

b. For MAIL FROM domain, enter the subdomain that you want to use as the MAIL FROM
domain.

c. For Behavior on MX failure, choose one of the following options:

• Use default MAIL FROM domain – If the custom MAIL FROM domain's MX record is not
set up correctly, Amazon SES uses a subdomain of amazonses.com. The subdomain
varies based on the AWS Region that you use Amazon SES in.

• Reject message – If the custom MAIL FROM domain's MX record is not set up correctly,
Amazon SES returns a MailFromDomainNotVerified error. Emails that you attempt
to send from this domain are automatically rejected.

d. Choose Save changes - you'll be returned to the previous screen.

6. Publish the MX and SPF (type TXT) records to the DNS server of the custom MAIL FROM
domain:

Email authentication methods 252

https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityMailFromDomain.html
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

In the Custom MAIL FROM domain pane, the Publish DNS records table now displays
the MX and SPF (type TXT) records in that you have to publish (add) to your domain's DNS
configuration. These records use the formats shown in the following table.

Name Type Value

subdomain .domain.com MX 10 feedback-
smtp.region.amazonse
s.com

subdomain .domain.com TXT "v=spf1 include:amazonses.
com ~all"

In the preceding records,

• subdomain.domain.com will be populated with your MAIL FROM subdomain

• region will be populated with the name of the AWS Region where you want to verify the
MAIL FROM domain (such as us-west-2, us-east-1, or eu-west-1, etc.)

• The number 10 listed along with the MX value is the preference order for the mail server and
will need to be entered into a separate value field as specified by your DNS provider's GUI

• The SPF's TXT record value has to include the quotation marks

From the Publish DNS records table, copy the MX and SPF (type TXT) records by choosing
the copy icon next to each value and paste them into the corresponding fields in your DNS
provider's GUI. Alternatively, you can choose Download .csv record set to save a copy of the
records to your computer.

Important

To successfully set up a custom MAIL FROM domain with Amazon SES, you must
publish exactly one MX record to the DNS server of your MAIL FROM domain. If the
MAIL FROM domain has multiple MX records, the custom MAIL FROM setup with
Amazon SES will fail.

Email authentication methods 253

Amazon Simple Email Service Developer Guide

If Route 53 provides the DNS service for your MAIL FROM domain, and you're signed in to the
AWS Management Console under the same account that you use for Route 53, then choose
Publish Records Using Route 53. The DNS records are automatically applied to your domain's
DNS configuration.

If you use a different DNS provider, you have to publish the DNS records to the MAIL FROM
domain's DNS server manually. The procedure for adding DNS records to your domain's DNS
server varies based on your web hosting service or DNS provider.

The procedures for publishing DNS records for your domain depend on which DNS provider
you use. The following table includes links to the documentation for a few widely used DNS
providers. This list isn't exhaustive and doesn't signify endorsement; likewise, if your DNS
provider isn't listed, it doesn't imply they don't support MAIL FROM domain configuration.

DNS/Hosting provider name Documentation link

GoDaddy • MX: Add an MX record (external link)

• TXT: Add a TXT record (external link)

DreamHost • MX: How do I change my MX records?
(external link)

• TXT: How do I add custom DNS records?
(external link)

Cloudflare • MX: How do I add or edit mail or MX
records? (external link)

• TXT: Managing DNS records in Cloudflare
(external link)

HostGator • MX: Set up MX Records (external link)

• TXT: Manage DNS Records with HostGator
/eNom (external link)

Email authentication methods 254

https://www.godaddy.com/help/add-an-mx-record-19234
https://www.godaddy.com/help/add-a-txt-record-19232
https://help.dreamhost.com/hc/en-us/articles/215035328
https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-
https://support.cloudflare.com/hc/en-us/articles/218069617-How-do-I-add-or-edit-mail-or-MX-records-
https://support.cloudflare.com/hc/en-us/articles/218069617-How-do-I-add-or-edit-mail-or-MX-records-
https://support.cloudflare.com/hc/en-us/articles/360019093151
https://www.hostgator.com/help/article/mail-exchange-record-what-to-put-for-your-mx-record
https://www.hostgator.com/help/article/manage-dns-records-with-hostgatorenom
https://www.hostgator.com/help/article/manage-dns-records-with-hostgatorenom

Amazon Simple Email Service Developer Guide

DNS/Hosting provider name Documentation link

Namecheap • MX: How can I set up MX records required
for mail service? (external link)

• TXT: How do I add TXT/SPF/DKIM/DMARC
records for my domain? (external link)

Names.co.uk • MX: Changing your domain's DNS settings
(external link)

• TXT: Changing your domains DNS
Settings (external link)

Wix • MX: Adding or Updating MX Records in
Your Wix Account (external link)

• TXT: Adding or Updating TXT Records in
Your Wix Account (external link)

When Amazon SES detects that the records are in place, you receive an email informing
you that your custom MAIL FROM domain was set up successfully. Depending on your DNS
provider, there might be a delay of up to 72 hours before Amazon SES detects the MX record.

Setting up a custom MAIL FROM domain for a verified email address

You can also set up a custom MAIL FROM domain for a specific email address. In order to set up a
custom MAIL FROM domain for an email address, you must modify the DNS records for the domain
that the email address is associated with.

Note

You can't set up a custom MAIL FROM domain for addresses on a domain that you don't
own (for example, you can't create a custom MAIL FROM domain for an address on the
gmail.com domain, because you can't add the necessary DNS records to the domain).

To configure a verified email address to use a specified MAIL FROM domain

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

Email authentication methods 255

https://www.namecheap.com/support/knowledgebase/article.aspx/322/2237/how-can-i-set-up-mx-records-required-for-mail-service
https://www.namecheap.com/support/knowledgebase/article.aspx/322/2237/how-can-i-set-up-mx-records-required-for-mail-service
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.names.co.uk/support/domains/1156-changing_your_domains_dns_settings.html
https://www.names.co.uk/support/1156-changing_your_domains_dns_settings.html
https://www.names.co.uk/support/1156-changing_your_domains_dns_settings.html
https://support.wix.com/en/article/adding-or-updating-mx-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-mx-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-txt-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-txt-records-in-your-wix-account
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

2. In the left navigation panel, under Configuration, choose Identities.

3. In the list of identities, choose the identity you want to configure where the Identity type is
Email address and Status is Verified.

• If the Status is Unverified, complete the procedures at Verifying an email address identity
to verify the email address's domain.

4. Under the MAIL FROM Domain tab, choose Edit in the Custom MAIL FROM domain pane.

5. In the General details pane, do the following:

a. Select the Use a custom MAIL FROM domain checkbox.

b. For MAIL FROM domain, enter the subdomain that you want to use as the MAIL FROM
domain.

c. For Behavior on MX failure, choose one of the following options:

• Use default MAIL FROM domain – If the custom MAIL FROM domain's MX record is not
set up correctly, Amazon SES uses a subdomain of amazonses.com. The subdomain
varies based on the AWS Region that you use Amazon SES in.

• Reject message – If the custom MAIL FROM domain's MX record is not set up correctly,
Amazon SES returns a MailFromDomainNotVerified error. Emails that you attempt
to send from this email address are automatically rejected.

d. Choose Save changes - you'll be returned to the previous screen.

6. Publish the MX and SPF (type TXT) records to the DNS server of the custom MAIL FROM
domain:

In the Custom MAIL FROM domain pane, the Publish DNS records table now displays
the MX and SPF (type TXT) records in that you have to publish (add) to your domain's DNS
configuration. These records use the formats shown in the following table.

Name Type Value

subdomain .domain.com MX 10 feedback-
smtp.region.amazonse
s.com

subdomain .domain.com TXT "v=spf1 include:amazonses.
com ~all"

Email authentication methods 256

Amazon Simple Email Service Developer Guide

In the preceding records,

• subdomain.domain.com will be populated with your MAIL FROM subdomain

• region will be populated with the name of the AWS Region where you want to verify the
MAIL FROM domain (such as us-west-2, us-east-1, or eu-west-1, etc.)

• The number 10 listed along with the MX value is the preference order for the mail server and
will need to be entered into a separate value field as specified by your DNS provider's GUI

• The SPF's TXT record value has to include the quotation marks

From the Publish DNS records table, copy the MX and SPF (type TXT) records by choosing
the copy icon next to each value and paste them into the corresponding fields in your DNS
provider's GUI. Alternatively, you can choose Download .csv record set to save a copy of the
records to your computer.

Important

To successfully set up a custom MAIL FROM domain with Amazon SES, you must
publish exactly one MX record to the DNS server of your MAIL FROM domain. If the
MAIL FROM domain has multiple MX records, the custom MAIL FROM setup with
Amazon SES will fail.

If Route 53 provides the DNS service for your MAIL FROM domain, and you're signed in to the
AWS Management Console under the same account that you use for Route 53, then choose
Publish Records Using Route 53. The DNS records are automatically applied to your domain's
DNS configuration.

If you use a different DNS provider, you have to publish the DNS records to the MAIL FROM
domain's DNS server manually. The procedure for adding DNS records to your domain's DNS
server varies based on your web hosting service or DNS provider.

The procedures for publishing DNS records for your domain depend on which DNS provider
you use. The following table includes links to the documentation for a few widely used DNS
providers. This list isn't exhaustive and doesn't signify endorsement; likewise, if your DNS
provider isn't listed, it doesn't imply they don't support MAIL FROM domain configuration.

Email authentication methods 257

Amazon Simple Email Service Developer Guide

DNS/Hosting provider name Documentation link

GoDaddy • MX: Add an MX record (external link)

• TXT: Add a TXT record (external link)

DreamHost • MX: How do I change my MX records?
(external link)

• TXT: How do I add custom DNS records?
(external link)

Cloudflare • MX: How do I add or edit mail or MX
records? (external link)

• TXT: Managing DNS records in Cloudflare
(external link)

HostGator • MX: Changing MX records - Windows
(external link)

• TXT: Manage DNS Records with HostGator
/eNom (external link)

Namecheap • MX: How can I set up MX records required
for mail service? (external link)

• TXT: How do I add TXT/SPF/DKIM/DMARC
records for my domain? (external link)

Names.co.uk • MX: Changing your domain's DNS settings
(external link)

• TXT: Changing your domains DNS
Settings (external link)

Wix • MX: Adding or Updating MX Records in
Your Wix Account (external link)

• TXT: Adding or Updating TXT Records in
Your Wix Account (external link)

Email authentication methods 258

https://www.godaddy.com/help/add-an-mx-record-19234
https://www.godaddy.com/help/add-a-txt-record-19232
https://help.dreamhost.com/hc/en-us/articles/215035328
https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-
https://support.cloudflare.com/hc/en-us/articles/218069617-How-do-I-add-or-edit-mail-or-MX-records-
https://support.cloudflare.com/hc/en-us/articles/218069617-How-do-I-add-or-edit-mail-or-MX-records-
https://support.cloudflare.com/hc/en-us/articles/360019093151
https://www.hostgator.com/help/article/changing-mx-records-windows
https://www.hostgator.com/help/article/manage-dns-records-with-hostgatorenom
https://www.hostgator.com/help/article/manage-dns-records-with-hostgatorenom
https://www.namecheap.com/support/knowledgebase/article.aspx/322/2237/how-can-i-set-up-mx-records-required-for-mail-service
https://www.namecheap.com/support/knowledgebase/article.aspx/322/2237/how-can-i-set-up-mx-records-required-for-mail-service
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.namecheap.com/support/knowledgebase/article.aspx/317/2237/how-do-i-add-txtspfdkimdmarc-records-for-my-domain
https://www.names.co.uk/support/domains/1156-changing_your_domains_dns_settings.html
https://www.names.co.uk/support/1156-changing_your_domains_dns_settings.html
https://www.names.co.uk/support/1156-changing_your_domains_dns_settings.html
https://support.wix.com/en/article/adding-or-updating-mx-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-mx-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-txt-records-in-your-wix-account
https://support.wix.com/en/article/adding-or-updating-txt-records-in-your-wix-account

Amazon Simple Email Service Developer Guide

When Amazon SES detects that the records are in place, you receive an email informing
you that your custom MAIL FROM domain was set up successfully. Depending on your DNS
provider, there might be a delay of up to 72 hours before Amazon SES detects the MX record.

Custom MAIL FROM domain setup states with Amazon SES

After you configure an identity to use a custom MAIL FROM domain, the state of the setup is
"pending" while Amazon SES attempts to detect the required MX record in your DNS settings. The
state then changes depending on whether Amazon SES detects the MX record. The following table
describes the email-sending behavior, and the Amazon SES actions associated with each state. Each
time the state changes, Amazon SES sends a notification to the email address associated with your
AWS account.

State Email sending behavior Amazon SES
actions

Pending Uses custom MAIL FROM fallback setting Amazon SES
attempts to
detect the
required MX
record for
72 hours. If
unsuccessful, the
state changes to
"Failed".

Success Uses custom MAIL FROM domain Amazon SES
continuously
checks that
the required
MX record is in
place.

Temporary
Failure

Uses custom MAIL FROM fallback setting Amazon SES
attempts to
detect the

Email authentication methods 259

Amazon Simple Email Service Developer Guide

State Email sending behavior Amazon SES
actions

required MX
record for
72 hours. If
unsuccessful, the
state changes
to "Failed"; if
successful, the
state changes to
"Success".

Failed Uses custom MAIL FROM fallback setting Amazon SES no
longer attempts
to detect the
required MX
record. To use
a custom MAIL
FROM domain,
you have to
restart the
setup process in
Configuring your
custom MAIL
FROM domain.

Complying with DMARC authentication protocol in Amazon SES

Domain-based Message Authentication, Reporting and Conformance (DMARC) is an email
authentication protocol that uses Sender Policy Framework (SPF) and DomainKeys Identified Mail
(DKIM) to detect email spoofing and phishing. In order to comply with DMARC, messages must be
authenticated through either SPF or DKIM, but ideally, when both are used with DMARC, you'll be
ensuring the highest level of protection possible for your email sending.

Let's briefly review which each does and how DMARC ties them all together:

Email authentication methods 260

Amazon Simple Email Service Developer Guide

• SPF – Identifies which mail servers are allowed to send mail on behalf of your custom MAIL
FROM domain through a DNS TXT record that is used by DNS. Recipient mail systems refer to
the SPF TXT record to determine whether a message from your custom domain comes from an
authorized messaging server. Basically, SPF is designed to help prevent spoofing, but there are
spoofing techniques that SPF is susceptible to in practice and this is why you need to also use
DKIM along with DMARC.

• DKIM – Adds a digital signature to your outbound messages in the email header. Receiving
email systems can use this digital signature to help verify whether incoming email is signed by
a key owned by the domain. However, when a receiving email system forwards a message, the
message's envelope is changed in a way that invalidates SPF authentication. Since the digital
signature stays with the email message because it's part of the email header, DKIM works even
when a message has been forwarded between mail servers (as long as the message content has
not been modified).

• DMARC – Ensures that there is domain alignment with at least one of SPF and DKIM. Using SPF
and DKIM alone does nothing to insure that the From address is authenticated (this is the email
address your recipient sees in their email client). SPF only checks the domain specified in the
MAIL FROM address (not seen by your recipient). DKIM only checks the domain specified in the
DKIM signature (also, not seen by your recipient). DMARC addresses these two issues by requiring
domain alignment to be correct on either SPF or DKIM:

• For SPF to pass DMARC alignment the domain in the From address must match the domain
in the MAIL FROM address (also referred to as Return-Path and Envelope-from address). This
is rarely possible with forwarded mail because it gets stripped away or when sending mail
through third-party bulk email providers because the Return-Path (MAIL FROM) is used for
bounces and complaints that the provider (SES) tracks using an address they own.

• For DKIM to pass DMARC alignment, the domain specified in the DKIM signature must match
the domain in the From address. If you use third-party senders or services that send mail on
your behalf, this can be accomplished by ensuring the third-party sender is properly configured
for DKIM signing and you have added the appropriate DNS records within your domain.
Receiving mail servers will then be able to verify email sent to them by your third-party as if it
was email sent by someone authorized to use an address within the domain.

Putting it all together with DMARC

The DMARC alignment checks we discussed above show how SPF, DKIM, and DMARC all work
together to increase trust of your domain and delivery of your email to inboxes. DMARC

Email authentication methods 261

Amazon Simple Email Service Developer Guide

accomplishes this by ensuring that the From address, seen by the recipient, is authenticated by
either SPF or DKIM:

• A message passes DMARC if one or both of the described SPF or DKIM checks pass.

• A message fails DMARC if both of the described SPF or DKIM checks fail.

Therefore, both SPF and DKIM are necessary for DMARC to have the best chance at achieving
authentication for your sent email, and by utilizing all three, you'll help to ensure you have a fully
protected sending domain.

DMARC also allows you to instruct email servers how to handle emails when they fail DMARC
authentication through policies that you set. This will be explained in the following section, the
section called “Setting up the DMARC policy on your domain”, that contains information on how
to configure your SES domains so that the emails you send comply with the DMARC authentication
protocol through both SPF and DKIM.

Setting up the DMARC policy on your domain

To set up DMARC, you have to modify the DNS settings for your domain. The DNS settings for your
domain should include a TXT record that specifies the domain's DMARC settings. The procedures
for adding TXT records to your DNS configuration depend on which DNS or hosting provider you
use. If you use Route 53, see Working with Records in the Amazon Route 53 Developer Guide. If you
use another provider, see the DNS configuration documentation for your provider.

The name of the TXT record you create should be _dmarc.example.com, where example.com is
your domain. The value of the TXT record contains the DMARC policy that applies to your domain.
The following is an example of a TXT record that contains a DMARC policy:

Name Type Value

_dmarc.example.com TXT "v=DMARC1;p=quaran
tine;rua=mailto:my
_dmarc_report@exam
ple.com"

In the preceding DMARC policy example, this policy tells email providers to do the following:

Email authentication methods 262

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html

Amazon Simple Email Service Developer Guide

• For any messages that fail authentication, send them to the Spam folder as specified by the
policy parameter, p=quarantine. Other options include doing nothing by using p=none, or
reject the message outright by using p=reject.

• The next section discusses how and when to use these three policy settings—using the
wrong one at the wrong time can cause your email to not be delivered, see the section called
“Implementing DMARC”.

• Send reports about all emails that failed authentication in a digest (that is, a
report that aggregates the data for a certain time period, rather than sending
individual reports for each event) as specified by the reporting parameter,
rua=mailto:my_dmarc_report@example.com (rua stands for Reporting URI for Aggregate
reports). Email providers typically send these aggregated reports once per day, although these
policies differ from provider to provider.

To learn more about configuring DMARC for your domain, see the Overview on the DMARC website.

For complete specifications of the DMARC system, see Internet Engineering Task Force (IETF)
DMARC Draft.

Best practices for implementing DMARC

It's best to implement your DMARC policy enforcement in a gradual and phased approach so that
it doesn't interrupt the rest of your mail flow. Create and implement a roll-out plan that follows
these steps. Do each of these steps first with each of your sub-domains, and finally with the top-
level domain in your organization before moving on to the next step.

1. Monitor the impact of implementing DMARC (p=none).

• Start with a simple monitoring-mode record for a sub-domain or domain that requests that
mail receiving organizations send you statistics about messages that they see using that
domain. A monitoring-mode record is a DMARC TXT record that has its policy set to none
p=none.

• Reports generated through DMARC will give the numbers and sources of messages that pass
these checks, versus those that don't. You can easily see how much of your legitimate traffic is
or isn't covered by them. You'll see signs of forwarding, since forwarded messages will fail SPF
and DKIM if the content is modified. You'll also begin to see how many fraudulent messages
are being sent, and where they're sent from.

Email authentication methods 263

https://dmarc.org/overview/
https://datatracker.ietf.org/doc/draft-ietf-dmarc-dmarcbis/
https://datatracker.ietf.org/doc/draft-ietf-dmarc-dmarcbis/

Amazon Simple Email Service Developer Guide

• The goals of this step are to learn what emails will be impacted when you implement one of
the next two steps, and to have any third-party or authorized senders get their SPF or DKIM
policies into alignment.

• Best for existing domains.

2. Request that external mail systems quarantine mail that fails DMARC (p=quarantine).

• When you believe that all or most of your legitimate traffic is sending domain-aligned
with either SPF or DKIM, and you understand the impact of implementing DMARC, you
can implement a quarantine policy. A quarantine policy is a DMARC TXT record that has its
policy set to quarantine p=quarantine. By doing this, you're asking DMARC receivers to
put messages from your domain that fail DMARC into the local equivalent of a spam folder
instead of your customers' inboxes.

• Best for transitioning domains that have analyzed DMARC reports during Step 1.

3. Request that external mail systems not accept messages that fail DMARC (p=reject).

• Implementing a reject policy is usually the final step. A reject policy is a DMARC TXT
record that has its policy set to reject p=reject. When you do this, you're asking DMARC
receivers not to accept messages that fail the DMARC checks—this means they won't even be
quarantined to a spam or junk folder, but will be rejected outright.

• When using a reject policy, you'll know exactly which messages are failing the DMARC policy
as the rejection will result in a SMTP bounce. With quarantine, the aggregate data provides
information about the percentages of email passing or failing SPF, DKIM, and DMARC checks.

• Best for new domains or existing domains that have gone through the prior two steps.

Complying with DMARC through SPF

For an email to comply with DMARC based on SPF, both of the following conditions must be met:

• The message must pass an SPF check based on having a valid SPF (type TXT) record that you've
to published to your custom MAIL FROM domain's DNS configuration.

• The domain in the From address of the email header must align (match) with the domain, or a
subdomain of, that's specified in the MAIL FROM address. In order to achieve SPF alignment with
SES, the domain's DMARC policy must not specify a strict SPF policy (aspf=s).

To comply with these requirements, complete the following steps:

Email authentication methods 264

Amazon Simple Email Service Developer Guide

• Set up a custom MAIL FROM domain by completing the procedures in the section called “Using a
custom MAIL FROM domain”.

• Ensure that your sending domain uses a relaxed policy for SPF. If you haven't changed your
domain's policy alignment, it uses a relaxed policy by default as does SES.

Note

You can determine your domain's DMARC alignment for SPF by typing the following
command at the command line, replacing example.com with your domain:

dig -type=TXT _dmarc.example.com

In the output of this command, under Non-authoritative answer, look for a record that
begins with v=DMARC1. If this record includes the string aspf=r, or if the aspf string
is not present at all, then your domain uses relaxed alignment for SPF. If the record
includes the string aspf=s, then your domain uses strict alignment for SPF. Your system
administrator will need to remove this tag from the DMARC TXT record in your domain's
DNS configuration.
Alternatively, you can use a web-based DMARC lookup tool, such as the DMARC Inspector
from the dmarcian website or the DMARC Check Tool tool from the MxToolBox website,
to determine your domain's policy alignment for SPF.

Complying with DMARC through DKIM

For an email to comply with DMARC based on DKIM, both of the following conditions must be met:

• The message must have a valid DKIM signature and passes the DKIM check.

• The domain specified in the DKIM signature must align (match) with the domain in the From
address. If the domain's DMARC policy specifies strict alignment for DKIM, these domains must
match exactly (SES uses a strict DKIM policy by default).

To comply with these requirements, complete the following steps:

• Set up Easy DKIM by completing the procedures in the section called “Easy DKIM”. When you use
Easy DKIM, Amazon SES automatically signs your emails.

Email authentication methods 265

https://dmarcian.com/dmarc-inspector/
https://mxtoolbox.com/dmarc.aspx

Amazon Simple Email Service Developer Guide

Note

Rather than use Easy DKIM, you can also manually sign your messages. However,
use caution if you choose to do so, because Amazon SES does not validate the DKIM
signature that you construct. For this reason, we highly recommend using Easy DKIM.

• Ensure the domain specified in the DKIM signature is aligned to the domain in the From address.
Or, if sending from a subdomain of the domain in the From address, ensure that your DMARC
policy is set to relaxed alignment.

Note

You can determine your domain's DMARC alignment for DKIM by typing the following
command at the command line, replacing example.com with your domain:

dig -type=TXT _dmarc.example.com

In the output of this command, under Non-authoritative answer, look for a record that
begins with v=DMARC1. If this record includes the string adkim=r, or if the adkim string
is not present at all, then your domain uses relaxed alignment for DKIM. If the record
includes the string adkim=s, then your domain uses strict alignment for DKIM. Your
system administrator will need to remove this tag from the DMARC TXT record in your
domain's DNS configuration.
Alternatively, you can use a web-based DMARC lookup tool, such as the DMARC Inspector
from the dmarcian website or the DMARC Check Tool tool from the MxToolBox website,
to determine your domain's policy alignment for DKIM.

Using BIMI in Amazon SES

Brand Indicators for Message Identification (BIMI) is an email specification that enables email
inboxes to display a brand’s logo next to the brand’s authenticated email messages within
supporting email clients.

BIMI is an email specification that's directly connected to authentication, but it’s not a standalone
email authentication protocol as it requires all your email to comply with DMARC authentication.

Email authentication methods 266

https://dmarcian.com/dmarc-inspector/
https://mxtoolbox.com/dmarc.aspx

Amazon Simple Email Service Developer Guide

While BIMI requires DMARC, DMARC requires your domain to have either SPF or DKIM records to
align, but it’s best to include both SPF and DKIM records for additional security, and because some
email service providers (ESPs) require both when using BIMI. The following section goes over the
steps to implement BIMI in Amazon SES.

Setting up BIMI in SES

You can configure BIMI for an email domain that you own—in SES that's referred to as a custom
MAIL FROM domain. Once configured, all of the messages that you send from that domain will
display your BIMI logo in email clients that support BIMI.

Enabling your emails to display a BIMI logo requires some prerequisites to be in place within SES
—in the following procedure, these prerequisites are generalized and will reference dedicated
sections that cover these topics in detail. The steps specific to BIMI and what is necessary to
configure it in SES will be detailed here.

To set up BIMI on a custom MAIL FROM domain

1. You must have a custom MAIL FROM domain configured in SES with both SPF (type TXT) and
MX records published for that domain. If you don't have a custom MAIL FROM domain, or
would like to create a new one for your BIMI logo, see the section called “Using a custom MAIL
FROM domain”.

2. Configure your domain with Easy DKIM. See the section called “Easy DKIM”.

3. Configure your domain with DMARC by publishing a TXT record with your DNS provider with
the following enforcement policy specifics required for BIMI:

Name Type Value

v=DMARC1;p=quarantine;pct=1
00;rua=mailto:dmarcreports@
example.com_dmarc.example.com TXT

v=DMARC1;p=reject;rua=mailt
o:dmarcreports@example.com

In the preceding DMARC policy example as required for BIMI:

• example.com should be replaced with your domain or subdomain name.

Email authentication methods 267

https://bimigroup.org/bimi-infographic/

Amazon Simple Email Service Developer Guide

• The p= value can be either:

• quarantine with a pct value set to 100 as shown, or

• reject as shown.

• If you're sending from a subdomain, BIMI requires that the parent domain must also have
this enforcement policy. Subdomains will fall under the parent domain’s policy. However,
if you add a DMARC record for your subdomain in addition to what is posted for the parent
domain, your subdomain must also have the same enforcement policy to be eligible for BIMI.

• If you've never set up a DMARC policy for your domain, see the section called
“Authenticating Email with DMARC” ensuring that you only use the DMARC policy values
specific to BIMI as shown.

4. Produce your BIMI logo as a Scalable Vector Graphics (SVG) .svg file—the specific SVG
profile required by BIMI is defined as SVG Portable/Secure (SVG P/S). In order for your logo to
display in the email client it must conform exactly to these specifications. See the BIMI Group's
guidance on creating SVG logo files and recommended SVG conversion tools.

5. (Optional) Obtain a Verified Mark Certificate (VMC). Some ESPs, such as Gmail and Apple,
require a VMC to provide evidence that you own the trademark and content of your BIMI logo.
Although this isn't a requirement for implementing BIMI on your domain, your BIMI logo will
not display in the email client if the ESP you send mail to enforces VMC compliance. See the
BIMI Group's references to participating certificate authorities to obtain a VMC for your logo.

6. Host your BIMI logo's SVG file on a server you have access to making it publicly accessible
through HTTPS. For example, you could upload it to an Amazon S3 bucket.

7. Create and publish a BIMI DNS record that includes a URL to your logo. When an ESP that
supports BIMI checks your DMARC record, it will also look for a BIMI record containing the URL
for your logo's .svg file, and if configured, the URL for your VMC's .pem file. If the records
match, they'll display your BIMI logo.

Configure your domain with BIMI by publishing a TXT record with your DNS provider with
the following values as shown—sending from a domain is represented in the first example;
sending from a subdomain is represented in the second example:

Name Type Value

default._bimi.exam
ple.com TXT

v=BIMI1;l=https://myhosting
server.com/images/logo.svg;
a=https://myhostingserver.c

Email authentication methods 268

https://bimigroup.org/
https://bimigroup.org/creating-bimi-svg-logo-files/
https://bimigroup.org/svg-conversion-tools-released/
https://bimigroup.org/verified-mark-certificates-vmc-and-bimi/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html
https://bimigroup.org/bimi-infographic/
https://bimigroup.org/bimi-infographic/

Amazon Simple Email Service Developer Guide

Name Type Value

default._bimi.mark
eting.example.com

om/certificate/vmc_2023‑01‑
01.pem

In the preceding BIMI record examples:

• The name value should literally specify default._bimi. as a subdomain of example.com
or marketing.example.com which should be replaced with your domain or subdomain
name.

• The v= value is the version of the BIMI record.

• The l= value is the logo representing the URL pointing to your image's .svg file.

• The a= value is the authority representing the URL pointing to your certificate's .pem file.

You can validate your BIMI record with a tool like the BIMI Group's BIMI Inspector.

The final step in this process is to have a regular sending pattern to the ESPs that support BIMI
logo placement. Your domain should have a regular delivery cadence and should have a good
reputation with the ESPs that you're sending to. BIMI logo placement may take time to populate to
ESPs where you don’t have an established reputation or sending cadence.

You can find more information and resources pertaining to BIMI through the BIMI Group
organization.

Setting up event notifications for Amazon SES

In order to send email using Amazon SES, you must have a system in place for managing bounces
and complaints. Amazon SES can notify you of bounce or complaint events in three ways:
by sending a notification email, by notifying an Amazon SNS topic, or by publishing sending
events. This section contains information about setting up Amazon SES to send certain kinds of
notifications by email or by notifying an Amazon SNS topic. For more information about publishing
sending events, see Monitor email sending using Amazon SES event publishing.

You can set up notifications using the Amazon SES console or the Amazon SES API.

Topics

Setting up event notifications 269

https://bimigroup.org/bimi-generator/
https://bimigroup.org/

Amazon Simple Email Service Developer Guide

• Important considerations

• Receiving Amazon SES notifications through email

• Receiving Amazon SES notifications using Amazon SNS

Important considerations

There are several important points to consider when you set up Amazon SES to send notifications:

• Email and Amazon SNS notifications apply to individual identities (the verified email addresses
or domains you use to send email). When you enable notifications for an identity, Amazon SES
only sends notifications for emails sent from that identity, and only in the AWS Region you
configured notifications in.

• You have to enable one method of receiving bounce or complaint notifications. You can send
notifications to the domain or email address that generated the bounce or complaint, or to
an Amazon SNS topic. You can also use event publishing to send notifications about several
different types of events (including bounces, complaints, deliveries, and more) to an Amazon SNS
topic or an Firehose stream.

If you don't set up one of these methods of receiving bounce or complaint notifications, Amazon
SES automatically forwards bounce and complaint notifications to the Return-Path address (or
the Source address, if you didn't specify a Return-Path address) in the email that resulted in the
bounce or complaint event, even if you disabled email feedback forwarding.

If you disable email feedback forwarding and enable event publishing, you must apply the
configuration set that contains the event publishing rule to all emails you send. In this situation,
if you don't use the configuration set, Amazon SES automatically forwards bounce and complaint
notifications to the Return-Path or Source address in the email that resulted in the bounce or
complaint event.

• If you set up Amazon SES to send bounce and complaint events using more than one method
(such as by sending email notifications and by using sending events), you may receive more than
one notification for the same event.

Receiving Amazon SES notifications through email

Amazon SES can send you email when you receive bounces and complaints by using a process
called email feedback forwarding.

Setting up event notifications 270

Amazon Simple Email Service Developer Guide

In order to send email using Amazon SES, you must configure it to send bounce and complaint
notifications by using one of the following methods:

• By enabling email feedback forwarding. The procedure for setting up this type of notification is
included in this section.

• By sending notifications to an Amazon SNS topic. For more information, see Receiving Amazon
SES notifications using Amazon SNS.

• By publishing event notifications. For more information, see Monitor email sending using
Amazon SES event publishing.

Important

For several important points about notifications, see Setting up event notifications for
Amazon SES.

Topics

• Enabling email feedback forwarding

• Disabling email feedback forwarding

• Email feedback forwarding destination

Enabling email feedback forwarding

Email feedback forwarding is enabled by default. If you previously disabled it, you can enable it by
following the procedures in this section.

To enable bounce and complaint forwarding through email using the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of verified email addresses or domains, choose the email address or domain that you
want to configure bounce and complaint notifications for.

4. In the details pane, expand the Notifications section.

5. Choose Edit Configuration.

Setting up event notifications 271

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

6. Under Email Feedback Forwarding, choose Enabled.

Note

Changes you make on this page may take a few minutes to take effect.

You can also enable bounce and complaint notifications through email by using the
SetIdentityFeedbackForwardingEnabled API operation.

Disabling email feedback forwarding

If you set up a different method of providing bounce and complaint notifications, you can disable
email feedback forwarding so that you don't receive multiple notifications when a bounce or
complaint event occurs.

To disable bounce and complaint forwarding through email using the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of verified email addresses or domains, choose the email address or domain that you
want to configure bounce and complaint notifications for.

4. In the details pane, expand the Notifications section.

5. Choose Edit Configuration.

6. Under Email Feedback Forwarding, choose Disabled.

Note

You must configure one method of receiving bounce and complaint notifications in
order to send email through Amazon SES. If you disable email feedback forwarding,
you must enable notifications sent by Amazon SNS, or publish bounce and complaint
events to an Amazon SNS topic or a Firehose stream by using event publishing. If
you use event publishing, you must also apply the configuration set that contains the
event publishing rule to each email you send. If you don't set up a method of receiving
bounce and complaint notifications, Amazon SES automatically forwards feedback
notifications by email to the address in the Return-Path field (or the Source field, if
you didn't specify a Return-Path address) of the message that resulted in the bounce

Setting up event notifications 272

https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityFeedbackForwardingEnabled.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityFeedbackForwardingEnabled.html
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

or complaint event. In this situation, Amazon SES forwards bounce and complaint
notifications even if you disabled email feedback notifications.

7. To save your notification configuration, choose Save Config.

Note

Changes you make on this page might take a few minutes to take effect.

You can also disable bounce and complaint notifications through email by using the
SetIdentityFeedbackForwardingEnabled API operation.

Email feedback forwarding destination

When you receive notifications by email, Amazon SES rewrites the From header and sends the
notification to you. The address to which Amazon SES forwards the notification depends on how
you sent the original message.

If you used the SMTP interface to send the message, then the notifications are delivered according
to the following rules:.

• If you specified a Return-Path header in the SMTP DATA section, then notifications go to that
address.

• Otherwise, notifications go to the address you specified when you issued the MAIL FROM
command.

If you used the SendEmail API operation to send the message, then the notifications are delivered
according to the following rules:

• If you specified the optional ReturnPath parameter in your call to the SendEmail API, then
notifications go to that address.

• Otherwise, notifications go to the address specified in the required Source parameter of
SendEmail.

If you used the SendRawEmail API operation to send the message, then the notifications are
delivered according to the following rules:

Setting up event notifications 273

https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityFeedbackForwardingEnabled.html

Amazon Simple Email Service Developer Guide

• If you specified a Return-Path header in the raw message, then notifications go to that
address.

• Otherwise, if you specified a Source parameter in your call to the SendRawEmail API, then
notifications go to that address.

• Otherwise, notifications go to the address in the From header of the raw message.

Note

When you specify a Return-Path address in an email, you receive notifications
at that address. However, the version of the message that the recipient receives
contains a Return-Path header that includes an anonymized email address (such as
a0b1c2d3e4f5a6b7-c8d9e0f1-a2b3-c4d5-e6f7-a8b9c0d1e2f3-000000@amazonses.com).
This anonymization happens regardless of how you sent the email.

Receiving Amazon SES notifications using Amazon SNS

You can configure Amazon SES to notify an Amazon SNS topic when you receive bounces or
complaints, or when emails are delivered. Amazon SNS notifications are in JavaScript Object
Notation (JSON) format, which enables you to process them programmatically.

In order to send email using Amazon SES, you must configure it to send bounce and complaint
notifications by using one of the following methods:

• By sending notifications to an Amazon SNS topic. The procedure for setting up this type of
notification is included in this section.

• By enabling email feedback forwarding. For more information, see Receiving Amazon SES
notifications through email.

• By publishing event notifications. For more information, see Monitor email sending using
Amazon SES event publishing.

Important

See Setting up event notifications for Amazon SES for important information about
notifications.

Setting up event notifications 274

http://www.json.org
http://www.json.org

Amazon Simple Email Service Developer Guide

Topics

• Configuring Amazon SNS notifications for Amazon SES

• Amazon SNS notification contents for Amazon SES

• Amazon SNS notification examples for Amazon SES

Configuring Amazon SNS notifications for Amazon SES

Amazon SES can notify you of your bounces, complaints, and deliveries through Amazon Simple
Notification Service (Amazon SNS).

You can configure notifications in the Amazon SES console, or by using the Amazon SES API.

Topics in this section:

• Prerequisites

• Configuring notifications using the Amazon SES console

• Configuring notifications using the Amazon SES API

• Troubleshooting feedback notifications

Prerequisites

Complete the following steps before you set up Amazon SNS notifications in Amazon SES:

1. Create a topic in Amazon SNS. For more information, see Create a Topic in the Amazon Simple
Notification Service Developer Guide.

Important

When you create your topic using Amazon SNS, for Type, only choose Standard. (SES
does not support FIFO type topics.)

Whether you create a new SNS topic or select an existing one, you need to give access to SES
to publish notifications to the topic.

To give Amazon SES permission to publish notifications to the topic, on the Edit topic
screen in the SNS console, expand Access policy and in the JSON editor, add the following
permission policy:

Setting up event notifications 275

https://aws.amazon.com/sns
https://aws.amazon.com/sns
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

Amazon Simple Email Service Developer Guide

{
 "Version": "2012-10-17",
 "Id": "notification-policy",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:topic_region:111122223333:topic_name",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "111122223333",
 "AWS:SourceArn":
 "arn:aws:ses:topic_region:111122223333:identity/identity_name"
 }
 }
 }
]
}

Make the following changes to the preceding policy example:

• Replace topic_region with the AWS Region where you created the SNS topic.

• Replace 111122223333 with your AWS account ID.

• Replace topic_name with the name of your SNS topic.

• Replace identity_name with the verified identity (email address or domain) that you're
subscribing to the SNS topic.

2. Subscribe at least one endpoint to the topic. For example, if you want to receive notifications
by text message, subscribe an SMS endpoint (that is, a mobile phone number) to the topic. To
receive notifications by email, subscribe an email endpoint (an email address) to the topic.

For more information, see Getting Started in the Amazon Simple Notification Service Developer
Guide.

3. (Optional) If your Amazon SNS topic uses AWS Key Management Service (AWS KMS) for
server-side encryption, you have to add permissions to the AWS KMS key policy. You can add
permissions by attaching the following policy to the AWS KMS key policy:

Setting up event notifications 276

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

Amazon Simple Email Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSESToUseKMSKey",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}

Configuring notifications using the Amazon SES console

To configure notifications using the Amazon SES console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the Identities container, select the verified identity you want to receive feedback
notifications for when a message sent from this identity results in either a bounce, complaint,
or delivery.

Important

Verified domain notification settings apply to all mail sent from email addresses in that
domain except for email addresses that are also verified.

4. In the details screen of the verified identity you selected, choose the Notifications tab and
select Edit in the Feedback notifications container.

5. Expand the SNS topic list box of each feedback type you want to receive notifications for, and
select either an SNS topic you own, No SNS topic, or SNS topic you don’t own.

Setting up event notifications 277

https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• If you chose SNS topic you don’t own, the SNS topic ARN field will be presented where
you must enter the SNS topic ARN shared with you by your delegate sender. (Only your
delegate sender will get these notifications because they own the SNS topic. To learn
more about delegate sending, see Overview of sending authorization.)

Important

The Amazon SNS topics that you use for bounce, complaint, and delivery notifications
have to be in the same AWS Region that in which you use Amazon SES.
Additionally, you have to subscribe one or more endpoints to the topic in order to
receive notifications. For example, if you want to have notifications sent to an email
address, you have to subscribe an email endpoint to the topic. For more information,
see Getting Started in the Amazon Simple Notification Service Developer Guide.

6. (Optional) If you want your topic notification to include the headers from the original email,
check the Include original email headers box directly underneath the SNS topic name of each
feedback type. This option is only available if you've assigned an Amazon SNS topic to the
associated notification type. For information about the contents of the original email headers,
see the mail object in Notification contents.

7. Choose Save changes. The changes you made to your notification settings might take a few
minutes to take effect.

8. (Optional) If you chose Amazon SNS topic notifications for both bounces and complaints, you
can disable email notifications entirely so that you don't receive double notifications through
email and SNS notifications. To disable email notifications for bounces and complaints, under
the Notifications tab on the details screen of the verified identity, in the Email Feedback
Forwarding container, choose Edit, uncheck the Enabled box, and choose Save changes. .

After you configure your settings, you will start receiving bounce, complaint, and delivery
notifications to your Amazon SNS topics. These notifications are in JavaScript Object Notation
(JSON) format and follow the structure described in Notification contents.

You will be charged standard Amazon SNS rates for bounce, complaint, and delivery notifications.
For more information, see the Amazon SNS pricing page.

Setting up event notifications 278

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://aws.amazon.com/sns/pricing

Amazon Simple Email Service Developer Guide

Note

If an attempt to publish to your Amazon SNS topic fails because the topic has been deleted
or your AWS account no longer has permissions to publish to it, Amazon SES removes
the configuration for that topic if it's been configured for bounces or complaints (not
deliveries - for delivery notifications, SES won't delete the SNS topic configuration setting).
Additionally, Amazon SES re-enables bounce and complaint email notifications for the
identity, and you receive a notification of the change by email. If multiple identities are
configured to use the topic, the topic configuration for each identity is changed when each
identity experiences a failure to publish to the topic.

Configuring notifications using the Amazon SES API

You can also configure bounce, complaint, and delivery notifications by using the Amazon SES API.
Use the following operations to configure notifications:

• SetIdentityNotificationTopic

• SetIdentityFeedbackForwardingEnabled

• GetIdentityNotificationAttributes

• SetIdentityHeadersInNotificationsEnabled

You can use these API actions to write a customized front-end application for notifications. For
a complete description of the API actions related to notifications, see the Amazon Simple Email
Service API Reference.

Troubleshooting feedback notifications

Not receiving notifications

If you aren't receiving notifications, make sure that you subscribed an endpoint to the topic that
the notifications are sent through. When you subscribe an email endpoint to a topic, you receive an
email asking you to confirm your subscription. You have to confirm your subscription before you
start receiving email notifications. For more information, see Getting Started in the Amazon Simple
Notification Service Developer Guide.

InvalidParameterValue error when choosing a topic

Setting up event notifications 279

https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityNotificationTopic.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityFeedbackForwardingEnabled.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_GetIdentityNotificationAttributes.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SetIdentityHeadersInNotificationsEnabled.html
https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

Amazon Simple Email Service Developer Guide

If you receive an error stating that an InvalidParameterValue error occurred, check the
Amazon SNS topic to see if it's encrypted using AWS KMS. If it is, you have to modify the policy for
the AWS KMS key. See Prerequisites for a sample policy.

Amazon SNS notification contents for Amazon SES

Bounce, complaint, and delivery notifications are published to Amazon Simple Notification Service
(Amazon SNS) topics in JavaScript Object Notation (JSON) format. The top-level JSON object
contains a notificationType string, a mail object, and either a bounce object, a complaint
object, or a delivery object.

See the following sections for descriptions of the different types of objects:

• Top-level JSON object

• mail object

• bounce object

• complaint object

• delivery object

The following are some important notes about the contents of Amazon SNS notifications for
Amazon SES:

• For a given notification type, you might receive one Amazon SNS notification for multiple
recipients, or you might receive a single Amazon SNS notification per recipient. Your code
should be able to parse the Amazon SNS notification and handle both cases; Amazon SES
does not make ordering or batching guarantees for notifications sent through Amazon SNS.
However, different Amazon SNS notification types (for example, bounces and complaints) are not
combined into a single notification.

• You might receive multiple types of Amazon SNS notifications for one recipient. For example,
the receiving mail server might accept the email (triggering a delivery notification), but after
processing the email, the receiving mail server might determine that the email actually results
in a bounce (triggering a bounce notification). However, these are always separate notifications
because they are different notification types.

• Amazon SES reserves the right to add additional fields to the notifications. As such, applications
that parse these notifications must be flexible enough to handle unknown fields.

Setting up event notifications 280

https://aws.amazon.com/sns
https://aws.amazon.com/sns

Amazon Simple Email Service Developer Guide

• Amazon SES overwrites the headers of the message when it sends the email. You can retrieve
the headers of the original message from the headers and commonHeaders fields of the mail
object.

Top-Level JSON object

The top-level JSON object in an Amazon SES notification contains the following fields.

Field name Description

notificationType A string that holds the type of notification
represented by the JSON object. Possible
values are Bounce, Complaint , or
Delivery.

If you set up event publishing, this field is
named eventType .

mail A JSON object that contains information
about the original mail to which the notificat
ion pertains. For more information, see Mail
object.

bounce This field is present only if the notificat
ionType is Bounce and contains a JSON
object that holds information about the
bounce. For more information, see Bounce
object.

complaint This field is present only if the notificat
ionType is Complaint and contains a
JSON object that holds information about
the complaint. For more information, see
Complaint object.

delivery This field is present only if the notificat
ionType is Delivery and contains a JSON
object that holds information about the

Setting up event notifications 281

Amazon Simple Email Service Developer Guide

Field name Description

delivery. For more information, see Delivery
object.

Mail object

Each bounce, complaint, or delivery notification contains information about the original email in
the mail object. The JSON object that contains information about a mail object has the following
fields.

Field name Description

timestamp The time at which the original message was
sent (in ISO8601 format).

messageId A unique ID that Amazon SES assigned to the
message. Amazon SES returned this value to
you when you sent the message.

Note

This message ID was assigned by
Amazon SES. You can find the
message ID of the original email in the
headers field of the mail object.

source The email address from which the original
message was sent (the envelope MAIL FROM
address).

sourceArn The Amazon Resource Name (ARN) of the
identity that was used to send the email.
In the case of sending authorization, the
sourceArn is the ARN of the identity that
the identity owner authorized the delegate
sender to use to send the email. For more

Setting up event notifications 282

Amazon Simple Email Service Developer Guide

Field name Description

information about sending authorization, see
Email authentication methods.

sourceIp The originating public IP address of the client
that performed the email sending request to
Amazon SES.

sendingAccountId The AWS account ID of the account that was
used to send the email. In the case of sending
authorization, the sendingAccountId is
the delegate sender's account ID.

callerIdentity The IAM identity of the Amazon SES user who
sent the email.

destination A list of email addresses that were recipients
of the original mail.

headersTruncated This object is only present if you configured
the notification settings to include the headers
from the original email.

Indicates whether the headers are truncated
in the notification. Amazon SES truncates the
headers in the notification when the headers
from the original message are 10 KB or larger
in size. Possible values are true and false.

Setting up event notifications 283

Amazon Simple Email Service Developer Guide

Field name Description

headers This object is only present if you configured
the notification settings to include the headers
from the original email.

A list of the email's original headers. Each
header in the list has a name field and a value
field.

Note

Any message ID within the headers
object is from the original message
that you passed to Amazon SES.
The message ID that Amazon SES
subsequently assigned to the message
is in the messageId field of the
mail object.

Setting up event notifications 284

Amazon Simple Email Service Developer Guide

Field name Description

commonHeaders This object is only present if you configured
the notification settings to include the headers
from the original email.

Includes information about common email
headers from the original email, including
the From, To, and Subject fields. Within this
object, each header is a key. The From and
To fields are represented by arrays that can
contain multiple values.

Note

For events, any message ID within the
commonHeaders field is the message
ID that Amazon SES subsequen
tly assigned to the message in the
messageId field of the mail object.
Notifications will contain the message
ID of the original email.

The following is an example of a mail object that includes the original email headers. When this
notification type is not configured to include the original email headers, the mail object does not
include the headersTruncated, headers, and commonHeaders fields.

{
 "timestamp":"2018-10-08T14:05:45 +0000",
 "messageId":"000001378603177f-7a5433e7-8edb-42ae-af10-f0181f34d6ee-000000",
 "source":"sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "sourceIp": "127.0.3.0",
 "sendingAccountId":"123456789012",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,

Setting up event notifications 285

Amazon Simple Email Service Developer Guide

 "headers":[
 {
 "name":"From",
 "value":"\"Sender Name\" <sender@example.com>"
 },
 {
 "name":"To",
 "value":"\"Recipient Name\" <recipient@example.com>"
 },
 {
 "name":"Message-ID",
 "value":"custom-message-ID"
 },
 {
 "name":"Subject",
 "value":"Hello"
 },
 {
 "name":"Content-Type",
 "value":"text/plain; charset=\"UTF-8\""
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"base64"
 },
 {
 "name":"Date",
 "value":"Mon, 08 Oct 2018 14:05:45 +0000"
 }
],
 "commonHeaders":{
 "from":[
 "Sender Name <sender@example.com>"
],
 "date":"Mon, 08 Oct 2018 14:05:45 +0000",
 "to":[
 "Recipient Name <recipient@example.com>"
],
 "messageId":" custom-message-ID",
 "subject":"Message sent using Amazon SES"
 }
}

Setting up event notifications 286

Amazon Simple Email Service Developer Guide

Bounce object

The JSON object that contains information about bounces contains the following fields.

Field name Description

bounceType The type of bounce, as determined by Amazon
SES. For more information, see Bounce types.

bounceSubType The subtype of the bounce, as determined
by Amazon SES. For more information, see
Bounce types.

bouncedRecipients A list that contains information about the
recipients of the original mail that bounced.
For more information, see Bounced recipients.

timestamp The date and time at which the bounce was
sent (in ISO8601 format). Note that this is the
time at which the notification was sent by the
ISP, and not the time at which it was received
by Amazon SES.

feedbackId A unique ID for the bounce.

If Amazon SES was able to contact the remote Message Transfer Authority (MTA), the following
field is also present.

Field name Description

remoteMtaIp The IP address of the MTA to which Amazon
SES attempted to deliver the email.

If a delivery status notification (DSN) was attached to the bounce, the following field is also
present.

Setting up event notifications 287

Amazon Simple Email Service Developer Guide

Field name Description

reportingMTA The value of the Reporting-MTA field from
the DSN. This is the value of the MTA that
attempted to perform the delivery, relay, or
gateway operation described in the DSN.

The following is an example of a bounce object.

{
 "bounceType":"Permanent",
 "bounceSubType": "General",
 "bouncedRecipients":[
 {
 "status":"5.0.0",
 "action":"failed",
 "diagnosticCode":"smtp; 550 user unknown",
 "emailAddress":"recipient1@example.com"
 },
 {
 "status":"4.0.0",
 "action":"delayed",
 "emailAddress":"recipient2@example.com"
 }
],
 "reportingMTA": "example.com",
 "timestamp":"2012-05-25T14:59:38.605Z",
 "feedbackId":"000001378603176d-5a4b5ad9-6f30-4198-a8c3-b1eb0c270a1d-000000",
 "remoteMtaIp":"127.0.2.0"
}

Bounced recipients

A bounce notification may pertain to a single recipient or to multiple recipients. The
bouncedRecipients field holds a list of objects—one per recipient to whom the bounce
notification pertains—and always contains the following field.

Setting up event notifications 288

Amazon Simple Email Service Developer Guide

Field name Description

emailAddress The email address of the recipient. If a DSN is
available, this is the value of the Final-Rec
ipient field from the DSN.

Optionally, if a DSN is attached to the bounce, the following fields may also be present.

Field name Description

action The value of the Action field from the DSN.
This indicates the action performed by the
Reporting-MTA as a result of its attempt to
deliver the message to this recipient.

status The value of the Status field from the DSN.
This is the per-recipient transport-independ
ent status code that indicates the delivery
status of the message.

diagnosticCode The status code issued by the reporting MTA.
This is the value of the Diagnostic-Code
field from the DSN. This field may be absent
in the DSN (and therefore also absent in the
JSON).

The following is an example of an object that might be in the bouncedRecipients list.

{
 "emailAddress": "recipient@example.com",
 "action": "failed",
 "status": "5.0.0",
 "diagnosticCode": "X-Postfix; unknown user"
}

Setting up event notifications 289

Amazon Simple Email Service Developer Guide

Bounce types

The bounce object contains a bounce type of Undetermined, Permanent, or Transient. The
Permanent and Transient bounce types can also contain one of several bounce subtypes.

When you receive a bounce notification with a bounce type of Transient, you might be able
to send email to that recipient in the future if the issue that caused the message to bounce is
resolved.

When you receive a bounce notification with a bounce type of Permanent, it's unlikely that you'll
be able to send email to that recipient in the future. For this reason, you should immediately
remove the recipient whose address produced the bounce from your mailing lists.

Note

When a soft bounce (a bounce related to a temporary issue, such as the recipient's inbox
being full) occurs, Amazon SES attempts to redeliver the email for a certain period of time.
At the end of that period of time, if Amazon SES still can't deliver the email, it stops trying.
Amazon SES provides notifications for hard bounces, and for soft bounces that it stopped
trying to deliver. If you want to receive a notification each time a soft bounce occurs,
enable event publishing and configure it to send notifications when delivery delay events
occur.

bounceType bounceSubType Description

Undetermi
ned

Undetermined The recipient's email provider sent a bounce
message. The bounce message didn't contain
enough information for Amazon SES to
determine the reason for the bounce. The
bounce email, which was sent to the address
in the Return-Path header of the email
that resulted in the bounce, might contain
additional information about the issue that
caused the email to bounce.

Permanent General The recipient's email provider sent a hard
bounce message.

Setting up event notifications 290

Amazon Simple Email Service Developer Guide

bounceType bounceSubType Description

Important

When you receive this type of bounce
notification, you should immediately
remove the recipient's email address
from your mailing list. Sending
messages to addresses that produce
hard bounces can have a negative
impact on your reputation as a sender.
If you continue sending email to
addresses that produce hard bounces,
we might pause your ability to send
additional email. See the section called
“Using the account-level suppression
list”.

Permanent NoEmail It was not possible to retrieve the recipient
email address from the bounce message.

Permanent Suppressed The recipient's email address is on the Amazon
SES suppression list because it has a recent
history of producing hard bounces. To override
the global suppression list, see Using the
Amazon SES account-level suppression list.

Permanent OnAccountSuppressi
onList

Amazon SES has suppressed sending to this
address because it is on the account-level
suppression list. This does not count toward
your bounce rate metric.

Setting up event notifications 291

Amazon Simple Email Service Developer Guide

bounceType bounceSubType Description

Transient General The recipient's email provider sent a general
bounce message. You might be able to send a
message to the same recipient in the future if
the issue that caused the message to bounce is
resolved.

Note

If you send an email to a recipient
who has an active automatic response
rule (such as an "out of the office"
message), you might receive this
type of notification. Even though the
response has a notification type of
Bounce, Amazon SES doesn't count
automatic responses when it calculates
the bounce rate for your account.

Transient MailboxFull The recipient's email provider sent a bounce
message because the recipient's inbox was
full. You might be able to send to the same
recipient in the future when the mailbox is no
longer full.

Transient MessageTooLarge The recipient's email provider sent a bounce
message because message you sent was too
large. You might be able to send a message to
the same recipient if you reduce the size of the
message.

Setting up event notifications 292

Amazon Simple Email Service Developer Guide

bounceType bounceSubType Description

Transient ContentRejected The recipient's email provider sent a bounce
message because the message you sent
contains content that the provider doesn't
allow. You might be able to send a message to
the same recipient if you change the content
of the message.

Transient AttachmentRejected The recipient's email provider sent a bounce
message because the message contained an
unacceptable attachment. For example, some
email providers may reject messages with
attachments of a certain file type, or messages
with very large attachments. You might be
able to send a message to the same recipient
if you remove or change the content of the
attachment.

Complaint object

The JSON object that contains information about complaints has the following fields.

Field name Description

complainedRecipients A list that contains information about
recipients that may have been responsible
for the complaint. For more information, see
Complained recipients.

timestamp The date and time when the ISP sent the
complaint notification, in ISO 8601 format.
The date and time in this field might not be
the same as the date and time when Amazon
SES received the notification.

feedbackId A unique ID associated with the complaint.

Setting up event notifications 293

Amazon Simple Email Service Developer Guide

Field name Description

complaintSubType The value of the complaintSubType field
can either be null or OnAccountSuppressi
onList . If the value is OnAccount
SuppressionList , Amazon SES accepted
the message, but didn't attempt to send it
because it was on the account-level suppressi
on list.

Further, if a feedback report is attached to the complaint, the following fields may be present.

Field name Description

userAgent The value of the User-Agent field from
the feedback report. This indicates the name
and version of the system that generated the
report.

complaintFeedbackType The value of the Feedback-Type field from
the feedback report received from the ISP. This
contains the type of feedback.

arrivalDate The value of the Arrival-Date or
Received-Date field from the feedback
report (in ISO8601 format). This field may be
absent in the report (and therefore also absent
in the JSON).

The following is an example of a complaint object.

{
 "userAgent":"ExampleCorp Feedback Loop (V0.01)",
 "complainedRecipients":[
 {
 "emailAddress":"recipient1@example.com"
 }

Setting up event notifications 294

Amazon Simple Email Service Developer Guide

],
 "complaintFeedbackType":"abuse",
 "arrivalDate":"2009-12-03T04:24:21.000-05:00",
 "timestamp":"2012-05-25T14:59:38.623Z",
 "feedbackId":"000001378603177f-18c07c78-fa81-4a58-9dd1-fedc3cb8f49a-000000"
}

Complained recipients

The complainedRecipients field contains a list of recipients that may have submitted the
complaint. You should use this information to determine which recipient submitted the complaint,
and then immediately remove that recipient your mailing lists.

Important

Most ISPs remove the email address of the recipient who submitted the complaint from
their complaint notification. For this reason, this list contains information about recipients
who might have sent the complaint, based on the recipients of the original message and
the ISP from which we received the complaint. Amazon SES performs a lookup against the
original message to determine this recipient list.

JSON objects in this list contain the following field.

Field name Description

emailAddress The email address of the recipient.

The following is an example of a complained recipient object.

{ "emailAddress": "recipient1@example.com" }

Note

Because of this behavior, you can be more certain that you know which email address
complained about your message if you limit your sending to one message per recipient
(rather than sending one message with 30 different email addresses in the bcc line).

Setting up event notifications 295

Amazon Simple Email Service Developer Guide

Complaint types

You may see the following complaint types in the complaintFeedbackType field as assigned by
the reporting ISP, according to the Internet Assigned Numbers Authority website:

• abuse—Indicates unsolicited email or some other kind of email abuse.

• auth-failure—Email authentication failure report.

• fraud—Indicates some kind of fraud or phishing activity.

• not-spam—Indicates that the entity providing the report does not consider the message to be
spam. This may be used to correct a message that was incorrectly tagged or categorized as spam.

• other—Indicates any other feedback that does not fit into other registered types.

• virus—Reports that a virus is found in the originating message.

Delivery object

The JSON object that contains information about deliveries always has the following fields.

Field name Description

timestamp The time Amazon SES delivered the email to
the recipient's mail server (in ISO8601 format).

processingTimeMillis The time in milliseconds between when
Amazon SES accepted the request from the
sender to passing the message to the recipient
's mail server.

recipients A list of the intended recipients of the email to
which the delivery notification applies.

smtpResponse The SMTP response message of the remote
ISP that accepted the email from Amazon SES.
This message varies by email, by receiving mail
server, and by receiving ISP.

reportingMTA The hostname of the Amazon SES mail server
that sent the mail.

Setting up event notifications 296

http://www.iana.org/assignments/marf-parameters/marf-parameters.xml#marf-parameters-2

Amazon Simple Email Service Developer Guide

Field name Description

remoteMtaIp The IP address of the MTA to which Amazon
SES delivered the email.

The following is an example of a delivery object.

{
 "timestamp":"2014-05-28T22:41:01.184Z",
 "processingTimeMillis":546,
 "recipients":["success@simulator.amazonses.com"],
 "smtpResponse":"250 ok: Message 64111812 accepted",
 "reportingMTA":"a8-70.smtp-out.amazonses.com",
 "remoteMtaIp":"127.0.2.0"
}

Amazon SNS notification examples for Amazon SES

The following sections provide examples of the three types of notifications:

• For bounce notification examples, see Amazon SNS bounce notification examples.

• For complaint notification examples, see Amazon SNS complaint notification examples.

• For delivery notification examples, see Amazon SNS delivery notification example.

Amazon SNS bounce notification examples

This section contains examples of bounce notifications with and without a Delivery Status
Notification (DSN) provided by the email receiver that sent the feedback.

Bounce notification with a DSN

The following is an example of a bounce notification that contains a DSN and the original email
headers. When bounce notifications are not configured to include the original email headers, the
mail object within the notifications does not include the headersTruncated, headers, and
commonHeaders fields.

 {
 "notificationType":"Bounce",
 "bounce":{

Setting up event notifications 297

Amazon Simple Email Service Developer Guide

 "bounceType":"Permanent",
 "reportingMTA":"dns; email.example.com",
 "bouncedRecipients":[
 {
 "emailAddress":"jane@example.com",
 "status":"5.1.1",
 "action":"failed",
 "diagnosticCode":"smtp; 550 5.1.1 <jane@example.com>... User"
 }
],
 "bounceSubType":"General",
 "timestamp":"2016-01-27T14:59:38.237Z",
 "feedbackId":"00000138111222aa-33322211-cccc-cccc-cccc-ddddaaaa068a-000000",
 "remoteMtaIp":"127.0.2.0"
 },
 "mail":{
 "timestamp":"2016-01-27T14:59:38.237Z",
 "source":"john@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "sourceIp": "127.0.3.0",
 "sendingAccountId":"123456789012",
 "callerIdentity": "IAM_user_or_role_name",
 "messageId":"00000138111222aa-33322211-cccc-cccc-cccc-ddddaaaa0680-000000",
 "destination":[
 "jane@example.com",
 "mary@example.com",
 "richard@example.com"],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"\"John Doe\" <john@example.com>"
 },
 {
 "name":"To",
 "value":"\"Jane Doe\" <jane@example.com>, \"Mary Doe\" <mary@example.com>,
 \"Richard Doe\" <richard@example.com>"
 },
 {
 "name":"Message-ID",
 "value":"custom-message-ID"
 },
 {
 "name":"Subject",

Setting up event notifications 298

Amazon Simple Email Service Developer Guide

 "value":"Hello"
 },
 {
 "name":"Content-Type",
 "value":"text/plain; charset=\"UTF-8\""
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"base64"
 },
 {
 "name":"Date",
 "value":"Wed, 27 Jan 2016 14:05:45 +0000"
 }
],
 "commonHeaders":{
 "from":[
 "John Doe <john@example.com>"
],
 "date":"Wed, 27 Jan 2016 14:05:45 +0000",
 "to":[
 "Jane Doe <jane@example.com>, Mary Doe <mary@example.com>, Richard Doe
 <richard@example.com>"
],
 "messageId":"custom-message-ID",
 "subject":"Hello"
 }
 }
 }

Bounce notification without a DSN

The following is an example of a bounce notification that includes the original email headers but
does not include a DSN. When bounce notifications are not configured to include the original
email headers, the mail object within the notifications does not include the headersTruncated,
headers, and commonHeaders fields.

 {
 "notificationType":"Bounce",
 "bounce":{
 "bounceType":"Permanent",
 "bounceSubType": "General",
 "bouncedRecipients":[

Setting up event notifications 299

Amazon Simple Email Service Developer Guide

 {
 "emailAddress":"jane@example.com"
 },
 {
 "emailAddress":"richard@example.com"
 }
],
 "timestamp":"2016-01-27T14:59:38.237Z",
 "feedbackId":"00000137860315fd-869464a4-8680-4114-98d3-716fe35851f9-000000",
 "remoteMtaIp":"127.0.2.0"
 },
 "mail":{
 "timestamp":"2016-01-27T14:59:38.237Z",
 "messageId":"00000137860315fd-34208509-5b74-41f3-95c5-22c1edc3c924-000000",
 "source":"john@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "sourceIp": "127.0.3.0",
 "sendingAccountId":"123456789012",
 "callerIdentity": "IAM_user_or_role_name",
 "destination":[
 "jane@example.com",
 "mary@example.com",
 "richard@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"\"John Doe\" <john@example.com>"
 },
 {
 "name":"To",
 "value":"\"Jane Doe\" <jane@example.com>, \"Mary Doe\" <mary@example.com>,
 \"Richard Doe\" <richard@example.com>"
 },
 {
 "name":"Message-ID",
 "value":"custom-message-ID"
 },
 {
 "name":"Subject",
 "value":"Hello"
 },
 {

Setting up event notifications 300

Amazon Simple Email Service Developer Guide

 "name":"Content-Type",
 "value":"text/plain; charset=\"UTF-8\""
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"base64"
 },
 {
 "name":"Date",
 "value":"Wed, 27 Jan 2016 14:05:45 +0000"
 }
],
 "commonHeaders":{
 "from":[
 "John Doe <john@example.com>"
],
 "date":"Wed, 27 Jan 2016 14:05:45 +0000",
 "to":[
 "Jane Doe <jane@example.com>, Mary Doe <mary@example.com>, Richard Doe
 <richard@example.com>"
],
 "messageId":"custom-message-ID",
 "subject":"Hello"
 }
 }
 }

Amazon SNS complaint notification examples

This section contains examples of complaint notifications, with and without a feedback report,
provided by the email receiver that sent the feedback.

Complaint notification with a feedback report

The following is an example of a complaint notification that contains a feedback report and the
original email headers. When complaint notifications are not configured to include the original
email headers, the mail object within the notifications does not include the headersTruncated,
headers, and commonHeaders fields.

 {
 "notificationType":"Complaint",
 "complaint":{
 "userAgent":"AnyCompany Feedback Loop (V0.01)",

Setting up event notifications 301

Amazon Simple Email Service Developer Guide

 "complainedRecipients":[
 {
 "emailAddress":"richard@example.com"
 }
],
 "complaintFeedbackType":"abuse",
 "arrivalDate":"2016-01-27T14:59:38.237Z",
 "timestamp":"2016-01-27T14:59:38.237Z",
 "feedbackId":"000001378603177f-18c07c78-fa81-4a58-9dd1-fedc3cb8f49a-000000"
 },
 "mail":{
 "timestamp":"2016-01-27T14:59:38.237Z",
 "messageId":"000001378603177f-7a5433e7-8edb-42ae-af10-f0181f34d6ee-000000",
 "source":"john@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "sourceIp": "127.0.3.0",
 "sendingAccountId":"123456789012",
 "callerIdentity": "IAM_user_or_role_name",
 "destination":[
 "jane@example.com",
 "mary@example.com",
 "richard@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"\"John Doe\" <john@example.com>"
 },
 {
 "name":"To",
 "value":"\"Jane Doe\" <jane@example.com>, \"Mary Doe\" <mary@example.com>,
 \"Richard Doe\" <richard@example.com>"
 },
 {
 "name":"Message-ID",
 "value":"custom-message-ID"
 },
 {
 "name":"Subject",
 "value":"Hello"
 },
 {
 "name":"Content-Type",

Setting up event notifications 302

Amazon Simple Email Service Developer Guide

 "value":"text/plain; charset=\"UTF-8\""
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"base64"
 },
 {
 "name":"Date",
 "value":"Wed, 27 Jan 2016 14:05:45 +0000"
 }
],
 "commonHeaders":{
 "from":[
 "John Doe <john@example.com>"
],
 "date":"Wed, 27 Jan 2016 14:05:45 +0000",
 "to":[
 "Jane Doe <jane@example.com>, Mary Doe <mary@example.com>, Richard Doe
 <richard@example.com>"
],
 "messageId":"custom-message-ID",
 "subject":"Hello"
 }
 }
 }

Complaint notification without a feedback report

The following is an example of a complaint notification that includes the original email headers
but does not include a feedback report. When complaint notifications are not configured to
include the original email headers, the mail object within the notifications does not include the
headersTruncated, headers, and commonHeaders fields.

 {
 "notificationType":"Complaint",
 "complaint":{
 "complainedRecipients":[
 {
 "emailAddress":"richard@example.com"
 }
],
 "timestamp":"2016-01-27T14:59:38.237Z",
 "feedbackId":"0000013786031775-fea503bc-7497-49e1-881b-a0379bb037d3-000000"

Setting up event notifications 303

Amazon Simple Email Service Developer Guide

 },
 "mail":{
 "timestamp":"2016-01-27T14:59:38.237Z",
 "messageId":"0000013786031775-163e3910-53eb-4c8e-a04a-f29debf88a84-000000",
 "source":"john@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "sourceIp": "127.0.3.0",
 "sendingAccountId":"123456789012",
 "callerIdentity": "IAM_user_or_role_name",
 "destination":[
 "jane@example.com",
 "mary@example.com",
 "richard@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"\"John Doe\" <john@example.com>"
 },
 {
 "name":"To",
 "value":"\"Jane Doe\" <jane@example.com>, \"Mary Doe\" <mary@example.com>,
 \"Richard Doe\" <richard@example.com>"
 },
 {
 "name":"Message-ID",
 "value":"custom-message-ID"
 },
 {
 "name":"Subject",
 "value":"Hello"
 },
 {
 "name":"Content-Type",
 "value":"text/plain; charset=\"UTF-8\""
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"base64"
 },
 {
 "name":"Date",
 "value":"Wed, 27 Jan 2016 14:05:45 +0000"

Setting up event notifications 304

Amazon Simple Email Service Developer Guide

 }
],
 "commonHeaders":{
 "from":[
 "John Doe <john@example.com>"
],
 "date":"Wed, 27 Jan 2016 14:05:45 +0000",
 "to":[
 "Jane Doe <jane@example.com>, Mary Doe <mary@example.com>, Richard Doe
 <richard@example.com>"
],
 "messageId":"custom-message-ID",
 "subject":"Hello"
 }
 }
 }

Amazon SNS delivery notification example

The following is an example of a delivery notification that includes the original email headers.
When delivery notifications are not configured to include the original email headers, the mail
object within the notifications does not include the headersTruncated, headers, and
commonHeaders fields.

 {
 "notificationType":"Delivery",
 "mail":{
 "timestamp":"2016-01-27T14:59:38.237Z",
 "messageId":"0000014644fe5ef6-9a483358-9170-4cb4-a269-f5dcdf415321-000000",
 "source":"john@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "sourceIp": "127.0.3.0",
 "sendingAccountId":"123456789012",
 "callerIdentity": "IAM_user_or_role_name",
 "destination":[
 "jane@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"\"John Doe\" <john@example.com>"
 },

Setting up event notifications 305

Amazon Simple Email Service Developer Guide

 {
 "name":"To",
 "value":"\"Jane Doe\" <jane@example.com>"
 },
 {
 "name":"Message-ID",
 "value":"custom-message-ID"
 },
 {
 "name":"Subject",
 "value":"Hello"
 },
 {
 "name":"Content-Type",
 "value":"text/plain; charset=\"UTF-8\""
 },
 {
 "name":"Content-Transfer-Encoding",
 "value":"base64"
 },
 {
 "name":"Date",
 "value":"Wed, 27 Jan 2016 14:58:45 +0000"
 }
],
 "commonHeaders":{
 "from":[
 "John Doe <john@example.com>"
],
 "date":"Wed, 27 Jan 2016 14:58:45 +0000",
 "to":[
 "Jane Doe <jane@example.com>"
],
 "messageId":"custom-message-ID",
 "subject":"Hello"
 }
 },
 "delivery":{
 "timestamp":"2016-01-27T14:59:38.237Z",
 "recipients":["jane@example.com"],
 "processingTimeMillis":546,
 "reportingMTA":"a8-70.smtp-out.amazonses.com",
 "smtpResponse":"250 ok: Message 64111812 accepted",
 "remoteMtaIp":"127.0.2.0"

Setting up event notifications 306

Amazon Simple Email Service Developer Guide

 }
 }

Using identity authorization in Amazon SES

Identity authorization policies define how individual verified identities can use Amazon SES by
specifying which SES API actions are allowed or denied for the identity and under what conditions.

Through the use of these authorization polices, you can maintain control over your identities
by changing or revoking permissions at any time. You can even authorize other users to use the
identities that you own (domains or email addresses) with their own SES accounts.

Topics

• Amazon SES policy anatomy

• Creating an identity authorization policy in Amazon SES

• Identity policy examples in Amazon SES

• Managing your identity authorization policies in Amazon SES

Amazon SES policy anatomy

Policies adhere to a specific structure, contain elements, and must meet certain requirements.

Policy structure

Each authorization policy is a JSON document that is attached to an identity. Each policy includes
the following sections:

• Policy-wide information at the top of the document.

• One or more individual statements, each of which describes a set of permissions.

The following example policy grants AWS account ID 123456789012 permissions specified in the
Action section for the verified domain example.com.

{
 "Id":"ExampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[

Using identity authorization 307

Amazon Simple Email Service Developer Guide

 {
 "Sid":"AuthorizeAccount",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:123456789012:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:GetEmailIdentity",
 "ses:UpdateEmailIdentityPolicy",
 "ses:ListRecommendations",
 "ses:CreateEmailIdentityPolicy",
 "ses:DeleteEmailIdentity"
]
 }
]
}

You can find more authorization policy examples at Identity policy examples.

Policy elements

This section describes the elements contained in identity authorization policies. First we describe
policy-wide elements, and then we describe elements that apply only to the statement in which
they are included. We follow with a discussion of how to add conditions to your statements.

For specific information about the syntax of the elements, see Grammar of the IAM Policy
Language in the IAM User Guide.

Policy-wide information

There are two policy-wide elements: Id and Version. The following table provides information
about these elements.

Name Description Required Valid values

Id Uniquely identifies the policy. No Any string

Version Specifies the policy access
language version.

No Any string. As a best practice,
we recommend that you

Using identity authorization 308

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-grammar.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-grammar.html

Amazon Simple Email Service Developer Guide

Name Description Required Valid values

include this field with a value
of "2012-10-17".

Statements specific to the policy

Identity authorization policies require at least one statement. Each statement can include the
elements described in the following table.

Name Description Required Valid values

Sid Uniquely identifies
the statement.

No Any string.

Effect Specifies the result
that you want the
policy statement to
return at evaluation
time.

Yes "Allow" or "Deny".

Resource Specifies the identity
to which the policy
applies.

(For sending
authorization, this
is the email address
or domain that the
identity owner is
authorizing the
delegate sender to
use.)

Yes The Amazon
Resource Name (ARN)
of the identity.

Principal Specifies the AWS
account, user, or AWS
service that receives

Yes A valid AWS account
ID, user ARN, or AWS
service. AWS account
IDs and user ARNs

Using identity authorization 309

Amazon Simple Email Service Developer Guide

Name Description Required Valid values

the permission in the
statement.

are specified using
"AWS" (for example,
"AWS": ["1234567
89012"] or
"AWS": ["arn:aws
:iam::123
456789012
:root"]). AWS
service names are
specified using
"Service" (for
example, "Service"
: ["cognito
-idp.amaz
onaws.com"]).

For examples of the
format of user ARNs,
see the AWS General
Reference.

Using identity authorization 310

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-iam.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-iam.html

Amazon Simple Email Service Developer Guide

Name Description Required Valid values

Action Specifies the action
that the statement
applies to.

Yes "ses:BatchGetMetri
cData", "ses:Canc
elExportJob",
"ses:CreateDeliver
abilityTestReport",
"ses:CreateEmailId
entityPolicy",
"ses:CreateExportJ
ob", "ses:Dele
teEmailIdentity",
"ses:DeleteEmailId
entityPolicy",
"ses:GetDomainStat
isticsReport",
"ses:GetEmailIdent
ity","ses:GetEmail
IdentityPolicies",
 "ses:GetExportJob",
"ses:ListExportJobs",
"ses:ListRecommend
ations", "ses:PutE
mailIdentityConfig
urationSetAttributes",
"ses:PutEmailIdent
ityDkimAttributes"
, "ses:PutEmailIdent
ityDkimSigningAttr
ibutes", "ses:PutE
mailIdentityFeedba
ckAttributes",
"ses:PutEmailIdent
ityMailFromAttribu
tes", "ses:TagR
esource", "ses:Unta

Using identity authorization 311

Amazon Simple Email Service Developer Guide

Name Description Required Valid values

gResource", "ses:Upda
teEmailIdentityPol
icy"

(Sending authoriza
tion actions:
"ses:SendEmail",
"ses:SendRawEmail",
"ses:SendTemplated
Email", "ses:Send
BulkTemplatedEmail
")

You can specify one
or more of these
operations.

Condition Specifies any restricti
ons or details about
the permission.

No See the informati
on about conditions
following this table.

Conditions

A condition is any restriction about the permission in the statement. The part of the statement that
specifies the conditions can be the most detailed of all the parts. A key is the specific characteristic
that's the basis for access restriction, such as the date and time of the request.

You use both conditions and keys together to express the restriction. For example, if you want to
restrict the delegate sender from making requests to Amazon SES on your behalf after July 30,
2019, you use the condition called DateLessThan. You use the key called aws:CurrentTime and
set it to the value 2019-07-30T00:00:00Z.

SES implements only the following AWS-wide policy keys:

• aws:CurrentTime

• aws:EpochTime

Using identity authorization 312

Amazon Simple Email Service Developer Guide

• aws:SecureTransport

• aws:SourceIp

• aws:SourceVpc

• aws:SourceVpce

• aws:UserAgent

• aws:VpcSourceIp

For more information about these keys, see the IAM User Guide.

Policy requirements

Policies must meet all of the following requirements:

• Each policy has to include at least one statement.

• Each policy has to include at least one valid principal.

• Each policy has to specify one resource, and that resource has to be the ARN of the identity that
the policy is attached to.

• Identity owners can associate up to 20 policies with each unique identity.

• Policies can't exceed 4 kilobytes (KB) in size.

• Policy names can't exceed 64 characters. Additionally, they can only include alphanumeric
characters, dashes, and underscores.

Creating an identity authorization policy in Amazon SES

An identity authorization policy is comprised of statements specifying what API actions are allowed
or denied for an identity and under what conditions.

To authorize an Amazon SES domain or email address identity that you own, you create an
authorization policy, and then attach that policy to the identity. An identity can have zero, one, or
many policies. However, a single policy can only be associated with a single identity.

For a list of API actions that can be used in an identity authorization policy, see the Action row in
the the section called “Statements specific to the policy” table.

You can create an identity authorization policy in the following ways:

Using identity authorization 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition

Amazon Simple Email Service Developer Guide

• By using the policy generator – You can create a simple policy by using the policy generator
in the SES console. In addition to allowing or denying permissions on SES API actions, you can
constrain the actions with conditions. You can also use the policy generator to quickly create the
basic structure of a policy and then customize it later by editing the policy.

• By creating a custom policy – If you want to include more advanced conditions or use an AWS
service as the principal, you can create a custom policy and attach it to the identity by using the
SES console or the SES API.

Topics

• Using the policy generator

• Creating a custom policy

Using the policy generator

You can use the policy generator to create a simple authorization policy by following these steps.

To create a policy by using the policy generator

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the Identities container on the Verified identities screen, select the verified identity you
wish to create an authorization policy for.

4. In the details screen of the verified identity you selected in the previous step, choose the
Authorization tab.

5. In the Authorization policies pane, choose Create policy and select Use policy generator
from the dropdown.

6. In the Create statement pane, choose Allow in the Effect field. (If you want to create a policy
to restrict this identity, choose Deny instead.)

7. In the Principals field, enter the AWS account ID, IAM user ARN, or AWS service to receive the
permissions you want to authorize for this identity, then choose Add. (If you wish to authorize
more than one, repeat this step for each one.)

8. In the Actions field, select the check box for each action you would like to authorize for your
principals.

Using identity authorization 314

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

9. (Optional) Expand Specify conditions if you wish to add a qualifying statement to the
permission.

a. Select an operator from the Operator dropdown.

b. Select a type from the Key dropdown.

c. Respective to the key type you selected, enter its value in the Value field. (If you wish to
add more conditions, choose Add new condition and repeat this step for each additional
one.)

10. Choose Save statement.

11. (Optional) Expand Create another statement if you wish to add more statements to your
policy and repeat steps 6 - 10.

12. Choose Next and on the Customize policy screen, the Edit policy details container has fields
where you can change or customize the policy’s Name and the Policy document itself.

13. Choose Next and on the Review and apply screen, the Overview container will show the
verified identity you’re authorizing as well as the name of this policy. In the Policy document
pane will be the actual policy you just wrote along with any conditions you added - review the
policy and if it looks correct, choose Apply policy. (If you need to change or correct something,
choose Previous and work in the Edit policy details container.)

Creating a custom policy

If you want to create a custom policy and attach it to an identity, you have the following options:

• Using the Amazon SES API – Create a policy in a text editor and then attach the policy to the
identity by using the PutIdentityPolicy API described in the Amazon Simple Email Service
API Reference.

• Using the Amazon SES console – Create a policy in a text editor and attach it to an identity by
pasting it into the custom policy editor in the Amazon SES console. The following procedure
describes this method.

To create a custom policy by using the custom policy editor

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

Using identity authorization 315

https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

3. In the Identities container on the Verified identities screen, select the verified identity you
wish to create an authorization policy for.

4. In the details screen of the verified identity you selected in the previous step, choose the
Authorization tab.

5. In the Authorization policies pane, choose Create policy and select Create custom policy
from the dropdown.

6. In the Policy document pane, type or paste the text of your policy in JSON format. You
can also use the policy generator to quickly create the basic structure of a policy and then
customize it here.

7. Choose Apply Policy. (If you ever need to modify your custom policy, just select its check box
under the Authorization tab, choose Edit, and make your changes in the Policy document
pane followed by Save changes).

Identity policy examples in Amazon SES

Identity authorization enables you to specify the fine-grained conditions under which you allow or
deny API actions for an identity.

The following examples show you how to write policies to control different aspects API actions:

• Specifying the principal

• Restricting the action

• Using multiple statements

Specifying the principal

The principal, which is the entity to which you are granting permission, can be an AWS account,
an AWS Identity and Access Management (IAM) user, or an AWS service that belongs to the same
account.

The following example shows a simple policy that allows AWS ID 123456789012 to control the
verified identity example.com which is also owned by AWS account 123456789012.

{
 "Id":"SampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[

Using identity authorization 316

Amazon Simple Email Service Developer Guide

 {
 "Sid":"AuthorizeMarketer",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:123456789012:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:DeleteEmailIdentity",
 "ses:PutEmailIdentityDkimSigningAttributes"
]
 }
]
}

The following example policy grants permission to two users to control the verified identity
example.com. Users are specified by their Amazon Resource Name (ARN).

{
 "Id":"ExampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeIAMUser",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:123456789012:identity/example.com",
 "Principal":{
 "AWS":[
 "arn:aws:iam::123456789012:user/John",
 "arn:aws:iam::123456789012:user/Jane"
]
 },
 "Action":[
 "ses:DeleteEmailIdentity",
 "ses:PutEmailIdentityDkimSigningAttributes"
]
 }
]
}

Using identity authorization 317

Amazon Simple Email Service Developer Guide

Restricting the action

There are multiple actions that can be specified in an identity authorization policy depending on
the level of control you want to authorize:

"BatchGetMetricData",
"ListRecommendations",
"CreateDeliverabilityTestReport",
"CreateEmailIdentityPolicy",
"DeleteEmailIdentity",
"DeleteEmailIdentityPolicy",
"GetDomainStatisticsReport",
"GetEmailIdentity",
"GetEmailIdentityPolicies",
"PutEmailIdentityConfigurationSetAttributes",
"PutEmailIdentityDkimAttributes",
"PutEmailIdentityDkimSigningAttributes",
"PutEmailIdentityFeedbackAttributes",
"PutEmailIdentityMailFromAttributes",
"TagResource",
"UntagResource",
"UpdateEmailIdentityPolicy"

Identity authorization policies also enable you to restrict the principal to just one of those actions.

{
 "Id":"ExamplePolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ControlAction",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:123456789012:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:PutEmailIdentityMailFromAttributes
]
 }
]

Using identity authorization 318

Amazon Simple Email Service Developer Guide

}

Using multiple statements

Your identity authorization policy can include multiple statements. The following example policy
has two statements. The first statement denies two users to access getemailidentity from
sender@example.com within the same account 123456789012. The second statement denies
UpdateEmailIdentityPolicy for the principal, Jack, within the same account 123456789012.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyGet",
 "Effect":"Deny",
 "Resource":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "Principal":{
 "AWS":[
 "arn:aws:iam::123456789012:user/John",
 "arn:aws:iam::123456789012:user/Jane"
]
 },
 "Action":[
 "ses:GetEmailIdentity"
]
 },
 {
 "Sid":"DenyUpdate",
 "Effect":"Deny",
 "Resource":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "Principal":{
 "AWS":"arn:aws:iam::123456789012:user/Jack"
 },
 "Action":[
 "ses:UpdateEmailIdentityPolicy"
]
 }
]
}

Using identity authorization 319

Amazon Simple Email Service Developer Guide

Managing your identity authorization policies in Amazon SES

In addition to creating and attaching policies to identities, you can edit, remove, list, and retrieve
an identity's policies as described in the following sections.

Managing policies using the Amazon SES console

Managing Amazon SES polices entails viewing, editing, or deleting a policy attached to an identity
by using the Amazon SES console.

To manage policies using the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Verified identities.

3. In the list of identities, choose the identity you want to manage.

4. On the identity's detail page, navigate to the Authorization tab. Here you’ll find a list of all the
policies attached to this identity.

5. Select the policy you want to manage by choosing its checkbox.

6. Depending on the desired management task, choose the respective button as follows:

a. To view the policy, choose View policy. If you need a copy of it, choose the Copy button
and it will be copied to your clipboard.

b. To edit the policy, choose Edit. In the Policy document pane, edit the policy, and then
choose Save changes.

Note

To revoke permissions, you can either edit the policy or remove it.

c. To remove the policy, choose Delete.

Important

Removing a policy is permanent. We recommend that you back up the policy by
copying and pasting it into a text file before you remove it.

Using identity authorization 320

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Managing policies using the Amazon SES API

Managing Amazon SES polices entails viewing, editing, or deleting a policy attached to an identity
by using the Amazon SES API.

To list and view policies using the Amazon SES API

• You can list the policies that are attached to an identity by using the ListIdentityPolicies API
operation. You can also retrieve the policies themselves by using the GetIdentityPolicies API
operation.

To edit a policy using the Amazon SES API

• You can edit a policy that's attached to an identity by using the PutIdentityPolicy API
operation.

To delete a policy using the Amazon SES API

• You can delete a policy that's attached to an identity by using the DeleteIdentityPolicy API
operation.

Using sending authorization with Amazon SES

You can configure Amazon SES to authorize other users to send emails from the identities that
you own (domains or email addresses) using their own Amazon SES accounts. With the sending
authorization feature, you can maintain control over your identities so that you can change or
revoke permissions at any time. For example, if you're a business owner, you can use sending
authorization to enable a third party (such as an email marketing company) to send email from a
domain you own.

This chapter covers the specifics of sending authorization which replaces the legacy cross-account
notifications feature. You should first understand the basics of identity based authorization using
authorization policies as explained in Using identity authorization in Amazon SES which covers
important topics such as the anatomy of an authorization policy and how to manage your polices.

Cross-account notifications legacy support

Feedback notifications for bounces, complaints, and deliveries associated with email sent from
a delegate sender that's been authorized by an identity owner to send from one of his verified

Using sending authorization 321

https://docs.aws.amazon.com/ses/latest/APIReference/API_ListIdentityPolicies.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_ListIdentityPolicies.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_GetIdentityPolicies.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_GetIdentityPolicies.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_PutIdentityPolicy.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_PutIdentityPolicy.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_DeleteIdentityPolicy.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_DeleteIdentityPolicy.html

Amazon Simple Email Service Developer Guide

identities, have traditionally been configured using cross-account notifications where the delegate
sender would associate a topic with an identity they didn't own (that’s the cross-account). However,
cross-account notifications have been replaced by using configuration sets and verified identities in
association with delegate sending where the delegate sender has been authorized by the identity
owner to use one of their verified identities to send email from. This new method allows the
flexibility to configure bounce, complaint, delivery, and other event notifications by the following
two constructs depending if you're the delegate sender or the owner of the verified identity:

• Configuration sets – The delegate sender can set up event publishing in his own configuration
set that he can specify when sending email from a verified identity he doesn't own, but has been
authorized to send from by the identity owner through an authorization policy. Event publishing
allows bounce, complaint, delivery, and other event notifications to be published to Amazon
CloudWatch, Amazon Data Firehose, Amazon Pinpoint, and Amazon SNS. See Create event
destinations.

• Verified identities – Besides having the identity owner authorize the delegate sender to use
one of his verified identities to send email from, he can also, at the request of the delegate
sender, configure feedback notifications on the shared identity to use SNS topics owned by the
delegate sender. Only the delegate sender will get these notifications because they own the SNS
topic. See Step 14 for how to configure an "SNS topic you don't own" in the authorization policy
procedures.

Note

For compatibility, cross-account notifications are being supported for legacy cross-account
notifications currently being used in your account. This support is limited to being able to
modify and use any current cross-accounts you created in the Amazon SES classic console;
however, you can no longer create new cross-account notifications. To create new ones
in the Amazon SES new console, use the new methods of delegate sending either with
configuration sets using event publishing, or with verified identities configured with your
own SNS topics.

Topics

• Overview of Amazon SES sending authorization

• Identity owner tasks for Amazon SES sending authorization

• Delegate sender tasks for Amazon SES sending authorization

Using sending authorization 322

Amazon Simple Email Service Developer Guide

Overview of Amazon SES sending authorization

This topic provides an overview of the sending authorization process and then explains how
the email sending features of Amazon SES, such as sending quotas and notifications, work with
sending authorization.

This section uses the following terms:

• Identity – An email address or domain that Amazon SES users use to send email.

• Identity owner – An Amazon SES user who has verified ownership of an email address or domain
by using the procedures described in Verified identities.

• Delegate sender – An AWS account, an AWS Identity and Access Management (IAM) user, or an
AWS service that's been authorized through an authorization policy to send email on behalf of
the identity owner.

• Sending authorization policy – A document that you attach to an identity to specify who may
send for that identity and under which conditions.

• Amazon Resource Name (ARN) – A standardized way to uniquely identify an AWS resource
across all AWS services. For sending authorization, the resource is the identity that the identity
owner has authorized the delegate sender to use. An example of an ARN is arn:aws:ses:us-
east-1:123456789012:identity/example.com.

Sending authorization process

Sending authorization is based on sending authorization policies. If you want to enable a delegate
sender to send on your behalf, you create a sending authorization policy and associate the policy to
your identity by using the Amazon SES console or the Amazon SES API. When the delegate sender
attempts to send an email through Amazon SES on your behalf, the delegate sender passes the
ARN of your identity in the request or in the header of the email.

When Amazon SES receives the request to send the email, it checks your identity's policy (if
present) to determine if you have authorized the delegate sender to send on the identity's behalf. If
the delegate sender is authorized, Amazon SES accepts the email; otherwise, Amazon SES returns
an error message.

The following diagram shows the high-level relationship between sending authorization concepts:

Using sending authorization 323

Amazon Simple Email Service Developer Guide

The sending authorization process consists of the following steps:

1. The identity owner selects a verified identity for the delegate sender to use. (If you haven't
verified an identity, see Verified identities.)

Note

The verified identity you choose for your delegate sender cannot have a default
configuration set assigned to it.

2. The delegate sender lets the identity owner know which AWS account ID or IAM user ARN they
want to use for sending.

3. If the identity owner agrees to allow the delegate sender to send from one of the owner's
accounts, the owner creates a sending authorization policy and attaches the policy to the chosen
identity by using the Amazon SES console or the Amazon SES API.

4. The identity owner gives the delegate sender the ARN of the authorized identity so that the
delegate sender can provide the ARN to Amazon SES at the time of email sending.

5. The delegate sender can set up bounce and complaint notifications through event publishing
enabled in a configuration set specified during delegate sending. The identity owner can also
set up email feedback notifications for bounce and complaint events to be sent to the delegate
sender's Amazon SNS topics.

Using sending authorization 324

Amazon Simple Email Service Developer Guide

Note

If the identity owner disables sending event notifications, the delegate sender must set
up event publishing to publish bounce and complaint events to an Amazon SNS topic
or a Firehose stream. The sender must also apply the configuration set that contains
the event publishing rule to each email they send. If neither the identity owner nor the
delegate sender sets up a method of sending notifications for bounce and complaint
events, then Amazon SES automatically sends event notifications by email to the address
in the Return-Path field of the email (or the address in the Source field, if you didn't
specify a Return-Path address), even if the identity owner disabled email feedback
forwarding.

6. The delegate sender attempts to send an email through Amazon SES on behalf of the identity
owner by passing the ARN of the identity owner's identity in the request or in the header of the
email. The delegate sender can send the email by using either the Amazon SES SMTP interface
or the Amazon SES API. Upon receiving the request, Amazon SES examines any policies that are
attached to the identity, and accepts the email if the delegate sender is authorized to use the
specified "From" address and "Return Path" address; otherwise, Amazon SES returns an error and
does not accept the message.

Important

The AWS account of the delegate sender has to be removed from the sandbox before it
can be used to send email to non-verified addresses.

7. If the identity owner needs to de-authorize the delegate sender, the identity owner edits the
sending authorization policy or deletes the policy entirely. The identity owner can perform
either action by using the Amazon SES console or the Amazon SES API.

For more information about how the identity owner or delegate sender can perform those tasks,
see Identity owner tasks or Delegate sender tasks, respectively.

Attribution of email sending features

It's important to understand the role of the delegate sender and the identity owner with respect
to Amazon SES email sending features such as daily sending quota, bounces and complaints, DKIM
signing, feedback forwarding, and so on. The attribution is the following:

Using sending authorization 325

Amazon Simple Email Service Developer Guide

• Sending quotas – Email sent from the identity owner's identities count against the delegate
sender's quotas.

• Bounces and complaints – Bounce and complaint events are recorded against the delegate
sender's Amazon SES account, and can therefore impact the delegate sender's reputation.

• DKIM signing – If the identity owner has enabled Easy DKIM signing for an identity, all email
sent from that identity will be DKIM-signed, including email sent by the delegate sender. Only
the identity owner can control whether the emails are DKIM-signed.

• Notifications – Both the identity owner and the delegate sender can set up notifications for
bounces and complaints. The email identity owner can also enable email feedback forwarding.
For information about setting up notifications, see Monitoring your Amazon SES sending activity.

• Verification – Identity owners are responsible for following the procedure in Verified identities to
verify that they own the email addresses and domains that they're authorizing delegate senders
to use. Delegate senders don't need to verify any email addresses or domains specifically for
sending authorization.

Important

The AWS account of the delegate sender has to be removed from the sandbox before it
can be used to send email to non-verified addresses.

• AWS Regions – The delegate sender must send the emails from the AWS Region in which the
identity owner's identity is verified. The sending authorization policy that gives permission to the
delegate sender must be attached to the identity in that Region.

• Billing – All messages that are sent from the delegate sender's account, including emails that the
delegate sender sends using the identity owner's addresses, are billed to the delegate sender.

Identity owner tasks for Amazon SES sending authorization

This section describes the steps that identity owners must take when configuring sending
authorization.

Topics

• Verifying an identity for Amazon SES sending authorization

• Setting up identity owner notifications for Amazon SES sending authorization

• Getting information from the delegate sender for Amazon SES sending authorization

Using sending authorization 326

Amazon Simple Email Service Developer Guide

• Creating a sending authorization policy in Amazon SES

• Sending policy examples

• Providing the delegate sender with the identity information for Amazon SES sending
authorization

Verifying an identity for Amazon SES sending authorization

The first step in configuring sending authorization is to prove that you own the email address or
domain that the delegate sender will use to send email. The verification procedure is described in
Verified identities.

You can confirm that an email address or domain is verified by checking its status in the
Verified Identities section of the https://console.aws.amazon.com/ses/ or by using the
GetIdentityVerificationAttributes API operation.

Before you or the delegate sender can send email to non-verified email addresses, you have
to submit a request to have your account removed from the Amazon SES sandbox. For more
information, see Request production access (Moving out of the Amazon SES sandbox).

Important

The AWS account of the delegate sender must be removed from the sandbox before it can
be used to send email to non-verified addresses.

Setting up identity owner notifications for Amazon SES sending authorization

If you authorize a delegate sender to send email on your behalf, Amazon SES counts all bounces or
complaints that those emails generate toward the delegate sender's bounce and complaint limits,
rather than your own. However, if your IP address appears on third-party anti-spam, DNS-based
Blackhole Lists (DNSBLs) as a result of messages sent by a delegate sender, the reputation of your
identities may be damaged. For this reason, if you're an identity owner, you should set up email
feedback forwarding for all your identities, including those that you've authorized for delegate
sending. For more information, see Receiving Amazon SES notifications through email.

Delegate senders can and should set up their own bounce and complaint notifications for the
identities that you have authorized them to use. They can set up event publishing to to publish
bounce and complaint events to an Amazon SNS topic or a Firehose stream.

Using sending authorization 327

https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

If neither the identity owner nor the delegate sender sets up a method of sending notifications for
bounce and complaint events, or if the sender doesn't apply the configuration set that uses the
event publishing rule, then Amazon SES automatically sends event notifications by email to the
address in the Return-Path field of the email (or the address in the Source field, if you didn't specify
a Return-Path address), even if you disabled email feedback forwarding. This process is illustrated
in the following image.

Getting information from the delegate sender for Amazon SES sending authorization

Your sending authorization policy must specify at least one principal, which is the entity of your
delegate sender that you're granting access to so they can send on behalf of one of your verified

Using sending authorization 328

Amazon Simple Email Service Developer Guide

identities. For Amazon SES sending authorization policies, the principal can be either your delegate
sender's AWS account or AWS Identity and Access Management (IAM) user ARN, or an AWS service.

An easy way to think about this is that the principal (delegate sender) is the grantee, and you
(identity owner) are the grantor in the authorization policy where you are granting them the Allow
permission to send any combination of email, raw email, templated email, or bulk templated email
from the resource (verified identity) that you own.

If you want the finest grain control, ask the delegate sender to set up an IAM user so that only one
delegate sender can send for you rather than any user in the delegate sender's AWS account. The
delegate sender can find information about setting up an IAM user in Creating an IAM user in Your
AWS Account in the IAM User Guide.

Ask your delegate sender for the AWS account ID or the IAM user's Amazon Resource Name (ARN)
so that you can include it in your sending authorization policy. You can refer your delegate sender
to the instructions for finding this information in Providing information to the identity owner. If
the delegate sender is an AWS service, see the documentation for that service to determine the
service name.

The following example policy illustrates the basic elements of what is needed in a policy created
by the identity owner to authorize the delegate sender to send from the identity owner's resource.
The identity owner would go into the Verified identities workflow, and under Authorization, use
the Policy generator to create, in its simplest form, the following basic policy allowing the delegate
sender to send on behalf of a resource owned by the identity owner:

Using sending authorization 329

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html

Amazon Simple Email Service Developer Guide

For the policy above, the following legend explains the key elements and who owns them:

• Principal – this field is populated with the delegate sender's IAM user ARN.

• Action – this field is populated with two SES actions (SendEmail & SendRawEmail) that the
identity owner is allowing the delegate sender to perform from the identity owner's resource.

• Resource – this field is populated with the identity owner's verified resource that they are
authorizing the delegate sender to send from.

Creating a sending authorization policy in Amazon SES

Similar to creating any authorization policy in Amazon SES, as explained in Creating an identity
authorization policy, to authorize a delegate sender to send emails using an email address or
domain (an identity) that you own, you create the policy with SES sending API actions specified,
and then attach that policy to the identity.

For a list of API actions that can be specified in a sending authorization policy, see the Action row in
the the section called “Statements specific to the policy” table.

You can create a sending authorization policy by either using the policy generator or by creating a
custom policy. Procedures specific to creating a sending authorization policy are provided for either
method.

Note

• Sending authorization policies that you attach to email address identities take
precedence over policies that you attach to their corresponding domain identities. For
example, if you create a policy for example.com that disallows a delegate sender, and
you create a policy for sender@example.com that allows the delegate sender, then the
delegate sender can send email from sender@example.com, but not from any other
address on the example.com domain.

• If you create a policy for example.com that allows a delegate sender, and you create a
policy for sender@example.com that disallows the delegate sender, then the delegate
sender can send email from any address on the example.com domain, except for
sender@example.com.

• If you're unfamiliar with the structure of SES authorization policies, see Policy anatomy.

Using sending authorization 330

Amazon Simple Email Service Developer Guide

Creating a sending authorization policy by using the policy generator

You can use the policy generator to create a sending authorization policy by following these steps.

To create a sending authorization policy by using the policy generator

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the Identities container on the Verified identities screen, select the verified identity you
wish to authorize for the delegate sender to send on your behalf.

4. Choose the verified identity's Authorization tab.

5. In the Authorization policies pane, choose Create policy and select Use policy generator
from the dropdown.

6. In the Create statement pane, choose Allow in the Effect field. (If you want to create a policy
to restrict your delegate sender, choose Deny instead.)

7. In the Principals field, enter the AWS account ID or IAM user ARN that your delegate sender
shared with you to authorize them to send email on behalf of your account for this identity,
then choose Add. (If you wish to authorize more than one delegate sender, repeat this step for
each one.)

8. In the Actions field, select the check box for each send type you would like to authorize for
your delegate sender.

9. (Optional) Expand Specify conditions if you wish to add a qualifying statement to the
delegate sender permission.

a. Select an operator from the Operator dropdown.

b. Select a type from the Key dropdown.

c. Respective to the key type you selected, enter its value in the Value field. (If you wish to
add more conditions, choose Add new condition and repeat this step for each additional
one.)

10. Choose Save statement.

11. (Optional) Expand Create another statement if you wish to add more statements to your
policy and repeat steps 6 - 10.

12. Choose Next and on the Customize policy screen, the Edit policy details container has fields
where you can change or customize the policy’s Name and the Policy document itself.

Using sending authorization 331

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

13. Choose Next and on the Review and apply screen, the Overview container will show the
verified identity you’re authorizing for your delegate sender as well as the name of this policy.
In the Policy document pane will be the actual policy you just wrote along with any conditions
you added - review the policy and if it looks correct, choose Apply policy. (If you need to
change or correct something, choose Previous and work in the Edit policy details container.)
The policy you just created will allow your delegate sender to send on your behalf.

14.
(Optional) If your delegate sender also wants to use an SNS topic that they own, to receive
feedback notifications when they receive bounces or complaints, or when emails are delivered,
you’ll need to configure their SNS topic in this verified identity. (Your delegate sender will
need to share with you their SNS topic ARN.) Select the Notifications tab and select Edit in the
Feedback notifications container:

a. On the Configure SNS topics pane, in any of the feedback fields, (Bounce, Complaint,
or Delivery), select SNS topic you don’t own and enter the SNS topic ARN owned and
shared with you by your delegate sender. (Only your delegate sender will get these
notifications because they own the SNS topic - you, as the identity owner, will not.)

b. (Optional) If you want your topic notification to include the headers from the original
email, check the Include original email headers box directly underneath the SNS topic
name of each feedback type. This option is only available if you've assigned an Amazon
SNS topic to the associated notification type. For information about the contents of the
original email headers, see the mail object in Notification contents.

c. Choose Save changes. The changes you made to your notification settings might take a
few minutes to take effect.

d. (Optional) Since your delegate sender will be getting Amazon SNS topic notifications for
bounces and complaints, you can disable email notifications entirely if you don’t want
to receive feedback for this identity’s sends. To disable email feedback for bounces and
complaints, under the Notifications tab, in the Email Feedback Forwarding container,
choose Edit, uncheck the Enabled box, and choose Save changes. Delivery status
notifications will now only be sent to the SNS topics owned by your delegate sender.

Creating a custom sending authorization policy

If you want to create a custom sending authorization policy and attach it to an identity, you have
the following options:

Using sending authorization 332

Amazon Simple Email Service Developer Guide

• Using the Amazon SES API – Create a policy in a text editor and then attach the policy to the
identity by using the PutIdentityPolicy API described in the Amazon Simple Email Service
API Reference.

• Using the Amazon SES console – Create a policy in a text editor and attach it to an identity by
pasting it into the custom policy editor in the Amazon SES console. The following procedure
describes this method.

To create a custom sending authorization policy by using the custom policy editor

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the Identities container on the Verified identities screen, select the verified identity you
wish to authorize for the delegate sender to send on your behalf.

4. In the details screen of the verified identity you selected in the previous step, choose the
Authorization tab.

5. In the Authorization policies pane, choose Create policy and select Create custom policy
from the dropdown.

6. In the Policy document pane, type or paste the text of your policy in JSON format. You
can also use the policy generator to quickly create the basic structure of a policy and then
customize it here.

7. Choose Apply Policy. (If you ever need to modify your custom policy, just select its check box
under the Authorization tab, choose Edit, and make your changes in the Policy document
pane followed by Save changes).

8. (Optional) If your delegate sender also wants to use an SNS topic that they own, to receive
feedback notifications when they receive bounces or complaints, or when emails are delivered,
you’ll need to configure their SNS topic in this verified identity. (Your delegate sender will
need to share with you their SNS topic ARN.) Select the Notifications tab and select Edit in the
Feedback notifications container:

a. On the Configure SNS topics pane, in any of the feedback fields, (Bounce, Complaint,
or Delivery), select SNS topic you don’t own and enter the SNS topic ARN owned and
shared with you by your delegate sender. (Only your delegate sender will get these
notifications because they own the SNS topic - you, as the identity owner, will not.)

Using sending authorization 333

https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

b. (Optional) If you want your topic notification to include the headers from the original
email, check the Include original email headers box directly underneath the SNS topic
name of each feedback type. This option is only available if you've assigned an Amazon
SNS topic to the associated notification type. For information about the contents of the
original email headers, see the mail object in Notification contents.

c. Choose Save changes. The changes you made to your notification settings might take a
few minutes to take effect.

d. (Optional) Since your delegate sender will be getting Amazon SNS topic notifications for
bounces and complaints, you can disable email notifications entirely if you don’t want
to receive feedback for this identity’s sends. To disable email feedback for bounces and
complaints, under the Notifications tab, in the Email Feedback Forwarding container,
choose Edit, uncheck the Enabled box, and choose Save changes. Delivery status
notifications will now only be sent to the SNS topics owned by your delegate sender.

Sending policy examples

Sending authorization enables you to specify the fine-grained conditions under which you allow
delegate senders to send on your behalf.

The following conditions and examples show you how to write policies to control different
aspects of sending:

• Conditions specific to sending authorization

• Specifying the delegate sender

• Restricting the "From" address

• Restricting the time at which the delegate can send email

• Restricting the email sending action

• Restricting the display name of the email sender

• Using multiple statements

Conditions specific to sending authorization

A condition is any restriction about the permission in the statement. The part of the statement that
specifies the conditions can be the most detailed of all the parts. A key is the specific characteristic
that's the basis for access restriction, such as the date and time of the request.

Using sending authorization 334

Amazon Simple Email Service Developer Guide

You use both conditions and keys together to express the restriction. For example, if you want to
restrict the delegate sender from making requests to Amazon SES on your behalf after July 30,
2019, you use the condition called DateLessThan. You use the key called aws:CurrentTime and
set it to the value 2019-07-30T00:00:00Z.

You can use any of the AWS-wide keys listed at Available Keys in the IAM User Guide, or you can use
one of the following keys specific to SES that are useful in sending authorization policies:

Condition key Description

ses:Recipients Restricts the recipient addresses, which include the
To:, "CC", and "BCC" addresses.

ses:FromAddress Restricts the "From" address.

ses:FromDisplayName Restricts the contents of the string that is used as
the "From" display name (sometimes called "friendly
from"). For example, the display name of "John Doe
<johndoe@example.com>" is John Doe.

ses:FeedbackAddress Restricts the "Return Path" address, which is the
address where bounce and complaints can be sent
to you by email feedback forwarding. For informati
on about email feedback forwarding, see Receiving
Amazon SES notifications through email.

You can use the StringEquals and StringLike conditions with Amazon SES keys. These
conditions are for case-sensitive string matching. For StringLike, the values can include a multi-
character match wildcard (*) or a single-character match wildcard (?) anywhere in the string. For
example, the following condition specifies that the delegate sender can only send from a "From"
address that starts with invoicing and ends with @example.com:

"Condition": {
 "StringLike": {
 "ses:FromAddress": "invoicing*@example.com"
 }
}

Using sending authorization 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#AvailableKeys

Amazon Simple Email Service Developer Guide

You can also use the StringNotLike condition to prevent delegate senders from sending email
from certain email addresses. For example, you can disallow sending from admin@example.com,
and also similar addresses such as "admin"@example.com, admin+1@example.com, or
sender@admin.example.com, by including the following condition in your policy statement:

"Condition": {
 "StringNotLike": {
 "ses:FromAddress": "*admin*example.com"
 }
 }

For more information about how to specify conditions, see IAM JSON Policy Elements: Condition in
the IAM User Guide.

Specifying the delegate sender

The principal, which is the entity to which you are granting permission, can be an AWS account, an
AWS Identity and Access Management (IAM) user, or an AWS service.

The following example shows a simple policy that allows AWS ID 123456789012 to send email
from the verified identity example.com (which is owned by AWS account 888888888888). The
Condition statement in this policy only allows the delegate (that is, AWS ID 123456789012)
to send email from the address marketing+.*@example.com, where * is any string that the sender
wants to add after marketing+..

{
 "Id":"SampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeMarketer",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],

Using sending authorization 336

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Simple Email Service Developer Guide

 "Condition":{
 "StringLike":{
 "ses:FromAddress":"marketing+.*@example.com"
 }
 }
 }
]
}

The following example policy grants permission to two IAM users to send from identity
example.com. IAM users are specified by their Amazon Resource Name (ARN).

{
 "Id":"ExampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeIAMUser",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "AWS":[
 "arn:aws:iam::111122223333:user/John",
 "arn:aws:iam::444455556666:user/Jane"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
]
 }
]
}

The following example policy grants permission to Amazon Cognito to send from identity
example.com.

{
 "Id":"ExampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeService",

Using sending authorization 337

Amazon Simple Email Service Developer Guide

 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "Service":[
 "cognito-idp.amazonaws.com"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "888888888888",
 "aws:SourceArn": "arn:aws:cognito-idp:us-east-1:888888888888:userpool/your-
user-pool-id-goes-here"
 }
 }
 }
]
}

The following example policy grants permission to all accounts within an AWS Organization to
send from identity example.com. The AWS Organization is specified using the PrincipalOrgID
global condition key.

{
 "Id":"ExampleAuthorizationPolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeOrg",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":"*",
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition":{
 "StringEquals":{
 "aws:PrincipalOrgID":"o-xxxxxxxxxxx"
 }

Using sending authorization 338

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid

Amazon Simple Email Service Developer Guide

 }
 }
]
}

Restricting the "From" address

If you use a verified domain, you may want to create a policy that allows only the delegate sender
to send from a specified email address. To restrict the "From" address, you set a condition on the
key called ses:FromAddress. The following policy enables AWS account ID 123456789012 to send
from the identity example.com, but only from the email address sender@example.com.

{
 "Id":"ExamplePolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeFromAddress",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition":{
 "StringEquals":{
 "ses:FromAddress":"sender@example.com"
 }
 }
 }
]
}

Restricting the time at which the delegate can send email

You can also configure your sender authorization policy so that a delegate sender can send email
only at a certain time of day, or within a certain date range. For example, if you plan to send an

Using sending authorization 339

Amazon Simple Email Service Developer Guide

email campaign during the month of September 2021, you can use the following policy to restrict
the delegate's ability to send email to that month only.

{
 "Id":"ExamplePolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ControlTimePeriod",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition":{
 "DateGreaterThan":{
 "aws:CurrentTime":"2021-08-31T12:00Z"
 },
 "DateLessThan":{
 "aws:CurrentTime":"2021-10-01T12:00Z"
 }
 }
 }
]
}

Restricting the email sending action

There are two actions that senders can use to send an email with Amazon SES: SendEmail and
SendRawEmail, depending on how much control the sender wants over the format of the email.
Sending authorization policies enable you to restrict the delegate sender to one of those two
actions. However, many identity owners leave the details of the email sending calls up to the
delegate sender by enabling both actions in their policies.

Using sending authorization 340

Amazon Simple Email Service Developer Guide

Note

If you want to enable the delegate sender to access Amazon SES through the SMTP
interface, you must choose SendRawEmail at a minimum.

If your use case is such that you want to restrict the action, you can do so by including only one of
the actions in your sending authorization policy. The following example shows you how to restrict
the action to SendRawEmail.

{
 "Id":"ExamplePolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ControlAction",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:SendRawEmail"
]
 }
]
}

Restricting the display name of the email sender

Some email clients display the "friendly" name of the email sender (if the email header
provides it), rather than the actual "From" address. For example, the display name of "John
Doe <johndoe@example.com>" is John Doe. For instance, you might send emails from
user@example.com, but you prefer that recipients see that the email is from Marketing rather than
from user@example.com. The following policy enables AWS account ID 123456789012 to send
from identity example.com, but only if the display name of the "From" address includes Marketing.

{

Using sending authorization 341

Amazon Simple Email Service Developer Guide

 "Id":"ExamplePolicy",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeFromAddress",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:888888888888:identity/example.com",
 "Principal":{
 "AWS":[
 "123456789012"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition":{
 "StringLike":{
 "ses:FromDisplayName":"Marketing"
 }
 }
 }
]
}

Using multiple statements

Your sending authorization policy can include multiple statements. The following example
policy has two statements. The first statement authorizes two AWS accounts to send from
sender@example.com as long as the "From" address and the feedback address both use the
domain example.com. The second statement authorizes an IAM user to send email from
sender@example.com as long as the recipient's email address is under the example.com domain.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AuthorizeAWS",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:999999999999:identity/sender@example.com",
 "Principal":{
 "AWS":[
 "111111111111",

Using sending authorization 342

Amazon Simple Email Service Developer Guide

 "222222222222"
]
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition":{
 "StringLike":{
 "ses:FromAddress":"*@example.com",
 "ses:FeedbackAddress":"*@example.com"
 }
 }
 },
 {
 "Sid":"AuthorizeInternal",
 "Effect":"Allow",
 "Resource":"arn:aws:ses:us-east-1:999999999999:identity/sender@example.com",
 "Principal":{
 "AWS":"arn:aws:iam::333333333333:user/Jane"
 },
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Condition":{
 "ForAllValues:StringLike":{
 "ses:Recipients":"*@example.com"
 }
 }
 }
]
}

Providing the delegate sender with the identity information for Amazon SES sending
authorization

After you create your sending authorization policy and attach it to your identity, you can provide
the delegate sender with the Amazon Resource Name (ARN) of the identity. The delegate sender
will pass that ARN to Amazon SES in the email-sending operation or in the header of the email. To
find your identity's ARN, follow these steps.

Using sending authorization 343

Amazon Simple Email Service Developer Guide

To find the ARN of an identity

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Verified identities.

3. In the list of identities, choose the identity to which you attached the sending authorization
policy.

4. In the Summary pane, the second column, Amazon Resource Name (ARN), will contain
the identity's ARN. It will look similar to arn:aws:ses:us-east-1:123456789012:identity/
user@example.com. Copy the entire ARN and give it to your delegate sender.

Delegate sender tasks for Amazon SES sending authorization

As a delegate sender, you're sending emails on behalf of an identity that you don't own, but
are authorized to use. Even though you're sending on the identity owner's behalf, bounces and
complaints count toward the bounce and complaint metrics for your AWS account, and the number
of messages you send counts toward your sending quota. You're also responsible for requesting
any sending quota increases that you might need in order to send the identity owner's emails.

As a delegate sender, you must complete the following tasks:

• Providing information to the identity owner

• Using delegate sender notifications

• Sending emails for the identity owner

Providing information to the identity owner for Amazon SES sending authorization

As a delegate sender, you must provide the identity owner with either your AWS account ID or your
IAM user Amazon Resource Name (ARN) since you will be sending email on behalf of the identity
owner. The identity owner needs your account information so he can create a policy that grants
you permission to send from one of his verified identities.

If you want to use your own SNS topics, you can request that your identity owner configure
feedback notifications for bounces, complaints, or deliveries to be sent to one or more of your SNS
topics. Do do this, you’ll need to share your SNS topic ARN with your identity owner so that he can
configure your SNS topic in the verified identity he's authorizing you to send from.

Using sending authorization 344

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

The following procedures explain how to find your account information and SNS topic ARNs to
share with your identity owner.

To find your AWS account ID

1. Sign in to the AWS Management Console at https://console.aws.amazon.com.

2. In the upper right-hand corner of the console, expand your name/account number, and choose
My Account in the dropdown.

3. The Account settings page will open and display all of your account information including your
AWS account ID.

To find your IAM user ARN

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the list of users, choose the user name. The Summary section displays the IAM user ARN.
The ARN resembles the following example: arn:aws:iam::123456789012:user/John.

To find your SNS topic ARN

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation pane, choose Topics.

3. In the list of topics, the SNS topic ARNs are displayed in the ARN column. The ARN resembles
the following example: arn:aws:sns:us-east-1:444455556666:my-sns-topic.

Using delegate sender notifications for Amazon SES sending authorization

As a delegate sender, you're sending emails on behalf of an identity that you don't own, but are
authorized to use; however, bounces and complaints still count toward your bounce and complaint
metrics, not those of the identity owner.

If the bounce or complaint rates for your account gets too high, your account is at risk of being
placed under review or have its ability to send email paused. For this reason, it's important that you
set up notifications and have a process in place to monitor them. You also need to have a process in
place for removing addresses that have bounced or complained from your mailing lists.

Using sending authorization 345

https://console.aws.amazon.com
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/sns/v3/home

Amazon Simple Email Service Developer Guide

Therefore, as a delegate sender, you can configure Amazon SES to send notifications when bounce
and complaint events occur for the emails you send on behalf of any identities that you don't own,
but have been authorized to use by the identity owner. You can also set up event publishing to
publish bounce and complaint notifications to Amazon SNS or Firehose.

Note

If you set up Amazon SES to send notifications by using Amazon SNS, you're charged
standard Amazon SNS rates for the notifications you receive. For more information, see the
Amazon SNS pricing page.

Create a new delegate sender notification

You can set up delegate sending notifications with either configuration sets using event publishing,
or with verified identities configured with your own SNS topics.

Procedures are given below for setting up new delegate sending notifications using either method:

• Event publishing through a configuration set

• Feedback notifications to SNS topics you own

To set up event publishing through a configuration set for your delegate sending

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. Follow the procedures in Create event destinations.

3. After you've set up event publishing in your configuration set, specify the name of the
configuration set when you send email as a delegate sender using the verified identity the
identity owner authorized you to send from. See Sending emails for the identity owner.

To set up feedback notifications to SNS topics you own for your delegate sending

1. After you've decided which of your SNS topics you'd like to use for feedback notifications,
follow the procedures to find your SNS topic ARN and copy the full ARN and share it with your
identity owner.

Using sending authorization 346

https://aws.amazon.com/sns/pricing
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

2. Ask your identity owner to configure your SNS topics for feedback notifications on the
shared identity he's authorized you to send from. (Your identity owner will need to follow the
procedures given for configuring SNS topics in the authorization policy procedures.)

Sending emails for the identity owner for Amazon SES sending authorization

As a delegate sender, you send emails the same way that other Amazon SES senders do, except
that you provide the Amazon Resource Name (ARN) of the identity that the identity owner has
authorized you to use. When you call Amazon SES to send the email, Amazon SES checks to see if
the identity that you specified has a policy that authorizes you to send for it.

There are different ways that you can specify the identity's ARN when you send an email. The
method that you use depends on whether you send the email by using the Amazon SES API
operations or the Amazon SES SMTP interface.

Important

To successfully send an email, you have to connect to the Amazon SES endpoint in the AWS
Region that the identity owner verified the identity in.
Additionally, the AWS accounts of both the identity owner and the delegate sender have
to be removed from the sandbox before either account can send email to non-verified
addresses. For more information, see Request production access (Moving out of the
Amazon SES sandbox).

Using the Amazon SES API

As with any Amazon SES email sender, if you access Amazon SES through the Amazon SES API
(either directly through HTTPS or indirectly through an AWS SDK), you can choose between one
of three email-sending actions: SendEmail, SendTemplatedEmail, and SendRawEmail. The
Amazon Simple Email Service API Reference describes the details of these APIs, but we provide an
overview of the sending authorization parameters here.

SendRawEmail

If you want to use SendRawEmail so that you can control the format of your emails, you can
specify the delegated authorized identity in one of two ways:

Using sending authorization 347

https://docs.aws.amazon.com/ses/latest/APIReference/

Amazon Simple Email Service Developer Guide

• Pass optional parameters to the SendRawEmail API. The required parameters are described in
the following table:

Parameter Description

SourceArn The ARN of the identity that is associated with the
sending authorization policy that permits you to
send for the email address specified in the Source
parameter of SendRawEmail .

Note

If you only specify the SourceArn ,
Amazon SES sets the "From" address and the
"Return Path" addresses to the identity that
you specified in SourceArn .

FromArn The ARN of the identity that is associated with the
sending authorization policy that permits you to
specify a particular "From" address in the header of
the raw email.

ReturnPathArn The ARN of the identity that is associated with the
sending authorization policy that permits you to use
the email address specified in the ReturnPath
parameter of SendRawEmail .

• Include X-headers in the email. X-headers are custom headers that you can use in addition to
standard email headers (such as the From, Reply-To, or Subject headers). Amazon SES recognizes
three X-headers that you can use to specify sending authorization parameters:

Important

Do not include these X-headers in the DKIM signature, because they are removed by
Amazon SES before sending the email.

Using sending authorization 348

Amazon Simple Email Service Developer Guide

X-Header Description

X-SES-SOURCE-ARN Corresponds to the SourceArn .

X-SES-FROM-ARN Corresponds to the FromArn.

X-SES-RETURN-PATH-ARN Corresponds to the ReturnPathArn .

Amazon SES removes all X-headers from the email before sending it. If you include multiple
instances of an X-header, Amazon SES uses only the first instance.

The following example shows an email that includes sending authorization X-headers:

X-SES-SOURCE-ARN: arn:aws:ses:us-east-1:123456789012:identity/example.com
X-SES-FROM-ARN: arn:aws:ses:us-east-1:123456789012:identity/example.com
X-SES-RETURN-PATH-ARN: arn:aws:ses:us-east-1:123456789012:identity/example.com

From: sender@example.com
To: recipient@example.com
Return-Path: feedback@example.com
Subject: subject
Content-Type: multipart/alternative;
 boundary="----=_boundary"

------=_boundary
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

body
------=_boundary
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: 7bit

body
------=_boundary--

Using sending authorization 349

Amazon Simple Email Service Developer Guide

SendEmail and SendTemplatedEmail

If you use the SendEmail or SendTemplatedEmail operation, you can specify the delegated
authorized identity by passing in the optional parameters below. You can't use the X-header
method when you use the SendEmail or SendTemplatedEmail operation.

Parameter Description

SourceArn The ARN of the identity that is associated with the
sending authorization policy that permits you to
send for the email address specified in the Source
parameter of either SendEmail or SendTempl
atedEmail .

ReturnPathArn The ARN of the identity that is associated with the
sending authorization policy that permits you to
use the email address specified in the ReturnPat
h parameter of either SendEmail or SendTempl
atedEmail .

The following example shows how to send an email that includes the SourceArn and
ReturnPathArn attributes using either the SendEmail or SendTemplatedEmail operation and
the SDK for Python.

import boto3
from botocore.exceptions import ClientError

Create a new SES resource and specify a region.
client = boto3.client('ses',region_name="us-east-1")

Try to send the email.
try:
 #Provide the contents of the email.
 response = client.send_email(
 Destination={
 'ToAddresses': [
 'recipient@example.com',
],
 },

Using sending authorization 350

https://aws.amazon.com/sdk-for-python

Amazon Simple Email Service Developer Guide

 Message={
 'Body': {
 'Html': {
 'Charset': 'UTF-8',
 'Data': 'This email was sent with Amazon SES.',
 },
 },
 'Subject': {
 'Charset': 'UTF-8',
 'Data': 'Amazon SES Test',
 },
 },
 SourceArn='arn:aws:ses:us-east-1:123456789012:identity/example.com',
 ReturnPathArn='arn:aws:ses:us-east-1:123456789012:identity/example.com',
 Source='sender@example.com',
 ReturnPath='feedback@example.com'
)
Display an error if something goes wrong.
except ClientError as e:
 print(e.response['Error']['Message'])
else:
 print("Email sent! Message ID:"),
 print(response['ResponseMetadata']['RequestId'])

Using the Amazon SES SMTP interface

When you use the Amazon SES SMTP interface for delegate sending, you have to include the X-
SES-SOURCE-ARN, X-SES-FROM-ARN, and X-SES-RETURN-PATH-ARN headers in your message.
Pass these headers after you issue the DATA command in the SMTP conversation.

Sending test emails in Amazon SES with the simulator

We recommend using the Amazon SES console to send a test email with Amazon SES. Because the
console requires you to manually enter information, you typically only use it to send test emails.
After you get started with Amazon SES, you will most likely send your emails by using either the
Amazon SES SMTP interface or API. However,the console is useful for monitoring your sending
activity.

The following topics explain how to use the mailbox simulator from both the console and
manually by sending emails:

• Using the mailbox simulator from the console

Sending test emails with the simulator 351

Amazon Simple Email Service Developer Guide

• Using the mailbox simulator manually

Using the mailbox simulator from the console

Important

• In this tutorial, you send an email to yourself from the console so that you can check to
see if you received it. For further experimentation or load testing, see Using the mailbox
simulator manually.

• Emails that you send to the mailbox simulator do not count toward your sending quota
or your bounce and complaint rates, nor do they affect Virtual Deliverability Manager
metrics.

Before you follow these steps, complete the tasks in Setting up Amazon Simple Email Service.

To send a test email message from the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane under Configuration choose Verified Identities.

3. From the Identities table, select a verified email identity (by clicking directly on the identity
name as opposed to selecting its checkbox). If you don't have a verified email identity, see
Creating an email address identity.

4. On the selected email identity's detail page, choose Send test email.

5. For Message details, choose the Email Format. The two choices are as follows:

• Formatted—This is the simplest option. Choose this option if you simply want to type the
text of your message into the Body text box. When you send the email, Amazon SES puts
the text into email format for you.

• Raw—Choose this option if you want to send a more complex message, such as a message
that includes HTML or an attachment. Because of this flexibility, you need to format the
message, as described in Sending raw email using the Amazon SES API v2, yourself, and then
paste the entire formatted message, including the headers, into the Body text box. You can

Using the mailbox simulator from the console 352

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

use the following example, which contains HTML, to send a test email using the Raw email
format. Copy and paste this message in its entirety into the Body text box. Ensure that there
is not a blank line between the MIME-Version header and the Content-Type header; a
blank line between these two lines causes the email to be formatted as plain text instead of
HTML.

Subject: Amazon SES Raw Email Test
MIME-Version: 1.0
Content-Type: text/html

<!DOCTYPE html>
<html>
<body>
<h1>This text should be large, because it is formatted as a header in HTML.</h1>
<p>Here is a formatted link: <a href="https://docs.aws.amazon.com/ses/latest/
DeveloperGuide/Welcome.html">Amazon Simple Email Service Developer Guide.</p>
</body>
</html>

6. Choose the type of simulated email scenario you want to test by expanding the Scenario list
box.

• If you choose Custom and you're still in the Amazon SES sandbox, make sure that the
address in the Custom recipient field is a verified email address. For more information,
see Creating an email address identity.

7. Fill out the remaining fields as desired.

8. Choose Send test email.

9. Sign in to the email client of the address you sent the email to. You will find the message that
you sent.

Using the mailbox simulator manually

Amazon SES includes a mailbox simulator that you can use to test how your application handles
different email sending scenarios. The mailbox simulator is useful when, for example, you want to
test an email sending application without creating fictitious email addresses, or when you want to
find your system's maximum throughput without impacting your daily sending quota.

Using the mailbox simulator manually 353

Amazon Simple Email Service Developer Guide

Important considerations

Consider the following features and limitations when you use the Amazon SES mailbox simulator:

• You can use the mailbox simulator even if your account is in the Amazon SES sandbox.

• Emails that you send to the mailbox simulator are limited by your account's maximum sending
rate, but they don't affect your daily sending quota. For example, if your account is authorized to
send 10,000 messages per 24-hour period, and you send 100 messages to the mailbox simulator,
you can still send up to 10,000 messages to regular recipients without reaching your sending
quota.

• Emails that you send to the mailbox simulator don't impact your email deliverability or
reputation metrics. For example, if you send a large number of messages to the bounce address
of the email simulator, it doesn't display a message warning you that your bounce rate is too
high on the reputation metrics console page.

• For billing purposes, emails that you send to the Amazon SES mailbox simulator are the same as
any other email you send using Amazon SES. In other words, we bill you the same amount for
messages that you send to the mailbox simulator as for those that you send to regular recipients.

• The mailbox simulator supports labeling, which enables you to send emails to the same
mailbox simulator address in multiple ways, or to see how your application handles
Variable Envelope Return Path (VERP). For example, you can send an email to bounce
+label1@simulator.amazonses.com and bounce+label2@simulator.amazonses.com to see if your
application can match a bounce message with the email address that caused the bounce.

• If you use the mailbox simulator to simulate multiple bounces from the same sending request,
Amazon SES combines the bounce responses into a single response.

Using the mailbox simulator

To use the email simulator, find the scenario in the following table, and then send an email to the
corresponding email address.

Note

When you send an email to a mailbox simulator address, you must send it through Amazon
SES, by using the AWS CLI, an AWS SDK, the Amazon SES console, the Amazon SES SMTP
interface, or the Amazon SES API. The mailbox simulator doesn't respond to emails that it
receives from external sources.

Using the mailbox simulator manually 354

Amazon Simple Email Service Developer Guide

Simulated scenario Email address

Successful delivery—The recipient's email
provider accepts your email. If you set up
delivery notifications as described in Setting
up event notifications for Amazon SES,
Amazon SES sends you a delivery notification
through Amazon Simple Notification Service
(Amazon SNS).

success@simulator.amazonses.com

Bounce—The recipient's email provider rejects
your email with an SMTP 550 5.1.1 ("Unknown
User") response code. Amazon SES generates
a bounce notification and, depending on
how you set up your account, sends it to
you in an email or sends a notification to an
Amazon SNS topic. The mailbox simulator
email address isn't placed on the Amazon
SES suppression list, which would normally
happen when a hard bounce occurs. The
bounce response that you receive from the
mailbox simulator is compliant with RFC 3464.
For information about how to receive bounce
feedback, see Setting up event notifications
for Amazon SES.

bounce@simulator.amazonses.com

Automatic responses—The recipient's email
provider accepts your email and delivers it
to the recipient’s inbox. The email provider
sends an automatic response, such as an "out
of the office" (OOTO) message, to the address
in the Return-Path header of the email, or
the envelope sender ("MAIL FROM") address
if the Return-Path header isn't present. The
automatic response that you receive from the
mailbox simulator is compliant with RFC 3834.

ooto@simulator.amazonses.com

Using the mailbox simulator manually 355

https://tools.ietf.org/html/rfc3464
https://tools.ietf.org/html/rfc3834

Amazon Simple Email Service Developer Guide

Simulated scenario Email address

Complaint—The recipient's email provider
accepts your email and delivers it to the
recipient’s inbox. The recipient decides that
your message is unsolicited and clicks "Mark
as Spam" in his or her email client. Amazon
SES then forwards the complaint notification
to you by email or by notifying an Amazon
SNS topic, depending on how you set up
your account. The complaint response that
you receive from the mailbox simulator is
compliant with RFC 5965. For information
about how to receive complaint feedback, see
Setting up event notifications for Amazon SES.

complaint@simulator.amazonses.com

Recipient address on suppression list—
Amazon SES generates a hard bounce as if the
recipient's address is on the global suppression
list.

suppressionlist@simulator.amazonses.com

Testing Reject events

Every message that you send through Amazon SES is scanned for viruses. If you send a message
that contains a virus, Amazon SES accepts the message, detects the virus, and rejects the entire
message. When Amazon SES rejects the message, it stops processing the message, and doesn't
attempt to deliver it to the recipient's mail server. It then generates a Reject event.

The Amazon SES mailbox simulator doesn't include an address for testing Reject events. However,
you can test Reject events by using a European Institute for Computer Antivirus Research (EICAR)
test file. This file is an industry-standard method of testing antivirus software in a safe manner. To
create an EICAR test file, paste the following text into a file:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Using the mailbox simulator manually 356

https://tools.ietf.org/html/rfc5965

Amazon Simple Email Service Developer Guide

Save the file as sample.txt, attach it to an email, and then send the email to a verified address. If
there are no other issues with the email, Amazon SES accepts the message, but then rejects it as it
would if it contained an actual virus.

Note

Rejected emails—including those that you send by using the procedure above—count
against your daily sending quota. We bill you for each message that you send, including
rejected messages.

To learn more about EICAR test files, see the EICAR test file page on Wikipedia.

Using the mailbox simulator manually 357

https://en.wikipedia.org/wiki/EICAR_test_file

Amazon Simple Email Service Developer Guide

Using configuration sets in Amazon SES

Configuration sets are groups of rules that you can apply to your verified identities. A verified
identity is a domain, subdomain, or email address you use to send email through Amazon SES.
When you apply a configuration set to an email, all of the rules in that configuration set are applied
to the email.

You can use configuration sets to apply the following types of rules to your email sending and can
contain one, both, or neither of these types:

• Event destinations – Allow you to publish email sending metrics, including the numbers of sends,
deliveries, opens, clicks, bounces, and complaints to other AWS products for each email you send.
For example, you can send your email metrics to an Amazon Data Firehose destination, and then
analyze it using Amazon Managed Service for Apache Flink. Alternatively, you can send bounce
and complaint information to Amazon SNS and receive notifications immediately when those
events occur.

• IP pool management – If you lease dedicated IP addresses to use with Amazon SES, you can
create groups of these addresses called dedicated IP pools to be used for sending specific types
of email. For example, you can associate these dedicated IP pools with configuration sets and use
one for sending marketing communications, and another for sending transactional emails. Your
sender reputation for transactional emails is then isolated from that of your marketing emails.

To associate a configuration set with a verified identity can be done in the following ways:

• Include a reference to the configuration set in the headers of the email. For more information
about specifying configuration sets in your emails, see Specifying a configuration set when you
send email.

• Specify an existing configuration set to be used as the identity's default configuration set, either
at the time of identity creation, or later while editing a verified identity. See Understanding
default configuration sets.

Contents

• Creating configuration sets in SES

• Managing configuration sets in Amazon SES

• Specifying a configuration set when you send email

358

Amazon Simple Email Service Developer Guide

• Viewing and exporting reputation metrics

Creating configuration sets in SES

You can use the SES console, the CreateConfigurationSet action in the Amazon SES API v2, or
the aws sesv2 create-configuration-set command in the Amazon SES CLI v2 to create a
new configuration set. This section shows how to create configuration sets using the SES console
and the Amazon SES CLI v2.

Create a configuration set (console)

To create a configuration set using the SES console, follow these steps:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Configuration sets.

3. Choose Create set.

4. Enter the following details in the General details section:

• Configuration set name – the name for your configuration set. The name can contain up to
64 alphanumeric characters, including letters, numbers, hyphens (-) and underscores (_) only.

• Sending IP pool – when you send email using this configuration set, messages are sent from
the dedicated IP addresses in the assigned pool. Select an IP pool from the list.

Note

The default (ses-default-dedicated-pool) contains dedicated IP addresses that
haven't been assigned to any other pool. To learn more about managing IP pools,
see Assign IP pools.

• Tracking options – select the Use a custom redirect domain check box to use a custom
redirect domain to handle open and click tracking for this configuration set, instead of using
one of the SES domains.

• Custom redirect domain – with a custom redirect domain, you can enter a custom
subdomain in the box (optional), or select a verified domain from the list.

Create configuration sets 359

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

Custom redirect domains can be specified as follows:

• Redirect domains must be set up prior to choosing this option. For instructions on
selecting a custom domain for handling open and click tracking, see Configuring
custom domains to handle open and click tracking.

• Then, to choose to use a custom redirect domain, you must indicate it while
creating your configuration set, or at a later time by editing your tracking options
for the configuration set.

• Advanced delivery options – choose the arrow on the left to expand the advanced delivery
options section.

• Transport Layer Security (TLS) – to require SES to establish a secure connection with the
receiving mail server, and send emails using the TLS protocol, select the Required check
box.

Note

SES supports TLS 1.2 and recommends TLS 1.3. To learn more, see Infrastructure
security in SES.

5. Enter the following details in the Reputation options section:

• Reputation metrics – used to track bounce and complaint metrics in CloudWatch for
emails sent using this configuration set. (Additional charges apply, see Price per metric for
CloudWatch.)

• Enabled – select this check box to enable reputation metrics for the configuration set.

6.
The Suppression list options section provides a decision set to define customized suppression
starting with the option to use this configuration set to override your account-level
suppression. The configuration set-level suppression logic map will help you understand
the effects of the override combinations. These multitiered selections of overrides can be
combined to implement three different levels of suppression:

Create a configuration set 360

Amazon Simple Email Service Developer Guide

a. Use account-level suppression: Do not override your account-level suppression and do
not implement any configuration set-level suppression - basically, any email sent using
this configuration set will just use your account-level suppression. To do this:

• In Suppression list settings, uncheck the Override account level settings box.

b. Do not use any suppression: Override your account-level suppression without
enabling any configuration set-level suppression - this means any email sent using this
configuration set will not use any of your account-level suppression; in other words, all
suppression is cancelled. To do this:

i. In Suppression list settings, check the Override account level settings box.

ii. In Suppression list, uncheck the Enabled box.

c. Use configuration set-level suppression: Override your account-level suppression with
custom suppression list settings defined in this configuration set - this means any email
sent using this configuration set will only use its own suppression settings and ignore any
account-level suppression settings. To do this:

i. In Suppression list settings, check the Override account level settings box.

ii. In Suppression list, check Enabled.

iii. In Specify the reason(s)..., select one of the suppression reasons for this
configuration set to use.

7.
The Virtual Deliverability Manager options section provides a way for you to define custom
settings for how this configuration set will use engagement tracking and optimized shared
delivery by overriding how they’ve been defined in your Virtual Deliverability Manager settings
at the account level:

a. To disable both engagement tracking and optimized shared delivery for this configuration
set:

i. Check the Override account level settings box.

ii. Ensure Enabled is unchecked for both Engagement tracking and Optimized shared
delivery, then choose Save changes.

b. To enable or disable either, or both, engagement tracking and optimized shared delivery
for this configuration set:

i. Check the Override account level settings box.

Create a configuration set 361

Amazon Simple Email Service Developer Guide

ii. Check or uncheck Enabled for either or both Engagement tracking and Optimized
shared delivery, then choose Save changes.

c. To revert back to your Virtual Deliverability Manager account level settings for
engagement tracking and optimized shared delivery for this configuration set:

• Uncheck the Override account level settings box, then choose Save changes.

8. You can optionally add one or more tags in the Tags section. Repeat the following steps for
each tag you want to add to your configuration set.

a. Choose Add new tag.

b. Enter the tag Key.

c. Enter the tag Value (optional).

To remove a tag you've entered, choose Remove for that tag. You can enter a maximum of 50
tags.

9. Choose Create set to create your configuration set.

Now that you’ve created your configuration set, you have the option to define event destinations
for your configuration set which enables event publishing that is triggered on the event types you
specify for the event destination. A configuration set can have multiple event destinations with
multiple event types defined. See Creating Amazon SES event destinations.

Create a configuration set (AWS CLI)

You can create a configuration set using a JSON file as input to the aws sesv2 create-
configuration-set command in the AWS CLI.

1. Create a CLI input JSON file

Use your favorite file editing tool to create a JSON file with the following keys, plus values that
are valid for your environment, or use the SES API v2 aws sesv2 create-configuration-
set command with the --generate-cli-skeleton option with no value specified to print
a sample JSON structure to standard output.

This example uses a file named create-configuration-set.json:

{

Create a configuration set (AWS CLI) 362

Amazon Simple Email Service Developer Guide

 "ConfigurationSetName": "sample-configuration-set",
 "TrackingOptions": {
 "CustomRedirectDomain": "some.domain.com"
 },
 "DeliveryOptions": {
 "TlsPolicy": "REQUIRE",
 "SendingPoolName": "sending pool"
 },
 "ReputationOptions": {
 "ReputationMetricsEnabled": true,
 "LastFreshStart": timestamp
 },
 "SendingOptions": {
 "SendingEnabled": true
 },
 "Tags": [
 {
 "Key": "tag key",
 "Value": "tag value"
 }
],
 "SuppressionOptions": {
 "SuppressedReasons": ["BOUNCE","COMPLAINT"]
 }
}

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows uses
the backslash (\) to refer to the directory path, and Linux uses the forward slash (/).

2. Run the following command, using the file you created as input.

aws sesv2 create-configuration-set --cli-input-json file://create-configuration-
set.json

Create a configuration set (AWS CLI) 363

Amazon Simple Email Service Developer Guide

Note

To review the AWS CLI reference for this command, see create-configuration-set.

Managing configuration sets in Amazon SES

After creating a configuration set, you can manage it with the view, edit, and delete options using
the SES console, the Amazon SES API v2, and the Amazon SES CLI v2. Configuration sets can also
be assigned to a verified identity as its default configuration set that is applied every time email is
sent from the identity.

Topics in this section:

• View, edit, & delete configuration set (console)

• List configuration sets (AWS CLI)

• Get configuration set details (AWS CLI)

• Delete a configuration set (AWS CLI)

• Stop sending email from a configuration set (AWS CLI)

• Understanding default configuration sets

• Creating Amazon SES event destinations

• Assigning IP pools in Amazon SES

• Configuring custom domains to handle open and click tracking

View, edit, & delete configuration set (console)

Access an existing configuration set's detail page

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Configuration sets.

3. To see details for a configuration set, choose the Name from the configuration set list. This
takes you to the details page.

Manage configuration sets 364

https://docs.aws.amazon.com/cli/latest/reference/sesv2/create-configuration-set.html
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

The Configuration sets detail page has two tabs for configuration set details with panels in each
tab where you can view, edit, or delete as follows:

• Overview tab

• General details – this panel shows general details for the configuration set:

• Sending status (whether it's currently enabled)

• Configuration set name

• Sending IP pool

• Transport Layer Security (TLS)

• Custom redirect domain

• Reputation options – this panel shows details related to your sending reputation:

• Reputation metrics (indicates if you're tracking metrics)

• Last fresh start (the date and time at which the reputation metrics for the configuration set
were last reset)

• Suppression list options – this panel shows if you're overriding your account-level suppression
list with the configuration set, and if so, what the override details are:

• Suppression list settings (indicates overriding account-level settings—if not, this is the only
item displayed in the panel)

• Suppression list (indicates how you're overriding your account-level setting—either with the
suppression list enabled or disabled)

• Suppression reasons (indicates if bounces and/or complaints are the reason for adding
recipient email addresses to your suppression list)

• Virtual Deliverability Manager options – this panel shows if you're overriding your Virtual
Deliverability Manager account settings for engagement tracking and optimized shared
delivery with the configuration set, and if so, what the override details are:

• Engagement tracking (indicates if engagement tracking is enabled or disabled)

• Optimized shared delivery (indicates if optimized shared delivery is enabled or disabled)

• Tags – this panel shows all of the tags you've attached to the configuration set.

• Key

• Value

You can perform the following actions from these panels:View, edit, & delete configuration set (console) 365

Amazon Simple Email Service Developer Guide

• Choose the Edit button, or in the case of the Tags panel, the Manage tags button to edit the
respective details of each panel.

• For more information about the fields, see the related section in the Create a configuration set
(console) steps.

Tip

Remember to Save changes when you are done editing. Choose Cancel to go back to the
configuration set detail page without saving.

• Event destinations tab

• All destinations (count of event destinations) – this panel lists all of the event
destinations that you have entered for your configuration set. For each destination, you can
see:

• Name

• Destination

• Event types

• Event publishing

You can perform the following actions from this panel:

• Add a new event destination by choosing the Add destination button. For more information
about adding an event destination, see Creating an event destination.

• Modify an existing event destination by selecting its name which will open the edit screen.

• Delete an existing event destination by selecting the check box next to its name then choosing
the Delete button.

At the top of each configuration set's details page, and visible from either the Overview or Events
destination tab, are the following options:

• Delete – this button will delete your configuration set.

• Disable sending – this button will stop sending emails from your configuration set.

View, edit, & delete configuration set (console) 366

Amazon Simple Email Service Developer Guide

List configuration sets (AWS CLI)

You can use the list-configuration-sets command in the AWS CLI to generate a list of all the
configuration sets associated with your account in the current Region, as follows:

aws sesv2 list-configuration-sets

Get configuration set details (AWS CLI)

You can use the get-configuration-set command in the AWS CLI to get details for a specific
configuration set, as follows:

aws sesv2 get-configuration-set --configuration-set-name name

Delete a configuration set (AWS CLI)

You can use the delete-configuration-set command in the AWS CLI to delete a specific
configuration set, as follows:

aws sesv2 delete-configuration-set --configuration-set-name name

Stop sending email from a configuration set (AWS CLI)

You can use the put-configuration-set-sending-options command in the AWS CLI to stop sending
email from a specific configuration set, as follows:

aws sesv2 put-configuration-set-sending-options --configuration-set-name name --no-
sending-enabled

To start sending again, run the same command with the --sending-enabled option instead, as
follows:

aws sesv2 put-configuration-set-sending-options --configuration-set-name name --
sending-enabled

Understanding default configuration sets

The concept of assigning a configuration set as the default to be used by a verified identity is
explained in this section to help understand the benefits and use case.

List configuration sets (AWS CLI) 367

Amazon Simple Email Service Developer Guide

A default configuration set automatically applies its rules to all messages that you send from the
email identity associated with that configuration set. You can apply default configuration sets to
both email address and domain identities during the creation of the identity or after the fact as an
edit function of an existing identity.

Default configuration set considerations

• The configuration set must be created first before associating it with an identity.

• Default configuration sets will only be applied if the identity is verified.

• An email identity can be associated with only one configuration set at a time. However, you can
apply the same configuration set to multiple identities.

• A default configuration set at the email address level overrides a default configuration set at
the domain level. For example, a default configuration set associated with joe@example.com
overrides the configuration set for the domain of example.com.

• A default configuration set at the domain level applies to all email addresses for that domain
(unless you verify specific addresses for the domain).

• If you delete a configuration set that's designated as the default configuration set for an identity,
and then attempt to send email through that identity, your call to Amazon SES fails with a "bad
request" error.

• A default configuration set cannot be assigned to a verified identity that's being used by a
delegate sender.

• How to specify an existing configuration set to be used as the identity's default configuration
set is actually a function of verified identities, so instructions are given in the identity workflows
accordingly:

• Specify a default configuration set during identity creation – follow the instructions given
in the optional Step 6 for either Domain identity default configuration set or Email identity
default configuration set located in the Creating and verifying identities in Amazon SES
chapter.

• Specify a default configuration set for an existing identity – follow the steps in Editing an
identity using the console along with these details for Step 5:

a. Choose the Configuration set tab.

b. Choose Edit in the Default configuration set container.

c. Select the list box and choose an existing configuration set to be used as the default.

d. Continue with the remaining steps in Editing an identity using the console.

Understanding default configuration sets 368

Amazon Simple Email Service Developer Guide

Note

If the configuration set you assign as a default has reputation metrics enabled, additional
charges will be incurred for any mail sent using the default configuration set, see Price per
metric for CloudWatch.

Creating Amazon SES event destinations

Event destinations allow you to publish the following outgoing email tracking actions to other AWS
services for monitoring:

• Sends

• Rendering failures

• Rejects

• Deliveries

• Hard bounces

• Complaints

• Delivery delays

• Subscriptions

• Opens

• Clicks

To learn more about setting up event publishing, see the section called “Monitor email sending
using event publishing”.

Creating an event destination

After you’ve created a configuration set, you have the option to create event destinations for your
configuration set which enables event publishing that is triggered on the event types you specify
for the event destination. A configuration set can have multiple event destinations with multiple
event types defined.

If you haven't created a configuration set, see the section called “Create configuration sets”.

The following steps show how to create or add an event destination to a configuration set.

Create event destinations 369

Amazon Simple Email Service Developer Guide

To create or add and event destination using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Configuration sets.

3. Choose a configuration set's name from the Name column to access its details.

4. Select the Event destinations tab.

5. Choose Add destination.

6. Select event types

Email sending events are metrics relating to your sending activity that you can measure using
Amazon SES. In this step, you select which types of email sending events you would like
Amazon SES to publish to your event destination.

To learn more about event types, see Monitoring your Amazon SES sending activity.

a. Choose Event types to publish

• Sending and delivery – to choose event types to publish, select their respective check
boxes, or choose Select all to publish all of the event types.

Event types

• Sends – the send request was successful and Amazon SES will attempt to deliver the
message to the recipient’s mail server.

• Rendering failures – the email wasn't sent because of a template rendering issue.
This event type can occur when template data is missing, or when there is a mismatch
between template parameters and data. (This event type only occurs when you
send email using the SendTemplatedEmail or SendBulkTemplatedEmail API
operations.)

• Rejects – Amazon SES accepted the email, but determined that it contained a virus
and didn’t attempt to deliver it to the recipient’s mail server.

• Deliveries – Amazon SES successfully delivered the email to the recipient's mail
server.

• Hard bounces – the recipient's mail server permanently rejected the email. (Soft
bounces are only included when Amazon SES fails to deliver the email after retrying
for a period of time.)

Create event destinations 370

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html

Amazon Simple Email Service Developer Guide

• Complaints – the email was successfully delivered to the recipient’s mail server, but
the recipient marked it as spam.

• Delivery delays – the email couldn't be delivered to the recipient’s mail server
because a temporary issue occurred. Delivery delays can occur, for example, when
the recipient's inbox is full, or when the receiving email server experiences a transient
issue. (This event type not supported by Amazon Pinpoint.)

• Subscriptions – the email was successfully delivered, but the recipient updated the
subscription preferences by clicking List-Unsubscribe in the email header or the
Unsubscribe link in the footer. (This event type not supported by Amazon Pinpoint.)

• Open and click tracking – to measure subscriber engagement, choose one or both of
the check boxes to track Opens and Clicks.

• Opens – the recipient received the message and opened it in their email client.

• Clicks – the recipient clicked one or more links in the email.

Note

Open and click event publishing defined here, or in any other configuration
set, does not affect engagement tracking options for Virtual Deliverability
Manager dashboard; these are defined through either Virtual Deliverability
Manager's account settings or configuration set overrides. For example, if you
have engagement tracking disabled through Virtual Deliverability Manager,
it will not disable the open and click event publishing you have set up here in
SES event destinations.

• Configuration set redirect domain – this field will appear and be prepopulated
with the name of the custom redirect domain if you assigned one when creating the
configuration set.

Note

You can update the Custom redirect domain in the configuration set for
open and click tracking under that domain—see Tracking options in Step 4
of Create configuration sets. For more information about configuring custom
open and click domains see Configuring custom domains to handle open and
click tracking.

Create event destinations 371

Amazon Simple Email Service Developer Guide

b. Choose Next to continue.

7. Specify destination

An event destination is an AWS service to which email sending events can be published.
Choosing the appropriate destination depends on the level of detail you want to capture and
how you want to receive the data.

a. Destination options

• Destination type – when you select the radio button next to the AWS service to publish
your events to, a details panel will appear with fields respective to the service. Selecting
the links below will give instructions about the service's detail panel:

• Amazon CloudWatch (Additional charges apply, see Price per metric for CloudWatch.)

• Amazon Data Firehose

• Amazon EventBridge

• Amazon Pinpoint (Does not support Delivery delays or Subscriptions event types.)

• Amazon SNS

To learn more about using the event publishing model to monitor your email operation,
see Monitor email sending using Amazon SES event publishing.

• Name – enter the name of the destination for this configuration set. The name can
include letters, numbers, dashes, and hyphens.

• Event publishing – to turn on event publishing for this destination, select the Enabled
check box.

b. Choose Next to continue.

8. Review

When you are satisfied that your entries are correct, choose Add destination to add your event
destination.

You can also create an event destination using the Amazon SES console, the Amazon SES API v2, or
the Amazon SES CLI v2.

Create event destinations 372

Amazon Simple Email Service Developer Guide

To create an event destination using the SES API:

• For creating an event destination using the SES API, see
CreateConfigurationSetEventDestination.

Editing, disabling/enabling, or deleting an event destination

Follow these steps to edit, disable/enable, or delete an event destination using the SES console:

To edit, disable/enable, or delete an event destination using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Configuration sets.

3. Choose a configuration set's name from the Name column to access its details.

4. Select the configuration set's Event destinations tab.

5. Select the event destination's name under the Name column.

6. • To edit – Choose the Edit button on the respective panel for the set of fields you want to
edit and make your changes followed by Save changes.

• To disable or enable – Choose the button that's either labeled Disable or Enable in the
upper-right corner.

• To delete – Choose the Delete button in the upper-right corner.

You can also edit, disable/enable, or delete an event destination using the Amazon SES console,
the Amazon SES API v2, or the Amazon SES CLI v2.

To edit, disable/enable, or delete an event destination using the SES API:

1. For disabling/enabling an event destination using the SES API, see
UpdateConfigurationSetEventDestination.

2. For deleting an event destination using the SES API, see
DeleteConfigurationSetEventDestination.

Create event destinations 373

https://docs.aws.amazon.com/ses/latest/APIReference/API_CreateConfigurationSetEventDestination.html
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://docs.aws.amazon.com/ses/latest/APIReference/API_UpdateConfigurationSetEventDestination.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_DeleteConfigurationSetEventDestination.html

Amazon Simple Email Service Developer Guide

Assigning IP pools in Amazon SES

You can use IP pools to create groups of dedicated IP addresses for sending specific types of email.
You can also use a pool of IP addresses that are shared by all Amazon SES customers.

When assigning an IP pool to a configuration set, you can choose from the following options:

• A specific dedicated IP pool – When you select an existing dedicated IP pool, emails that use the
configuration set are sent using only the dedicated IP addresses that belong to that pool. For
procedures on how to create:

• new standard IP pools, see Creating standard dedicated IP pools for dedicated IPs (standard).

• new managed IP pools, see Creating a managed IP pool to enable dedicated IPs (managed).

• ses-default-dedicated-pool – This pool contains all of the dedicated IP addresses for your
account that do not already belong to an IP pool. If you send an email using a configuration set
that is not associated with a pool, or if you send an email without specifying a configuration set
at all, the email is sent from one of the addresses in this default pool. This pool is automatically
managed by SES and cannot be edited.

• ses-shared-pool – This pool contains a large set of IP addresses that are shared among all
Amazon SES customers. This option may be useful when you need to send email that doesn't
align with your usual sending behaviors.

Assigning an IP pool to a configuration set

This section references the procedures for assigning and modifying IP pools in a configuration set
using the Amazon SES console.

• To assign an IP pool to a configuration set using the console...

• while creating a new configuration set – see Sending IP pool in Step 4 of Create configuration
sets

• while modifying an existing configuration set – select the Edit button in the General details
panel of the selected configuration set, and follow the directions for Sending IP pool in Step 4
of Create configuration sets

Assign IP pools 374

Amazon Simple Email Service Developer Guide

Configuring custom domains to handle open and click tracking

When you use event publishing to capture open and click events, Amazon SES makes minor
changes to the emails you send. To capture open events, SES adds a 1 pixel by 1 pixel transparent
GIF image in each email sent through SES which includes a unique file name for each email, and
is hosted on a server operated by SES; when the image is downloaded, SES can tell exactly which
message was opened and by whom.

By default, this pixel is inserted at the bottom of the email; however, some email providers’
applications truncate the preview of an email when it exceeds a certain size and may provide a link
to view the remainder of the message. In this scenario, the SES pixel tracking image does not load
and will throw off the open rates you’re trying to track. To get around this, you can optionally place
the pixel at the beginning of the email, or anywhere else, by inserting the {{ses:openTracker}}
placeholder into the email body. Once SES receives the message with the placeholder, it will be
replaced with open tracking pixel image.

Important

Just add one {{ses:openTracker}} placeholder, as more than one will result in a 400
BadRequestException error code being returned.

To capture link click events, Amazon SES replaces the links in your emails with links to a server
operated by SES. This immediately redirects the recipient to his or her intended destination.

You also have the option to use your own domains, rather than domains owned and operated by
Amazon SES, to create a more cohesive experience for your recipients, meaning all SES indicators
are removed. You can configure multiple custom domains to handle open and click tracking events.
These custom domains are associated with configuration sets. When you send an email using a
configuration set, if that configuration set is configured to use a custom domain, then the open
and click links in that email automatically use the custom domain specified in that configuration
set.

This section contains procedures for setting up a subdomain on a server you own to automatically
redirect users to the open and click tracking servers operated by Amazon SES. There are three
steps involved in setting up these domains. First, you configure the subdomain itself, then set a
configuration set to use the custom domain, and then set its event destination to publish open and
click events. This topic contains procedures for completing all of these steps.

Configure custom open and click domains 375

Amazon Simple Email Service Developer Guide

However, if you simply want to enable open or click tracking without setting up a custom domain,
you can proceed directly to defining event destinations for your configuration set which enables
event publishing that is triggered on the event types you specify, including open and click events.
A configuration set can have multiple event destinations with multiple event types defined. See
Creating Amazon SES event destinations.

Part 1: Setting up a domain for handling open and click link redirects

The specific procedures for setting up a redirect domain vary depending on your web hosting
provider (and your Content Delivery Network, if you use an HTTPS server). The procedures in the
following sections provide general guidance rather than specific steps.

Option 1: Configuring an HTTP domain

If you plan to use an HTTP domain to handle open and click links (as opposed to an HTTPS
domain), the process for configuring the subdomain involves only a few steps.

Note

If you set up a custom domain that uses the HTTP protocol, and you send an email that
contains links that use the HTTPS protocol, your customers may see a warning message
when they click the links in your email. If you plan to send emails that contain links that use
the HTTPS protocol, you should use an HTTPS domain for handling click tracking events.

To set up an HTTP subdomain for handling open and click links

1. If you have not already done so, create a subdomain to use for open and click tracking links.
We recommend that you create a subdomain that is specifically dedicated to handling these
links.

2. Verify the subdomain for use with Amazon SES. For more information, see Creating a domain
identity.

3. Modify the DNS record for the subdomain. In the DNS record, add a new CNAME record that
redirects requests to the Amazon SES tracking domain. The address that you redirect to
depends on the AWS Region that you use Amazon SES in. The following table contains a list of
tracking domains for the AWS Regions where Amazon SES is available.

Configure custom open and click domains 376

Amazon Simple Email Service Developer Guide

AWS Region AWS tracking domain

US East (Ohio) r.us-east-2.awstrack.me

US East (N. Virginia) r.us-east-1.awstrack.me

US West (N. California) r.us-west-1.awstrack.me

US West (Oregon) r.us-west-2.awstrack.me

Africa (Cape Town) r.af-south-1.awstrack.me

Asia Pacific (Jakarta) r.ap-southeast-3.awstrack.me

Asia Pacific (Mumbai) r.ap-south-1.awstrack.me

Asia Pacific (Osaka) r.ap-northeast-3.awstrack.me

Asia Pacific (Seoul) r.ap-northeast-2.awstrack.me

Asia Pacific (Singapore) r.ap-southeast-1.awstrack.me

Asia Pacific (Sydney) r.ap-southeast-2.awstrack.me

Asia Pacific (Jakarta) r.ap-southeast-3.awstrack.me

Asia Pacific (Jakarta) r.ap-southeast-3.awstrack.me

Asia Pacific (Tokyo) r.ap-northeast-1.awstrack.me

Canada (Central) r.ca-central-1.awstrack.me

Europe (Frankfurt) r.eu-central-1.awstrack.me

Europe (Ireland) r.eu-west-1.awstrack.me

Europe (London) r.eu-west-2.awstrack.me

Europe (Milan) r.eu-south-1.awstrack.me

Europe (Stockholm) r.eu-north-1.awstrack.me

Configure custom open and click domains 377

Amazon Simple Email Service Developer Guide

AWS Region AWS tracking domain

Israel (Tel Aviv) r.il-central-1.awstrack.me

Middle East (Bahrain) r.me-south-1.awstrack.me

South America (São Paulo) r.sa-east-1.awstrack.me

AWS GovCloud (US-West) r.us-gov-west-1.awstrack.me

AWS GovCloud (US-East) r.us-gov-east-1.awstrack.me

Note

Depending on your web hosting provider, it may take several minutes for the changes
you make to the subdomain's DNS record to take effect. Your web hosting provider or
IT organization can provide additional information about these delays.

Option 2: Configuring an HTTPS domain

You can only use an HTTPS domain for tracking link clicks. To set up an HTTPS domain for tracking
link clicks, you have to perform some additional steps, beyond those required for setting up an
HTTP domain.

Note

You can only use an HTTPS domain for tracking link clicks. Amazon SES only supports
open tracking over HTTP domains when using a custom domain; otherwise, SES supports
open tracking over HTTPS when a custom domain is not defined which will implicitly use
domains owned and operated by SES.

To set up an HTTPS subdomain for handling click links

1. Create a subdomain to use for click tracking links. We recommend that you create a subdomain
that is specifically dedicated to handling these links.

Configure custom open and click domains 378

Amazon Simple Email Service Developer Guide

2. Verify the subdomain for use with Amazon SES. For more information, see Creating a domain
identity.

3. Create a new account with a Content Delivery Network (CDN), such as Amazon CloudFront.

4. Configure the CDN to the origin which is the SES tracking domain, such as r.us-
east-1.awstrack.me for example. The CDN must pass the Host header supplied by the
requester to the origin. Refer to this AWS re:Post article for more information. The address
that you using depends on the AWS Region that you use in SES. The following table contains a
list of tracking domains for the AWS Regions where SES is available.

AWS Region AWS tracking domain

US East (Ohio) r.us-east-2.awstrack.me

US East (N. Virginia) r.us-east-1.awstrack.me

US West (N. California) r.us-west-1.awstrack.me

US West (Oregon) r.us-west-2.awstrack.me

Africa (Cape Town) r.af-south-1.awstrack.me

Asia Pacific (Jakarta) r.ap-southeast-3.awstrack.me

Asia Pacific (Mumbai) r.ap-south-1.awstrack.me

Asia Pacific (Osaka) r.ap-northeast-3.awstrack.me

Asia Pacific (Seoul) r.ap-northeast-2.awstrack.me

Asia Pacific (Singapore) r.ap-southeast-1.awstrack.me

Asia Pacific (Sydney) r.ap-southeast-2.awstrack.me

Asia Pacific (Tokyo) r.ap-northeast-1.awstrack.me

Canada (Central) r.ca-central-1.awstrack.me

Europe (Frankfurt) r.eu-central-1.awstrack.me

Europe (Ireland) r.eu-west-1.awstrack.me

Configure custom open and click domains 379

https://aws.amazon.com/cloudfront
https://repost.aws/knowledge-center/configure-cloudfront-to-forward-headers

Amazon Simple Email Service Developer Guide

AWS Region AWS tracking domain

Europe (London) r.eu-west-2.awstrack.me

Europe (Milan) r.eu-south-1.awstrack.me

Europe (Stockholm) r.eu-north-1.awstrack.me

Israel (Tel Aviv) r.il-central-1.awstrack.me

Middle East (Bahrain) r.me-south-1.awstrack.me

South America (São Paulo) r.sa-east-1.awstrack.me

AWS GovCloud (US-West) r.us-gov-west-1.awstrack.me

AWS GovCloud (US-East) r.us-gov-east-1.awstrack.me

5. If you use Route 53 to manage the DNS configuration for your domain and CloudFront as your
CDN, create an Alias record in Route 53 that refers to your CloudFront distribution (such as
d111111abcdef8.cloudfront.net). For more information, see Creating Records by Using the
Amazon Route 53 Console in the Amazon Route 53 Developer Guide.

Otherwise, in the DNS configuration for your subdomain, add a CNAME record that refers to
the address of your CDN.

6. Acquire an SSL certificate from a trusted Certificate Authority. The certificate should cover
both the subdomain you created in step 1 as well as the CDN you configured in steps 3–5.
Upload the certificate to the CDN.

Part 2: Setting up a configuration set to refer to a custom open and click tracking
domain

After you configure your domain to handle open and click tracking redirects, you must specify your
custom domain in the configuration set. You can complete this using the Amazon SES console or
the CreateConfigurationSetTrackingOptions API operation.

This section references the procedures for completing these tasks using the Amazon SES console.
For information about using the API, see CreateConfigurationSetTrackingOptions in the Amazon
Simple Email Service API Reference.

Configure custom open and click domains 380

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_CreateConfigurationSetTrackingOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference/

Amazon Simple Email Service Developer Guide

• To specify a custom redirect domain using the console...

• while creating a new configuration set – see Tracking options in Step 4 of Create
configuration sets

• while modifying an existing configuration set – select the Edit button in the General details
panel of the selected configuration set, and follow the directions for Tracking options in Step 4
of Create configuration sets

Part 3: Selecting open and click event types in your configuration set's event
destinations

After specifying your custom domain in the configuration set, you must select open and/or click
event types in an event destination added to your configuration set. You can complete this using
the Amazon SES console or the CreateConfigurationSetEventDestination API operation.

• To select open and/or click event types using the console...

• while creating a new event destination – see Open and click tracking in Step 6 of the section
called “Creating an event destination”.

• while modifying an existing event destination – select the Edit button in the Event types
panel of the selected event destination in Step 6 of the section called “Editing, disabling/
enabling, or deleting an event destination”

Specifying a configuration set when you send email

To use a configuration set when sending an email, you must pass the name of the configuration set
in the headers of the email. All of the Amazon SES email sending methods—including the AWS CLI,
the AWS SDKs, and the Amazon SES SMTP interface—allow you to pass a configuration set in the
headers of the email you send.

If you are using the SMTP interface or the SendRawEmail API operation, you can specify a
configuration set by including the following header in your email (replacing ConfigSet with the
name of the configuration set you want to use):

X-SES-CONFIGURATION-SET: ConfigSet

This guide includes code examples for sending email using the AWS SDKs and the Amazon SES
SMTP interface. Each of these examples includes a method of specifying a configuration set. To see

Specify configuration sets in email 381

https://docs.aws.amazon.com/ses/latest/APIReference/API_CreateConfigurationSetEventDestination.html
https://aws.amazon.com/cli
https://aws.amazon.com/tools/#sdk

Amazon Simple Email Service Developer Guide

step-by-step procedures for sending emails that include references to configuration sets, see the
following:

• Sending email through Amazon SES using an AWS SDK

• Using the Amazon SES SMTP interface to send email

Viewing and exporting reputation metrics

Amazon SES automatically exports information about the overall bounce and complaint rates
for your entire account to Amazon CloudWatch. You can use these metrics to create alarms in
CloudWatch, or to automatically pause email sending using a Lambda function.

You can also export reputation metrics for individual configuration sets to CloudWatch. Exporting
reputation data at the configuration set level gives you more control over your sender reputation.

This section includes procedures for exporting reputation data for individual configuration sets to
CloudWatch by using the Amazon SES API.

Enabling the export of reputation metrics

To start exporting reputation metrics for a configuration set, use the
UpdateConfigurationSetReputationMetricsEnabled API operation. To access the Amazon
SES API, we recommend using the AWS CLI or one of the AWS SDKs.

This procedure assumes that the AWS CLI is installed on your computer and properly configured.
For more information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To enable the exporting of reputation metrics for a configuration set

• At the command line, type the following command:

aws ses update-configuration-set-reputation-metrics-enabled --configuration-set-
name ConfigSet --enabled

Replace ConfigSet in the preceding command with the name of the configuration set for
which you want to start exporting reputation metrics.

View and export reputation metrics 382

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Amazon Simple Email Service Developer Guide

Disabling the export of reputation metrics

You can also use the UpdateConfigurationSetReputationMetricsEnabled API operation to
disable the exporting of reputation metrics for a configuration set.

To disable the exporting of reputation metrics for a configuration set

• At the command line, type the following command:

aws ses update-configuration-set-reputation-metrics-enabled --configuration-set-
name ConfigSet --no-enabled

Replace ConfigSet in the preceding command with the name of the configuration set for
which you want to disable the exporting of reputation metrics.

Disabling the export of reputation metrics 383

Amazon Simple Email Service Developer Guide

Dedicated IP addresses for Amazon SES

When you create a new Amazon SES account, by default your emails are sent from IP addresses
that are shared with other SES users. You can also use dedicated IP addresses that are reserved for
your exclusive use by leasing them for an additional cost. This gives you complete control over your
sender reputation and enables you to isolate your reputation for different segments within email
programs. Amazon SES offers two ways to provision and manage a dedicated IP address:

• Standard—refers to dedicated IP addresses that you manually set up and manage, including the
option to manually warm them up and scale them out, and to manually move them in and out of
IP pools. (These were formerly referred to as dedicated IP addresses in SES.)

• Managed—refers to dedicated IP addresses that are automatically set up on your behalf by SES
to provide a quick and easy way to start using dedicated IP addresses that are managed by SES;
they automatically warm up for each ISP individually and auto-scale based on your sending
volume to help ensure that your dedicated IP addresses are used optimally based on how you
send email.

When deciding between shared IP addresses or the two types of dedicated IP addresses defined
above, choose the one that provides the most benefits for the type, volume, and patterns of email
that you send. To help you make your decision, these benefits are summarized in the following
table. Choose an item in the Benefit column for additional information.

Benefit Shared IP addresses Dedicated IP
addresses (standard)

Dedicated IP
addresses (managed)

Ready to use
immediately

Yes No No

Additional setup
required

No Yes Yes

IP addresses &
reputation isolated
from other SES
customers

No Yes Yes

384

https://aws.amazon.com/ses/pricing

Amazon Simple Email Service Developer Guide

Benefit Shared IP addresses Dedicated IP
addresses (standard)

Dedicated IP
addresses (managed)

Capacity increases
 automatically as
traffic increases

No No Yes

Good for customers
with continuous,
predictable sending
patterns

Yes Yes Yes

Good for customers
with less predictable
sending patterns

Yes No Yes

Good for high-volu
me senders

Yes Yes Yes

Good for low-volume
senders

Yes No No

Additional monthly
costs

No Yes Yes

Complete control
over sender reputatio
n

No Yes Yes

Isolate reputation by
email type, recipient,
or other factors

No Yes Yes

Provides known IP
addresses that never
change

No Yes No

385

Amazon Simple Email Service Developer Guide

Important

If you don't plan to send large volumes of email on a regular and predictable basis, we
recommend that you use shared IP addresses. If you want to use dedicated IP addresses in
situations where your sending patterns are highly irregular, using Dedicated IPs (managed)
is the better option.

Ease of setup

Shared IP addresses—you don't need to perform any additional configuration. Your SES account is
ready to send email as soon as you verify an email address and move out of the sandbox.

Dedicated IP addresses (standard)—you must submit a request through the AWS Support Center
and optionally configure dedicated IP pools.

Dedicated IP addresses (managed)—you don’t need to submit a request for dedicated IP
addresses. They'll automatically be allocated when you opt in and do a one-time walkthrough to
create your managed dedicated pool.

Reputation management

IP address reputations are based largely on historical sending patterns and volume. An IP address
that sends consistent volumes of email over a long period of time typically has a good reputation.

Shared IP addresses—shared between several SES customers, these addresses collectively
send a large volume of email and AWS carefully manages the outbound traffic to maximize the
reputations of the shared IP addresses.

Dedicated IP addresses (standard)—after warmup, your IP addresses are isolated from the SES
shared pool and you maintain your own sender reputation by sending consistent and predictable
volumes of email.

Dedicated IP addresses (managed)—after warmup of your new IPs, they're isolated from the SES
shared pool and you maintain your own sender reputation. There's the added benefit of tracking
the reputation for each ISP and optimally scheduling outgoing sending accordingly. So while you
still maintain your sender reputation, this automation helps to improve overall deliverability and
reduce bounce rates when compared to equivalent workloads on manually configured dedicated IP
addresses.

Ease of setup 386

Amazon Simple Email Service Developer Guide

Note

For information about Smart Network Data Services (SNDS) data for your dedicated IPs, see
SNDS metrics for dedicated IPs.

Predictability of sending patterns

An IP address with a consistent history of sending email has a better reputation than one that
suddenly starts sending out large volumes of email with no prior sending history.

Shared IP addresses—good for email sending patterns that don't follow a predictable pattern.
With shared IP addresses, you can increase or decrease your email sending patterns as the situation
demands.

Dedicated IP addresses (standard)—you must warm up addresses by sending an amount of email
that gradually increases every day. The process of warming up new IP addresses is described in
Warming up dedicated IP addresses (standard). After your dedicated IP addresses are warmed up,
you must then maintain a consistent sending pattern.

Dedicated IP addresses (managed)—your dedicated IP addresses are warmed up automatically
for each IP in the managed pool by using an adaptive warmup strategy (in conjunction with the
SES shared pool) that takes into account actual sending patterns to optimize the warmup for
each ISP individually. The managed IP pool automatically scales out per ISP based on usage and
consideration of ISP-specific policies.

Volume of outbound email

Shared IP addresses —best for customers who send low volumes of email.

Dedicated IP addresses (standard) | Dedicated IP addresses (managed)—both are suited for
customers who send large volumes of email. Most ISPs only track the reputation of a given IP
address if they receive a significant volume of mail from that address. For each ISP with which you
want to cultivate a reputation, you should send several hundred emails within a 24-hour period
at least once per month. In some cases, both types of dedicated IP addresses may also work for
smaller volumes of email. For example, they may work well if you send to a small, well-defined
group of recipients whose mail servers accept or reject email using a list of specific IP addresses,
rather than IP address reputation.

Predictability of sending patterns 387

Amazon Simple Email Service Developer Guide

Additional costs

Shared IP addresses—included in the standard SES pricing.

Dedicated IP addresses (standard)—are available for an additional monthly fee per IP address that
you lease. For pricing information, see the SES pricing page.

Dedicated IP addresses (managed)—are available for a standard monthly fee (regardless of the
amount of IPs needed) and a per message usage charge. For pricing information, see the SES
pricing page.

Control over sender reputation

Shared IP addresses—your sender reputation is controlled by SES.

Dedicated IP addresses (standard) | Dedicated IP addresses (managed)—your sender reputation
is completely under your control. Your SES account is the only one that is able to send email
from those addresses. For this reason, the sender reputation is determined by your email sending
practices. Additionally, dedicated IPs (managed) actively monitors outbound IP addresses used
for email sending by using the highest performing IP addresses to improve email deliverability
to your recipients. Utilization data can be surfaced by using additional services such as Amazon
CloudWatch metrics and the built-in dashboards that are in Amazon SES.

Ability to isolate sender reputation

Shared IP addresses—your sender reputation is set at the account level and can't be isolated.

Dedicated IP addresses (standard) | Dedicated IP addresses (managed)—you can isolate your
sender reputation for different components within your email program by creating dedicated IP
pools—groups of dedicated IP addresses that can be used for sending specific types of email. For
example, you can create one pool of dedicated IP addresses for sending marketing email, and
another for sending transactional email.

Known, unchanging IP addresses

Shared IP addresses—you don't know the IP addresses that SES uses to send your mail, and they
can change at any time.

Additional costs 388

https://aws.amazon.com/ses/pricing/
https://aws.amazon.com/ses/pricing/
https://aws.amazon.com/ses/pricing/

Amazon Simple Email Service Developer Guide

Dedicated IP addresses (standard)—you can find the values of the addresses that send your mail
in the Dedicated IPs page of the SES console. This is because dedicated IP addresses are static.

Dedicated IP addresses (managed)—SES will automatically configure the optimal number of
dedicated IP addresses based on your sending patterns. This means that the dedicated IP addresses
in your pool are not visible and will dynamically increase or decrease based upon demand.

Dedicated IP addresses (standard) in Amazon SES

Dedicated IP addresses (standard) are dedicated IP addresses that you manually set up and manage
in SES. They are different from those that are set up and managed automatically using the SES
feature the section called “Managed”. In addition to allowing you full control over your sending
reputation using dedicated IP addresses, dedicated IPs (standard) enable you to fully manage your
dedicated IPs, including warming them up, scaling them out, and IP pool management.

Dedicated IPs (standard) and Dedicated IPs (managed) both refer to dedicated IP addresses that
you lease in SES for additional pricing, but differ in how they're implemented and managed. While
there are shared benefits common to both, they each have unique advantages to offer depending
on your type of email sending, as discussed in Dedicated IP addresses.

The topics is this section explain how to manually set up and manage dedicated IPs (standard) in
SES.

Topics

• Requesting and relinquishing dedicated IP addresses (standard)

• Warming up dedicated IP addresses (standard)

• Creating standard dedicated IP pools for dedicated IPs (standard)

Requesting and relinquishing dedicated IP addresses (standard)

To use dedicated IP addresses (standard), you must first request them. When you no longer need
them, you must relinquish them. Request and relinquish dedicated IPs (standard) through the AWS
Support Center. Your account is charged an additional monthly fee for each standard dedicated
IP address that you lease for use with Amazon SES. There's no minimum commitment when using
dedicated IPs (standard).

For more information about the costs associated with dedicated IPs (standard), see Amazon SES
Pricing.

Standard 389

https://aws.amazon.com/ses/pricing
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/ses/pricing/#Optional_Services
https://aws.amazon.com/ses/pricing/#Optional_Services

Amazon Simple Email Service Developer Guide

For a list of all of the Regions where Amazon SES is currently available, see AWS Region and
Endpoints in the Amazon Web Services General Reference. To learn more about the number of
Availability Zones that are available in each AWS Region, see AWS Global Infrastructure.

Request dedicated IPs (standard)

You can request as many dedicated IPs (standard) as you need by creating a service quota increase
case in the AWS Support Center.

To request dedicated IPs (standard)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

3. Do one of the following:

a. If you don't have existing dedicated IPs in your account:

• The Dedicated IPs onboarding page is displayed. In the Dedicated IPs (standard)
overview panel, choose Request dedicated IPs.

The Create case page opens in the AWS Support Console.

b. If you have existing dedicated IPs in your account:

i. Select the Standard IP pools tab on the Dedicated IPs page.

ii. In the Standard overview panel, choose Request or relinquish Standard dedicated
IPs.

The Create case page opens in the AWS Support Console.

4. Under Create case, select the Service limit increase card at the top of the page.

5. Under Case details, complete the following sections:

• For Limit type, keep SES Service Limits.

• For Mail Type, choose the type of email that you plan to send using your dedicated IP
address. If multiple values apply, choose the option that applies to the majority of the email
that you plan to send.

• For Website URL, enter the URL of your website. Providing this information helps us to
better understand the type of content that you plan to send.

Request & relinquish 390

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
https://aws.amazon.com/about-aws/global-infrastructure/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• For Describe, in detail, how you will only send to recipients who have specifically
requested your mail, provide a response that's consistent with your use case.

• For Describe, in detail, the process that you will follow when you receive bounce and
complaint notifications, provide a response that's consistent with your use case.

• For Will you comply with AWS Service Terms and AUP, choose the option that applies to
your use case.

6. Under Requests, complete the following sections:

• For Region, choose the AWS Region that your request applies to.

• For Limit, keep Desired Dedicated IP.

• For New limit value, enter the number of dedicated IP addresses that you need to
implement your use case.

Note

If you want to request dedicated IP addresses for use in another AWS Region, choose
Add another request, and then complete the Region, Limit, and New limit value
fields for the additional AWS Region. Repeat this process for each AWS Region that you
want to use dedicated IP addresses in.

7. Under Case description, for Use case description, state that you want to request dedicated IP
addresses. If you want to request a specific number of dedicated IP addresses, mention that
as well. If you don't specify a number of dedicated IP addresses, we'll provide the number
of dedicated IP addresses that are necessary to meet the sending rate requirement that you
specified in the previous step.

Next, describe how you plan to use dedicated IP addresses to send email using Amazon SES.
Include information about why you want to use dedicated IP addresses instead of shared IP
addresses. This information helps us to better understand your use case.

8. Under Contact options, for Preferred contact language, choose whether you want to receive
communications for this case in English or Japanese.

9. When you finish, choose Submit.

Request & relinquish 391

Amazon Simple Email Service Developer Guide

After you submit the form, we'll evaluate your request. If we grant your request, we'll reply to your
case in the Support Center to confirm that your new dedicated IP addresses are associated with
your account.

Relinquish standard dedicated IP addresses

If you’re using dedicated IP addresses and you no longer want them associated with your account,
the following procedure shows how to relinquish them by creating a case in the AWS Support
Center.

Important

The process of relinquishing a dedicated IP address can't be reversed. If you relinquish a
dedicated IP address in the middle of a month, we prorate the monthly dedicated IP usage
fee, based on the number of days that have elapsed in the current month.

To relinquish dedicated IPs (standard)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

3. Select the Standard IP pools tab on the Dedicated IPs page.

4. In the Standard overview panel, choose Request or relinquish Standard dedicated IPs.

5. Under Case details, for Limit type, keep SES Service Limits

Note

Remaining boxes in this section don't apply to relinquishing dedicated IPs. Leave them
blank.

6. Under Requests, complete the following sections:

• For Region, choose the AWS Region that your relinquish request applies to.

Request & relinquish 392

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

Dedicated IP addresses are unique to each AWS Region, so it's important to choose
the AWS Region that the dedicated IP address is associated with.

• For Limit, keep Desired Dedicated IP.

• For New limit value, enter any number. The number that you enter here isn't important—
you specify the number of dedicated IPs that you want to relinquish in the next step.

Note

A single dedicated IP address can only be used in a single AWS Region. If you want
to relinquish dedicated IP addresses that you use in other AWS Regions, choose Add
another request. Then complete the Region, Limit, and New limit value fields for
the additional AWS Region. Repeat this process for each dedicated IP address that you
want to relinquish.

7. Under Case Description, for Use case description, mention that you want to relinquish
existing dedicated IP addresses. If you currently lease more than one dedicated IP address,
include the number of dedicated IP addresses that you want to relinquish.

8. Under Contact options, for Preferred contact language, choose whether you want to receive
communications for this case in English or Japanese.

9. When you finish, choose Submit.

After we receive your request, we send you a message that asks you to confirm that you want
to relinquish your dedicated IP addresses. After you confirm that you want to relinquish the IP
addresses, we remove them from your account.

Warming up dedicated IP addresses (standard)

When determining whether to accept or reject a message, email service providers consider the
reputation of the IP address that sent it. One of the factors that contributes to the reputation of
an IP address is whether the address has a history of sending high-quality email. Email providers
are less likely to accept mail from new IP addresses that have little or no history. Email sent from IP

Warming up 393

Amazon Simple Email Service Developer Guide

addresses with little or no history might end up in recipients' junk mail folders, or might be blocked
altogether.

When you start sending email from a new dedicated IP address, you should gradually increase the
amount of email that you send from that address before using it to its full capacity. This process is
called warming up the IP address.

The amount of time that's required to warm up an IP address varies between email providers. For
some email providers, you can establish a positive reputation in around two weeks, while for others
it may take up to six weeks. When warming up a new dedicated IP address, you should send emails
to your most active users to ensure that your complaint rate remains low. You should also carefully
examine your bounce messages and send less email if you receive a high number of blocking or
throttling notifications. For information about monitoring your bounces, see Monitoring your
Amazon SES sending activity.

Automatic warmup for dedicated IPs (standard)

When you request dedicated IP addresses (standard), Amazon SES automatically warms them up to
improve the delivery of emails that you send. The automatic IP address warmup feature is enabled
by default. SES automatically warms up your dedicated IPs by gradually increasing the number of
emails you send through your dedicated IPs based on a predefined warmup plan. The maximum
daily amount of mail increases from the first day until you reach a maximum of 50,000 emails
within 45 days. This gradual increase helps your IPs build a positive reputation with internet service
providers (ISPs).

The steps that happen during the automatic warmup process depend on whether you already have
dedicated IP addresses.

• When you request dedicated IPs (standard) for the first time, SES distributes your email sending
between your dedicated IP addresses and a set of addresses that are shared with other SES
customers. SES gradually increases the number of messages that are sent from your dedicated IP
addresses over time.

• If you already have dedicated IP addresses, SES distributes your email sending between your
existing dedicated IPs (which are already warmed up) and your new dedicated IPs (which are
not warmed up). SES gradually increases the number of messages that are sent from your new
dedicated IP addresses over time.

Warming up 394

Amazon Simple Email Service Developer Guide

Note

Automatic IP warmup is a time-based process. The warmup percentage steadily increases
over 45 days, independently from your sending volume.

After you warm up a dedicated IP address, you should send around 1,000 emails every day to each
email provider that you want to maintain a positive reputation with. You should perform this task
on each dedicated IP address that you use with SES.

You should avoid sending large volumes of email immediately after the warmup process is
complete. Instead, slowly increase the number of emails you send until you reach your target
volume. If an email provider sees a large, sudden increase in the number of emails that are sent
from an IP address, they may block or throttle the delivery of messages from that address.

Disable the automatic warmup process on dedicated IPs (standard)

When you purchase new standard dedicated IP addresses, Amazon SES automatically warms
them up for you because the automatic IP address warmup feature is enabled by default for your
account. If you prefer to warm up dedicated IP addresses yourself, you can disable the automatic
warmup feature at the account level for all of your IP addresses.

If you disable the automatic warmup feature, any subsequently leased dedicated IPs will be added
to your account with a warmup status of Complete which makes them available for use without
having been warmed up—this means you are responsible for ensuring these IPs are properly
warmed up before using them for regular sending. Any IPs that were currently in the middle of
warmup at the time you disabled the automatic warmup feature will not be effected.

Important

If you disable the automatic warm up feature, you're responsible for warming up your
dedicated IP addresses yourself. If you send email from addresses that haven't been
warmed up, you may experience poor delivery rates.

Warming up 395

Amazon Simple Email Service Developer Guide

To disable (or re-enable) the automatic warmup feature for all dedicated IPs (standard) in your
account

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

3. Select the Standard IP pools tab on the Dedicated IPs page.

4. Choose Disable auto warm-up in the Standard overview panel to disable automatic warmup,
or choose Enable auto warm-up to re-enable automatic warmup.

Manually warm up dedicated IPs (standard)

You can manually increase or decrease your dedicated IPs (standard) current sending volume by
editing its warmup percentage, end its warmup process prematurely, and set its current sending
volume to 0% and restart the warmup process.

To manually warm up dedicated IPs (standard)

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

3. Select the Standard IP pools tab on the Dedicated IPs page.

4. In the All Standard dedicated IPs panel, select an IP address and choose Edit warm up and
select one of the following options:

a. Edit percentage—enter a value in the Warm-up percentage field to increase or decrease
your IP's current sending volume by editing its warmup percentage followed by Save
changes.

The Warm-up status column will say In progress and the Warm-up percentage
column will display the value that you entered.

b. Mark as Complete—read the Mark warm-up as Complete? dialogue to confirm that
you understand the implications of ending the auto warm-up process prematurely, then
choose Mark as Complete.

Warming up 396

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

The Warm-up status column will say Complete and the Warm-up percentage column
will say 100%.

c. Reset percentage—read the Reset warm-up percentage? dialogue to confirm you're
setting the IP’s current sending volume to 0% and will have to either restart the automatic
warmup process or set the warmup percentage manually, then choose Reset.

The Warm-up status column will say In progress and the Warm-up percentage
column will say 0%.

Creating standard dedicated IP pools for dedicated IPs (standard)

If you purchased several dedicated IP addresses (standard) to use with Amazon SES, you can create
groups of those addresses, called dedicated IP pools. Grouping dedicated IPs (standard) together
in a pool makes them easier to manage. A common scenario is to create one pool for sending
marketing communications, and another for sending transactional emails. Your sender reputation
for transactional emails is then isolated from that of your marketing emails. In this scenario, if a
marketing campaign generates a large number of complaints, the delivery of your transactional
emails is not impacted.

This section contains procedures for creating dedicated IP pools.

Note

You can also create configuration sets that use a pool of IP addresses that are shared by
all SES customers. The shared IP pool is useful for situations in which you need to send
email that doesn't align with your usual sending behaviors. For information about using the
shared IP pool with a configuration set, see Assigning IP pools in Amazon SES.

To create a dedicated IP pool for dedicated IPs (standard) using the SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

Creating pools 397

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

If you currently don't have any dedicated IPs (standard) in your account, the Dedicated
IPs onboarding page is displayed giving you the opportunity to purchase dedicated
IPs (standard). For more information see the section called “Request dedicated IPs
(standard)”.

3. Select the Standard IP pools tab on the Dedicated IPs page.

4. In the All Dedicated IP (standard) pools panel, choose Create Standard IP pool.

The Create IP Pool page opens.

5. In the Pool details panel,

a. Choose Standard (self managed) in the Scaling mode field.

b. Enter a name for your IP pool in the IP pool name field.

Note

The IP pool name must be unique and can't be a duplicate of a managed IP pool
name in your account.

c. (Optional) If you have existing standard dedicated IP addresses that you want to add to
this IP pool, select them from the dropdown list in the Dedicated IP addresses field.

Note

If you select an IP address that's already associated with an IP pool, it will now
only be associated with this IP pool.

6. (Optional) You can associate this IP pool with a configuration set by selecting one from the
dropdown list in the Configuration sets field.

Note

• If you select a configuration set that's already associated with an IP pool, it will now
only be associated with this IP pool.

Creating pools 398

Amazon Simple Email Service Developer Guide

• To add or remove associated configuration sets after this IP pool is created, edit the
configuration set's Sending IP pool parameter.

• If you haven’t created any configuration sets yet, see Configuration sets.

7. (Optional) You can add one or more Tags to this IP pool by including a tag key and an optional
value for the key.

a. Choose Add new tag and enter the Key. You can also add an optional Value for the tag.

b. To add the tag, choose Save changes.

You can add up to 50 tags. You can remove a tag by choosing Remove.

8. Select Create pool.

Note

After you create a standard IP pool, you have the option to convert it to a managed IP
pool. See Creating a managed IP pool.

Dedicated IP addresses (managed) for Amazon SES

Dedicated IP addresses (managed) is an Amazon SES feature that automatically sets up and
manages dedicated IP addresses on your behalf to provide a quick and easy way to start using
dedicated IP addresses that are managed by SES. This helps to ensure that your dedicated IP
addresses are used efficiently and optimally for how you send email.

To enable dedicated IPs (managed) in your account, you just create a managed IP pool and
SES does all the rest. SES will determine how many dedicated IPs you require based on your
sending patterns, create them for you, and then manage how they scale based on your sending
requirements.

Once enabled, you can utilize dedicated IPs (managed) in your email sending by associating
the managed IP pool with a configuration set, and then specifying that configuration set when
sending email. The configuration set can also be applied to a sending identity by using a default
configuration set.

Managed 399

Amazon Simple Email Service Developer Guide

Benefits and features of dedicated IPs (managed)

The dedicated IP addresses that you create with dedicated IPs (managed) automate management
tasks to help ensure that your dedicated IP addresses are used in a way that's optimal for how you
send email:

• Easy onboarding – To get started with dedicated IPs (managed), you create a managed IP pool
directly from the SES console. Dedicated IP addresses are automatically allocated to the pool.
You can start sending with the managed IP pool without having to open a request case through
the AWS Support Center.

• Auto-scaling per ISP – You don't have to manually monitor or scale your dedicated IP pools
because the managed IP pool scales out automatically based on usage. It also takes into
consideration ISP-specific policies. For example, if SES detects that an ISP supports a low daily
send quota, the pool scales out to better distribute traffic to that ISP across more IP addresses.

• Intelligent warmup – Dedicated IPs (managed) start to send mail to ISPs based on their capacity.
That is, how much they are currently warmed up. They automatically keep track of the level of
warmup for each ISP individually. Additionally, the dedicated IPs (managed) feature provides
information about your reputation at an effective daily rate with top ISPs in the form of Amazon
CloudWatch metrics and built-in dashboards.

• Warmup per ISP – SES tracks the reputation for each IP in the managed IP pool for each ISP
individually. For example, if you've been sending all your traffic to Gmail, the IP addresses
are considered warmed up only for Gmail and cold for other ISPs. If you change your traffic
pattern by ramping up email sent to Hotmail, SES ramps up traffic slowly for Hotmail, as the IP
addresses are not warmed up yet.

• Adaptive warmup & Shared pool transitioning – The warmup adjustment is adaptive and
takes into account actual sending patterns. When sending volume to an ISP drops, the warmup
percentage also drops for that ISP. In the early phase of warmup, any sending that's excessive
based on the current level of warmup is sent through the IP addresses that are shared with
other Amazon SES users—the SES shared pool. In later stages of warmup, any sending that's
excessive is proactively slowed down and retried later.

Important

While dedicated IPs (managed) automatically warms up your dedicated IP addresses,
part of that automatic process is working interactively with the SES shared IP pool.

Benefits and features 400

Amazon Simple Email Service Developer Guide

• If your sending rate is too aggressive for your new dedicated IPs while they're being
warmed up, SES will automatically spill part of your sending over into the SES
shared IP pool to protect the reputation of your new dedicated IPs.

• Even after your new dedicated IPs are fully warmed up, it isn't guaranteed that all of
your sending will go through them 100% of the time. For example, if your sending
rate suddenly rises and dedicated IPs (managed) determines it must allocate an
additional dedicated IP address, it will initiate the warmup process which includes
using the shared pool. Likewise, if your sending rate suddenly drops very low, all
of your sending could switch over to the SES shared IP pool, see the section called
“Importance of warmup”.

• Automatic request & relinquish of dedicated IP addresses – You don't need to request or
relinquish managed dedicated IP addresses through the AWS Support Center, as is required when
using dedicated IPs (standard). When onboarding with dedicated IPs (managed) directly from the
SES console, CLI, or API, you are automatically allocated dedicated IP addresses and charged a
fee based on the volume of messages that you send. When you delete an IP pool that's created
by dedicated IPs (managed) or opt out of dedicated IPs (managed), your allocated IP addresses
are automatically relinquished and charges cease immediately.

• Getting your first dedicated IP address – The dedicated IPs (managed) feature will
automatically allocate your first dedicated IP address once your sending volume reaches
hundreds of emails over a period of a few days. This ensures that the IP you send from can
build a sending reputation and improve deliverability. (If you don’t expect your sending
volume to be at this level, you should be using shared IP addresses. See the comparison table
in Dedicated IP addresses to review the type of IP addresses that are best for how you send
email.)

Why proper IP warmup is important

To ensure that your email will be delivered through your dedicated IP address, it must have a good
reputation with the receiving ISP. ISPs will only accept a small volume of email from an IP that they
don’t recognize. When you’re first allocated an IP, it’s new and won’t be recognized by the receiving
ISP because it doesn’t have a reputation associated with it. In order for an IP’s reputation to be
established, it must gradually build trust with receiving ISP—this gradual trust building process is
referred to as warming-up. Immediately after dedicated IPs (managed) allocates an IP, it starts the
Intelligent warmup process.

Importance of warmup 401

Amazon Simple Email Service Developer Guide

With the Warmup per ISP and Adaptive warmup features of dedicated IPs (managed), business
continuity is maintained throughout the warmup cycle by ensuring that your email will be
delivered. Once the warmup phase is complete, any excess capacity is queued and sent only
through the dedicated IP pool. However, if you have one dedicated IP address and your sending
falls below the minimum volume required to maintain IP reputation, dedicated IPs (managed) may
remove your dedicated IP and your sending will be routed through the SES shared IP pool.

Note

If you send small volumes of email (less than a few hundred per day over a few days), it
would be more beneficial to send through the SES shared IP pool. See if dedicated IPs
(managed) is right for how you send mail by reviewing the comparison table in Dedicated IP
addresses.

Creating a managed IP pool to enable dedicated IPs (managed)

To enable dedicated IPs (managed), you first create a managed IP pool. After you create a managed
pool, the feature determines how many dedicated IPs you require based on your sending patterns
and will dynamically scale them to your requirements.

To use your managed pool to send email, you must associate the managed pool with a
configuration set, and then specify that configuration set when sending email. The configuration
set can also be applied to a sending identity by using a default configuration set.

There are two ways you can create a managed IP pool:

• Create a new pool.

• Convert an existing pool from standard to managed.

In the following procedures, instructions are provided for either method.

To create or convert to a managed IP pool using the SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

Creating a managed IP pool 402

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

3. Depending on whether you want to create a new managed IP pool or convert a standard
dedicated IP pool to a managed one, follow the respective instructions:

Create new pool

To create a new managed IP pool

1. Do one of the following:

a. If you don't have existing dedicated IPs in your account:

• The Dedicated IPs onboarding page is displayed. In the Dedicated IPs
(managed) overview panel, choose Enable dedicated IPs.

The Create IP Pool page opens.

b. If you have existing dedicated IPs in your account:

i. Select the Managed IP pools tab on the Dedicated IPs page.

ii. In the All Dedicated IP (managed) pools panel, choose Create Managed IP
pool.

The Create IP Pool page opens.

2. In the Pool details panel,

a. Choose Managed (auto managed) in the Scaling mode field.

b. Enter a name for your managed pool in the IP pool name field.

Note

• The IP pool name must be unique. It can't be a duplicate of a standard
dedicated IP pool name in your account.

• You can't have more than 50 dedicated IP pools per AWS Region in your
account inclusive of both managed and standard IP pools.

3. (Optional) You can associate this managed IP pool with a configuration set by choosing
one from the dropdown list in the Configuration sets field.

Creating a managed IP pool 403

Amazon Simple Email Service Developer Guide

Note

• If you choose a configuration set that's already associated with an IP pool, it
will become associated with this managed pool, and no longer be associated
with the previous pool.

• To add or remove associated configuration sets after this managed pool
is created, edit the configuration set's Sending IP pool parameter in the
General details panel.

• If you haven’t created any configuration sets yet, see Configuration sets.

4. (Optional) You can add one or more Tags to your IP pool by including a tag key and an
optional value for the key.

a. Choose Add new tag and enter the Key. You can also add an optional Value for
the tag. You can add up to 50 tags, if you make a mistake, choose Remove.

b. To add the tags, choose Save changes.

After you create the pool, you can add, remove, or edit tags by selecting the
managed pool and choosing Edit.

5. Select Create pool.

Note

• After you create a managed IP pool, it can't be converted to a standard IP
pool.

• When using dedicated IPs (managed), you can't have more than 10,000
sending identities (domains and email addresses, in any combination) per
AWS Region in your account.

Convert standard to managed

To convert a standard dedicated IP pool to managed

1. Select the Standard IP pools tab on the Dedicated IPs page.

Creating a managed IP pool 404

Amazon Simple Email Service Developer Guide

2. In the All Dedicated IP (standard) pools panel, select the checkbox of the dedicated IP
pool you want to convert from standard to managed.

3. Choose Convert to managed pool—read the Convert to managed IP pool dialogue to
confirm that you understand the conditions of converting your standard dedicated IP
pool to a managed one.

Note

Before converting your dedicated IP pool from standard to managed, note the
following:

1. All of your current dedicated IPs (standard) will be moved to the managed
pool.

2. If you’re currently leasing too many dedicated IPs (standard) for your
sending volume, then dedicated IPs (managed) will remove the redundant
IPs.

3. If any of your dedicated IPs (standard) are part of an allow-list for other
applications, you should not transfer them to the managed pool as they will
be removed if they become redundant—refer to point 2.

4. You will no longer be charged per IP, but instead will be charged based on
the volume you send through the managed pool. See Amazon SES pricing.

4. If you agree to the conditions as stated, choose Confirm—a banner appears,
confirming that your standard dedicated IP pool has been converted to a managed
pool.

Note

Any configurations sets or tags you had associated with the standard pool
before conversion will now be associated with the managed pool providing a
seamless transition for any email sending using the configuration set.

Event publishing can be used to track the managed pool's sending performance. For more
information, see the section called “Monitor email sending using event publishing”.

Creating a managed IP pool 405

https://aws.amazon.com/ses/pricing

Amazon Simple Email Service Developer Guide

Viewing managed IP pool sending and capacity in the Amazon SES
console

For the managed IP pools you've created, the SES console provides an easy way for you to observe
how they're being used for your email sending through the use of cards and time series graphs that
show sending metrics and ISP utilization and capacity.

To view managed IP pool sending and capacity using the SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

3. Select the Managed IP pools tab on the Dedicated IPs page.

4. Depending on whether you want to view sending and capacity metrics in the Amazon SES
console or the Amazon CloudWatch console, follow the respective instructions:

Amazon SES console

To view sending and capacity metrics in the Amazon SES console

1. In the All Dedicated IP (managed) pools table, select the name of a managed IP pool
listed in the IP pool column to view its details.

The selected IP pool's detail page opens with the following cards and time series
graphs:

a. Cards:

• Sending status – Indicates if your sending volume and frequency is enough to
utilize dedicated IPs by displaying one of two statuses:

• Insufficient volume – Your sending volume is too low.

• Sending via Dedicated IPs – One or more dedicated IPs are being used in your
managed pool.

• Managed dedicated IP send volume – The volume of email sent through
dedicated IPs in your managed pool in the last 7 days.

• Managed dedicated IP send percentage – The percentage of email sent through
dedicated IPs in your managed pool in the last 7 days.

Viewing pool sending and capacity 406

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

b. Graphs:

• Sent volume – The volume of email sent in the last 7 days through managed
dedicated IPs as compared to shared IPs.

• Percentage of sent volume – The percentage of email sent in the last 7 days
through managed dedicated IPs as compared to shared IPs.

• ISP capacity – Displays how much email is being sent through dedicated IPs in
your managed pool per the top 10 most widely used ISPs and their available
capacity during your sending:

• Sends for ISP (red bars) – The volume of email you sent in the last 24 hours
through the selected ISP.

• Capacity for ISP (blue line) – The selected ISP’s available capacity during the
last 24 hours.

2. To filter on a specific ISP for the ISP capacity graph, choose the ISP list box and select
an ISP—the graph will update with metrics for the selected ISP. (If you don't filter on
an ISP, Gmail is displayed by default).

Amazon CloudWatch console

To view sending and capacity metrics in the Amazon CloudWatch console

• In the All Dedicated IP (managed) pools table, select the See <pool_name>
CloudWatch metrics link in the CloudWatch metrics column to view its details.

The selected IP pool's page opens in the CloudWatch console displaying the following
metrics:

• Send – The volume of email sent through both managed dedicated IPs and shared
IPs.

• ApproximateDedicatedSendingPercentage – Indicates the approximate percentage of
traffic that has been delivered through a dedicated IP.

• SentLast24Hours – The volume of email you sent in the last 24 hours through the
selected ISP. (Labeled Sends for ISP in the SES console.)

• Available24HourSend – The selected ISP’s available capacity during the last 24 hours.
(Labeled Capacity for ISP in the SES console.)

Viewing pool sending and capacity 407

Amazon Simple Email Service Developer Guide

Deleting a managed IP pool and opting out of dedicated IPs (managed)

When you delete a managed IP pool, all of its allocated IP addresses are automatically
relinquished. If you only have one managed IP pool and you delete it, or you delete your last
remaining managed IP pool, you'll be opting out of the dedicated IPs (managed) feature and
charges will cease immediately.

To delete a managed IP pool using the SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Dedicated IPs.

3. Select the Managed IP pools tab on the Dedicated IPs page.

4. In the All Dedicated IP (managed) pools table, select the radio button next to the IP pool
name of the managed pool you want to remove and choose Delete.

5. In the pop-up modal, you'll have the opportunity to confirm your choice by selecting Delete, or
Cancel to keep your managed pool.

Note

If you only have one managed pool or you're removing your last managed pool, the
pop-up modal will remind you that by deleting your remaining managed pool, you'll be
opting out of the dedicated IPs (managed) feature and will no longer be charged for it.
You will be required to enter Disable in the confirmation field before you can choose
Delete.

Using your own IP addresses to send email using Amazon SES

Amazon SES includes a feature called Bring Your Own IP (BYOIP), which makes it possible to
use your own IP addresses to send email through Amazon SES. If you already use a range of IP
addresses to send email, you can request that we make your IP range available for sending email
through Amazon SES.

Deleting a managed IP pool 408

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

BYOIP is only available for dedicated IP addresses that you configure manually—it can't be
used with Dedicated IPs (managed).

BYOIP is helpful, for example, when you've developed a positive IP reputation using an in-house
email sending system, but you want to migrate to Amazon SES. By using BYOIP, you can start
sending email through Amazon SES immediately, without having to re-establish the reputations of
your IP addresses.

Requirements

To use BYOIP, your IP address range has to meet the following requirements:

• The address range has to be registered with your Regional internet registry (RIR), such as the
American Registry for Internet Numbers (ARIN), Réseaux IP Européens Network Coordination
Centre (RIPE NCC), or Asia-Pacific Network Information Centre (APNIC). The address range has to
be registered to a business or institutional entity and can't be registered to a person.

• You have to be able to provide proof that you own the address range by submitting a signed
authorization message.

• The addresses in the IP address range have to have a clean history. We might investigate the
reputation of the IP address range, and we reserve the right to reject an IP address range if it
contains IP addresses that have poor reputations or are associated with malicious behavior.

• The IP address range cannot include IP address ranges that were brought into another AWS
service for BYOIP, such as Amazon EC2.

Considerations

There are several factors that you should consider before you request the transfer of your IP ranges
to Amazon SES:

• The most specific address range that you can specify is /24. In other words, if you transfer the
IP range 203.0.113.0/24 to your Amazon SES account, then you can send from a total of 256
addresses, ranging from 203.0.113.0 to 203.0.113.255. You have to transfer the entire range—
Amazon SES doesn't currently allow you to transfer individual IP addresses.

Requirements 409

Amazon Simple Email Service Developer Guide

• If you use BYOIP for a specific range of IP addresses, you can only access that range from a single
AWS Region.

• You can bring five address ranges per Region to your AWS account.

• If you use your own IP addresses, you can't use the addresses in the pool of shared Amazon SES
IP addresses. If you need to use these shared IP addresses, you can use Amazon SES in a different
AWS Region, or create a new AWS account.

• There is a monthly charge for each IP address that you use with BYOIP. For more information, see
Amazon SES Pricing.

Using your own IP addresses with Amazon SES

In order to prevent our systems from being used to send unsolicited or malicious content, we have
to consider each BYOIP request carefully.

If you want to use your own IP range with Amazon SES, send the following information to ses-
byoip-request@amazon.com:

• Your AWS account ID.

• The AWS Region that you want to use the IP range in, such as ap-south-1.

• A description of your use case.

• The IP range that you want to use with Amazon SES.

• The name of the internet registry that the range is registered with.

We'll respond to your request within 48 business hours. In our communications with you, we might
request additional information, including documents that prove your ownership of the IP range.

Using your own IP addresses with Amazon SES 410

https://aws.amazon.com/ses/pricing/
mailto:ses-byoip-request@amazon.com
mailto:ses-byoip-request@amazon.com

Amazon Simple Email Service Developer Guide

Virtual Deliverability Manager for Amazon SES

Deliverability, or ensuring your emails reach recipient inboxes instead of spam or junk folders, is a
core element of a successful email strategy.

Virtual Deliverability Manager is an Amazon SES feature that helps you enhance email deliverability,
like increasing inbox deliverability and email conversions, by providing insights into your sending
and delivery data, and giving advice on how to fix the issues that are negatively affecting your
delivery success rate and reputation.

Why your inbox deliverability and sender reputation are important

Inbox deliverability is a key factor when it comes to email conversions (when a recipient takes an
action after opening an email)—customers who don't receive your messages won't be able to see
them, much less be able to engage with them.

Sending reputation has the largest influence on inbox deliverability at the customer experience
level—it determines whether or not unwanted messages reach recipients or needed messages get
routed to spam folders or blocked before getting the opportunity to reach the recipient mailboxes.

How Virtual Deliverability Manager can help improve deliverability and reputation

Virtual Deliverability Manager helps you improve both your deliverability and reputation with a
dashboard that offers both high and detailed level views of your account’s email program to help
focus on any problematic areas and an advisor that provides solutions to remediate infrastructure
problems that are adversely affecting your email deliverability and reputation.

• Dashboard – Provides insights into your deliverability data focusing on account, ISP, sending
identity, and configuration set levels. This helps you to quickly see problematic areas and trends,
and to catch possible problems before they turn into a larger deliverability issues like temporary
refusals (deferrals) or blocks. These insights will also help you to improve your sender reputation
by calculating ideal times and dates for better customer engagement and conversions for your
email campaigns.

• Advisor – Provides recommendations to improve your email sending by flagging configuration
issues that are negatively affecting your email deliverability and reputation. It will recommend
solutions to resolve specific issues in the infrastructure of your sending domain, IP space, and
authentication records such as when SPF, DMARC, or DKIM records don’t exist, or if a DKIM key
length is too short.

411

Amazon Simple Email Service Developer Guide

Getting started with Virtual Deliverability Manager

To start using Virtual Deliverability Manager, an onboarding wizard in the Amazon SES console will
walk you through the steps of enabling Virtual Deliverability Manager for your account. See the
section called “Getting started”.

Topics

• Getting started with Virtual Deliverability Manager

• Virtual Deliverability Manager dashboard

• Virtual Deliverability Manager advisor

• Virtual Deliverability Manager settings

Getting started with Virtual Deliverability Manager

To start using Virtual Deliverability Manager with your account, you must enable it using the
onboarding wizard in the Amazon SES console, where you'll set up engagement tracking and
optimized shared delivery. Virtual Deliverability Manager uses engagement tracking and optimized
shared delivery to monitor your sending and to help you make improvements to your deliverability
and reputation.

• Engagement tracking – The ability to monitor recipient engagement behavior through open and
click events by using a tracking pixel within a wrapped link. When triggered, the tracking pixel
provides a timestamp of when a message was opened, and indicates which links were clicked
by the recipient. Turning this on alters your URLs and links to include Amazon SES engagement
tracking wrappers.

• Optimized shared delivery – Automatically chooses the optimal IP to use when sending emails,
improving end-point delivery of messages to the target email recipients. This does not apply to
dedicated IP addresses.

While both engagement tracking and optimized shared delivery are turned on by default in the
onboarding wizard, you have the option to turn them off. We highly recommend that you keep
both features enabled to get the most out of Virtual Deliverability Manager.

Getting started 412

Amazon Simple Email Service Developer Guide

Getting started with Virtual Deliverability Manager using the Amazon
SES console

The following procedure shows you how to get started with Virtual Deliverability Manager using
the Amazon SES console.

To get started with Virtual Deliverability Manager using the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Virtual Deliverability Manager.

3. Choose any of the Get started with Virtual Deliverability Manager buttons on the Virtual
Deliverability Manager overview page.

4. On the Select Engagement tracking page, accept the default or choose Turn off engagement
tracking, then choose Next.

Note

Turning on engagement tracking alters your URLs and links to include Amazon SES
engagement tracking wrappers.

5. On the Select Optimized shared delivery page, accept the default or choose Turn off
optimized shared delivery, then choose Next.

Important

Optimized shared delivery might result in preemptive delays to your emails being sent
in an attempt to protect your sending reputation. If you have a critical workload that
must be sent without delay, we recommend that you don't enable this setting. Instead,
use configuration sets for sending, and only enable optimized shared delivery for those
configuration sets where you can afford delays.

6. Review your choices for engagement tracking and optimized shared delivery on the Review
and enable page. Choose Previous if you want to go back and make changes; otherwise,
choose Enable Virtual Deliverability Manager.

Getting started (console) 413

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

The Virtual Deliverability Manager settings page opens. The Subscription overview panel
indicates the status of Virtual Deliverability Manager and the Additional settings panel
indicates the status of Engagement tracking and Optimized shared delivery.

Once you've enabled Virtual Deliverability Manager for your account, you can define custom
settings for how a configuration set will use engagement tracking and optimized shared delivery
by overriding how they’ve been defined in Virtual Deliverability Manager. This gives you the
flexibility to tailor your email sending for specific email campaigns. For example, you can enable
engagement tracking and optimized shared delivery for your marketing email and disable them
for your transactional email. See Virtual Deliverability Manager options while creating or editing a
configuration set.

Getting started with Virtual Deliverability Manager using the AWS CLI

The following examples show you how to get started with Virtual Deliverability Manager using the
AWS CLI.

To get started with Virtual Deliverability Manager using the AWS CLI

You can use the PutAccountVdmAttributes operation in the Amazon SES API v2 to get started
with Virtual Deliverability Manager. You can call this operation from the AWS CLI, as shown in the
following examples.

• Enable Virtual Deliverability Manager in your account:

aws --region us-east-1 sesv2 put-account-vdm-attributes --vdm-attributes
 VdmEnabled=ENABLED

• Enable both engagement tracking and optimized shared delivery using an input file:

aws --region us-east-1 sesv2 put-account-vdm-attributes --cli-input-json file://
attributes.json

The input file looks similar to this:

{
 "VdmAttributes": {
 "VdmEnabled": "ENABLED",
 "DashboardAttributes": {

Getting started (AWS CLI) 414

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutAccountVdmAttributes.html

Amazon Simple Email Service Developer Guide

 "EngagementMetrics": "ENABLED"
 },
 "GuardianAttributes": {
 "OptimizedSharedDelivery": "ENABLED"
 }
 }
}

Parameter values and related data types can be found by linking from the VdmAttributes data
type in the Amazon SES API v2 reference.

Note

Turning on engagement tracking alters your URLs and links to include Amazon SES
engagement tracking wrappers.

Important

Optimized shared delivery might result in preemptive delays to your emails being sent
in an attempt to protect your sending reputation. If you have a critical workload that
must be sent without delay, we recommend that you don't enable this setting. Instead,
use configuration sets for sending, and only enable optimized shared delivery for those
configuration sets where you can afford delays.

• To verify the outcome:

aws --region us-east-1 sesv2 get-account

• To define custom settings for how a configuration set will use engagement tracking and
optimized shared delivery by overriding how they’ve been defined in Virtual Deliverability
Manager, see the AWS CLI example in the section called “Settings”.

Virtual Deliverability Manager dashboard

The dashboard offers high level views of your account’s deliverability program, such as easy to
read cards and time series graphs that show deliverability and reputation through open/click
and delivery rates and bounce/complaint stats. The dashboard also offers a more detailed view,

Dashboard 415

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_VdmAttributes.html

Amazon Simple Email Service Developer Guide

enabling you to drill down to more detailed specific table data when there’s an issue that's tied to a
particular ISP, sending identity, or configuration set that's associated with an email campaign.

Being able to see things from a high overall level with the ability to also view the specific details
allows you to focus on the problematic areas of your deliverability rather than needing to review
your email program as a whole. This level of insight also gives you the ability to catch trends and
possible problems before they turn into larger deliverability problems, like deferrals or blocks.

An account overview in the Virtual Deliverability Manager dashboard showing the cards and time
series graphs.

The Messages table selected in the Virtual Deliverability Manager dashboard showing sent
messages matching the date range and filter criteria.

Dashboard 416

Amazon Simple Email Service Developer Guide

Granular data provided by the dashboard can help you to improve your sender reputation and
calculate ideal times and dates for better engagement and conversions for your email program
with the ability to drill-down to specific data sets:

• ISP data – Valuable when you have a deliverability issue to a specific ISP or mailbox provider
—instead of trying to adjust your entire account, which may otherwise be doing well, you can
focus on the problematic endpoint and align with its best practices to improve sender reputation
to that ISP and restore good inbox deliverability to reach your recipients. It's also important to
understand your ISP distribution—as you may send more heavily to one ISP or mailbox provider
than to others. You need to ensure that traffic is always being delivered and engaged by the end
recipients to have a positive impact your email conversion.

• Sending identity & configuration set data – Useful in helping you to identify sending identities
and configuration sets that are contributing to your overall account deliverability issue. You
can focus on those specifically, adjust your configurations, and possibly reduce sending with
a particular identity until the issue is resolved. For example, a sending identity accidentally
sent to a suppression list, resulting in all traffic going through that identity. That identity is
associated with a configuration set, causing deliverability issues. It’s valuable in such cases to be
able to identify the sending identity or configuration set so that you can focus on rectifying that
problem specifically, rather than combing through your entire account to try to identify the root
cause of the deliverability issue.

Dashboard 417

Amazon Simple Email Service Developer Guide

Drill-down data displayed in the Virtual Deliverability Manager dashboard for the selected sending
identity, example.com—cards display deliverability and reputation metrics. The table displays all of
the ISPs that the sending identity sent mail to with metric rates for each ISP within the date range
entered.

Using the Virtual Deliverability Manager dashboard in the Amazon SES
console

The following procedure shows you how to use the Virtual Deliverability Manager dashboard in the
Amazon SES console to view your overall deliverability and reputation statistics and to drill-down
into problematic areas.

To use the Virtual Deliverability Manager dashboard to view high level and more detailed data
of your account’s deliverability metrics

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

Using the dashboard (console) 418

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

2. In the left navigation pane, choose Dashboard under Virtual Deliverability Manager.

Note

Dashboard will not be visible if you haven't enabled Virtual Deliverability Manager for
your account. For more information, see the section called “Getting started”.

3. In the Full account overview panel, choose a date range to be used for all metrics in the cards,
time series graphs, and drill-down tables.

• In the Date range field, choose Relative range (default) or Absolute range.

• Relative range – Select the radio button that corresponds with the number of days
desired.

• Custom range – Enter a range in either days (up to 60), weeks (up to 8), or months (up
to 2).

• Absolute range – The first date you choose will be the Start date, the second date will
be the End date, not to exceed 60 days total. To specify a single day, choose it for both
the Start and End date.

Note

The following applies to all date ranges in the dashboard:

• All dates & times are UTC.

• For Relative range dates, the last day ends on its UTC midnight timestamp. For
example, if you choose Last 7 days, the seventh day would be yesterday, ending
at midnight.

• If the date range is greater than 30 days, the % Difference column in the Account
statistics table and the change percentages in the cards will not have a value
(indicated by dash -).

4. The cards, time series graphs, and all of the drill-down tables, Accounts statistics, ISP, Sending
identities, and Configuration sets, display metric totals calculated from the date range entered,
and use the metric math described in How dashboard metrics are calculated.

Using the dashboard (console) 419

Amazon Simple Email Service Developer Guide

• To create a local .csv file of the data you’re currently viewing in either the ISP, Sending
identities, or Configuration sets table, select its Export button.

5. Time series graphs charting Volume and Rate progression for the date range you entered are
shown in the Metrics pane. Hovering over a date interval in the graphs will show the exact
volume count or rate percentage based on a daily aggregation. You can filter the metrics you
want to see using the Select metrics dropdown.

6. Choose the Accounts tab to display the Accounts statistics table.

• This table gives an overview of your deliverability and reputation metrics, showing the total
Volume, % Rate, and % Difference for Sent, Delivered, Complaints, Transient & Permanent
bounces, Opens & Clicks as calculated from the date range entered.

Note

If the date range is greater than 30 days, the % Difference column will not have a
value (indicated by dash -).

7. Choose the ISP tab to display the ISP table.

• This table displays metrics for Send volume, Delivered, Transient & Permanent bounces,
Complaints, Opens & Clicks for each ISP you’ve sent to as calculated from the date range
entered.

• To filter specific ISPs, inside the Compare ISPs search box, choose the corresponding check
box for each ISP to include.

• To create a local .csv file of the data you’re currently viewing in this table, select its Export
button.

8. Choose the Sending identities tab to display the Sending identities table.

• This table displays metrics for Send volume, Delivered, Transient & Permanent bounces,
Complaints, Opens & Clicks for each sending identity you’ve used as calculated from the date
range entered.

• To filter specific sending identities, inside the Compare identities search box, choose the
corresponding check box for each identity to include.

• To drill-down on a specific sending identity, choose its name in the Sending identity
column.

Using the dashboard (console) 420

Amazon Simple Email Service Developer Guide

• Cards will appear displaying Delivery rate, Complaints, Transient & Permanent bounces,
Open & Click rates for the selected sending identity as calculated from the date range
entered.

• The time series graphs will refresh displaying all the metrics for the selected sending
identity as calculated from the date range entered.

• An ISP table will be displayed listing all the ISPs the sending identity sent mail to with
metrics given for each ISP as calculated from the date range entered.

• To create a local .csv file of the data you’re currently viewing in this table, select its Export
button.

9. Choose the Configuration sets tab to display the Configuration sets table.

• This table displays metrics for Send volume, Delivered, Transient & Permanent bounces,
Complaints, Opens & Clicks for each configuration set that’s been used to send mail as
calculated from the date range entered.

• To filter specific configuration sets, inside the Compare configuration sets search box, choose
the corresponding check box for each configuration set to include.

• To drill down on a specific configuration set, choose its name in the Configuration set
column.

• Cards will appear displaying Delivery rate, Complaints, Transient & Permanent bounces,
Open & Click rates for the selected configuration set as calculated from the date range
entered.

• The time series graphs will refresh displaying all the metrics for the selected configuration
set as calculated from the date range entered.

• An ISP table will be displayed listing all the ISPs the configuration set was used to send
mail to with metrics given for each ISP as calculated from the date range entered.

• To create a local .csv file of the data you’re currently viewing in this table, select its Export
button.

10. Choose the Messages tab to display the Messages table.

This is an interactive table that provides a way for you to search and find your sent messages.
For each message, you can track its current delivery and engagement status, event history, and
see the response returned by the mailbox provider. The following points cover the ways you
can search for particular messages:

Using the dashboard (console) 421

Amazon Simple Email Service Developer Guide

• Selecting inside the date range picker, you can filter on messages you’ve sent within the last
30 days. If you don’t select a date range, your search will default to the last 7 days including
the current day within your timezone.

• In the Search messages field you can filter on Recipient, From address, Subject line, ISP,
Engagement event, Delivery event, and Message ID — the following properties apply:

• Depending on the filter type, you either enter a case sensitive text string, or select a value
from a list.

• Engagement event is limited to a single value, Subject line can have up to two values, and
all other filters can have up to five values per search. Filtering by Message ID will exclude
any other filters you may have selected including the date range.

• The Message ID column is hidden by default, but can be displayed by selecting the gear
icon to customize how you view the Messages table.

• After you’ve selected your filters and date range, choose Search and the table will be
populated with messages matching your search criteria. The table can load up to 100
messages. If your search returns more than 100 messages, the 100 messages in the table are a
random sample of the total returned.

• Selecting a message’s radio button followed by selecting View details will produce a
Message info sidebar containing details of the message’s full event history, the most recent
at top, and any responses or diagnostic codes returned by the mailbox provider.

• To create a local .csv file of the data you’re currently viewing in this table, select its Export
button.

Accessing your Virtual Deliverability Manager metric data using the
AWS CLI

The following example shows you how to access your Virtual Deliverability Manager metric data
using the AWS CLI. This is the same data used in the Virtual Deliverability Manager dashboard in
the console.

To access your deliverability metric data using the AWS CLI

You can use the BatchGetMetricData operation in the Amazon SES API v2 to access your
deliverability metric data. You can call this operation from the AWS CLI as shown in the following
examples.

Accessing metric data (AWS CLI) 422

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_BatchGetMetricData.html

Amazon Simple Email Service Developer Guide

• Access your deliverability metric data:

aws --region us-east-1 sesv2 batch-get-metric-data --cli-input-json file://sends.json

• The input file looks similar to this:

{
 "Queries": [
 {
 "Id": "Retrieve-Account-Sends",
 "Namespace": "VDM",
 "Metric": "SEND",
 "StartDate": "2022-11-04T00:00:00",
 "EndDate": "2022-11-05T00:00:00"
 }
]
}

More information about parameter values and related data types can be found by linking from
the BatchGetMetricDataQuery data type in the Amazon SES API v2 reference.

Filtering and exporting your deliverability metric data using the AWS
CLI

This example shows you how to use the CreateExportJob operation to filter and export your
deliverability metric data to a .csv or .json file using the AWS CLI. This is the same data used in the
Virtual Deliverability Manager dashboard's ISP, Sending identities, and Configuration sets tables.

To filter and export your deliverability metric data to a .csv or .json file using the AWS CLI

You can use the CreateExportJob operation along with the MetricsDataSource data type
in the Amazon SES API v2 to filter and export your metric data to a .csv or .json file. You call this
operation from the AWS CLI as shown in the following example.

• Filter and export your deliverability metric data using an input file:

aws --region us-east-1 sesv2 create-export-job --cli-input-json file://metric-export-
input.json

Filtering and exporting metric data (AWS CLI) 423

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_BatchGetMetricDataQuery.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateExportJob.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateExportJob.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MetricsDataSource.html

Amazon Simple Email Service Developer Guide

• In this example, the input file is using MetricsDataSource parameters to filter on all the ISPs
you've sent mail to, showing the rate of successful delivery within the given date range, and
a .csv format specified for the output file:

{
 "ExportDataSource": {
 "MetricsDataSource": {
 "Dimensions": {
 "ISP": ["*"]
 },
 "Namespace": "VDM",
 "Metrics": [
 {
 "Name": "DELIVERY",
 "Aggregation": "RATE"
 }
],
 "StartDate": "2023-06-13T00:00:00",
 "EndDate": "2023-06-20T00:00:00"
 }
 },
 "ExportDestination": {
 "DataFormat": "CSV"
 }
}

More information about parameter values and related data types can be found in
MetricsDataSource as an object of the type ExportDataSource in the Amazon SES API v2
reference.

Finding your sent messages, their delivery & engagement status, and
exporting the results using the AWS CLI

These examples show you how to use the CreateExportJob operation to search and find
particular messages you've sent, see their current delivery and engagement status, and export the
results of your search to a .csv or .json file using the AWS CLI. This is the same data used in the
Virtual Deliverability Manager dashboard's Messages table.

To find sent messages, their delivery and engagement status, and export the results to a .csv
or .json file using the AWS CLI

Finding messages, their status, & exporting results (AWS CLI) 424

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MetricsDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MetricsDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ExportDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateExportJob.html

Amazon Simple Email Service Developer Guide

You can use the CreateExportJob operation along with the MessageInsightsDataSource
data type in the Amazon SES API v2 to apply filters in order to find particular messages you've
sent, see their delivery and engagement status, and export the results to a .csv or .json file. You call
this operation from the AWS CLI as shown in the following examples.

Note

If your filtered search returns more than 10,000 messages, the 10,000 messages in the
API's result set are a random sample of the total returned.

• Find sent messages, see their current status, and export results using an input file:

aws --region us-east-1 sesv2 create-export-job --cli-input-json file://message-
insights-export-input.json

• In this example, the input file is using MessageInsightsDataSource parameters to filter on a
subject equal to "Sale Ends Tonight!", and a .csv format specified for the output file:

{
 "ExportDataSource": {
 "MessageInsightsDataSource": {
 "StartDate": "2023-07-01T00:00:00",
 "EndDate": "2023-07-10T00:00:00",
 "Include": {
 "Subject": [
 "Sale Ends Tonight!"
]
 }
 }
 },
 "ExportDestination": {
 "DataFormat": "CSV"
 }
}

• In this example, the input file is using MessageInsightsDataSource parameters to filter on
a subject that starts with “Hello”, sent with a FromEmailAddress containing “information” to
destinations ending with “@example.com”, and a .json format specified for the output file:

Finding messages, their status, & exporting results (AWS CLI) 425

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateExportJob.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html

Amazon Simple Email Service Developer Guide

{
 "ExportDataSource": {
 "MessageInsightsDataSource": {
 "StartDate": "2023-07-01T00:00:00",
 "EndDate": "2023-07-10T00:00:00",
 "Include": {
 "Subject": [
 "Hello*"
],
 "FromEmailAddress": [
 "*information*"
],
 "Destination": [
 "*@example.com"
]
 }
 }
 },
 "ExportDestination": {
 "DataFormat": "JSON"
 }
}

• In this example, the input file is using MessageInsightsDataSource parameters to filter
on a subject that starts with “Hello”, exclude results that have "noreply@example.com" as a
FromEmailAddress, and a .csv format specified for the output file:

{
 "ExportDataSource": {
 "MessageInsightsDataSource": {
 "StartDate": "2023-07-01T00:00:00",
 "EndDate": "2023-07-10T00:00:00",
 "Include": {
 "Subject": [
 "Hello*"
]
 },
 "Exclude": {
 "FromEmailAddress": [
 "noreply@example.com"
]

Finding messages, their status, & exporting results (AWS CLI) 426

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html

Amazon Simple Email Service Developer Guide

 }
 }
 },
 "ExportDestination": {
 "DataFormat": "CSV"
 }
}

• In this example, the input file is using MessageInsightsDataSource parameters to filter
on a subject that starts with “Hello”, sent with a FromEmailAddress containing “information”
to destinations ending with “@example.com”, using Gmail as the ISP, a last delivery event
of “DELIVERY”, a last engagement event that’s either “OPEN” or “CLICK”, and a .json format
specified for the output file:

{
 "ExportDataSource": {
 "MessageInsightsDataSource": {
 "StartDate": "2023-07-01T00:00:00",
 "EndDate": "2023-07-10T00:00:00",
 "Include": {
 "Subject": [
 "Hello*"
],
 "FromEmailAddress": [
 "*information*"
],
 "Destination": [
 "*@example.com"
],
 "Isp": [
 "Gmail"
],
 "LastDeliveryEvent": [
 "DELIVERY"
],
 "LastEngagementEvent": [
 "OPEN", "CLICK"
]
 }
 }
 },

Finding messages, their status, & exporting results (AWS CLI) 427

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html

Amazon Simple Email Service Developer Guide

 "ExportDestination": {
 "DataFormat": "JSON"
 }
}

• In this example, the input file is using MessageInsightsDataSource parameters to filter on
destinations ending with “@example1.com”, or “@example2.com”, or “@example3.com”, exclude
messages with a LastDeliveryEvent equal to “SEND” or “DELIVERY”, and a .csv format specified
for the output file:

{
 "ExportDataSource": {
 "MessageInsightsDataSource": {
 "StartDate": "2023-07-01T00:00:00",
 "EndDate": "2023-07-10T00:00:00",
 "Include": {
 "Destination": [
 "*@example1.com",
 "*@example2.com",
 "*@example3.com"
]
 },
 "Exclude": {
 "LastDeliveryEvent": [
 "SEND",
 "DELIVERY"
]
 }
 }
 },
 "ExportDestination": {
 "DataFormat": "CSV"
 }
}

More information about parameter values and related data types can be found in
MessageInsightsDataSource as an object of the type ExportDataSource in the Amazon
SES API v2 reference.

Finding messages, their status, & exporting results (AWS CLI) 428

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_MessageInsightsDataSource.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ExportDataSource.html

Amazon Simple Email Service Developer Guide

Managing your export jobs using the AWS CLI

These examples show you how to manage your export jobs by listing them, getting information
about them, and canceling them using the AWS CLI.

To list your export jobs using the AWS CLI

You can use the ListExportJobs operation in the Amazon SES API v2 to list your export jobs.
You can call this operation from the AWS CLI as shown in the following examples.

• List your export jobs:

aws --region us-east-1 sesv2 list-export-jobs --export-source-type=METRICS_DATA

aws --region us-east-1 sesv2 list-export-jobs --job-status=CREATED

aws --region us-east-1 sesv2 list-export-jobs --cli-input-json file://list-export-
jobs-input.json

• The input file looks similar to this:

{
 "NextToken": "",
 "PageSize": 0,
 "ExportSourceType": "METRICS_DATA",
 "JobStatus": "CREATED"
}

More information about parameter values for the ListExportJobs operation can be found in
the Amazon SES API v2 reference.

To get information about your export job using the AWS CLI

You can use the GetExportJob operation in the Amazon SES API v2 to get information about
your export job. You can call this operation from the AWS CLI as shown in the following examples.

• Get information about your export job:

aws --region us-east-1 sesv2 get-export-job --job-id=<JobId>

Managing export jobs (AWS CLI) 429

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListExportJobs.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListExportJobs.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetExportJob.html

Amazon Simple Email Service Developer Guide

aws --region us-east-1 sesv2 get-export-job --cli-input-json file://get-export-job-
input.json

• The input file looks similar to this:

{
 "JobId": "e2220d6b-dce5-45f2-bf60-3287a465b732"
}

More information about parameter values for the GetExportJob operation can be found in the
Amazon SES API v2 reference.

To cancel your export job using the AWS CLI

You can use the CancelExportJob operation in the Amazon SES API v2 to cancel your export job.
You can call this operation from the AWS CLI as shown in the following examples.

• Cancel your export job:

aws --region us-east-1 sesv2 cancel-export-job --job-id=<JobId>

aws --region us-east-1 sesv2 cancel-export-job --cli-input-json file://cancel-export-
job-input.json

• The input file looks similar to this:

{
 "JobId": "e2220d6b-dce5-45f2-bf60-3287a465b732"
}

More information about parameter values for the CancelExportJob operation can be found in
the Amazon SES API v2 reference.

Managing export jobs (AWS CLI) 430

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetExportJob.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CancelExportJob.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_API_CancelExportJob.html

Amazon Simple Email Service Developer Guide

Seeing a message’s full event history and ISP responses using the AWS
CLI

The following example shows you how to see details of a message’s full event history and any
responses or diagnostic codes returned by the mailbox provider using the AWS CLI. This is the
same data used in the Message info sidebar after selecting a message’s radio button in the Virtual
Deliverability Manager dashboard's Messages table.

To see a message's event history and ISP responses using the AWS CLI

You can use the GetMessageInsights operation in the Amazon SES API v2 to see details of a
sent message. You can call this operation from the AWS CLI as shown in the following example.

• See message details about a sent email identified by its message-id:

aws --region us-east-1 sesv2 get-message-insights --message-id
 01000100001000dd-2a19190d-99d4-0000-9f00-deb5bbf2bfbe-000001

More information about parameter values for the GetMessageInsights operation can be
found in the Amazon SES API v2 reference.

How Virtual Deliverability Manager dashboard metrics are calculated

All of the rate cards and drill-down tables displayed in the Virtual Deliverability Manager
dashboard calculate metrics for the date range entered in the Full account overview panel.

The metric rate percentages displayed in the dashboard are calculated as described in the table.
The last four columns represent qualifiers to the basic math that's used to derive the displayed
metrics. For example, your Open rate is calculated as the open total divided by the delivered total
for HTML messages that are delivered with engagement tracking turned on. They don't reflect any
of the messages that you sent without engagement tracking and are not HTML encoded.

Seeing message details (AWS CLI) 431

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetMessageInsights.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetMessageInsights.html

Amazon Simple Email Service Developer Guide

Rate % How it's calculated

With
engagemen
t
tracking
enabled
&
HTML

And
with at
least 1
tracked
link

Delivered
to ISPs
with
an SES
FBL

Excluded
if on
your
account-
level
suppressi
on list

Open rate open total / delivered total ✗

Click rate click total / delivered total ✗ ✗

Complaint rate complaint total / delivered
total

✗ ✗

Delivery rate delivered total / sent total

Transient bounce rate transient bounce total / sent total ✗

Permanent bounce ratepermanent bounce total / sent total ✗

Total send volume Rate % not displayed (everythi
ng you’ve sent; always 100%)

How the difference rate and volume totals are calculated for all metrics:

• Difference % – Difference in metric total as compared to previous metric total for the given date
range. For example, if Last 7 days is the specified date range, Metric rate of last 7 days - Metric
rate of previous 7 days.

• The difference % for Total send volume is calculated differently. For example, (Send volume of
last 7 days - Send volume of previous 7 days) / Send volume of previous 7 days.

• Volume – Total count of each metric.

Note

• The Delivered column in the drill-down tables displays the straight delivered volume
without the delivered qualifiers used for calculating open, click, and complaint rates.

How dashboard metrics are calculated 432

Amazon Simple Email Service Developer Guide

• Virtual Deliverability Manager only tracks metrics from emails that have one recipient
—emails with multiple recipients are not counted in any of the Virtual Deliverability
Manager dashboard metrics.

• In these cases, your Virtual Deliverability Manager metric counts will be lower than
your Amazon CloudWatch metric counts because CloudWatch metrics include emails
with multiple recipients.

• Emails sent to the SES mailbox simulator are not counted in any of the Virtual
Deliverability Manager dashboard metrics.

• Emails sent through a delegate sender's account (formerly cross-account sending) are not
counted in any of the Virtual Deliverability Manager dashboard metrics.

Important

Apple Mail's Privacy Protection and its impact to engagement rates: As a result of Apple
implementing their Mail Privacy Protection (MPP) feature for Apple devices as of iOS15,
engagement numbers have become inflated as MPP triggers opens as the Apple Mail app
is initiated, not necessarily when a recipient opens and/or clicks a message. This causes
engagement data to look much higher than it typically would be and this is something
email marketers will have to take into account when reviewing engagement. There are
several other ways of identifying engagement, such as web activity, app/portal usage and
also using proxy data from non-Apple devices to build an aggregate metric. The important
thing to focus on is the trends of engagement as that can indicate if there's a problem with
your email sending. For more information, see Apple Mail's Privacy Protection.

Virtual Deliverability Manager advisor

The Virtual Deliverability Manager advisor helps to optimize your email deliverability and
engagement by identifying key performance and infrastructure issues at the account and sending
identity levels that are adversely affecting your email deliverability and reputation. It provides
solutions by providing specific guidance on how to resolve the identified issue.

Advisor’s infrastructure recommendations are listed in the Open recommendations table. The
recommendations identify standard email authentication problems, such as when SPF, DKIM,
DMARC, or BIMI records don’t exist or have problems with their configuration such as being

Advisor 433

https://aws.amazon.com/blogs/messaging-and-targeting/apple-mails-ios15-privacy-protection-impact-to-senders-2/

Amazon Simple Email Service Developer Guide

malformed or having a key length that's too short. They're categorized by severity of Impact,
Identity name of the sending domain, and the Age of the alert. In the search bar, a list box provides
the option to filter on impact level, infrastructure category, or sending identity name. The Last
checked column shows a relative time of when the recommendation was last updated, such as "Just
now" or "15 minutes ago". The last column, Resolve issue, provides a link to the relevant section in
the Amazon SES Developer Guide with guidance about how to resolve the identified issue.

Open recommendations display in the Virtual Deliverability Manager advisor sorted by impact
level.

If you don't have any ongoing advisor notifications, a message will indicate that you don’t have any
open recommendations. We recommend that you check the advisor on a regular basis. Optionally,
you can integrate these advisor notification events with Amazon EventBridge to build scalable
event-driven applications as explained in Monitoring using EventBridge.

You can also access the Resolved recommendations table from the Virtual Deliverability Manager
advisor page, which lists infrastructure issues that you’ve resolved by implementing the advisor's
guidance. Resolved recommendations are listed with an initial status that describes the issue
before it was resolved. Resolved recommendations expire after 30 days.

Advisor 434

Amazon Simple Email Service Developer Guide

What the Virtual Deliverability Manager advisor's looking for

In the previous section we discussed that Virtual Deliverability Manager's advisor performs
checks against your sending domain to determine if you've configured a safely authenticated
infrastructure to ensure you maintain a high rate of email deliverability and maintain a good
sender reputation. Before you activate the Virtual Deliverability Manager advisor, we think it would
be helpful for you to know exactly what the advisor's checking and what it's looking for in those
checks.

You can use this table as a reference to go through your sending domain's configuration and
correct any of these elements that are not aligned to the standards listed in this table before they
become problems that the advisor has to alert you to.

Type of check Advisor message Why the advisor's alerting youLearn more

DKIM configuration DKIM verification is
not enabled.

DKIM is not enabled
per identity.

Easy DKIM in SES

DKIM key strength DKIM signing key
length is below 2048
bits.

DKIM signing key
length is not using at
least 2048 bits.

Easy DKIM in SES

DKIM DNS record
validation

DKIM verification has
failed.

DKIM CNAME records
determined invalid
after looking up and
trying to validate the
key.

Verifying a DKIM
domain identity with
your DNS provider

DMARC configuration DMARC configuration
was not found.

DMARC TXT records
are missing.

Setting up the
DMARC policy on
your domain

DMARC DNS record
format check

DMARC configuration
could not be parsed.

Invalid format found
for DMARC TXT
records.

Setting up the
DMARC policy on
your domain

What the advisor's looking for 435

Amazon Simple Email Service Developer Guide

Type of check Advisor message Why the advisor's alerting youLearn more

DMARC's DKIM
configuration

DKIM record was not
found.

No DKIM record was
found in order to
comply with DMARC.

Complying with
DMARC through
DKIM

DMARC's DKIM
configuration

DKIM record is not
aligned.

The domain specified
in the DKIM signature
does not align
(match) with the
domain in the From
address.

Complying with
DMARC through
DKIM

SPF configuration SPF record was not
found.

SPF TXT record
missing for Custom
MAIL FROM domain.

Configuring your
custom MAIL FROM
domain

SPF "include"
configured

SPF record for
Amazon SES was not
found.

include:a
mazonses.com is
missing from SPF TXT
record.

Configuring your
custom MAIL FROM
domain

SPF enforcement
configured

SPF all qualifier is
missing.

~all is missing from
SPF TXT record.

Configuring your
custom MAIL FROM
domain

SPF enforcement
validation

An SPF configuration
issue was found.

Attempts to detect
the required SPF
MX record within 72
hours failed.

Custom MAIL FROM
domain setup states

BIMI configured BIMI record not found
or configured without
default selector.

BIMI TXT records are
missing or lack the
selector attribute.

Setting up BIMI

What the advisor's looking for 436

Amazon Simple Email Service Developer Guide

Type of check Advisor message Why the advisor's alerting youLearn more

BIMI format validatio
n

BIMI has malformed
TXT record.

BIMI TXT record
determined as
misconfigured after
checking for the
presence and valid
format of: version,
certificate URL, and
logo URL.

Setting up BIMI

Using the Virtual Deliverability Manager advisor in the Amazon SES
console

The following procedure shows you how to use the Virtual Deliverability Manager advisor in the
Amazon SES console to resolve identified deliverability issues using the Amazon SES console.

To use the Virtual Deliverability Manager advisor to resolve deliverability and reputation issues

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Advisor under Virtual Deliverability Manager.

Note

Advisor will not be visible if you haven't enabled Virtual Deliverability Manager for
your account. For more information, see the section called “Getting started”.

3. The Open recommendations table displays by default. Recommendations are categorized
by Impact (High/Low), Identity name (sending domain), Age (of the alert), and
Recommendation/Description (identified issue). In the search bar, filter on the Impact level,
the infrastructure issue Category, or the Identity name of the sending domain.

4. To remediate a problem that's described in the Recommendation/Description column, choose
the link in the Resolve issue column for that row, and implement the suggested solution.

Using the advisor (console) 437

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

After you implement a solution, the resolved issue can take up to six hours to be
reflected. You can view the resolved issue on the Resolved recommendations tab.

Accessing your Virtual Deliverability Manager recommendations using
the AWS CLI

The following examples show you how to access your Virtual Deliverability Manager
recommendations using the AWS CLI.

To access your Virtual Deliverability Manager recommendations using the AWS CLI

You can use the ListRecommendations operation in the Amazon SES API v2 to list your
deliverability recommendations. You can call this operation from the AWS CLI, as shown in the
following examples.

• List the recommendations to see deliverability issues:

aws --region us-east-1 sesv2 list-recommendations

• Apply filters to retrieve recommendations for a specific domain that you own:

aws --region us-east-1 sesv2 list-recommendations --cli-input-json file://list-
recommendations.json

• The input file looks similar to this:

{
 "PageSize":100,
 "Filter":{
 "RESOURCE_ARN": "arn:aws:ses:us-east-1:123456789012:identity/example.com"
 }
}

Accessing recommendations (AWS CLI) 438

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListRecommendations.html

Amazon Simple Email Service Developer Guide

Virtual Deliverability Manager settings

You can view or change Virtual Deliverability Manager settings in your account at any time. You can
enable or disable Virtual Deliverability Manager, and can specify an on or off mode for engagement
tracking and optimized shared delivery at the Virtual Deliverability Manager account level through
the Amazon SES console or the AWS CLI

Virtual Deliverability Manager options are also provided at the configuration set level so you can
define custom settings for how a configuration set will use engagement tracking and optimized
shared delivery by overriding how they’ve been defined in Virtual Deliverability Manager. This gives
you the flexibility to tailor your email sending for specific email campaigns. For example, you can
enable engagement tracking and optimized shared delivery for your marketing email and disable
them for your transactional email.

Changing your Virtual Deliverability Manager account settings using
the Amazon SES console

The following procedure shows you how to change your Virtual Deliverability Manager account
settings using the Amazon SES console.

To change your Virtual Deliverability Manager account settings using the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation pane, choose Settings under Virtual Deliverability Manager.

The Virtual Deliverability Manager settings page opens. The Subscription overview panel
indicates the status of Virtual Deliverability Manager and the Additional settings panel
indicates the status of Engagement tracking and Optimized shared delivery.

3. To change Engagement tracking or Optimized shared delivery settings:

a. In the Additional settings panel, choose Edit.

b. Select the corresponding radio button to turn either feature on or off, and then choose
Submit settings.

The Virtual Deliverability Manager settings page shows a summary of your changes in
the Additional settings panel.

Settings 439

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

Engagement tracking options that you define here or in Virtual Deliverability
Manager's configuration set overrides, control whether or not to report opens and
clicks in the Virtual Deliverability Manager dashboard; they do not affect event
destination configurations that publish open and click events. For example, if you
have engagement tracking disabled here, it will not disable the open and click
event publishing you have set up in SES event destinations.

4. (Optional) To define custom settings for how a configuration set uses engagement tracking
and optimized shared delivery by overriding how they’re defined in Virtual Deliverability
Manager, reference Virtual Deliverability Manager options while creating or editing a
configuration set.

5. To disable Virtual Deliverability Manager:

a. In the Subscription overview panel, choose Disable Virtual Deliverability Manager.

b. In the Disable Virtual Deliverability Manager? pop-up window, enter Disable in the
confirmation field, and then choose Disable Virtual Deliverability Manager.

c. A banner appears, confirming that you've disabled Virtual Deliverability Manager.

6. To reenable Virtual Deliverability Manager, see the section called “Getting started”.

Changing your Virtual Deliverability Manager account settings using
the AWS CLI

You can change your Virtual Deliverability Manager account settings using the AWS CLI.

To change your Virtual Deliverability Manager account settings using the AWS CLI

You can use the PutAccountVdmAttributes and PutConfigurationSetVdmOptions
operations in the Amazon SES API v2 to change your Virtual Deliverability Manager settings. You
can call this operation from the AWS CLI, as shown in the following examples.

• Enable or disable engagement tracking, optimized shared delivery, or both using an input file:

aws --region us-east-1 sesv2 put-account-vdm-attributes --cli-input-json file://
attributes.json

Changing Virtual Deliverability Manager settings (AWS CLI) 440

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutAccountVdmAttributes.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutConfigurationSetVdmOptions.html

Amazon Simple Email Service Developer Guide

In this example, where engagement tracking is ENABLED and optimized shared delivery is
DISABLED, the input file looks similar to this:

{
 "VdmAttributes": {
 "VdmEnabled": "ENABLED",
 "DashboardAttributes": {
 "EngagementMetrics": "ENABLED"
 },
 "GuardianAttributes": {
 "OptimizedSharedDelivery": "DISABLED"
 }
 }
}

You can find more information about parameter values and related data typesby linking from
the VdmAttributes data type in the Amazon SES API v2 reference.

• Define custom settings for how a configuration set will use engagement tracking and optimized
shared delivery by overriding how they’ve been defined in Virtual Deliverability Manager:

aws --region us-east-1 sesv2 put-configuration-set-vdm-options --cli-input-json
 file://config-set.json

In this example, where a configuration set named example has both engagement tracking and
optimized shared delivery enabled, the input file looks similar to this:

{
 "ConfigurationSetName": "example",
 "VdmOptions": {
 "DashboardOptions": {
 "EngagementMetrics": "ENABLED"
 },
 "GuardianOptions": {
 "OptimizedSharedDelivery": "ENABLED"
 }
 }
}

Changing Virtual Deliverability Manager settings (AWS CLI) 441

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_VdmAttributes.html

Amazon Simple Email Service Developer Guide

For more information about parameter values and related data types, see the VdmOptions data
type in the Amazon SES API v2 reference.

• To verify the outcome:

aws —region us-east-1 sesv2 get-configuration-set —configuration-set-name example

• Not specifying DashboardOptions or GuardianOptions options at the configuration set
level results in your Virtual Deliverability Manager account-level settings applying to traffic sent
through that configuration set.

Changing Virtual Deliverability Manager settings (AWS CLI) 442

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_VdmOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_DashboardOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GuardianOptions.html

Amazon Simple Email Service Developer Guide

Mail Manager for Amazon SES

Mail Manager is a set of Amazon SES email gateway features designed to help you strengthen
your organization's email infrastructure, simplify email workflow management, and streamline
email compliance control. It integrates with your existing infrastructure, can connect different
business applications, and automates inbound email processing. Mail Manager also acts as a first
line of defense in maintaining a healthy email system by efficiently managing your email traffic
and enhancing compliance with its email archival capability.

Along with current Amazon SES capabilities, Mail Manager consists of the following features that
support inbound traffic:

• Ingress endpoint – A key infrastructure component that utilizes filtering polices and rules that
you can configure to determine which emails should be allowed into your organization and
which ones should be rejected.

• Traffic policies and rule sets – Enable email administrators to define and enforce rules for
managing inbound email traffic with highly customizable polices and rules that can sort,
categorize, prioritize, and perform actions on emails based on a rich set of conditions and
exceptions you define. This intelligent filtering combined with automated workflows helps
to streamline email management, enhance efficiency, and ensure compliance with your
organizational email policies.

• SMTP relay – Redirects email traffic to other SMTP servers based on criteria you define in rules
by connecting internal email systems, and streamlines email management with automatic
forwarding. Being able to distribute traffic across multiple servers and gateways enables your
organization to manage high volume email traffic effectively, even in hybrid environments.

• Email archiving – Saves and protects your emails by storing data in persistent and secure long-
term storage, and gives you a way to quickly search and archive email. It provides full-time,
enterprise-level archiving without increasing the storage requirements of your mailbox server.

• Email Add Ons – A collection of specialized security tools from SES approved providers that
can be used to manage email coming into your ingress endpoint as well as providing routing
options based on security results. These tools are certified security intelligence and enforcement
solutions that are ready to be integrated into your email workflow and can be activated directly
from the Mail Manager console.

Getting started with Mail Manager

443

Amazon Simple Email Service Developer Guide

To start using Mail Manager, an onboarding wizard in the Amazon SES console will walk you
through the steps of enabling Mail Manager for your account. See the section called “Getting
started”.

Topics

• Getting started with Mail Manager

• Ingress endpoints

• Traffic policies and policy statements

• Rule sets and rules

• SMTP relay

• Email archiving

• Email Add Ons

• Permission policies for Mail Manager

Getting started with Mail Manager

To start using Amazon SES Mail Manager you can use the Get started with Mail Manager wizard
in the Amazon SES console, where you'll create an ingress endpoint and configure it with a traffic
policy and rule set.

An ingress endpoint is your first building block in setting up Mail Manager—it’s a key infrastructure
component that utilizes:

• Traffic policies – A traffic policy contains policy statements that you define to sort the incoming
mail by allowing or blocking specific types of email when the policy statement’s conditions are
met.

• Rule sets – A rule set contains rules that you define to perform actions on the email you allow in
when the rule’s conditions are met.

However, part of creating an ingress endpoint is selecting a traffic policy and a rule set that have
already been created and then assigning them to the ingress endpoint. The steps in the following
procedure will walk you through the correct order of configuring your first ingress endpoint.

Getting started with Mail Manager using the SES console

The following procedure shows you how to get started with Mail Manager using the SES console.

Getting started 444

Amazon Simple Email Service Developer Guide

To get started with Mail Manager using the Amazon SES console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose Mail Manager and select any of the Get started with Mail
Manager buttons on the Mail Manager overview page.

3. On the Get set up page, select Create traffic policy on the Create a traffic policy card.

a. Complete the workflow on the Create a traffic policy page. If you need additional
information, see the section called “Creating traffic policies & policy statements (console)”.

b. After creating your first traffic policy and policy statements, use your browser's back
button to return to the Get set up page or select Get set up under Mail Manager in the left
navigation panel.

4. On the Get set up page, select Create rule set on the Create a rule set card.

a. Complete the workflow on the Create a rule set page. If you need additional information,
see the section called “Creating rule sets & rules (console)”.

b. After creating your first rule set and rules, use your browser's back button to return to the
Get set up page or select Get set up under Mail Manager in the left navigation panel.

5. Now that you've created your first traffic policy and rule set, you'll be able to create your first
ingress endpoint. On the Get set up page, select Create ingress endpoint on the Create an
ingress endpoint card.

• Part of the workflow on the Email ingress endpoint page will be to assign the traffic policy
and rule set you just created to the ingress endpoint. If you need additional information,
see the section called “Creating an ingress endpoint (console)”.

With your first ingress endpoint created, you can start using Mail Manager and utilize its other
features such as SMTP relays and email archiving. You can also create additional ingress endpoints
with unique traffic policies and rule sets to further customize how you manage all of your incoming
email.

Getting started 445

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Ingress endpoints

An ingress endpoint is the key infrastructure component in Mail Manager that receives, routes, and
manages your email by utilizing policies and rules you configure to determine which emails should
be rejected, which ones should be allowed, and which ones should be acted upon.

Each ingress endpoint has its own traffic policy to determine which emails to block or allow, and
its own rule set to perform actions on the email you do allow in; therefore, by creating multiple
ingress endpoints, you can delegate each one to manage and route specific types of email. This
level of granularity will help you to build an email management system that's tailored to your
business needs.

Prerequisite workflow to create an ingress endpoint

At the time of creating your ingress endpoint, you must assign it a traffic policy and a rule set that
have already been created. Therefore, the workflow for creating an ingress endpoint should be in
the following order:

1. Start by creating a traffic policy to determine the email you want to block or allow. For details,
see the section called “Creating traffic policies & policy statements (console)”.

2. Next, create a rule set to perform actions on the email you allow in. For details, see the section
called “Creating rule sets & rules (console)”.

3. Finally, create your ingress endpoint and assign to it the traffic policy and rule set you just
created or any others you previously created.

Once you create your ingress endpoint, you must configure it with the environment you're using to
receive email, whether that be the configuration of an on-premise SMTP client or a web-based DNS
domain host. This is discussed below in the section called “Configuring your environment”.

Configuring your environment to use an ingress endpoint

Using the "A" record

At the time you create an ingress endpoint, an "A" record for the endpoint will be generated and its
value displayed on the ingress endpoint's summary screen in the SES console. The way you use the
value of this record depends on the type of endpoint you created and your use case:

• Open endpoint – Mail sent to your domain will resolve directly to your ingress endpoint—no
authentication required.

Ingress endpoints 446

Amazon Simple Email Service Developer Guide

• Copy and paste the value of the "A" record either directly into the SMTP configuration of an
on-premise SMTP client or into an MX record for your domain in your DNS configuration.

• Authenticated endpoint – Mail sent to your domain has to come from authorized senders whom
you’ve shared your SMTP credentials with, such as your on-premise email servers.

• Copy and paste the value of the "A" record directly into the SMTP configuration of an on-
premise SMTP client as well as your user name and password.

If you're using an MX record in your configuration, keep in mind that while every DNS provider has
different procedures and interfaces for configuring records, the key pieces of information you need
to put into you DNS settings are listed in the following example:

All email sent to recipient@marketing.example.com will go to your ingress endpoint because you
entered the ingress endpoint's "A" record as the value for an MX record in your domain’s DNS
settings:

• Domain – marketing.example.com

• MX record value – 890123abcdef.ghijk.mail-manager-smtp.amazonaws.com (This is the
"A" record value copied from your ingress endpoint.)

• Priority – 10

The procedure in the next section will walk you through creating an ingress endpoint in the SES
console.

Creating an ingress endpoint in the SES console

The following procedure shows you how to use the Ingress endpoint page in the SES console to
create ingress endpoints and manage the ones you've already created.

To create an manage ingress endpoints using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose Ingress endpoints under Mail Manager.

3. On the Ingress endpoints page, select Create ingress endpoint.

4. On the Create new ingress endpoint page, enter a unique name for your ingress endpoint.

5. Choose whether it will be a Open or Authenticated endpoint.

Creating an ingress endpoint (console) 447

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• If you choose Authenticated, select either SMTP password and enter a password, or Secret
and select one of your secrets from Secret ARN. If you select a previously created secret, it
must contain the policies indicated in the following steps for creating a new secret.

• You have the option to create a new secret by choosing Create new—the AWS Secrets
Manager console will open where you can continue to create a new key:

a. Choose Other type of secret in Secret type.

b. In Key/value pair, enter password for the key, and your actual password for the value.

Note

For Key, you must only enter password (anything else will cause authentication
to fail).

c. Select Add new key to create a KMS customer managed key (CMK) in Encryption key—
the AWS KMS console will open.

d. Choose Create key on the Customer manged keys page.

e. Keep the default values on the Configure key page and select Next.

f. Enter a name for your key in Alias (optionally, you can add a description and tag),
followed by Next.

g. Select any users (other than yourself) or roles you want to permit to administer the key in
Key administrators followed by Next.

h. Select any users (other than yourself) or roles you want to permit to use the key in Key
users followed by Next.

i. Copy and paste the KMS CMK policy into the Key policy JSON text editor at the
"statement" level by adding it as an additional statement separated by a comma.
Replace the region and account number with your own.

j. Choose Finish.

k. Select your browser's tab where you have the AWS Secrets Manager Store a new secret
page open and select the refresh icon (circular arrow) next to the Encryption key field,
then click inside the field and select your newly created key.

l. Enter a name in the Secret name field on the Configure secret page.

m. Select Edit permissions in Resource permissions.

Creating an ingress endpoint (console) 448

Amazon Simple Email Service Developer Guide

n. Copy and paste the Secrets resource policy into the Resource permissions JSON text
editor and replace the region and account number with your own. (Be sure to delete any
example code in the editor.)

o. Choose Save followed by Next.

p. Optionally configure rotation followed by Next.

q. Review and store your new secret by choosing Store.

r. Select your browser's tab where you have the SES Create new ingress endpoint page
open and choose Refresh list, then select your newly created secret in Secret ARN.

6. Select a traffic policy to determine the email you want to block or allow.

7. Select a rule set containing the rule actions you want to perform on the email you allow in.

8. Select Create ingress endpoint.

9. In General details, "Provisioning" will be displayed while your ingress endpoint is being
created—refresh the page until "Active" is displayed and the ARecord field contains a value.
Copy the "A" record value and paste it into your DNS configuration or your SMTP client as
discussed in Configuring your environment.

10. You can view and manage the ingress endpoints you've already created from the Ingress
endpoints page. If there's an ingress endpoint you want to remove, select it's radio button
followed by Delete.

11. To edit an ingress endpoint, select its name to open its summary page:

• You can change the endpoint's active status by choosing Edit in General details followed by
Save changes.

• You can select a different rule set or traffic policy by choosing Edit in either Rule set or
Traffic policy followed by Save changes.

Traffic policies and policy statements

A traffic policy is a container for policy statements that you assign to an ingress endpoint so that it
can sort the incoming mail by allowing or blocking specific types of email when the conditions of
the policy statements are met. A traffic policy can be used by multiple ingress endpoints.

Traffic policies & policy statements 449

Amazon Simple Email Service Developer Guide

Tip

You can think of a traffic policy as a "filter set", and a policy statement as a "filter". The
traffic policy (filter set) contains polices (filters) that you use to filter your incoming mail.

When you create a traffic policy, you have the option to set a maximum message size (in bytes).
When a message exceeds that size, it's immediately be discarded. This acts as a “first pass”
filter when set. Next, you set the default action to allow or block email that falls outside of the
conditions of your policy statements—think of this as a “catch all” action for the traffic policy.

Policy statements are also created with either an allow or block action that is taken when the
statements' conditions are met. You build the conditions by selecting an email protocol and a
conditional operator for a value you enter that must be matched by the incoming message before
the policy statement will allow or block it. Each policy statement can have multiple conditions.

A traffic policy can contain multiple policy statements and executes them in an order that's based
on the implicit hierarchy of how it evaluates email:

• Maximum message size – If this optional parameter is set, any message greater than this size is
immediately discarded, bypassing the policy statements.

• Policy statements that block – These statements are evaluated first and block any message that
meets the statement's conditions.

• Policy statements that allow – These statements are evaluated next and allow any message that
meets the statement's conditions.

• Default action of traffic policy – The remainder of messages that fall outside of the policy
statements are allowed or blocked based on how you've defined this parameter.

A traffic policy is an independent resource which can be used by more than one ingress endpoint,
but policy statements belong exclusively to the traffic policy in which they were created. Thus, you
must first create a traffic policy, or edit an existing one, before you can create policy statements to
evaluate the email coming into your ingress endpoint.

The procedure in the next section explains how to create traffic policies and their policy statements
in the SES console.

Traffic policies & policy statements 450

Amazon Simple Email Service Developer Guide

Creating traffic policies and policy statements in the SES console

The following procedure shows you how to use the Traffic policies page in the SES console to
create traffic policies and their policy statements, and manage the ones you've already created.

To create and manage traffic policies and policy statements using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose Traffic policies under Mail Manager.

3. On the Traffic policies page, select Create traffic policy.

4. On the Create a traffic policy page, enter a unique name for your traffic policy.

5. (Optional) If you want to discard any messages above a certain size, enter a value in bytes in
the Maximum message size field.

6. In Default action, choose whether the traffic policy is to either Allow or Deny (block)
messages that fall outside of (are not addressed by) the conditions of your policy statements.

7. Select Add new policy statement to create a statement for your traffic policy.

8. Choose either Allow or Deny (block) for the action to be taken when the statement's
conditions are met.

9. Build a condition by selecting an email protocol and a conditional operator for the value you
enter. Select Add new condition if you want to add more conditions to this policy statement.
To learn more about a condition property and its operators and valid values, see the Policy
statement conditions reference.

• If you're subscribed to an Email Add On, you'll be able to select it here as an email protocol.

10. If you want add more policy statements and conditions, repeat steps 7 - 9 above.

11. When you're done creating policy statements and their conditions, select Create traffic policy.

12. You can view and manage the traffic policies you've already created from the Traffic policies
page. If there's an traffic policy you want to remove, select it's radio button followed by
Delete.

13. To edit a traffic policy's properties or any of its policy statements, select its name to open its
overview page, from here, select Edit.

14. In Traffic policy details, you can change the maximum message size and default action.

Creating traffic policies & policy statements (console) 451

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

15. In any of the Policy statement containers, you can change the allow/deny property and edit
any of the conditions. You can also remove policy statements and conditions, as well as add
new ones.

16. When you're done with all your edits, save your changes by selecting Save changes.

Reference for policy statement conditions

Policy statement conditions

The following reference table lists all the policy statement protocols that are available to build
a policy statement condition. Selecting a protocol's expression type will take you to its reference
page in the SES Mail Manager API Reference that lists all the available operators and valid values
for that protocol.

Policy statement conditions: Protocols, operators, and values

Protocol Expression type

Recipient address Valid operators and values for string expressio
ns

Sender IP range Valid operators and values for IP expressions

TLS protocol version Valid operators and values for TLS protocol
expressions

Abusix Mail Intelligence (if subscribed)

Spamhaus Domain Block List (if subscribed)

Valid operators and values for boolean
expressions

Rule sets and rules

Rule sets are containers for rules that you assign to an ingress endpoint so that it can perform
actions on email allowed in from the ingress endpoint's traffic policy. A rule set can be used by
multiple ingress endpoints.

Rules tell your ingress endpoint how to handle incoming email by executing the actions defined
in the rule when messages meet the rule’s conditions. Each rule can have multiple conditions and

Policy statement conditions 452

https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressStringExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressStringExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressIpv4Expression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressTlsProtocolExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressTlsProtocolExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressBooleanExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_IngressBooleanExpression.html

Amazon Simple Email Service Developer Guide

actions. The rules you create within a rule set are executed in the order you specify within the rule
set.

You build the rule's conditions by selecting an email property and a conditional operator for a
value you enter that must be matched by the message before the rule will execute its actions—you
define the actions to be taken as well as their order of execution.

For greater granularity, your rules can also contain exceptions that are defined similar to
conditions, but here, you're defining a condition that the message must not match. Conditions and
exceptions operate independently—you could build a rule with just exceptions if you wanted, as
well as intermix conditions and exceptions.

Due to the fine granularity of how rules can be defined within a rule set, the following list is
provided to help illustrate the relationship of rule set components:

• Rule sets contain:

• Rules – You can define the order in which the rules are executed within the rule set.

Rules contain:

• Conditions – The rule applies if the message matches the evaluation of the condition(s); and
if the rule has exceptions, see below.

• Exceptions – The rule applies if the message does not match the evaluation of the
exception(s); and if the rule has conditions, see above.

• Actions – Actions are triggered when the rule applies—all of the conditions match and none
of the exceptions.

You can define the order in which the actions are executed within the rule.

Because each rule can have multiple conditions, exceptions, and actions, and the fact that you can
define the order of how rules and actions are executed, this enables you to build a very customized
and automated email handling solution tailored to your specific business requirements.

A rule set is an independent resource that can be used by more than one ingress endpoint, but
rules belong exclusively to the rule set in which they were created. Thus, you must first create a
rule set, or edit an existing one, before you can create rules to act upon the email coming into your
ingress endpoint.

The procedure in the next section will walk you through creating rule sets and their rules in the SES
console.

Rule sets & rules 453

Amazon Simple Email Service Developer Guide

Creating rule sets and rules in the SES console

The following procedure shows you how to use the Rule sets page in the SES console to create rule
sets and their rules, and manage the ones you've already created.

To create an manage rule sets and rules using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose Rule sets under Mail Manager.

3. On the Rule sets page, choose Create rule set and enter a unique name for your rule set.

4. On the rule set's overview page, select Edit , and then select Create new rule on the edit page.

5. In the Rule details sidebar, enter a unique name for your rule.

6. Select Add new condition to create a condition that the message must match; or check the
EXCEPT in the case of: box followed by Add new exception to create a condition that the
message must not match.

7. Build the condition or exception by selecting an email property and a conditional operator for
the value you enter. Select Add new condition or Add new exception if you want to add more
conditions or exceptions to this rule. To learn more about a condition property and its operators
and valid values, see the Rule conditions reference.

• If you're subscribed to an Email Add On, you'll be able to select it here as an email property.

8. Select Add new action to define the action to be taken when the rule's conditions are matched
and/or exceptions are not matched. To add more actions to be taken, select Add new action.
To learn more about actions and their parameters, see the Rule actions reference.

• To execute the Write to S3, Deliver to mailbox, and Send to internet rule actions, you'll need
to have the Rule action policies enabled for your account; otherwise, the rule action will fail.

• When you create two or more actions, up/down arrows are displayed so that you can set the
order of execution.

9. When you're done creating the conditions, exceptions, and actions for the rule, you save it to
its rule set by choosing Save rule set located in the Edit rule set panel on the left.

10. If you want add more rules to the rule set, repeat steps 4 - 9 above.

• When you create two or more rules, up/down arrows are displayed in the rule set's Reorder
column so that you can set the order of execution.

Creating rule sets & rules (console) 454

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

11. You can view and manage the rule sets you've already created from the Rule sets page. If
there's a rule set you want to remove, select it's radio button followed by Delete.

12. To edit a rule set, select its name to open its overview page, from here, select Edit where you
can reorder the execution of its rules, add more rules by choosing Create new rule, or delete a
rule by selecting it's radio button followed by Delete.

13. To edit a rule, select its radio button. In any of the containers on the Rule details sidebar, you
can edit any of the conditions or exceptions and change or reorder any of the actions. You can
also remove conditions, exceptions, and actions, as well as add new ones.

14. When you're done with all your edits, save your changes by selecting Save rule set located in
the Edit rule set panel on the left.

Reference for rule conditions and actions

Rule conditions

The following reference table lists all the rule properties that are available to build a rule condition
(or exception) and are categorized by their expression type. Rule properties that share the same
expression type also share the same operators and values. Selecting a property's expression type
will take you to its reference page in the SES Mail Manager API Reference that lists all the available
operators and valid values for that property.

Rule conditions: Properties, operators, and values

Property Expression type

From address

To address

CC address

Mail from

Recipient address

Subject

Helo

Valid operators and values for string expressio
ns

Rule conditions & actions 455

https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleStringExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleStringExpression.html

Amazon Simple Email Service Developer Guide

Property Expression type

IP range Valid operators and values for IP expressions

Message max size Valid operators and values for number expressio
ns

DKIM

SPF

Trend Micro Virus Scanning (if subscribed)

Valid operators and values for verdict expressio
ns

TLS

TLS wrapped

Read receipt

Valid operators and values for boolean
expressions

DMARC policy Valid operators and values for DMARC expressio
ns

Rule actions

The following reference table lists all the rule actions that can be taken when a rule's conditions are
met or its exceptions are not met. By selecting an action, you'll be taken to the action's reference
page in the SES Mail Manager API Reference that lists the parameters and their formats for the
action. The table uses the action names adopted in the Mail Manager console—the API names may
differ slightly.

Note

In some of the API references, there will be an ActionFailurePolicy parameter that
can be set to either Continue or Drop if the action fails—this only applies when using the
API; when using the console, ActionFailurePolicy has been set to the default value of
Continue.

Rule conditions & actions 456

https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleIpExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleNumberExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleNumberExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleVerdictExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleVerdictExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleBooleanExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleBooleanExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleDmarcExpression.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RuleDmarcExpression.html

Amazon Simple Email Service Developer Guide

Rule actions: Actions and parameters

Actions & their parameters Description

Write to S3 Writes the MIME content of the email to an S3
bucket.

SMTP relay action Relays the email via SMTP to another specific
SMTP server.

Archive action Archives the email by delivering it to an
Amazon SES archive.

Add header Adds a custom header to the received email.

Email recipients rewrite Replaces the email envelope recipients with
the given list of recipients. If the condition of
this action applies only to a subset of recipient
s, only those recipients are replaced.

Deliver to mailbox Delivers the email to an Amazon WorkMail
mailbox.

Send to internet Uses SES to send the email to the recipient(s)
on the email's recipient list.

Drop action For email with multiple recipients, if this
action applies to one or more (but not all)
of those recipients, they will be dropped
from the email’s recipient list, and continued
processing of rules will apply to remaining
recipients. If this action applies to all recipient
(s), rules processing stops as all recipients are
dropped from the recipient list and will not
receive the email.

Rule conditions & actions 457

https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_S3Action.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_RelayAction.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_ArchiveAction.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_AddHeaderAction.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_ReplaceRecipientAction.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_DeliverToMailboxAction.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_SendAction.html
https://docs.aws.amazon.com/sesmailmanager/latest/APIReference/API_DropAction.html

Amazon Simple Email Service Developer Guide

SMTP relay

Because Mail Manager is deployed between your email environment (such as Microsoft 365, Google
Workspace, or On-Premise Exchange) and the internet, Mail Manager uses SMTP relays to route
incoming emails that are processed by Mail Manager to your email environment. It can also route
outbound emails to another email infrastructure such as another Exchange server or a third-party
email gateway before sending to end recipients.

A SMTP relay is a vital component of your email infrastructure, responsible for efficiently routing
emails between servers when designated by a rule action defined in a rule set.

Specifically, a SMTP relay can redirect incoming email between SES Mail Manager and an external
email infrastructure such as Exchange, on-premise or third-party email gateways, and others.
Incoming emails to an ingress endpoint will be processed by a rule that will route specified email
to the designated SMTP relay, which in turn, will pass it on to the external email infrastructure
defined in the SMTP relay.

When your ingress endpoint receives email, it uses a traffic policy to determine which emails to
block or allow. The email you allow in passes to a rule set that applies conditional rules to execute
the actions you've defined for specific types of email. One of the rule actions you can define is
SMTPRelay action—if you select this action, the email will be passed along to the external SMTP
server defined in your SMTP relay.

For example, you could use the SMTPRelay action to send email from your ingress endpoint to
your on-premise Microsoft Exchange Server. You would set up your Exchange server to have a
public SMTP endpoint that can only be accessed using certain credentials. When you create the
SMTP relay, you enter the server name, port, and credentials of your Exchange server and give your
SMTP relay a unique name, say, "RelayToMyExchangeServer". Then, you create a rule in your ingress
endpoint's rule set that says, "When From address contains 'gmail.com', then perform SMTPRelay
action using the SMTP relay called RelayToMyExchangeServer".

Now, when email from gmail.com arrives to your ingress endpoint, the rule will trigger the
SMTPRelay action and contact your Exchange server using the credentials you provided when
creating your SMTP relay and deliver the email to your Exchange server. Thus, email received from
gmail.com is relayed to your Exchange server.

You must first create an SMTP relay before it can be designated in a rule action. The procedure in
the next section will walk you through creating an SMTP relay in the SES console.

SMTP relay 458

Amazon Simple Email Service Developer Guide

Creating an SMTP relay in the SES console

The following procedure shows you how to use the SMTP relays page in the SES console to create
SMTP relays and manage the ones you've already created.

To create and manage SMTP relays using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose SMTP relays under Mail Manager.

3. On the SMTP relays page, select Create SMTP relay.

4. On the Create SMTP relay page, enter a unique name for your SMTP relay.

5. Depending on whether you want to configure an inbound (non-authenticated) or outbound
(authenticated) SMTP relay, follow the respective instructions:

Inbound

To configure an inbound SMTP relay

1. When SMTP relay is used as an inbound gateway to route incoming emails processed
by Mail Manager to your external email environment, you will first need to configure
the email hosting environment. While every email hosting provider has their own GUI
and configuration workflow unique to them, the principals of configuring them to work
with inbound gateways, such as your Mail Manager SMTP relay, will be similar.

To help illustrate this, we have provided examples of how to configure Google
Workspaces and Microsoft Office 365 to work with your SMTP relay as an inbound
gateway in the following sections:

• Setting up Google Workspaces

• Setting up Microsoft Office 365

SES currently only supports inbound (non-authenticated) SMTP relays for Google
Workspaces and Microsoft Office 365.

Creating an SMTP relay (console) 459

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Note

Ensure that the domains of your intended recipient destinations are SES
verified domain identities. For example, if you want to deliver email to
recipients abc@example.com and support@acme.com, both the example.com
and acme.com domains need to be verified in SES. If a recipient domain is not
verified, SES will not attempt to deliver the email to the public SMTP server.
For more information, see the section called “Creating & verifying identities”.

2. After you've configured Google Workspaces or Microsoft Office 365 to work with
inbound gateways, enter the host name of the public SMTP server with the values
below respective to your provider:

• Google Workspaces: aspmx.l.google.com

• Microsoft Office 365: <your_domain>.mail.protection.outlook.com

Replace the dots with "-" in your domain name. For example, if your domain is
acme.com, you would enter acme-com.mail.protection.outlook.com

3. Enter port number 25 for the public SMTP server.

4. Leave the Authentication section blank (do not select or create a secret ARN).

Outbound

To configure an outbound SMTP relay

1. Enter the host name of the public SMTP server you want your relay to connect to.

2. Enter the port number for the public SMTP server.

3. Setup authentication for your SMTP server by selecting one of your secrets from Secret
ARN. If you select a previously created secret, it must contain the policies indicated in the
following steps for creating a new secret.

• You have the option to create a new secret by choosing Create new—the AWS
Secrets Manager console will open where you can continue to create a new key:

a. Choose Other type of secret in Secret type.

b. Enter the following keys and values in Key/value pairs:

Creating an SMTP relay (console) 460

Amazon Simple Email Service Developer Guide

Key value

username my_username

password my_password

Note

For both of the keys, you must only enter username and password as
shown (anything else will cause authentication to fail). For the values,
enter your own username and password respectively.

c. Select Add new key to create a KMS customer managed key (CMK) in Encryption
key—the AWS KMS console will open.

d. Choose Create key on the Customer manged keys page.

e. Keep the default values on the Configure key page and select Next.

f. Enter a name for your key in Alias (optionally, you can add a description and tag),
followed by Next.

g. Select any users (other than yourself) or roles you want to permit to administer
the key in Key administrators followed by Next.

h. Select any users (other than yourself) or roles you want to permit to use the key in
Key users followed by Next.

i. Copy and paste the KMS CMK policy into the Key policy JSON text editor at
the "statement" level by adding it as an additional statement separated by a
comma. Replace the region and account number with your own.

j. Choose Finish.

k. Select your browser's tab where you have the AWS Secrets Manager Store a
new secret page open and select the refresh icon (circular arrow) next to the
Encryption key field, then click inside the field and select your newly created key.

l. Enter a name in the Secret name field on the Configure secret page.

m. Select Edit permissions in Resource permissions.

Creating an SMTP relay (console) 461

Amazon Simple Email Service Developer Guide

n. Copy and paste the Secrets resource policy into the Resource permissions JSON
text editor and replace the region and account number with your own. (Be sure to
delete any example code in the editor.)

o. Choose Save followed by Next.

p. Optionally configure rotation followed by Next.

q. Review and store your new secret by choosing Store.

r. Select your browser's tab where you have the SES Create new ingress endpoint
page open and choose Refresh list, then select your newly created secret in Secret
ARN.

6. Select Create SMTP relay.

7. You can view and manage the SMTP relays you've already created from the SMTP relays page.
If there's an SMTP relay you want to remove, select it's radio button followed by Delete.

8. To edit an SMTP relay, select its name. On the details page, you can change the relay's name,
the external SMTP server's name, port, and login credentials by selecting the corresponding
Edit or Update button followed by Save changes.

Setting up Google Workspaces for inbound (non-authenticated) SMTP
relay

The following walkthrough example shows you how to setup Google Workspaces to work with a
Mail Manager inbound (non-authenticated) SMTP relay.

Prerequisites

• Access to the Google administrator console (Google administrator console > Apps > Google
Workspace > Gmail).

• Access to the domain nameserver hosting the MX records for the domains which will be used for
Mail Manager setup.

To setup Google Workspaces to work with an inbound SMTP relay

• Add Mail Manager IP addresses to the Inbound gateway configuration

a. In the Google administrator console, go to Apps > Google Workspace > Gmail.

b. Select Spam, Phishing, and Malware, then go to Inbound gateway configuration.

Setting up Google Workspaces 462

https://admin.google.com/
https://admin.google.com/

Amazon Simple Email Service Developer Guide

c. Enable Inbound gateway, and configure it with the following details:

• In Gateway IPs, select Add , and add the ingress endpoint IPs specific to your region
from the following table:

Region IP range

eu-west-1/DUB 206.55.133.0/24

eu-central-1/FRA 206.55.132.0/24

us-west-2/PDX 206.55.131.0/24

ap-northeast-1/NRT 206.55.130.0/24

us-east-1/IAD 206.55.129.0/24

ap-southeast-2/SYD 206.55.128.0/24

Setting up Google Workspaces 463

Amazon Simple Email Service Developer Guide

• Select Automatically detect external IP.

• Select Require TLS for connections from the email gateways listed above.

• Select Save at the bottom of the dialog box to save the configuration. Once saved, the
administrator console will show the Inbound gateway as enabled.

Setting up Microsoft Office 365 for inbound (non-authenticated) SMTP
relay

The following walkthrough example shows you how to setup Microsoft Office 365 to work with a
Mail Manager inbound (non-authenticated) SMTP relay.

Prerequisites

• Access to the Microsoft Security admin center (Microsoft Security admin center > Email &
collaboration > Policies & Rules > Threat policies).

• Access to the domain nameserver hosting the MX records for the domains which will be used for
Mail Manager setup.

To setup Microsoft Office 365 to work with an inbound SMTP relay

1. Add Mail Manager IP addresses to the Allow list

a. In the Microsoft Security admin center, go to Email & collaboration > Policies & Rules >
Threat policies.

b. Select Anti-spam under Polices.

c. Select Connection filter policy followed by Edit connection filter policy.

• In the Always allow messages from the following IP addresses or address range
dialog, add the ingress endpoint IPs specific to your region from the following table:

Region IP range

eu-west-1/DUB 206.55.133.0/24

eu-central-1/FRA 206.55.132.0/24

Setting up Microsoft Office 365 464

https://security.microsoft.com/homepage
https://security.microsoft.com/homepage

Amazon Simple Email Service Developer Guide

Region IP range

us-west-2/PDX 206.55.131.0/24

ap-northeast-1/NRT 206.55.130.0/24

us-east-1/IAD 206.55.129.0/24

ap-southeast-2/SYD 206.55.128.0/24

• Select Save.

d. Return to the Anti-spam option and choose Anti-spam inbound policy.

• At the bottom of the dialog, select Edit spam threshold and properties:

Setting up Microsoft Office 365 465

Amazon Simple Email Service Developer Guide

• Scroll to Mark as spam and ensure that SPF record: hard fail is set to Off.

• Select Save.

2. Enhanced Filtering configuration (recommended)

This option will allow Microsoft Office 365 to properly identify the original connecting IP
before the message was received by SES Mail Manager.

a. Create an inbound connector

Setting up Microsoft Office 365 466

Amazon Simple Email Service Developer Guide

• Login to the new Exchange admin center and go to Mail flow > Connectors.

• Select Add a connector.

• In Connection from, select Partner organization followed by Next.

• Fill in the fields as follows:

• Name – Simple Email Service Mail Manager connector

• Description – Connector for filtering

• Select Next.

• In Authenticating sent email, select By verifying that the IP address of the sending
server matches one of the following IP addresses, which belong to your partner
organization and add the ingress endpoint IPs specific to your region from the
following table:

Region IP range

eu-west-1/DUB 206.55.133.0/24

eu-central-1/FRA 206.55.132.0/24

us-west-2/PDX 206.55.131.0/24

Setting up Microsoft Office 365 467

https://admin.exchange.microsoft.com/#/homepage

Amazon Simple Email Service Developer Guide

Region IP range

ap-northeast-1/NRT 206.55.130.0/24

us-east-1/IAD 206.55.129.0/24

ap-southeast-2/SYD 206.55.128.0/24

• Select Next.

• In Security restrictions, accept the default Reject email messages if they aren’t sent
over TLS setting, followed by Next.

• Review your settings and select Create connector.

b. Enable enhanced filtering

Now that the inbound connector has been configured, you will need to enable the
enhanced filtering configuration of the connector in the Microsoft Security admin center.

• In the Microsoft Security admin center, go to Email & collaboration > Policies & Rules
> Threat policies.

• Select Enhanced filtering under Rules.

Setting up Microsoft Office 365 468

https://security.microsoft.com/homepage

Amazon Simple Email Service Developer Guide

• Select the Simple Email Service Mail Manager connector that you created previously
to edit its configuration parameters.

• Select both Automatically detect and skip the last IP address and Apply to entire
organization.

• Select Save.

Setting up Microsoft Office 365 469

Amazon Simple Email Service Developer Guide

Email archiving

Email archiving provides a way for you to archive the types of email you specify coming into your
ingress endpoint as well as providing a way to find your archived messages through a rich set of
advanced search filters and the ability to export the results.

Email archiving saves and protects your emails by storing data in persistent and secure long-term
storage, and gives you a way to quickly search and archive email. It provides full-time, enterprise-
level archiving without increasing the storage requirements of your mailbox server.

When your ingress endpoint receives email, it uses a traffic policy to determine which emails to
block or allow. The email you allow in passes to a rule set that applies conditional rules to execute
the actions you've defined for specific types of email. One of the rule actions you can define
is Archive action—if you select this action, the email will be archived to the email archive you
designate.

You must first create an archive before it can be designated in a rule action. The procedure in the
next section will walk you through creating an archive in the SES console.

Using email archiving in the Amazon SES console

The Email archiving page in the SES console consists of four interactive tables, Search archive,
Search history, Export history, and Manage archives, that you can use to search for email in your
archives, export the results, and manage your archives. In the following procedures, instructions are
provided for each table.

To use the Email archiving page to search, export, and manage your archives

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose Email archiving under Mail Manager.

3. The Email archiving page consists of four tables Search archive, Search history, Export
history, and Manage archives. For instructions specific to each of these tables, select its
corresponding tab below:

Search archive

Search archive is an interactive table that provides a way for you to search and find your
archived messages with a rich filter and date set offering detailed search criteria to find

Email archiving 470

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

anything from a specific email to many emails matching a broader category. Messages
matching your search criteria can be downloaded individually or can be exported in bulk to an
S3 bucket.

To search, download, or export archived email

1. On the Email archiving page, choose the Search archive tab to display the Search archive
table.

2. Click inside the Archive field and choose an archive from the list followed by Search, or
refine your search using the following steps.

3. Select the Date range field to expand date range options for your search:

• Relative range (default) – Select the radio button that corresponds with the number of
days desired, or choose a Custom range by selecting a time unit and a date range up to
30 days.

• Absolute range – Enter a Start date and an End date (and time if desired) up to 30 days.

Note

• Searching within an archive is limited to 30 days at a time. For example, if you
want to search for messages from June 1st through July 31st, you would have to
break it up into three searches as follows:

1. 30 days in June.

2. The first 30 days in July.

3. The 31st day of July.

• For Relative range dates, the last day ends at midnight. For example, if you
choose Last 7 days, the seventh day would be yesterday, ending at midnight.

4. (Optional) Select the Filters field to choose from among the following filters: From, To , CC,
Subject line, and Has attachments—the following properties apply:

• You can create up to 10 filters.

• A filter can be edited by clicking on it, or removed by selecting the X.

5. Choose Search and the archived email matching your search criteria will be populated in
the Search results table.

Using email archiving (console) 471

Amazon Simple Email Service Developer Guide

• The Message ID column is hidden by default, but can be displayed by selecting the gear
icon to customize how you view the table.

• Every search you execute is automatically saved with a unique search id and will be listed
in the Search history table.

6. To view the text of a message along with its envelope and header information, select the
message’s radio button followed by View details to open the Message details sidebar.

7. To create a local file of the message, select the message’s radio button followed by
Download message.

8. Your filtered search can be saved to an Amazon S3 bucket by selecting Export to S3.

a. If you know the URI of the S3 bucket you want to use, enter it in the S3 URI field;
otherwise, choose Browse S3 and select an S3 bucket and folder to use on the S3
page.

b. (Optional) You can encrypt your exported messages either by entering your own AWS
KMS key into the KMS key ARN field, or by selecting Create new key. Otherwise,
encryption will be set to whatever method is being used on the destination S3 bucket
(even if none).

c. Choose Export and all the messages found in your filtered search will be saved as
individual files in the S3 folder you selected.

Note

While there's no limit on how many messages your archive can contain, search results
are limited to 1000 rows in the Search results table.

Search history

A history of your searches is listed in this table so that you can restore the result set or access
complex filter sets created previously. You can also create new searches based on the original
search by editing the filters and dates. Any new searches are automatically saved with a unique
search ID and will be listed in this table.

Using email archiving (console) 472

Amazon Simple Email Service Developer Guide

To view and work with your previous searches

1. On the Email archiving page, choose the Search history tab to display the Search history
table which lists a history of all your archived email searches with the most recent on top.
This table loads data the first time you visit it—if you switch tabs and come back, use the
refresh icon to retrieve the latest data.

2. Click inside the Archive field and choose an archive from the list—all the searches
belonging to that archive will be populated in the table. You can view and do more with
individual searches in the steps below.

3. Select the radio button of a previous search followed by View search results to restore its
original search results—the Search archive page will open displaying the filter set and date
range used for the original search along with all the messages previously found based on
that criteria. You can expand upon the original search in the following ways:

• Create a new search by modifying the date range and filters followed by Search.

• Any new searches you perform are automatically saved with a unique search ID and will
be listed in the Search history table.

Export history

A history of your exports is listed in this table enabling easy access to the contents of the export
folder in the S3 console.

To view your recent exports

1. On the Email archiving page, choose the Export history tab to display the Export history
table which lists all of the archived email searches you exported to an S3 bucket within the
last 30 days. This table loads data the first time you visit it—if you switch tabs and come
back, use the refresh icon to retrieve the latest data.

2. If the status of an export is Queued, Preprocessing or Processing, you can cancel it by
choosing Cancel.

3. Select an S3 URI to open the export's bucket folder in the S3 console where you can see the
files it contains.

Using email archiving (console) 473

Amazon Simple Email Service Developer Guide

Manage archives

This table lists your archives where you have options to create a new archive, search for a
particular archive and view its details, edit an archive, or delete an archive.

To create and manage archives

1. On the Email archiving page, choose the Manage archives tab to display the Archives
table which lists all of your email archives. This table loads data the first time you visit it—if
you switch tabs and come back, use the refresh icon to retrieve the latest data.

2. To search for a particular archive, begin typing in the Archives field.

3. To view details of an archive, select its name in the Archive name column.

4. To create an archive, select Create archive.

a. Enter a unique name in the Archive name field.

b. (Optional) Select a retention period in the Retention period field to override the
default retention period of 180 days.

c. (Optional) You can encrypt your archive either by entering your own AWS KMS key into
the KMS key ARN field, or by selecting Create new key.

Choose Create archive.

5. To edit an archive, select its radio button followed by Edit.

a. Edit or change the name in the Archive name field.

b. Change the retention period in the Retention period field.

Choose Update archive.

6. To delete an archive, select its radio button followed by Delete.

• Type delete in the Confirm field followed by Delete.

The archive state will switch to Pending deletion in the Archives table and will be
automatically deleted after 30 days.

Using email archiving (console) 474

Amazon Simple Email Service Developer Guide

Note

If you would like to undo this delete, create a ticket to Amazon SES within 30 days.

Email Add Ons

Email Add Ons is a collection of specialized security tools from SES approved providers that can be
used to manage the type of email you allow into your ingress endpoint and to determine actions to
be taken on certain types of email. These tools are certified security intelligence and enforcement
solutions that are ready to be integrated into your email workflow and can be activated directly
from the Mail Manager console.

These Add Ons offer the flexibility to choose from among vetted email security solutions
appropriate to your individual use cases that can be used on a metered-price basis, as opposed to
purchasing a large, single product solution that may not be optimized for any of your needs. Email
Add Ons extends its core threat intelligence and security enforcement features on a per-workload
basis, so there’s no guessing about required capacity. These benefits allow you to focus on staying
ahead of email security issues and maintain high service standards for your organization.

You can learn more about each Add On directly from the Email Add Ons page located in the
Mail Manager console where you'll have access to product descriptions, key benefits, and pricing
information. Once you decide on an Add On you'd like to use, simply subscribe to it from Mail
Manager console. Once subscribed, you'll be able to select it as a traffic policy condition in
determining email allowed into an ingress endpoint, or as a rule set condition to determine actions
to be taken on specific emails. Primary support for all Add Ons is provided by AWS and can also be
accessed from the Mail Manager console.

The procedure in the next section will walk you through subscribing to an Email Add On in the Mail
Manager console.

Subscribing to Email Add Ons in the Mail Manager console

The following procedure shows you how to use the Email Add Ons page in the Mail Manager
console to subscribe to an Add On so that it can be used in any of your traffic policies or rule sets.

Email Add Ons 475

Amazon Simple Email Service Developer Guide

To subscribe to an Email Add On using the console

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the left navigation panel, choose Email Add Ons under Mail Manager.

3. On the Email Add Ons page, select the title of any Add On card to open its overview page
where you can learn more about what it does, its key benefits, and pricing information. If you'd
like to use this Add On, choose Subscribe.

• Read the Terms and Conditions presented and check the I accept box followed by
Subscribe.

4. Once you’ve subscribed to an Add On, you’ll be able to integrate it into your email workflow
by selecting it as a traffic policy condition to deny or allow email into your ingress endpoint,
or a rule set condition to determine an action to take on qualifying messages. The following
examples depict using an Add On in a policy statement condition and in a rule condition:

• Using the Spamhaus Domain Block List Add On in a policy statement condition to block
email coming into your ingress endpoint that originates from a domain listed in Spamhaus:

• For details on how to create traffic policies and build policy statement conditions with Email
Add Ons, see the section called “Creating traffic policies & policy statements (console)”.

• Using the Trend Micro Virus Scanning Add On in a rule condition to determine a rule action
for email that passes the virus scan:

Subscribing to Add Ons (console) 476

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• For details on how to create rule sets and build rule conditions with Email Add Ons, see the
section called “Creating rule sets & rules (console)”.

5. To view general details or access support for any Add On you're subscribed to, select its name
on the Email Add Ons page to open its overview page:

• In General details you can view the date of when you subscribed and the Amazon Resource
Name (ARN) of your Add On.

• Select the Support tab to access links to AWS Support.

6. To unsubscribe from an Add On:

a. You must first remove it from any of your traffic policies or rule sets where you have it
defined in a condition; otherwise, the following unsubscribe steps will fail.

b. Select its name on the Email Add Ons page to open its overview page followed by
Unsubscribe.

c. Type confirm in the Confirm field followed by Unsubscribe.

Subscribing to Add Ons (console) 477

Amazon Simple Email Service Developer Guide

Permission policies for Mail Manager

The policies in this chapter are provided as a single point of reference for the policies necessary to
utilize all the different features of Mail Manager.

In the Mail Manager feature pages, links are provide that will take you to the respective section
on this page that contains the policies you need to utilize the feature. Select the copy icon of the
policy you need and paste it as directed in the respective feature narrative.

The following policies give you permission to use the different features contained in Amazon SES
Mail Manager through resource permission policies and AWS Secrets Manager policies. If you're
new to permission policies, see the section called “Policy anatomy” and Permissions policies for
AWS Secrets Manager.

Permission policies for Ingress endpoint

Both of the polices in this section are required to create an ingress endpoint. To learn how to create
an ingress endpoint and where to use these policies, see the section called “Creating an ingress
endpoint (console)”.

Secrets Manager secrets resource permission policy for ingress endpoint

The following Secrets Manager secrets resource permission policy is required to allow SES to access
the secret using the ingress endpoint resource.

{
 "Version": "2012-10-17",
 "Id": "Id",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "000000000000"
 },
 "ArnLike": {

Permission policies 478

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html

Amazon Simple Email Service Developer Guide

 "aws:SourceArn": "arn:aws:ses:us-east-1:000000000000:mailmanager-
ingress-point/*"
 }
 }
 }
]
}

KMS customer managed key (CMK) key policy for ingress endpoint

The following KMS customer managed key (CMK) key policy is required to allow SES to use your
key while using your secret.

{
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-1.amazonaws.com",
 "aws:SourceAccount": "000000000000"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:ses:us-east-1:000000000000:mailmanager-ingress-
point/*"
 }
 }
}

Permission policies for SMTP relay

Both of the polices in this section are required to create an SMTP relay. To learn how to create
an SMTP relay and where to use these policies, see the section called “Creating an SMTP relay
(console)”.

Secrets Manager secrets resource permission policy for SMTP relay

The following Secrets Manager secrets resource permission policy is required to allow SES to access
the secret using the SMTP relay resource.

SMTP relay policies 479

Amazon Simple Email Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Principal": {
 "Service": [
 "ses.amazonaws.com"
]
 },
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "888888888888"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:ses:us-east-1:888888888888:mailmanager-
smtp-relay/*"
 }
 }
 }
]
}

KMS customer managed key (CMK) key policy for SMTP relay

The following KMS customer managed key (CMK) key policy is required to allow SES to use your
key while using your secret.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Principal": {

SMTP relay policies 480

Amazon Simple Email Service Developer Guide

 "Service": "ses.amazonaws.com"
 },
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-1.amazonaws.com",
 "aws:SourceAccount": "000000000000"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:ses:us-east-1:000000000000:mailmanager-
smtp-relay/*"
 }
 }
 }
]
}

Permission policies for Email archiving

Basic Archiving IAM identity policies

These are the IAM identity policies for authorizing archiving operations. These policies alone may
not be sufficient for some operations (see Archiving encryption at rest with KMS CMK and Archiving
export).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ses:CreateArchive",
 "ses:TagResource"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/*"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:RequestTag/key-name": [
 "value1",
 "value2"
]

Email archiving policies 481

Amazon Simple Email Service Developer Guide

 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:ListArchives"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:GetArchive",
 "ses:DeleteArchive",
 "ses:UpdateArchive"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/MyArchiveID"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:ListArchiveSearches"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:GetArchiveSearch",
 "ses:GetArchiveSearchResults",
 "ses:StartArchiveSearch",
 "ses:StopArchiveSearch"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/MyArchiveID"
]
 },

Email archiving policies 482

Amazon Simple Email Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "ses:GetArchiveMessage",
 "ses:GetArchiveMessageContent"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/MyArchiveID"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:ListArchiveExports"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:GetArchiveExport",
 "ses:StartArchiveExport",
 "ses:StopArchiveExport"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/MyArchiveID"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ses:ListTagsForResource",
 "ses:UntagResource"
],
 "Resource": [
 "arn:aws:ses:us-east-1:000000000000:mailmanager-archive/MyArchiveID"
]
 }
]
}

Email archiving policies 483

Amazon Simple Email Service Developer Guide

Archiving export

These are the IAM identity policies (in addition to the Basic Archiving policies above) required for
StartArchiveExport.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::MyDestinationBucketName"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectTagging",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::MyDestinationBucketName/*"
 }
]
}

This is the policy for the destination bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],

Email archiving policies 484

Amazon Simple Email Service Developer Guide

 "Resource": "arn:aws:s3:::MyDestinationBucketName"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectTagging",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::MyDestinationBucketName/*"
 }
]
}

Note

Archiving doesn’t support confused deputy condition keys (aws:SourceArn,
aws:SourceAccount, aws:SourceOrgID, or aws:SourceOrgPaths). This is because Mail
Manager's email archiving prevents the confused deputy problem by testing if the calling
identity has write permissions to the export destination bucket using Forward Access
Sessions before starting the actual export.

Archiving encryption at rest with KMS CMK

These are the encryption at rest with KMS Customer Managed Keys (CMK) polices (in addition to
the Basic Archiving policies above) required for creating and working with archives (calling any
Archiving APIs).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:Decrypt",
 "kms:GenerateDataKey"

Email archiving policies 485

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-restrict-access-to-service-principal
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Simple Email Service Developer Guide

],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/MyKmsKeyArnID"
 }
}

This is the KMS key policy required for email archiving.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/MyUserRoleOrGroupName"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "ses.us-east-1.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 }
]
}

Email archiving policies 486

Amazon Simple Email Service Developer Guide

Permission and trust polices to execute rule actions

The SES rules execution role is an AWS Identity and Access Management (IAM) role that grants the
rules execution permission to access AWS services and resources. Before you create a rule in a rule
set, you must create an IAM role with a policy that allows access to the required AWS resources. SES
assumes this role when executing a rule action. For example, you might create a rules execution
role that has permission to write an email message to a S3 bucket as a rule action to take when
your rule's conditions are met.

Thus, the following trust policy is required in addition to the individual permission policies in this
section required to execute the Write to S3, Deliver to mailbox, and Send to internet rule actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "888888888888"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:ses:us-east-1:888888888888:mailmanager-rule-set/
*"
 }
 }
 }
]
 }

Permission policy for Write to S3 rule action

The following policy is required to use the Write to S3 rule action which delivers the received email
to an S3 bucket.

{
 "Version": "2012-10-17",

Rule action policies 487

Amazon Simple Email Service Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::MyDestinationBucketName/*"
 }
]
 }

Permission policy for Deliver to mailbox rule action

The following policy is required to use the Deliver to mailbox rule action which delivers the
received email to an Amazon WorkMail account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["workmail:DeliverToMailbox"],
 "Resource": "arn:aws:workmail:us-
east-1:888888888888:organization/MyWorkMailOrganizationID>"
 }
]
 }

Permission policy for Send to internet rule action

The following policy is required to use the Send to internet rule action which sends the received
email to an external domain.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ses:SendEmail", "ses:SendRawEmail"],
 "Resource": "arn:aws:ses:us-east-1:888888888888:identity/example.com"
 }
]
 }

Rule action policies 488

Amazon Simple Email Service Developer Guide

Managing lists and subscriptions in Amazon Simple
Email Service

You can manage your own lists for mailing and subscriptions as well as for email suppression
in Amazon SES. To help you maintain your sender reputation, SES offers account-level and
configuration set-level suppression that prevents you from sending to invalid recipients and
harming your sender reputation. As another measure against bounced emails and complaints, SES
can automatically add unsubscribe links to all outgoing mail through subscription management.

Each of these types of lists is discussed in detail in the sections listed in this chapter's topics;
however, an overview of suppression lists is presented here because there are three types of
suppression lists as well as a key change with global suppression list management. It's suggested
that you read this overview before working with any of the lists discussed in this chapter.

Overview of the three types of suppression lists

The global suppression list removal feature is no longer customer facing and you no longer interact
with it to manage suppression lists. The global suppression list operates and is managed in the
background by SES. As a customer, you now have available to you account-level suppression lists
and configuration set-level suppression lists that offer you more customized control over how you
handle email suppression for your own account.

The different types of suppression lists, their scope, and what advantages they offer is explained
below. The three types of suppression lists used in Amazon SES are:

• Global suppression list – owned and managed by SES to protect the reputation of addresses in
the SES shared IP pool.

• Account-level suppression list – owned and managed by the customer to protect their account
reputation - overrides the global suppression list.

• Configuration set-level suppression – owned and managed by the customer to provide
conditional or fine-grained control over suppression list management - overrides the account-
level suppression list.

The global suppression list was the only type of suppression list until account-level and
configuration set-level suppression was introduced in the new Amazon SES console and API v2.
The global suppression list is owned and managed by SES to protect the reputation of SES. This

489

Amazon Simple Email Service Developer Guide

is needed because all SES customers are sharing the same pool of IP addresses (unless they have
dedicated IPs), it’s important for SES to ensure that customers aren’t sending spam or anything
that would negatively impact the reputation of those IP addresses in the SES shared IP pool. While
you no longer directly interact with the global suppression list, it still operates in the background
and the general tenets of how the global suppression list works can also be applied to explain
the overall principles of how the other types of suppression lists work. See Amazon SES global
suppression list.

Note

The global suppression list removal request form is no longer in the Amazon SES console
because the account-level suppression list has superseded it for all the advantages
explained in this section.

The account-level suppression list was introduced so that customers can create and control their
own suppression lists and reputation, thus, the account-level suppression list applies to your
account only. The account-level suppression list interface in the new console provides an easy
way to manage addresses in your account-level suppression list, including bulk actions to add or
remove addresses. If an address is on the global suppression list, but not on your account level
suppression list (which means you want to send to it), and you do send to it, Amazon SES will still
attempt delivery, but if it bounces, the bounce will affect your own reputation, but no one else will
get bounces because they can’t send to that email address if they aren’t using their own account
level suppression list; therefore, the account-level suppression list overrides the global suppression
list for your account only. See Using the Amazon SES account-level suppression list.

Configuration set-level suppression enables you to configure suppression customizations and
overrides to your account-level suppression list through the use of configuration sets specifically
created for different email sending scenarios. For example, if your account-level suppression list is
configured for both bounce and complaint addresses to be added, but you have a particular email
demographic defined in a configuration set for which you're only interested in complaint addresses
being added - you would achieve this by enabling this configuration set's suppression overrides
so that email addresses are added to your account-level suppression list only for complaints (not
bounces and complaints like is set in your account-level suppression list) from email sent with this
configuration set. With configuration set-level suppression, there are different levels of overriding
your account-level suppression, including not using any suppression at all. See Using configuration
set-level suppression to override your account-level suppression list.

490

Amazon Simple Email Service Developer Guide

Amazon SES global suppression list

Amazon SES maintains an internal global suppression list which operates and is managed in the
background by SES. When any SES customer sends an email that results in a hard bounce, SES adds
the email address that produced the bounce to a global suppression list. The global suppression
list is global in the sense that it applies to all SES customers. In other words, if a different customer
attempts to send an email to an address that's on the global suppression list, SES accepts the
message, but doesn't send it, because the email address is suppressed.

The global suppression list email address removal request feature is no longer customer facing and
you no longer interact with it to manage suppression lists. To replace this functionality, Amazon SES
now offers a new way for you to manage your suppression lists by making available account-level
suppression lists and configuration set-level suppression lists that offer you more customized
control over how you handle email suppression for your own account. For more information, see
Using the Amazon SES account-level suppression list and Using configuration set-level suppression
to override your account-level suppression list.

Important

The global suppression list email address removal request form is no longer in the Amazon
SES console because the account-level suppression list has superseded it. To learn how to
use the account-level suppression list, see Using the Amazon SES account-level suppression
list.

Global suppression list considerations

Key factors regarding the global suppression list:

• The global suppression list operates and is managed in the background by SES - you cannot
interact with it directly; however, you can override it by using your own account-level suppression
list.

• The global suppression list is enabled by default for all SES accounts. You can't disable it.

• Because SES applies the global suppression list to all customers, you can't query the global
suppression list or add addresses to it manually.

• When an email address produces a hard bounce, SES adds the address to the global suppression
list for a short period of time. After that period of time elapses, SES removes the address from

Global suppression list 491

Amazon Simple Email Service Developer Guide

the list. If the address produces another hard bounce, SES adds it back to the global suppression
list for a longer period of time, and removes it at the end of that period. The amount of time that
an address remains on the global suppression list increases each time the address produces a
hard bounce. An address can remain on the global suppression list for up to 14 days.

• If you attempt to send a message to an address that's on the global suppression list, SES accepts
the message, but doesn't send it. SES generates a bounce notification with a bounceType value
of Permanent, and a bounceSubType value of Suppressed. Receiving this type of bounce
notification is the only way to know if an address is on the global suppression list. You can't
query the global suppression list.

• SES counts the messages that you send to addresses on the global suppression list toward the
bounce rate for your account and toward your daily sending quota.

• As with any email address that produces a hard bounce, you should remove addresses that cause
a suppression list bounce from your mailing list unless you're certain that the address is valid.

• Suppression list bounces count towards your account's bounce rate. If your bounce rate gets too
high, your account might be placed under review or your account's ability to send email could be
paused.

Note

It's important to understand how the three SES suppression lists are interrelated and their
hierarchy, see Overview of the three types of suppression lists.

Using the Amazon SES account-level suppression list

The Amazon SES account-level suppression list was introduced so that customers can create and
control their own suppression lists and reputation, thus, your account-level suppression list applies
to your account only. The account-level suppression list interface in the SES console provides an
easy way to manage addresses in your account-level suppression list, including bulk actions to add
or remove addresses.

Your SES account-level suppression list applies to your AWS account in the current AWS Region. You
can add or remove, individually or in bulk, addresses from your account-level suppression list by
using the SES API v2 or console.

Using the account-level suppression list 492

Amazon Simple Email Service Developer Guide

Note

To bulk add or remove addresses, you must have production access. To learn more about
the sandbox, see Request production access (Moving out of the Amazon SES sandbox).

Amazon SES Account-level suppression list considerations

You should consider the following factors when you use your account-level suppression list:

• If you started using Amazon SES after November 25, 2019, your account uses the account-level
suppression list by default for both bounces and complaints. If you started using SES before this
date, then you have to enable this feature by using the PutAccountSuppressionAttributes
operation in the SES API.

• If you attempt to send a message to an address that's on your account-level suppression list that
has a suppression reason that matches the same suppression reason chosen for your account-
level suppression settings, SES accepts the message, but doesn't send it—however, if they don't
match, then SES will send it. To help clarify this, the following examples are provided:

• You've set your account-level suppression settings with the suppression reason of Bounces
only, SES will not attempt delivery for addresses in your account-level suppression list with the
suppression reason as Bounce.

• You've set your account-level suppression settings with the suppression reason of Bounces and
Complaints, SES will not attempt delivery for addresses in your account-level suppression list
with a suppression reason of either Bounce or Complaint.

• You've set your account-level suppression settings with the suppression reason of Bounces
only, SES will attempt delivery for addresses in your account-level suppression list with the
suppression reason of Complaint (because is this case, they do not match).

• SES doesn't count the messages that you send to addresses on your account-level suppression
list toward the bounce or complaint rates for your account.

• If an address is on the global suppression list, but not on your account level suppression list
(which means you want to send to it), and you do send to it, SES will still attempt delivery;
however, if it bounces, it still counts toward the bounce rate for your account and toward your
daily sending quota.

• SES counts the messages that you send to addresses on your account-level suppression list
toward your daily sending quota.

Account-level suppression list considerations 493

Amazon Simple Email Service Developer Guide

• Email addresses on your account-level suppression list remain there until you remove them.

• If your account's ability to send email is paused, SES automatically deletes the addresses in your
account-level suppression list after 90 days. If your account's ability to send email is restored
before this 90-day period ends, then the addresses in the list aren't deleted.

• Gmail doesn't provide complaint data to SES. If a recipient uses the Spam button in the Gmail
web client to report a message that they receive from you as spam, they aren't added to your
account-level suppression list.

• You can enable your account-level suppression list if your account is in the SES sandbox.
However, you can't use the PutSuppressedDestination or CreateImportJob operation until your
account is removed from the sandbox. To learn more about the sandbox, see Request production
access (Moving out of the Amazon SES sandbox).

• Only hard bounces are added to your account-level suppression list. For information about the
differences between soft and hard bounces, see the section called “After Amazon SES sends an
email”.

• When you use your account-level suppression list, SES adds addresses that result in hard bounces
to the global suppression list as well.

Enabling the Amazon SES account-level suppression list

You can use the PutAccountSuppressionAttributes operation in the Amazon SES API v2 to enable
and set up your account-level suppression list. You can quickly and easily configure this setting by
using the AWS CLI. For more information about installing and configuring the AWS CLI, see the
AWS Command Line Interface User Guide.

To configure your account-level suppression list using the AWS CLI

• At the command line, enter the following command:

Linux, macOS, or Unix

aws sesv2 put-account-suppression-attributes \
--suppressed-reasons BOUNCE COMPLAINT

Windows

aws sesv2 put-account-suppression-attributes `

Enabling the account-level suppression list 494

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutSuppressedDestination
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateImportJob.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutAccountSuppressionAttributes.html
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

--suppressed-reasons BOUNCE COMPLAINT

To enable your account-level suppression list, you have to specify at least one reason for the
suppressed-reasons parameter. You can specify either BOUNCE or COMPLAINT, or you can
specify both, as shown in the preceding example.

To configure your account-level suppression list using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Account-level settings pane, choose Edit.

4. In Suppression list, check the Enabled box.

5. In Suppression reasons, select one of the reasons for which recipient email addresses should
be automatically added to your account-level suppression list.

6. Choose Save changes.

Enabling the Amazon SES account-level suppression list for a
configuration set

You can also configure your Amazon SES account-level suppression so that it only applies to
specific configuration sets. When you do, addresses are only added to the suppression list if you
specified the configuration set when you sent the email that caused the bounce or complaint
event.

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To configure your account-level suppression list for a configuration set using the AWS CLI

• At the command line, enter the following command:

Enabling your account-level suppression list for a configuration set 495

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

Linux, macOS, or Unix

aws sesv2 put-configuration-set-suppression-options \
--configuration-set-name configSet \
--suppressed-reasons BOUNCE COMPLAINT

Windows

aws sesv2 put-configuration-set-suppression-options `
--configuration-set-name configSet `
--suppressed-reasons BOUNCE COMPLAINT

In the preceding example, replace configSet with the name of the configuration set that
should use your account-level suppression list.

To configure your account-level suppression list for a configuration set using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Configuration sets.

3. In Configuration sets, choose the name of the configuration set you want to configure with
customized suppression.

4. In the Suppression list options pane, choose Edit.

5.
The Suppression list options section provides a decision set to define customized suppression
starting with the option to use this configuration set to override your account-level
suppression. The configuration set-level suppression logic map will help you understand
the effects of the override combinations. These multitiered selections of overrides can be
combined to implement three different levels of suppression:

a. Use account-level suppression: Do not override your account-level suppression and do
not implement any configuration set-level suppression - basically, any email sent using
this configuration set will just use your account-level suppression. To do this:

• In Suppression list settings, uncheck the Override account level settings box.

Enabling your account-level suppression list for a configuration set 496

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

b. Do not use any suppression: Override your account-level suppression without
enabling any configuration set-level suppression - this means any email sent using this
configuration set will not use any of your account-level suppression; in other words, all
suppression is cancelled. To do this:

i. In Suppression list settings, check the Override account level settings box.

ii. In Suppression list, uncheck the Enabled box.

c. Use configuration set-level suppression: Override your account-level suppression with
custom suppression list settings defined in this configuration set - this means any email
sent using this configuration set will only use its own suppression settings and ignore any
account-level suppression settings. To do this:

i. In Suppression list settings, check the Override account level settings box.

ii. In Suppression list, check Enabled.

iii. In Specify the reason(s)..., select one of the suppression reasons for this
configuration set to use.

6. Choose Save changes.

Adding individual email addresses to the Amazon SES account-level
suppression list

You can add individual addresses to your Amazon SES account-level suppression list by using the
PutSuppressedDestination operation in the SES API v2. There's no limit to the number of addresses
that you can add to your account-level suppression list.

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To add individual addresses to your account-level suppression list using the AWS CLI

• At the command line, enter the following command:

Adding individual email addresses to your account-level suppression list 497

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutSuppressedDestination.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

Linux, macOS, or Unix

aws sesv2 put-suppressed-destination \
--email-address recipient@example.com \
--reason BOUNCE

Windows

aws sesv2 put-suppressed-destination `
--email-address recipient@example.com `
--reason BOUNCE

In the preceding example, replace recipient@example.com with the email address that you
want to add to your account-level suppression list, and BOUNCE with the reason that you're
adding the address to the suppression list (acceptable values are BOUNCE and COMPLAINT).

To add individual addresses to your account-level suppression list using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Suppression list pane, choose Add email address.

4. Type an email address in the Email address field followed by selecting a reason in
Suppression reason - if you need to enter more addresses, choose Enter another address and
repeat for each additional one.

5. When done entering addresses, review your entries for accuracy. If you decide any of your
entries shouldn't be part of this submission, choose its Remove button.

6. Choose Save changes to add the entered email addresses to your account-level suppression
list.

Adding individual email addresses to your account-level suppression list 498

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Adding email addresses in bulk to your Amazon SES account-level
suppression list

You can add addresses in bulk by first uploading your contact list into an Amazon S3 object
followed by using the CreateImportJob operation in the Amazon SES API v2.

Note

• There's no limit to the number of addresses that you can add to your account-level
suppression list, but there is a bulk add limit of 100,000 addresses in an Amazon S3
object per API call.

• If your data source is an S3 bucket, it must exist in the same region as you're importing
into.

To add email addresses in bulk to your account-level suppression list, complete the following steps.

• Upload your address list into an Amazon S3 object in either CSV or JSON format.

CSV format example for adding addresses:

recipient1@example.com,BOUNCE

recipient2@example.com,COMPLAINT

Only newline-delimited JSON files are supported. In this format, each line is a complete JSON
object that contains an individual address definition.

JSON format example for adding addresses:

{"emailAddress":"recipient1@example.com","reason":"BOUNCE"}

{"emailAddress":"recipient2@example.com","reason":"COMPLAINT"}

In the preceding examples, replace recipient1@example.com and
recipient2@example.com with the email addresses that you want to add to your account-
level suppression list. The acceptable reasons that you're adding the addresses to the
suppression list are BOUNCE and COMPLAINT.

• Give SES permission to read the Amazon S3 object.

Adding email addresses in bulk to your account-level suppression list 499

Amazon Simple Email Service Developer Guide

When applied to an Amazon S3 bucket, the following policy gives SES permission to read that
bucket. For more information about attaching policies to Amazon S3 buckets, see Using Bucket
Policies and User Policies in the Amazon Simple Storage Service User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSESGet",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::BUCKET-NAME/OBJECT-NAME",
 "Condition": {
 "StringEquals": {
 "aws:Referer": "AWSACCOUNTID"
 }
 }
 }
]
}

• Give SES permission to use your AWS KMS key.

If the Amazon S3 object is encrypted with an AWS KMS key, you need to give Amazon SES
permission to use the AWS KMS key. SES can only attain permission from a customer managed
key, not a default KMS key. You need to give SES permission to use the customer managed key
by adding a statement to the key's policy.

Paste the following policy statement into the key policy to permit SES to use your customer
managed key.

{
 "Sid": "AllowSESToDecrypt",
 "Effect": "Allow",
 "Principal": {
 "Service":"ses.amazonaws.com"
 },
 "Action": [

Adding email addresses in bulk to your account-level suppression list 500

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html

Amazon Simple Email Service Developer Guide

 "kms:Decrypt",
],
 "Resource": "*"
}

• Use the CreateImportJob operation in the SES API v2.

Note

The following example assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

At the command line, enter the following command. Replace s3bucket with the name of an
Amazon S3 bucket and s3object with the name of an Amazon S3 object.

aws sesv2 create-import-job --import-destination
 SuppressionListDestination={SuppressionListImportAction=PUT} --import-data-source
 S3Url=s3://s3bucket/s3object,DataFormat=CSV

To add email addresses in bulk to your account-level suppression list using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Suppression list table, expand the Bulk actions button and select Add email addresses
in bulk.

4. In Bulk action specifications, select either (a)Choose file from S3 bucket or (b)Import from
file - procedures are given for each import method:

a. Choose file from S3 bucket - if your source file is already stored in an Amazon S3 bucket:

i. If you know the URI of the Amazon S3 bucket you want to use, enter it in the Amazon
S3 URI field; otherwise, choose Browse S3:

A. In Buckets, select the name of the S3 bucket.

Adding email addresses in bulk to your account-level suppression list 501

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateImportJob.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

B. In Objects, select the name of the file then select Choose - you'll be returned to
Bulk action specifications.

C. (Optional) If you want to be taken to the Amazon S3 console to view details
about your S3 object choose View.

ii. In File format, select the format of the file you've chosen to import from you Amazon
S3 bucket.

iii. Choose Add email addresses to kick off the import of addresses from your file - a
table under the Bulk actions tab is displayed.

b. Import from file - if you have a local source file to upload to a new or existing Amazon S3
bucket:

i. In Import source file, select Choose file.

ii. Select the JSON or CSV file in the file browser and choose Open - you'll see the name,
size, and date of your file displayed under the Choose file button.

iii. Expand Amazon S3 bucket and select the S3 bucket.

• To upload your file to a new bucket, choose Create S3 bucket, enter a name in
the Bucket name field, and choose Create bucket.

iv. Choose Add email addresses to kick off the import of addresses from your file - a
table under the Bulk actions tab is displayed.

5. Regardless of the import method you used, your job ID will be listed in Bulk actions along with
import type, status, and date - to view job details, select the job ID.

6. Select the Suppression list tab and all the successfully imported email addresses are displayed
with their suppression reason and date added - the following options are available:

a. Select an email address, or select its corresponding checkbox and choose View report to
view its details. (If it's an address that was automatically added to your suppression list
because of a bounce or complaint, information will be displayed about the feedback event
that caused it to be added, including details about the email message that produced the
triggering event.)

b. Select the corresponding checkbox of one or more email addresses you want to remove
from your account suppression list and choose Remove.

Adding email addresses in bulk to your account-level suppression list 502

Amazon Simple Email Service Developer Guide

Viewing a list of addresses that are on your Amazon SES account-level
suppression list

You can view a list of all of the email addresses that are on your account-level suppression list for
your account by using the ListSuppressedDestinations operation in the SES API v2.

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To view a list of all of the email addresses that are on your account-level suppression list

• At the command line, enter the following command:

aws sesv2 list-suppressed-destinations

The preceding command returns all of the email addresses that are in your account-level
suppression list for your account. The output resembles the following example:

{
 "SuppressedDestinationSummaries": [
 {
 "EmailAddress": "recipient2@example.com",
 "Reason": "COMPLAINT",
 "LastUpdateTime": "2020-04-10T21:03:05Z"
 },
 {
 "EmailAddress": "recipient0@example.com",
 "Reason": "COMPLAINT",
 "LastUpdateTime": "2020-04-10T21:04:26Z"
 },
 {
 "EmailAddress": "recipient1@example.com",
 "Reason": "BOUNCE",
 "LastUpdateTime": "2020-04-10T22:07:59Z"
 }
]

Viewing a list of addresses that are on your account-level suppression list 503

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListSuppressedDestinations.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

}

• Note – If your output includes a "NextToken" field with a string value, this indicates there
are additional email addresses on the suppression list for your account. To view additional
suppressed addresses, issue another request to ListSuppressedDestinations, and pass the
returned string value in the --next-token parameter like so:

aws sesv2 list-suppressed-destinations --next-token string

In the preceding command, replace string with the returned NextToken value.

For more information, see How to list over 1000 email addresses from account-level suppression
list.

You can use the StartDate option to only show email addresses that were added to the list after
a certain date.

To view a list of addresses that were added to your account-level suppression list after a
specific date

• At the command line, enter the following command:

aws sesv2 list-suppressed-destinations --start-date 1604394130

In the preceding command, replace 1604394130 with the Unix timestamp of the start date.

You can also use the EndDate option to only show email addresses that were added to the list
before a certain date.

To view a list of addresses that were added to your account-level suppression list before a
specific date

• At the command line, enter the following command:

aws sesv2 list-suppressed-destinations --end-date 1611126000

In the preceding command, replace 1611126000 with the Unix timestamp of the end date.

Viewing a list of addresses that are on your account-level suppression list 504

https://aws.amazon.com/blogs/messaging-and-targeting/how-to-list-over-1000-email-addresses-from-account-level-suppression-list/
https://aws.amazon.com/blogs/messaging-and-targeting/how-to-list-over-1000-email-addresses-from-account-level-suppression-list/

Amazon Simple Email Service Developer Guide

On the Linux, macOS, or Unix command line, you can also use the built-in grep utility to search for
specific addresses or domains.

To search your account-level suppression list for a specific address

• At the command line, enter the following command:

aws sesv2 list-suppressed-destinations | grep -A2 'example.com'

In the preceding command, replace example.com with the string of text (such as the address
or domain) that you want to search for.

To view a list of all of the email addresses that are on your account-level suppression list using
the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Suppression list pane, all the email addresses on your account-level suppression list are
displayed with their suppression reason and date added - the following options are available:

a. Select an email address, or select its corresponding checkbox and choose View report to
view its details. (If it's an address that was automatically added to your suppression list
because of a bounce or complaint, information will be displayed about the feedback event
that caused it to be added, including details about the email message that produced the
triggering event.)

b. You can customize the suppression list table by choosing the gear icon - a modal will
be presented where you can customize page size, line wrap, and columns to view - after
making your selections, choose Confirm. The suppression list table will reflect your
viewing choices.

Viewing a list of addresses that are on your account-level suppression list 505

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

Removing individual email addresses from your Amazon SES account-
level suppression list

If an address is on the suppression list for your account, but you know that the address shouldn't
be on the list, you can remove it by using DeleteSuppressedDestination operation in the SES API
v2.

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To remove individual addresses from your account-level suppression list using the AWS CLI

• At the command line, enter the following command:

Linux, macOS, or Unix

aws sesv2 delete-suppressed-destination \
--email-address recipient@example.com

Windows

aws sesv2 delete-suppressed-destination `
--email-address recipient@example.com

In the preceding example, replace recipient@example.com with the email address that you
want to remove from your account-level suppression list.

To remove individual addresses from your account-level suppression list using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. Remove individual email addresses either by (a) table selection or (b) typed entry:

Removing individual email addresses from your account-level suppression list 506

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_DeleteSuppressedDestination.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

a. Select from table: In the Suppression list table, select the corresponding checkbox of one
or more email addresses and choose Remove.

b. Type in field:

i. In the Suppression list table, choose Remove email address.

ii. Type an email address in the Email address field - if you need to enter more
addresses, choose Enter another address and repeat for each additional one.

iii. When done entering addresses, review your entries for accuracy. If you decide any of
your entries shouldn't be part of this submission, choose its Remove button.

iv. Choose Save changes to remove the entered email addresses from your account-level
suppression list.

Removing email addresses in bulk from your Amazon SES account-level
suppression list

You can remove addresses in bulk by first uploading your contact list into an Amazon S3 object
followed by using the CreateImportJob operation in the SES API v2.

Note

• There's no limit to the number of addresses that you can remove from the account-level
suppression list, but there is a bulk delete limit of 10,000 addresses in an Amazon S3
object per API call.

• If your data source is an S3 bucket, it must exist in the same region as you're importing
into.

To remove email addresses in bulk from your account-level suppression list, complete the following
steps.

• Upload your address list into an Amazon S3 object in either CSV or JSON format.

CSV format example for removing addresses:

recipient3@example.com

Removing email addresses in bulk from your account-level suppression list 507

Amazon Simple Email Service Developer Guide

Only newline-delimited JSON files are supported. In this format, each line is a complete JSON
object that contains an individual address definition.

JSON format example for adding addresses:

{"emailAddress":"recipient3@example.com"}

In the preceding examples, replace recipient3@example.com with the email addresses that
you want to remove from your account-level suppression list.

• Give SES permission to read the Amazon S3 object.

When applied to an Amazon S3 bucket, the following policy gives SES permission to read that
bucket. For more information about attaching policies to Amazon S3 buckets, see Using Bucket
Policies and User Policies in the Amazon Simple Storage Service User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSESGet",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::BUCKET-NAME/OBJECT-NAME",
 "Condition": {
 "StringEquals": {
 "aws:Referer": "AWSACCOUNTID"
 }
 }
 }
]
}

• Give SES permission to use your AWS KMS key.

If the Amazon S3 object is encrypted with an AWS KMS key, you need to give Amazon SES
permission to use the AWS KMS key. SES can only attain permission from a customer managed
key, not a default KMS key. You need to give SES permission to use the customer managed key
by adding a statement to the key's policy.

Removing email addresses in bulk from your account-level suppression list 508

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html

Amazon Simple Email Service Developer Guide

Paste the following policy statement into the key policy to permit SES to use your customer
managed key.

{
 "Sid": "AllowSESToDecrypt",
 "Effect": "Allow",
 "Principal": {
 "Service":"ses.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
],
 "Resource": "*"
}

• Use the CreateImportJob operation in the SES API v2.

Note

The following example assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

At the command line, enter the following command. Replace s3bucket with the name of the
Amazon S3 bucket and s3object with the name of the Amazon S3 object.

aws sesv2 create-import-job --import-destination
 SuppressionListDestination={SuppressionListImportAction=DELETE} --import-data-source
 S3Url="s3://s3bucket/s3object",DataFormat=CSV

To remove email addresses in bulk from your account-level suppression list using the SES
console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

Removing email addresses in bulk from your account-level suppression list 509

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateImportJob.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

3. In the Suppression list table, expand the Bulk actions button and select Remove email
addresses in bulk.

4. In Bulk action specifications, select either (a) Choose file from S3 bucket or (b) Import from
file - procedures are given for each import method:

a. Choose file from S3 bucket - if your source file is already stored in an Amazon S3 bucket:

i. If you know the URI of the Amazon S3 bucket you want to use, enter it in the Amazon
S3 URI field; otherwise, choose Browse S3:

A. In Buckets, select the name of the S3 bucket.

B. In Objects, select the name of the file then select Choose - you'll be returned to
Bulk action specifications.

C. (Optional) If you want to be taken to the Amazon S3 console to view details
about your S3 object choose View.

ii. In File format, select the format of the file you've chosen to import from your
Amazon S3 bucket.

iii. Choose Remove email addresses to kick off the import of addresses from your file - a
table under the Bulk actions tab is displayed.

b. Import from file - if you have a local source file to upload to a new or existing Amazon S3
bucket:

i. In Import source file, select Choose file.

ii. Select the JSON or CSV file in the file browser and choose Open - you'll see the name,
size, and date of your file displayed under the Choose file button.

iii. Expand Amazon S3 bucket and select the S3 bucket.

• To upload your file to a new bucket, choose Create S3 bucket, enter a name in
the Bucket name field, and choose Create bucket.

iv. Choose Remove email addresses to kick off the import of addresses from your file - a
table under the Bulk actions tab is displayed.

5. Regardless of the import method you used, your job ID will be listed in Bulk actions along with
import type, status, and date - to view job details, select the job ID.

6. Select the Suppression list tab and all the successfully imported email addresses that were
removed from your suppression list will no longer be displayed.

Removing email addresses in bulk from your account-level suppression list 510

Amazon Simple Email Service Developer Guide

Viewing a list of import jobs for the account

You can view a list of all of the email addresses that are on your account-level suppression list for
your account by using the ListImportJobs operation in the Amazon SES API v2.

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To view a list of all of the import jobs for the account

• At the command line, enter the following command:

aws sesv2 list-import-jobs

The preceding command returns all of the import jobs for the account. The output resembles the
following example:

{
 "ImportJobs": [
 {
 "CreatedTimestamp": 2020-07-31T06:06:55Z",
 "ImportDestination": {
 "SuppressionListDestination": {
 "SuppressionListImportAction": "PUT"
 }
 },
 "JobStatus": "COMPLETED",
 "JobId": "755380d7-fbdb-4ed2-a9a3-06866220f5b5"
 },
 {
 "CreatedTimestamp": "2020-07-30T18:45:32Z",
 "ImportDestination": {
 "SuppressionListDestination": {
 "SuppressionListImportAction": "DELETE"
 }
 },

Viewing a list of import jobs for the account 511

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListImportJobs.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

 "JobStatus": "COMPLETED",
 "JobId": "076683bd-a7ee-4a40-9754-4ad1161ba8b6"
 },
 {
 "CreatedTimestamp": "2020-08-05T16:45:18Z",
 "ImportDestination": {
 "SuppressionListDestination": {
 "SuppressionListImportAction": "PUT"
 }
 },
 "JobStatus": "COMPLETED",
 "JobId": "6e261869-bd30-4b33-b1f2-9e035a83a395"
 }
]
}

To view a list of all of the import jobs for the account using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Suppression list pane, select the Bulk actions tab.

4. All the import jobs will be listed in the Bulk actions table along with import type, status, and
date.

5. To view job details, select the job ID and the following panes are displayed:

a. Bulk action status: shows the jobs overall status, the time and date it completed,
how many records where imported, and the count of any records that failed to import
successfully.

b. Bulk action details: shows the job ID, whether it was used to add or remove addresses,
whether the file format was JSON or CSV, the URI of the Amazon S3 bucket where the
bulk file was stored, and the time and date the bulk action was created.

Getting information about an import job for the account

You can get information about an import job for the account by using the GetImportJob operation
in the Amazon SES API v2.

Getting information about an import job for the account 512

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetImportJob.html

Amazon Simple Email Service Developer Guide

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To get information about an import job for the account

• At the command line, enter the following command:

aws sesv2 get-import-job --job-id JobId

The preceding command returns information about an import job for the account. The output
resembles the following example:

{
 "ImportDataSource": {
 "S3Url": "s3://bucket/object",
 "DataFormat": "CSV"
 },
 "ProcessedRecordsCount": 2,
 "FailureInfo": {
 "FailedRecordsS3Url": "s3presignedurl"
 },
 "JobStatus": "COMPLETED",
 "JobId": "jobid",
 "CreatedTimestamp": "2020-08-12T17:05:15Z",
 "FailedRecordsCount": 1,
 "ImportDestination": {
 "SuppressionListDestination": {
 "SuppressionListImportAction": "PUT"
 }
 },
 "CompletedTimestamp": "2020-08-12T17:06:42Z"
}

Getting information about an import job for the account 513

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

To get information about an import job for the account using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Suppression list pane, select the Bulk actions tab.

4. All the import jobs will be listed in the Bulk actions table along with import type, status, and
date.

5. To view job details, select the job ID and the following panes are displayed:

a. Bulk action status: shows the jobs overall status, the time and date it completed,
how many records where imported, and the count of any records that failed to import
successfully.

b. Bulk action details: shows the job ID, whether it was used to add or remove addresses,
whether the file format was JSON or CSV, the URI of the Amazon S3 bucket where the
bulk file was stored, and the time and date the bulk action was created.

Disabling the Amazon SES account-level suppression list

You can use the PutAccountSuppressionAttributes operation in the SES API v2 to effectively disable
your account-level suppression list by removing the values from the suppressed-reasons
attribute.

Note

The following procedure assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To disable your account-level suppression list using the AWS CLI

• At the command line, enter the following command:

aws sesv2 put-account-suppression-attributes --suppressed-reasons

Disabling the account-level suppression list 514

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutAccountSuppressionAttributes.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

To disable your account-level suppression list using the SES console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Suppression list.

3. In the Account-level settings pane, choose Edit.

4. In Suppression list, uncheck the Enabled box.

5. Choose Save changes.

Using configuration set-level suppression to override your
account-level suppression list

While the account-level suppression list is set for your entire account, you can customize it
separately for different configuration sets by overriding it with configuration set-level suppression.
This finer granularity allows you to use customized suppression settings for different email sending
groups that you've assigned to their own configuration sets. For example, let's say your account-
level suppression list is configured for both bounce and complaint addresses to be added, but you
have a particular email demographic defined in a configuration set for which you're only interested
in complaint addresses being added - you would achieve this by enabling this configuration set's
suppression overrides so that email addresses are added to your account-level suppression list just
for complaints (not bounces and complaints like is set in your account-level suppression list) from
email sent with this configuration set.

With configuration set-level suppression, there are different levels of overriding your account-level
suppression, including not using any suppression at all. To help understand these various levels of
suppression that can be set in the following console procedures, the following relationship map
models the decision set of choices you can make for the enabling or disabling of various levels of
overrides, that depending on their combination, can be used to implement three different levels of
suppression:

• No overrides (default) – the configuration set uses your account-level suppression list settings.

• Override account level settings – this will negate any account-level suppression list settings;
email sent with this configuration set will not use any suppression settings at all.

• Override account level settings with configuration set-level suppression enabled – email sent
with this configuration set will only use the suppression conditions you enabled for it (bounces,

Using configuration set-level suppression 515

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

complaints, or bounces and complaints) - regardless of what your account-level suppression list
settings are, it will override them.

Keep in mind that configuration set-level suppression is not an actual suppression list, rather,
it's simply a mechanism to override your account-level suppression list with custom suppression
settings defined in a configuration set - this means any email sent using the configuration set will
only use its own suppression settings and ignore any account-level suppression settings. In other
words, configuration set-level suppression is interacting with your account-level suppression list
by simply changing (overriding) the suppression reasons that determine what email addresses get
added to your account-level suppression list.

Using configuration set-level suppression 516

Amazon Simple Email Service Developer Guide

Enabling configuration set-level suppression

To enable configuration set-level suppression using the Amazon SES new console:

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, under Configuration, choose Configuration sets.

3. In Configuration sets, choose the name of the configuration set you want to configure with
customized suppression.

4. In the Suppression list options pane, choose Edit.

5.
The Suppression list options section provides a decision set to define customized suppression
starting with the option to use this configuration set to override your account-level
suppression. The configuration set-level suppression logic map will help you understand
the effects of the override combinations. These multitiered selections of overrides can be
combined to implement three different levels of suppression:

a. Use account-level suppression: Do not override your account-level suppression and do
not implement any configuration set-level suppression - basically, any email sent using
this configuration set will just use your account-level suppression. To do this:

• In Suppression list settings, uncheck the Override account level settings box.

b. Do not use any suppression: Override your account-level suppression without
enabling any configuration set-level suppression - this means any email sent using this
configuration set will not use any of your account-level suppression; in other words, all
suppression is cancelled. To do this:

i. In Suppression list settings, check the Override account level settings box.

ii. In Suppression list, uncheck the Enabled box.

c. Use configuration set-level suppression: Override your account-level suppression list
with custom suppression settings defined in this configuration set - this means any email
sent using this configuration set will only use its own suppression settings and ignore any
account-level suppression settings. To do this:

i. In Suppression list settings, check the Override account level settings box.

ii. In Suppression list, check Enabled.

Enabling configuration set-level suppression 517

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

iii. In Specify the reason(s)..., select one of the suppression reasons for this
configuration set to use.

6. Choose Save changes.

Using list management

Amazon SES offers list management capabilities, which means customers can manage their
own mailing lists, known as contact lists. A contact list is a list that allows you to store all of
your contacts that have subscribed to a particular topic or topics. A contact is an end-user who
is receiving your emails. A topic is an interest group, theme, or label within a list. Lists can have
multiple topics.

By using the ListContacts operation in the Amazon SES API v2, you can retrieve a list of all
your contacts who have subscribed to a particular topic, to whom you can send emails using the
SendEmail operation.

For information about subscription management, see Using subscription management.

List management overview

You should consider the following factors when you use list management:

• You can specify list topics while creating the list.

• Only one contact list is allowed per AWS account.

• A list can have a maximum of 20 topics.

• You can update an existing contact list, including adding new topics to the list, adding or
deleting contacts from a list, and updating contact preferences for a list or topic.

• You can update topic metadata, such as the topic display name or description.

• You can get a list of contacts in a contact list, contacts subscribed to a topic, contacts
unsubscribed from a topic, and contacts unsubscribed from all topics in the list.

• You can import your existing contact lists to Amazon SES using the CreateImportJob API.

• Amazon SES will bounce an email if it is sent to an unsubscribed contact on your contact list. For
more information, see Using subscription management.

• Each contact can have associated attributes which you can use to store information about that
contact.

Using list management 518

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListContacts.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateImportJob.html

Amazon Simple Email Service Developer Guide

Configuring list management

You can use the following operations to configure list management capabilities. For the full list of
contact list and contact operations, see the Amazon SES API v2 Reference.

Create a contact list

You can use the CreateContactList operation in the Amazon SES API v2 to create a contact list.
You can quickly and easily configure this setting by using the AWS CLI. For more information about
installing and configuring the AWS CLI, see the AWS Command Line Interface User Guide.

To create a contact list by using the AWS CLI

• At the command line, enter the following command:

aws sesv2 create-contact-list --cli-input-json file://CONTACT-LIST-JSON

In the preceding command, replace CONTACT-LIST-JSON with the path to your JSON file for
your CreateContactList request.

An example CreateContactList input JSON file for the request is as follows:

{
 "ContactListName": "ExampleContactListName",
 "Description": "Creating a contact list example",
 "Topics": [
 {
 "TopicName": "Sports",
 "DisplayName": "Sports Newsletter",
 "Description": "Sign up for our free newsletter to receive updates on all
 sports.",
 "DefaultSubscriptionStatus": "OPT_OUT"
 },
 {
 "TopicName": "Cycling",
 "DisplayName": "Cycling newsletter",
 "Description": "Never miss a cycling update by subscribing to our
 newsletter.",
 "DefaultSubscriptionStatus": "OPT_IN"
 },
 {
 "TopicName": "NewProducts",

Configuring list management 519

https://docs.aws.amazon.com/ses/latest/APIReference-V2/Welcome.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateContactList.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateContactList.html

Amazon Simple Email Service Developer Guide

 "DisplayName": "New products",
 "Description": "Hear about new products by subscribing to this mailing
 list.",
 "DefaultSubscriptionStatus": "OPT_IN"
 },
 {
 "TopicName": "DailyUpdates",
 "DisplayName": "Daily updates",
 "Description": "Start your day with sport updates, Monday through
 Friday.",
 "DefaultSubscriptionStatus": "OPT_OUT"
 }
]
}

Create a contact

You can use the CreateContact operation in the Amazon SES API v2 to create a contact. You
can quickly and easily configure this setting by using the AWS CLI. For more information about
installing and configuring the AWS CLI, see the AWS Command Line Interface User Guide.

To create a contact by using the AWS CLI

• At the command line, enter the following command:

aws sesv2 create-contact --cli-input-json file://CONTACT-JSON

In the preceding command, replace CONTACT-JSON with the path to your JSON file for your
CreateContact request.

An example CreateContact input JSON file for the request is as follows:

{
 "ContactListName": "ExampleContactListName",
 "EmailAddress": "example@amazon.com",
 "UnsubscribeAll": false,
 "TopicPreferences": [
 {
 "TopicName": "Sports",
 "SubscriptionStatus": "OPT_IN"
 }

Configuring list management 520

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateContact.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateContact.html

Amazon Simple Email Service Developer Guide

],
 "AttributesData": "{\"Name\": \"John\", \"Location\": \"Seattle\"}"
}

In the example above, an UnsubscribeAll value of false shows that the contact has not
unsubscribed from all topics, where a value of true would mean the contact has unsubscribed
from all topics.

TopicPreferences includes information about the contact’s subscription status to topics. In
the preceding example, the contact has opted in to the "Sports" topic and will receive all emails
to the "Sports" topic.

The AttributesData is a JSON field where you can put any metadata about our contact. It
must be a valid JSON object.

Bulk importing contacts to your contact list

You can manually add addresses in bulk by first uploading your contacts into an Amazon S3 object
followed by using the CreateImportJob operation in the Amazon SES API v2 or by using the
SES console. For more information see Adding email addresses in bulk to your account-level
suppression list.

You should create a contact list before importing your contacts.

Note

You can add up to 1 million contacts to a contact list per ImportJob.

To add contacts in bulk to your contact list, complete the following steps.

• Upload your contacts into an Amazon S3 object in either CSV or JSON format.

CSV format

The first line of the file that is uploaded to Amazon S3 should be a header line.

The topicPreferences object needs to be flattened for the CSV format. Every topic in the
topicPreferences will have a separate header field.

Configuring list management 521

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateImportJob.html

Amazon Simple Email Service Developer Guide

CSV format example for adding contacts in bulk to a contact list:

emailAddress,unsubscribeAll,attributesData,topicPreferences.Sports,topicPreferences.Cycling
example1@amazon.com,false,{"Name": "John"},OPT_IN,OPT_OUT
example2@amazon.com,true,,OPT_OUT,OPT_OUT

JSON format

Only newline-delimited JSON files are supported. In this format, each line is a complete JSON
object that contains one contact's information.

JSON format example for adding contacts in bulk to a contact list:

{
 "emailAddress": "example1@amazon.com",
 "unsubscribeAll": false,
 "attributesData": "{\"Name\":\"John\"}",
 "topicPreferences": [
 {
 "topicName": "Sports",
 "subscriptionStatus": "OPT_IN"
 },
 {
 "topicName": "Cycling",
 "subscriptionStatus": "OPT_OUT"
 }
]
}
{
 "emailAddress": "example2@amazon.com",
 "unsubscribeAll": true,
 "topicPreferences": [
 {
 "topicName": "Sports",
 "subscriptionStatus": "OPT_OUT"
 },
 {
 "topicName": "Cycling",
 "subscriptionStatus": "OPT_OUT"
 }

Configuring list management 522

Amazon Simple Email Service Developer Guide

]
}

In the preceding examples, replace example1@amazon.com and example2@amazon.com with
the email addresses you want to add to the contact list. Replace the attributesData values
with the values specific to the contact. Additionally, replace Sports and Cycling with the
topicName that applies to your contact. The acceptable topicPreferences are OPT_IN and
OPT_OUT.

The following attributes are supported when uploading your contacts into an Amazon S3 object
in either CSV or JSON format:

Attribute Description

emailAddress The contact's email address. This is a
mandatory field.

unsubscribeAll A boolean value status noting if the contact
is unsubscribed from all contact list topics.

topicPreferences The contact's preferences for being opted-in
to or opted-out of topics.

attributesData The attribute data attached to a contact.

• Give Amazon SES permission to read the Amazon S3 object.

When applied to an Amazon S3 bucket, the following policy gives Amazon SES permission to
read that bucket. For more information about attaching policies to Amazon S3 buckets, see
Using Bucket Policies and User Policies in the Amazon Simple Storage Service User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSESGet",
 "Effect": "Allow",
 "Principal": {

Configuring list management 523

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html

Amazon Simple Email Service Developer Guide

 "Service": "ses.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::BUCKET-NAME/OBJECT-NAME",
 "Condition": {
 "StringEquals": {
 "aws:Referer": "AWSACCOUNTID"
 }
 }
 }
]
}

• Give Amazon SES permission to use your AWS KMS key.

If the Amazon S3 object is encrypted with an AWS KMS key, you need to give Amazon SES
permission to use the KMS key. Amazon SES can only attain permission from a customer
managed key, not a default KMS key. You must give Amazon SES permission to use the customer
managed key by adding a statement to the key's policy.

Paste the following policy statement into the key policy to permit Amazon SES to use your
customer managed key.

{
 "Sid": "AllowSESToDecrypt",
 "Effect": "Allow",
 "Principal": {
 "Service":"ses.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
],
 "Resource": "*"
}

• Use the CreateImportJob operation in the Amazon SES API v2.

Configuring list management 524

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateImportJob.html

Amazon Simple Email Service Developer Guide

Note

The following example assumes that you've already installed the AWS CLI. For more
information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

At the command line, enter the following command. Replace s3bucket withe the name of the
Amazon S3 bucket and s3object with the name of the Amazon S3 object name.

aws sesv2 create-import-job --import-destination
 ContactListDestination={ContactListName=ExampleContactListName,ContactListImportAction=PUT}
 --import-data-source S3Url="s3://s3bucket/s3object",DataFormat=CSV

List management walkthrough with examples

The following walkthrough provides examples of how you can use list management to list your
contacts, utilize ListManagementOptions to specify a contact list and topic name in your email,
and how to insert unsubscribe links.

1. List contacts by using the AWS CLI – You can use the ListContacts operation to retrieve
a list of all your contacts who have subscribed to a particular topic, in conjunction with the
SendEmail operation, which allows you to send them emails.

At the command line, enter the following command:

aws sesv2 list-contacts --cli-input-json file://LIST-CONTACTS-JSON

In the preceding command, replace LIST-CONTACTS-JSON with the path to your JSON file for
your ListContacts request.

An example ListContacts input JSON file for the request is as follows:

{
 "ContactListName": "ExampleContactListName",
 "Filter": {
 "FilteredStatus": "OPT_IN",
 "TopicFilter": {
 "TopicName": "Cycling",

List management walkthrough with examples 525

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListContacts.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListContacts.html

Amazon Simple Email Service Developer Guide

 "UseDefaultIfPreferenceUnavailable": true
 }
 },
 "PageSize": 50
}

The FilteredStatus shows the subscription status for which you want to filter, which is
either OPT_IN or OPT_OUT.

The TopicFilter is an optional filter which specifies which topic you want results for, and in
the example above, that is "Cycling."

UseDefaultIfPreferenceUnavailable can have a value of true or false. If true, the
topic default preference will be used if the contact doesn’t have any explicit preference for a
topic. If false, only contacts with an explicitly set preference are considered for filtering.

2. Send mail with ListManagementOptions enabled – After listing the contacts in your list
using the above ListContacts operation, you can use the SendEmail operation to send
emails to each of your contacts by utilizing the ListManagementOptions header to specify
your contact list and topic name.

To use ListManagementOptions with the SendEmail operation, include the
contactListName and topicName to which the email belongs (the topicName is optional):

ListManagementOptions:
 String contactListName
 String topicName

If you include ListManagementOptions in your SendEmail request to a recipient
email address that is not on your contact list, then a contact will be created on your list
automatically.

Amazon SES will bounce an email if it is sent to an unsubscribed contact on your contact list,
which means you won’t need to update your SendEmail requests to avoid sending to contacts
who have unsubscribed.

3. Indicate the location for your unsubscribe links – When utilizing ListManagementOptions
you have the option to enable Amazon SES to add unsubscribe footer links in your email using
the {{amazonSESUnsubscribeUrl}} placeholder to specify where SES needs to insert the

List management walkthrough with examples 526

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListContacts.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html

Amazon Simple Email Service Developer Guide

unsubscribe URL. Placeholder replacement is supported only for HTML and TEXT content
types. You can include the placeholder two times maximum. If used more than two times,
only the first two occurrences are replaced. For more information, see Using subscription
management.

Alternatively, if you're using the SMTP interface to send email, you can use the X-SES-LIST-
MANAGEMENT-OPTIONS header to specify a list and topic name.

To specify a list and topic name while sending email using the SMTP interface, add the
following email header to your message:

X-SES-LIST-MANAGEMENT-OPTIONS: {contactListName}; topic={topicName}

Using subscription management

Amazon SES provides a subscription management capability, in which Amazon SES automatically
enables the unsubscribe links in every outgoing email when you specify the contactListName
and topicName within ListManagementOptions in the SendEmail operation request.

If a contact unsubscribes from a particular topic or list, Amazon SES does not allow email sending
to the contact for that topic or list in the future.

Note

• Amazon SES subscription management supports Bulk Sender Requirements as enforced
by many email service providers, see Section 2 in An Overview of Bulk Sender Changes
for more information.

• Subscription management is available for those using Easy DKIM in Amazon SES, but it’s
not possible for Amazon SES to add the unsubscribe links to your email for senders who
are signing emails themselves before calling Amazon SES.

For information about list management and how to use it, including retrieving a list of all your
contacts who have subscribed to a particular topic, see Using list management.

Subscription management overview

You should consider the following factors when you use subscription management:

Using subscription management 527

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://aws.amazon.com//blogs/messaging-and-targeting/an-overview-of-bulk-sender-changes-at-yahoo-gmail/

Amazon Simple Email Service Developer Guide

• Subscription management will be fully managed by Amazon SES. This means that Amazon SES
receives unsubscribe emails and requests from the unsubscribe webpage and then updates the
contact’s preference in your list. You can receive unsubscribe notifications using configuration
set notifications. For more information about configuration sets, see Using configuration sets in
Amazon SES.

• You need to specify the contact list while sending the email. Subscription management via
the List-Unsubscribe header and ListManagementOptions footer links will be handled
accordingly.

• Amazon SES adds support for the List-Unsubscribe header standards, which will enable
email clients and inbox providers to display an unsubscribe link at the top of the email if they
support it - not all email service providers support these headers.

• List-Unsubscribe headers follow the following behavior:

• If a contact clicks the unsubscribe link in an email which has both the contact list and topic
specified, then the contact will be unsubscribed only from that specific topic.

• If the topic is not specified, then the contact will be unsubscribed from all the topics in the list.

• Contacts will be taken to an unsubscribe landing page when they click an unsubscribe link in the
email footer.

• The unsubscribe landing page will give contacts an option to update their preferences, meaning
OPT_IN or OPT_OUT, for all the topics in a particular list. The landing page also gives an option
to unsubscribe from all topics in the list.

• If using ListManagementOptions, you must include the {{amazonSESUnsubscribeUrl}}
placeholder in your emails to indicate where Amazon SES needs to insert the unsubscribe URL.
You can include the placeholder two times maximum. If used more than two times, only the first
two occurrences are replaced.

• The List-Unsubscribe header and ListManagementOptions footer links are added only if
the email is being sent to a single recipient.

• For transactional emails where you don't want contacts to be able to unsubscribe, you can omit
the ListManagementOptions field with your SendEmail request.

Unsubscribe header considerations

Subscription management through an unsubscribe link is enabled when the email contains the
following headers:

List-Unsubscribe

Unsubscribe header considerations 528

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html

Amazon Simple Email Service Developer Guide

List-Unsubscribe-Post

When you use Amazon SES's subscription management, ListManagementOptions, Amazon SES
will override these headers if they are present in the email.

Recipients who unsubscribe by clicking the link produced by these headers will have a different
experience depending on their email client or inbox provider because some providers do not
recognize the List-Unsubscribe and List-Unsubscribe-Post headers; email sent to
recipients using such providers will not see the Unsubscribe link.

Recipients whose email client recognizes these headers will see the Unsubscribe link and will
be able to unsubscribe via the link but will not have the option of choosing which topics they
unsubscribe from, and will simply be unsubscribed from the topic to which the email was sent.

For more information about the List-Unsubscribe header, see RFC 2369, and for the List-
Unsubscribe-Post header, see RFC 8058.

Note

Amazon SES supports one-click unsubscribe in accordance with Bulk Sender Requirements
as enforced by many email service providers, see Using one-click unsubscribe with Amazon
SES for more information.

Adding an unsubscribe footer link

You will need to use the {{amazonSESUnsubscribeUrl}} placeholder in templated and non-
templated emails to specify where Amazon SES needs to insert the unsubscribe URL.

Placeholder replacement is supported only for HTML and TEXT content types.

You can include the placeholder two times maximum. If used more than two times, only the first
two occurrences are replaced.

Note

The {{amazonSESUnsubscribeUrl}} placeholder can only be used if
ListManagementOptions is specified as a header while using the SendEmail operation
or X-SES-LIST-MANAGEMENT-OPTIONS is specified as a header while using the SMTP
interface. (Not to be confused with the List-Unsubscribe or List-Unsubscribe-

Adding an unsubscribe footer link 529

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://tools.ietf.org/html/rfc2369
https://tools.ietf.org/html/rfc8058
https://aws.amazon.com//blogs/messaging-and-targeting/using-one-click-unsubscribe-with-amazon-ses/
https://aws.amazon.com//blogs/messaging-and-targeting/using-one-click-unsubscribe-with-amazon-ses/
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_ListManagementOptions.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html

Amazon Simple Email Service Developer Guide

Post headers which are not dependent on ListManagementOptions and can be used by
themselves.)

Adding an unsubscribe footer link 530

Amazon Simple Email Service Developer Guide

Monitoring your Amazon SES sending activity

Amazon SES provides methods to monitor your sending activity using events, metrics, and
statistics. An event is something that happens related to your sending activity that you’ve specified
to be tracked as a metric. A metric represents a time-ordered set of data points representing the
values of a monitored event type producing statistics. Statistics are metric data aggregations for a
specified period of time including up to the present.

These monitoring methods assist you in keeping track of important measures, such as your
account's bounce, complaint and reject rates. Excessively high bounce and complaint rates may
jeopardize your ability to send emails using SES. These methods can also be used to measure the
rates at which your customers engage with the emails you send by helping you to identify your
overall open and click through rates utilizing event publishing and custom domains associated with
configuration sets - see Configuring custom domains to handle open and click tracking.

The first step in setting up monitoring is to identify the types of email events related to your
sending activity that you want to measure and monitor using SES. You can choose the following
event types to monitor in SES:

• Send – The send request was successful and Amazon SES will attempt to deliver the message
to the recipient’s mail server. (If account-level or global suppression is being used, SES will still
count it as a send, but delivery is suppressed.)

• RenderingFailure – The email wasn't sent because of a template rendering issue. This
event type can occur when template data is missing, or when there is a mismatch between
template parameters and data. (This event type only occurs when you send email using the
SendTemplatedEmail or SendBulkTemplatedEmail API operations.)

• Reject – Amazon SES accepted the email, but determined that it contained a virus and didn’t
attempt to deliver it to the recipient’s mail server.

• Delivery – Amazon SES successfully delivered the email to the recipient's mail server.

• Bounce – A hard bounce that the recipient's mail server permanently rejected the email. (Soft
bounces are only included when Amazon SES fails to deliver the email after retrying for a period
of time.)

• Complaint – The email was successfully delivered to the recipient’s mail server, but the recipient
marked it as spam.

531

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html

Amazon Simple Email Service Developer Guide

• DeliveryDelay – The email couldn't be delivered to the recipient’s mail server because a
temporary issue occurred. Delivery delays can occur, for example, when the recipient's inbox is
full, or when the receiving email server experiences a transient issue.

• Subscription – The email was successfully delivered, but the recipient updated the subscription
preferences by clicking List-Unsubscribe in the email header or the Unsubscribe link in the
footer.

• Open – The recipient received the message and opened it in their email client.

• Click – The recipient clicked one or more links in the email.

You can monitor email sending events in several ways. The method you choose depends on the
type of event you want to monitor, the granularity and level of detail you want to monitor it with,
and the location where you want Amazon SES to publish the data. You're required to use either
feedback notifications or event publishing to track bounce and complaint events. You can also
choose to use multiple monitoring methods. The characteristics of each method are listed in the
following table.

Monitoring
Method

Events You Can
Monitor

How to Access
the Data

Level of Detail Granularity

Amazon SES
console

Account health,
emails sent,
quota used,
successful
send requests,
 rejects, bounces
& complaints
(recent history to
current reputatio
n)

Account
dashboard page
in Amazon SES
console

Count and
percentage

Across entire
AWS account

Amazon SES
console

Account health,
emails sent,
bounces &
complaint
s (current
reputation)

Reputation
metrics page
in Amazon SES
console

Calculated rates
only

Across entire
AWS account

532

Amazon Simple Email Service Developer Guide

Monitoring
Method

Events You Can
Monitor

How to Access
the Data

Level of Detail Granularity

Amazon SES API Deliverie
s, bounces,
complaints, and
rejects

GetSendSt
atistics API
operation

Count only Across entire
AWS account

533

https://docs.aws.amazon.com/ses/latest/APIReference/API_GetSendStatistics.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_GetSendStatistics.html

Amazon Simple Email Service Developer Guide

Monitoring
Method

Events You Can
Monitor

How to Access
the Data

Level of Detail Granularity

Amazon
CloudWatch
console

Sends, deliverie
s, opens, clicks,
bounces, bounce
rate, complaint
s, complaint
rate, rejects,
rendering
failures, and
blacklisted IPs.

CloudWatch
console

Note

Some
metrics
don't
appear
in
CloudWatc
h until
the
associate
d event
occurs.
For
example,
bounce
metrics
don't
appear
in
CloudWatc
h until at
least one
email
that you
send
bounces,
or until
you
generate
a

Count only Across entire
AWS account

534

Amazon Simple Email Service Developer Guide

Monitoring
Method

Events You Can
Monitor

How to Access
the Data

Level of Detail Granularity

simulated
bounce
event by
using the
mailbox
simulator
.

Feedback
notifications

Deliveries,
bounces, and
complaints

Amazon SNS
notification
(deliveries,
bounces, and
complaints) or
email (bounces
and complaint
s only). See
Setting up event
notifications.

Details on each
event

Across entire
AWS account

535

Amazon Simple Email Service Developer Guide

Monitoring
Method

Events You Can
Monitor

How to Access
the Data

Level of Detail Granularity

Event publishing Sends, deliverie
s, opens, clicks,
bounces,
complaints,
rejects, and
rendering
failures.

Amazon
CloudWatch or
Amazon Data
Firehose, or by
Amazon SNS
notification—
see Monitor
email sending
using event
publishing.

(Additional
charges apply,
see Price per
metric for
CloudWatch.)

Details on each
event

Fine-grained
(based on user-
definable email
characteristics)

Event publishin
g utilizing
custom domains
associated with
configuration
sets - more info

Open and click
tracking.

Amazon
CloudWatch or
Amazon Data
Firehose, or by
Amazon SNS
notification.

(Additional
charges apply,
see Price per
metric for
CloudWatch.)

Details on each
event.

Fine-grained
(based on user-
definable email
characteristics)

Note

The metrics measured by email sending events may not align perfectly with your sending
quotas. This discrepancy can be caused by email bounces and rejections, or by using the

536

Amazon Simple Email Service Developer Guide

Amazon SES inbox simulator. To find out how close you are to your sending quotas, see
Monitoring your sending quotas.

For information on how to use each monitoring method, see the following topics:

• Monitoring your sending statistics using the Amazon SES console

• Monitoring your usage statistics using the Amazon SES API

• Monitor email sending using Amazon SES event publishing

Monitoring your sending statistics using the Amazon SES
console

From the Amazon SES console's Account dashboard, Reputation metrics, and SMTP settings
pages, you can monitor all your email sending, usage, statistics, SMTP settings, overall account
health, and reputation metrics. The following sections describe the metrics and statistics provided
on each of these console pages.

It should be noted that while both the the section called “Account dashboard” and the section
called “Reputation metrics” console pages contain bounce and complaint metrics, there is a subtle
difference between these two sets of bounce and complaint rates as explained below:

• Account dashboard page – based on the date range selected, you can view what the bounce and
complaint rates were in the past showing the metric progression of change leading up to the
present time.

• Reputation metrics page – bounce and complaint rates based on the latest data point received
from calculating your overall historic average at a high level (this shouldn’t be confused with
your regular bounce/complaint rate, which corresponds to precise bounce/complaint events as
they occur in real-time as shown on the Account dashboard page).

As a simple example to compare either the bounce or complaint rates between the Reputation
metrics page and the Account dashboard page, let’s say the rate was 2% yesterday and is 1%
now, on the Reputation metrics page, you'll only see the current rate of 1%, but on the Account
dashboard page, the graphs will plot the charted progression showing a rate of 2% for yesterday
and 1% for today.

Monitoring using the console 537

Amazon Simple Email Service Developer Guide

Account dashboard

You can monitor the number of emails sent from your account, as well as the percentage of your
sending quota that's been used, directly from the SES console's Account dashboard page in the
Daily email usage pane. Delivery and rejection rates for your account can be monitored in the
Sending Statistics pane, as well as other key factors related to your email sending in the following
panes:

• Sending limits – contains the following quotas applicable to sending mail through SES:

• Daily sending quota - maximum number of emails that you can send in a 24-hour period.

• Maximum send rate - maximum number of emails that can be send from your account each
second.

• Account health – the status of your SES account:

• Healthy - there are no reputation-related issues that currently impact your account.

• Under review - potential issues have been identified with your SES account - your account is
under review while you work on correcting the issues.

• Paused - your account's ability to send email is currently paused because of an issue with
the email sent from your account. When the issue's been corrected, you can request that your
account's ability to send email is resumed.

• Daily email usage – to check your daily usage to ensure you aren’t approaching your sending
limits:

• Emails sent - total number of emails sent in a 24-hour period.

• Remaining sends - total number of remaining emails available to be sent in a 24-hour period.

• Sending quota used - percentage of your daily sending quota used.

• Sending statistics – comprised of graphs that show the progression of four essential metrics in
a time-ordered set of data points representing the values of a monitored event type producing
statistics for the selected date range using an aggregation period of 1 hour. You can select a data
range with start values from Last 1 day to Last 14 days to filter the charts below:

• Sends - sum of successful email send requests for the date range selected.

• Rejects - average rate of rejected send requests by SES based on Rejects/Sends * 100 for
the date range selected.

• Bounces - average rate derived from your overall historic sender reputation metrics showing
the progression for the date range selected.

Account dashboard 538

Amazon Simple Email Service Developer Guide

• Complaints - average rate derived from your overall historic sender reputation metrics showing
the progression for the date range selected.

Each of these charts contain a View in CloudWatch button that will open the respective metric
in the Amazon CloudWatch console allowing detailed data to be viewed, customized metric math
performed, and the creation of alarms in CloudWatch.

Reputation metrics

In addition to bounce and complaint rates, the Reputation metrics page also provides other high-
level visibility into key factors affecting your reputation consisting of the following panes:

• Summary – provides an overview of your reputation health.

• Status - overall reputation health based on historic bounce and complaint rates:

• Healthy - both metrics are within normal levels.

• Under review - one or both metrics have automatically caused your account to be placed
under review.

• At risk - one or both metrics have reached unhealthy levels and your account’s ability to
send email may be at risk.

• Emails sent (last 24 hours) — the total number of emails sent in the last 24-hour period.

• Remaining sends — total number of remaining emails available to be sent in a 24-hour period.

• Sending quota used — percentage of your daily sending quota used.

• Account-level tab contents:

• Bounce rate

• Status - indicates the health of your bounce rate using the same values as described for the
Summary pane.

• Historic bounce rate - percentage of emails from your account that resulted in a hard
bounce calculated from your overall historic average based on a representative volume that
represents your typical sending practices.

• Complaint rate

• Status - Indicates the health of your complaint rate using the same values as described for
the Summary pane.

Reputation metrics 539

Amazon Simple Email Service Developer Guide

• Historic bounce rate - percentage of emails sent from your account that resulted in
recipients reporting them as spam calculated from your overall historic average based on a
representative volume that represents your typical sending practices.

• Configuration set tab contents:

• Reputation by configuration set

• Configuration set - lets you type or select a configuration set that have reputation metrics
enabled so you can see summary, bounce, and complaint data based on the emails sent
using the selected configuration set. The resulting panes that appear after selecting a
configuration set are the same as described above for the Reputation metrics page except
they are based only on email sent with the selected configuration set as apposed to your
overall account-level sending metrics.

SMTP settings

This page lists the SMTP settings that are required for using the Amazon SES SMTP interface either
through the SES API or programmatically, and provides links for creating and managing your SMTP
credentials:

• SMTP settings – if you want to use an SMTP-enabled programming language, email server, or
application to connect to the Amazon SES SMTP interface, the following information is provided:

• SMTP endpoint

• STARTTLS Port

• Transport Layer Security (TLS)

• TLS Wrapper Port

• Authentication links provided for SMTP and IAM credential creation and management

Using the console to monitor send and reputation metrics

The following procedures will get you started in exploring your send and reputation metrics either
using the Account dashboard page for metrics based on recent history (up to 14 days), or use the
Reputation metrics page for metrics based on your overall history to the present time.

SMTP settings 540

Amazon Simple Email Service Developer Guide

To view emails sent and sending quota used

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane, choose Account dashboard. Your usage statistics are shown in the
Daily email usage section.

To view count of sends, rates of rejects, bounces, and complaints

1. In the navigation pane, choose Account dashboard.

2. In the Sending statistics section, use the Date range dropdown to select a start value for a
date range to filter the four charts directly below the Sending statistics section.

3. Based on the date range selected, you can view what the counts and rates were in the past
showing the metric progression of change leading up to the present time.

4. In any of the charts, choose the View in CloudWatch button to open the respective metric
in the Amazon CloudWatch console where you can view detailed data, perform customized
metric math, and create monitoring alarms in CloudWatch.

To view overall historic bounce and complaint rates

1. In the navigation pane, choose Reputation metrics.

2. In the Bounce rate pane you can view the percentage of emails sent from your account that
resulted in a hard bounce, and in the Complaint rate pane you can view the percentage of
emails sent from your account that resulted in recipients reporting them as spam; both metrics
calculated from a representative volume of email based on your typical sending practices.

3. In either of the panes, choose the View in CloudWatch button to open the respective metric
in the Amazon CloudWatch console where you can view detailed data, perform customized
metric math, and create monitoring alarms in CloudWatch.

To view reputation metrics by configuration sets

1. In the navigation pane, choose Reputation metrics.

2. On the Reputation metrics page, select the Configuration set tab.

3. In the Reputation by configuration set pane, click inside the Configuration set field and
either start typing for, or select, a configuration set that has reputation metrics enabled.

Using the console to monitor metrics 541

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

4. After selecting the configuration set, it will load the Summary, Bounce, and Complaint panes
showing metrics based only on email sent with the selected configuration set.

Monitoring your usage statistics using the Amazon SES API

The Amazon SES API provides the GetSendStatistics operation, which returns information
about your service usage. We recommend that you check your sending statistics regularly, so that
you can make adjustments if needed.

When you call the GetSendStatistics operation, you receive a list of data points representing
the last two weeks of your sending activity. Each data point in this list represents 15 minutes of
activity and contains the following information for that period:

• The number of hard bounces

• The number of complaints

• The number of delivery attempts (corresponds to the number of emails you have sent)

• The number of rejected send attempts

• A timestamp for the analysis period

For a complete description of the GetSendStatistics operation, see the Amazon Simple Email
Service API Reference.

In this section, you will find the following topics:

• the section called “Calling the GetSendStatistics API operation using the AWS CLI”

• the section called “Calling the GetSendStatistics operation programmatically”

Calling the GetSendStatistics API operation using the AWS CLI

The easiest way to call the GetSendStatistics API operation is to use the AWS Command Line
Interface (AWS CLI).

To call the GetSendStatistics API operation using the AWS CLI

1. If you have not already done so, install the AWS CLI. For more information, see "Installing the
AWS Command Line Interface" in the AWS Command Line Interface User Guide.

Monitor using the API 542

https://docs.aws.amazon.com/ses/latest/APIReference/GetSendStatistics.html
https://docs.aws.amazon.com/ses/latest/APIReference/GetSendStatistics.html
https://aws.amazon.com/cli
https://aws.amazon.com/cli
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon Simple Email Service Developer Guide

2. If you have not already done so, configure the AWS CLI to use your AWS credentials. For more
information, see "Configuring the AWS CLI" in the AWS Command Line Interface User Guide.

3. At the command line, run the following command:

aws ses get-send-statistics

If the AWS CLI is properly configured, you see a list of sending statistics in JSON format. Each
JSON object includes aggregated sending statistics for a 15-minute period.

Calling the GetSendStatistics operation programmatically

You can also call the GetSendStatistics operation using the AWS SDKs. This section includes
code examples for the AWS SDKs for Go, PHP, Python, and Ruby. Choose one of the following links
to view code examples for that language:

• Code example for the AWS SDK for Go

• Code example for the AWS SDK for PHP

• Code example for the AWS SDK for Python (Boto)

• Code example for the AWS SDK for Ruby

Note

These code examples assume that you have created an AWS shared credentials file that
contains your AWS access key ID, your AWS secret access key, and your preferred AWS
Region. For more information, see Shared credentials and config files.

Calling GetSendStatistics using the AWS SDK for Go

package main

import (
 "fmt"

 //go get github.com/aws/aws-sdk-go/...
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"

Calling the GetSendStatistics operation programmatically 543

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/credref/latest/refdocs/creds-config-files.html

Amazon Simple Email Service Developer Guide

 "github.com/aws/aws-sdk-go/service/ses"
 "github.com/aws/aws-sdk-go/aws/awserr"
)

const (
 // Replace us-west-2 with the AWS Region you're using for Amazon SES.
 AwsRegion = "us-west-2"
)

func main() {

 // Create a new session and specify an AWS Region.
 sess, err := session.NewSession(&aws.Config{
 Region:aws.String(AwsRegion)},
)

 // Create an SES client in the session.
 svc := ses.New(sess)
 input := &ses.GetSendStatisticsInput{}

 result, err := svc.GetSendStatistics(input)

 // Display error messages if they occur.
 if err != nil {
 if aerr, ok := err.(awserr.Error); ok {
 switch aerr.Code() {
 default:
 fmt.Println(aerr.Error())
 }
 } else {
 // Print the error, cast err to awserr.Error to get the Code and
 // Message from an error.
 fmt.Println(err.Error())
 }
 return
 }

 fmt.Println(result)
}

Calling GetSendStatistics using the AWS SDK for PHP

<?php

Calling the GetSendStatistics operation programmatically 544

Amazon Simple Email Service Developer Guide

// Replace path_to_sdk_inclusion with the path to the SDK as described in
// http://docs.aws.amazon.com/aws-sdk-php/v3/guide/getting-started/basic-usage.html
define('REQUIRED_FILE','path_to_sdk_inclusion');

// Replace us-west-2 with the AWS Region you're using for Amazon SES.
define('REGION','us-west-2');

require REQUIRED_FILE;

use Aws\Ses\SesClient;

$client = SesClient::factory(array(
 'version'=> 'latest',
 'region' => REGION
));

try {
 $result = $client->getSendStatistics([]);
 echo($result);
} catch (Exception $e) {
 echo($e->getMessage()."\n");
}

?>

Calling GetSendStatistics using the AWS SDK for Python (Boto)

import boto3 #pip install boto3
import json
from botocore.exceptions import ClientError

client = boto3.client('ses')

try:
 response = client.get_send_statistics(
)
except ClientError as e:
 print(e.response['Error']['Message'])
else:
 print(json.dumps(response, indent=4, sort_keys=True, default=str))

Calling the GetSendStatistics operation programmatically 545

Amazon Simple Email Service Developer Guide

Calling GetSendStatistics using the AWS SDK for Ruby

require 'aws-sdk' # gem install aws-sdk
require 'json'

Replace us-west-2 with the AWS Region you're using for Amazon SES.
awsregion = "us-west-2"

Create a new SES resource and specify a region
ses = Aws::SES::Client.new(region: awsregion)

begin

 resp = ses.get_send_statistics({
 })
 puts JSON.pretty_generate(resp.to_h)

If something goes wrong, display an error message.
rescue Aws::SES::Errors::ServiceError => error
 puts error

end

Monitor email sending using Amazon SES event publishing

To enable you to track your email sending at a granular level, you can set up Amazon SES to
publish email sending events to Amazon CloudWatch, Amazon Data Firehose, Amazon Pinpoint, or
Amazon Simple Notification Service based on characteristics that you define.

You can track several types of email sending events, including sends, deliveries, opens, clicks,
bounces, complaints, rejections, rendering failures, and delivery delays. This information can be
useful for operational and analytical purposes. For example, you can publish your email sending
data to CloudWatch and create dashboards that track the performance of your email campaigns, or
you can use Amazon SNS to send you notifications when certain events occur.

How event publishing works with configuration sets and message tags

To use event publishing, you first set up one or more configuration sets. A configuration set
specifies where to publish your events and which events to publish. Then, each time you send
an email, you provide the name of the configuration set and one or more message tags, in the

Monitor email sending using event publishing 546

Amazon Simple Email Service Developer Guide

form of name/value pairs, to categorize the email. For example, if you advertise books, you could
name a message tag genre, and assign a value of sci-fi or western, when you send an email for the
associated campaign.

Depending on which email sending interface you use, you either provide the message tag as a
parameter to the EmailTags field of the SendEmail API operation or add the message tag to the
SES-specific email header X-SES-MESSAGE-TAGS. For more information about configuration sets,
see Using configuration sets in Amazon SES.

In addition to the message tags that you specify, Amazon SES also adds auto-tags to the messages
you send. You do not need to perform any additional steps to use auto-tags.

The following table lists the auto-tags that are automatically applied to messages you send using
Amazon SES.

Amazon SES Auto-Tags

Auto-tag name Description

ses:caller-identity The IAM identity of the Amazon SES user who
sent the email.

ses:configuration-set The name of the Configuration Set associated
with the email.

ses:from-domain The domain of the "From" address.

ses:outgoing-ip The IP address that Amazon SES used to send
the email.

ses:source-ip The IP address that the caller used to send the
email.

ses:source-tls-version The TLS protocol version the caller used to
send the email.

Fine-grained feedback for email campaigns

The ses:feedback-id-<a or b> tag is an optional message tag that you can think of as a
hybrid or semi-automatic tag—while it's similar to the auto-tags discussed in the previous section,

Fine-grained feedback for email campaigns 547

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html#SES-SendEmail-request-EmailTags
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/dg/event-publishing-send-email.html#event-publishing-using-ses-headers

Amazon Simple Email Service Developer Guide

the difference is that you must manually add it and use the ses: prefix key. You can use up to two
of these tags defined as ses:feedback-id-a and ses:feedback-id-b.

When you specify these tags, SES automatically appends them to the standard Feedback-ID
header which is used in providing delivery statistics, such as complaint and spam rates, as part of a
feedback loop (FBL), see Feedback loops. The Feedback-ID header is comprised of the identifier,
SESInternalID, used by SES for collecting complaint information, and the static tag, AmazonSES,
identifying SES as the sending platform such as:

FeedBackId:feedback-id-a:feedback-id-b:((SESInternalID):(AmazonSES))

These optional feedback ID tags are offered as a way for you to generate fine-grained feedback,
such as for messages you send as part of an email campaign. You can use ses:feedback-id-
<a or b> by specifying it as a message tag in the EmailTags field of the SendEmail operation
request as shown in the following example:

{
 "FromEmailAddress": "noreply@example.com",
 "Destination": {
 "ToAddresses": [
 "customer@example.net"
]
 },
 "Content": {
 "Simple": {
 "Subject": {
 "Data": "Hello and welcome"
 },
 "Body": {
 "Text": {
 "Data": "Lorem ipsum dolor sit amet."
 },
 "Html": {
 "Data": "Lorem ipsum dolor sit amet."
 }
 }
 }
 },
 "EmailTags": [
 {
 "Name": "ses:feedback-id-a",
 "Value": "new-members-campaign"

Fine-grained feedback for email campaigns 548

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html#SES-SendEmail-request-EmailTags
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html

Amazon Simple Email Service Developer Guide

 },
 {
 "Name": "ses:feedback-id-b",
 "Value": "football-campaign"
 }
],
 "ConfigurationSetName": "football-club"
}

If sending in raw format, you would add ses:feedback-id-<a or b> as a message tag to the
SES-specific header X-SES-MESSAGE-TAGS.

The ses:feedback-id-<a or b> message tag can also be tracked in Amazon CloudWatch by
specifying it as a CloudWatch value source just like any other message tag, see the section called
“Adding CloudWatch Event Destination Details” (Additional charges apply, see Price per metric for
CloudWatch.)

How to use event publishing

The following sections contain the information you need to set up and use Amazon SES event
publishing.

• Setting up event publishing

• Working with event data

Event publishing terminology

The following list defines terms related to Amazon SES event publishing.

Email sending event

Information associated with the outcome of an email you submit to Amazon SES. Sending
events include the following:

• Send – The send request was successful and Amazon SES will attempt to deliver the message
to the recipient’s mail server. (If account-level or global suppression is being used, SES will
still count it as a send, but delivery is suppressed.)

• RenderingFailure – The email wasn't sent because of a template rendering issue. This
event type can occur when template data is missing, or when there is a mismatch between

How to use event publishing 549

Amazon Simple Email Service Developer Guide

template parameters and data. (This event type only occurs when you send email using the
SendTemplatedEmail or SendBulkTemplatedEmail API operations.)

• Reject – Amazon SES accepted the email, but determined that it contained a virus and didn’t
attempt to deliver it to the recipient’s mail server.

• Delivery – Amazon SES successfully delivered the email to the recipient's mail server.

• Bounce – A hard bounce that the recipient's mail server permanently rejected the email. (Soft
bounces are only included when Amazon SES fails to deliver the email after retrying for a
period of time.)

• Complaint – The email was successfully delivered to the recipient’s mail server, but the
recipient marked it as spam.

• DeliveryDelay – The email couldn't be delivered to the recipient’s mail server because a
temporary issue occurred. Delivery delays can occur, for example, when the recipient's inbox is
full, or when the receiving email server experiences a transient issue.

• Subscription – The email was successfully delivered, but the recipient updated the
subscription preferences by clicking List-Unsubscribe in the email header or the
Unsubscribe link in the footer.

• Open – The recipient received the message and opened it in their email client.

• Click – The recipient clicked one or more links in the email.

Configuration set

A set of rules that defines the destination that Amazon SES publishes email sending events to,
and the types of email sending events that you want to publish. When you send an email that
you want to use with event publishing, you specify the configuration set to associate with the
email.

Event destination

An AWS service that you publish Amazon SES email sending events to. Each event destination
that you set up belongs to one, and only one, configuration set.

Message tag

A name/value pair that you use to categorize an email for the purpose of event publishing.
Examples are campaign/book and campaign/clothing. When you send an email, you either
specify the message tag as a parameter to the API call or as an Amazon SES-specific email
header.

Event publishing terminology 550

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html

Amazon Simple Email Service Developer Guide

Auto-tag

Message tags that are automatically included in event publishing reports. There is an auto-
tag for the configuration set name, the domain of the "From" address, the caller's outgoing IP
address, the Amazon SES outgoing IP address, and the IAM identity of the caller.

Setting up Amazon SES event publishing

This section describes what you need to do to configure Amazon SES to publish your email sending
events to the following AWS services:

• Amazon CloudWatch

• Amazon Data Firehose

• Amazon Pinpoint

• Amazon Simple Notification Service (Amazon SNS)

The following steps required for setting up event publishing are covered in the topics below:

1. You must create a configuration set using the Amazon SES console or API.

2. Add one or more event destinations (CloudWatch, Firehose, Pinpoint, or SNS) to the
configuration set, and configure parameters unique to the event destination.

3. When you send an email, you specify which configuration set to use that contains your event
destination.

Topics in this section

• Step 1: Create a configuration set

• Step 2: Add an event destination

• Step 3: Specify your configuration set when you send email

Step 1: Create a configuration set

You must first have a configuration set to set up event publishing. If you do not yet have a
configuration set, or would like to create a new one, please see Creating configuration sets in SES

You can also create configuration sets using the CreateConfigurationSet operation in the Amazon
SES API V2 or the Amazon SES CLI v2, see Create a configuration set (AWS CLI).

Setting up event publishing 551

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateConfigurationSet.html

Amazon Simple Email Service Developer Guide

Step 2: Add an event destination

Event destinations are places that you publish Amazon SES events to. Each event destination that
you set up belongs to one, and only one, configuration set. When you set up an event destination
with Amazon SES, you choose the AWS service destination, and you specify parameters associated
with that destination.

When you set up an event destination, you can choose to send events to one of the following AWS
services:

• Amazon CloudWatch

• Amazon Data Firehose

• Amazon EventBridge

• Amazon Pinpoint

• Amazon Simple Notification Service (Amazon SNS)

The event destination that you choose depends on the level of detail you want about the events,
and the way you want to receive the event information. If you simply want a running total of each
type of event (for example, so that you can set an alarm when the total gets too high), you can use
CloudWatch.

If you want detailed event records that you can output to another service such as Amazon
OpenSearch Service or Amazon Redshift for analysis, you can use Firehose.

If you want to receive notifications when certain events occur, you can use Amazon SNS.

This section contains the following topics

• Set up a CloudWatch event destination for event publishing

• Set up a Data Firehose event destination for Amazon SES event publishing

• Set up an Amazon EventBridge destination for event publishing

• Set up an Amazon Pinpoint event destination for event publishing

• Set up an Amazon SNS event destination for event publishing

Set up a CloudWatch event destination for event publishing

With Amazon CloudWatch metrics, you can use event destinations to publish Amazon SES email
sending events to CloudWatch. Because a CloudWatch event destination can only be set up in a

Setting up event publishing 552

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon Simple Email Service Developer Guide

configuration set, you must first create a configuration set and then add the event destination to
the configuration set.

When you add a CloudWatch event destination to a configuration set, you must choose one or
more CloudWatch dimensions that correspond to the message tags you use when you send your
emails. Like message tags, a CloudWatch dimension is a name/value pair that helps you uniquely
identify a metric.

For example, you might have a message tag and a dimension called campaign that you use
to identify your email campaign. When you publish your email sending events to CloudWatch,
choosing your message tags and dimensions is important because these choices affect your
CloudWatch billing and determine how you can filter your email sending event data in CloudWatch.

This section provides information to help you choose your dimensions, and then shows how to add
a CloudWatch event destination to a configuration set.

Topics in this section

• Adding a CloudWatch Event Destination

• Choosing CloudWatch Dimensions

Adding a CloudWatch Event Destination

The procedure in this section shows how to add CloudWatch event destination details to a
configuration set and assumes you have completed steps 1 through 6 in Creating an event
destination.

You can also use the UpdateConfigurationSetEventDestination operation in the Amazon SES API
V2 to create and modify event destinations.

To add CloudWatch event destination details to a configuration set using the console

1. These are the detailed instructions for selecting CloudWatch as your event destination
type in Step 7 and assumes you have completed all the previous steps in Creating an event
destination. After selecting the CloudWatch Destination type, entering a destination Name,
and enabling Event publishing, the Amazon CloudWatch dimensions pane is displayed—its
fields are addressed in the following steps. (Additional charges apply, see Price per metric for
CloudWatch.)

2. For Value Source, specify how Amazon SES will obtain the data that it passes to CloudWatch.
The following value sources are available:

Setting up event publishing 553

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_UpdateConfigurationSetEventDestination.html

Amazon Simple Email Service Developer Guide

• Message Tag – Amazon SES retrieves the dimension name and value from a tag that you
specify by using the X-SES-MESSAGE-TAGS header or the EmailTags API parameter. For
more information about using message tags, see the section called “Step 3: Specify your
configuration set when sending”.

Note

Message tags can include the numbers 0–9, the letters A–Z (both uppercase and
lowercase), hyphens (-), and underscores (_).

You can also use the Message Tag value source to create dimensions based on Amazon SES
auto-tags. To use an auto-tag, type the complete name of the auto-tag as the Dimension
Name. For example, to create a dimension based on the configuration set auto-tag, use
ses:configuration-set for the Dimension Name, and the name of the configuration set
for the Default Value. For a complete list of auto-tags, see How event publishing works with
configuration sets and message tags.

• Email Header – Amazon SES retrieves the dimension name and value from a header in the
email.

Note

You can't use any of the following email headers as the Dimension Name:
Received, To, From, DKIM-Signature, CC, message-id, or Return-Path.

• Link Tag – Amazon SES retrieves the dimension name and value from a tag that you
specified in a link. For more information about adding tags to links, see Can I tag links with
unique identifiers?.

3. For Dimension Name, type the name of the dimension that you want to pass to CloudWatch.

Note

Dimension names can contain only ASCII letters (a-z, A-Z), numbers (0-9), underscores
(_), and dashes (-). Spaces, accented characters, non-Latin characters, and other special
characters are not allowed.

4. For Default Value, type the value of the dimension.

Setting up event publishing 554

Amazon Simple Email Service Developer Guide

Note

Dimension values can contain only ASCII letters (a-z, A-Z), numbers (0-9), underscores
(_), dashes (-), at signs (@), and periods (.). Spaces, accented characters, non-Latin
characters, and other special characters are not allowed.

5. If you want to add more dimensions, choose Add Dimension. Otherwise, choose Next.

6. On the review screen, if you're satisfied with how you defined your event destination, choose
Add destination.

Choosing CloudWatch Dimensions

When you choose names and values to use as CloudWatch dimensions, consider the following
factors:

• Price per metric – You can view basic Amazon SES metrics in CloudWatch for free. However,
when you collect metrics using event publishing, you incur CloudWatch Detailed Monitoring
costs. Each unique combination of event type, dimension name, and dimension value creates a
different metric in CloudWatch. When you use CloudWatch, Detailed Monitoring, you are charged
for each metric. For this reason, you might want to avoid choosing dimensions that can take
many different values. For example, unless you are very interested in tracking your email sending
events by "From" domain, you might not want to define a dimension for the Amazon SES auto-
tag ses:from-domain because it can take many different values. For more information, see
CloudWatch Pricing.

• Metric filtering – If a metric has multiple dimensions, you cannot access the metric in
CloudWatch based on each dimension separately. For that reason, think carefully before you add
more than one dimension to a single CloudWatch event destination. For example, if you want
metrics by campaign and by a combination of campaign and genre, you need to add two event
destinations: one with only campaign as a dimension, and one with both campaign and genre
as dimensions.

• Dimension value source – As an alternative to specifying your dimension values using Amazon
SES-specific headers or a parameter to the API, you can also choose for Amazon SES to take
the dimension values from your own MIME message headers. You might use this option if you
are already using custom headers and you do not want to change your emails or your calls to
the email sending API to collect metrics based on your header values. If you use your own MIME
message headers for Amazon SES event publishing, the header names and values that you

Setting up event publishing 555

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-metrics-basic-detailed.html
https://aws.amazon.com/cloudwatch/pricing

Amazon Simple Email Service Developer Guide

use for Amazon SES event publishing may only include the letters A through Z, the numbers
0 through 9, underscores (_), at signs (@), hyphens (-), and periods (.). If you specify a name
or value that contains other characters, the email sending call will still succeed, but the event
metrics will not be sent to Amazon CloudWatch.

For more information about CloudWatch concepts, see Amazon CloudWatch Concepts in the
Amazon CloudWatch User Guide.

Set up a Data Firehose event destination for Amazon SES event publishing

An Amazon Data Firehose event destination represents an entity that publishes specific Amazon
SES email sending events to Firehose. Because a Firehose event destination can only be set up in a
configuration set, you first have to create a configuration set. Next, you add the event destination
to the configuration set.

The procedure in this section shows how to add Firehose event destination details to a
configuration set and assumes you have completed steps 1 through 6 in Creating an event
destination.

You can also use the UpdateConfigurationSetEventDestination operation in the Amazon SES API
V2 destination to create and update event destinations.

To add Firehose event destination details to a configuration set using the console

1. These are the detailed instructions for selecting Firehose as your event destination type in Step
7 and assumes you have completed all the previous steps in Creating an event destination.
After selecting the Firehose Destination type, entering a destination Name, and enabling
Event publishing, the Amazon Data Firehose delivery stream pane is displayed—its fields are
addressed in the following steps.

2. For Delivery stream, choose an existing Firehose delivery stream, or choose Create new
stream to create a new one using the Firehose console.

For information about creating a stream using the Firehose console, see Creating an Amazon
Kinesis Firehose Delivery Stream in the Amazon Data Firehose Developer Guide.

3. For Identity and Access Management (IAM) Role, choose an IAM role for which Amazon SES
has permission to publish to Firehose on your behalf. You can choose an existing role, have
Amazon SES create a role for you, or create your own role.

Setting up event publishing 556

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_UpdateConfigurationSetEventDestination.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

Amazon Simple Email Service Developer Guide

If you choose an existing role or create your own role, you must manually modify the role's
policies to give the role permission to access the Firehose delivery stream, and to give Amazon
SES permission to assume the role. For example policies, see Giving Amazon SES Permission to
Publish to Your Firehose Delivery Stream.

4. Choose Next.

5. On the review screen, if you're satisfied with how you defined your event destination, choose
Add destination.

For information about how to use the UpdateConfigurationSetEventDestination API to
add a Firehose event destination, see the Amazon Simple Email Service API Reference.

Giving Amazon SES Permission to Publish to Your Firehose Delivery Stream

To enable Amazon SES to publish records to your Firehose delivery stream, you must use an AWS
Identity and Access Management (IAM) role and attach or modify the role's permissions policy and
trust policy. The permissions policy enables the role to publish records to your Firehose delivery
stream, and the trust policy enables Amazon SES to assume the role.

This section provides examples of both policies. For information about attaching policies to IAM
roles, see Modifying a Role in the IAM User Guide.

Permissions Policy

The following permissions policy enables the role to publish data records to your Firehose delivery
stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "firehose:PutRecordBatch"
],
 "Resource": [
 "arn:aws:firehose:delivery-region:111122223333:deliverystream/delivery-stream-
name"
]
 }

Setting up event publishing 557

https://docs.aws.amazon.com/ses/latest/APIReference/API_UpdateConfigurationSetEventDestination.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Simple Email Service Developer Guide

]
}

Make the following changes to the preceding policy example:

• Replace delivery-region with the AWS Region where you created the Firehose delivery
stream.

• Replace 111122223333 with your AWS account ID.

• Replace delivery-stream-name with the name of the Firehose delivery stream.

Trust Policy

The following trust policy enables Amazon SES to assume the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "111122223333",
 "AWS:SourceArn": "arn:aws:ses:delivery-region:111122223333:configuration-
set/configuration-set-name"
 }
 }
 }
]
}

Make the following changes to the preceding policy example:

• Replace delivery-region with the AWS Region where you created the Firehose delivery
stream.

• Replace 111122223333 with your AWS account ID.

Setting up event publishing 558

Amazon Simple Email Service Developer Guide

• Replace configuration-set-name with the name of your configuration set associated with
the Firehose delivery stream.

Set up an Amazon EventBridge destination for event publishing

An Amazon EventBridge event destination notifies you about the email sending events you
specify in a configuration set. SES generates and sends email sending events to the EventBridge
default event bus. An event bus is a router that receives events and can deliver them to multiple
destinations. You can learn more about integrating email sending events with Amazon EventBridge
in Monitoring using EventBridge. Because an EventBridge event destination can only be set up in a
configuration set, you have to create a configuration set before you add the event destination to
the configuration set.

The procedure in this section shows how to add EventBridge event destination details to a
configuration set and assumes you have completed steps 1 through 6 in Creating an event
destination.

You can also use the UpdateConfigurationSetEventDestination operation in the Amazon SES API
V2 to create and modify event destinations.

To add EventBridge event destination details to a configuration set using the console

1. These are the detailed instructions for selecting EventBridge as your event destination
type in Step 7 and assumes you have completed all the previous steps in Creating an event
destination. After selecting the Amazon EventBridge Destination type, entering a destination
Name, and enabling Event publishing, an Amazon EventBridge event bus informational pane
is displayed.

2. Choose Next.

3. On the review screen, if you're satisfied with how you defined your event destination, choose
Add destination. This will open the event destination's summary page where a success banner
will confirm if your event destination was created or modified successfully.

Set up an Amazon Pinpoint event destination for event publishing

An Amazon Pinpoint event destination notifies you about the email sending events you specify
in a configuration set. Because an Amazon Pinpoint event destination can only be set up in a
configuration set, you have to create a configuration set before you add the event destination to
the configuration set.

Setting up event publishing 559

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_UpdateConfigurationSetEventDestination.html

Amazon Simple Email Service Developer Guide

The procedure in this section shows how to add Amazon Pinpoint event destination details to
a configuration set and assumes you have completed steps 1 through 6 in Creating an event
destination.

You can also use the UpdateConfigurationSetEventDestination operation in the Amazon SES API
V2 to create and modify event destinations.

There are additional charges for the types of channels you have configured in your Amazon
Pinpoint projects. For more information, see Amazon Pinpoint Pricing.

To add Amazon Pinpoint event destination details to a configuration set using the console

1. These are the detailed instructions for selecting Amazon Pinpoint as your event destination
type in Step 7 and assumes you have completed all the previous steps in Creating an event
destination.

Note

Amazon Pinpoint does not support event types Delivery delays or Subscriptions.

After selecting the Amazon Pinpoint Destination type, entering a destination Name, and
enabling Event publishing, the Amazon Pinpoint project details pane is displayed—its fields
are addressed in the following steps.

2. For Project, choose an existing Amazon Pinpoint project, or choose Create a new project in
Amazon Pinpoint to create a new one.

For information about creating a project, see Create a project in the Amazon Pinpoint User
Guide.

3. Choose Next.

4. On the review screen, if you're satisfied with how you defined your event destination, choose
Add destination. This will open the event destination's summary page where a success banner
will confirm if your event destination was created or modified successfully.

Set up an Amazon SNS event destination for event publishing

An Amazon SNS event destination notifies you about the email sending events you specify
in a configuration set. Because an Amazon SNS event destination can only be set up in a

Setting up event publishing 560

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_UpdateConfigurationSetEventDestination.html
https://aws.amazon.com/pinpoint/pricing/
https://docs.aws.amazon.com/pinpoint/latest/userguide/gettingstarted-create-project.html

Amazon Simple Email Service Developer Guide

configuration set, you have to create a configuration set before you add the event destination to
the configuration set.

The procedure in this section shows how to add Amazon SNS event destination details to a
configuration set and assumes you have completed steps 1 through 6 in Creating an event
destination.

You can also use the UpdateConfigurationSetEventDestination operation in the Amazon SES API
V2 to create and modify event destinations.

Note

Feedback notifications for bounces, complaints, and deliveries can also be set up through
Amazon SNS for any of your verified sending identities. For more information, see. the
section called “Configuring Amazon SNS notifications”.

There are additional charges for sending messages to the endpoints that are subscribed to your
Amazon SNS topics. For more information, see Amazon SNS Pricing.

To add Amazon SNS event destination details to a configuration set using the console

1. These are the detailed instructions for selecting Amazon SNS as your event destination
type in Step 7 and assumes you have completed all the previous steps in Creating an event
destination. After selecting the Amazon SNS Destination type, entering a destination Name,
and enabling Event publishing, the Amazon Simple Notification Service (SNS) topic pane is
displayed—its fields are addressed in the following steps.

2. For SNS topic, choose an existing Amazon SNS topic, or choose Create SNS topic to create a
new one.

For information about creating a topic, see Create a Topic in the Amazon Simple Notification
Service Developer Guide.

Important

When you create your topic using Amazon SNS, for Type, only choose Standard. (SES
does not support FIFO type topics.)

3. Choose Next.

Setting up event publishing 561

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_UpdateConfigurationSetEventDestination.html
https://aws.amazon.com/sns/pricing/
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

Amazon Simple Email Service Developer Guide

4. On the review screen, if you're satisfied with how you defined your event destination, choose
Add destination. This will open the event destination's summary page where a success banner
will confirm if your event destination was created or modified successfully.

5. Whether you created a new SNS topic or selected an existing one, you will now need to give
access to SES to publish notifications to the topic. On the event destination's summary page
from the previous step, choose Amazon SNS from the Destination type column - this will
take you to the Topics list in the Amazon Simple Notification Service console - perform the
following steps from the Amazon SNS console:

a. Select the name of the SNS topic you created or modified in the previous step.

b. On the topic's detail screen, choose Edit.

c. To give SES permission to publish notifications to the topic, on the Edit topic screen in the
SNS console, expand Access policy and in the JSON editor, add the following permission
policy:

{
 "Version": "2012-10-17",
 "Id": "notification-policy",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:topic_region:111122223333:topic_name",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "111122223333",
 "AWS:SourceArn":
 "arn:aws:ses:topic_region:111122223333:configuration-set/configuration-set-
name"
 }
 }
 }
]
}

Make the following changes to the preceding policy example:

Setting up event publishing 562

Amazon Simple Email Service Developer Guide

• Replace topic_region with the AWS Region where you created the SNS topic.

• Replace 111122223333 with your AWS account ID.

• Replace topic_name with the name of your SNS topic.

• Replace configuration-set-name with the name of your configuration set
associated with the SNS event destination.

d. Choose Save changes.

Step 3: Specify your configuration set when you send email

After you create a configuration set and add an event destination, the last step to event publishing
is to send your emails.

To publish events associated with an email, you must provide the name of the configuration set to
associate with the email. Optionally, you can provide message tags to categorize the email.

You provide this information to Amazon SES as either parameters to the email sending API,
Amazon SES-specific email headers, or custom headers in your MIME message. The method you
choose depends on which email sending interface you use, as shown in the following table.

Email Sending Interface Ways to Publish Events

SendEmail API parameters

SendTemplatedEmail API parameters

SendBulkTemplatedEmail API parameters

SendCustomVerificationEmail API parameters

SendRawEmail API parameters, Amazon SES-specific email
headers, or custom MIME headers

Important

If you specify message tags using
both headers and API parameters,
Amazon SES uses only the message

Setting up event publishing 563

Amazon Simple Email Service Developer Guide

Email Sending Interface Ways to Publish Events

tags provided by the API parameter
s. Amazon SES does not join message
tags specified by API parameters and
headers.

SMTP interface Amazon SES-specific email headers

The following sections describe how to specify the configuration set and message tags using
headers and using API parameters.

• Using Amazon SES API Parameters

• Using Amazon SES-Specific Email Headers

• Using Custom Email Headers

Note

You can optionally include message tags in the headers of your emails. Message tags can
include the numbers 0–9, the letters A–Z (both uppercase and lowercase), hyphens (-), and
underscores (_).

Using Amazon SES API Parameters

To use SendEmail, SendTemplatedEmail, SendBulkTemplatedEmail, SendCustomVerificationEmail,
or SendRawEmail with event publishing, you specify the configuration set and the message tags by
passing data structures called ConfigurationSet and MessageTag to the API call.

For more information about using the Amazon SES API, see the Amazon Simple Email Service API
Reference.

Using Amazon SES-Specific Email Headers

When you use SendRawEmail or the SMTP interface, you can specify the configuration set and
the message tags by adding Amazon SES-specific headers to the email. Amazon SES removes the
headers before sending the email. The following table shows the names of the headers to use.

Setting up event publishing 564

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendCustomVerificationEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendRawEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_ConfigurationSet.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_MessageTag.html
https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/ses/latest/APIReference/

Amazon Simple Email Service Developer Guide

Event Publishing Information Header

Configuration set X-SES-CONFIGURATION-SET

Message tags X-SES-MESSAGE-TAGS

The following example shows how the headers might look in a raw email that you submit to
Amazon SES.

X-SES-MESSAGE-TAGS: tagName1=tagValue1, tagName2=tagValue2
X-SES-CONFIGURATION-SET: myConfigurationSet
From: sender@example.com
To: recipient@example.com
Subject: Subject
Content-Type: multipart/alternative;
 boundary="----=_boundary"

------=_boundary
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

body
------=_boundary
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: 7bit

body
------=_boundary--

Using Custom Email Headers

Although you must specify the configuration set name using the Amazon SES-specific header X-
SES-CONFIGURATION-SET, you can specify the message tags by using your own MIME headers.

Note

Header names and values that you use for Amazon SES event publishing must be in ASCII.
If you specify a non-ASCII header name or value for Amazon SES event publishing, the

Setting up event publishing 565

Amazon Simple Email Service Developer Guide

email sending call will still succeed, but the event metrics will not be emitted to Amazon
CloudWatch.

Working with Amazon SES event data

After you set up event publishing and specify a configuration set for sending emails, you can
retrieve your email sending events from the event destination that you specified when you set up
the configuration set associated with the email.

This section describes how to retrieve your email sending events from Amazon CloudWatch and
Amazon Data Firehose, and how to interpret event data provided by Amazon SNS.

• Retrieving Amazon SES event data from CloudWatch

• Retrieving Amazon SES event data from Firehose

• Interpreting Amazon SES event data from Amazon SNS

Retrieving Amazon SES event data from CloudWatch

Amazon SES can publish metrics for your email sending events to Amazon CloudWatch. When you
publish event data to CloudWatch, it provides these metrics as an ordered set of time-series data.
You can use these metrics to monitor the performance of your email sending. For example, you can
monitor the complaint metric and set a CloudWatch alarm to trigger when the metric exceeds a
certain value.

There are two levels of granularity at which Amazon SES can publish these events to CloudWatch:

• Across your AWS account – These coarse metrics, which correspond to the metrics you monitor
using the Amazon SES console and the GetSendStatistics API, are totals across your entire
AWS account. Amazon SES publishes these metrics to CloudWatch automatically.

• Fine-grained – These metrics are categorized by email characteristics that you define using
message tags. To publish these metrics to CloudWatch, you have to set up event publishing with
a CloudWatch event destination and specify a configuration set when you send an email. You can
also specify message tags or use auto-tags that Amazon SES automatically provides.

This section describes the available metrics and how to view the metrics in CloudWatch.

Working with event data 566

Amazon Simple Email Service Developer Guide

Available Metrics

You can publish following Amazon SES email sending metrics to CloudWatch:

• Send – The send request was successful and Amazon SES will attempt to deliver the message
to the recipient’s mail server. (If account-level or global suppression is being used, SES will still
count it as a send, but delivery is suppressed.)

• RenderingFailure – The email wasn't sent because of a template rendering issue. This
event type can occur when template data is missing, or when there is a mismatch between
template parameters and data. (This event type only occurs when you send email using the
SendTemplatedEmail or SendBulkTemplatedEmail API operations.)

• Reject – Amazon SES accepted the email, but determined that it contained a virus and didn’t
attempt to deliver it to the recipient’s mail server.

• Delivery – Amazon SES successfully delivered the email to the recipient's mail server.

• Bounce – A hard bounce that the recipient's mail server permanently rejected the email. (Soft
bounces are only included when Amazon SES fails to deliver the email after retrying for a period
of time.)

• Complaint – The email was successfully delivered to the recipient’s mail server, but the recipient
marked it as spam.

• DeliveryDelay – The email couldn't be delivered to the recipient’s mail server because a
temporary issue occurred. Delivery delays can occur, for example, when the recipient's inbox is
full, or when the receiving email server experiences a transient issue.

• Subscription – The email was successfully delivered, but the recipient updated the subscription
preferences by clicking List-Unsubscribe in the email header or the Unsubscribe link in the
footer.

• Open – The recipient received the message and opened it in their email client.

• Click – The recipient clicked one or more links in the email.

Available Dimensions

CloudWatch uses the dimension names that you specify when you add a CloudWatch event
destination to a configuration set in Amazon SES. For more information, see Set up a CloudWatch
event destination for event publishing.

Working with event data 567

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html

Amazon Simple Email Service Developer Guide

Viewing Amazon SES Metrics in the CloudWatch Console

The following procedure describes how to view your Amazon SES event publishing metrics using
the CloudWatch console.

To view metrics using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, select the region where your AWS
resources reside. For more information, see Regions and Endpoints.

3. In the navigation pane, choose All Metrics.

4. In the Metrics pane, select SES.

5. Select the metric you want to view. To view fine-grained event publishing metrics, choose
the combination of dimensions that you specified when you set up your CloudWatch
event destination. To learn more about viewing metrics with CloudWatch, see Use Amazon
CloudWatch metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/SES"

Retrieving Amazon SES event data from Firehose

Amazon SES publishes email sending events to Firehose as JSON records. Firehose then publishes
the records to the AWS service destination that you chose when you set up the delivery stream
in Firehose. For information about setting up Firehose delivery streams, see Creating an Firehose
Delivery Stream in the Amazon Data Firehose Developer Guide.

Topics in this section:

• Contents of event data that Amazon SES publishes to Firehose

• Examples of event data that Amazon SES publishes to Firehose

Working with event data 568

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

Amazon Simple Email Service Developer Guide

Contents of event data that Amazon SES publishes to Firehose

Amazon SES publishes email sending event records to Amazon Data Firehose in JSON format.
When publishing events to Firehose, Amazon SES follows each JSON record with a newline
character.

You can find example records for all of these notification types in Examples of event data that
Amazon SES publishes to Firehose.

Topics in this section

• Top-level JSON object

• Mail object

• Bounce object

• Complaint object

• Delivery object

• Send object

• Reject object

• Open object

• Click object

• Rendering Failure object

• DeliveryDelay object

• Subscription object

Top-level JSON object

The top-level JSON object in an email sending event record contains the following fields.

Field Name Description

eventType A string that describes the type of event.
Possible values: Bounce, Complaint ,
Delivery, Send, Reject, Open, Click,
Rendering Failure, DeliveryDelay , or
Subscription .

Working with event data 569

Amazon Simple Email Service Developer Guide

Field Name Description

If you did not set up event publishing this field
is named notificationType .

mail A JSON object that contains information
about the email that produced the event.

bounce This field is only present if eventType is
Bounce. It contains information about the
bounce.

complaint This field is only present if eventType is
Complaint . It contains information about
the complaint.

delivery This field is only present if eventType is
Delivery. It contains information about the
delivery.

send This field is only present if eventType is
Send.

reject This field is only present if eventType is
Reject. It contains information about the
rejection.

open This field is only present if eventType is
Open. It contains information about the open
event.

click This field is only present if eventType is
Click. It contains information about the click
event.

failure This field is only present if eventType is
Rendering Failure . It contains informati
on about the rendering failure event.

Working with event data 570

Amazon Simple Email Service Developer Guide

Field Name Description

deliveryDelay This field is only present if eventType is
DeliveryDelay . It contains information
about the delayed delivery of an email.

subscription This field is only present if eventType is
Subscription . It contains information
about the subscription preferences.

Mail object

Each email sending event record contains information about the original email in the mail object.
The JSON object that contains information about a mail object has the following fields.

Field Name Description

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the message was
sent.

messageId A unique ID that Amazon SES assigned to the
message. Amazon SES returned this value to
you when you sent the message.

Note

This message ID was assigned by
Amazon SES. You can find the
message ID of the original email in the
headers and commonHeaders fields
of the mail object.

source The email address that the message was sent
from (the envelope MAIL FROM address).

Working with event data 571

Amazon Simple Email Service Developer Guide

Field Name Description

sourceArn The Amazon Resource Name (ARN) of the
identity that was used to send the email.
In the case of sending authorization, the
sourceArn is the ARN of the identity that
the identity owner authorized the delegate
sender to use to send the email. For more
information about sending authorization, see
Email authentication methods.

sendingAccountId The AWS account ID of the account that was
used to send the email. In the case of sending
authorization, the sendingAccountId is
the delegate sender's account ID.

destination A list of email addresses that were recipients
of the original mail.

headersTruncated A string that specifies whether the headers
are truncated in the notification, which occurs
if the headers are larger than 10 KB. Possible
values are true and false.

headers A list of the email's original headers. Each
header in the list has a name field and a value
field.

Note

Any message ID within the headers
field is from the original message
that you passed to Amazon SES.
The message ID that Amazon SES
subsequently assigned to the message
is in the messageId field of the
mail object.

Working with event data 572

Amazon Simple Email Service Developer Guide

Field Name Description

commonHeaders A mapping of the email's original, commonly
used headers.

Note

Any message ID within the commonHea
ders field is the message ID that
Amazon SES subsequently assigned to
the message in the messageId field
of the mail object.

tags A list of tags associated with the email.

Bounce object

The JSON object that contains information about a Bounce event will always have the following
fields.

Field Name Description

bounceType The type of bounce, as determined by Amazon
SES.

bounceSubType The subtype of the bounce, as determined by
Amazon SES.

bouncedRecipients A list that contains information about the
recipients of the original mail that bounced.

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the ISP sent the
bounce notification.

feedbackId A unique ID for the bounce.

Working with event data 573

Amazon Simple Email Service Developer Guide

Field Name Description

reportingMTA The value of the Reporting-MTA field from
the DSN. This is the value of the Message
Transfer Authority (MTA) that attempted
to perform the delivery, relay, or gateway
operation described in the DSN.

Note

This field only appears if a delivery
status notification (DSN) was attached
to the bounce.

Bounced recipients

A bounce event may pertain to a single recipient or to multiple recipients. The
bouncedRecipients field holds a list of objects—one object per recipient to whom the bounce
event pertains—and will always contain the following field.

Field Name Description

emailAddress The email address of the recipient. If a DSN is
available, this is the value of the Final-Rec
ipient field from the DSN.

Optionally, if a DSN is attached to the bounce, the following fields may also be present.

Field Name Description

action The value of the Action field from the DSN.
This indicates the action performed by the
reporting MTA as a result of its attempt to
deliver the message to this recipient.

Working with event data 574

Amazon Simple Email Service Developer Guide

Field Name Description

status The value of the Status field from the DSN.
This is the per-recipient transport-independ
ent status code that indicates the delivery
status of the message.

diagnosticCode The status code issued by the reporting MTA.
This is the value of the Diagnostic-Code
field from the DSN. This field may be absent
in the DSN (and therefore also absent in the
JSON).

Bounce types

Each bounce event will be of one of the types shown in the following table.

The event publishing system only publishes hard bounces and soft bounces that will no longer
be retried by Amazon SES. When you receive bounces marked Permanent, you should remove
the corresponding email addresses from your mailing list; you will not be able to send to them in
the future. Transient bounces are sent to you when a message has soft bounced several times,
and Amazon SES has stopped trying to re-deliver it. You may be able to successfully resend to an
address that initially resulted in a Transient bounce in the future.

bounceType bounceSubType Description

Undetermi
ned

Undetermined Amazon SES was unable to determine a
specific bounce reason.

Permanent General Amazon SES received a general hard bounce.
If you receive this type of bounce, you should
remove the recipient's email address from your
mailing list.

Permanent NoEmail Amazon SES received a permanent hard
bounce because the target email address does
not exist. If you receive this type of bounce,

Working with event data 575

Amazon Simple Email Service Developer Guide

bounceType bounceSubType Description

you should remove the recipient's email
address from your mailing list.

Permanent Suppressed Amazon SES has suppressed sending to this
address because it has a recent history of
bouncing as an invalid address. To override the
global suppression list, see Using the Amazon
SES account-level suppression list.

Permanent OnAccountSuppressi
onList

Amazon SES has suppressed sending to this
address because it is on the account-level
suppression list. This does not count toward
your bounce rate metric.

Transient General Amazon SES received a general bounce.
You may be able to successfully send to this
recipient in the future.

Transient MailboxFull Amazon SES received a mailbox full bounce.
You may be able to successfully send to this
recipient in the future.

Transient MessageTooLarge Amazon SES received a message too large
bounce. You may be able to successfully send
to this recipient if you reduce the size of the
message.

Transient ContentRejected Amazon SES received a content rejected
bounce. You may be able to successfully send
to this recipient if you change the content of
the message.

Transient AttachmentRejected Amazon SES received an attachment rejected
bounce. You may be able to successfully send
to this recipient if you remove or change the
attachment.

Working with event data 576

Amazon Simple Email Service Developer Guide

Complaint object

The JSON object that contains information about a Complaint event has the following fields.

Field Name Description

complainedRecipients A list that contains information about
recipients that may have submitted the
complaint.

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the ISP sent the
complaint notification.

feedbackId A unique ID for the complaint.

complaintSubType The subtype of the complaint, as determined
by Amazon SES.

Further, if a feedback report is attached to the complaint, the following fields may be present.

Field Name Description

userAgent The value of the User-Agent field from
the feedback report. This indicates the name
and version of the system that generated the
report.

complaintFeedbackType The value of the Feedback-Type field from
the feedback report received from the ISP. This
contains the type of feedback.

arrivalDate The value of the Arrival-Date or
Received-Date field from the feedback
report in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ). This field may be absent in
the report (and therefore also absent in the
JSON).

Working with event data 577

Amazon Simple Email Service Developer Guide

Complained recipients

The complainedRecipients field contains a list of recipients that may have submitted the
complaint.

Important

Since most ISPs redact the email address of the recipient who submitted the complaint
from their complaint notification, this list contains information about recipients who might
have sent the complaint, based on the recipients of the original message and the ISP from
which we received the complaint. Amazon SES performs a lookup against the original
message to determine this recipient list.

JSON objects in this list contain the following field.

Field Name Description

emailAddress The email address of the recipient.

Complaint types

You may see the following complaint types in the complaintFeedbackType field as assigned by
the reporting ISP, according to the Internet Assigned Numbers Authority website:

Field Name Description

abuse Indicates unsolicited email or some other kind
of email abuse.

auth-failure Email authentication failure report.

fraud Indicates some kind of fraud or phishing
activity.

not-spam Indicates that the entity providing the report
does not consider the message to be spam.

Working with event data 578

https://www.iana.org/assignments/marf-parameters/marf-parameters.xml#marf-parameters-2

Amazon Simple Email Service Developer Guide

Field Name Description

This may be used to correct a message that
was incorrectly tagged or categorized as spam.

other Indicates any other feedback that does not fit
into other registered types.

virus Reports that a virus is found in the originating
message.

Delivery object

The JSON object that contains information about a Delivery event will always have the following
fields.

Field Name Description

timestamp The date and time when Amazon SES
delivered the email to the recipient's mail
server, in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ).

processingTimeMillis The time in milliseconds between when
Amazon SES accepted the request from the
sender to when Amazon SES passed the
message to the recipient's mail server.

recipients A list of intended recipients that the delivery
event applies to.

smtpResponse The SMTP response message of the remote
ISP that accepted the email from Amazon SES.
This message will vary by email, by receiving
mail server, and by receiving ISP.

reportingMTA The host name of the Amazon SES mail server
that sent the mail.

Working with event data 579

Amazon Simple Email Service Developer Guide

Send object

The JSON object that contains information about a send event is always empty.

Reject object

The JSON object that contains information about a Reject event will always have the following
fields.

Field Name Description

reason The reason the email was rejected. The only
possible value is Bad content, which means
that Amazon SES detected that the email
contained a virus. When a message is rejected,
Amazon SES stops processing it, and doesn't
attempt to deliver it to the recipient's mail
server.

Open object

The JSON object that contains information about a Open event will always contain the following
fields.

Field Name Description

ipAddress The recipient's IP address.

timestamp The date and time when the open event
occurred in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ).

userAgent The user agent of the device or email client
that the recipient used to open the email.

Working with event data 580

Amazon Simple Email Service Developer Guide

Click object

The JSON object that contains information about a Click event will always contain the following
fields.

Field Name Description

ipAddress The recipient's IP address.

timestamp The date and time when the click event
occurred in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ).

userAgent The user agent of the client that the recipient
used to click a link in the email.

link The URL of the link that the recipient clicked.

linkTags A list of tags that were added to the link using
the ses:tags attribute. For more information
about adding tags to links in your emails, see
Q5. Can I tag links with unique identifiers? in
the Amazon SES email sending metrics FAQs.

Rendering Failure object

The JSON object that contains information about a Rendering Failure event has the following
fields.

Field Name Description

templateName The name of the template used to send the
email.

errorMessage A message that provides more information
about the rendering failure.

Working with event data 581

Amazon Simple Email Service Developer Guide

DeliveryDelay object

The JSON object that contains information about a DeliveryDelay event has the following
fields.

Field Name Description

delayType The type of delay. Possible values are:

• InternalFailure – An internal Amazon SES
issue caused the message to be delayed.

• General – A generic failure occurred during
the SMTP conversation.

• MailboxFull – The recipient's mailbox is
full and is unable to receive additional
messages.

• SpamDetected – The recipient's mail server
has detected a large amount of unsolicited
email from your account.

• RecipientServerError – A temporary issue
with the recipient's email server is preventin
g the delivery of the message.

• IPFailure – The IP address that's sending the
message is being blocked or throttled by the
recipient's email provider.

• TransientCommunicationFailure – There
was a temporary communication failure
during the SMTP conversation with the
recipient's email provider.

• BYOIPHostNameLookupUnavailable –
Amazon SES was unable to look up the DNS
hostname for your IP addresses. This type of
delay only occurs when you use Bring Your
Own IP.

• Undetermined – Amazon SES wasn't able to
determine the reason for the delivery delay.

Working with event data 582

Amazon Simple Email Service Developer Guide

Field Name Description

• SendingDeferral – Amazon SES has deemed
it appropriate to internally defer the
message.

delayedRecipients An object that contains information about the
recipient of the email.

expirationTime The date and time when Amazon SES will stop
trying to deliver the message. This value is
shown in ISO 8601 format.

reportingMTA The IP address of the Message Transfer Agent
(MTA) that reported the delay.

timestamp The date and time when the delay occurred,
shown in ISO 8601 format.

Delayed recipients

The delayedRecipients object contains the following values.

Field Name Description

emailAddress The email address that resulted in the delivery
of the message being delayed.

status The SMTP status code associated with the
delivery delay.

diagnosticCode The diagnostic code provided by the receiving
Message Transfer Agent (MTA).

Subscription object

The JSON object that contains information about a Subscription event has the following fields.

Working with event data 583

Amazon Simple Email Service Developer Guide

Field Name Description

contactList The name of the list the contact is on.

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the ISP sent the
subscription notification.

source The email address that the message was sent
from (the envelope MAIL FROM address).

newTopicPreferences A JSON data-structure (map) which specifies
the subscription status of all the topics in
the contact list indicating the status after a
change (contact subscribed or unsubscribed).

oldTopicPreferences A JSON data-structure (map) which specifies
the subscription status of all the topics in the
contact list indicating the status before the
change (contact subscribed or unsubscribed).

New/old topic preferences

The newTopicPreferences and oldTopicPreferences objects contain the following values.

Field Name Description

unsubscribeAll Specifies if the contact unsubscribed from all
the topics in the contact list.

topicSubscriptionStatus Specifies the topic in the topicName field
and maps the subscription status (OptIn or
OptOut) in the subscriptionStatus
field.

topicDefaultSubscriptionStatus Specifies the topic in the topicName field
and maps the subscription status (OptIn or

Working with event data 584

Amazon Simple Email Service Developer Guide

Field Name Description

OptOut) in the subscriptionStatus
field.

Examples of event data that Amazon SES publishes to Firehose

This section provides examples of the types of email sending event record that Amazon SES
publishes to Firehose.

Topics in this section:

• Bounce record

• Complaint record

• Delivery record

• Send record

• Reject record

• Open record

• Click record

• Rendering Failure record

• DeliveryDelay record

• Subscription record

Note

In the following examples where a tag field is utilized, it is using event publishing through
a configuration set for which SES supports the publishing of tags for all event types. If
using feedback notifications directly on the identity, SES does not publish tags. Read about
adding tags when creating a configuration set or modifying a configuration set.

Bounce record

The following is an example of a Bounce event record that Amazon SES publishes to Firehose.

{
 "eventType":"Bounce",

Working with event data 585

Amazon Simple Email Service Developer Guide

 "bounce":{
 "bounceType":"Permanent",
 "bounceSubType":"General",
 "bouncedRecipients":[
 {
 "emailAddress":"recipient@example.com",
 "action":"failed",
 "status":"5.1.1",
 "diagnosticCode":"smtp; 550 5.1.1 user unknown"
 }
],
 "timestamp":"2017-08-05T00:41:02.669Z",
 "feedbackId":"01000157c44f053b-61b59c11-9236-11e6-8f96-7be8aexample-000000",
 "reportingMTA":"dsn; mta.example.com"
 },
 "mail":{
 "timestamp":"2017-08-05T00:40:02.012Z",
 "source":"Sender Name <sender@example.com>",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"Sender Name <sender@example.com>"
 },
 {
 "name":"To",
 "value":"recipient@example.com"
 },
 {
 "name":"Subject",
 "value":"Message sent from Amazon SES"
 },
 {
 "name":"MIME-Version",
 "value":"1.0"
 },
 {
 "name":"Content-Type",

Working with event data 586

Amazon Simple Email Service Developer Guide

 "value":"multipart/alternative; boundary=\"----
=_Part_7307378_1629847660.1516840721503\""
 }
],
 "commonHeaders":{
 "from":[
 "Sender Name <sender@example.com>"
],
 "to":[
 "recipient@example.com"
],
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject":"Message sent from Amazon SES"
 },
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
],
 "ses:source-ip":[
 "192.0.2.0"
],
 "ses:from-domain":[
 "example.com"
],
 "ses:caller-identity":[
 "ses_user"
]
 }
 }
}

Complaint record

The following is an example of a Complaint event record that Amazon SES publishes to Firehose.

{
 "eventType":"Complaint",
 "complaint": {
 "complainedRecipients":[
 {
 "emailAddress":"recipient@example.com"
 }
],
 "timestamp":"2017-08-05T00:41:02.669Z",

Working with event data 587

Amazon Simple Email Service Developer Guide

 "feedbackId":"01000157c44f053b-61b59c11-9236-11e6-8f96-7be8aexample-000000",
 "userAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/60.0.3112.90 Safari/537.36",
 "complaintFeedbackType":"abuse",
 "arrivalDate":"2017-08-05T00:41:02.669Z"
 },
 "mail":{
 "timestamp":"2017-08-05T00:40:01.123Z",
 "source":"Sender Name <sender@example.com>",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"Sender Name <sender@example.com>"
 },
 {
 "name":"To",
 "value":"recipient@example.com"
 },
 {
 "name":"Subject",
 "value":"Message sent from Amazon SES"
 },
 {
 "name":"MIME-Version","value":"1.0"
 },
 {
 "name":"Content-Type",
 "value":"multipart/alternative; boundary=\"----
=_Part_7298998_679725522.1516840859643\""
 }
],
 "commonHeaders":{
 "from":[
 "Sender Name <sender@example.com>"
],
 "to":[
 "recipient@example.com"

Working with event data 588

Amazon Simple Email Service Developer Guide

],
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject":"Message sent from Amazon SES"
 },
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
],
 "ses:source-ip":[
 "192.0.2.0"
],
 "ses:from-domain":[
 "example.com"
],
 "ses:caller-identity":[
 "ses_user"
]
 }
 }
}

Delivery record

The following is an example of a Delivery event record that Amazon SES publishes to Firehose.

{
 "eventType": "Delivery",
 "mail": {
 "timestamp": "2016-10-19T23:20:52.240Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": [
 "recipient@example.com"
],
 "headersTruncated": false,
 "headers": [
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",

Working with event data 589

Amazon Simple Email Service Developer Guide

 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "text/html; charset=UTF-8"
 },
 {
 "name": "Content-Transfer-Encoding",
 "value": "7bit"
 }
],
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "to": [
 "recipient@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:source-ip": [
 "192.0.2.0"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:caller-identity": [
 "ses_user"
],
 "ses:outgoing-ip": [
 "192.0.2.0"

Working with event data 590

Amazon Simple Email Service Developer Guide

],
 "myCustomTag1": [
 "myCustomTagValue1"
],
 "myCustomTag2": [
 "myCustomTagValue2"
]
 }
 },
 "delivery": {
 "timestamp": "2016-10-19T23:21:04.133Z",
 "processingTimeMillis": 11893,
 "recipients": [
 "recipient@example.com"
],
 "smtpResponse": "250 2.6.0 Message received",
 "reportingMTA": "mta.example.com"
 }
}

Send record

The following is an example of a Send event record that Amazon SES publishes to Firehose.

{
 "eventType": "Send",
 "mail": {
 "timestamp": "2016-10-14T05:02:16.645Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": [
 "recipient@example.com"
],
 "headersTruncated": false,
 "headers": [
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"

Working with event data 591

Amazon Simple Email Service Developer Guide

 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/mixed; boundary=\"----=_Part_0_716996660.1476421336341\""
 },
 {
 "name": "X-SES-MESSAGE-TAGS",
 "value": "myCustomTag1=myCustomTagValue1, myCustomTag2=myCustomTagValue2"
 }
],
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "to": [
 "recipient@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:source-ip": [
 "192.0.2.0"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:caller-identity": [
 "ses_user"
],
 "myCustomTag1": [
 "myCustomTagValue1"
],

Working with event data 592

Amazon Simple Email Service Developer Guide

 "myCustomTag2": [
 "myCustomTagValue2"
]
 }
 },
 "send": {}
}

Reject record

The following is an example of a Reject event record that Amazon SES publishes to Firehose.

{
 "eventType": "Reject",
 "mail": {
 "timestamp": "2016-10-14T17:38:15.211Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": [
 "sender@example.com"
],
 "headersTruncated": false,
 "headers": [
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/mixed; boundary=\"qMm9M+Fa2AknHoGS\""

Working with event data 593

Amazon Simple Email Service Developer Guide

 },
 {
 "name": "X-SES-MESSAGE-TAGS",
 "value": "myCustomTag1=myCustomTagValue1, myCustomTag2=myCustomTagValue2"
 }
],
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "to": [
 "recipient@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:source-ip": [
 "192.0.2.0"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:caller-identity": [
 "ses_user"
],
 "myCustomTag1": [
 "myCustomTagValue1"
],
 "myCustomTag2": [
 "myCustomTagValue2"
]
 }
 },
 "reject": {
 "reason": "Bad content"
 }
}

Working with event data 594

Amazon Simple Email Service Developer Guide

Open record

The following is an example of an Open event record that Amazon SES publishes to Firehose.

{
 "eventType": "Open",
 "mail": {
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES",
 "to": [
 "recipient@example.com"
]
 },
 "destination": [
 "recipient@example.com"
],
 "headers": [
 {
 "name": "X-SES-CONFIGURATION-SET",
 "value": "ConfigSet"
 },
 {
 "name":"X-SES-MESSAGE-TAGS",
 "value":"myCustomTag1=myCustomValue1, myCustomTag2=myCustomValue2"
 },
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"

Working with event data 595

Amazon Simple Email Service Developer Guide

 },
 {
 "name": "Content-Type",
 "value": "multipart/alternative; boundary=\"XBoundary\""
 }
],
 "headersTruncated": false,
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "sendingAccountId": "123456789012",
 "source": "sender@example.com",
 "tags": {
 "myCustomTag1":[
 "myCustomValue1"
],
 "myCustomTag2":[
 "myCustomValue2"
],
 "ses:caller-identity": [
 "IAM_user_or_role_name"
],
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:source-ip": [
 "192.0.2.0"
]
 },
 "timestamp": "2017-08-09T21:59:49.927Z"
 },
 "open": {
 "ipAddress": "192.0.2.1",
 "timestamp": "2017-08-09T22:00:19.652Z",
 "userAgent": "Mozilla/5.0 (iPhone; CPU iPhone OS 10_3_3 like Mac OS X)
 AppleWebKit/603.3.8 (KHTML, like Gecko) Mobile/14G60"
 }
}

Click record

The following is an example of a Click event record that Amazon SES publishes to Firehose.

Working with event data 596

Amazon Simple Email Service Developer Guide

{
 "eventType": "Click",
 "click": {
 "ipAddress": "192.0.2.1",
 "link": "http://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-
smtp.html",
 "linkTags": {
 "samplekey0": [
 "samplevalue0"
],
 "samplekey1": [
 "samplevalue1"
]
 },
 "timestamp": "2017-08-09T23:51:25.570Z",
 "userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/60.0.3112.90 Safari/537.36"
 },
 "mail": {
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES",
 "to": [
 "recipient@example.com"
]
 },
 "destination": [
 "recipient@example.com"
],
 "headers": [
 {
 "name": "X-SES-CONFIGURATION-SET",
 "value": "ConfigSet"
 },
 {
 "name":"X-SES-MESSAGE-TAGS",
 "value":"myCustomTag1=myCustomValue1, myCustomTag2=myCustomValue2"
 },
 {
 "name": "From",

Working with event data 597

Amazon Simple Email Service Developer Guide

 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/alternative; boundary=\"XBoundary\""
 },
 {
 "name": "Message-ID",
 "value": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000"
 }
],
 "headersTruncated": false,
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "sendingAccountId": "123456789012",
 "source": "sender@example.com",
 "tags": {
 "myCustomTag1":[
 "myCustomValue1"
],
 "myCustomTag2":[
 "myCustomValue2"
],
 "ses:caller-identity": [
 "ses_user"
],
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:source-ip": [

Working with event data 598

Amazon Simple Email Service Developer Guide

 "192.0.2.0"
]
 },
 "timestamp": "2017-08-09T23:50:05.795Z"
 }
}

Rendering Failure record

The following is an example of a Rendering Failure event record that Amazon SES publishes to
Firehose.

{
 "eventType":"Rendering Failure",
 "mail":{
 "timestamp":"2018-01-22T18:43:06.197Z",
 "source":"sender@example.com",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
]
 }
 },
 "failure":{
 "errorMessage":"Attribute 'attributeName' is not present in the rendering data.",
 "templateName":"MyTemplate"
 }
}

DeliveryDelay record

The following is an example of a DeliveryDelay event record that Amazon SES publishes to
Firehose.

{
 "eventType": "DeliveryDelay",

Working with event data 599

Amazon Simple Email Service Developer Guide

 "mail":{
 "timestamp":"2020-06-16T00:15:40.641Z",
 "source":"sender@example.com",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
]
 }
 },
 "deliveryDelay": {
 "timestamp": "2020-06-16T00:25:40.095Z",
 "delayType": "TransientCommunicationFailure",
 "expirationTime": "2020-06-16T00:25:40.914Z",
 "delayedRecipients": [{
 "emailAddress": "recipient@example.com",
 "status": "4.4.1",
 "diagnosticCode": "smtp; 421 4.4.1 Unable to connect to remote host"
 }]
 }
}

Subscription record

The following is an example of a Subscription event record that Amazon SES publishes to
Firehose.

{
 "eventType": "Subscription",
 "mail": {
 "timestamp": "2022-01-12T01:00:14.340Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLEe4bccb684-777bc8de-afa7-4970-92b0-f515137b1497-000000",
 "destination": ["recipient@example.com"],
 "headersTruncated": false,

Working with event data 600

Amazon Simple Email Service Developer Guide

 "headers": [
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "text/html; charset=UTF-8"
 },
 {
 "name": "Content-Transfer-Encoding",
 "value": "7bit"
 }
],
 "commonHeaders": {
 "from": ["sender@example.com"],
 "to": ["recipient@example.com"],
 "messageId": "EXAMPLEe4bccb684-777bc8de-afa7-4970-92b0-f515137b1497-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:operation": ["SendEmail"],
 "ses:configuration-set": ["ConfigSet"],
 "ses:source-ip": ["192.0.2.0"],
 "ses:from-domain": ["example.com"],
 "ses:caller-identity": ["ses_user"],
 "myCustomTag1": ["myCustomValue1"],
 "myCustomTag2": ["myCustomValue2"]
 }
 },
 "subscription": {
 "contactList": "ContactListName",

Working with event data 601

Amazon Simple Email Service Developer Guide

 "timestamp": "2022-01-12T01:00:17.910Z",
 "source": "UnsubscribeHeader",
 "newTopicPreferences": {
 "unsubscribeAll": true,
 "topicSubscriptionStatus": [
 {
 "topicName": "ExampleTopicName",
 "subscriptionStatus": "OptOut"
 }
]
 },
 "oldTopicPreferences": {
 "unsubscribeAll": false,
 "topicSubscriptionStatus": [
 {
 "topicName": "ExampleTopicName",
 "subscriptionStatus": "OptOut"
 }
]
 }
 }
}

Interpreting Amazon SES event data from Amazon SNS

Amazon SES publishes email sending events to Amazon Simple Notification Service (Amazon SNS)
as JSON records. Amazon SNS then delivers notifications to the endpoints that are subscribed to
the Amazon SNS topic associated with the event destination. For information about setting up
topics and subscriptions in Amazon SNS, see Getting Started in the Amazon Simple Notification
Service Developer Guide.

For a description of the record contents and for example records, see the following sections.

• Event record contents

• Event record examples

Contents of event data that Amazon SES publishes to Amazon SNS

Amazon SES publishes email sending event records to Amazon Simple Notification Service in JSON
format.

Working with event data 602

https://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html

Amazon Simple Email Service Developer Guide

You can find example records for all of these notification types in Examples of event data that
Amazon SES publishes to Amazon SNS.

Topics in this section:

• Top-level JSON object

• Mail object

• Bounce object

• Complaint object

• Delivery object

• Send object

• Reject object

• Open object

• Click object

• Rendering Failure object

• DeliveryDelay object

• Subscription object

Top-level JSON object

The top-level JSON object in an email sending event record contains the following fields. The event
type determines which other objects are present.

Field Name Description

eventType A string that describes the type of event.
Possible values: Bounce, Complaint ,
Delivery, Send, Reject, Open, Click,
Rendering Failure, DeliveryDelay , or
Subscription .

If you did not set up event publishing this field
is named notificationType .

mail A JSON object that contains information
about the email that produced the event.

Working with event data 603

Amazon Simple Email Service Developer Guide

Field Name Description

bounce This field is only present if eventType is
Bounce. It contains information about the
bounce.

complaint This field is only present if eventType is
Complaint . It contains information about
the complaint.

delivery This field is only present if eventType is
Delivery. It contains information about the
delivery.

send This field is only present if eventType is
Send.

reject This field is only present if eventType is
Reject. It contains information about the
rejection.

open This field is only present if eventType is
Open. It contains information about the open
event.

click This field is only present if eventType is
Click. It contains information about the click
event.

failure This field is only present if eventType is
Rendering Failure . It contains informati
on about the rendering failure event.

deliveryDelay This field is only present if eventType is
DeliveryDelay . It contains information
about the delayed delivery of an email.

Working with event data 604

Amazon Simple Email Service Developer Guide

Field Name Description

subscription This field is only present if eventType is
Subscription . It contains information
about the subscription preferences.

Mail object

Each email sending event record contains information about the original email in the mail object.
The JSON object that contains information about a mail object has the following fields.

Field Name Description

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the message was
sent.

messageId A unique ID that Amazon SES assigned to the
message. Amazon SES returned this value to
you when you sent the message.

Note

This message ID was assigned by
Amazon SES. You can find the
message ID of the original email in the
headers and commonHeaders fields
of the mail object.

source The email address that the message was sent
from (the envelope MAIL FROM address).

sourceArn The Amazon Resource Name (ARN) of the
identity that was used to send the email.
In the case of sending authorization, the
sourceArn is the ARN of the identity that
the identity owner authorized the delegate

Working with event data 605

Amazon Simple Email Service Developer Guide

Field Name Description

sender to use to send the email. For more
information about sending authorization, see
Email authentication methods.

sendingAccountId The AWS account ID of the account that was
used to send the email. In the case of sending
authorization, the sendingAccountId is
the delegate sender's account ID.

destination A list of email addresses that were recipients
of the original mail.

headersTruncated A string that specifies whether the headers
are truncated in the notification, which occurs
if the headers are larger than 10 KB. Possible
values are true and false.

headers A list of the email's original headers. Each
header in the list has a name field and a value
field.

Note

Any message ID within the headers
field is from the original message
that you passed to Amazon SES.
The message ID that Amazon SES
subsequently assigned to the message
is in the messageId field of the
mail object.

Working with event data 606

Amazon Simple Email Service Developer Guide

Field Name Description

commonHeaders A mapping of the email's original, commonly
used headers.

Note

Any message ID within the commonHea
ders field is the message ID that
Amazon SES subsequently assigned to
the message in the messageId field
of the mail object.

tags A list of tags associated with the email.

Bounce object

The JSON object that contains information about a Bounce event has the following fields.

Field Name Description

bounceType The type of bounce, as determined by Amazon
SES.

bounceSubType The subtype of the bounce, as determined by
Amazon SES.

bouncedRecipients A list that contains information about the
recipients of the original mail that bounced.

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the ISP sent the
bounce notification.

feedbackId A unique ID for the bounce.

reportingMTA The value of the Reporting-MTA field from
the DSN. This is the value of the Message

Working with event data 607

Amazon Simple Email Service Developer Guide

Field Name Description

Transfer Authority (MTA) that attempted
to perform the delivery, relay, or gateway
operation described in the DSN.

Note

This field only appears if a delivery
status notification (DSN) was attached
to the bounce.

Bounced recipients

A bounce event may pertain to a single recipient or to multiple recipients. The
bouncedRecipients field holds a list of objects—one object per recipient whose email address
produced a bounce—and contains the following field.

Field Name Description

emailAddress The email address of the recipient. If a DSN is
available, this is the value of the Final-Rec
ipient field from the DSN.

Optionally, if a DSN is attached to the bounce, the following fields may also be present.

Field Name Description

action The value of the Action field from the DSN.
This indicates the action performed by the
reporting MTA as a result of its attempt to
deliver the message to this recipient.

status The value of the Status field from the DSN.
This is the per-recipient transport-independ

Working with event data 608

Amazon Simple Email Service Developer Guide

Field Name Description

ent status code that indicates the delivery
status of the message.

diagnosticCode The status code issued by the reporting MTA.
This is the value of the Diagnostic-Code
field from the DSN. This field may be absent
in the DSN (and therefore also absent in the
JSON).

Bounce types

Each bounce event is of one of the types shown in the following table.

The event publishing system only publishes hard bounces and soft bounces that are no longer
retried by Amazon SES. When you receive bounces marked Permanent, you should remove the
corresponding email addresses from your mailing list; you will not be able to send to them in
the future. Transient bounces are sent to you when a message has soft bounced several times,
and Amazon SES has stopped trying to re-deliver it. You may be able to successfully resend to an
address that initially resulted in a Transient bounce in the future.

bounceType bounceSubType Description

Undetermi
ned

Undetermined Amazon SES was unable to determine a
specific bounce reason.

Permanent General Amazon SES received a general hard bounce.
If you receive this type of bounce, you should
remove the recipient's email address from your
mailing list.

Permanent NoEmail Amazon SES received a permanent hard
bounce because the target email address does
not exist. If you receive this type of bounce,
you should remove the recipient's email
address from your mailing list.

Working with event data 609

Amazon Simple Email Service Developer Guide

bounceType bounceSubType Description

Permanent Suppressed Amazon SES has suppressed sending to this
address because it has a recent history of
bouncing as an invalid address. To override the
global suppression list, see Using the Amazon
SES account-level suppression list.

Permanent OnAccountSuppressi
onList

Amazon SES has suppressed sending to this
address because it is on the account-level
suppression list. This does not count toward
your bounce rate metric.

Transient General Amazon SES received a general bounce.
You may be able to successfully send to this
recipient in the future.

Transient MailboxFull Amazon SES received a mailbox full bounce.
You may be able to successfully send to this
recipient in the future.

Transient MessageTooLarge Amazon SES received a message too large
bounce. You may be able to successfully send
to this recipient if you reduce the size of the
message.

Transient ContentRejected Amazon SES received a content rejected
bounce. You may be able to successfully send
to this recipient if you change the content of
the message.

Transient AttachmentRejected Amazon SES received an attachment rejected
bounce. You may be able to successfully send
to this recipient if you remove or change the
attachment.

Working with event data 610

Amazon Simple Email Service Developer Guide

Complaint object

The JSON object that contains information about a Complaint event has the following fields.

Field Name Description

complainedRecipients A list that contains information about
recipients that may have submitted the
complaint.

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the ISP sent the
complaint notification.

feedbackId A unique ID for the complaint.

complaintSubType The subtype of the complaint, as determined
by Amazon SES.

Further, if a feedback report is attached to the complaint, the following fields may be present.

Field Name Description

userAgent The value of the User-Agent field from
the feedback report. This indicates the name
and version of the system that generated the
report.

complaintFeedbackType The value of the Feedback-Type field from
the feedback report received from the ISP. This
contains the type of feedback.

arrivalDate The value of the Arrival-Date or
Received-Date field from the feedback
report in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ). This field may be absent in
the report (and therefore also absent in the
JSON).

Working with event data 611

Amazon Simple Email Service Developer Guide

Complained recipients

The complainedRecipients field contains a list of recipients that may have submitted the
complaint.

Important

Most ISPs redact the email addresses of recipients who submit complaints. For this reason,
the complainedRecipients field includes a list of everyone who was sent the email
whose address is on the domain that issued the complaint notification.

JSON objects in this list contain the following field.

Field Name Description

emailAddress The email address of the recipient.

Complaint types

You may see the following complaint types in the complaintFeedbackType field as assigned by
the reporting ISP, according to the Internet Assigned Numbers Authority website:

Field Name Description

abuse Indicates unsolicited email or some other kind
of email abuse.

auth-failure Email authentication failure report.

fraud Indicates some kind of fraud or phishing
activity.

not-spam Indicates that the entity providing the report
does not consider the message to be spam.
This may be used to correct a message that
was incorrectly tagged or categorized as spam.

Working with event data 612

https://www.iana.org/assignments/marf-parameters/marf-parameters.xml#marf-parameters-2

Amazon Simple Email Service Developer Guide

Field Name Description

other Indicates any other feedback that does not fit
into other registered types.

virus Reports that a virus is found in the originating
message.

Complaint subtypes

The value of the complaintSubType field can either be null or OnAccountSuppressionList.
If the value is OnAccountSuppressionList, Amazon SES accepted the message, but didn't
attempt to send it because it was on the account-level suppression list.

Delivery object

The JSON object that contains information about a Delivery event has the following fields.

Field Name Description

timestamp The date and time when Amazon SES
delivered the email to the recipient's mail
server, in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ).

processingTimeMillis The time in milliseconds between when
Amazon SES accepted the request from the
sender to when Amazon SES passed the
message to the recipient's mail server.

recipients A list of intended recipients that the delivery
event applies to.

smtpResponse The SMTP response message of the remote
ISP that accepted the email from Amazon SES.
This message will vary by email, by receiving
mail server, and by receiving ISP.

Working with event data 613

Amazon Simple Email Service Developer Guide

Field Name Description

reportingMTA The host name of the Amazon SES mail server
that sent the mail.

Send object

The JSON object that contains information about a send event is always empty.

Reject object

The JSON object that contains information about a Reject event has the following fields.

Field Name Description

reason The reason the email was rejected. The only
possible value is Bad content, which means
that Amazon SES detected that the email
contained a virus. When a message is rejected,
Amazon SES stops processing it, and doesn't
attempt to deliver it to the recipient's mail
server.

Open object

The JSON object that contains information about a Open event has the following fields.

Field Name Description

ipAddress The recipient's IP address.

timestamp The date and time when the open event
occurred in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ).

userAgent The user agent of the device or email client
that the recipient used to open the email.

Working with event data 614

Amazon Simple Email Service Developer Guide

Click object

The JSON object that contains information about a Click event has the following fields.

Field Name Description

ipAddress The recipient's IP address.

timestamp The date and time when the click event
occurred in ISO8601 format (YYYY-MM-D
DThh:mm:ss.sZ).

userAgent The user agent of the client that the recipient
used to click a link in the email.

link The URL of the link that the recipient clicked.

linkTags A list of tags that were added to the link using
the ses:tags attribute. For more information
about adding tags to links in your emails, see
Q5. Can I tag links with unique identifiers? in
the Amazon SES email sending metrics FAQs.

Rendering Failure object

The JSON object that contains information about a Rendering Failure event has the following
fields.

Field Name Description

templateName The name of the template used to send the
email.

errorMessage A message that provides more information
about the rendering failure.

Working with event data 615

Amazon Simple Email Service Developer Guide

DeliveryDelay object

The JSON object that contains information about a DeliveryDelay event has the following
fields.

Field Name Description

delayType The type of delay. Possible values are:

• InternalFailure – An internal Amazon SES
issue caused the message to be delayed.

• General – A generic failure occurred during
the SMTP conversation.

• MailboxFull – The recipient's mailbox is
full and is unable to receive additional
messages.

• SpamDetected – The recipient's mail server
has detected a large amount of unsolicited
email from your account.

• RecipientServerError – A temporary issue
with the recipient's email server is preventin
g the delivery of the message.

• IPFailure – The IP address that's sending the
message is being blocked or throttled by the
recipient's email provider.

• TransientCommunicationFailure – There
was a temporary communication failure
during the SMTP conversation with the
recipient's email provider.

• BYOIPHostNameLookupUnavailable –
Amazon SES was unable to look up the DNS
hostname for your IP addresses. This type of
delay only occurs when you use Bring Your
Own IP.

• Undetermined – Amazon SES wasn't able to
determine the reason for the delivery delay.

Working with event data 616

Amazon Simple Email Service Developer Guide

Field Name Description

• SendingDeferral – Amazon SES has deemed
it appropriate to internally defer the
message.

delayedRecipients An object that contains information about the
recipient of the email.

expirationTime The date and time when Amazon SES will stop
trying to deliver the message. This value is
shown in ISO 8601 format.

reportingMTA The IP address of the Message Transfer Agent
(MTA) that reported the delay.

timestamp The date and time when the delay occurred,
shown in ISO 8601 format.

Delayed recipients

The delayedRecipients object contains the following values.

Field Name Description

emailAddress The email address that resulted in the delivery
of the message being delayed.

status The SMTP status code associated with the
delivery delay.

diagnosticCode The diagnostic code provided by the receiving
Message Transfer Agent (MTA).

Subscription object

The JSON object that contains information about a Subscription event has the following fields.

Working with event data 617

Amazon Simple Email Service Developer Guide

Field Name Description

contactList The name of the list the contact is on.

timestamp The date and time, in ISO8601 format (YYYY-
MM-DDThh:mm:ss.sZ), when the ISP sent the
subscription notification.

source The email address that the message was sent
from (the envelope MAIL FROM address).

newTopicPreferences A JSON data-structure (map) which specifies
the subscription status of all the topics in
the contact list indicating the status after a
change (contact subscribed or unsubscribed).

oldTopicPreferences A JSON data-structure (map) which specifies
the subscription status of all the topics in the
contact list indicating the status before the
change (contact subscribed or unsubscribed).

New/old topic preferences

The newTopicPreferences and oldTopicPreferences objects contain the following values.

Field Name Description

unsubscribeAll Specifies if the contact unsubscribed from all
the topics in the contact list.

topicSubscriptionStatus Specifies the topic in the topicName field
and maps the subscription status (OptIn or
OptOut) in the subscriptionStatus
field.

topicDefaultSubscriptionStatus Specifies the topic in the topicName field
and maps the subscription status (OptIn or

Working with event data 618

Amazon Simple Email Service Developer Guide

Field Name Description

OptOut) in the subscriptionStatus
field.

Examples of event data that Amazon SES publishes to Amazon SNS

This section provides examples of the types of email sending event records that Amazon SES
publishes to Amazon SNS.

Topics in this section:

• Bounce record

• Complaint record

• Delivery record

• Send record

• Reject record

• Open record

• Click record

• Rendering Failure record

• DeliveryDelay record

• Subscription record

Note

In the following examples where a tag field is utilized, it is using event publishing through
a configuration set for which SES supports the publishing of tags for all event types. If
using feedback notifications directly on the identity, SES does not publish tags. Read about
adding tags when creating a configuration set or modifying a configuration set.

Bounce record

The following is an example of a Bounce event record that Amazon SES publishes to Amazon SNS.

{
 "eventType":"Bounce",

Working with event data 619

Amazon Simple Email Service Developer Guide

 "bounce":{
 "bounceType":"Permanent",
 "bounceSubType":"General",
 "bouncedRecipients":[
 {
 "emailAddress":"recipient@example.com",
 "action":"failed",
 "status":"5.1.1",
 "diagnosticCode":"smtp; 550 5.1.1 user unknown"
 }
],
 "timestamp":"2017-08-05T00:41:02.669Z",
 "feedbackId":"01000157c44f053b-61b59c11-9236-11e6-8f96-7be8aexample-000000",
 "reportingMTA":"dsn; mta.example.com"
 },
 "mail":{
 "timestamp":"2017-08-05T00:40:02.012Z",
 "source":"Sender Name <sender@example.com>",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"Sender Name <sender@example.com>"
 },
 {
 "name":"To",
 "value":"recipient@example.com"
 },
 {
 "name":"Subject",
 "value":"Message sent from Amazon SES"
 },
 {
 "name":"MIME-Version",
 "value":"1.0"
 },
 {
 "name":"Content-Type",

Working with event data 620

Amazon Simple Email Service Developer Guide

 "value":"multipart/alternative; boundary=\"----
=_Part_7307378_1629847660.1516840721503\""
 }
],
 "commonHeaders":{
 "from":[
 "Sender Name <sender@example.com>"
],
 "to":[
 "recipient@example.com"
],
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject":"Message sent from Amazon SES"
 },
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
],
 "ses:source-ip":[
 "192.0.2.0"
],
 "ses:from-domain":[
 "example.com"
],
 "ses:caller-identity":[
 "ses_user"
]
 }
 }
}

Complaint record

The following is an example of a Complaint event record that Amazon SES publishes to Amazon
SNS.

{
 "eventType":"Complaint",
 "complaint": {
 "complainedRecipients":[
 {
 "emailAddress":"recipient@example.com"
 }

Working with event data 621

Amazon Simple Email Service Developer Guide

],
 "timestamp":"2017-08-05T00:41:02.669Z",
 "feedbackId":"01000157c44f053b-61b59c11-9236-11e6-8f96-7be8aexample-000000",
 "userAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/60.0.3112.90 Safari/537.36",
 "complaintFeedbackType":"abuse",
 "arrivalDate":"2017-08-05T00:41:02.669Z"
 },
 "mail":{
 "timestamp":"2017-08-05T00:40:01.123Z",
 "source":"Sender Name <sender@example.com>",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "headers":[
 {
 "name":"From",
 "value":"Sender Name <sender@example.com>"
 },
 {
 "name":"To",
 "value":"recipient@example.com"
 },
 {
 "name":"Subject",
 "value":"Message sent from Amazon SES"
 },
 {
 "name":"MIME-Version","value":"1.0"
 },
 {
 "name":"Content-Type",
 "value":"multipart/alternative; boundary=\"----
=_Part_7298998_679725522.1516840859643\""
 }
],
 "commonHeaders":{
 "from":[
 "Sender Name <sender@example.com>"
],

Working with event data 622

Amazon Simple Email Service Developer Guide

 "to":[
 "recipient@example.com"
],
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject":"Message sent from Amazon SES"
 },
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
],
 "ses:source-ip":[
 "192.0.2.0"
],
 "ses:from-domain":[
 "example.com"
],
 "ses:caller-identity":[
 "ses_user"
]
 }
 }
}

Delivery record

The following is an example of a Delivery event record that Amazon SES publishes to Amazon
SNS.

{
 "eventType": "Delivery",
 "mail": {
 "timestamp": "2016-10-19T23:20:52.240Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": [
 "recipient@example.com"
],
 "headersTruncated": false,
 "headers": [
 {
 "name": "From",

Working with event data 623

Amazon Simple Email Service Developer Guide

 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "text/html; charset=UTF-8"
 },
 {
 "name": "Content-Transfer-Encoding",
 "value": "7bit"
 }
],
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "to": [
 "recipient@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:source-ip": [
 "192.0.2.0"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:caller-identity": [

Working with event data 624

Amazon Simple Email Service Developer Guide

 "ses_user"
],
 "ses:outgoing-ip": [
 "192.0.2.0"
],
 "myCustomTag1": [
 "myCustomTagValue1"
],
 "myCustomTag2": [
 "myCustomTagValue2"
]
 }
 },
 "delivery": {
 "timestamp": "2016-10-19T23:21:04.133Z",
 "processingTimeMillis": 11893,
 "recipients": [
 "recipient@example.com"
],
 "smtpResponse": "250 2.6.0 Message received",
 "reportingMTA": "mta.example.com"
 }
}

Send record

The following is an example of a Send event record that Amazon SES publishes to Amazon SNS.
Some fields are not always present. For example, with a templated email, the subject is rendered
later and included in subsequent events.

{
 "eventType": "Send",
 "mail": {
 "timestamp": "2016-10-14T05:02:16.645Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": [
 "recipient@example.com"
],
 "headersTruncated": false,
 "headers": [

Working with event data 625

Amazon Simple Email Service Developer Guide

 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/mixed; boundary=\"----=_Part_0_716996660.1476421336341\""
 },
 {
 "name": "X-SES-MESSAGE-TAGS",
 "value": "myCustomTag1=myCustomTagValue1, myCustomTag2=myCustomTagValue2"
 }
],
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "to": [
 "recipient@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:source-ip": [
 "192.0.2.0"
],
 "ses:from-domain": [
 "example.com"

Working with event data 626

Amazon Simple Email Service Developer Guide

],
 "ses:caller-identity": [
 "ses_user"
],
 "myCustomTag1": [
 "myCustomTagValue1"
],
 "myCustomTag2": [
 "myCustomTagValue2"
]
 }
 },
 "send": {}
}

Reject record

The following is an example of a Reject event record that Amazon SES publishes to Amazon SNS.

{
 "eventType": "Reject",
 "mail": {
 "timestamp": "2016-10-14T17:38:15.211Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": [
 "sender@example.com"
],
 "headersTruncated": false,
 "headers": [
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },

Working with event data 627

Amazon Simple Email Service Developer Guide

 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/mixed; boundary=\"qMm9M+Fa2AknHoGS\""
 },
 {
 "name": "X-SES-MESSAGE-TAGS",
 "value": "myCustomTag1=myCustomTagValue1, myCustomTag2=myCustomTagValue2"
 }
],
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "to": [
 "recipient@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:source-ip": [
 "192.0.2.0"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:caller-identity": [
 "ses_user"
],
 "myCustomTag1": [
 "myCustomTagValue1"
],
 "myCustomTag2": [
 "myCustomTagValue2"
]
 }
 },

Working with event data 628

Amazon Simple Email Service Developer Guide

 "reject": {
 "reason": "Bad content"
 }
}

Open record

The following is an example of an Open event record that Amazon SES publishes to Amazon SNS.

{
 "eventType": "Open",
 "mail": {
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES",
 "to": [
 "recipient@example.com"
]
 },
 "destination": [
 "recipient@example.com"
],
 "headers": [
 {
 "name": "X-SES-CONFIGURATION-SET",
 "value": "ConfigSet"
 },
 {
 "name":"X-SES-MESSAGE-TAGS",
 "value":"myCustomTag1=myCustomValue1, myCustomTag2=myCustomValue2"
 },
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",

Working with event data 629

Amazon Simple Email Service Developer Guide

 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/alternative; boundary=\"XBoundary\""
 }
],
 "headersTruncated": false,
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "sendingAccountId": "123456789012",
 "source": "sender@example.com",
 "tags": {
 "myCustomTag1":[
 "myCustomValue1"
],
 "myCustomTag2":[
 "myCustomValue2"
],
 "ses:caller-identity": [
 "IAM_user_or_role_name"
],
 "ses:configuration-set": [
 "ConfigSet"
],
 "ses:from-domain": [
 "example.com"
],
 "ses:source-ip": [
 "192.0.2.0"
]
 },
 "timestamp": "2017-08-09T21:59:49.927Z"
 },
 "open": {
 "ipAddress": "192.0.2.1",
 "timestamp": "2017-08-09T22:00:19.652Z",
 "userAgent": "Mozilla/5.0 (iPhone; CPU iPhone OS 10_3_3 like Mac OS X)
 AppleWebKit/603.3.8 (KHTML, like Gecko) Mobile/14G60"
 }

Working with event data 630

Amazon Simple Email Service Developer Guide

}

Click record

The following is an example of a Click event record that Amazon SES publishes to Amazon SNS.

{
 "eventType": "Click",
 "click": {
 "ipAddress": "192.0.2.1",
 "link": "http://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-
smtp.html",
 "linkTags": {
 "samplekey0": [
 "samplevalue0"
],
 "samplekey1": [
 "samplevalue1"
]
 },
 "timestamp": "2017-08-09T23:51:25.570Z",
 "userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/60.0.3112.90 Safari/537.36"
 },
 "mail": {
 "commonHeaders": {
 "from": [
 "sender@example.com"
],
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "subject": "Message sent from Amazon SES",
 "to": [
 "recipient@example.com"
]
 },
 "destination": [
 "recipient@example.com"
],
 "headers": [
 {
 "name": "X-SES-CONFIGURATION-SET",
 "value": "ConfigSet"
 },
 {

Working with event data 631

Amazon Simple Email Service Developer Guide

 "name":"X-SES-MESSAGE-TAGS",
 "value":"myCustomTag1=myCustomValue1, myCustomTag2=myCustomValue2"
 },
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "multipart/alternative; boundary=\"XBoundary\""
 },
 {
 "name": "Message-ID",
 "value": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000"
 }
],
 "headersTruncated": false,
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "sendingAccountId": "123456789012",
 "source": "sender@example.com",
 "tags": {
 "myCustomTag1":[
 "myCustomValue1"
],
 "myCustomTag2":[
 "myCustomValue2"
],
 "ses:caller-identity": [
 "ses_user"
],
 "ses:configuration-set": [
 "ConfigSet"

Working with event data 632

Amazon Simple Email Service Developer Guide

],
 "ses:from-domain": [
 "example.com"
],
 "ses:source-ip": [
 "192.0.2.0"
]
 },
 "timestamp": "2017-08-09T23:50:05.795Z"
 }
}

Rendering Failure record

The following is an example of a Rendering Failure event record that Amazon SES publishes to
Amazon SNS.

{
 "eventType":"Rendering Failure",
 "mail":{
 "timestamp":"2018-01-22T18:43:06.197Z",
 "source":"sender@example.com",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
]
 }
 },
 "failure":{
 "errorMessage":"Attribute 'attributeName' is not present in the rendering data.",
 "templateName":"MyTemplate"
 }
}

Working with event data 633

Amazon Simple Email Service Developer Guide

DeliveryDelay record

The following is an example of a DeliveryDelay event record that Amazon SES publishes to
Amazon SNS.

{
 "eventType": "DeliveryDelay",
 "mail":{
 "timestamp":"2020-06-16T00:15:40.641Z",
 "source":"sender@example.com",
 "sourceArn":"arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId":"123456789012",
 "messageId":"EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination":[
 "recipient@example.com"
],
 "headersTruncated":false,
 "tags":{
 "ses:configuration-set":[
 "ConfigSet"
]
 }
 },
 "deliveryDelay": {
 "timestamp": "2020-06-16T00:25:40.095Z",
 "delayType": "TransientCommunicationFailure",
 "expirationTime": "2020-06-16T00:25:40.914Z",
 "delayedRecipients": [{
 "emailAddress": "recipient@example.com",
 "status": "4.4.1",
 "diagnosticCode": "smtp; 421 4.4.1 Unable to connect to remote host"
 }]
 }
}

Subscription record

The following is an example of a Subscription event record that Amazon SES publishes to
Firehose.

{
 "eventType": "Subscription",
 "mail": {

Working with event data 634

Amazon Simple Email Service Developer Guide

 "timestamp": "2022-01-12T01:00:14.340Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLEe4bccb684-777bc8de-afa7-4970-92b0-f515137b1497-000000",
 "destination": ["recipient@example.com"],
 "headersTruncated": false,
 "headers": [
 {
 "name": "From",
 "value": "sender@example.com"
 },
 {
 "name": "To",
 "value": "recipient@example.com"
 },
 {
 "name": "Subject",
 "value": "Message sent from Amazon SES"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "Content-Type",
 "value": "text/html; charset=UTF-8"
 },
 {
 "name": "Content-Transfer-Encoding",
 "value": "7bit"
 }
],
 "commonHeaders": {
 "from": ["sender@example.com"],
 "to": ["recipient@example.com"],
 "messageId": "EXAMPLEe4bccb684-777bc8de-afa7-4970-92b0-f515137b1497-000000",
 "subject": "Message sent from Amazon SES"
 },
 "tags": {
 "ses:operation": ["SendEmail"],
 "ses:configuration-set": ["ConfigSet"],
 "ses:source-ip": ["192.0.2.0"],
 "ses:from-domain": ["example.com"],

Working with event data 635

Amazon Simple Email Service Developer Guide

 "ses:caller-identity": ["ses_user"],
 "myCustomTag1": ["myCustomValue1"],
 "myCustomTag2": ["myCustomValue2"]
 }
 },
 "subscription": {
 "contactList": "ContactListName",
 "timestamp": "2022-01-12T01:00:17.910Z",
 "source": "UnsubscribeHeader",
 "newTopicPreferences": {
 "unsubscribeAll": true,
 "topicSubscriptionStatus": [
 {
 "topicName": "ExampleTopicName",
 "subscriptionStatus": "OptOut"
 }
]
 },
 "oldTopicPreferences": {
 "unsubscribeAll": false,
 "topicSubscriptionStatus": [
 {
 "topicName": "ExampleTopicName",
 "subscriptionStatus": "OptOut"
 }
]
 }
 }
}

Working with event data 636

Amazon Simple Email Service Developer Guide

Monitoring your Amazon SES sender reputation
Amazon SES actively tracks several metrics that may cause your reputation as a sender to be
damaged, or that could cause your email delivery rates to decline. Two important metrics that
we consider in this process are the bounce and complaint rates for your account. If the bounce or
complaint rates for your account are too high, we might place your account under review or pause
your account's ability to send email.

Because your bounce and complaint rate are so important to the health of your account, Amazon
SES includes a reputation metrics page in the Amazon SES console that you can use to track these
metrics. Reputation metrics can also display information about factors unrelated to bounces or
complaints that could damage your sender reputation. For example, if you send email to a known
spamtrap, you will see a message on this dashboard.

This section contains information about accessing reputation metrics, interpreting the information
it contains, and setting up systems to actively notify you of factors that could impact your sender
reputation.

In this section, you will find the following topics:

• Using reputation metrics to track bounce and complaint rates

• Reputation metrics messages

• Creating reputation monitoring alarms using CloudWatch

• SNDS metrics for dedicated IPs

• Automatically pausing email sending

Using reputation metrics to track bounce and complaint rates

The reputation metrics console page contains the same information that the Amazon SES team
sees when determining the health of individual accounts.

To view reputation metrics

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane on the left side of the screen, choose Reputation metrics.

The dashboard displays the following information:

Using reputation metrics 637

https://en.wikipedia.org/wiki/Spamtrap
https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

• Account status – A summary of the combined health of your bounce and complaint rates.
Possible values include:

• Healthy – There are no issues currently impacting your account.

• Under review – Your account is under review. If the issues that caused us to place your
account under review aren't resolved by the end of the review period, we might pause
your account's ability to send email.

• Pending end of review decision – Your account is under review. Because of the nature
of the issues that caused us to place your account under review, we need to perform a
manual review of your account before we take any further action.

• Sending paused – We've paused your account's ability to send email. While your account's
ability to send email is paused, you won't be able to send email using Amazon SES. You
can request that we review this decision. To learn more about requesting a review, see
Amazon SES Sending review process FAQs.

• Pending sending pause – Your account is under review. The issues that caused us to place
your account under review haven't been resolved. In this situation, we typically pause your
account's ability to send email. However, because of the nature of your account, we need
to review your account before any further action is taken.

• Bounce Rate – The percentage of emails sent from your account that resulted in a hard
bounce. See how your bounce rate's calculated.

• Complaint Rate – The percentage of emails sent from your account that resulted in
recipients reporting them as spam. See how your complaint rate's calculated

Note

The Bounce Rate and Complaint Rate sections also include status messages for their
respective metrics. The following is a list of status messages that may be displayed
for these metrics:

• Healthy – The metric is within normal levels.

• Almost healed – The metric caused your account to be placed under review. Since
the review period began, the metric has stayed below the maximum rate. If the
metric remains below the maximum rate, the status of this metric changes to
Healthy before the review period ends.

• Under review – The metric caused your account to be placed under review, and
is still above the maximum rate. If the issue that caused the metric to exceed the

Using reputation metrics 638

Amazon Simple Email Service Developer Guide

maximum rate is not resolved by the end of the review period, we might pause
your account's ability to send email.

• Sending pause – The metric caused us to pause your account's ability to send
email. While your account's ability to send email is paused, you can't send email
using Amazon SES. You can request that we review this decision. To learn more
about submitting a request for review, see Amazon SES Sending review process
FAQs.

• Pending sending pause – The metric caused us to place your account under
review. The issues that caused this review period haven't been resolved. These
issues might cause us to pause your account's ability to send email. A member
of the Amazon SES team has to review your account before we take any further
action.

• Other Notifications – If your account is experiencing reputation-related issues that are not
related to bounces or complaints, a brief message will be shown here. For more information
about the notifications that can be shown in this area, see Reputation metrics messages.

Reputation metrics messages

The Amazon SES Reputation metrics console page provides important metrics related to your
account. The following sections describe the messages that might be displayed in this dashboard,
and provide tips and information that you might be able to use to resolve issues related to your
sender reputation.

This section contains information about the following types of notifications:

• Status Messages

• Bounce Rate Notification

• Complaint Rate Notification

• Anti-Spam Organization Notification

• Listbombing Notification

• Direct Feedback Notification

• Domain Blocklist Notification

• Internal Review Notification

• Mailbox Provider Notification

Reputation metrics messages 639

Amazon Simple Email Service Developer Guide

• Recipient Feedback Notification

• Related Account Notification

• Spamtrap Notification

• Vulnerable Site Notification

• Compromised Credentials Notification

• Other Notification

Status Messages

When you use the reputation metrics console page, you see a message describing the status of your
Amazon SES account. The following is a list of possible account status values:

• Healthy – There are no issues currently impacting your account.

• Under review – Your account is under review. If the issues that caused us to place your account
under review aren't resolved by the end of the review period, we might pause your account's
ability to send email.

• Pending end of review decision – Your account is under review. Because of the nature of the
issues that caused us to place your account under review, we need to perform a manual review of
your account before we take any further action.

• Sending paused – We've paused your account's ability to send email. While your account's ability
to send email is paused, you won't be able to send email using Amazon SES. You can request
that we review this decision. To learn more about requesting a review, see Amazon SES Sending
review process FAQs.

• Pending sending pause – Your account is under review. The issues that caused us to place your
account under review haven't been resolved. In this situation, we typically pause your account's
ability to send email. However, because of the nature of your account, we need to review your
account before any further action is taken.

Additionally, the Bounce Rate and Complaint Rate sections of the reputation metrics page display
status summaries for their respective metrics. The following is a list of possible metric status
values:

• Healthy – The metric is within normal levels.

General Status Messages 640

Amazon Simple Email Service Developer Guide

• Almost healed – The metric caused your account to be placed under review. Since the review
period began, the metric has stayed below the maximum rate. If the metric remains below the
maximum rate, the status of this metric changes to Healthy before the review period ends.

• Under review – The metric caused your account to be placed under review, and is still above the
maximum rate. If the issue that caused the metric to exceed the maximum rate is not resolved by
the end of the review period, we might pause your account's ability to send email.

• Sending pause – The metric caused us to pause your account's ability to send email. While
your account's ability to send email is paused, you can't send email using Amazon SES. You can
request that we review this decision. To learn more about submitting a request for review, see
Amazon SES Sending review process FAQs.

• Pending sending pause – The metric caused us to place your account under review. The issues
that caused this review period haven't been resolved. These issues might cause us to pause your
account's ability to send email. A member of the Amazon SES team has to review your account
before we take any further action.

Bounce Rate Notification

This section contains additional information about bounce rate notifications shown in the Amazon
SES reputation metrics page.

Why you received this notification

You received this notification because the bounce rate for your account was too high. The bounce
rate is based on the number of hard bounces generated by your Amazon SES account. Email
providers interpret a high bounce rate as a sign that a sender isn't properly managing their
recipient list, and that the sender might be sending unsolicited email.

A hard bounce occurs when an email is sent to an address that doesn't exist. Amazon SES doesn't
consider soft bounces (which occur when a recipient's address is temporarily unable to receive
messages) in this calculation. Bounced emails that you send to verified addresses and domains,
as well as emails that you send to the Amazon SES inbox simulator, also aren't considered in this
calculation.

We calculate your bounce rate based on a representative volume of email. A representative volume
is an amount of email that represents your typical sending practices. To be fair to both high- and
low-volume senders, the representative volume is different for each account and changes as the
account's sending patterns change.

Bounce Rate Notification 641

Amazon Simple Email Service Developer Guide

For best results, maintain a bounce rate below 5%. Higher bounce rates can impact the delivery
of your emails. If your bounce rate is 5% or greater, we automatically place your account under
review. If your bounce rate is 10% or greater, we might pause your account's ability to send
additional email until you resolve the issue that caused the high bounce rate.

What you can do to resolve the issue

If you haven't done so already, put a process in place to capture and manage bounces and
complaints. All Amazon SES accounts are required to have these processes in place. For more
information, see Email program success metrics.

Next, determine which email addresses are bouncing, and create and implement a plan for
reducing or eliminating these bounces. If your account's ability to send email has already been
paused, sign into the AWS Management Console and go to AWS Support. Reply to the case we
opened on your behalf.

If your account is under review

At the end of the review period, if the bounce rate for your account remains above 10%, we might
pause your account's ability to send email until you resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your response to the
case, describe the changes you implemented. If we agree that the changes will reduce your
bounce rate, we adjust our calculations to only consider bounces received after your changes were
implemented.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you implement changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. Include details of the
actions you have taken to resolve this issue, as well as details of your plans to ensure that this issue
doesn't occur again. After we receive your request, we review the information that you provided
and change the status of your account if necessary.

Bounce Rate Notification 642

Amazon Simple Email Service Developer Guide

Complaint Rate Notification

This section contains additional information about complaint rate notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

You received this notification because the complaint rate for your account was too high. The
complaint rate is based on the number of complaints generated by your Amazon SES account.
Email providers interpret a high complaint rate as a sign that a sender isn't properly managing their
recipient list, and that the sender might be sending unsolicited email.

A complaint occurs when a recipient identifies an email that you sent as spam. This usually
occurs when the recipient uses the Report Spam button in their email client. Complaints that are
generated by emails that you send to the Amazon SES inbox simulator aren't considered in this
calculation.

We calculate your complaint rate based on a representative volume of email. A representative
volume is an amount of email that represents your typical sending practices. To be fair to both
high- and low-volume senders, the representative volume is different for each account and changes
as the account's sending patterns change.

For best results, maintain a complaint rate below 0.1%. Higher complaint rates can impact the
delivery of your emails. If your complaint rate is 0.1% or greater, we automatically place your
account under review. If your complaint rate is 0.5% or greater, we might pause your account's
ability to send additional email until you resolve the issue that caused the high complaint rate.

What you can do to resolve the issue

If you haven't done so already, put a process in place to capture and manage bounces and
complaints. All Amazon SES accounts are required to have these processes in place. For more
information, see Email program success metrics.

Next, determine which messages you are sending that result in complaints, and implement a plan
for reducing these complaints. If your account's ability to send email has already been paused, sign
into the AWS Console and go to Support Center. Reply to the case we opened on your behalf

While you should immediately stop sending to addresses that have complained, it is important that
you identify the factors that are causing recipients to issue complaints. After you identify these
factors, adjust your email sending behaviors to address them.

Complaint Rate Notification 643

Amazon Simple Email Service Developer Guide

If your account is under review

At the end of the review period, if the complaint rate for your account remains above 0.5%, we
might pause your account's ability to send email until you resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your response to the
case, describe the changes you implemented. If we agree that the changes will reduce your
complaint rate, we adjust our calculations to only consider the complaints that were received after
you implemented the changes.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Anti-Spam Organization Notification

This section contains additional information about anti-spam organization notifications shown in
the Amazon SES reputation metrics page.

Why you received this notification

A reputable anti-spam organization has reported that some of the content being sent from your
Amazon SES account has been flagged as unsolicited or problematic by their systems.

We're unable to provide information about the specific messages that caused the anti-spam
organization to flag your content as problematic. We can't provide the name of the organization
that issued the report. Typically, anti-spam organizations consider a combination of the following
factors: recipient feedback, message engagement metrics, attempted deliveries to invalid
addresses, content that is flagged by their spam filters, and spamtrap hits. This isn't an exhaustive
list; other factors might cause these organizations to flag your content.

Anti-Spam Organization Notification 644

Amazon Simple Email Service Developer Guide

What you can do to resolve the issue

To resolve this issue, you need to determine what aspects of your email sending program might
be causing the anti-spam organization to flag your email as problematic. You then need to change
your sending program to address those issues.

If your account is under review

At the end of the review period, if the anti-spam organization continues to identify the email sent
from your account as problematic, we might pause your account's ability to send email until you
resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your message, provide
details of the changes you made. When we receive this information, we will extend the review
period to ensure that we're only analyzing the anti-spam organization notifications we have
received after you implemented your changes. At the end of this extended review period, your
account is no longer listed by the anti-spam organization, we will remove the review period for
your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Listbombing Notification

This section contains additional information about Listbombing notifications shown in the Amazon
SES reputation metrics page.

Why you received this notification

An anti-spam organization has identified that your email-sending processes are vulnerable to
"listbombing." Listbombing is a form of abuse in which an attacker registers a very large number

Listbombing Notification 645

Amazon Simple Email Service Developer Guide

of email addresses on a web-based form. Listbombing can result in service disruptions for users of
impacted email services. It can also result in your email being blocked by email providers.

Anti-spam organizations use proprietary methods to identify sites that are vulnerable to
listbombing. For this reason, we can't provide additional details about the issue that led the anti-
spam organization to identify your email-sending process as problematic. We also can't share the
name of the organization that identified the issue.

What you can do to resolve the issue

You should examine all of your web-based sign-up forms to ensure that they aren't vulnerable
to this kind of abuse. Every form should include a CAPTCHA to prevent automated scripts from
submitting subscription requests. Additionally, when new users sign up for your product or service,
send them an email to confirm that they did, in fact, intend to sign up. Don't send any additional
email to customers unless they explicitly opt in to your communications.

Finally, you should perform a "permission pass" on your email list. In a permission pass, you send an
email to all of your customers asking them if they still want to receive email from you. Only send
email to customers who verify that they want to continue to receive email from you.

If your account is under review

At the end of the review period, if the anti-spam organization continues to identify the email sent
from your account as problematic, we might pause your account's ability to send email until you
resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your message, provide
details of the changes you made. When we receive this information, we will extend the review
period to ensure that we're only analyzing the anti-spam organization notifications we have
received after you implemented your changes. At the end of this extended review period, your
account is no longer listed by the anti-spam organization, we will remove the review period for
your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details

Listbombing Notification 646

Amazon Simple Email Service Developer Guide

of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Direct Feedback Notification

This section contains additional information about direct feedback notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

A significant number of users have contacted Amazon SES directly to report messages that they
received from an address or domain associated with your Amazon SES account. This type of
feedback isn't visible in the complaints reported by mailbox providers directly, and isn't included in
the bounce and complaint metrics shown on the reputation metrics page.

To protect the privacy of the users who reported these issues, we can't provide their email
addresses.

Recipients can complain to Amazon SES when they receive messages that they didn't sign up to
receive, when they don't receive the type of mail they expected to receive, when they don't find
the email they receive to be useful or interesting, when they don't recognize that the messages
are something that they signed up for, or when they are receiving too many messages. This list
isn't exhaustive; the factors that are relevant in your case depend on your specific email sending
program.

What you can do to resolve the issue

We recommend that you implement a double opt-in strategy, as described in Building and
maintaining your lists, for acquiring new addresses, and that you only send email to addresses that
complete the double opt-in process.

Additionally, you should purge your lists of addresses that haven't interacted with your emails
recently. You can use open and click tracking, as described in Monitoring your Amazon SES sending
activity, to determine which users are viewing and interacting with the content you send.

If your account is under review

At the end of the review period, if Amazon SES continues to receive a significant number of direct
complaints about messages sent from your account, we might pause your account's ability to send
email until you resolve the issue.

Direct Feedback Notification 647

Amazon Simple Email Service Developer Guide

If you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Provide detailed
information about the steps you've taken to resolve the issue, and describe how these steps
prevent the issue from happening again in the future. If we agree that the changes you've made
appropriately address the issue, we cancel the review period on your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Domain Blocklist Notification

This section contains additional information about domain blocklist notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

Emails sent from your Amazon SES account contain references to domains that have been listed
on a reputable Domain Blocklist. Domains on these lists are typically associated with abusive or
malicious behavior. The domains in question might or might not be the domains from which you
are sending email. Messages that include references or links to a domain on a blocklist, or that
include images hosted on such a domain, might also be flagged.

We're unable to provide the names of the domains that are causing your messages to be flagged,
or to identify which emails were flagged in this way.

What you can do to resolve the issue

First, create a list of all of the domains referenced in the emails you send through Amazon SES.
Next, use the Spamhaus Domain Lookup tool to determine which domains in your email are on
the domain blocklist. More than one domain referenced in the emails you send might be on this
blocklist.

Domain Blocklist Notification 648

https://www.spamhaus.org/lookup/

Amazon Simple Email Service Developer Guide

The Spamhaus Domain Blocklist isn't affiliated with Amazon SES or AWS. We make no guarantees
about the accuracy of the domains on this list. The Spamhaus Domain Blocklist and Domain
Lookup Tool are owned, operated, and maintained by the Spamhaus Project.

If your account is under review

We look for references to domains that have been used for malicious purposes in the emails that
you send during the review period. If your emails still contain a significant number of references to
these domains, we might pause your account's ability to send email until you resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your message, provide
details of the changes you made. When we receive this information, we extend the review period
to ensure that we're only analyzing the number of blocklisted domains present in your email after
you put your changes in place. At the end of this extended review period, if the number of domain
blocklist notifications has been reduced or eliminated, and we believe that you've taken steps to
prevent this issue from occurring again in the future, we cancel the review period for your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Internal Review Notification

This section contains additional information about internal review notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

A comprehensive review of your account identified several characteristics that may cause mailbox
providers or recipients to identify your messages as spam.

To protect our abuse detection process, we can't reveal the specific factors that led to your account
being flagged in this way.

Internal Review Notification 649

https://www.spamhaus.org/

Amazon Simple Email Service Developer Guide

Common factors that can lead to this determination include the following:

• Messages being flagged by commercial anti-spam systems.

• Message content that implies the recipient hasn't explicitly requested the email.

• Mismatches between the message sender and the branding within the email body.

• Content that doesn't make it obvious who the sender is.

• Sending messages that deal with content that is associated with unsolicited email.

• Formatting patterns associated with unsolicited email.

• Sending from or making reference to domains with poor reputations.

This isn't a comprehensive list. The specific reason for this notification might be a combination of
any of these factors, or the reason might be something not listed.

What you can do to resolve the issue

The following suggestions might help reduce the severity of the issue:

• Ensure that the only recipients you are contacting are those who have explicitly asked to receive
email from you.

• Never purchase, rent, or borrow lists of email recipients.

• Don't attempt to hide your identity or the purpose of your communication in the messages you
send.

• Create a list of all of the domains referenced in the emails you send through Amazon SES,
and then use the Spamhaus Domain Lookup tool at https://www.spamhaus.org/lookup/ to
determine if any of those domains are on the Spamhaus Domain Blocklist.

• Ensure that you are following industry best practices when designing your emails.

This list isn't exhaustive, but it should help you identify some of the most common factors that
might lead to your email being flagged.

The Spamhaus Domain Blocklist isn't affiliated with Amazon SES or AWS. We make no guarantees
about the accuracy of the domains on this list. The Spamhaus Domain Blocklist and Domain
Lookup Tool are owned, operated, and maintained by the Spamhaus Project.

Internal Review Notification 650

https://www.spamhaus.org/lookup/
https://www.spamhaus.org/

Amazon Simple Email Service Developer Guide

If your account is under review, or if your account's ability to send email is paused

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Provide detailed
information about the steps you've taken to resolve the issue, and describe how these steps
prevent the issue from happening again in the future. If we agree that the changes you've made
appropriately address the issue, we cancel the review period or remove the sending pause from
your account.

If we remove a review period or sending pause from your account, and we observe the same issue
at a later time, we might place your account under review or pause your ability to send email again.
In extreme cases, or if we observe repeated instances of the same issue, we might permanently
suspend your account's ability to send email.

See Amazon SES Sending review process FAQs for more information about what to do if your
account is under review, or your account's ability to send email is paused.

Mailbox Provider Notification

This section contains additional information about mailbox provider notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

A major mailbox provider has reported to us that unsolicited or malicious email is being sent from
an address or domain associated with your Amazon SES account.

We can't share the identity of the organization that issued this report. Additionally, we don't
have information about the specific factors that caused the mailbox provider to issue the report.
Typically, mailbox providers make this kind of determination based on customer feedback,
customer engagement metrics, attempted deliveries to invalid addresses, and content that is
flagged by spam filters. This list isn't exhaustive; there might be other factors that caused the
mailbox provider to flag your content.

What you can do to resolve the issue

To resolve this issue, you need to determine which aspects of your email sending program might
have caused mailbox providers to flag your mail as being problematic. You must then change your
sending program to address those issues.

Mailbox Provider Notification 651

Amazon Simple Email Service Developer Guide

If your account is under review

At the end of the review period, if the mailbox provider continues to identify the email sent from
your account as being problematic, we might pause your account's ability to send email until you
resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your message, provide
details of the changes you made. When we receive this information, we will extend the review
period to ensure that we're only analyzing the number of mailbox provider notifications we receive
after you implement your changes. At the end of this extended review period, if the mailbox
provider no longer reports your account as being problematic, we might remove the review from
your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Recipient Feedback Notification

This section contains additional information about recipient feedback notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

A major mailbox provider has reported to us that large numbers of their users are reporting
mail sent from your Amazon SES account as unsolicited. This type of feedback isn't visible in the
complaints reported by mailbox providers directly, and isn't included in the Amazon SES bounce
and complaint notifications.

A large number of complaints can have a negative impact on all Amazon SES users. To protect your
reputation and that of other Amazon SES customers, we take immediate action when an account
receives a certain number of complaints.

Recipient Feedback Notification 652

Amazon Simple Email Service Developer Guide

We are unable to provide a list of the specific email addresses that are reporting your email as
unsolicited. Additionally, we're unable to share the name of the mailbox provider that has reported
this issue to us.

What you can do to resolve the issue

To resolve this issue, you need to determine which aspects of your email sending program might be
causing your recipients to issue complaints against the email messages they receive from you. After
you identify these factors, change your email sending practices to correct them.

To acquire new addresses, we recommend that you implement a double opt-in strategy, as
described in Building and maintaining your lists. We recommend that you only send email to
addresses that have completed the double opt-in process.

Additionally, you should purge your lists of addresses that haven't interacted with your emails
recently. You can use open and click tracking, as described in Monitoring your Amazon SES sending
activity, to determine which users are viewing and interacting with the content you send.

If your account is under review

At the end of the review period, if the mailbox provider continues to report a significant number of
complaints, we might pause your account's ability to send email until you resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your message, provide
details of the changes you made. When we receive this information, we extend the review period
to ensure that we're only analyzing the number of mailbox provider complaints that we receive
after you implement your changes. At the end of this extended review period, if the number of
mailbox provider complaints has been reduced or eliminated, we might remove the review from
your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that

Recipient Feedback Notification 653

Amazon Simple Email Service Developer Guide

this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Related Account Notification

This section contains additional information about related account notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

We have detected serious problems related to emails sent from another Amazon SES account. We
believe that the problematic account is related to your AWS account, so we have taken action to
avoid similar problems.

What you can do to resolve the issue

When we pause an account's ability to send email, we always send information about the reasons
for the sending pause to the owner of that account. Refer to the email we sent to the owner of the
related account for more information.

You should address the issues with the related account first. After you implement changes that
you believe will resolve the issue, sign into the AWS Console and go to Support Center. Reply to
the case we opened on your behalf. Provide detailed information about the steps you've taken
to resolve the issue, and describe how these steps prevent the issue from happening again in the
future. If we agree that the changes you've made appropriately address the issue, we cancel the
review period or remove the sending pause from your account.

Spamtrap Notification

This section contains additional information about spamtrap notifications shown in the Amazon
SES reputation metrics page.

Why you received this notification

A third-party anti-spam organization has reported to us that their spamtrap addresses recently
received email from a verified address or domains associated with your Amazon SES account.

A spamtrap is a dormant email address that is used exclusively to lure unsolicited email (spam). A
large number of spamtrap reports can have a negative impact on all Amazon SES users. To protect
your reputation and that of other Amazon SES customers, we take immediate action when an
account sends a particular volume of email to spamtrap addresses.

Related Account Notification 654

Amazon Simple Email Service Developer Guide

What you can do to resolve the issue

We can't reveal the email addresses associated with the spamtrap you encountered. These
addresses are closely guarded by the organizations that own them, and once the addresses are
known, they become worthless.

Sending email to spamtrap addresses typically indicates that there is an issue with how you acquire
your customers' email addresses. For example, purchased lists of email addresses can contain
spamtrap addresses, which is why sending to purchased or rented lists is prohibited by the Amazon
SES terms of service. To acquire new addresses, we recommend that you implement a double opt-
in strategy, as described in Building and maintaining your lists. We recommend that you only send
email to addresses that have completed the double opt-in process.

Additionally, you should purge your lists of addresses that haven't interacted with your emails
recently. You can use open and click tracking, as described in Monitoring your Amazon SES sending
activity, to determine which users are viewing and interacting with the content you send.

If your account is under review

At the end of the review period, if messages are still being sent to spamtrap addresses from your
account, we might pause your account's ability to send email until you resolve the issue.

If you have implemented changes that you believe will resolve the issue, sign into the AWS Console
and go to Support Center. Reply to the case we opened on your behalf. In your message, provide
details of the changes you made. When we receive this information, we extend the review period to
ensure that we're only analyzing the number of spamtrap reports we receive after you implement
your changes. At the end of this extended review period, if the number of spamtrap reports has
been reduced or eliminated, we might remove the review from your account.

If your account's ability to send email is paused

You can request that we reconsider this decision. For more information, see Amazon SES Sending
review process FAQs.

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

Spamtrap Notification 655

Amazon Simple Email Service Developer Guide

Vulnerable Site Notification

This section contains additional information about vulnerable site notifications shown in the
Amazon SES reputation metrics page.

Why you received this notification

A comprehensive review has found that messages are being sent from your account that we don't
believe you intended to send. These messages are highly likely to be flagged as spam by mailbox
providers and recipients.

Most often in these situations, a third party is abusing a feature of your website to send unwanted
email. For example, if your website contains an "email to a friend," "contact us," "invite a friend," or
similar feature, a third party can use that feature to send unsolicited email.

What you can do to resolve the issue

First, identify features of your website or applications that might allow third parties to send emails
using Amazon SES without your knowledge. In your Support Center case, you can request a sample
of the messages we believe were sent in this manner.

Next, modify your application or website to prevent unsolicited sending. For example, add a
CAPTCHA, limit the rate at which emails can be sent, remove the ability of users to submit custom
content, require users to log in to send email, and remove the ability for the application to
generate multiple simultaneous notifications.

If your account is under review, or if your account's ability to send email is paused

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

If we remove a review period or sending pause from your account, and we observe the same issue
later, we might place your account under review or pause your ability to send email again. If we
observe extreme issues or repeated instances of the same issue, we might permanently suspend
your account's ability to send email.

See Amazon SES Sending review process FAQs for more information about what to do if your
account is under review, or your account's ability to send email is paused.

Vulnerable Site Notification 656

Amazon Simple Email Service Developer Guide

Compromised Credentials Notification

This section contains additional information about compromised credentials site notifications
shown in the Amazon SES reputation metrics page.

Why you received this notification

A comprehensive review has found that messages are being sent from your account that we don't
believe you intended to send. These messages are highly likely to be flagged as spam by mailbox
providers and recipients.

Some common causes are compromised IAM access keys, compromised SMTP passwords, or other
security vulnerabilities.

What you can do to resolve the issue

You should perform a comprehensive security review of your SES utilization mechanisms.
Ensure that you have rotated any applicable or SMTP passwords and that you have removed any
unauthorized users or resources from your account. Ensure that you are not storing sensitive
information such as passwords or access keys on third party web sites or repositories. It is now
recommended that you don't use IAM access keys for users, and never for the root user. If you are
still using them, you should migrate them over to mechanisms that provide temporary credentials
such as creating an user in AWS IAM Identity Center.

If your account is under review, or if your account's ability to send email is paused

When you have implemented changes that you believe will resolve the issue, sign into the AWS
Console and go to Support Center. Reply to the case we opened on your behalf. Include details
of the actions you have taken to resolve this issue, as well as details of your plans to ensure that
this issue doesn't occur again. After we receive your request, we review the information that you
provided and change the status of your account if necessary.

If we remove a review period or sending pause from your account, and we observe the same issue
later, we might place your account under review or pause your ability to send email again. If we
observe extreme issues or repeated instances of the same issue, we might permanently suspend
your account's ability to send email.

See Amazon SES Sending review process FAQs for more information about what to do if your
account is under review, or your account's ability to send email is paused.

Compromised Credentials Notification 657

Amazon Simple Email Service Developer Guide

Other Notification

This section contains additional information about other notifications shown in the Amazon SES
reputation metrics page.

Why you received this notification

An automatic or human review has identified issues that aren't listed in the previous sections of
this document.

What you can do to resolve the issue

Refer to the Support Center case that we opened on your behalf for details on the specific issue. To
access Support Center, sign into the AWS Management Console and then choose Support Center.
In your response to the case, describe the changes you implemented. Depending on your specific
situation and the nature of the issues we discovered, we might end the review period or restore
your account's ability to send email.

Creating reputation monitoring alarms using CloudWatch

Amazon SES automatically publishes a series of reputation-related metrics to Amazon CloudWatch.
You can use these metrics to create alarms that notify you when your bounce or complaint rates
reach levels that could impact your account's ability to send email.

Note

The CloudWatch portion of the procedures in this section are intended to just present
the core steps for setting up a CloudWatch alarm to monitor your SES sender reputation.
They don't explore advanced configurations regarding optional settings for CloudWatch
alarms. For complete information about configuring CloudWatch alarms, see Using Amazon
CloudWatch alarms in the Amazon CloudWatch User Guide.

Prerequisites

• Create an Amazon SNS topic, and then subscribe to it using your preferred endpoint (such as
email or SMS). For more information, see Creating an Amazon SNS topic and Subscribing to an
Amazon SNS topic in the Amazon Simple Notification Service Developer Guide.

Other Notification 658

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-subscribe-endpoint-to-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-subscribe-endpoint-to-topic.html

Amazon Simple Email Service Developer Guide

• If you've never sent an email in the current Region, you might not see the SES namespace. To
ensure that you have metrics, send a test email to the mailbox simulator.

To create a CloudWatch alarm to monitor sending reputation

1. Sign in to the AWS Management Console and open the Amazon SES console at https://
console.aws.amazon.com/ses/.

2. In the navigation pane on the left side of the screen, choose Reputation metrics.

3. On the Reputation metrics page under the Account-level tab, in either the Bounce rate or
Complaint rate pane, choose View in CloudWatch - this will open the CloudWatch console
with your chosen metric.

4. Under the Graphed metrics tab, on the line of your chosen metric, for this example,
Reputation.BounceRate, choose the alarm bell icon in the Actions column (see image below) -
this will open the Specify metric and conditions page.

5. Scroll down to the Conditions pane, and choose Static in the Threshold type field.

a. In the Whenever metric is... field, choose Greater/Equal.

b. In the than... field, specify the value that should cause CloudWatch to raise an alarm.

• If you're creating an alarm to monitor your bounce rate, note that Amazon SES
recommends that you maintain a bounce rate under 5%. If the bounce rate for your

Creating alarms using CloudWatch 659

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

account is greater than 10%, we might pause your account's ability to send email. For
this reason, you should configure CloudWatch to send you a notification when the
bounce rate for your account is greater than or equal to 0.05 (5%).

• If you're creating an alarm to monitor your complaint rate, note that Amazon SES
recommends that you maintain a complaint rate under 0.1%. If the complaint rate for
your account is greater than 0.5%, we might pause your account's ability to send email.
For this reason, you should configure CloudWatch to send you a notification when the
complaint rate for your account is greater than or equal to 0.001 (0.1%).

c. Expand Additional configuration and choose Treat missing data as ignore (maintain the
alarm state) in the Missing data treatment field.

d. Choose Next.

6. On the Configure actions pane, choose In Alarm in the Alarm state trigger field.

a. Choose Select an existing SNS topic in the Select an SNS topic field.

b. Choose the topic that you created and subscribed to in the prerequisites in the Send a
notification to... search box.

c. Choose Next.

7. On the Add name and description pane, enter a name and description for the alarm, and then
choose Next.

8. On the Preview and create pane, confirm your settings, and if satisfied, choose Create alarm.
If there's something you'd like to change, select the Previous button for each section you'd like
to go back to and edit.

SNDS metrics for dedicated IPs

You can view Smart Network Data Services (SNDS) data for leased dedicated IP addresses in
each AWS Region where you use Amazon SES. This SNDS data is available through the Amazon
CloudWatch console.

SNDS is an Outlook program that allows IP owners to help prevent spam within their IP space.
Amazon SES provides this important data for those who lease dedicated IPs. The SNDS data
provides insight into the IP’s mail sending behavior and calls out areas of concern for your sender
reputation.

SNDS metrics for dedicated IPs 660

Amazon Simple Email Service Developer Guide

Note

When referring to Outlook, this covers all the domains they track. For example, this can
cover Hotmail.com, Outlook.com, and Live.com.

To view SNDS data for your dedicated IP addresses

1. Sign in to the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, expand Metrics and choose All metrics.

(Directions are given for the new CloudWatch console interface.)

3. Under the Browse tab in the Metrics container, select your AWS Region, then choose SES.

4. Choose IP Metrics which will show you all of your dedicated IPs tracked by SNDS.

(Note: if there are no dedicated IP addresses associated with your account in the selected region, IP
Metrics will not appear in the CloudWatch console.)

5. View all of your dedicated IPs tracked by SNDS in this list, or select an individual IP address to
view only its metrics.

The following metrics are provided for each dedicated IP address and defined by Outlook. For more
information, see Outlook’s SNDS FAQs.

Note

These metrics represent an activity period that provides updated data once a day. The
metrics also have a corresponding timestamp, which reflects a 24-hour period.

• SNDS.RCPTCommands - This is the number of RCPT commands perceived by SNDS for the
specific IP address during the activity period. RCPT commands are part of the SMTP protocol
used to send mail, which specifies the recipient address to which you are trying to deliver email.

• SNDS.DATACommands - The number of DATA commands perceived by SNDS for the specific IP
address during the activity period. DATA commands are part of the SMTP protocol used to send
mail, specifically that part which actually transmits the message to the previously established
intended recipient(s).

SNDS metrics for dedicated IPs 661

https://console.aws.amazon.com/cloudwatch/
https://sendersupport.olc.protection.outlook.com/snds/FAQ.aspx#DataProvided

Amazon Simple Email Service Developer Guide

• SNDS.MessageRecipients - The number of recipients on messages perceived by SNDS for the
specific IP address during the activity period.

• SNDS.SpamRate - Displays the aggregate results of the spam filtering applied to all messages
sent by the IP address during the given activity period.

• A SpamRate of 0 means the IP address has less than 10% spam.

• A SpamRate of 0.5 means that between 10% and 90% spam is generated from the IP address.

• A SpamRate of 1 means 90% or more spam is generated from the IP address.

• SNDS.ComplaintRate - This is the fraction of the time that a message received from the IP is
complained about by an Outlook user during the activity period.

• A ComplaintRate of 1 means a 100% complaint rate.

• A ComplaintRate of 0.05 would mean a 5% complaint rate, for example.

• A ComplaintRate of 0 means the rate is less than 0.1%.

• SNDS.TrapHits - Displays the number of messages sent to "trap accounts." Trap accounts are
accounts maintained by Outlook that don't solicit any mail. Thus, any messages sent to trap
accounts are very likely to be spam.

Troubleshooting questions

Q1. Why does data not populate every day? Either of the following scenarios could apply:

• SNDS data is dependent on Outlook’s SNDS program.

• There is a minimum threshold of emails SNDS needs to receive to calculate a value. Data may not
be available at times where email volume on an IP was low.

Q2. Why are the SNDS.SpamRate and SNDS.ComplaintRate metrics changing, and what do I do
if the rate changes to a value of 1?

This is an indicator that something in your sending behavior has triggered a negative response
from the Outlook SNDS program. In this case, you want to check other Internet Service Providers
(ISPs) as well as your engagement numbers to make sure it isn’t a global problem. If it is a global
problem, you may see issues with multiple ISPs, which would suggest a list, content, distribution, or
permissions problem. If it is specific to Outlook, review how to best deliver to Outlook.

Q3. What actions will AWS Support take if my SNDS.SpamRate changes from a value of 0 (or
0.5) to 1?

Troubleshooting questions 662

https://sendersupport.olc.protection.outlook.com/pm/

Amazon Simple Email Service Developer Guide

AWS does not have any control over SNDS and therefore has no influence over SNDS. All mitigation
requests need to filed directly with Outlook via their New support request form.

Automatically pausing email sending

To protect your sender reputation, you can temporarily pause email sending for messages sent
using specific configuration sets, or for all messages sent from your Amazon SES account in a
specific AWS Region.

By using Amazon CloudWatch and Lambda, you can create a solution that automatically pauses
your email sending when your reputation metrics (such as bounce rate or complaint rate) exceed
certain thresholds. This topic contains procedures for setting up this solution.

Topics in this section:

• Automatically pausing email sending for your entire Amazon SES account

• Automatically pausing email sending for a configuration set

Automatically pausing email sending for your entire Amazon SES
account

The procedures in this section explain the steps to set up Amazon SES, Amazon SNS, Amazon
CloudWatch, and AWS Lambda to automatically pause email sending for your Amazon SES account
in a single AWS Region. If you send email from multiple regions, repeat the procedures in this
section for each region in which you want to implement this solution.

Topics in this section:

• Part 1: Create an IAM Role

• Part 2: Create the Lambda Function

• Part 3: Re-Enable Email Sending for Your Account

• Part 4: Create an Amazon SNS Topic and Subscription

• Part 5: Create a CloudWatch Alarm

• Part 6: Test the solution

Automatically pausing email sending 663

https://support.microsoft.com/en-us/supportrequestform/8ad563e3-288e-2a61-8122-3ba03d6b8d75

Amazon Simple Email Service Developer Guide

Part 1: Create an IAM Role

The first step in configuring automatic pausing of email sending is to create an IAM role that can
execute the UpdateAccountSendingEnabled API operation.

To create the IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. On the Select trusted entity page, choose AWS service for the Trusted entity type.

5. Under Use case, choose Lambda, then choose Next.

6. On the Add permissions page, choose the following policies:

• AWSLambdaBasicExecutionRole

• AmazonSESFullAccess

Tip

Use the search box under Permission policies to quickly locate these policies, but note
that after searching for and selecting the first policy, you must choose Clear filters
before searching and selecting the second policy.

Then choose Next.

7. On the Name, review, and create page, under Role details, enter a meaningful name for the
policy in the Role name field.

8. Verify that the two policies you selected are listed in the Permissions policy summary table,
then choose Create role.

Part 2: Create the Lambda Function

After you create an IAM role, you can create the Lambda function that pauses email sending for
your account.

For your entire account 664

https://console.aws.amazon.com/iam/

Amazon Simple Email Service Developer Guide

To create the Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Use the region selector to choose the region in which you want to deploy this Lambda
function.

Note

This function only pauses email sending in the AWS Region you select in this step. If
you send email from more than one region, repeat the procedures in this section for
each region in which you want to automatically pause email sending.

3. Choose Create function.

4. Under Create function, choose Author from scratch.

5. Under Basic information, complete the following steps:

• For Function name, type a name for the Lambda function.

• For Runtime, choose Node.js 18x (or the version currently offered in the select list).

• For Architecture, keep the preselected default, x86_64.

• Under Permissions, expand Change default execution role and choose Use an existing role.

• Click inside the Existing role list box, and choose the IAM role you created in the section
called “Part 1: Create an IAM Role”.

Then choose Create function.

6. Under Code source, in the code editor, paste the following code:

'use strict';

const { SES } = require("@aws-sdk/client-ses")

// Create a new SES object.

var ses = new SES({});

// Specify the parameters for this operation. In this case, there is only one
// parameter to pass: the Enabled parameter, with a value of false
// (Enabled = false disables email sending, Enabled = true enables it).

For your entire account 665

https://console.aws.amazon.com/lambda/

Amazon Simple Email Service Developer Guide

var params = {
 Enabled: false
};

exports.handler = (event, context, callback) => {
 // Pause sending for your entire SES account
 ses.updateAccountSendingEnabled(params, function(err, data) {
 if(err) {
 console.log(err.message);
 } else {
 console.log(data);
 }
 });
};

Then choose Deploy.

7. Choose Test. If the Configure test event window appears, type a name in the Event name
field, and then choose Save.

8. Expand the Test drop box and select the name of the event you just created, and then choose
Test.

9. The Execution results tab will appear - just below it and to the right, ensure that Status:
Succeeded is displayed. If the function failed to execute, do the following:

• Verify that the IAM role you created in the section called “Part 1: Create an IAM Role”
contains the correct policies.

• Verify that the code in the Lambda function does not contain any errors. The Lambda code
editor automatically highlights syntax errors and other potential issues.

Part 3: Re-Enable Email Sending for Your Account

A side effect of testing the Lambda function in the section called “Part 2: Create the Lambda
Function” is that email sending for your Amazon SES account is paused. In most cases, you do not
want to pause sending for your account until the CloudWatch alarm is triggered.

The procedures in this section re-enable email sending for your Amazon SES account. To complete
these procedures, you must install and configure the AWS Command Line Interface. For more
information, see the AWS Command Line Interface User Guide.

For your entire account 666

https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

To re-enable email sending

1. At the command line, type the following command to re-enable email sending for your
account. Replace sending_region with the name of the Region in which you want to re-
enable email sending.

aws ses update-account-sending-enabled --enabled --region sending_region

2. At the command line, type the following command to check the email sending status for your
account:

aws ses get-account-sending-enabled --region sending_region

If you see the following output, then you have successfully re-enabled email sending for your
account:

{
 "Enabled": true
}

Part 4: Create an Amazon SNS Topic and Subscription

For CloudWatch to execute your Lambda function when an alarm is triggered, you must first create
an Amazon SNS topic and subscribe the Lambda function to it.

To create the Amazon SNS topic and subscribe the Lambda function to it

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. Create a topic by following the steps in the Amazon Simple Notification Service Developer
Guide.

• The Type must be Standard (not FIFO).

3. Subscribe to the topic by following the steps in the Amazon Simple Notification Service
Developer Guide.

a. For Protocol choose AWS Lambda.

b. For Endpoint, choose the Lambda function you created in the section called “Part 2:
Create the Lambda Function”.

For your entire account 667

https://console.aws.amazon.com/sns/v3/home
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html

Amazon Simple Email Service Developer Guide

Part 5: Create a CloudWatch Alarm

This section contains procedures for creating an alarm in CloudWatch that is triggered when a
metric reaches a certain threshold. When the alarm is triggered, it delivers a notification to the
Amazon SNS topic you created in the section called “Part 4: Create an Amazon SNS Topic and
Subscription”, which then executes the Lambda function you created in the section called “Part 2:
Create the Lambda Function”.

To create a CloudWatch alarm

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Use the region selector to choose the region in which you want to automatically pause email
sending.

3. In the navigation pane, choose Alarms.

4. Choose Create Alarm.

5. On the Create Alarm window, under SES Metrics, choose Account Metrics.

6. Under Metric Name, choose one of the following options:

• Reputation.BounceRate – Choose this metric if you want to pause email sending for your
account when the overall hard bounce rate for your account crosses a threshold that you
define.

• Reputation.ComplaintRate – Choose this metric if you want to pause email sending for
your account when the overall complaint rate for your account crosses a threshold that you
define.

Choose Next.

7. Complete the following steps:

• Under Alarm Threshold, for Name, type a name for the alarm.

• Under Whenever: Reputation.BounceRate or Whenever: Reputation.ComplaintRate,
specify the threshold that causes the alarm to trigger.

Note

Your account is automatically placed under review if your bounce rate exceeds 10%,
or if your complaint rate exceeds .5%. When you specify the bounce or complaint

For your entire account 668

https://console.aws.amazon.com/cloudwatch/

Amazon Simple Email Service Developer Guide

rate that causes the CloudWatch alarm to trigger, we recommend that you use
values that are below these rates to prevent your account from being placed under
review.

• Under Actions, for Whenever this alarm, choose State is ALARM. For Send notification to,
choose the Amazon SNS topic you created in the section called “Part 4: Create an Amazon
SNS Topic and Subscription”.

Choose Create Alarm.

Part 6: Test the solution

You can now test the alarm to ensure that it executes the Lambda function when it enters the
ALARM state. You can use the SetAlarmState API operation to temporarily change the state of
the alarm.

The procedures in this section are optional, but we recommend that you complete them to ensure
that the entire solution is configured correctly.

1. At the command line, type the following command to check the email sending status for your
account. Replace region with the name of the Region.

aws ses get-account-sending-enabled --region region

If sending is enabled for your account, you see the following output:

{
 "Enabled": true
}

2. At the command line, type the following command to temporarily change the alarm state to
ALARM: aws cloudwatch set-alarm-state --alarm-name MyAlarm --state-value ALARM --
state-reason "Testing execution of Lambda function" --region region

Replace MyAlarm in the preceding command with the name of the alarm you created in the
section called “Part 5: Create a CloudWatch Alarm”, and replace region with the Region in
which you want to automatically pause email sending.

For your entire account 669

Amazon Simple Email Service Developer Guide

Note

When you execute this command, the status of the alarm switches from OK to ALARM
and back to OK within a few seconds. You can view these status changes on the
alarm's History tab in the CloudWatch console, or by using the DescribeAlarmHistory
operation.

3. At the command line, type the following command to check the email sending status for your
account.

aws ses get-account-sending-enabled --region region

If the Lambda function executed successfully, you see the following output:

{
 "Enabled": false
}

4. Complete the steps in the section called “Part 3: Re-Enable Email Sending for Your Account” to
re-enable email sending for your account.

Automatically pausing email sending for a configuration set

You can configure Amazon SES to export reputation metrics that are specific to emails that are sent
using a specific configuration set to Amazon CloudWatch. You can then use these metrics to create
CloudWatch alarms that are specific to these configuration sets. When these alarms exceed certain
thresholds, you can automatically pause the sending of emails that use the specified configuration
sets, without impacting the overall email sending capabilities of your Amazon SES account.

Note

The solution described in this section pauses email sending for a specific configuration set
in a single AWS Region. If you send email from multiple regions, repeat the procedures in
this section for each region in which you want to implement this solution.

Topics in this section:

For a configuration set 670

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarmHistory.html

Amazon Simple Email Service Developer Guide

• Part 1: Enable Reputation Metric Reporting for the Configuration Set

• Part 2: Create an IAM Role

• Part 3: Create the Lambda Function

• Part 4: Re-Enable Email Sending for the Configuration Set

• Part 5: Create an Amazon SNS Topic

• Part 6: Create a CloudWatch Alarm

• Part 7: Test the solution

Part 1: Enable Reputation Metric Reporting for the Configuration Set

Before you can configure Amazon SES to automatically pause email sending for a configuration set,
you must first enable the export of reputation metrics for the configuration set.

To enable the export of bounce and complaint metrics for the configuration set, complete the
steps in the section called “View and export reputation metrics”.

Part 2: Create an IAM Role

The first step in configuring automatic pausing of email sending is to create an IAM role that can
execute the UpdateConfigurationSetSendingEnabled API operation.

To create the IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Under Select type of trusted entity, choose AWS service.

5. Under Choose the service that will use this role, choose Lambda. Choose Next: Permissions.

6. On the Attach permissions policies page, choose the following policies:

• AWS LambdaBasicExecutionRole

• AmazonSESFullAccess

For a configuration set 671

https://console.aws.amazon.com/iam/

Amazon Simple Email Service Developer Guide

Tip

Use the search box at the top of the list of policies to quickly locate these policies.

Choose Next: Review.

7. On the Review page, for Name, type a name for the role. Choose Create role.

Part 3: Create the Lambda Function

After you create an IAM role, you can create the Lambda function that pauses email sending for the
configuration set.

To create the Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Use the region selector to choose the region in which you want to deploy this Lambda
function.

Note

This function only pauses email sending for configuration sets in the AWS Region you
select in this step. If you send email from more than one region, repeat the procedures
in this section for each region in which you want to automatically pause email sending.

3. Choose Create function.

4. Under Create function, choose Author from scratch.

5. Under Author from scratch, complete the following steps:

• For Name, type a name for the Lambda function.

• For Runtime, choose Node.js 14x (or the version currently offered in the select list).

• For Role, choose Choose an existing role.

• For Existing role, choose the IAM role you created in the section called “Part 2: Create an
IAM Role”.

For a configuration set 672

https://console.aws.amazon.com/lambda/

Amazon Simple Email Service Developer Guide

Choose Create function.

6. Under Function code, in the code editor, paste the following code:

'use strict';

var aws = require('aws-sdk');

// Create a new SES object.
var ses = new aws.SES();

// Specify the parameters for this operation. In this example, you pass the
// Enabled parameter, with a value of false (Enabled = false disables email
// sending, Enabled = true enables it). You also pass the ConfigurationSetName
// parameter, with a value equal to the name of the configuration set for
// which you want to pause email sending.
var params = {
 ConfigurationSetName: ConfigSet,
 Enabled: false
};

exports.handler = (event, context, callback) => {
 // Pause sending for a configuration set
 ses.updateConfigurationSetSendingEnabled(params, function(err, data) {
 if(err) {
 console.log(err.message);
 } else {
 console.log(data);
 }
 });
};

Replace ConfigSet in the preceding code with the name of the configuration set. Choose
Save.

7. Choose Test. If the Configure test event window appears, type a name in the Event name
field, and then choose Create.

8. Ensure that the notification bar at the top of the page says Execution result:
succeeded. If the function failed to execute, do the following:

For a configuration set 673

Amazon Simple Email Service Developer Guide

• Verify that the IAM role you created in the section called “Part 2: Create an IAM Role”
contains the correct policies.

• Verify that the code in the Lambda function does not contain any errors. The Lambda code
editor automatically highlights syntax errors and other potential issues.

Part 4: Re-Enable Email Sending for the Configuration Set

A side effect of testing the Lambda function in the section called “Part 3: Create the Lambda
Function” is that email sending for the configuration set is paused. In most cases, you do not want
to pause sending for the configuration set until the CloudWatch alarm is triggered.

The procedures in this section re-enable email sending for your configuration set. To complete
these procedures, you must install and configure the AWS Command Line Interface. For more
information, see the AWS Command Line Interface User Guide.

To re-enable email sending

1. At the command line, type the following command to re-enable email sending for the
configuration set:

aws ses update-configuration-set-sending-enabled \
--configuration-set-name ConfigSet \
--enabled

In the preceding command, replace ConfigSet with the name of the configuration set for
which you want to pause email sending.

2. At the command line, type the following command to ensure that email sending is enabled:

aws ses describe-configuration-set \
--configuration-set-name ConfigSet \
--configuration-set-attribute-names reputationOptions

The command produces output that resembles the following example:

{
 "ConfigurationSet": {
 "Name": "ConfigSet"
 },

For a configuration set 674

https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Email Service Developer Guide

 "ReputationOptions": {
 "ReputationMetricsEnabled": true,
 "SendingEnabled": true
 }
}

If the value of SendingEnabled is true, then email sending for the configuration set was
successfully re-enabled.

Part 5: Create an Amazon SNS Topic

For CloudWatch to execute the Lambda function when an alarm is triggered, you must first create
an Amazon SNS topic and subscribe the Lambda function to it.

To create the Amazon SNS topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. Use the region selector to choose the region in which you want to automatically pause email
sending.

3. In the navigation pane, choose Topics.

4. Choose Create new topic.

5. On the Create new topic window, for Topic name, type a name for the topic. Optionally, you
can type a more descriptive name in the Display name field.

Choose Create topic.

6. In the list of topics, check the box next to the topic you created in the previous step. On the
Actions menu, choose Subscribe to topic.

7. On the Create subscription window, make the following selections:

• For Protocol, choose AWS Lambda.

• For Endpoint, choose the Lambda function you created in the section called “Part 3: Create
the Lambda Function”.

• For Version or alias, choose default.

8. Choose Create subscription.

For a configuration set 675

https://console.aws.amazon.com/sns/v3/home

Amazon Simple Email Service Developer Guide

Part 6: Create a CloudWatch Alarm

This section contains procedures for creating an alarm in CloudWatch that is triggered when a
metric reaches a certain threshold. When the alarm is triggered, it delivers a notification to the
Amazon SNS topic you created in the section called “Part 5: Create an Amazon SNS Topic”, which
then executes the Lambda function you created in the section called “Part 3: Create the Lambda
Function”.

To create a CloudWatch alarm

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Use the region selector to choose the region in which you want to automatically pause email
sending.

3. In the navigation pane on the left, choose Alarms.

4. Choose Create Alarm.

5. On the Create Alarm window, under SES Metrics, choose Configuration Set Metrics.

6. In the ses:configuration-set column, locate the configuration set for which you want to create
an alarm. Under Metric Name, choose one of the following options:

• Reputation.BounceRate – Choose this metric if you want to pause email sending for the
configuration set when the overall hard bounce rate for the configuration set crosses a
threshold that you define.

• Reputation.ComplaintRate – Choose this metric if you want to pause email sending for
the configuration set when the overall complaint rate for the configuration set crosses a
threshold that you define.

Choose Next.

7. Complete the following steps:

• Under Alarm Threshold, for Name, type a name for the alarm.

• Under Whenever: Reputation.BounceRate or Whenever: Reputation.ComplaintRate,
specify the threshold that causes the alarm to trigger.

Note

If the overall bounce rate for your Amazon SES account exceeds 10%, or if the
overall complaint rate for your Amazon SES account exceeds .5%, your Amazon

For a configuration set 676

https://console.aws.amazon.com/cloudwatch/

Amazon Simple Email Service Developer Guide

SES account is automatically placed under review. When you specify the bounce or
complaint rate that causes the CloudWatch alarm to trigger, we recommend that you
use values that are far below these rates to prevent your account from being placed
under review.

• Under Actions, for Whenever this alarm, choose State is ALARM. For Send notification to,
choose the Amazon SNS topic you created in the section called “Part 5: Create an Amazon
SNS Topic”.

Choose Create Alarm.

Part 7: Test the solution

You can now test the alarm to ensure that it executes the Lambda function when it enters the
ALARM state. You can use the SetAlarmState operation in the CloudWatch API to temporarily
change the state of the alarm.

The procedures in this section are optional, but we recommend that you complete them to verify
that the entire solution is configured correctly.

To test the solution

1. At the command line, type the following command to check the email sending status for the
configuration set:

aws ses describe-configuration-set --configuration-set-name ConfigSet

If sending is enabled for the configuration set, you see the following output:

{
 "ConfigurationSet": {
 "Name": "ConfigSet"
 },
 "ReputationOptions": {
 "ReputationMetricsEnabled": true,
 "SendingEnabled": true
 }
}

For a configuration set 677

Amazon Simple Email Service Developer Guide

If the value of SendingEnabled is true, then email sending is currently enabled for the
configuration set.

2. At the command line, type the following command to temporarily change the alarm state to
ALARM:

aws cloudwatch set-alarm-state \
--alarm-name MyAlarm \
--state-value ALARM \
--state-reason "Testing execution of Lambda function"

Replace MyAlarm in the preceding command with the name of the alarm you created in the
section called “Part 6: Create a CloudWatch Alarm”.

Note

When you execute this command, the status of the alarm switches from OK to ALARM
and back to OK within a few seconds. You can view these status changes on the
alarm's History tab in the CloudWatch console, or by using the DescribeAlarmHistory
operation.

3. At the command line, type the following command to check the email sending status for the
configuration set:

aws ses describe-configuration-set \
--configuration-set-name ConfigSet

If the Lambda function executed successfully, you see output that resembles the following
example:

{
 "ConfigurationSet": {
 "Name": "ConfigSet"
 },
 "ReputationOptions": {
 "ReputationMetricsEnabled": true,
 "SendingEnabled": false
 }
}

For a configuration set 678

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarmHistory.html

Amazon Simple Email Service Developer Guide

If the value of SendingEnabled is false, then email sending for the configuration set is
disabled, indicating that the Lambda function executed successfully.

4. Complete the steps in the section called “Part 4: Re-Enable Email Sending for the
Configuration Set” to re-enable email sending for the configuration set.

For a configuration set 679

Amazon Simple Email Service Developer Guide

Monitoring SES events using Amazon EventBridge

EventBridge is a serverless service that uses events to connect application components together,
making it easier for you to build scalable event-driven applications. Event-driven architecture is a
style of building loosely-coupled software systems that work together by emitting and responding
to events. Events are JSON-formatted messages that typically represent a change in a resource or
environment, or other management event.

Certain SES features generate and send events to the EventBridge default event bus. An event bus
is a router that receives events and delivers them to zero or more destinations, or targets. Rules
you associate with the event bus evaluate events as they arrive. Each rule checks whether an event
matches the rule's pattern. If the event does match, EventBridge sends the event to the specified
targets.

SES sends events to EventBridge when a feature has a state change or status update. You can use
EventBridge rules to route events to your defined targets. These events will be delivered on a best-
effort basis, and they might be delivered out of order.

Topics

• SES events

• SES events schema reference

• Using EventBridge with SES events

• Additional EventBridge resources

SES events

The following events are generated by SES features and sent to the default event bus in
EventBridge. For more information, including detail data for each event type, see ???.

Virtual Deliverability Manager advisor events

Event type Description

Advisor Recommendation
Status Open

An event generated whenever a new recommendation is
opened in the Virtual Deliverability Manager advisor.

SES events 680

Amazon Simple Email Service Developer Guide

Event type Description

Advisor Recommendation
Status Resolved

An event generated whenever a recommendation is resolved in
the Virtual Deliverability Manager advisor.

SES email sending events

Event type Description

Email Bounced A hard bounce that the recipient's mail server permanently
rejected the email. (Soft bounces are only included when SES
fails to deliver the email after retrying for a period of time.)

Email Clicked The recipient clicked one or more links in the email.

Email Complaint Received The email was successfully delivered to the recipient’s mail
server, but the recipient marked it as spam.

Email Delivered SES successfully delivered the email to the recipient's mail
server.

Email Delivery Delayed The email couldn't be delivered to the recipient’s mail server
because a temporary issue occurred. Delivery delays can occur,
for example, when the recipient's inbox is full, or when the
receiving email server experiences a transient issue.

Email Opened The recipient received the message and opened it in their email
client.

Email Rejected SES accepted the email, but determined that it contained a
virus and didn’t attempt to deliver it to the recipient’s mail
server.

Email Rendering Failed The email wasn't sent because of a template rendering issue.
This event type can occur when template data is missing, or
when there is a mismatch between template parameters and
data. (This event type only occurs when you send email using

SES events 681

Amazon Simple Email Service Developer Guide

Event type Description

the SendTemplatedEmail or SendBulkTemplatedE
mail API operations.)

Email Sent The send request was successful and SES will attempt to
deliver the message to the recipient’s mail server. (If account-
level or global suppression is being used, SES will still count it
as a send, but delivery is suppressed.)

Email Subscribed The email was successfully delivered, but the recipient updated
the subscription preferences by clicking List-Unsubscribe
in the email header or the Unsubscribe link in the footer.

SES events schema reference

All events from AWS services have a common set of fields containing metadata about the event,
such as the AWS service that is the source of the event, the time the event was generated, the
account and region in which the event took place, and others. For definitions of these general
fields, see Event structure reference in the EventBridge User Guide.

In addition, each event has a detail field that contains data specific to that particular event. The
reference below defines the detail fields for the various SES events.

When using EventBridge to select and manage SES events, it's useful to keep the following in mind:

• The source field for all events from SES is set to aws.ses.

• The detail-type field specifies the event type. See the event type table in the section called
“SES events”.

• The detail field contains the data that is specific to that particular event.

For some event types, such as those for Virtual Deliverability Manager, the detail field is a rather
simplistic data string that is populated from a finite set of static values. Conversely, the detail
field for email sending events is more complex as it can consist of many detail sub-fields which
are a combination of both static and dynamic values such as the timestamp of when an email
was sent, the recipient address, and many other email attributes.

Events schema reference 682

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html

Amazon Simple Email Service Developer Guide

Topics

• Virtual Deliverability Manager advisor status schema

• SES email sending status schema

Virtual Deliverability Manager advisor status schema

The following schema reference defines the fields specific to Virtual Deliverability Manager advisor
status events.

Definitions for the general fields that appear in all event schemas (such as version, id, account,
and others) can be found in Event structure reference in the EventBridge User Guide. The source
and detail-type fields are included in the reference below because they contain SES-specific
values for SES events.

source

Identifies the service that generated the event. For SES events, this value is aws.ses.

detail-type

Identifies the type of event.

The values for this field are listed in the Virtual Deliverability Manager advisor events table in the
section called “SES events”.

detail

A JSON object that contains information about the event. The service generating the event
determines the content of this field.

The values for this field can be:

• DKIM verification is not enabled.

• DKIM verification has failed.

• DKIM signing key length is below 2048 bits.

• DMARC configuration was not found.

• DMARC configuration could not be parsed.

• DKIM record was not found.

Virtual Deliverability Manager advisor status schema 683

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html

Amazon Simple Email Service Developer Guide

• DKIM record is not aligned.

• MAIL FROM record is not aligned.

• SPF record was not found.

• SPF record for Amazon SES was not found.

• SPF all qualifier is missing.

• An SPF configuration issue was found.

• BIMI record not found or configured without default selector.

• BIMI has malformed TXT record.

Example Example: Virtual Deliverability Manager advisor status event

The following is an example Virtual Deliverability Manager advisor status event for the event
type Advisor Recommendation Status Open. The detail event value in this example is SPF
record was not found..

{
 "version": "0",
 "id": "abcd9999-ef33-0123-90ab-abcdef666666",
 "detail-type": "Advisor Recommendation Status Open",
 "source": "aws.ses",
 "account": "012345678901",
 "time": "2023-11-15T17:00:59Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ses:us-east-1:012345678901:identity/vdm.events-publishing.cajun.syster-
games.example.com"
],
 "detail": { "version": "1.0.0", "data": "SPF record was not found." }
}

SES email sending status schema

The following schema reference defines the fields specific to SES email sending status events.

Definitions for the general fields that appear in all event schemas (such as version, id, account,
and others) can be found in Event structure reference in the EventBridge User Guide. The source
and detail-type fields are included in the reference below because they contain SES-specific
values for SES events.

SES email sending status schema 684

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html

Amazon Simple Email Service Developer Guide

source

Identifies the service that generated the event. For SES events, this value is aws.ses.

detail-type

Identifies the type of event.

The values for this field are listed in the SES email sending events table in the section called
“SES events”.

detail

A JSON object that contains information about the event. The service generating the event
determines the content of this field.

All of the possible values for this field cannot be listed here because they are comprised of
static and dynamic values that are generated by each unique email that is sent at any given
moment. However, an example is provided to give you an idea of the type data that this field
can contain. Example detail data for all of the email sending event types can be found using the
EventBridge Sandbox, see Specify a sample event in EventBridge.

An example of detail data generated for the SES email sending event Email Rendering
Failed:

...,
 "detail": {
 "eventType": "Rendering Failure",
 "mail": {
 "timestamp": "2018-01-22T18:43:06.197Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": ["recipient@example.com"],
 "headersTruncated": false,
 "tags": {
 "ses:configuration-set": ["ConfigSet"]
 }
 },
 "failure": {
 "errorMessage": "Attribute 'attributeName' is not present in the rendering
 data.",

SES email sending status schema 685

Amazon Simple Email Service Developer Guide

 "templateName": "MyTemplate"
 }
 }

Example Example: Email sending status event

The following is an example of the full email sending status event for the event type Email
Rendering Failed. The detail event value in this example is a combination of static and dynamic
values based on the email sending event for a specific email.

{
 "version": "0",
 "id": "12a18625-3328-fafd-2809-a5e16004f112",
 "detail-type": "Email Rendering Failed",
 "source": "aws.ses",
 "account": "123456789012",
 "time": "2023-07-17T16:48:05Z",
 "region": "us-east-1",
 "resources": ["arn:aws:ses:us-east-1:123456789012:identity/example.com"],
 "detail": {
 "eventType": "Rendering Failure",
 "mail": {
 "timestamp": "2018-01-22T18:43:06.197Z",
 "source": "sender@example.com",
 "sourceArn": "arn:aws:ses:us-east-1:123456789012:identity/sender@example.com",
 "sendingAccountId": "123456789012",
 "messageId": "EXAMPLE7c191be45-e9aedb9a-02f9-4d12-a87d-dd0099a07f8a-000000",
 "destination": ["recipient@example.com"],
 "headersTruncated": false,
 "tags": {
 "ses:configuration-set": ["ConfigSet"]
 }
 },
 "failure": {
 "errorMessage": "Attribute 'attributeName' is not present in the rendering
 data.",
 "templateName": "MyTemplate"
 }
 }
}

SES email sending status schema 686

Amazon Simple Email Service Developer Guide

Using EventBridge with SES events

By default, SES sends events to the EventBridge default event bus. You can create rules on the
default event bus to identify specific events for EventBridge to send to one or more specified
targets. Each rule contains an event pattern that EventBridge uses to match events as they arrive on
the event bus. If an event matches the event pattern for a given rule, EventBridge sends the event
to the target specified in the rule.

In EventBridge, defining an event pattern is typically part of the larger process of creating a new
rule or editing an existing one. To learn how to create EventBridge rules, see Creating Amazon
EventBridge rules that react to events in the EventBridge User Guide.

By using the Sandbox feature in EventBridge, you can quickly define an event pattern and use a
sample event to confirm the pattern matches the desired events, without having to first create or
edit a rule. For detailed instructions on using the Sandbox, see Testing an event pattern using the
EventBridge Sandbox in the EventBridge User Guide.

Specify a SES sample event in the EventBridge Sandbox

You can select sample events for SES events to use them in testing the event patterns you create.

To specify a SES sample event in the EventBridge Sandbox

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Developer resources, then select Sandbox, and on the
Sandbox page choose the Event pattern tab.

3. For Event source, choose AWS events or EventBridge partner events.

4. In the Sample event section, for Sample event type, select AWS events.

5. For Sample events, scroll down to SES and then select the desired SES event.

EventBridge displays a sample event, along with all of its detail data, for the event type.

You can then use this event to test the event pattern you create in the Event pattern section,
or use it as the basis for creating your own sample events for pattern testing covered in the
following section.

Using EventBridge 687

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-pattern-sandbox.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-pattern-sandbox.html
https://console.aws.amazon.com/events/

Amazon Simple Email Service Developer Guide

Creating and testing event patterns for SES events

Once you've selected a sample event, as explained in the previous section, you can create an event
pattern and use the sample event to make sure it is matching events as desired.

To create and test an event pattern that matches SES events in the EventBridge Sandbox

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Developer resources, then select Sandbox, and on the
Sandbox page choose the Event pattern tab.

3. For Event source, choose AWS events or EventBridge partner events, and select the sample
event you want to test as explained in the previous section.

4. Scroll down to Creation method, and choose Use pattern form.

5. In the Event pattern section, for Event source choose AWS services.

6. Under AWS service, select SES.

7. For Event type, select the SES event type you want to match.

EventBridge displays the minimum event pattern, comprised of source and detail-type
fields, that matches the selected SES event.

In the two examples, the first event pattern matches against all Advisor Recommendation
Status Resolved events, and in the second, all Email Bounced events:

{
 "source": ["aws.ses"],
 "detail-type": ["Advisor Recommendation Status Resolved"]
}

{
 "source": ["aws.ses"],
 "detail-type": ["Email Bounced"]
}

8. To make changes to the event pattern, select Edit pattern and make your changes in the JSON
editor.

You can also match on values in one or more detail data fields. This includes specifying
multiple possible values for a field value.

Event patterns for SES events 688

https://console.aws.amazon.com/events/

Amazon Simple Email Service Developer Guide

In the following example, the detail field was added to the generated minimum event pattern
with the data field value specified as DKIM record was not found in order to find all
Virtual Deliverability Manager advisor events with the same detail value:

{
 "source": ["aws.ses"],
 "detail-type": ["Advisor Recommendation Status Resolved"],
 "detail": {
 "data": ["DKIM record was not found."]
 }
}

In this example, detail sub-fields were added to report on events generated by all the emails
sent from noreply@example.com on 2024-08-05 that bounced. (Prefix matching is being used
here as part of Content filtering.):

{
 "source": ["aws.ses"],
 "detail-type": ["Email Bounced"],
 "detail": {
 "mail": {
 "timestamp": [{
 "prefix": "2024-08-05"
 }],
 "source": ["noreply@example.com"]
 }
 }
}

It's important that you read Event patterns in the EventBridge User Guide—it explains that
the event pattern value you enter in the JSON editor must be surrounded by square brackets
[...] because it's considered an array. This and more information on how to construct
advanced event patterns is also provided.

9. To test if your event pattern matches against the sample event you specified in the Sample
event pane above, select Test pattern. If it matches, a green banner at the bottom of the
JSON editor will display, "Sample event matched the event pattern".

10. To troubleshoot errors after selecting Test pattern:

Event patterns for SES events 689

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns-content-based-filtering.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html

Amazon Simple Email Service Developer Guide

• If there are JSON related errors, the message will indicate the reason, such as, "Event pattern
is not valid. Reason: "data" must be an object or an array at line: 5, column: 14". To remedy
this, enclose the value on line 5 with square brackets [...].

• If there's a discrepancy between the values in the Sample event and your Event pattern, the
message will be, "Sample event did not match the event pattern". This means that one or
more values you want to test are different than the example values generated by the Sample
events generator. To remedy this, proceed with the remaining steps.

11. To change the sample values in the Sample event in order to successfully test your Event
pattern, in the Sample event pane, select Copy under the JSON editor.

12. Select the radio button next to Enter my own for Sample event type above the editor.

13. Paste the sample event into the JSON editor, and for any field you're using in your event
pattern, replace that same field's value to match the value you specified in your event pattern.

14. Scroll back down to the Event pattern pane and select Test pattern again. If all values were
entered correctly and match, a green banner at the bottom of the JSON editor will display,
"Sample event matched the event pattern".

Additional EventBridge resources

Refer to the following topics in the Amazon EventBridge User Guide for more information on how to
use EventBridge to process and manage events.

• For detailed information on how event buses work, see Amazon EventBridge event bus.

• For information on event structure, see Events

• For information on constructing event patterns for EventBridge to use when matching events
against rules, see Event patterns

• For information on creating rules to specify which events EventBridge processes, see Rules

• For information on to specify what services or other destinations EventBridge sends matched
events to, see Targets

Additional EventBridge resources 690

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-targets.html

Amazon Simple Email Service Developer Guide

Code examples for Amazon SES using AWS SDKs

The following code examples show how to use Amazon SES with an AWS software development kit
(SDK).

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

• Code examples for Amazon SES using AWS SDKs

• Actions for Amazon SES using AWS SDKs

• Use CreateReceiptFilter with an AWS SDK or CLI

• Use CreateReceiptRule with an AWS SDK or CLI

• Use CreateReceiptRuleSet with an AWS SDK or CLI

• Use CreateTemplate with an AWS SDK or CLI

• Use DeleteIdentity with an AWS SDK or CLI

• Use DeleteReceiptFilter with an AWS SDK or CLI

• Use DeleteReceiptRule with an AWS SDK or CLI

• Use DeleteReceiptRuleSet with an AWS SDK or CLI

• Use DeleteTemplate with an AWS SDK or CLI

• Use DescribeReceiptRuleSet with an AWS SDK or CLI

• Use GetIdentityVerificationAttributes with an AWS SDK or CLI

• Use GetSendQuota with an AWS SDK or CLI

• Use GetSendStatistics with an AWS SDK or CLI

• Use GetTemplate with an AWS SDK or CLI

• Use ListIdentities with an AWS SDK or CLI

• Use ListReceiptFilters with an AWS SDK or CLI

• Use ListTemplates with an AWS SDK or CLI

• Use SendBulkTemplatedEmail with an AWS SDK or CLI

• Use SendEmail with an AWS SDK or CLI

• Use SendRawEmail with an AWS SDK or CLI 691

Amazon Simple Email Service Developer Guide

• Use SendTemplatedEmail with an AWS SDK or CLI

• Use UpdateTemplate with an AWS SDK or CLI

• Use VerifyDomainIdentity with an AWS SDK or CLI

• Use VerifyEmailIdentity with an AWS SDK or CLI

• Scenarios for Amazon SES using AWS SDKs

• Copy Amazon SES email and domain identities from one AWS Region to another using an
AWS SDK

• Generate credentials to connect to an Amazon SES SMTP endpoint

• Verify an email identity and send messages with Amazon SES using an AWS SDK

• Cross-service examples for Amazon SES using AWS SDKs

• Build an Amazon Transcribe streaming app

• Create a web application to track DynamoDB data

• Create an Amazon Redshift item tracker

• Create an Aurora Serverless work item tracker

• Detect PPE in images with Amazon Rekognition using an AWS SDK

• Detect objects in images with Amazon Rekognition using an AWS SDK

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Use Step Functions to invoke Lambda functions

• Code examples for Amazon SES API v2 using AWS SDKs

• Actions for Amazon SES API v2 using AWS SDKs

• Use CreateContact with an AWS SDK or CLI

• Use CreateContactList with an AWS SDK or CLI

• Use CreateEmailIdentity with an AWS SDK or CLI

• Use CreateEmailTemplate with an AWS SDK or CLI

• Use DeleteContactList with an AWS SDK or CLI

• Use DeleteEmailIdentity with an AWS SDK or CLI

• Use DeleteEmailTemplate with an AWS SDK or CLI

• Use GetEmailIdentity with an AWS SDK or CLI

• Use ListContactLists with an AWS SDK or CLI

• Use ListContacts with an AWS SDK or CLI
692

Amazon Simple Email Service Developer Guide

• Use SendEmail with an AWS SDK or CLI

• Scenarios for Amazon SES API v2 using AWS SDKs

• A complete Amazon SES API v2 Newsletter workflow using an AWS SDK

Code examples for Amazon SES using AWS SDKs

The following code examples show how to use Amazon SES with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

• Actions for Amazon SES using AWS SDKs

• Use CreateReceiptFilter with an AWS SDK or CLI

• Use CreateReceiptRule with an AWS SDK or CLI

• Use CreateReceiptRuleSet with an AWS SDK or CLI

• Use CreateTemplate with an AWS SDK or CLI

• Use DeleteIdentity with an AWS SDK or CLI

• Use DeleteReceiptFilter with an AWS SDK or CLI

• Use DeleteReceiptRule with an AWS SDK or CLI

• Use DeleteReceiptRuleSet with an AWS SDK or CLI

• Use DeleteTemplate with an AWS SDK or CLI

• Use DescribeReceiptRuleSet with an AWS SDK or CLI

• Use GetIdentityVerificationAttributes with an AWS SDK or CLI

Amazon SES 693

Amazon Simple Email Service Developer Guide

• Use GetSendQuota with an AWS SDK or CLI

• Use GetSendStatistics with an AWS SDK or CLI

• Use GetTemplate with an AWS SDK or CLI

• Use ListIdentities with an AWS SDK or CLI

• Use ListReceiptFilters with an AWS SDK or CLI

• Use ListTemplates with an AWS SDK or CLI

• Use SendBulkTemplatedEmail with an AWS SDK or CLI

• Use SendEmail with an AWS SDK or CLI

• Use SendRawEmail with an AWS SDK or CLI

• Use SendTemplatedEmail with an AWS SDK or CLI

• Use UpdateTemplate with an AWS SDK or CLI

• Use VerifyDomainIdentity with an AWS SDK or CLI

• Use VerifyEmailIdentity with an AWS SDK or CLI

• Scenarios for Amazon SES using AWS SDKs

• Copy Amazon SES email and domain identities from one AWS Region to another using an AWS
SDK

• Generate credentials to connect to an Amazon SES SMTP endpoint

• Verify an email identity and send messages with Amazon SES using an AWS SDK

• Cross-service examples for Amazon SES using AWS SDKs

• Build an Amazon Transcribe streaming app

• Create a web application to track DynamoDB data

• Create an Amazon Redshift item tracker

• Create an Aurora Serverless work item tracker

• Detect PPE in images with Amazon Rekognition using an AWS SDK

• Detect objects in images with Amazon Rekognition using an AWS SDK

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Use Step Functions to invoke Lambda functions

Amazon SES 694

Amazon Simple Email Service Developer Guide

Actions for Amazon SES using AWS SDKs

The following code examples demonstrate how to perform individual Amazon SES actions
with AWS SDKs. These excerpts call the Amazon SES API and are code excerpts from larger
programs that must be run in context. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Simple Email Service (Amazon SES) API Reference.

Examples

• Use CreateReceiptFilter with an AWS SDK or CLI

• Use CreateReceiptRule with an AWS SDK or CLI

• Use CreateReceiptRuleSet with an AWS SDK or CLI

• Use CreateTemplate with an AWS SDK or CLI

• Use DeleteIdentity with an AWS SDK or CLI

• Use DeleteReceiptFilter with an AWS SDK or CLI

• Use DeleteReceiptRule with an AWS SDK or CLI

• Use DeleteReceiptRuleSet with an AWS SDK or CLI

• Use DeleteTemplate with an AWS SDK or CLI

• Use DescribeReceiptRuleSet with an AWS SDK or CLI

• Use GetIdentityVerificationAttributes with an AWS SDK or CLI

• Use GetSendQuota with an AWS SDK or CLI

• Use GetSendStatistics with an AWS SDK or CLI

• Use GetTemplate with an AWS SDK or CLI

• Use ListIdentities with an AWS SDK or CLI

• Use ListReceiptFilters with an AWS SDK or CLI

• Use ListTemplates with an AWS SDK or CLI

• Use SendBulkTemplatedEmail with an AWS SDK or CLI

• Use SendEmail with an AWS SDK or CLI

• Use SendRawEmail with an AWS SDK or CLI

• Use SendTemplatedEmail with an AWS SDK or CLI

• Use UpdateTemplate with an AWS SDK or CLI

Actions 695

https://docs.aws.amazon.com/ses/latest/APIReference/Welcome.html

Amazon Simple Email Service Developer Guide

• Use VerifyDomainIdentity with an AWS SDK or CLI

• Use VerifyEmailIdentity with an AWS SDK or CLI

Use CreateReceiptFilter with an AWS SDK or CLI

The following code examples show how to use CreateReceiptFilter.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an Amazon Simple Email Service (Amazon SES) receipt filter..
/*!
 \param receiptFilterName: The name for the receipt filter.
 \param cidr: IP address or IP address range in Classless Inter-Domain Routing
 (CIDR) notation.
 \param policy: Block or allow enum of type ReceiptFilterPolicy.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::createReceiptFilter(const Aws::String &receiptFilterName,
 const Aws::String &cidr,
 Aws::SES::Model::ReceiptFilterPolicy
 policy,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);
 Aws::SES::Model::CreateReceiptFilterRequest createReceiptFilterRequest;
 Aws::SES::Model::ReceiptFilter receiptFilter;
 Aws::SES::Model::ReceiptIpFilter receiptIpFilter;
 receiptIpFilter.SetCidr(cidr);
 receiptIpFilter.SetPolicy(policy);
 receiptFilter.SetName(receiptFilterName);
 receiptFilter.SetIpFilter(receiptIpFilter);
 createReceiptFilterRequest.SetFilter(receiptFilter);

Actions 696

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 Aws::SES::Model::CreateReceiptFilterOutcome createReceiptFilterOutcome =
 sesClient.CreateReceiptFilter(
 createReceiptFilterRequest);
 if (createReceiptFilterOutcome.IsSuccess()) {
 std::cout << "Successfully created receipt filter." << std::endl;
 }
 else {
 std::cerr << "Error creating receipt filter: " <<
 createReceiptFilterOutcome.GetError().GetMessage() <<
 std::endl;
 }

 return createReceiptFilterOutcome.IsSuccess();
}

• For API details, see CreateReceiptFilter in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 CreateReceiptFilterCommand,
 ReceiptFilterPolicy,
} from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const createCreateReceiptFilterCommand = ({ policy, ipOrRange, name }) => {
 return new CreateReceiptFilterCommand({
 Filter: {
 IpFilter: {
 Cidr: ipOrRange, // string, either a single IP address (10.0.0.1) or an
 IP address range in CIDR notation (10.0.0.1/24)).

Actions 697

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/CreateReceiptFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 Policy: policy, // enum ReceiptFilterPolicy, email traffic from the
 filtered addressesOptions.
 },
 /*
 The name of the IP address filter. Only ASCII letters, numbers,
 underscores, or dashes.
 Must be less than 64 characters and start and end with a letter or
 number.
 */
 Name: name,
 },
 });
};

const FILTER_NAME = getUniqueName("ReceiptFilter");

const run = async () => {
 const createReceiptFilterCommand = createCreateReceiptFilterCommand({
 policy: ReceiptFilterPolicy.Allow,
 ipOrRange: "10.0.0.1",
 name: FILTER_NAME,
 });

 try {
 return await sesClient.send(createReceiptFilterCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• For API details, see CreateReceiptFilter in AWS SDK for JavaScript API Reference.

Actions 698

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateReceiptFilterCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

 def create_receipt_filter(self, filter_name, ip_address_or_range, allow):
 """
 Creates a filter that allows or blocks incoming mail from an IP address
 or
 range.

 :param filter_name: The name to give the filter.
 :param ip_address_or_range: The IP address or range to block or allow.
 :param allow: When True, incoming mail is allowed from the specified IP
 address or range; otherwise, it is blocked.
 """
 try:
 policy = "Allow" if allow else "Block"
 self.ses_client.create_receipt_filter(
 Filter={
 "Name": filter_name,
 "IpFilter": {"Cidr": ip_address_or_range, "Policy": policy},
 }
)
 logger.info(

Actions 699

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 "Created receipt filter %s to %s IP of %s.",
 filter_name,
 policy,
 ip_address_or_range,
)
 except ClientError:
 logger.exception("Couldn't create receipt filter %s.", filter_name)
 raise

• For API details, see CreateReceiptFilter in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateReceiptRule with an AWS SDK or CLI

The following code examples show how to use CreateReceiptRule.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an Amazon Simple Email Service (Amazon SES) receipt rule.
/*!
 \param receiptRuleName: The name for the receipt rule.
 \param s3BucketName: The name of the S3 bucket for incoming mail.
 \param s3ObjectKeyPrefix: The prefix for the objects in the S3 bucket.
 \param ruleSetName: The name of the rule set where the receipt rule is added.
 \param recipients: Aws::Vector of recipients.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

Actions 700

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/CreateReceiptFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

bool AwsDoc::SES::createReceiptRule(const Aws::String &receiptRuleName,
 const Aws::String &s3BucketName,
 const Aws::String &s3ObjectKeyPrefix,
 const Aws::String &ruleSetName,
 const Aws::Vector<Aws::String> &recipients,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::CreateReceiptRuleRequest createReceiptRuleRequest;

 Aws::SES::Model::S3Action s3Action;
 s3Action.SetBucketName(s3BucketName);
 s3Action.SetObjectKeyPrefix(s3ObjectKeyPrefix);

 Aws::SES::Model::ReceiptAction receiptAction;
 receiptAction.SetS3Action(s3Action);

 Aws::SES::Model::ReceiptRule receiptRule;
 receiptRule.SetName(receiptRuleName);
 receiptRule.WithRecipients(recipients);

 Aws::Vector<Aws::SES::Model::ReceiptAction> receiptActionList;
 receiptActionList.emplace_back(receiptAction);
 receiptRule.SetActions(receiptActionList);

 createReceiptRuleRequest.SetRuleSetName(ruleSetName);
 createReceiptRuleRequest.SetRule(receiptRule);

 auto outcome = sesClient.CreateReceiptRule(createReceiptRuleRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created receipt rule." << std::endl;
 }
 else {
 std::cerr << "Error creating receipt rule. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Actions 701

Amazon Simple Email Service Developer Guide

• For API details, see CreateReceiptRule in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { CreateReceiptRuleCommand, TlsPolicy } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const RULE_SET_NAME = getUniqueName("RuleSetName");
const RULE_NAME = getUniqueName("RuleName");
const S3_BUCKET_NAME = getUniqueName("S3BucketName");

const createS3ReceiptRuleCommand = ({
 bucketName,
 emailAddresses,
 name,
 ruleSet,
}) => {
 return new CreateReceiptRuleCommand({
 Rule: {
 Actions: [
 {
 S3Action: {
 BucketName: bucketName,
 ObjectKeyPrefix: "email",
 },
 },
],
 Recipients: emailAddresses,
 Enabled: true,
 Name: name,
 ScanEnabled: false,

Actions 702

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/CreateReceiptRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 TlsPolicy: TlsPolicy.Optional,
 },
 RuleSetName: ruleSet, // Required
 });
};

const run = async () => {
 const s3ReceiptRuleCommand = createS3ReceiptRuleCommand({
 bucketName: S3_BUCKET_NAME,
 emailAddresses: ["email@example.com"],
 name: RULE_NAME,
 ruleSet: RULE_SET_NAME,
 });

 try {
 return await sesClient.send(s3ReceiptRuleCommand);
 } catch (err) {
 console.log("Failed to create S3 receipt rule.", err);
 throw err;
 }
};

• For API details, see CreateReceiptRule in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon S3 bucket where Amazon SES can put copies of incoming emails and
create a rule that copies incoming email to the bucket for a specific list of recipients.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):

Actions 703

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateReceiptRuleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

 def create_bucket_for_copy(self, bucket_name):
 """
 Creates a bucket that can receive copies of emails from Amazon SES. This
 includes adding a policy to the bucket that grants Amazon SES permission
 to put objects in the bucket.

 :param bucket_name: The name of the bucket to create.
 :return: The newly created bucket.
 """
 allow_ses_put_policy = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSESPut",
 "Effect": "Allow",
 "Principal": {"Service": "ses.amazonaws.com"},
 "Action": "s3:PutObject",
 "Resource": f"arn:aws:s3:::{bucket_name}/*",
 }
],
 }
 bucket = None
 try:
 bucket = self.s3_resource.create_bucket(
 Bucket=bucket_name,
 CreateBucketConfiguration={
 "LocationConstraint":
 self.s3_resource.meta.client.meta.region_name
 },
)
 bucket.wait_until_exists()
 bucket.Policy().put(Policy=json.dumps(allow_ses_put_policy))
 logger.info("Created bucket %s to receive copies of emails.",
 bucket_name)
 except ClientError:

Actions 704

Amazon Simple Email Service Developer Guide

 logger.exception("Couldn't create bucket to receive copies of
 emails.")
 if bucket is not None:
 bucket.delete()
 raise
 else:
 return bucket

 def create_s3_copy_rule(
 self, rule_set_name, rule_name, recipients, bucket_name, prefix
):
 """
 Creates a rule so that all emails received by the specified recipients
 are
 copied to an Amazon S3 bucket.

 :param rule_set_name: The name of a previously created rule set to
 contain
 this rule.
 :param rule_name: The name to give the rule.
 :param recipients: When an email is received by one of these recipients,
 it
 is copied to the Amazon S3 bucket.
 :param bucket_name: The name of the bucket to receive email copies. This
 bucket must allow Amazon SES to put objects into it.
 :param prefix: An object key prefix to give the emails copied to the
 bucket.
 """
 try:
 self.ses_client.create_receipt_rule(
 RuleSetName=rule_set_name,
 Rule={
 "Name": rule_name,
 "Enabled": True,
 "Recipients": recipients,
 "Actions": [
 {
 "S3Action": {
 "BucketName": bucket_name,
 "ObjectKeyPrefix": prefix,
 }
 }
],

Actions 705

Amazon Simple Email Service Developer Guide

 },
)
 logger.info(
 "Created rule %s to copy mail received by %s to bucket %s.",
 rule_name,
 recipients,
 bucket_name,
)
 except ClientError:
 logger.exception("Couldn't create rule %s.", rule_name)
 raise

• For API details, see CreateReceiptRule in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateReceiptRuleSet with an AWS SDK or CLI

The following code examples show how to use CreateReceiptRuleSet.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an Amazon Simple Email Service (Amazon SES) receipt rule set.
/*!
 \param ruleSetName: The name of the rule set.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::createReceiptRuleSet(const Aws::String &ruleSetName,

Actions 706

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/CreateReceiptRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::CreateReceiptRuleSetRequest createReceiptRuleSetRequest;

 createReceiptRuleSetRequest.SetRuleSetName(ruleSetName);

 Aws::SES::Model::CreateReceiptRuleSetOutcome outcome =
 sesClient.CreateReceiptRuleSet(
 createReceiptRuleSetRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created receipt rule set." << std::endl;
 }
 else {
 std::cerr << "Error creating receipt rule set. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see CreateReceiptRuleSet in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { CreateReceiptRuleSetCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const RULE_SET_NAME = getUniqueName("RuleSetName");

Actions 707

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/CreateReceiptRuleSet
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

const createCreateReceiptRuleSetCommand = (ruleSetName) => {
 return new CreateReceiptRuleSetCommand({ RuleSetName: ruleSetName });
};

const run = async () => {
 const createReceiptRuleSetCommand =
 createCreateReceiptRuleSetCommand(RULE_SET_NAME);

 try {
 return await sesClient.send(createReceiptRuleSetCommand);
 } catch (err) {
 console.log("Failed to create receipt rule set", err);
 return err;
 }
};

• For API details, see CreateReceiptRuleSet in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

Actions 708

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateReceiptRuleSetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 def create_receipt_rule_set(self, rule_set_name):
 """
 Creates an empty rule set. Rule sets contain individual rules and can be
 used to organize rules.

 :param rule_set_name: The name to give the rule set.
 """
 try:
 self.ses_client.create_receipt_rule_set(RuleSetName=rule_set_name)
 logger.info("Created receipt rule set %s.", rule_set_name)
 except ClientError:
 logger.exception("Couldn't create receipt rule set %s.",
 rule_set_name)
 raise

• For API details, see CreateReceiptRuleSet in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateTemplate with an AWS SDK or CLI

The following code examples show how to use CreateTemplate.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 709

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/CreateReceiptRuleSet
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 /// <summary>
 /// Create an email template.
 /// </summary>
 /// <param name="name">Name of the template.</param>
 /// <param name="subject">Email subject.</param>
 /// <param name="text">Email body text.</param>
 /// <param name="html">Email HTML body text.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateEmailTemplateAsync(string name, string subject,
 string text,
 string html)
 {
 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.CreateTemplateAsync(
 new CreateTemplateRequest
 {
 Template = new Template
 {
 TemplateName = name,
 SubjectPart = subject,
 TextPart = text,
 HtmlPart = html
 }
 });
 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("CreateEmailTemplateAsync failed with exception: "
 + ex.Message);
 }

 return success;
 }

• For API details, see CreateTemplate in AWS SDK for .NET API Reference.

Actions 710

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/CreateTemplate

Amazon Simple Email Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an Amazon Simple Email Service (Amazon SES) template.
/*!
 \param templateName: The name of the template.
 \param htmlPart: The HTML body of the email.
 \param subjectPart: The subject line of the email.
 \param textPart: The plain text version of the email.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::createTemplate(const Aws::String &templateName,
 const Aws::String &htmlPart,
 const Aws::String &subjectPart,
 const Aws::String &textPart,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::CreateTemplateRequest createTemplateRequest;
 Aws::SES::Model::Template aTemplate;

 aTemplate.SetTemplateName(templateName);
 aTemplate.SetHtmlPart(htmlPart);
 aTemplate.SetSubjectPart(subjectPart);
 aTemplate.SetTextPart(textPart);

 createTemplateRequest.SetTemplate(aTemplate);

 Aws::SES::Model::CreateTemplateOutcome outcome = sesClient.CreateTemplate(
 createTemplateRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully created template." << templateName << "."

Actions 711

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 << std::endl;
 }
 else {
 std::cerr << "Error creating template. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see CreateTemplate in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { CreateTemplateCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const TEMPLATE_NAME = getUniqueName("TestTemplateName");

const createCreateTemplateCommand = () => {
 return new CreateTemplateCommand({
 /**
 * The template feature in Amazon SES is based on the Handlebars template
 system.
 */
 Template: {
 /**
 * The name of an existing template in Amazon SES.
 */

Actions 712

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/CreateTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 TemplateName: TEMPLATE_NAME,
 HtmlPart: `
 <h1>Hello, {{contact.firstName}}!</h1>
 <p>
 Did you know Amazon has a mascot named Peccy?
 </p>
 `,
 SubjectPart: "Amazon Tip",
 },
 });
};

const run = async () => {
 const createTemplateCommand = createCreateTemplateCommand();

 try {
 return await sesClient.send(createTemplateCommand);
 } catch (err) {
 console.log("Failed to create template.", err);
 return err;
 }
};

• For API details, see CreateTemplate in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesTemplate:
 """Encapsulates Amazon SES template functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.

Actions 713

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/CreateTemplateCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 """
 self.ses_client = ses_client
 self.template = None
 self.template_tags = set()

 def _extract_tags(self, subject, text, html):
 """
 Extracts tags from a template as a set of unique values.

 :param subject: The subject of the email.
 :param text: The text version of the email.
 :param html: The html version of the email.
 """
 self.template_tags = set(re.findall(TEMPLATE_REGEX, subject + text +
 html))
 logger.info("Extracted template tags: %s", self.template_tags)

 def create_template(self, name, subject, text, html):
 """
 Creates an email template.

 :param name: The name of the template.
 :param subject: The subject of the email.
 :param text: The plain text version of the email.
 :param html: The HTML version of the email.
 """
 try:
 template = {
 "TemplateName": name,
 "SubjectPart": subject,
 "TextPart": text,
 "HtmlPart": html,
 }
 self.ses_client.create_template(Template=template)
 logger.info("Created template %s.", name)
 self.template = template
 self._extract_tags(subject, text, html)
 except ClientError:
 logger.exception("Couldn't create template %s.", name)
 raise

Actions 714

Amazon Simple Email Service Developer Guide

• For API details, see CreateTemplate in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteIdentity with an AWS SDK or CLI

The following code examples show how to use DeleteIdentity.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an email identity.
 /// </summary>
 /// <param name="identityEmail">The identity email to delete.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteIdentityAsync(string identityEmail)
 {
 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.DeleteIdentityAsync(
 new DeleteIdentityRequest
 {
 Identity = identityEmail

Actions 715

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/CreateTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 });
 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("DeleteIdentityAsync failed with exception: " +
 ex.Message);
 }

 return success;
 }

• For API details, see DeleteIdentity in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete the specified identity (an email address or a domain).
/*!
 \param identity: The identity to delete.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::deleteIdentity(const Aws::String &identity,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::DeleteIdentityRequest deleteIdentityRequest;

 deleteIdentityRequest.SetIdentity(identity);

 Aws::SES::Model::DeleteIdentityOutcome outcome = sesClient.DeleteIdentity(

Actions 716

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/DeleteIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 deleteIdentityRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted identity." << std::endl;
 }
 else {
 std::cerr << "Error deleting identity. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteIdentity in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an identity

The following example uses the delete-identity command to delete an identity from
the list of identities verified with Amazon SES:

aws ses delete-identity --identity user@example.com

For more information about verified identities, see Verifying Email Addresses and Domains
in Amazon SES in the Amazon Simple Email Service Developer Guide.

• For API details, see DeleteIdentity in AWS CLI Command Reference.

Actions 717

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/DeleteIdentity
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/delete-identity.html

Amazon Simple Email Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteIdentityCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const IDENTITY_EMAIL = "fake@example.com";

const createDeleteIdentityCommand = (identityName) => {
 return new DeleteIdentityCommand({
 Identity: identityName,
 });
};

const run = async () => {
 const deleteIdentityCommand = createDeleteIdentityCommand(IDENTITY_EMAIL);

 try {
 return await sesClient.send(deleteIdentityCommand);
 } catch (err) {
 console.log("Failed to delete identity.", err);
 return err;
 }
};

• For API details, see DeleteIdentity in AWS SDK for JavaScript API Reference.

Actions 718

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteIdentityCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesIdentity:
 """Encapsulates Amazon SES identity functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def delete_identity(self, identity):
 """
 Deletes an identity.

 :param identity: The identity to remove.
 """
 try:
 self.ses_client.delete_identity(Identity=identity)
 logger.info("Deleted identity %s.", identity)
 except ClientError:
 logger.exception("Couldn't delete identity %s.", identity)
 raise

• For API details, see DeleteIdentity in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 719

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteIdentity

Amazon Simple Email Service Developer Guide

Use DeleteReceiptFilter with an AWS SDK or CLI

The following code examples show how to use DeleteReceiptFilter.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete an Amazon Simple Email Service (Amazon SES) receipt filter.
/*!
 \param receiptFilterName: The name for the receipt filter.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::deleteReceiptFilter(const Aws::String &receiptFilterName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::DeleteReceiptFilterRequest deleteReceiptFilterRequest;

 deleteReceiptFilterRequest.SetFilterName(receiptFilterName);

 Aws::SES::Model::DeleteReceiptFilterOutcome outcome =
 sesClient.DeleteReceiptFilter(
 deleteReceiptFilterRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted receipt filter." << std::endl;
 }
 else {
 std::cerr << "Error deleting receipt filter. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

Actions 720

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 return outcome.IsSuccess();
}

• For API details, see DeleteReceiptFilter in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteReceiptFilterCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";

const RECEIPT_FILTER_NAME = getUniqueName("ReceiptFilterName");

const createDeleteReceiptFilterCommand = (filterName) => {
 return new DeleteReceiptFilterCommand({ FilterName: filterName });
};

const run = async () => {
 const deleteReceiptFilterCommand =
 createDeleteReceiptFilterCommand(RECEIPT_FILTER_NAME);

 try {
 return await sesClient.send(deleteReceiptFilterCommand);
 } catch (err) {
 console.log("Error deleting receipt filter.", err);
 return err;
 }
};

• For API details, see DeleteReceiptFilter in AWS SDK for JavaScript API Reference.

Actions 721

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/DeleteReceiptFilter
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteReceiptFilterCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

 def delete_receipt_filter(self, filter_name):
 """
 Deletes a receipt filter.

 :param filter_name: The name of the filter to delete.
 """
 try:
 self.ses_client.delete_receipt_filter(FilterName=filter_name)
 logger.info("Deleted receipt filter %s.", filter_name)
 except ClientError:
 logger.exception("Couldn't delete receipt filter %s.", filter_name)
 raise

• For API details, see DeleteReceiptFilter in AWS SDK for Python (Boto3) API Reference.

Actions 722

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteReceiptFilter

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteReceiptRule with an AWS SDK or CLI

The following code examples show how to use DeleteReceiptRule.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete an Amazon Simple Email Service (Amazon SES) receipt rule.
/*!
 \param receiptRuleName: The name for the receipt rule.
 \param receiptRuleSetName: The name for the receipt rule set.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::deleteReceiptRule(const Aws::String &receiptRuleName,
 const Aws::String &receiptRuleSetName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::DeleteReceiptRuleRequest deleteReceiptRuleRequest;

 deleteReceiptRuleRequest.SetRuleName(receiptRuleName);
 deleteReceiptRuleRequest.SetRuleSetName(receiptRuleSetName);

 Aws::SES::Model::DeleteReceiptRuleOutcome outcome =
 sesClient.DeleteReceiptRule(
 deleteReceiptRuleRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted receipt rule." << std::endl;

Actions 723

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 }
 else {
 std::cout << "Error deleting receipt rule. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteReceiptRule in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteReceiptRuleCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const RULE_NAME = getUniqueName("RuleName");
const RULE_SET_NAME = getUniqueName("RuleSetName");

const createDeleteReceiptRuleCommand = () => {
 return new DeleteReceiptRuleCommand({
 RuleName: RULE_NAME,
 RuleSetName: RULE_SET_NAME,
 });
};

const run = async () => {
 const deleteReceiptRuleCommand = createDeleteReceiptRuleCommand();
 try {
 return await sesClient.send(deleteReceiptRuleCommand);

Actions 724

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/DeleteReceiptRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 } catch (err) {
 console.log("Failed to delete receipt rule.", err);
 return err;
 }
};

• For API details, see DeleteReceiptRule in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

 def delete_receipt_rule(self, rule_set_name, rule_name):
 """
 Deletes a rule.

 :param rule_set_name: The rule set that contains the rule to delete.
 :param rule_name: The rule to delete.
 """
 try:
 self.ses_client.delete_receipt_rule(
 RuleSetName=rule_set_name, RuleName=rule_name
)

Actions 725

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteReceiptRuleCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 logger.info("Removed rule %s from rule set %s.", rule_name,
 rule_set_name)
 except ClientError:
 logger.exception(
 "Couldn't remove rule %s from rule set %s.", rule_name,
 rule_set_name
)
 raise

• For API details, see DeleteReceiptRule in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteReceiptRuleSet with an AWS SDK or CLI

The following code examples show how to use DeleteReceiptRuleSet.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete an Amazon Simple Email Service (Amazon SES) receipt rule set.
/*!
 \param receiptRuleSetName: The name for the receipt rule set.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::deleteReceiptRuleSet(const Aws::String &receiptRuleSetName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

Actions 726

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteReceiptRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 Aws::SES::Model::DeleteReceiptRuleSetRequest deleteReceiptRuleSetRequest;

 deleteReceiptRuleSetRequest.SetRuleSetName(receiptRuleSetName);

 Aws::SES::Model::DeleteReceiptRuleSetOutcome outcome =
 sesClient.DeleteReceiptRuleSet(
 deleteReceiptRuleSetRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted receipt rule set." << std::endl;
 }

 else {
 std::cerr << "Error deleting receipt rule set. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteReceiptRuleSet in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteReceiptRuleSetCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const RULE_SET_NAME = getUniqueName("RuleSetName");

const createDeleteReceiptRuleSetCommand = () => {

Actions 727

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/DeleteReceiptRuleSet
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 return new DeleteReceiptRuleSetCommand({ RuleSetName: RULE_SET_NAME });
};

const run = async () => {
 const deleteReceiptRuleSetCommand = createDeleteReceiptRuleSetCommand();

 try {
 return await sesClient.send(deleteReceiptRuleSetCommand);
 } catch (err) {
 console.log("Failed to delete receipt rule set.", err);
 return err;
 }
};

• For API details, see DeleteReceiptRuleSet in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

 def delete_receipt_rule_set(self, rule_set_name):
 """

Actions 728

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteReceiptRuleSetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 Deletes a rule set. When a rule set is deleted, all of the rules it
 contains
 are also deleted.

 :param rule_set_name: The name of the rule set to delete.
 """
 try:
 self.ses_client.delete_receipt_rule_set(RuleSetName=rule_set_name)
 logger.info("Deleted rule set %s.", rule_set_name)
 except ClientError:
 logger.exception("Couldn't delete rule set %s.", rule_set_name)
 raise

• For API details, see DeleteReceiptRuleSet in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteTemplate with an AWS SDK or CLI

The following code examples show how to use DeleteTemplate.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 729

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteReceiptRuleSet
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 /// <summary>
 /// Delete an email template.
 /// </summary>
 /// <param name="templateName">Name of the template.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailTemplateAsync(string templateName)
 {
 var success = false;
 try
 {
 var response = await _amazonSimpleEmailService.DeleteTemplateAsync(
 new DeleteTemplateRequest
 {
 TemplateName = templateName
 });
 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("DeleteEmailTemplateAsync failed with exception: "
 + ex.Message);
 }

 return success;
 }

• For API details, see DeleteTemplate in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 730

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/DeleteTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

//! Delete an Amazon Simple Email Service (Amazon SES) template.
/*!
 \param templateName: The name for the template.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::deleteTemplate(const Aws::String &templateName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::DeleteTemplateRequest deleteTemplateRequest;

 deleteTemplateRequest.SetTemplateName(templateName);

 Aws::SES::Model::DeleteTemplateOutcome outcome = sesClient.DeleteTemplate(
 deleteTemplateRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted template." << std::endl;
 }
 else {
 std::cerr << "Error deleting template. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteTemplate in AWS SDK for C++ API Reference.

Actions 731

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/DeleteTemplate

Amazon Simple Email Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { DeleteTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");

const createDeleteTemplateCommand = (templateName) =>
 new DeleteTemplateCommand({ TemplateName: templateName });

const run = async () => {
 const deleteTemplateCommand = createDeleteTemplateCommand(TEMPLATE_NAME);

 try {
 return await sesClient.send(deleteTemplateCommand);
 } catch (err) {
 console.log("Failed to delete template.", err);
 return err;
 }
};

• For API details, see DeleteTemplate in AWS SDK for JavaScript API Reference.

Actions 732

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/DeleteTemplateCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesTemplate:
 """Encapsulates Amazon SES template functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client
 self.template = None
 self.template_tags = set()

 def _extract_tags(self, subject, text, html):
 """
 Extracts tags from a template as a set of unique values.

 :param subject: The subject of the email.
 :param text: The text version of the email.
 :param html: The html version of the email.
 """
 self.template_tags = set(re.findall(TEMPLATE_REGEX, subject + text +
 html))
 logger.info("Extracted template tags: %s", self.template_tags)

 def delete_template(self):
 """
 Deletes an email template.
 """
 try:

 self.ses_client.delete_template(TemplateName=self.template["TemplateName"])
 logger.info("Deleted template %s.", self.template["TemplateName"])

Actions 733

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 self.template = None
 self.template_tags = None
 except ClientError:
 logger.exception(
 "Couldn't delete template %s.", self.template["TemplateName"]
)
 raise

• For API details, see DeleteTemplate in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeReceiptRuleSet with an AWS SDK or CLI

The following code example shows how to use DescribeReceiptRuleSet.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

Actions 734

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 def describe_receipt_rule_set(self, rule_set_name):
 """
 Gets data about a rule set.

 :param rule_set_name: The name of the rule set to retrieve.
 :return: Data about the rule set.
 """
 try:
 response = self.ses_client.describe_receipt_rule_set(
 RuleSetName=rule_set_name
)
 logger.info("Got data for rule set %s.", rule_set_name)
 except ClientError:
 logger.exception("Couldn't get data for rule set %s.", rule_set_name)
 raise
 else:
 return response

• For API details, see DescribeReceiptRuleSet in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetIdentityVerificationAttributes with an AWS SDK or CLI

The following code examples show how to use GetIdentityVerificationAttributes.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

Actions 735

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DescribeReceiptRuleSet

Amazon Simple Email Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get identity verification status for an email.
 /// </summary>
 /// <returns>The verification status of the email.</returns>
 public async Task<VerificationStatus> GetIdentityStatusAsync(string email)
 {
 var result = VerificationStatus.TemporaryFailure;
 try
 {
 var response =
 await
 _amazonSimpleEmailService.GetIdentityVerificationAttributesAsync(
 new GetIdentityVerificationAttributesRequest
 {
 Identities = new List<string> { email }
 });

 if (response.VerificationAttributes.ContainsKey(email))
 result =
 response.VerificationAttributes[email].VerificationStatus;
 }
 catch (Exception ex)
 {
 Console.WriteLine("GetIdentityStatusAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

Actions 736

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see GetIdentityVerificationAttributes in AWS SDK for .NET API Reference.

CLI

AWS CLI

To get the Amazon SES verification status for a list of identities

The following example uses the get-identity-verification-attributes command
to retrieve the Amazon SES verification status for a list of identities:

aws ses get-identity-verification-attributes --identities "user1@example.com"
 "user2@example.com"

Output:

{
 "VerificationAttributes": {
 "user1@example.com": {
 "VerificationStatus": "Success"
 },
 "user2@example.com": {
 "VerificationStatus": "Pending"
 }
 }
}

If you call this command with an identity that you have never submitted for verification, that
identity won't appear in the output.

For more information about verified identities, see Verifying Email Addresses and Domains
in Amazon SES in the Amazon Simple Email Service Developer Guide.

• For API details, see GetIdentityVerificationAttributes in AWS CLI Command Reference.

Actions 737

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/GetIdentityVerificationAttributes
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/get-identity-verification-attributes.html

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesIdentity:
 """Encapsulates Amazon SES identity functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def get_identity_status(self, identity):
 """
 Gets the status of an identity. This can be used to discover whether
 an identity has been successfully verified.

 :param identity: The identity to query.
 :return: The status of the identity.
 """
 try:
 response = self.ses_client.get_identity_verification_attributes(
 Identities=[identity]
)
 status = response["VerificationAttributes"].get(
 identity, {"VerificationStatus": "NotFound"}
)["VerificationStatus"]
 logger.info("Got status of %s for %s.", status, identity)
 except ClientError:
 logger.exception("Couldn't get status for %s.", identity)
 raise
 else:
 return status

Actions 738

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see GetIdentityVerificationAttributes in AWS SDK for Python (Boto3) API
Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-ses" # v2: require 'aws-sdk'

Create client in us-west-2 region
Replace us-west-2 with the AWS Region you're using for Amazon SES.
client = Aws::SES::Client.new(region: "us-west-2")

Get up to 1000 identities
ids = client.list_identities({
 identity_type: "EmailAddress"
})

ids.identities.each do |email|
 attrs = client.get_identity_verification_attributes({
 identities: [email]
 })

 status = attrs.verification_attributes[email].verification_status

 # Display email addresses that have been verified
 if status == "Success"
 puts email
 end
end

Actions 739

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/GetIdentityVerificationAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see GetIdentityVerificationAttributes in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetSendQuota with an AWS SDK or CLI

The following code examples show how to use GetSendQuota.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get information on the current account's send quota.
 /// </summary>
 /// <returns>The send quota response data.</returns>
 public async Task<GetSendQuotaResponse> GetSendQuotaAsync()
 {
 var result = new GetSendQuotaResponse();
 try
 {
 var response = await _amazonSimpleEmailService.GetSendQuotaAsync(
 new GetSendQuotaRequest());
 result = response;
 }
 catch (Exception ex)
 {
 Console.WriteLine("GetSendQuotaAsync failed with exception: " +
 ex.Message);
 }

 return result;

Actions 740

https://docs.aws.amazon.com/goto/SdkForRubyV3/email-2010-12-01/GetIdentityVerificationAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 }

• For API details, see GetSendQuota in AWS SDK for .NET API Reference.

CLI

AWS CLI

To get your Amazon SES sending limits

The following example uses the get-send-quota command to return your Amazon SES
sending limits:

aws ses get-send-quota

Output:

{
 "Max24HourSend": 200.0,
 "SentLast24Hours": 1.0,
 "MaxSendRate": 1.0
}

Max24HourSend is your sending quota, which is the maximum number of emails that you
can send in a 24-hour period. The sending quota reflects a rolling time period. Every time
you try to send an email, Amazon SES checks how many emails you sent in the previous 24
hours. As long as the total number of emails that you have sent is less than your quota, your
send request will be accepted and your email will be sent.

SentLast24Hours is the number of emails that you have sent in the previous 24 hours.

MaxSendRate is the maximum number of emails that you can send per second.

Note that sending limits are based on recipients rather than on messages. For example, an
email that has 10 recipients counts as 10 against your sending quota.

For more information, see Managing Your Amazon SES Sending Limits in the Amazon Simple
Email Service Developer Guide.

• For API details, see GetSendQuota in AWS CLI Command Reference.

Actions 741

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/GetSendQuota
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/get-send-quota.html

Amazon Simple Email Service Developer Guide

PowerShell

Tools for PowerShell

Example 1: This command returns the user's current sending limits.

Get-SESSendQuota

• For API details, see GetSendQuota in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetSendStatistics with an AWS SDK or CLI

The following code examples show how to use GetSendStatistics.

CLI

AWS CLI

To get your Amazon SES sending statistics

The following example uses the get-send-statistics command to return your Amazon
SES sending statistics

aws ses get-send-statistics

Output:

{
 "SendDataPoints": [
 {
 "Complaints": 0,
 "Timestamp": "2013-06-12T19:32:00Z",
 "DeliveryAttempts": 2,
 "Bounces": 0,
 "Rejects": 0
 },
 {
 "Complaints": 0,

Actions 742

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Email Service Developer Guide

 "Timestamp": "2013-06-12T00:47:00Z",
 "DeliveryAttempts": 1,
 "Bounces": 0,
 "Rejects": 0
 }
]
}

The result is a list of data points, representing the last two weeks of sending activity. Each
data point in the list contains statistics for a 15-minute interval.

In this example, there are only two data points because the only emails that the user sent in
the last two weeks fell within two 15-minute intervals.

For more information, see Monitoring Your Amazon SES Usage Statistics in the Amazon
Simple Email Service Developer Guide.

• For API details, see GetSendStatistics in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This command returns the user's sending statistics. The result is a list of data
points, representing the last two weeks of sending activity. Each data point in the list
contains statistics for a 15-minute interval.

Get-SESSendStatistic

• For API details, see GetSendStatistics in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetTemplate with an AWS SDK or CLI

The following code examples show how to use GetTemplate.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions 743

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/get-send-statistics.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Email Service Developer Guide

• Verify an email identity and send messages

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Get a template's attributes.
/*!
 \param templateName: The name for the template.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::getTemplate(const Aws::String &templateName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::GetTemplateRequest getTemplateRequest;

 getTemplateRequest.SetTemplateName(templateName);

 Aws::SES::Model::GetTemplateOutcome outcome = sesClient.GetTemplate(
 getTemplateRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully got template." << std::endl;
 }

 else {
 std::cerr << "Error getting template. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Actions 744

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see GetTemplate in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { GetTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");

const createGetTemplateCommand = (templateName) =>
 new GetTemplateCommand({ TemplateName: templateName });

const run = async () => {
 const getTemplateCommand = createGetTemplateCommand(TEMPLATE_NAME);

 try {
 return await sesClient.send(getTemplateCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• For API details, see GetTemplate in AWS SDK for JavaScript API Reference.

Actions 745

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/GetTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/GetTemplateCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesTemplate:
 """Encapsulates Amazon SES template functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client
 self.template = None
 self.template_tags = set()

 def _extract_tags(self, subject, text, html):
 """
 Extracts tags from a template as a set of unique values.

 :param subject: The subject of the email.
 :param text: The text version of the email.
 :param html: The html version of the email.
 """
 self.template_tags = set(re.findall(TEMPLATE_REGEX, subject + text +
 html))
 logger.info("Extracted template tags: %s", self.template_tags)

 def get_template(self, name):
 """
 Gets a previously created email template.

 :param name: The name of the template to retrieve.
 :return: The retrieved email template.
 """
 try:

Actions 746

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 response = self.ses_client.get_template(TemplateName=name)
 self.template = response["Template"]
 logger.info("Got template %s.", name)
 self._extract_tags(
 self.template["SubjectPart"],
 self.template["TextPart"],
 self.template["HtmlPart"],
)
 except ClientError:
 logger.exception("Couldn't get template %s.", name)
 raise
 else:
 return self.template

• For API details, see GetTemplate in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListIdentities with an AWS SDK or CLI

The following code examples show how to use ListIdentities.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Copy email and domain identities across Regions

• Verify an email identity and send messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 747

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/GetTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 /// <summary>
 /// Get the identities of a specified type for the current account.
 /// </summary>
 /// <param name="identityType">IdentityType to list.</param>
 /// <returns>The list of identities.</returns>
 public async Task<List<string>> ListIdentitiesAsync(IdentityType
 identityType)
 {
 var result = new List<string>();
 try
 {
 var response = await _amazonSimpleEmailService.ListIdentitiesAsync(
 new ListIdentitiesRequest
 {
 IdentityType = identityType
 });
 result = response.Identities;
 }
 catch (Exception ex)
 {
 Console.WriteLine("ListIdentitiesAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

• For API details, see ListIdentities in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 748

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/ListIdentities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

//! List the identities associated with this account.
/*!
 \param identityType: The identity type enum. "NOT_SET" is a valid option.
 \param identities; A vector to receive the retrieved identities.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::listIdentities(Aws::SES::Model::IdentityType identityType,
 Aws::Vector<Aws::String> &identities,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::ListIdentitiesRequest listIdentitiesRequest;

 if (identityType != Aws::SES::Model::IdentityType::NOT_SET) {
 listIdentitiesRequest.SetIdentityType(identityType);
 }

 Aws::String nextToken; // Used for paginated results.
 do {
 if (!nextToken.empty()) {
 listIdentitiesRequest.SetNextToken(nextToken);
 }
 Aws::SES::Model::ListIdentitiesOutcome outcome =
 sesClient.ListIdentities(
 listIdentitiesRequest);

 if (outcome.IsSuccess()) {
 const auto &retrievedIdentities =
 outcome.GetResult().GetIdentities();
 if (!retrievedIdentities.empty()) {
 identities.insert(identities.cend(),
 retrievedIdentities.cbegin(),
 retrievedIdentities.cend());
 }
 nextToken = outcome.GetResult().GetNextToken();
 }
 else {
 std::cout << "Error listing identities. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;

Actions 749

Amazon Simple Email Service Developer Guide

 }
 } while (!nextToken.empty());

 return true;
}

• For API details, see ListIdentities in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list all identities (email addresses and domains) for a specific AWS account

The following example uses the list-identities command to list all identities that have
been submitted for verification with Amazon SES:

aws ses list-identities

Output:

{
 "Identities": [
 "user@example.com",
 "example.com"
]
}

The list that is returned contains all identities regardless of verification status (verified,
pending verification, failure, etc.).

In this example, email addresses and domains are returned because we did not specify the
identity-type parameter.

For more information about verification, see Verifying Email Addresses and Domains in
Amazon SES in the Amazon Simple Email Service Developer Guide.

• For API details, see ListIdentities in AWS CLI Command Reference.

Actions 750

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/ListIdentities
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/list-identities.html

Amazon Simple Email Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.ses.SesClient;
import software.amazon.awssdk.services.ses.model.ListIdentitiesResponse;
import software.amazon.awssdk.services.ses.model.SesException;
import java.io.IOException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListIdentities {

 public static void main(String[] args) throws IOException {
 Region region = Region.US_WEST_2;
 SesClient client = SesClient.builder()
 .region(region)
 .build();

 listSESIdentities(client);
 }

 public static void listSESIdentities(SesClient client) {
 try {
 ListIdentitiesResponse identitiesResponse = client.listIdentities();
 List<String> identities = identitiesResponse.identities();
 for (String identity : identities) {

Actions 751

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 System.out.println("The identity is " + identity);
 }

 } catch (SesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListIdentities in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { ListIdentitiesCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListIdentitiesCommand = () =>
 new ListIdentitiesCommand({ IdentityType: "EmailAddress", MaxItems: 10 });

const run = async () => {
 const listIdentitiesCommand = createListIdentitiesCommand();

 try {
 return await sesClient.send(listIdentitiesCommand);
 } catch (err) {
 console.log("Failed to list identities.", err);
 return err;
 }
};

Actions 752

https://docs.aws.amazon.com/goto/SdkForJavaV2/email-2010-12-01/ListIdentities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see ListIdentities in AWS SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell

Example 1: This command returns a list containing all of the identities (email addresses
and domains) for a specific AWS Account, regardless of verification status.

Get-SESIdentity

• For API details, see ListIdentities in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesIdentity:
 """Encapsulates Amazon SES identity functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def list_identities(self, identity_type, max_items):
 """
 Gets the identities of the specified type for the current account.

 :param identity_type: The type of identity to retrieve, such as
 EmailAddress.
 :param max_items: The maximum number of identities to retrieve.

Actions 753

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/ListIdentitiesCommand
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 :return: The list of retrieved identities.
 """
 try:
 response = self.ses_client.list_identities(
 IdentityType=identity_type, MaxItems=max_items
)
 identities = response["Identities"]
 logger.info("Got %s identities for the current account.",
 len(identities))
 except ClientError:
 logger.exception("Couldn't list identities for the current account.")
 raise
 else:
 return identities

• For API details, see ListIdentities in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-ses" # v2: require 'aws-sdk'

Create client in us-west-2 region
Replace us-west-2 with the AWS Region you're using for Amazon SES.
client = Aws::SES::Client.new(region: "us-west-2")

Get up to 1000 identities
ids = client.list_identities({
 identity_type: "EmailAddress"
})

Actions 754

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/ListIdentities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples

Amazon Simple Email Service Developer Guide

ids.identities.each do |email|
 attrs = client.get_identity_verification_attributes({
 identities: [email]
 })

 status = attrs.verification_attributes[email].verification_status

 # Display email addresses that have been verified
 if status == "Success"
 puts email
 end
end

• For API details, see ListIdentities in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListReceiptFilters with an AWS SDK or CLI

The following code examples show how to use ListReceiptFilters.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! List the receipt filters associated with this account.
/*!
 \param filters; A vector of "ReceiptFilter" to receive the retrieved filters.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool

Actions 755

https://docs.aws.amazon.com/goto/SdkForRubyV3/email-2010-12-01/ListIdentities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

AwsDoc::SES::listReceiptFilters(Aws::Vector<Aws::SES::Model::ReceiptFilter>
 &filters,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);
 Aws::SES::Model::ListReceiptFiltersRequest listReceiptFiltersRequest;

 Aws::SES::Model::ListReceiptFiltersOutcome outcome =
 sesClient.ListReceiptFilters(
 listReceiptFiltersRequest);
 if (outcome.IsSuccess()) {
 auto &retrievedFilters = outcome.GetResult().GetFilters();
 if (!retrievedFilters.empty()) {
 filters.insert(filters.cend(), retrievedFilters.cbegin(),
 retrievedFilters.cend());
 }
 }
 else {
 std::cerr << "Error retrieving IP address filters: "
 << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see ListReceiptFilters in AWS SDK for C++ API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { ListReceiptFiltersCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListReceiptFiltersCommand = () => new ListReceiptFiltersCommand({});

Actions 756

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/ListReceiptFilters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

const run = async () => {
 const listReceiptFiltersCommand = createListReceiptFiltersCommand();

 return await sesClient.send(listReceiptFiltersCommand);
};

• For API details, see ListReceiptFilters in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesReceiptHandler:
 """Encapsulates Amazon SES receipt handling functions."""

 def __init__(self, ses_client, s3_resource):
 """
 :param ses_client: A Boto3 Amazon SES client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 """
 self.ses_client = ses_client
 self.s3_resource = s3_resource

 def list_receipt_filters(self):
 """
 Gets the list of receipt filters for the current account.

 :return: The list of receipt filters.
 """
 try:
 response = self.ses_client.list_receipt_filters()
 filters = response["Filters"]
 logger.info("Got %s receipt filters.", len(filters))

Actions 757

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/ListReceiptFiltersCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 except ClientError:
 logger.exception("Couldn't get receipt filters.")
 raise
 else:
 return filters

• For API details, see ListReceiptFilters in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListTemplates with an AWS SDK or CLI

The following code examples show how to use ListTemplates.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// List email templates for the current account.
 /// </summary>
 /// <returns>A list of template metadata.</returns>
 public async Task<List<TemplateMetadata>> ListEmailTemplatesAsync()
 {

Actions 758

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/ListReceiptFilters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 var result = new List<TemplateMetadata>();
 try
 {
 var response = await _amazonSimpleEmailService.ListTemplatesAsync(
 new ListTemplatesRequest());
 result = response.TemplatesMetadata;
 }
 catch (Exception ex)
 {
 Console.WriteLine("ListEmailTemplatesAsync failed with exception: " +
 ex.Message);
 }

 return result;
 }

• For API details, see ListTemplates in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sesv2.SesV2Client;
import software.amazon.awssdk.services.sesv2.model.ListEmailTemplatesRequest;
import software.amazon.awssdk.services.sesv2.model.ListEmailTemplatesResponse;
import software.amazon.awssdk.services.sesv2.model.SesV2Exception;

public class ListTemplates {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 SesV2Client sesv2Client = SesV2Client.builder()
 .region(region)

Actions 759

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/ListTemplates
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 .build();

 listAllTemplates(sesv2Client);
 }

 public static void listAllTemplates(SesV2Client sesv2Client) {
 try {
 ListEmailTemplatesRequest templatesRequest =
 ListEmailTemplatesRequest.builder()
 .pageSize(1)
 .build();

 ListEmailTemplatesResponse response =
 sesv2Client.listEmailTemplates(templatesRequest);
 response.templatesMetadata()
 .forEach(template -> System.out.println("Template name: " +
 template.templateName()));

 } catch (SesV2Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListTemplates in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { ListTemplatesCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createListTemplatesCommand = (maxItems) =>

Actions 760

https://docs.aws.amazon.com/goto/SdkForJavaV2/email-2010-12-01/ListTemplates
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 new ListTemplatesCommand({ MaxItems: maxItems });

const run = async () => {
 const listTemplatesCommand = createListTemplatesCommand(10);

 try {
 return await sesClient.send(listTemplatesCommand);
 } catch (err) {
 console.log("Failed to list templates.", err);
 return err;
 }
};

• For API details, see ListTemplates in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesTemplate:
 """Encapsulates Amazon SES template functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client
 self.template = None
 self.template_tags = set()

 def _extract_tags(self, subject, text, html):
 """
 Extracts tags from a template as a set of unique values.

 :param subject: The subject of the email.

Actions 761

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/ListTemplatesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 :param text: The text version of the email.
 :param html: The html version of the email.
 """
 self.template_tags = set(re.findall(TEMPLATE_REGEX, subject + text +
 html))
 logger.info("Extracted template tags: %s", self.template_tags)

 def list_templates(self):
 """
 Gets a list of all email templates for the current account.

 :return: The list of retrieved email templates.
 """
 try:
 response = self.ses_client.list_templates()
 templates = response["TemplatesMetadata"]
 logger.info("Got %s templates.", len(templates))
 except ClientError:
 logger.exception("Couldn't get templates.")
 raise
 else:
 return templates

• For API details, see ListTemplates in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendBulkTemplatedEmail with an AWS SDK or CLI

The following code example shows how to use SendBulkTemplatedEmail.

Actions 762

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/ListTemplates

Amazon Simple Email Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { SendBulkTemplatedEmailCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * Replace this with the name of an existing template.
 */
const TEMPLATE_NAME = getUniqueName("ReminderTemplate");

/**
 * Replace these with existing verified emails.
 */
const VERIFIED_EMAIL_1 = postfix(getUniqueName("Bilbo"), "@example.com");
const VERIFIED_EMAIL_2 = postfix(getUniqueName("Frodo"), "@example.com");

const USERS = [
 { firstName: "Bilbo", emailAddress: VERIFIED_EMAIL_1 },
 { firstName: "Frodo", emailAddress: VERIFIED_EMAIL_2 },
];

/**
 *
 * @param { { emailAddress: string, firstName: string }[] } users
 * @param { string } templateName the name of an existing template in SES
 * @returns { SendBulkTemplatedEmailCommand }
 */
const createBulkReminderEmailCommand = (users, templateName) => {
 return new SendBulkTemplatedEmailCommand({
 /**

Actions 763

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 * Each 'Destination' uses a corresponding set of replacement data. We can
 map each user
 * to a 'Destination' and provide user specific replacement data to create
 personalized emails.
 *
 * Here's an example of how a template would be replaced with user data:
 * Template: <h1>Hello {{name}},</h1><p>Don't forget about the party gifts!</
p>
 * Destination 1: <h1>Hello Bilbo,</h1><p>Don't forget about the party gifts!
</p>
 * Destination 2: <h1>Hello Frodo,</h1><p>Don't forget about the party gifts!
</p>
 */
 Destinations: users.map((user) => ({
 Destination: { ToAddresses: [user.emailAddress] },
 ReplacementTemplateData: JSON.stringify({ name: user.firstName }),
 })),
 DefaultTemplateData: JSON.stringify({ name: "Shireling" }),
 Source: VERIFIED_EMAIL_1,
 Template: templateName,
 });
};

const run = async () => {
 const sendBulkTemplateEmailCommand = createBulkReminderEmailCommand(
 USERS,
 TEMPLATE_NAME,
);
 try {
 return await sesClient.send(sendBulkTemplateEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• For API details, see SendBulkTemplatedEmail in AWS SDK for JavaScript API Reference.

Actions 764

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/SendBulkTemplatedEmailCommand

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendEmail with an AWS SDK or CLI

The following code examples show how to use SendEmail.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Send an email by using Amazon SES.
 /// </summary>
 /// <param name="toAddresses">List of recipients.</param>
 /// <param name="ccAddresses">List of cc recipients.</param>
 /// <param name="bccAddresses">List of bcc recipients.</param>
 /// <param name="bodyHtml">Body of the email in HTML.</param>
 /// <param name="bodyText">Body of the email in plain text.</param>
 /// <param name="subject">Subject line of the email.</param>
 /// <param name="senderAddress">From address.</param>
 /// <returns>The messageId of the email.</returns>
 public async Task<string> SendEmailAsync(List<string> toAddresses,
 List<string> ccAddresses, List<string> bccAddresses,
 string bodyHtml, string bodyText, string subject, string senderAddress)
 {
 var messageId = "";
 try

Actions 765

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 {
 var response = await _amazonSimpleEmailService.SendEmailAsync(
 new SendEmailRequest
 {
 Destination = new Destination
 {
 BccAddresses = bccAddresses,
 CcAddresses = ccAddresses,
 ToAddresses = toAddresses
 },
 Message = new Message
 {
 Body = new Body
 {
 Html = new Content
 {
 Charset = "UTF-8",
 Data = bodyHtml
 },
 Text = new Content
 {
 Charset = "UTF-8",
 Data = bodyText
 }
 },
 Subject = new Content
 {
 Charset = "UTF-8",
 Data = subject
 }
 },
 Source = senderAddress
 });
 messageId = response.MessageId;
 }
 catch (Exception ex)
 {
 Console.WriteLine("SendEmailAsync failed with exception: " +
 ex.Message);
 }

 return messageId;
 }

Actions 766

Amazon Simple Email Service Developer Guide

• For API details, see SendEmail in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Send an email to a list of recipients.
/*!
 \param recipients; Vector of recipient email addresses.
 \param subject: Email subject.
 \param htmlBody: Email body as HTML. At least one body data is required.
 \param textBody: Email body as plain text. At least one body data is required.
 \param senderEmailAddress: Email address of sender. Ignored if empty string.
 \param ccAddresses: Vector of cc addresses. Ignored if empty.
 \param replyToAddress: Reply to email address. Ignored if empty string.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::sendEmail(const Aws::Vector<Aws::String> &recipients,
 const Aws::String &subject,
 const Aws::String &htmlBody,
 const Aws::String &textBody,
 const Aws::String &senderEmailAddress,
 const Aws::Vector<Aws::String> &ccAddresses,
 const Aws::String &replyToAddress,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::Destination destination;
 if (!ccAddresses.empty()) {
 destination.WithCcAddresses(ccAddresses);
 }
 if (!recipients.empty()) {

Actions 767

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 destination.WithToAddresses(recipients);
 }

 Aws::SES::Model::Body message_body;
 if (!htmlBody.empty()) {
 message_body.SetHtml(

 Aws::SES::Model::Content().WithCharset("UTF-8").WithData(htmlBody));
 }

 if (!textBody.empty()) {
 message_body.SetText(

 Aws::SES::Model::Content().WithCharset("UTF-8").WithData(textBody));
 }

 Aws::SES::Model::Message message;
 message.SetBody(message_body);
 message.SetSubject(
 Aws::SES::Model::Content().WithCharset("UTF-8").WithData(subject));

 Aws::SES::Model::SendEmailRequest sendEmailRequest;
 sendEmailRequest.SetDestination(destination);
 sendEmailRequest.SetMessage(message);
 if (!senderEmailAddress.empty()) {
 sendEmailRequest.SetSource(senderEmailAddress);
 }
 if (!replyToAddress.empty()) {
 sendEmailRequest.AddReplyToAddresses(replyToAddress);
 }

 auto outcome = sesClient.SendEmail(sendEmailRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully sent message with ID "
 << outcome.GetResult().GetMessageId()
 << "." << std::endl;
 }
 else {
 std::cerr << "Error sending message. " << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();

Actions 768

Amazon Simple Email Service Developer Guide

}

• For API details, see SendEmail in AWS SDK for C++ API Reference.

CLI

AWS CLI

To send a formatted email using Amazon SES

The following example uses the send-email command to send a formatted email:

aws ses send-email --from sender@example.com --destination file://
destination.json --message file://message.json

Output:

{
 "MessageId": "EXAMPLEf3a5efcd1-51adec81-d2a4-4e3f-9fe2-5d85c1b23783-000000"
}

The destination and the message are JSON data structures saved in .json files in the current
directory. These files are as follows:

destination.json:

{
 "ToAddresses": ["recipient1@example.com", "recipient2@example.com"],
 "CcAddresses": ["recipient3@example.com"],
 "BccAddresses": []
}

message.json:

{
 "Subject": {
 "Data": "Test email sent using the AWS CLI",
 "Charset": "UTF-8"
 },
 "Body": {
 "Text": {

Actions 769

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/SendEmail

Amazon Simple Email Service Developer Guide

 "Data": "This is the message body in text format.",
 "Charset": "UTF-8"
 },
 "Html": {
 "Data": "This message body contains HTML formatting. It can, for
 example, contain links like this one: <a class=\"ulink\" href=\"http://
docs.aws.amazon.com/ses/latest/DeveloperGuide\" target=\"_blank\">Amazon SES
 Developer Guide.",
 "Charset": "UTF-8"
 }
 }
}

Replace the sender and recipient email addresses with the ones you want to use. Note
that the sender's email address must be verified with Amazon SES. Until you are granted
production access to Amazon SES, you must also verify the email address of each recipient
unless the recipient is the Amazon SES mailbox simulator. For more information on
verification, see Verifying Email Addresses and Domains in Amazon SES in the Amazon
Simple Email Service Developer Guide.

The Message ID in the output indicates that the call to send-email was successful.

If you don't receive the email, check your Junk box.

For more information on sending formatted email, see Sending Formatted Email Using the
Amazon SES API in the Amazon Simple Email Service Developer Guide.

• For API details, see SendEmail in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.ses.SesClient;

Actions 770

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/send-email.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

import software.amazon.awssdk.services.ses.model.Content;
import software.amazon.awssdk.services.ses.model.Destination;
import software.amazon.awssdk.services.ses.model.Message;
import software.amazon.awssdk.services.ses.model.Body;
import software.amazon.awssdk.services.ses.model.SendEmailRequest;
import software.amazon.awssdk.services.ses.model.SesException;

import javax.mail.MessagingException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SendMessageEmailRequest {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <sender> <recipient> <subject>\s

 Where:
 sender - An email address that represents the sender.\s
 recipient - An email address that represents the recipient.
\s
 subject - The subject line.\s
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String sender = args[0];
 String recipient = args[1];
 String subject = args[2];

 Region region = Region.US_EAST_1;
 SesClient client = SesClient.builder()
 .region(region)

Actions 771

Amazon Simple Email Service Developer Guide

 .build();

 // The HTML body of the email.
 String bodyHTML = "<html>" + "<head></head>" + "<body>" + "<h1>Hello!</
h1>"
 + "<p> See the list of customers.</p>" + "</body>" + "</html>";

 try {
 send(client, sender, recipient, subject, bodyHTML);
 client.close();
 System.out.println("Done");

 } catch (MessagingException e) {
 e.getStackTrace();
 }
 }

 public static void send(SesClient client,
 String sender,
 String recipient,
 String subject,
 String bodyHTML) throws MessagingException {

 Destination destination = Destination.builder()
 .toAddresses(recipient)
 .build();

 Content content = Content.builder()
 .data(bodyHTML)
 .build();

 Content sub = Content.builder()
 .data(subject)
 .build();

 Body body = Body.builder()
 .html(content)
 .build();

 Message msg = Message.builder()
 .subject(sub)
 .body(body)
 .build();

Actions 772

Amazon Simple Email Service Developer Guide

 SendEmailRequest emailRequest = SendEmailRequest.builder()
 .destination(destination)
 .message(msg)
 .source(sender)
 .build();

 try {
 System.out.println("Attempting to send an email through Amazon SES "
 + "using the AWS SDK for Java...");
 client.sendEmail(emailRequest);

 } catch (SesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.ses.SesClient;
import javax.activation.DataHandler;
import javax.activation.DataSource;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeMultipart;
import javax.mail.internet.MimeBodyPart;
import javax.mail.util.ByteArrayDataSource;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.file.Files;
import java.util.Properties;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.services.ses.model.SendRawEmailRequest;
import software.amazon.awssdk.services.ses.model.RawMessage;
import software.amazon.awssdk.services.ses.model.SesException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.

Actions 773

Amazon Simple Email Service Developer Guide

 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class SendMessageAttachment {
 public static void main(String[] args) throws IOException {
 final String usage = """

 Usage:
 <sender> <recipient> <subject> <fileLocation>\s

 Where:
 sender - An email address that represents the sender.\s
 recipient - An email address that represents the recipient.
\s
 subject - The subject line.\s
 fileLocation - The location of a Microsoft Excel file to use
 as an attachment (C:/AWS/customers.xls).\s
 """;

 if (args.length != 4) {
 System.out.println(usage);
 System.exit(1);
 }

 String sender = args[0];
 String recipient = args[1];
 String subject = args[2];
 String fileLocation = args[3];

 // The email body for recipients with non-HTML email clients.
 String bodyText = "Hello,\r\n" + "Please see the attached file for a list
 "
 + "of customers to contact.";

 // The HTML body of the email.
 String bodyHTML = "<html>" + "<head></head>" + "<body>" + "<h1>Hello!</
h1>"
 + "<p>Please see the attached file for a " + "list of customers
 to contact.</p>" + "</body>"
 + "</html>";

Actions 774

Amazon Simple Email Service Developer Guide

 Region region = Region.US_WEST_2;
 SesClient client = SesClient.builder()
 .region(region)
 .build();

 try {
 sendemailAttachment(client, sender, recipient, subject, bodyText,
 bodyHTML, fileLocation);
 client.close();
 System.out.println("Done");

 } catch (IOException | MessagingException e) {
 e.getStackTrace();
 }
 }

 public static void sendemailAttachment(SesClient client,
 String sender,
 String recipient,
 String subject,
 String bodyText,
 String bodyHTML,
 String fileLocation) throws AddressException, MessagingException,
 IOException {

 java.io.File theFile = new java.io.File(fileLocation);
 byte[] fileContent = Files.readAllBytes(theFile.toPath());

 Session session = Session.getDefaultInstance(new Properties());

 // Create a new MimeMessage object.
 MimeMessage message = new MimeMessage(session);

 // Add subject, from and to lines.
 message.setSubject(subject, "UTF-8");
 message.setFrom(new InternetAddress(sender));
 message.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(recipient));

 // Create a multipart/alternative child container.
 MimeMultipart msgBody = new MimeMultipart("alternative");

 // Create a wrapper for the HTML and text parts.

Actions 775

Amazon Simple Email Service Developer Guide

 MimeBodyPart wrap = new MimeBodyPart();

 // Define the text part.
 MimeBodyPart textPart = new MimeBodyPart();
 textPart.setContent(bodyText, "text/plain; charset=UTF-8");

 // Define the HTML part.
 MimeBodyPart htmlPart = new MimeBodyPart();
 htmlPart.setContent(bodyHTML, "text/html; charset=UTF-8");

 // Add the text and HTML parts to the child container.
 msgBody.addBodyPart(textPart);
 msgBody.addBodyPart(htmlPart);

 // Add the child container to the wrapper object.
 wrap.setContent(msgBody);

 // Create a multipart/mixed parent container.
 MimeMultipart msg = new MimeMultipart("mixed");

 // Add the parent container to the message.
 message.setContent(msg);
 msg.addBodyPart(wrap);

 // Define the attachment.
 MimeBodyPart att = new MimeBodyPart();
 DataSource fds = new ByteArrayDataSource(fileContent,
 "application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet");
 att.setDataHandler(new DataHandler(fds));

 String reportName = "WorkReport.xls";
 att.setFileName(reportName);

 // Add the attachment to the message.
 msg.addBodyPart(att);

 try {
 System.out.println("Attempting to send an email through Amazon SES "
 + "using the AWS SDK for Java...");

 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
 message.writeTo(outputStream);

Actions 776

Amazon Simple Email Service Developer Guide

 ByteBuffer buf = ByteBuffer.wrap(outputStream.toByteArray());

 byte[] arr = new byte[buf.remaining()];
 buf.get(arr);

 SdkBytes data = SdkBytes.fromByteArray(arr);
 RawMessage rawMessage = RawMessage.builder()
 .data(data)
 .build();

 SendRawEmailRequest rawEmailRequest = SendRawEmailRequest.builder()
 .rawMessage(rawMessage)
 .build();

 client.sendRawEmail(rawEmailRequest);

 } catch (SesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 System.out.println("Email sent using SesClient with attachment");
 }
}

• For API details, see SendEmail in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { SendEmailCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const createSendEmailCommand = (toAddress, fromAddress) => {
 return new SendEmailCommand({

Actions 777

https://docs.aws.amazon.com/goto/SdkForJavaV2/email-2010-12-01/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 Destination: {
 /* required */
 CcAddresses: [
 /* more items */
],
 ToAddresses: [
 toAddress,
 /* more To-email addresses */
],
 },
 Message: {
 /* required */
 Body: {
 /* required */
 Html: {
 Charset: "UTF-8",
 Data: "HTML_FORMAT_BODY",
 },
 Text: {
 Charset: "UTF-8",
 Data: "TEXT_FORMAT_BODY",
 },
 },
 Subject: {
 Charset: "UTF-8",
 Data: "EMAIL_SUBJECT",
 },
 },
 Source: fromAddress,
 ReplyToAddresses: [
 /* more items */
],
 });
};

const run = async () => {
 const sendEmailCommand = createSendEmailCommand(
 "recipient@example.com",
 "sender@example.com",
);

 try {
 return await sesClient.send(sendEmailCommand);
 } catch (caught) {

Actions 778

Amazon Simple Email Service Developer Guide

 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• For API details, see SendEmail in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesMailSender:
 """Encapsulates functions to send emails with Amazon SES."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def send_email(self, source, destination, subject, text, html,
 reply_tos=None):
 """
 Sends an email.

 Note: If your account is in the Amazon SES sandbox, the source and
 destination email accounts must both be verified.

 :param source: The source email account.

Actions 779

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/SendEmailCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 :param destination: The destination email account.
 :param subject: The subject of the email.
 :param text: The plain text version of the body of the email.
 :param html: The HTML version of the body of the email.
 :param reply_tos: Email accounts that will receive a reply if the
 recipient
 replies to the message.
 :return: The ID of the message, assigned by Amazon SES.
 """
 send_args = {
 "Source": source,
 "Destination": destination.to_service_format(),
 "Message": {
 "Subject": {"Data": subject},
 "Body": {"Text": {"Data": text}, "Html": {"Data": html}},
 },
 }
 if reply_tos is not None:
 send_args["ReplyToAddresses"] = reply_tos
 try:
 response = self.ses_client.send_email(**send_args)
 message_id = response["MessageId"]
 logger.info(
 "Sent mail %s from %s to %s.", message_id, source,
 destination.tos
)
 except ClientError:
 logger.exception(
 "Couldn't send mail from %s to %s.", source, destination.tos
)
 raise
 else:
 return message_id

• For API details, see SendEmail in AWS SDK for Python (Boto3) API Reference.

Actions 780

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/SendEmail

Amazon Simple Email Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-ses" # v2: require 'aws-sdk'

Replace sender@example.com with your "From" address.
This address must be verified with Amazon SES.
sender = "sender@example.com"

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
recipient = "recipient@example.com"

Specify a configuration set. To use a configuration
set, uncomment the next line and line 74.
configsetname = "ConfigSet"

The subject line for the email.
subject = "Amazon SES test (AWS SDK for Ruby)"

The HTML body of the email.
htmlbody =
 "<h1>Amazon SES test (AWS SDK for Ruby)</h1>"\
 '<p>This email was sent with '\
 'Amazon SES using the '\
 "AWS SDK for Ruby."

The email body for recipients with non-HTML email clients.
textbody = "This email was sent with Amazon SES using the AWS SDK for Ruby."

Specify the text encoding scheme.
encoding = "UTF-8"

Create a new SES client in the us-west-2 region.

Actions 781

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples

Amazon Simple Email Service Developer Guide

Replace us-west-2 with the AWS Region you're using for Amazon SES.
ses = Aws::SES::Client.new(region: "us-west-2")

Try to send the email.
begin
 # Provide the contents of the email.
 ses.send_email(
 destination: {
 to_addresses: [
 recipient
]
 },
 message: {
 body: {
 html: {
 charset: encoding,
 data: htmlbody
 },
 text: {
 charset: encoding,
 data: textbody
 }
 },
 subject: {
 charset: encoding,
 data: subject
 }
 },
 source: sender,
 # Uncomment the following line to use a configuration set.
 # configuration_set_name: configsetname,
)

 puts "Email sent to " + recipient

If something goes wrong, display an error message.
rescue Aws::SES::Errors::ServiceError => error
 puts "Email not sent. Error message: #{error}"
end

• For API details, see SendEmail in AWS SDK for Ruby API Reference.

Actions 782

https://docs.aws.amazon.com/goto/SdkForRubyV3/email-2010-12-01/SendEmail

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendRawEmail with an AWS SDK or CLI

The following code examples show how to use SendRawEmail.

CLI

AWS CLI

To send a raw email using Amazon SES

The following example uses the send-raw-email command to send an email with a TXT
attachment:

aws ses send-raw-email --raw-message file://message.json

Output:

{
 "MessageId": "EXAMPLEf3f73d99b-c63fb06f-d263-41f8-a0fb-d0dc67d56c07-000000"
}

The raw message is a JSON data structure saved in a file named message.json in the
current directory. It contains the following:

{
 "Data": "From: sender@example.com\nTo: recipient@example.com\nSubject:
 Test email sent using the AWS CLI (contains an attachment)\nMIME-Version:
 1.0\nContent-type: Multipart/Mixed; boundary=\"NextPart\"\n\n--NextPart
\nContent-Type: text/plain\n\nThis is the message body.\n\n--NextPart\nContent-
Type: text/plain;\nContent-Disposition: attachment; filename=\"attachment.txt\"\n
\nThis is the text in the attachment.\n\n--NextPart--"
}

As you can see, "Data" is one long string that contains the entire raw email content in MIME
format, including an attachment called attachment.txt.

Replace sender@example.com and recipient@example.com with the addresses you want
to use. Note that the sender's email address must be verified with Amazon SES. Until you

Actions 783

Amazon Simple Email Service Developer Guide

are granted production access to Amazon SES, you must also verify the email address of the
recipient unless the recipient is the Amazon SES mailbox simulator. For more information
on verification, see Verifying Email Addresses and Domains in Amazon SES in the Amazon
Simple Email Service Developer Guide.

The Message ID in the output indicates that the call to send-raw-email was successful.

If you don't receive the email, check your Junk box.

For more information on sending raw email, see Sending Raw Email Using the Amazon SES
API in the Amazon Simple Email Service Developer Guide.

• For API details, see SendRawEmail in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Use nodemailer to send an email with an attachment.

import sesClientModule from "@aws-sdk/client-ses";
/**
 * nodemailer wraps the SES SDK and calls SendRawEmail. Use this for more
 advanced
 * functionality like adding attachments to your email.
 *
 * https://nodemailer.com/transports/ses/
 */
import nodemailer from "nodemailer";

/**
 * @param {string} from An Amazon SES verified email address.
 * @param {*} to An Amazon SES verified email address.
 */
export const sendEmailWithAttachments = (
 from = "from@example.com",

Actions 784

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/send-raw-email.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://nodemailer.com/transports/ses/

Amazon Simple Email Service Developer Guide

 to = "to@example.com",
) => {
 const ses = new sesClientModule.SESClient({});
 const transporter = nodemailer.createTransport({
 SES: { ses, aws: sesClientModule },
 });

 return new Promise((resolve, reject) => {
 transporter.sendMail(
 {
 from,
 to,
 subject: "Hello World",
 text: "Greetings from Amazon SES!",
 attachments: [{ content: "Hello World!", filename: "hello.txt" }],
 },
 (err, info) => {
 if (err) {
 reject(err);
 } else {
 resolve(info);
 }
 },
);
 });
};

• For API details, see SendRawEmail in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendTemplatedEmail with an AWS SDK or CLI

The following code examples show how to use SendTemplatedEmail.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

Actions 785

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/SendRawEmailCommand

Amazon Simple Email Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Send an email using a template.
 /// </summary>
 /// <param name="sender">Address of the sender.</param>
 /// <param name="recipients">Addresses of the recipients.</param>
 /// <param name="templateName">Name of the email template.</param>
 /// <param name="templateDataObject">Data for the email template.</param>
 /// <returns>The messageId of the email.</returns>
 public async Task<string> SendTemplateEmailAsync(string sender, List<string>
 recipients,
 string templateName, object templateDataObject)
 {
 var messageId = "";
 try
 {
 // Template data should be serialized JSON from either a class or a
 dynamic object.
 var templateData = JsonSerializer.Serialize(templateDataObject);

 var response = await
 _amazonSimpleEmailService.SendTemplatedEmailAsync(
 new SendTemplatedEmailRequest
 {
 Source = sender,
 Destination = new Destination
 {
 ToAddresses = recipients
 },
 Template = templateName,
 TemplateData = templateData
 });

Actions 786

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

 messageId = response.MessageId;
 }
 catch (Exception ex)
 {
 Console.WriteLine("SendTemplateEmailAsync failed with exception: " +
 ex.Message);
 }

 return messageId;
 }

• For API details, see SendTemplatedEmail in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Send a templated email to a list of recipients.
/*!
 \param recipients; Vector of recipient email addresses.
 \param templateName: The name of the template to use.
 \param templateData: Map of key-value pairs for replacing text in template.
 \param senderEmailAddress: Email address of sender. Ignored if empty string.
 \param ccAddresses: Vector of cc addresses. Ignored if empty.
 \param replyToAddress: Reply to email address. Ignored if empty string.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::sendTemplatedEmail(const Aws::Vector<Aws::String> &recipients,
 const Aws::String &templateName,
 const Aws::Map<Aws::String, Aws::String>
 &templateData,
 const Aws::String &senderEmailAddress,
 const Aws::Vector<Aws::String> &ccAddresses,

Actions 787

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/SendTemplatedEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 const Aws::String &replyToAddress,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::Destination destination;
 if (!ccAddresses.empty()) {
 destination.WithCcAddresses(ccAddresses);
 }
 if (!recipients.empty()) {
 destination.WithToAddresses(recipients);
 }

 Aws::SES::Model::SendTemplatedEmailRequest sendTemplatedEmailRequest;
 sendTemplatedEmailRequest.SetDestination(destination);
 sendTemplatedEmailRequest.SetTemplate(templateName);

 std::ostringstream templateDataStream;
 templateDataStream << "{";
 size_t dataCount = 0;
 for (auto &pair: templateData) {
 templateDataStream << "\"" << pair.first << "\":\"" << pair.second <<
 "\"";
 dataCount++;
 if (dataCount < templateData.size()) {
 templateDataStream << ",";
 }
 }
 templateDataStream << "}";

 sendTemplatedEmailRequest.SetTemplateData(templateDataStream.str());

 if (!senderEmailAddress.empty()) {
 sendTemplatedEmailRequest.SetSource(senderEmailAddress);
 }
 if (!replyToAddress.empty()) {
 sendTemplatedEmailRequest.AddReplyToAddresses(replyToAddress);
 }

 auto outcome = sesClient.SendTemplatedEmail(sendTemplatedEmailRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully sent templated message with ID "
 << outcome.GetResult().GetMessageId()

Actions 788

Amazon Simple Email Service Developer Guide

 << "." << std::endl;
 }
 else {
 std::cerr << "Error sending templated message. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see SendTemplatedEmail in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sesv2.model.Destination;
import software.amazon.awssdk.services.sesv2.model.EmailContent;
import software.amazon.awssdk.services.sesv2.model.SendEmailRequest;
import software.amazon.awssdk.services.sesv2.model.SesV2Exception;
import software.amazon.awssdk.services.sesv2.SesV2Client;
import software.amazon.awssdk.services.sesv2.model.Template;

/**
 * Before running this AWS SDK for Java (v2) example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * Also, make sure that you create a template. See the following documentation

Actions 789

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/SendTemplatedEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 * topic:
 *
 * https://docs.aws.amazon.com/ses/latest/dg/send-personalized-email-api.html
 */

public class SendEmailTemplate {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <template> <sender> <recipient>\s

 Where:
 template - The name of the email template.
 sender - An email address that represents the sender.\s
 recipient - An email address that represents the recipient.\s
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String templateName = args[0];
 String sender = args[1];
 String recipient = args[2];
 Region region = Region.US_EAST_1;
 SesV2Client sesv2Client = SesV2Client.builder()
 .region(region)
 .build();

 send(sesv2Client, sender, recipient, templateName);
 }

 public static void send(SesV2Client client, String sender, String recipient,
 String templateName) {
 Destination destination = Destination.builder()
 .toAddresses(recipient)
 .build();

 /*
 * Specify both name and favorite animal (favoriteanimal) in your code
 when
 * defining the Template object.

Actions 790

Amazon Simple Email Service Developer Guide

 * If you don't specify all the variables in the template, Amazon SES
 doesn't
 * send the email.
 */
 Template myTemplate = Template.builder()
 .templateName(templateName)
 .templateData("{\n" +
 " \"name\": \"Jason\"\n," +
 " \"favoriteanimal\": \"Cat\"\n" +
 "}")
 .build();

 EmailContent emailContent = EmailContent.builder()
 .template(myTemplate)
 .build();

 SendEmailRequest emailRequest = SendEmailRequest.builder()
 .destination(destination)
 .content(emailContent)
 .fromEmailAddress(sender)
 .build();

 try {
 System.out.println("Attempting to send an email based on a template
 using the AWS SDK for Java (v2)...");
 client.sendEmail(emailRequest);
 System.out.println("email based on a template was sent");

 } catch (SesV2Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SendTemplatedEmail in AWS SDK for Java 2.x API Reference.

Actions 791

https://docs.aws.amazon.com/goto/SdkForJavaV2/email-2010-12-01/SendTemplatedEmail

Amazon Simple Email Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { SendTemplatedEmailCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * Replace this with the name of an existing template.
 */
const TEMPLATE_NAME = getUniqueName("ReminderTemplate");

/**
 * Replace these with existing verified emails.
 */
const VERIFIED_EMAIL = postfix(getUniqueName("Bilbo"), "@example.com");

const USER = { firstName: "Bilbo", emailAddress: VERIFIED_EMAIL };

/**
 *
 * @param { { emailAddress: string, firstName: string } } user
 * @param { string } templateName - The name of an existing template in Amazon
 SES.
 * @returns { SendTemplatedEmailCommand }
 */
const createReminderEmailCommand = (user, templateName) => {
 return new SendTemplatedEmailCommand({
 /**
 * Here's an example of how a template would be replaced with user data:
 * Template: <h1>Hello {{contact.firstName}},</h1><p>Don't forget about the
 party gifts!</p>

Actions 792

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 * Destination: <h1>Hello Bilbo,</h1><p>Don't forget about the party gifts!</
p>
 */
 Destination: { ToAddresses: [user.emailAddress] },
 TemplateData: JSON.stringify({ contact: { firstName: user.firstName } }),
 Source: VERIFIED_EMAIL,
 Template: templateName,
 });
};

const run = async () => {
 const sendReminderEmailCommand = createReminderEmailCommand(
 USER,
 TEMPLATE_NAME,
);
 try {
 return await sesClient.send(sendReminderEmailCommand);
 } catch (caught) {
 if (caught instanceof Error && caught.name === "MessageRejected") {
 /** @type { import('@aws-sdk/client-ses').MessageRejected} */
 const messageRejectedError = caught;
 return messageRejectedError;
 }
 throw caught;
 }
};

• For API details, see SendTemplatedEmail in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesMailSender:
 """Encapsulates functions to send emails with Amazon SES."""

Actions 793

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/SendTemplatedEmailCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def send_templated_email(
 self, source, destination, template_name, template_data, reply_tos=None
):
 """
 Sends an email based on a template. A template contains replaceable tags
 each enclosed in two curly braces, such as {{name}}. The template data
 passed
 in this function contains key-value pairs that define the values to
 insert
 in place of the template tags.

 Note: If your account is in the Amazon SES sandbox, the source and
 destination email accounts must both be verified.

 :param source: The source email account.
 :param destination: The destination email account.
 :param template_name: The name of a previously created template.
 :param template_data: JSON-formatted key-value pairs of replacement
 values
 that are inserted in the template before it is
 sent.
 :return: The ID of the message, assigned by Amazon SES.
 """
 send_args = {
 "Source": source,
 "Destination": destination.to_service_format(),
 "Template": template_name,
 "TemplateData": json.dumps(template_data),
 }
 if reply_tos is not None:
 send_args["ReplyToAddresses"] = reply_tos
 try:
 response = self.ses_client.send_templated_email(**send_args)
 message_id = response["MessageId"]
 logger.info(
 "Sent templated mail %s from %s to %s.",

Actions 794

Amazon Simple Email Service Developer Guide

 message_id,
 source,
 destination.tos,
)
 except ClientError:
 logger.exception(
 "Couldn't send templated mail from %s to %s.", source,
 destination.tos
)
 raise
 else:
 return message_id

• For API details, see SendTemplatedEmail in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateTemplate with an AWS SDK or CLI

The following code examples show how to use UpdateTemplate.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Verify an email identity and send messages

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 795

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/SendTemplatedEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

//! Update an Amazon Simple Email Service (Amazon SES) template.
/*!
 \param templateName: The name of the template.
 \param htmlPart: The HTML body of the email.
 \param subjectPart: The subject line of the email.
 \param textPart: The plain text version of the email.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::updateTemplate(const Aws::String &templateName,
 const Aws::String &htmlPart,
 const Aws::String &subjectPart,
 const Aws::String &textPart,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::Template templateValues;

 templateValues.SetTemplateName(templateName);
 templateValues.SetSubjectPart(subjectPart);
 templateValues.SetHtmlPart(htmlPart);
 templateValues.SetTextPart(textPart);

 Aws::SES::Model::UpdateTemplateRequest updateTemplateRequest;
 updateTemplateRequest.SetTemplate(templateValues);

 Aws::SES::Model::UpdateTemplateOutcome outcome =
 sesClient.UpdateTemplate(updateTemplateRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated template." << std::endl;
 } else {
 std::cerr << "Error updating template. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see UpdateTemplate in AWS SDK for C++ API Reference.

Actions 796

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/UpdateTemplate

Amazon Simple Email Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { UpdateTemplateCommand } from "@aws-sdk/client-ses";
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

const TEMPLATE_NAME = getUniqueName("TemplateName");
const HTML_PART = "<h1>Hello, World!</h1>";

const createUpdateTemplateCommand = () => {
 return new UpdateTemplateCommand({
 Template: {
 TemplateName: TEMPLATE_NAME,
 HtmlPart: HTML_PART,
 SubjectPart: "Example",
 TextPart: "Updated template text.",
 },
 });
};

const run = async () => {
 const updateTemplateCommand = createUpdateTemplateCommand();

 try {
 return await sesClient.send(updateTemplateCommand);
 } catch (err) {
 console.log("Failed to update template.", err);
 return err;
 }
};

• For API details, see UpdateTemplate in AWS SDK for JavaScript API Reference.

Actions 797

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/UpdateTemplateCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesTemplate:
 """Encapsulates Amazon SES template functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client
 self.template = None
 self.template_tags = set()

 def _extract_tags(self, subject, text, html):
 """
 Extracts tags from a template as a set of unique values.

 :param subject: The subject of the email.
 :param text: The text version of the email.
 :param html: The html version of the email.
 """
 self.template_tags = set(re.findall(TEMPLATE_REGEX, subject + text +
 html))
 logger.info("Extracted template tags: %s", self.template_tags)

 def update_template(self, name, subject, text, html):
 """
 Updates a previously created email template.

 :param name: The name of the template.
 :param subject: The subject of the email.
 :param text: The plain text version of the email.
 :param html: The HTML version of the email.

Actions 798

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 """
 try:
 template = {
 "TemplateName": name,
 "SubjectPart": subject,
 "TextPart": text,
 "HtmlPart": html,
 }
 self.ses_client.update_template(Template=template)
 logger.info("Updated template %s.", name)
 self.template = template
 self._extract_tags(subject, text, html)
 except ClientError:
 logger.exception("Couldn't update template %s.", name)
 raise

• For API details, see UpdateTemplate in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use VerifyDomainIdentity with an AWS SDK or CLI

The following code examples show how to use VerifyDomainIdentity.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Copy email and domain identities across Regions

• Verify an email identity and send messages

CLI

AWS CLI

To verify a domain with Amazon SES

Actions 799

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/UpdateTemplate

Amazon Simple Email Service Developer Guide

The following example uses the verify-domain-identity command to verify a domain:

aws ses verify-domain-identity --domain example.com

Output:

{
 "VerificationToken": "eoEmxw+YaYhb3h3iVJHuXMJXqeu1q1/wwmvjuEXAMPLE"
}

To complete domain verification, you must add a TXT record with the returned verification
token to your domain's DNS settings. For more information, see Verifying Domains in
Amazon SES in the Amazon Simple Email Service Developer Guide.

• For API details, see VerifyDomainIdentity in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { VerifyDomainIdentityCommand } from "@aws-sdk/client-ses";
import {
 getUniqueName,
 postfix,
} from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { sesClient } from "./libs/sesClient.js";

/**
 * You must have access to the domain's DNS settings to complete the
 * domain verification process.
 */
const DOMAIN_NAME = postfix(getUniqueName("Domain"), ".example.com");

const createVerifyDomainIdentityCommand = () => {

Actions 800

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/verify-domain-identity.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 return new VerifyDomainIdentityCommand({ Domain: DOMAIN_NAME });
};

const run = async () => {
 const VerifyDomainIdentityCommand = createVerifyDomainIdentityCommand();

 try {
 return await sesClient.send(VerifyDomainIdentityCommand);
 } catch (err) {
 console.log("Failed to verify domain.", err);
 return err;
 }
};

• For API details, see VerifyDomainIdentity in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesIdentity:
 """Encapsulates Amazon SES identity functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def verify_domain_identity(self, domain_name):
 """
 Starts verification of a domain identity. To complete verification, you
 must
 create a TXT record with a specific format through your DNS provider.

Actions 801

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/VerifyDomainIdentityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 For more information, see *Verifying a domain with Amazon SES* in the
 Amazon SES documentation:
 https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domain-
procedure.html

 :param domain_name: The name of the domain to verify.
 :return: The token to include in the TXT record with your DNS provider.
 """
 try:
 response = self.ses_client.verify_domain_identity(Domain=domain_name)
 token = response["VerificationToken"]
 logger.info("Got domain verification token for %s.", domain_name)
 except ClientError:
 logger.exception("Couldn't verify domain %s.", domain_name)
 raise
 else:
 return token

• For API details, see VerifyDomainIdentity in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use VerifyEmailIdentity with an AWS SDK or CLI

The following code examples show how to use VerifyEmailIdentity.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Copy email and domain identities across Regions

• Verify an email identity and send messages

Actions 802

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyDomainIdentity

Amazon Simple Email Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Starts verification of an email identity. This request sends an email
 /// from Amazon SES to the specified email address. To complete
 /// verification, follow the instructions in the email.
 /// </summary>
 /// <param name="recipientEmailAddress">Email address to verify.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> VerifyEmailIdentityAsync(string
 recipientEmailAddress)
 {
 var success = false;
 try
 {
 var response = await
 _amazonSimpleEmailService.VerifyEmailIdentityAsync(
 new VerifyEmailIdentityRequest
 {
 EmailAddress = recipientEmailAddress
 });

 success = response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (Exception ex)
 {
 Console.WriteLine("VerifyEmailIdentityAsync failed with exception: "
 + ex.Message);
 }

 return success;
 }

Actions 803

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SES#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see VerifyEmailIdentity in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Add an email address to the list of identities associated with this account
 and
//! initiate verification.
/*!
 \param emailAddress; The email address to add.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SES::verifyEmailIdentity(const Aws::String &emailAddress,
 const Aws::Client::ClientConfiguration
 &clientConfiguration)
{
 Aws::SES::SESClient sesClient(clientConfiguration);

 Aws::SES::Model::VerifyEmailIdentityRequest verifyEmailIdentityRequest;

 verifyEmailIdentityRequest.SetEmailAddress(emailAddress);

 Aws::SES::Model::VerifyEmailIdentityOutcome outcome =
 sesClient.VerifyEmailIdentity(verifyEmailIdentityRequest);

 if (outcome.IsSuccess())
 {
 std::cout << "Email verification initiated." << std::endl;
 }

 else
 {

Actions 804

https://docs.aws.amazon.com/goto/DotNetSDKV3/email-2010-12-01/VerifyEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 std::cerr << "Error initiating email verification. " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see VerifyEmailIdentity in AWS SDK for C++ API Reference.

CLI

AWS CLI

To verify an email address with Amazon SES

The following example uses the verify-email-identity command to verify an email
address:

aws ses verify-email-identity --email-address user@example.com

Before you can send an email using Amazon SES, you must verify the address or domain
that you are sending the email from to prove that you own it. If you do not have production
access yet, you also need to verify any email addresses that you send emails to except for
email addresses provided by the Amazon SES mailbox simulator.

After verify-email-identity is called, the email address will receive a verification email. The
user must click on the link in the email to complete the verification process.

For more information, see Verifying Email Addresses in Amazon SES in the Amazon Simple
Email Service Developer Guide.

• For API details, see VerifyEmailIdentity in AWS CLI Command Reference.

Actions 805

https://docs.aws.amazon.com/goto/SdkForCpp/email-2010-12-01/VerifyEmailIdentity
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/verify-email-identity.html

Amazon Simple Email Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Import required AWS SDK clients and commands for Node.js
import { VerifyEmailIdentityCommand } from "@aws-sdk/client-ses";
import { sesClient } from "./libs/sesClient.js";

const EMAIL_ADDRESS = "name@example.com";

const createVerifyEmailIdentityCommand = (emailAddress) => {
 return new VerifyEmailIdentityCommand({ EmailAddress: emailAddress });
};

const run = async () => {
 const verifyEmailIdentityCommand =
 createVerifyEmailIdentityCommand(EMAIL_ADDRESS);
 try {
 return await sesClient.send(verifyEmailIdentityCommand);
 } catch (err) {
 console.log("Failed to verify email identity.", err);
 return err;
 }
};

• For API details, see VerifyEmailIdentity in AWS SDK for JavaScript API Reference.

Actions 806

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/ses#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/ses/command/VerifyEmailIdentityCommand

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SesIdentity:
 """Encapsulates Amazon SES identity functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def verify_email_identity(self, email_address):
 """
 Starts verification of an email identity. This function causes an email
 to be sent to the specified email address from Amazon SES. To complete
 verification, follow the instructions in the email.

 :param email_address: The email address to verify.
 """
 try:
 self.ses_client.verify_email_identity(EmailAddress=email_address)
 logger.info("Started verification of %s.", email_address)
 except ClientError:
 logger.exception("Couldn't start verification of %s.", email_address)
 raise

• For API details, see VerifyEmailIdentity in AWS SDK for Python (Boto3) API Reference.

Actions 807

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyEmailIdentity

Amazon Simple Email Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-ses" # v2: require 'aws-sdk'

Replace recipient@example.com with a "To" address.
recipient = "recipient@example.com"

Create a new SES resource in the us-west-2 region.
Replace us-west-2 with the AWS Region you're using for Amazon SES.
ses = Aws::SES::Client.new(region: "us-west-2")

Try to verify email address.
begin
 ses.verify_email_identity({
 email_address: recipient
 })

 puts "Email sent to " + recipient

If something goes wrong, display an error message.
rescue Aws::SES::Errors::ServiceError => error
 puts "Email not sent. Error message: #{error}"
end

• For API details, see VerifyEmailIdentity in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 808

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v1#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/email-2010-12-01/VerifyEmailIdentity

Amazon Simple Email Service Developer Guide

Scenarios for Amazon SES using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon SES with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Amazon SES. Each scenario includes a link to GitHub, where you can find instructions on
how to set up and run the code.

Examples

• Copy Amazon SES email and domain identities from one AWS Region to another using an AWS
SDK

• Generate credentials to connect to an Amazon SES SMTP endpoint

• Verify an email identity and send messages with Amazon SES using an AWS SDK

Copy Amazon SES email and domain identities from one AWS Region to another
using an AWS SDK

The following code example shows how to copy Amazon SES email and domain identities from one
AWS Region to another. When domain identities are managed by Route 53, verification records are
copied to the domain for the destination Region.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import argparse
import json
import logging
from pprint import pprint
import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)

Scenarios 809

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

def get_identities(ses_client):
 """
 Gets the identities for the current Region. The Region is specified in the
 Boto3 Amazon SES client object.

 :param ses_client: A Boto3 Amazon SES client.
 :return: The list of email identities and the list of domain identities.
 """
 email_identities = []
 domain_identities = []
 try:
 identity_paginator = ses_client.get_paginator("list_identities")
 identity_iterator = identity_paginator.paginate(
 PaginationConfig={"PageSize": 20}
)
 for identity_page in identity_iterator:
 for identity in identity_page["Identities"]:
 if "@" in identity:
 email_identities.append(identity)
 else:
 domain_identities.append(identity)
 logger.info(
 "Found %s email and %s domain identities.",
 len(email_identities),
 len(domain_identities),
)
 except ClientError:
 logger.exception("Couldn't get identities.")
 raise
 else:
 return email_identities, domain_identities

def verify_emails(email_list, ses_client):
 """
 Starts verification of a list of email addresses. Verification causes an
 email
 to be sent to each address. To complete verification, the recipient must
 follow
 the instructions in the email.

 :param email_list: The list of email addresses to verify.

Scenarios 810

Amazon Simple Email Service Developer Guide

 :param ses_client: A Boto3 Amazon SES client.
 :return: The list of emails that were successfully submitted for
 verification.
 """
 verified_emails = []
 for email in email_list:
 try:
 ses_client.verify_email_identity(EmailAddress=email)
 verified_emails.append(email)
 logger.info("Started verification of %s.", email)
 except ClientError:
 logger.warning("Couldn't start verification of %s.", email)
 return verified_emails

def verify_domains(domain_list, ses_client):
 """
 Starts verification for a list of domain identities. This returns a token for
 each domain, which must be registered as a TXT record with the DNS provider
 for
 the domain.

 :param domain_list: The list of domains to verify.
 :param ses_client: A Boto3 Amazon SES client.
 :return: The generated domain tokens to use to completed verification.
 """
 domain_tokens = {}
 for domain in domain_list:
 try:
 response = ses_client.verify_domain_identity(Domain=domain)
 token = response["VerificationToken"]
 domain_tokens[domain] = token
 logger.info("Got verification token %s for domain %s.", token,
 domain)
 except ClientError:
 logger.warning("Couldn't get verification token for domain %s.",
 domain)
 return domain_tokens

def get_hosted_zones(route53_client):
 """
 Gets the Amazon Route 53 hosted zones for the current account.

Scenarios 811

Amazon Simple Email Service Developer Guide

 :param route53_client: A Boto3 Route 53 client.
 :return: The list of hosted zones.
 """
 zones = []
 try:
 zone_paginator = route53_client.get_paginator("list_hosted_zones")
 zone_iterator = zone_paginator.paginate(PaginationConfig={"PageSize":
 20})
 zones = [
 zone for zone_page in zone_iterator for zone in
 zone_page["HostedZones"]
]
 logger.info("Found %s hosted zones.", len(zones))
 except ClientError:
 logger.warning("Couldn't get hosted zones.")
 return zones

def find_domain_zone_matches(domains, zones):
 """
 Finds matches between Amazon SES verified domains and Route 53 hosted zones.
 Subdomain matches are taken when found, otherwise root domain matches are
 taken.

 :param domains: The list of domains to match.
 :param zones: The list of hosted zones to match.
 :return: The set of matched domain-zone pairs. When a match is not found, the
 domain is included in the set with a zone value of None.
 """
 domain_zones = {}
 for domain in domains:
 domain_zones[domain] = None
 # Start at the most specific sub-domain and walk up to the root domain
 until a
 # zone match is found.
 domain_split = domain.split(".")
 for index in range(0, len(domain_split) - 1):
 sub_domain = ".".join(domain_split[index:])
 for zone in zones:
 # Normalize the zone name from Route 53 by removing the trailing
 '.'.
 zone_name = zone["Name"][:-1]
 if sub_domain == zone_name:
 domain_zones[domain] = zone

Scenarios 812

Amazon Simple Email Service Developer Guide

 break
 if domain_zones[domain] is not None:
 break
 return domain_zones

def add_route53_verification_record(domain, token, zone, route53_client):
 """
 Adds a domain verification TXT record to the specified Route 53 hosted zone.
 When a TXT record already exists in the hosted zone for the specified domain,
 the existing values are preserved and the new token is added to the list.

 :param domain: The domain to add.
 :param token: The verification token for the domain.
 :param zone: The hosted zone where the domain verification record is added.
 :param route53_client: A Boto3 Route 53 client.
 """
 domain_token_record_set_name = f"_amazonses.{domain}"
 record_set_paginator =
 route53_client.get_paginator("list_resource_record_sets")
 record_set_iterator = record_set_paginator.paginate(
 HostedZoneId=zone["Id"], PaginationConfig={"PageSize": 20}
)
 records = []
 for record_set_page in record_set_iterator:
 try:
 txt_record_set = next(
 record_set
 for record_set in record_set_page["ResourceRecordSets"]
 if record_set["Name"][:-1] == domain_token_record_set_name
 and record_set["Type"] == "TXT"
)
 records = txt_record_set["ResourceRecords"]
 logger.info(
 "Existing TXT record found in set %s for zone %s.",
 domain_token_record_set_name,
 zone["Name"],
)
 break
 except StopIteration:
 pass
 records.append({"Value": json.dumps(token)})
 changes = [
 {

Scenarios 813

Amazon Simple Email Service Developer Guide

 "Action": "UPSERT",
 "ResourceRecordSet": {
 "Name": domain_token_record_set_name,
 "Type": "TXT",
 "TTL": 1800,
 "ResourceRecords": records,
 },
 }
]
 try:
 route53_client.change_resource_record_sets(
 HostedZoneId=zone["Id"], ChangeBatch={"Changes": changes}
)
 logger.info(
 "Created or updated the TXT record in set %s for zone %s.",
 domain_token_record_set_name,
 zone["Name"],
)
 except ClientError as err:
 logger.warning(
 "Got error %s. Couldn't create or update the TXT record for zone
 %s.",
 err.response["Error"]["Code"],
 zone["Name"],
)

def generate_dkim_tokens(domain, ses_client):
 """
 Generates DKIM tokens for a domain. These must be added as CNAME records to
 the
 DNS provider for the domain.

 :param domain: The domain to generate tokens for.
 :param ses_client: A Boto3 Amazon SES client.
 :return: The list of generated DKIM tokens.
 """
 dkim_tokens = []
 try:
 dkim_tokens = ses_client.verify_domain_dkim(Domain=domain)["DkimTokens"]
 logger.info("Generated %s DKIM tokens for domain %s.", len(dkim_tokens),
 domain)
 except ClientError:
 logger.warning("Couldn't generate DKIM tokens for domain %s.", domain)

Scenarios 814

Amazon Simple Email Service Developer Guide

 return dkim_tokens

def add_dkim_domain_tokens(hosted_zone, domain, tokens, route53_client):
 """
 Adds DKIM domain token CNAME records to a Route 53 hosted zone.

 :param hosted_zone: The hosted zone where the records are added.
 :param domain: The domain to add.
 :param tokens: The DKIM tokens for the domain to add.
 :param route53_client: A Boto3 Route 53 client.
 """
 try:
 changes = [
 {
 "Action": "UPSERT",
 "ResourceRecordSet": {
 "Name": f"{token}._domainkey.{domain}",
 "Type": "CNAME",
 "TTL": 1800,
 "ResourceRecords": [{"Value":
 f"{token}.dkim.amazonses.com"}],
 },
 }
 for token in tokens
]
 route53_client.change_resource_record_sets(
 HostedZoneId=hosted_zone["Id"], ChangeBatch={"Changes": changes}
)
 logger.info(
 "Added %s DKIM CNAME records to %s in zone %s.",
 len(tokens),
 domain,
 hosted_zone["Name"],
)
 except ClientError:
 logger.warning(
 "Couldn't add DKIM CNAME records for %s to zone %s.",
 domain,
 hosted_zone["Name"],
)

def configure_sns_topics(identity, topics, ses_client):

Scenarios 815

Amazon Simple Email Service Developer Guide

 """
 Configures Amazon Simple Notification Service (Amazon SNS) notifications for
 an identity. The Amazon SNS topics must already exist.

 :param identity: The identity to configure.
 :param topics: The list of topics to configure. The choices are Bounce,
 Delivery,
 or Complaint.
 :param ses_client: A Boto3 Amazon SES client.
 """
 for topic in topics:
 topic_arn = input(
 f"Enter the Amazon Resource Name (ARN) of the {topic} topic or press
 "
 f"Enter to skip: "
)
 if topic_arn != "":
 try:
 ses_client.set_identity_notification_topic(
 Identity=identity, NotificationType=topic, SnsTopic=topic_arn
)
 logger.info("Configured %s for %s notifications.", identity,
 topic)
 except ClientError:
 logger.warning(
 "Couldn't configure %s for %s notifications.", identity,
 topic
)

def replicate(source_client, destination_client, route53_client):
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print(
 f"Replicating Amazon SES identities and other configuration from "
 f"{source_client.meta.region_name} to
 {destination_client.meta.region_name}."
)
 print("-" * 88)

 print(f"Retrieving identities from {source_client.meta.region_name}.")
 source_emails, source_domains = get_identities(source_client)
 print("Email addresses found:")

Scenarios 816

Amazon Simple Email Service Developer Guide

 print(*source_emails)
 print("Domains found:")
 print(*source_domains)

 print("Starting verification for email identities.")
 dest_emails = verify_emails(source_emails, destination_client)
 print("Getting domain tokens for domain identities.")
 dest_domain_tokens = verify_domains(source_domains, destination_client)

 # Get Route 53 hosted zones and match them with Amazon SES domains.
 answer = input(
 "Is the DNS configuration for your domains managed by Amazon Route 53 (y/
n)? "
)
 use_route53 = answer.lower() == "y"
 hosted_zones = get_hosted_zones(route53_client) if use_route53 else []
 if use_route53:
 print("Adding or updating Route 53 TXT records for your domains.")
 domain_zones = find_domain_zone_matches(dest_domain_tokens.keys(),
 hosted_zones)
 for domain in domain_zones:
 add_route53_verification_record(
 domain, dest_domain_tokens[domain], domain_zones[domain],
 route53_client
)
 else:
 print(
 "Use these verification tokens to create TXT records through your DNS
 "
 "provider:"
)
 pprint(dest_domain_tokens)

 answer = input("Do you want to configure DKIM signing for your identities (y/
n)? ")
 if answer.lower() == "y":
 # Build a set of unique domains from email and domain identities.
 domains = {email.split("@")[1] for email in dest_emails}
 domains.update(dest_domain_tokens)
 domain_zones = find_domain_zone_matches(domains, hosted_zones)
 for domain, zone in domain_zones.items():
 answer = input(
 f"Do you want to configure DKIM signing for {domain} (y/n)? "
)

Scenarios 817

Amazon Simple Email Service Developer Guide

 if answer.lower() == "y":
 dkim_tokens = generate_dkim_tokens(domain, destination_client)
 if use_route53 and zone is not None:
 add_dkim_domain_tokens(zone, domain, dkim_tokens,
 route53_client)
 else:
 print(
 "Add the following DKIM tokens as CNAME records through
 your "
 "DNS provider:"
)
 print(*dkim_tokens, sep="\n")

 answer = input(
 "Do you want to configure Amazon SNS notifications for your identities
 (y/n)? "
)
 if answer.lower() == "y":
 for identity in dest_emails + list(dest_domain_tokens.keys()):
 answer = input(
 f"Do you want to configure Amazon SNS topics for {identity} (y/
n)? "
)
 if answer.lower() == "y":
 configure_sns_topics(
 identity, ["Bounce", "Delivery", "Complaint"],
 destination_client
)

 print(f"Replication complete for {destination_client.meta.region_name}.")
 print("-" * 88)

def main():
 boto3_session = boto3.Session()
 ses_regions = boto3_session.get_available_regions("ses")
 parser = argparse.ArgumentParser(
 description="Copies email address and domain identities from one AWS
 Region to "
 "another. Optionally adds records for domain verification and DKIM "
 "signing to domains that are managed by Amazon Route 53, "
 "and sets up Amazon SNS notifications for events of interest."
)
 parser.add_argument(

Scenarios 818

Amazon Simple Email Service Developer Guide

 "source_region", choices=ses_regions, help="The region to copy from."
)
 parser.add_argument(
 "destination_region", choices=ses_regions, help="The region to copy to."
)
 args = parser.parse_args()
 source_client = boto3.client("ses", region_name=args.source_region)
 destination_client = boto3.client("ses", region_name=args.destination_region)
 route53_client = boto3.client("route53")
 replicate(source_client, destination_client, route53_client)

if __name__ == "__main__":
 main()

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• ListIdentities

• SetIdentityNotificationTopic

• VerifyDomainDkim

• VerifyDomainIdentity

• VerifyEmailIdentity

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Generate credentials to connect to an Amazon SES SMTP endpoint

The following code example shows how to generate credentials to connect to an Amazon SES
SMTP endpoint.

Scenarios 819

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/ListIdentities
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/SetIdentityNotificationTopic
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyDomainDkim
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyDomainIdentity
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyEmailIdentity

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

#!/usr/bin/env python3

import hmac
import hashlib
import base64
import argparse

SMTP_REGIONS = [
 "us-east-2", # US East (Ohio)
 "us-east-1", # US East (N. Virginia)
 "us-west-2", # US West (Oregon)
 "ap-south-1", # Asia Pacific (Mumbai)
 "ap-northeast-2", # Asia Pacific (Seoul)
 "ap-southeast-1", # Asia Pacific (Singapore)
 "ap-southeast-2", # Asia Pacific (Sydney)
 "ap-northeast-1", # Asia Pacific (Tokyo)
 "ca-central-1", # Canada (Central)
 "eu-central-1", # Europe (Frankfurt)
 "eu-west-1", # Europe (Ireland)
 "eu-west-2", # Europe (London)
 "eu-south-1", # Europe (Milan)
 "eu-north-1", # Europe (Stockholm)
 "sa-east-1", # South America (Sao Paulo)
 "us-gov-west-1", # AWS GovCloud (US)
]

These values are required to calculate the signature. Do not change them.
DATE = "11111111"
SERVICE = "ses"
MESSAGE = "SendRawEmail"
TERMINAL = "aws4_request"
VERSION = 0x04

Scenarios 820

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

def sign(key, msg):
 return hmac.new(key, msg.encode("utf-8"), hashlib.sha256).digest()

def calculate_key(secret_access_key, region):
 if region not in SMTP_REGIONS:
 raise ValueError(f"The {region} Region doesn't have an SMTP endpoint.")

 signature = sign(("AWS4" + secret_access_key).encode("utf-8"), DATE)
 signature = sign(signature, region)
 signature = sign(signature, SERVICE)
 signature = sign(signature, TERMINAL)
 signature = sign(signature, MESSAGE)
 signature_and_version = bytes([VERSION]) + signature
 smtp_password = base64.b64encode(signature_and_version)
 return smtp_password.decode("utf-8")

def main():
 parser = argparse.ArgumentParser(
 description="Convert a Secret Access Key to an SMTP password."
)
 parser.add_argument("secret", help="The Secret Access Key to convert.")
 parser.add_argument(
 "region",
 help="The AWS Region where the SMTP password will be used.",
 choices=SMTP_REGIONS,
)
 args = parser.parse_args()
 print(calculate_key(args.secret, args.region))

if __name__ == "__main__":
 main()

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios 821

Amazon Simple Email Service Developer Guide

Verify an email identity and send messages with Amazon SES using an AWS SDK

The following code example shows how to:

• Add and verify an email address with Amazon SES.

• Send a standard email message.

• Create a template and send a templated email message.

• Send a message by using an Amazon SES SMTP server.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Verify an email address with Amazon SES and send messages.

def usage_demo():
 print("-" * 88)
 print("Welcome to the Amazon Simple Email Service (Amazon SES) email demo!")
 print("-" * 88)

 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 ses_client = boto3.client("ses")
 ses_identity = SesIdentity(ses_client)
 ses_mail_sender = SesMailSender(ses_client)
 ses_template = SesTemplate(ses_client)
 email = input("Enter an email address to send mail with Amazon SES: ")
 status = ses_identity.get_identity_status(email)
 verified = status == "Success"
 if not verified:
 answer = input(
 f"The address '{email}' is not verified with Amazon SES. Unless your
 "
 f"Amazon SES account is out of sandbox, you can send mail only from "

Scenarios 822

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ses#code-examples

Amazon Simple Email Service Developer Guide

 f"and to verified accounts. Do you want to verify this account for
 use "
 f"with Amazon SES? If yes, the address will receive a verification "
 f"email (y/n): "
)
 if answer.lower() == "y":
 ses_identity.verify_email_identity(email)
 print(f"Follow the steps in the email to {email} to complete
 verification.")
 print("Waiting for verification...")
 try:
 ses_identity.wait_until_identity_exists(email)
 print(f"Identity verified for {email}.")
 verified = True
 except WaiterError:
 print(
 f"Verification timeout exceeded. You must complete the "
 f"steps in the email sent to {email} to verify the address."
)

 if verified:
 test_message_text = "Hello from the Amazon SES mail demo!"
 test_message_html = "<p>Hello!</p><p>From the Amazon SES mail
 demo!</p>"

 print(f"Sending mail from {email} to {email}.")
 ses_mail_sender.send_email(
 email,
 SesDestination([email]),
 "Amazon SES demo",
 test_message_text,
 test_message_html,
)
 input("Mail sent. Check your inbox and press Enter to continue.")

 template = {
 "name": "doc-example-template",
 "subject": "Example of an email template.",
 "text": "This is what {{name}} will {{action}} if {{name}} can't
 display "
 "HTML.",
 "html": "<p><i>This</i> is what {{name}} will {{action}} if {{name}}
 "
 "can display HTML.</p>",

Scenarios 823

Amazon Simple Email Service Developer Guide

 }
 print("Creating a template and sending a templated email.")
 ses_template.create_template(**template)
 template_data = {"name": email.split("@")[0], "action": "read"}
 if ses_template.verify_tags(template_data):
 ses_mail_sender.send_templated_email(
 email, SesDestination([email]), ses_template.name(),
 template_data
)
 input("Mail sent. Check your inbox and press Enter to continue.")

 print("Sending mail through the Amazon SES SMTP server.")
 boto3_session = boto3.Session()
 region = boto3_session.region_name
 credentials = boto3_session.get_credentials()
 port = 587
 smtp_server = f"email-smtp.{region}.amazonaws.com"
 password = calculate_key(credentials.secret_key, region)
 message = """
Subject: Hi there

This message is sent from the Amazon SES SMTP mail demo."""
 context = ssl.create_default_context()
 with smtplib.SMTP(smtp_server, port) as server:
 server.starttls(context=context)
 server.login(credentials.access_key, password)
 server.sendmail(email, email, message)
 print("Mail sent. Check your inbox!")

 if ses_template.template is not None:
 print("Deleting demo template.")
 ses_template.delete_template()
 if verified:
 answer = input(f"Do you want to remove {email} from Amazon SES (y/n)? ")
 if answer.lower() == "y":
 ses_identity.delete_identity(email)
 print("Thanks for watching!")
 print("-" * 88)

Create functions to wrap Amazon SES identity actions.

Scenarios 824

Amazon Simple Email Service Developer Guide

class SesIdentity:
 """Encapsulates Amazon SES identity functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def verify_domain_identity(self, domain_name):
 """
 Starts verification of a domain identity. To complete verification, you
 must
 create a TXT record with a specific format through your DNS provider.

 For more information, see *Verifying a domain with Amazon SES* in the
 Amazon SES documentation:
 https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domain-
procedure.html

 :param domain_name: The name of the domain to verify.
 :return: The token to include in the TXT record with your DNS provider.
 """
 try:
 response = self.ses_client.verify_domain_identity(Domain=domain_name)
 token = response["VerificationToken"]
 logger.info("Got domain verification token for %s.", domain_name)
 except ClientError:
 logger.exception("Couldn't verify domain %s.", domain_name)
 raise
 else:
 return token

 def verify_email_identity(self, email_address):
 """
 Starts verification of an email identity. This function causes an email
 to be sent to the specified email address from Amazon SES. To complete
 verification, follow the instructions in the email.

 :param email_address: The email address to verify.
 """

Scenarios 825

Amazon Simple Email Service Developer Guide

 try:
 self.ses_client.verify_email_identity(EmailAddress=email_address)
 logger.info("Started verification of %s.", email_address)
 except ClientError:
 logger.exception("Couldn't start verification of %s.", email_address)
 raise

 def wait_until_identity_exists(self, identity):
 """
 Waits until an identity exists. The waiter polls Amazon SES until the
 identity has been successfully verified or until it exceeds its maximum
 time.

 :param identity: The identity to wait for.
 """
 try:
 waiter = self.ses_client.get_waiter("identity_exists")
 logger.info("Waiting until %s exists.", identity)
 waiter.wait(Identities=[identity])
 except WaiterError:
 logger.error("Waiting for identity %s failed or timed out.",
 identity)
 raise

 def get_identity_status(self, identity):
 """
 Gets the status of an identity. This can be used to discover whether
 an identity has been successfully verified.

 :param identity: The identity to query.
 :return: The status of the identity.
 """
 try:
 response = self.ses_client.get_identity_verification_attributes(
 Identities=[identity]
)
 status = response["VerificationAttributes"].get(
 identity, {"VerificationStatus": "NotFound"}
)["VerificationStatus"]
 logger.info("Got status of %s for %s.", status, identity)
 except ClientError:
 logger.exception("Couldn't get status for %s.", identity)

Scenarios 826

Amazon Simple Email Service Developer Guide

 raise
 else:
 return status

 def delete_identity(self, identity):
 """
 Deletes an identity.

 :param identity: The identity to remove.
 """
 try:
 self.ses_client.delete_identity(Identity=identity)
 logger.info("Deleted identity %s.", identity)
 except ClientError:
 logger.exception("Couldn't delete identity %s.", identity)
 raise

 def list_identities(self, identity_type, max_items):
 """
 Gets the identities of the specified type for the current account.

 :param identity_type: The type of identity to retrieve, such as
 EmailAddress.
 :param max_items: The maximum number of identities to retrieve.
 :return: The list of retrieved identities.
 """
 try:
 response = self.ses_client.list_identities(
 IdentityType=identity_type, MaxItems=max_items
)
 identities = response["Identities"]
 logger.info("Got %s identities for the current account.",
 len(identities))
 except ClientError:
 logger.exception("Couldn't list identities for the current account.")
 raise
 else:
 return identities

Scenarios 827

Amazon Simple Email Service Developer Guide

Create functions to wrap Amazon SES template actions.

class SesTemplate:
 """Encapsulates Amazon SES template functions."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client
 self.template = None
 self.template_tags = set()

 def _extract_tags(self, subject, text, html):
 """
 Extracts tags from a template as a set of unique values.

 :param subject: The subject of the email.
 :param text: The text version of the email.
 :param html: The html version of the email.
 """
 self.template_tags = set(re.findall(TEMPLATE_REGEX, subject + text +
 html))
 logger.info("Extracted template tags: %s", self.template_tags)

 def create_template(self, name, subject, text, html):
 """
 Creates an email template.

 :param name: The name of the template.
 :param subject: The subject of the email.
 :param text: The plain text version of the email.
 :param html: The HTML version of the email.
 """
 try:
 template = {
 "TemplateName": name,
 "SubjectPart": subject,
 "TextPart": text,
 "HtmlPart": html,
 }
 self.ses_client.create_template(Template=template)
 logger.info("Created template %s.", name)

Scenarios 828

Amazon Simple Email Service Developer Guide

 self.template = template
 self._extract_tags(subject, text, html)
 except ClientError:
 logger.exception("Couldn't create template %s.", name)
 raise

 def delete_template(self):
 """
 Deletes an email template.
 """
 try:

 self.ses_client.delete_template(TemplateName=self.template["TemplateName"])
 logger.info("Deleted template %s.", self.template["TemplateName"])
 self.template = None
 self.template_tags = None
 except ClientError:
 logger.exception(
 "Couldn't delete template %s.", self.template["TemplateName"]
)
 raise

 def get_template(self, name):
 """
 Gets a previously created email template.

 :param name: The name of the template to retrieve.
 :return: The retrieved email template.
 """
 try:
 response = self.ses_client.get_template(TemplateName=name)
 self.template = response["Template"]
 logger.info("Got template %s.", name)
 self._extract_tags(
 self.template["SubjectPart"],
 self.template["TextPart"],
 self.template["HtmlPart"],
)
 except ClientError:
 logger.exception("Couldn't get template %s.", name)
 raise
 else:

Scenarios 829

Amazon Simple Email Service Developer Guide

 return self.template

 def list_templates(self):
 """
 Gets a list of all email templates for the current account.

 :return: The list of retrieved email templates.
 """
 try:
 response = self.ses_client.list_templates()
 templates = response["TemplatesMetadata"]
 logger.info("Got %s templates.", len(templates))
 except ClientError:
 logger.exception("Couldn't get templates.")
 raise
 else:
 return templates

 def update_template(self, name, subject, text, html):
 """
 Updates a previously created email template.

 :param name: The name of the template.
 :param subject: The subject of the email.
 :param text: The plain text version of the email.
 :param html: The HTML version of the email.
 """
 try:
 template = {
 "TemplateName": name,
 "SubjectPart": subject,
 "TextPart": text,
 "HtmlPart": html,
 }
 self.ses_client.update_template(Template=template)
 logger.info("Updated template %s.", name)
 self.template = template
 self._extract_tags(subject, text, html)
 except ClientError:
 logger.exception("Couldn't update template %s.", name)
 raise

Scenarios 830

Amazon Simple Email Service Developer Guide

Create functions to wrap Amazon SES email actions.

class SesDestination:
 """Contains data about an email destination."""

 def __init__(self, tos, ccs=None, bccs=None):
 """
 :param tos: The list of recipients on the 'To:' line.
 :param ccs: The list of recipients on the 'CC:' line.
 :param bccs: The list of recipients on the 'BCC:' line.
 """
 self.tos = tos
 self.ccs = ccs
 self.bccs = bccs

 def to_service_format(self):
 """
 :return: The destination data in the format expected by Amazon SES.
 """
 svc_format = {"ToAddresses": self.tos}
 if self.ccs is not None:
 svc_format["CcAddresses"] = self.ccs
 if self.bccs is not None:
 svc_format["BccAddresses"] = self.bccs
 return svc_format

class SesMailSender:
 """Encapsulates functions to send emails with Amazon SES."""

 def __init__(self, ses_client):
 """
 :param ses_client: A Boto3 Amazon SES client.
 """
 self.ses_client = ses_client

 def send_email(self, source, destination, subject, text, html,
 reply_tos=None):

Scenarios 831

Amazon Simple Email Service Developer Guide

 """
 Sends an email.

 Note: If your account is in the Amazon SES sandbox, the source and
 destination email accounts must both be verified.

 :param source: The source email account.
 :param destination: The destination email account.
 :param subject: The subject of the email.
 :param text: The plain text version of the body of the email.
 :param html: The HTML version of the body of the email.
 :param reply_tos: Email accounts that will receive a reply if the
 recipient
 replies to the message.
 :return: The ID of the message, assigned by Amazon SES.
 """
 send_args = {
 "Source": source,
 "Destination": destination.to_service_format(),
 "Message": {
 "Subject": {"Data": subject},
 "Body": {"Text": {"Data": text}, "Html": {"Data": html}},
 },
 }
 if reply_tos is not None:
 send_args["ReplyToAddresses"] = reply_tos
 try:
 response = self.ses_client.send_email(**send_args)
 message_id = response["MessageId"]
 logger.info(
 "Sent mail %s from %s to %s.", message_id, source,
 destination.tos
)
 except ClientError:
 logger.exception(
 "Couldn't send mail from %s to %s.", source, destination.tos
)
 raise
 else:
 return message_id

 def send_templated_email(
 self, source, destination, template_name, template_data, reply_tos=None

Scenarios 832

Amazon Simple Email Service Developer Guide

):
 """
 Sends an email based on a template. A template contains replaceable tags
 each enclosed in two curly braces, such as {{name}}. The template data
 passed
 in this function contains key-value pairs that define the values to
 insert
 in place of the template tags.

 Note: If your account is in the Amazon SES sandbox, the source and
 destination email accounts must both be verified.

 :param source: The source email account.
 :param destination: The destination email account.
 :param template_name: The name of a previously created template.
 :param template_data: JSON-formatted key-value pairs of replacement
 values
 that are inserted in the template before it is
 sent.
 :return: The ID of the message, assigned by Amazon SES.
 """
 send_args = {
 "Source": source,
 "Destination": destination.to_service_format(),
 "Template": template_name,
 "TemplateData": json.dumps(template_data),
 }
 if reply_tos is not None:
 send_args["ReplyToAddresses"] = reply_tos
 try:
 response = self.ses_client.send_templated_email(**send_args)
 message_id = response["MessageId"]
 logger.info(
 "Sent templated mail %s from %s to %s.",
 message_id,
 source,
 destination.tos,
)
 except ClientError:
 logger.exception(
 "Couldn't send templated mail from %s to %s.", source,
 destination.tos
)
 raise

Scenarios 833

Amazon Simple Email Service Developer Guide

 else:
 return message_id

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateTemplate

• DeleteIdentity

• DeleteTemplate

• GetIdentityVerificationAttributes

• GetTemplate

• ListIdentities

• ListTemplates

• SendEmail

• SendTemplatedEmail

• UpdateTemplate

• VerifyDomainIdentity

• VerifyEmailIdentity

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples for Amazon SES using AWS SDKs

The following sample applications use AWS SDKs to combine Amazon SES with other AWS services.
Each example includes a link to GitHub, where you can find instructions on how to set up and run
the application.

Examples

• Build an Amazon Transcribe streaming app

• Create a web application to track DynamoDB data

• Create an Amazon Redshift item tracker

• Create an Aurora Serverless work item tracker

Cross-service examples 834

https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/CreateTemplate
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteIdentity
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/DeleteTemplate
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/GetIdentityVerificationAttributes
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/GetTemplate
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/ListIdentities
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/ListTemplates
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/SendEmail
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/SendTemplatedEmail
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/UpdateTemplate
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyDomainIdentity
https://docs.aws.amazon.com/goto/boto3/email-2010-12-01/VerifyEmailIdentity

Amazon Simple Email Service Developer Guide

• Detect PPE in images with Amazon Rekognition using an AWS SDK

• Detect objects in images with Amazon Rekognition using an AWS SDK

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Use Step Functions to invoke Lambda functions

Build an Amazon Transcribe streaming app

The following code example shows how to build an app that records, transcribes, and translates
live audio in real-time, and emails the results.

JavaScript

SDK for JavaScript (v3)

Shows how to use Amazon Transcribe to build an app that records, transcribes, and
translates live audio in real-time, and emails the results using Amazon Simple Email Service
(Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SES

• Amazon Transcribe

• Amazon Translate

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a web application to track DynamoDB data

The following code examples show how to create a web application that tracks work items in an
Amazon DynamoDB table and uses Amazon Simple Email Service (Amazon SES) to send reports.

Cross-service examples 835

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/transcribe-streaming-app

Amazon Simple Email Service Developer Guide

.NET

AWS SDK for .NET

Shows how to use the Amazon DynamoDB .NET API to create a dynamic web application
that tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Java

SDK for Java 2.x

Shows how to use the Amazon DynamoDB API to create a dynamic web application that
tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use the Amazon DynamoDB API to create a dynamic web application that
tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

Cross-service examples 836

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/DynamoDbItemTracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_dynamodb_web_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/ddb-item-tracker

Amazon Simple Email Service Developer Guide

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to use the Amazon DynamoDB API to create a dynamic web application that
tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) to create a REST service that tracks work
items in Amazon DynamoDB and emails reports by using Amazon Simple Email Service
(Amazon SES). This example uses the Flask web framework to handle HTTP routing and
integrates with a React webpage to present a fully functional web application.

• Build a Flask REST service that integrates with AWS services.

• Read, write, and update work items that are stored in a DynamoDB table.

• Use Amazon SES to send email reports of work items.

For complete source code and instructions on how to set up and run, see the full example in
the AWS Code Examples Repository on GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Cross-service examples 837

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/itemtracker_dynamodb
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/dynamodb_item_tracker

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Amazon Redshift item tracker

The following code examples show how to create a web application that tracks and reports on
work items using an Amazon Redshift database.

Java

SDK for Java 2.x

Shows how to create a web application that tracks and reports on work items stored in an
Amazon Redshift database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Redshift data and for use by a React application, see the full example on GitHub.

Services used in this example

• Amazon Redshift

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to create a web application that tracks and reports on work items stored in an
Amazon Redshift database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Redshift data and for use by a React application, see the full example on GitHub.

Services used in this example

• Amazon Redshift

• Amazon SES

Cross-service examples 838

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/CreatingSpringRedshiftRest
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_redshift_application

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Aurora Serverless work item tracker

The following code examples show how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

.NET

AWS SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work
items in an Amazon Aurora database and emails reports by using Amazon Simple Email
Service (Amazon SES). This example uses a front end built with React.js to interact with a
RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

C++

SDK for C++

Shows how to create a web application that tracks and reports on work items stored in an
Amazon Aurora Serverless database.

Cross-service examples 839

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker

Amazon Simple Email Service Developer Guide

For complete source code and instructions on how to set up a C++ REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Java

SDK for Java 2.x

Shows how to create a web application that tracks and reports on work items stored in an
Amazon RDS database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

For complete source code and instructions on how to set up and run an example that uses
the JDBC API, see the full example on GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use the AWS SDK for JavaScript (v3) to create a web application that tracks
work items in an Amazon Aurora database and emails reports by using Amazon Simple Email
Service (Amazon SES). This example uses a front end built with React.js to interact with an
Express Node.js backend.

Cross-service examples 840

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/serverless-aurora
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_Spring_RDS_Rest
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_rds_item_tracker

Amazon Simple Email Service Developer Guide

• Integrate a React.js web application with AWS services.

• List, add, and update items in an Aurora table.

• Send an email report of filtered work items by using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to create a web application that tracks and reports on work items stored in an
Amazon RDS database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

PHP

SDK for PHP

Shows how to use the AWS SDK for PHP to create a web application that tracks work items
in an Amazon RDS database and emails reports by using Amazon Simple Email Service

Cross-service examples 841

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/serverless_rds

Amazon Simple Email Service Developer Guide

(Amazon SES). This example uses a front end built with React.js to interact with a RESTful
PHP backend.

• Integrate a React.js web application with AWS services.

• List, add, update, and delete items in an Amazon RDS table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) to create a REST service that tracks work
items in an Amazon Aurora Serverless database and emails reports by using Amazon Simple
Email Service (Amazon SES). This example uses the Flask web framework to handle HTTP
routing and integrates with a React webpage to present a fully functional web application.

• Build a Flask REST service that integrates with AWS services.

• Read, write, and update work items that are stored in an Aurora Serverless database.

• Create an AWS Secrets Manager secret that contains database credentials and use it to
authenticate calls to the database.

• Use Amazon SES to send email reports of work items.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

Cross-service examples 842

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/cross_service/aurora_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_item_tracker

Amazon Simple Email Service Developer Guide

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Detect PPE in images with Amazon Rekognition using an AWS SDK

The following code examples show how to build an app that uses Amazon Rekognition to detect
Personal Protective Equipment (PPE) in images.

Java

SDK for Java 2.x

Shows how to create an AWS Lambda function that detects images with Personal Protective
Equipment.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon Rekognition

• Amazon S3

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use Amazon Rekognition with the AWS SDK for JavaScript to create an
application to detect personal protective equipment (PPE) in images located in an Amazon
Simple Storage Service (Amazon S3) bucket. The app saves the results to an Amazon
DynamoDB table, and sends the admin an email notification with the results using Amazon
Simple Email Service (Amazon SES).

Cross-service examples 843

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lambda_ppe

Amazon Simple Email Service Developer Guide

Learn how to:

• Create an unauthenticated user using Amazon Cognito.

• Analyze images for PPE using Amazon Rekognition.

• Verify an email address for Amazon SES.

• Update a DynamoDB table with results.

• Send an email notification using Amazon SES.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon Rekognition

• Amazon S3

• Amazon SES

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Detect objects in images with Amazon Rekognition using an AWS SDK

The following code examples show how to build an app that uses Amazon Rekognition to detect
objects by category in images.

.NET

AWS SDK for .NET

Shows how to use Amazon Rekognition .NET API to create an app that uses Amazon
Rekognition to identify objects by category in images located in an Amazon Simple Storage
Service (Amazon S3) bucket. The app sends the admin an email notification with the results
using Amazon Simple Email Service (Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Cross-service examples 844

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-analyzer-ppe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAnalyzerApp

Amazon Simple Email Service Developer Guide

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

Java

SDK for Java 2.x

Shows how to use Amazon Rekognition Java API to create an app that uses Amazon
Rekognition to identify objects by category in images located in an Amazon Simple Storage
Service (Amazon S3) bucket. The app sends the admin an email notification with the results
using Amazon Simple Email Service (Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use Amazon Rekognition with the AWS SDK for JavaScript to create an app
that uses Amazon Rekognition to identify objects by category in images located in an
Amazon Simple Storage Service (Amazon S3) bucket. The app sends the admin an email
notification with the results using Amazon Simple Email Service (Amazon SES).

Learn how to:

• Create an unauthenticated user using Amazon Cognito.

• Analyze images for objects using Amazon Rekognition.

• Verify an email address for Amazon SES.

• Send an email notification using Amazon SES.

Cross-service examples 845

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_photo_analyzer_app

Amazon Simple Email Service Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to use Amazon Rekognition Kotlin API to create an app that uses Amazon
Rekognition to identify objects by category in images located in an Amazon Simple Storage
Service (Amazon S3) bucket. The app sends the admin an email notification with the results
using Amazon Simple Email Service (Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

Python

SDK for Python (Boto3)

Shows you how to use the AWS SDK for Python (Boto3) to create a web application that lets
you do the following:

• Upload photos to an Amazon Simple Storage Service (Amazon S3) bucket.

• Use Amazon Rekognition to analyze and label the photos.

• Use Amazon Simple Email Service (Amazon SES) to send email reports of image analysis.

This example contains two main components: a webpage written in JavaScript that is built
with React, and a REST service written in Python that is built with Flask-RESTful.

Cross-service examples 846

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo_analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_photo_analyzer_app

Amazon Simple Email Service Developer Guide

You can use the React webpage to:

• Display a list of images that are stored in your S3 bucket.

• Upload images from your computer to your S3 bucket.

• Display images and labels that identify items that are detected in the image.

• Get a report of all images in your S3 bucket and send an email of the report.

The webpage calls the REST service. The service sends requests to AWS to perform the
following actions:

• Get and filter the list of images in your S3 bucket.

• Upload photos to your S3 bucket.

• Use Amazon Rekognition to analyze individual photos and get a list of labels that identify
items that are detected in the photo.

• Analyze all photos in your S3 bucket and use Amazon SES to email a report.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Detect people and objects in a video with Amazon Rekognition using an AWS SDK

The following code examples show how to detect people and objects in a video with Amazon
Rekognition.

Java

SDK for Java 2.x

Shows how to use Amazon Rekognition Java API to create an app to detect faces and
objects in videos located in an Amazon Simple Storage Service (Amazon S3) bucket. The app

Cross-service examples 847

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/photo_analyzer

Amazon Simple Email Service Developer Guide

sends the admin an email notification with the results using Amazon Simple Email Service
(Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use Amazon Rekognition with the AWS SDK for JavaScript to create an app to
detect faces and objects in videos located in an Amazon Simple Storage Service (Amazon S3)
bucket. The app sends the admin an email notification with the results using Amazon Simple
Email Service (Amazon SES).

Learn how to:

• Create an unauthenticated user using Amazon Cognito.

• Analyze images for PPE using Amazon Rekognition.

• Verify an email address for Amazon SES.

• Send an email notification using Amazon SES.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples 848

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/video_analyzer_application
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/video-analyzer

Amazon Simple Email Service Developer Guide

Use Step Functions to invoke Lambda functions

The following code examples show how to create an AWS Step Functions state machine that
invokes AWS Lambda functions in sequence.

Java

SDK for Java 2.x

Shows how to create an AWS serverless workflow by using AWS Step Functions and the AWS
SDK for Java 2.x. Each workflow step is implemented using an AWS Lambda function.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SES

• Step Functions

JavaScript

SDK for JavaScript (v3)

Shows how to create an AWS serverless workflow by using AWS Step Functions and the AWS
SDK for JavaScript. Each workflow step is implemented using an AWS Lambda function.

Lambda is a compute service that enables you to run code without provisioning or managing
servers. Step Functions is a serverless orchestration service that lets you combine Lambda
functions and other AWS services to build business-critical applications.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• Lambda

Cross-service examples 849

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_workflows_stepfunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-step-functions
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/serverless-step-functions-example.html

Amazon Simple Email Service Developer Guide

• Amazon SES

• Step Functions

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples for Amazon SES API v2 using AWS SDKs

The following code examples show how to use Amazon SES API v2 with an AWS software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

• Actions for Amazon SES API v2 using AWS SDKs

• Use CreateContact with an AWS SDK or CLI

• Use CreateContactList with an AWS SDK or CLI

• Use CreateEmailIdentity with an AWS SDK or CLI

• Use CreateEmailTemplate with an AWS SDK or CLI

• Use DeleteContactList with an AWS SDK or CLI

• Use DeleteEmailIdentity with an AWS SDK or CLI

• Use DeleteEmailTemplate with an AWS SDK or CLI

• Use GetEmailIdentity with an AWS SDK or CLI

• Use ListContactLists with an AWS SDK or CLI

• Use ListContacts with an AWS SDK or CLI

Amazon SES API v2 850

Amazon Simple Email Service Developer Guide

• Use SendEmail with an AWS SDK or CLI

• Scenarios for Amazon SES API v2 using AWS SDKs

• A complete Amazon SES API v2 Newsletter workflow using an AWS SDK

Actions for Amazon SES API v2 using AWS SDKs

The following code examples demonstrate how to perform individual Amazon SES API v2 actions
with AWS SDKs. These excerpts call the Amazon SES API v2 API and are code excerpts from larger
programs that must be run in context. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Simple Email Service API v2 API Reference.

Examples

• Use CreateContact with an AWS SDK or CLI

• Use CreateContactList with an AWS SDK or CLI

• Use CreateEmailIdentity with an AWS SDK or CLI

• Use CreateEmailTemplate with an AWS SDK or CLI

• Use DeleteContactList with an AWS SDK or CLI

• Use DeleteEmailIdentity with an AWS SDK or CLI

• Use DeleteEmailTemplate with an AWS SDK or CLI

• Use GetEmailIdentity with an AWS SDK or CLI

• Use ListContactLists with an AWS SDK or CLI

• Use ListContacts with an AWS SDK or CLI

• Use SendEmail with an AWS SDK or CLI

Use CreateContact with an AWS SDK or CLI

The following code examples show how to use CreateContact.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

Actions 851

https://docs.aws.amazon.com/ses/latest/APIReference-V2/Welcome.html

Amazon Simple Email Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Creates a contact and adds it to the specified contact list.
 /// </summary>
 /// <param name="emailAddress">The email address of the contact.</param>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The response from the CreateContact operation.</returns>
 public async Task<bool> CreateContactAsync(string emailAddress, string
 contactListName)
 {
 var request = new CreateContactRequest
 {
 EmailAddress = emailAddress,
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact with email address {emailAddress} already
 exists in the contact list {contactListName}.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);

Actions 852

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact:
 {ex.Message}");
 }
 return false;
 }

• For API details, see CreateContact in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // Create a new contact with the provided email address in the
 CreateContactRequest contactRequest = CreateContactRequest.builder()
 .contactListName(CONTACT_LIST_NAME)
 .emailAddress(emailAddress)
 .build();

 sesClient.createContact(contactRequest);
 contacts.add(emailAddress);

 System.out.println("Contact created: " + emailAddress);

 // Send a welcome email to the new contact

Actions 853

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContact
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 String welcomeHtml = Files.readString(Paths.get("resources/
coupon_newsletter/welcome.html"));
 String welcomeText = Files.readString(Paths.get("resources/
coupon_newsletter/welcome.txt"));

 SendEmailRequest welcomeEmailRequest = SendEmailRequest.builder()
 .fromEmailAddress(this.verifiedEmail)
 .destination(Destination.builder().toAddresses(emailAddress).build())
 .content(EmailContent.builder()
 .simple(
 Message.builder()
 .subject(Content.builder().data("Welcome to the Weekly
 Coupons Newsletter").build())
 .body(Body.builder()
 .text(Content.builder().data(welcomeText).build())
 .html(Content.builder().data(welcomeHtml).build())
 .build())
 .build())
 .build())
 .build();
 SendEmailResponse welcomeEmailResponse =
 sesClient.sendEmail(welcomeEmailRequest);
 System.out.println("Welcome email sent: " +
 welcomeEmailResponse.messageId());
 } catch (AlreadyExistsException e) {
 // If the contact already exists, skip this step for that contact and
 proceed
 // with the next contact
 System.out.println("Contact already exists, skipping creation...");
 } catch (Exception e) {
 System.err.println("Error occurred while processing email address " +
 emailAddress + ": " + e.getMessage());
 throw e;
 }
 }

• For API details, see CreateContact in AWS SDK for Java 2.x API Reference.

Actions 854

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateContact

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:
 # Create a new contact
 self.ses_client.create_contact(
 ContactListName=CONTACT_LIST_NAME, EmailAddress=email

Actions 855

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

)
 print(f"Contact with email '{email}' created successfully.")

 # Send the welcome email
 self.ses_client.send_email(
 FromEmailAddress=self.verified_email,
 Destination={"ToAddresses": [email]},
 Content={
 "Simple": {
 "Subject": {
 "Data": "Welcome to the Weekly Coupons
 Newsletter"
 },
 "Body": {
 "Text": {"Data": welcome_text},
 "Html": {"Data": welcome_html},
 },
 }
 },
)
 print(f"Welcome email sent to '{email}'.")
 if self.sleep:
 # 1 email per second in sandbox mode, remove in production.
 sleep(1.1)
 except ClientError as e:
 # If the contact already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Contact with email '{email}' already exists.
 Skipping...")
 else:
 raise e

• For API details, see CreateContact in AWS SDK for Python (Boto3) API Reference.

Actions 856

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateContact

Amazon Simple Email Service Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn add_contact(client: &Client, list: &str, email: &str) -> Result<(),
 Error> {
 client
 .create_contact()
 .contact_list_name(list)
 .email_address(email)
 .send()
 .await?;

 println!("Created contact");

 Ok(())
}

• For API details, see CreateContact in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateContactList with an AWS SDK or CLI

The following code examples show how to use CreateContactList.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

Actions 857

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples
https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Creates a contact list with the specified name.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateContactListAsync(string contactListName)
 {
 var request = new CreateContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact list with name {contactListName} already
 exists.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for contact lists has been exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {

Actions 858

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact
 list: {ex.Message}");
 }
 return false;
 }

• For API details, see CreateContactList in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // 2. Create a contact list
 String contactListName = CONTACT_LIST_NAME;
 CreateContactListRequest createContactListRequest =
 CreateContactListRequest.builder()
 .contactListName(contactListName)
 .build();
 sesClient.createContactList(createContactListRequest);
 System.out.println("Contact list created: " + contactListName);
 } catch (AlreadyExistsException e) {
 System.out.println("Contact list already exists, skipping creation: weekly-
coupons-newsletter");
 } catch (LimitExceededException e) {
 System.err.println("Limit for contact lists has been exceeded.");
 throw e;
 } catch (SesV2Exception e) {
 System.err.println("Error creating contact list: " + e.getMessage());

Actions 859

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 throw e;
 }

• For API details, see CreateContactList in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

Actions 860

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 try:

 self.ses_client.create_contact_list(ContactListName=CONTACT_LIST_NAME)
 print(f"Contact list '{CONTACT_LIST_NAME}' created successfully.")
 except ClientError as e:
 # If the contact list already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Contact list '{CONTACT_LIST_NAME}' already exists.")
 else:
 raise e

• For API details, see CreateContactList in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn make_list(client: &Client, contact_list: &str) -> Result<(), Error> {
 client
 .create_contact_list()
 .contact_list_name(contact_list)
 .send()
 .await?;

 println!("Created contact list.");

 Ok(())
}

• For API details, see CreateContactList in AWS SDK for Rust API reference.

Actions 861

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples
https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateEmailIdentity with an AWS SDK or CLI

The following code examples show how to use CreateEmailIdentity.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Creates an email identity (email address or domain) and starts the
 verification process.
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to create and
 verify.</param>
 /// <returns>The response from the CreateEmailIdentity operation.</returns>
 public async Task<CreateEmailIdentityResponse>
 CreateEmailIdentityAsync(string emailIdentity)
 {
 var request = new CreateEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.CreateEmailIdentityAsync(request);

Actions 862

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 return response;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email identity {emailIdentity} already exists.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being
 modified by another operation or thread.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email identities has been
 exceeded.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email
 identity: {ex.Message}");
 throw;
 }
 }

Actions 863

Amazon Simple Email Service Developer Guide

• For API details, see CreateEmailIdentity in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 CreateEmailIdentityRequest createEmailIdentityRequest =
 CreateEmailIdentityRequest.builder()
 .emailIdentity(verifiedEmail)
 .build();
 sesClient.createEmailIdentity(createEmailIdentityRequest);
 System.out.println("Email identity created: " + verifiedEmail);
 } catch (AlreadyExistsException e) {
 System.out.println("Email identity already exists, skipping creation: " +
 verifiedEmail);
 } catch (NotFoundException e) {
 System.err.println("The provided email address is not verified: " +
 verifiedEmail);
 throw e;
 } catch (LimitExceededException e) {
 System.err
 .println("You have reached the limit for email identities. Please
 remove some identities and try again.");
 throw e;
 } catch (SesV2Exception e) {
 System.err.println("Error creating email identity: " + e.getMessage());
 throw e;
 }

• For API details, see CreateEmailIdentity in AWS SDK for Java 2.x API Reference.

Actions 864

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateEmailIdentity

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:

 self.ses_client.create_email_identity(EmailIdentity=self.verified_email)

Actions 865

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 print(f"Email identity '{self.verified_email}' created
 successfully.")
 except ClientError as e:
 # If the email identity already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Email identity '{self.verified_email}' already exists.")
 else:
 raise e

• For API details, see CreateEmailIdentity in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 match self
 .client
 .create_email_identity()
 .email_identity(self.verified_email.clone())
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email identity created
 successfully.")?,
 Err(e) => match e.into_service_error() {
 CreateEmailIdentityError::AlreadyExistsException(_) => {
 writeln!(
 self.stdout,
 "Email identity already exists, skipping creation."
)?;
 }
 e => return Err(anyhow!("Error creating email identity: {}", e)),
 },
 }

Actions 866

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

• For API details, see CreateEmailIdentity in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateEmailTemplate with an AWS SDK or CLI

The following code examples show how to use CreateEmailTemplate.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Creates an email template with the specified content.
 /// </summary>
 /// <param name="templateName">The name of the email template.</param>
 /// <param name="subject">The subject of the email template.</param>
 /// <param name="htmlContent">The HTML content of the email template.</param>
 /// <param name="textContent">The text content of the email template.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateEmailTemplateAsync(string templateName, string
 subject, string htmlContent, string textContent)
 {
 var request = new CreateEmailTemplateRequest
 {

Actions 867

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 TemplateName = templateName,
 TemplateContent = new EmailTemplateContent
 {
 Subject = subject,
 Html = htmlContent,
 Text = textContent
 }
 };

 try
 {
 var response = await _sesClient.CreateEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email template with name {templateName} already
 exists.");
 Console.WriteLine(ex.Message);
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email templates has been
 exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email
 template: {ex.Message}");
 }

 return false;
 }

• For API details, see CreateEmailTemplate in AWS SDK for .NET API Reference.

Actions 868

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailTemplate

Amazon Simple Email Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // Create an email template named "weekly-coupons"
 String newsletterHtml = loadFile("resources/coupon_newsletter/coupon-
newsletter.html");
 String newsletterText = loadFile("resources/coupon_newsletter/coupon-
newsletter.txt");

 CreateEmailTemplateRequest templateRequest =
 CreateEmailTemplateRequest.builder()
 .templateName(TEMPLATE_NAME)
 .templateContent(EmailTemplateContent.builder()
 .subject("Weekly Coupons Newsletter")
 .html(newsletterHtml)
 .text(newsletterText)
 .build())
 .build();

 sesClient.createEmailTemplate(templateRequest);

 System.out.println("Email template created: " + TEMPLATE_NAME);
 } catch (AlreadyExistsException e) {
 // If the template already exists, skip this step and proceed with the next
 // operation
 System.out.println("Email template already exists, skipping creation...");
 } catch (LimitExceededException e) {
 // If the limit for email templates is exceeded, fail the workflow and
 inform
 // the user
 System.err.println("You have reached the limit for email templates. Please
 remove some templates and try again.");
 throw e;
 } catch (Exception e) {

Actions 869

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 System.err.println("Error occurred while creating email template: " +
 e.getMessage());
 throw e;
 }

• For API details, see CreateEmailTemplate in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):

Actions 870

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 self.ses_client = ses_client
 self.sleep = sleep

 try:
 template_content = {
 "Subject": "Weekly Coupons Newsletter",
 "Html": load_file_content("coupon-newsletter.html"),
 "Text": load_file_content("coupon-newsletter.txt"),
 }
 self.ses_client.create_email_template(
 TemplateName=TEMPLATE_NAME, TemplateContent=template_content
)
 print(f"Email template '{TEMPLATE_NAME}' created successfully.")
 except ClientError as e:
 # If the template already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Email template '{TEMPLATE_NAME}' already exists.")
 else:
 raise e

• For API details, see CreateEmailTemplate in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 let template_html =
 std::fs::read_to_string("../resources/newsletter/coupon-
newsletter.html")
 .unwrap_or_else(|_| "Missing coupon-
newsletter.html".to_string());
 let template_text =
 std::fs::read_to_string("../resources/newsletter/coupon-
newsletter.txt")

Actions 871

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 .unwrap_or_else(|_| "Missing coupon-newsletter.txt".to_string());

 // Create the email template
 let template_content = EmailTemplateContent::builder()
 .subject("Weekly Coupons Newsletter")
 .html(template_html)
 .text(template_text)
 .build();

 match self
 .client
 .create_email_template()
 .template_name(TEMPLATE_NAME)
 .template_content(template_content)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email template created
 successfully.")?,
 Err(e) => match e.into_service_error() {
 CreateEmailTemplateError::AlreadyExistsException(_) => {
 writeln!(
 self.stdout,
 "Email template already exists, skipping creation."
)?;
 }
 e => return Err(anyhow!("Error creating email template: {}", e)),
 },
 }

• For API details, see CreateEmailTemplate in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteContactList with an AWS SDK or CLI

The following code examples show how to use DeleteContactList.

Actions 872

https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Deletes a contact list and all contacts within it.
 /// </summary>
 /// <param name="contactListName">The name of the contact list to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteContactListAsync(string contactListName)
 {
 var request = new DeleteContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.DeleteContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The contact list {contactListName} is being
 modified by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {

Actions 873

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the contact
 list: {ex.Message}");
 }

 return false;
 }

• For API details, see DeleteContactList in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // Delete the contact list
 DeleteContactListRequest deleteContactListRequest =
 DeleteContactListRequest.builder()
 .contactListName(CONTACT_LIST_NAME)
 .build();

 sesClient.deleteContactList(deleteContactListRequest);

 System.out.println("Contact list deleted: " + CONTACT_LIST_NAME);

Actions 874

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 } catch (NotFoundException e) {
 // If the contact list does not exist, log the error and proceed
 System.out.println("Contact list not found. Skipping deletion...");
 } catch (Exception e) {
 System.err.println("Error occurred while deleting the contact list: " +
 e.getMessage());
 e.printStackTrace();
 }

• For API details, see DeleteContactList in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """

Actions 875

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/DeleteContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:

 self.ses_client.delete_contact_list(ContactListName=CONTACT_LIST_NAME)
 print(f"Contact list '{CONTACT_LIST_NAME}' deleted successfully.")
 except ClientError as e:
 # If the contact list doesn't exist, skip and proceed
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Contact list '{CONTACT_LIST_NAME}' does not exist.")
 else:
 print(e)

• For API details, see DeleteContactList in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 match self
 .client
 .delete_contact_list()
 .contact_list_name(CONTACT_LIST_NAME)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Contact list deleted
 successfully.")?,
 Err(e) => return Err(anyhow!("Error deleting contact list: {e}")),

Actions 876

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/DeleteContactList
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 }

• For API details, see DeleteContactList in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteEmailIdentity with an AWS SDK or CLI

The following code examples show how to use DeleteEmailIdentity.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Deletes an email identity (email address or domain).
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailIdentityAsync(string emailIdentity)
 {
 var request = new DeleteEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

Actions 877

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 try
 {
 var response = await _sesClient.DeleteEmailIdentityAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being
 modified by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email
 identity: {ex.Message}");
 }

 return false;
 }

• For API details, see DeleteEmailIdentity in AWS SDK for .NET API Reference.

Actions 878

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailIdentity

Amazon Simple Email Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // Delete the email identity
 DeleteEmailIdentityRequest deleteIdentityRequest =
 DeleteEmailIdentityRequest.builder()
 .emailIdentity(this.verifiedEmail)
 .build();

 sesClient.deleteEmailIdentity(deleteIdentityRequest);

 System.out.println("Email identity deleted: " + this.verifiedEmail);
 } catch (NotFoundException e) {
 // If the email identity does not exist, log the error and proceed
 System.out.println("Email identity not found. Skipping deletion...");
 } catch (Exception e) {
 System.err.println("Error occurred while deleting the email identity: " +
 e.getMessage());
 e.printStackTrace();
 }
 } else {
 System.out.println("Skipping email identity deletion.");
 }

• For API details, see DeleteEmailIdentity in AWS SDK for Java 2.x API Reference.

Actions 879

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/DeleteEmailIdentity

Amazon Simple Email Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:

 self.ses_client.delete_email_identity(EmailIdentity=self.verified_email)

Actions 880

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 print(f"Email identity '{self.verified_email}' deleted
 successfully.")
 except ClientError as e:
 # If the email identity doesn't exist, skip and proceed
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Email identity '{self.verified_email}' does not
 exist.")
 else:
 print(e)

• For API details, see DeleteEmailIdentity in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 match self
 .client
 .delete_email_identity()
 .email_identity(self.verified_email.clone())
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email identity deleted
 successfully.")?,
 Err(e) => {
 return Err(anyhow!("Error deleting email identity: {}", e));
 }
 }

• For API details, see DeleteEmailIdentity in AWS SDK for Rust API reference.

Actions 881

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/DeleteEmailIdentity
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples
https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteEmailTemplate with an AWS SDK or CLI

The following code examples show how to use DeleteEmailTemplate.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Deletes an email template.
 /// </summary>
 /// <param name="templateName">The name of the email template to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailTemplateAsync(string templateName)
 {
 var request = new DeleteEmailTemplateRequest
 {
 TemplateName = templateName
 };

 try
 {
 var response = await _sesClient.DeleteEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Actions 882

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email template {templateName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email
 template: {ex.Message}");
 }

 return false;
 }

• For API details, see DeleteEmailTemplate in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // Delete the template
 DeleteEmailTemplateRequest deleteTemplateRequest =
 DeleteEmailTemplateRequest.builder()
 .templateName(TEMPLATE_NAME)
 .build();

 sesClient.deleteEmailTemplate(deleteTemplateRequest);

Actions 883

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 System.out.println("Email template deleted: " + TEMPLATE_NAME);
 } catch (NotFoundException e) {
 // If the email template does not exist, log the error and proceed
 System.out.println("Email template not found. Skipping deletion...");
 } catch (Exception e) {
 System.err.println("Error occurred while deleting the email template: " +
 e.getMessage());
 e.printStackTrace();
 }

• For API details, see DeleteEmailTemplate in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

Actions 884

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/DeleteEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:
 self.ses_client.delete_email_template(TemplateName=TEMPLATE_NAME)
 print(f"Email template '{TEMPLATE_NAME}' deleted successfully.")
 except ClientError as e:
 # If the email template doesn't exist, skip and proceed
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Email template '{TEMPLATE_NAME}' does not exist.")
 else:
 print(e)

• For API details, see DeleteEmailTemplate in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 match self
 .client
 .delete_email_template()
 .template_name(TEMPLATE_NAME)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email template deleted
 successfully.")?,

Actions 885

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/DeleteEmailTemplate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 Err(e) => {
 return Err(anyhow!("Error deleting email template: {e}"));
 }
 }

• For API details, see DeleteEmailTemplate in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetEmailIdentity with an AWS SDK or CLI

The following code example shows how to use GetEmailIdentity.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Determines whether an email address has been verified.

async fn is_verified(client: &Client, email: &str) -> Result<(), Error> {
 let resp = client
 .get_email_identity()
 .email_identity(email)
 .send()
 .await?;

 if resp.verified_for_sending_status() {
 println!("The address is verified");
 } else {
 println!("The address is not verified");
 }

Actions 886

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 Ok(())
}

• For API details, see GetEmailIdentity in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListContactLists with an AWS SDK or CLI

The following code example shows how to use ListContactLists.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn show_lists(client: &Client) -> Result<(), Error> {
 let resp = client.list_contact_lists().send().await?;

 println!("Contact lists:");

 for list in resp.contact_lists() {
 println!(" {}", list.contact_list_name().unwrap_or_default());
 }

 Ok(())
}

• For API details, see ListContactLists in AWS SDK for Rust API reference.

Actions 887

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples
https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListContacts with an AWS SDK or CLI

The following code examples show how to use ListContacts.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Newsletter workflow

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Lists the contacts in the specified contact list.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The list of contacts response from the ListContacts operation.</
returns>
 public async Task<List<Contact>> ListContactsAsync(string contactListName)
 {
 var request = new ListContactsRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.ListContactsAsync(request);
 return response.Contacts;
 }

Actions 888

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while listing the contacts:
 {ex.Message}");
 }

 return new List<Contact>();
 }

• For API details, see ListContacts in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 ListContactsRequest contactListRequest = ListContactsRequest.builder()
 .contactListName(CONTACT_LIST_NAME)
 .build();

 List<String> contactEmails;
 try {
 ListContactsResponse contactListResponse =
 sesClient.listContacts(contactListRequest);

Actions 889

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/ListContacts
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 contactEmails = contactListResponse.contacts().stream()
 .map(Contact::emailAddress)
 .toList();
 } catch (Exception e) {
 // TODO: Remove when listContacts's GET body issue is resolved.
 contactEmails = this.contacts;
 }

• For API details, see ListContacts in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:

Actions 890

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/ListContacts
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:
 contacts_response = self.ses_client.list_contacts(
 ContactListName=CONTACT_LIST_NAME
)
 except ClientError as e:
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Contact list '{CONTACT_LIST_NAME}' does not exist.")
 return
 else:
 raise e

• For API details, see ListContacts in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn show_contacts(client: &Client, list: &str) -> Result<(), Error> {
 let resp = client
 .list_contacts()
 .contact_list_name(list)
 .send()
 .await?;

 println!("Contacts:");

Actions 891

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/ListContacts
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 for contact in resp.contacts() {
 println!(" {}", contact.email_address().unwrap_or_default());
 }

 Ok(())
}

• For API details, see ListContacts in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendEmail with an AWS SDK or CLI

The following code examples show how to use SendEmail.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Sends an email with the specified content and options.
 /// </summary>
 /// <param name="fromEmailAddress">The email address to send the email
 from.</param>
 /// <param name="toEmailAddresses">The email addresses to send the email
 to.</param>
 /// <param name="subject">The subject of the email.</param>
 /// <param name="htmlContent">The HTML content of the email.</param>
 /// <param name="textContent">The text content of the email.</param>
 /// <param name="templateName">The name of the email template to use
 (optional).</param>

Actions 892

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

 /// <param name="templateData">The data to replace placeholders in the email
 template (optional).</param>
 /// <param name="contactListName">The name of the contact list for
 unsubscribe functionality (optional).</param>
 /// <returns>The MessageId response from the SendEmail operation.</returns>
 public async Task<string> SendEmailAsync(string fromEmailAddress,
 List<string> toEmailAddresses, string? subject,
 string? htmlContent, string? textContent, string? templateName = null,
 string? templateData = null, string? contactListName = null)
 {
 var request = new SendEmailRequest
 {
 FromEmailAddress = fromEmailAddress
 };

 if (toEmailAddresses.Any())
 {
 request.Destination = new Destination { ToAddresses =
 toEmailAddresses };
 }

 if (!string.IsNullOrEmpty(templateName))
 {
 request.Content = new EmailContent()
 {
 Template = new Template
 {
 TemplateName = templateName,
 TemplateData = templateData
 }
 };
 }
 else
 {
 request.Content = new EmailContent
 {
 Simple = new Message
 {
 Subject = new Content { Data = subject },
 Body = new Body
 {
 Html = new Content { Data = htmlContent },
 Text = new Content { Data = textContent }
 }

Actions 893

Amazon Simple Email Service Developer Guide

 }
 };
 }

 if (!string.IsNullOrEmpty(contactListName))
 {
 request.ListManagementOptions = new ListManagementOptions
 {
 ContactListName = contactListName
 };
 }

 try
 {
 var response = await _sesClient.SendEmailAsync(request);
 return response.MessageId;
 }
 catch (AccountSuspendedException ex)
 {
 Console.WriteLine("The account's ability to send email has been
 permanently restricted.");
 Console.WriteLine(ex.Message);
 }
 catch (MailFromDomainNotVerifiedException ex)
 {
 Console.WriteLine("The sending domain is not verified.");
 Console.WriteLine(ex.Message);
 }
 catch (MessageRejectedException ex)
 {
 Console.WriteLine("The message content is invalid.");
 Console.WriteLine(ex.Message);
 }
 catch (SendingPausedException ex)
 {
 Console.WriteLine("The account's ability to send email is currently
 paused.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);

Actions 894

Amazon Simple Email Service Developer Guide

 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while sending the email:
 {ex.Message}");
 }

 return string.Empty;
 }

• For API details, see SendEmail in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Sends a message.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sesv2.model.Body;
import software.amazon.awssdk.services.sesv2.model.Content;
import software.amazon.awssdk.services.sesv2.model.Destination;
import software.amazon.awssdk.services.sesv2.model.EmailContent;
import software.amazon.awssdk.services.sesv2.model.Message;
import software.amazon.awssdk.services.sesv2.model.SendEmailRequest;
import software.amazon.awssdk.services.sesv2.model.SesV2Exception;
import software.amazon.awssdk.services.sesv2.SesV2Client;

/**
 * Before running this AWS SDK for Java (v2) example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions 895

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class SendEmail {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <sender> <recipient> <subject>\s

 Where:
 sender - An email address that represents the
 sender.\s
 recipient - An email address that represents
 the recipient.\s
 subject - The subject line.\s
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String sender = args[0];
 String recipient = args[1];
 String subject = args[2];

 Region region = Region.US_EAST_1;
 SesV2Client sesv2Client = SesV2Client.builder()
 .region(region)
 .build();

 // The HTML body of the email.
 String bodyHTML = "<html>" + "<head></head>" + "<body>" +
 "<h1>Hello!</h1>"
 + "<p> See the list of customers.</p>" + "</
body>" + "</html>";

 send(sesv2Client, sender, recipient, subject, bodyHTML);
 }

 public static void send(SesV2Client client,
 String sender,

Actions 896

Amazon Simple Email Service Developer Guide

 String recipient,
 String subject,
 String bodyHTML) {

 Destination destination = Destination.builder()
 .toAddresses(recipient)
 .build();

 Content content = Content.builder()
 .data(bodyHTML)
 .build();

 Content sub = Content.builder()
 .data(subject)
 .build();

 Body body = Body.builder()
 .html(content)
 .build();

 Message msg = Message.builder()
 .subject(sub)
 .body(body)
 .build();

 EmailContent emailContent = EmailContent.builder()
 .simple(msg)
 .build();

 SendEmailRequest emailRequest = SendEmailRequest.builder()
 .destination(destination)
 .content(emailContent)
 .fromEmailAddress(sender)
 .build();

 try {
 System.out.println("Attempting to send an email through
 Amazon SES "
 + "using the AWS SDK for Java...");
 client.sendEmail(emailRequest);
 System.out.println("email was sent");

 } catch (SesV2Exception e) {
 System.err.println(e.awsErrorDetails().errorMessage());

Actions 897

Amazon Simple Email Service Developer Guide

 System.exit(1);
 }
 }
}

Sends a message using a template.

 String coupons = Files.readString(Paths.get("resources/coupon_newsletter/
sample_coupons.json"));
 for (String emailAddress : contactEmails) {
 SendEmailRequest newsletterRequest = SendEmailRequest.builder()
 .destination(Destination.builder().toAddresses(emailAddress).build())
 .content(EmailContent.builder()
 .template(Template.builder()
 .templateName(TEMPLATE_NAME)
 .templateData(coupons)
 .build())
 .build())
 .fromEmailAddress(this.verifiedEmail)
 .listManagementOptions(ListManagementOptions.builder()
 .contactListName(CONTACT_LIST_NAME)
 .build())
 .build();
 SendEmailResponse newsletterResponse =
 sesClient.sendEmail(newsletterRequest);
 System.out.println("Newsletter sent to " + emailAddress + ": " +
 newsletterResponse.messageId());
 }

• For API details, see SendEmail in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 898

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

Sends a message to all members of the contact list.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 self.ses_client.send_email(
 FromEmailAddress=self.verified_email,
 Destination={"ToAddresses": [email]},
 Content={
 "Simple": {
 "Subject": {
 "Data": "Welcome to the Weekly Coupons
 Newsletter"
 },
 "Body": {
 "Text": {"Data": welcome_text},
 "Html": {"Data": welcome_html},
 },
 }

Actions 899

Amazon Simple Email Service Developer Guide

 },
)
 print(f"Welcome email sent to '{email}'.")

Sends a message to all members of the contact list using a template.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:
 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 self.ses_client.send_email(
 FromEmailAddress=self.verified_email,
 Destination={"ToAddresses": [email_address]},
 Content={
 "Template": {
 "TemplateName": TEMPLATE_NAME,
 "TemplateData": coupon_items,
 }

Actions 900

Amazon Simple Email Service Developer Guide

 },
 ListManagementOptions={"ContactListName": CONTACT_LIST_NAME},
)

• For API details, see SendEmail in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-sesv2"
require_relative "config" # Recipient and sender email addresses.

Set up the SESv2 client.
client = Aws::SESV2::Client.new(region: AWS_REGION)

def send_email(client, sender_email, recipient_email)
 response = client.send_email(
 {
 from_email_address: sender_email,
 destination: {
 to_addresses: [recipient_email]
 },
 content: {
 simple: {
 subject: {
 data: "Test email subject"
 },
 body: {
 text: {
 data: "Test email body"
 }
 }
 }
 }

Actions 901

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/ses/v2#code-examples

Amazon Simple Email Service Developer Guide

 }
)
 puts "Email sent from #{SENDER_EMAIL} to #{RECIPIENT_EMAIL} with message ID:
 #{response.message_id}"
end

send_email(client, SENDER_EMAIL, RECIPIENT_EMAIL)

• For API details, see SendEmail in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Sends a message to all members of the contact list.

async fn send_message(
 client: &Client,
 list: &str,
 from: &str,
 subject: &str,
 message: &str,
) -> Result<(), Error> {
 // Get list of email addresses from contact list.
 let resp = client
 .list_contacts()
 .contact_list_name(list)
 .send()
 .await?;

 let contacts = resp.contacts();

 let cs: Vec<String> = contacts
 .iter()
 .map(|i| i.email_address().unwrap_or_default().to_string())

Actions 902

https://docs.aws.amazon.com/goto/SdkForRubyV3/sesv2-2019-09-27/SendEmail
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 .collect();

 let mut dest: Destination = Destination::builder().build();
 dest.to_addresses = Some(cs);
 let subject_content = Content::builder()
 .data(subject)
 .charset("UTF-8")
 .build()
 .expect("building Content");
 let body_content = Content::builder()
 .data(message)
 .charset("UTF-8")
 .build()
 .expect("building Content");
 let body = Body::builder().text(body_content).build();

 let msg = Message::builder()
 .subject(subject_content)
 .body(body)
 .build();

 let email_content = EmailContent::builder().simple(msg).build();

 client
 .send_email()
 .from_email_address(from)
 .destination(dest)
 .content(email_content)
 .send()
 .await?;

 println!("Email sent to list");

 Ok(())
}

Sends a message to all members of the contact list using a template.

 let coupons = std::fs::read_to_string("../resources/newsletter/
sample_coupons.json")
 .unwrap_or_else(|_| r#"{"coupons":[]}"#.to_string());
 let email_content = EmailContent::builder()

Actions 903

Amazon Simple Email Service Developer Guide

 .template(
 Template::builder()
 .template_name(TEMPLATE_NAME)
 .template_data(coupons)
 .build(),
)
 .build();

 match self
 .client
 .send_email()
 .from_email_address(self.verified_email.clone())

 .destination(Destination::builder().to_addresses(email.clone()).build())
 .content(email_content)
 .list_management_options(
 ListManagementOptions::builder()
 .contact_list_name(CONTACT_LIST_NAME)
 .build()?,
)
 .send()
 .await
 {
 Ok(output) => {
 if let Some(message_id) = output.message_id {
 writeln!(
 self.stdout,
 "Newsletter sent to {} with message ID {}",
 email, message_id
)?;
 } else {
 writeln!(self.stdout, "Newsletter sent to {}", email)?;
 }
 }
 Err(e) => return Err(anyhow!("Error sending newsletter to {}:
 {}", email, e)),
 }

• For API details, see SendEmail in AWS SDK for Rust API reference.

Actions 904

https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Amazon SES API v2 using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon SES API
v2 with AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple
functions within Amazon SES API v2. Each scenario includes a link to GitHub, where you can find
instructions on how to set up and run the code.

Examples

• A complete Amazon SES API v2 Newsletter workflow using an AWS SDK

A complete Amazon SES API v2 Newsletter workflow using an AWS SDK

The following code examples show how to Amazon SES API v2 newsletter workflow.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run the workflow.

using System.Diagnostics;
using System.Text.RegularExpressions;
using Amazon.SimpleEmailV2;
using Amazon.SimpleEmailV2.Model;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

Scenarios 905

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SESv2#code-examples

Amazon Simple Email Service Developer Guide

namespace Sesv2Scenario;

public static class NewsletterWorkflow
{
 /*
 This workflow demonstrates how to use the Amazon Simple Email Service (SES)
 v2 to send a coupon newsletter to a list of subscribers.
 The workflow performs the following tasks:

 1. Prepare the application:
 - Create a verified email identity for sending and replying to emails.
 - Create a contact list to store the subscribers' email addresses.
 - Create an email template for the coupon newsletter.

 2. Gather subscriber email addresses:
 - Prompt the user for a base email address.
 - Create 3 variants of the email address using subaddress extensions
 (e.g., user+ses-weekly-newsletter-1@example.com).
 - Add each variant as a contact to the contact list.
 - Send a welcome email to each new contact.

 3. Send the coupon newsletter:
 - Retrieve the list of contacts from the contact list.
 - Send the coupon newsletter using the email template to each contact.

 4. Monitor and review:
 - Provide instructions for the user to review the sending activity and
 metrics in the AWS console.

 5. Clean up resources:
 - Delete the contact list (which also deletes all contacts within it).
 - Delete the email template.
 - Optionally delete the verified email identity.

 */

 public static SESv2Wrapper _sesv2Wrapper;
 public static string? _baseEmailAddress = null;
 public static string? _verifiedEmail = null;
 private static string _contactListName = "weekly-coupons-newsletter";
 private static string _templateName = "weekly-coupons";
 private static string _subject = "Weekly Coupons Newsletter";
 private static string _htmlContentFile = "coupon-newsletter.html";
 private static string _textContentFile = "coupon-newsletter.txt";

Scenarios 906

Amazon Simple Email Service Developer Guide

 private static string _htmlWelcomeFile = "welcome.html";
 private static string _textWelcomeFile = "welcome.txt";
 private static string _couponsDataFile = "sample_coupons.json";

 // Relative location of the shared workflow resources folder.
 private static string _resourcesFilePathLocation = "../../../../../../../
workflows/sesv2_weekly_mailer/resources/";

 public static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonSimpleEmailServiceV2>()
 .AddTransient<SESv2Wrapper>()
)
 .Build();

 ServicesSetup(host);

 try
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Welcome to the Amazon SES v2 Coupon Newsletter
 Workflow.");
 Console.WriteLine("This workflow demonstrates how to use the Amazon
 Simple Email Service (SES) v2 " +
 "\r\nto send a coupon newsletter to a list of
 subscribers.");

 // Prepare the application.
 var emailIdentity = await PrepareApplication();

 // Gather subscriber email addresses.
 await GatherSubscriberEmailAddresses(emailIdentity);

 // Send the coupon newsletter.

Scenarios 907

Amazon Simple Email Service Developer Guide

 await SendCouponNewsletter(emailIdentity);

 // Monitor and review.
 MonitorAndReview(true);

 // Clean up resources.
 await Cleanup(emailIdentity, true);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Amazon SES v2 Coupon Newsletter Workflow is
 complete.");
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(new string('-', 80));
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred: {ex.Message}");
 }
 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 _sesv2Wrapper = host.Services.GetRequiredService<SESv2Wrapper>();
 }

 /// <summary>
 /// Set up the resources for the workflow.
 /// </summary>
 /// <returns>The email address of the verified identity.</returns>
 public static async Task<string?> PrepareApplication()
 {
 var htmlContent = await File.ReadAllTextAsync(_resourcesFilePathLocation
 + _htmlContentFile);
 var textContent = await File.ReadAllTextAsync(_resourcesFilePathLocation
 + _textContentFile);

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("1. In this step, we will prepare the application:" +
 "\r\n - Create a verified email identity for sending
 and replying to emails." +

Scenarios 908

Amazon Simple Email Service Developer Guide

 "\r\n - Create a contact list to store the
 subscribers' email addresses." +
 "\r\n - Create an email template for the coupon
 newsletter.\r\n");

 // Prompt the user for a verified email address.
 while (!IsEmail(_verifiedEmail))
 {
 Console.Write("Enter a verified email address or an email to verify:
 ");
 _verifiedEmail = Console.ReadLine();
 }

 try
 {
 // Create an email identity and start the verification process.
 await _sesv2Wrapper.CreateEmailIdentityAsync(_verifiedEmail);
 Console.WriteLine($"Identity {_verifiedEmail} created.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Identity {_verifiedEmail} already exists.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating email identity: {ex.Message}");
 }

 // Create a contact list.
 try
 {
 await _sesv2Wrapper.CreateContactListAsync(_contactListName);
 Console.WriteLine($"Contact list {_contactListName} created.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Contact list {_contactListName} already
 exists.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating contact list: {ex.Message}");
 }

Scenarios 909

Amazon Simple Email Service Developer Guide

 // Create an email template.
 try
 {
 await _sesv2Wrapper.CreateEmailTemplateAsync(_templateName, _subject,
 htmlContent, textContent);
 Console.WriteLine($"Email template {_templateName} created.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Email template {_templateName} already exists.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating email template: {ex.Message}");
 }

 return _verifiedEmail;
 }

 /// <summary>
 /// Generate subscriber addresses and send welcome emails.
 /// </summary>
 /// <param name="fromEmailAddress">The verified email address from
 PrepareApplication.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> GatherSubscriberEmailAddresses(string
 fromEmailAddress)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("2. In Step 2, we will gather subscriber email
 addresses:" +
 "\r\n - Prompt the user for a base email address." +
 "\r\n - Create 3 variants of the email address using
 subaddress extensions (e.g., user+ses-weekly-newsletter-1@example.com)." +
 "\r\n - Add each variant as a contact to the contact
 list." +
 "\r\n - Send a welcome email to each new contact.\r
\n");

 // Prompt the user for a base email address.
 while (!IsEmail(_baseEmailAddress))
 {
 Console.Write("Enter a base email address (e.g., user@example.com):
 ");

Scenarios 910

Amazon Simple Email Service Developer Guide

 _baseEmailAddress = Console.ReadLine();
 }

 // Create 3 variants of the email address using +ses-weekly-newsletter-1,
 +ses-weekly-newsletter-2, etc.
 var baseEmailAddressParts = _baseEmailAddress!.Split("@");
 for (int i = 1; i <= 3; i++)
 {
 string emailAddress = $"{baseEmailAddressParts[0]}+ses-weekly-
newsletter-{i}@{baseEmailAddressParts[1]}";

 try
 {
 // Create a contact with the email address in the contact list.
 await _sesv2Wrapper.CreateContactAsync(emailAddress,
 _contactListName);
 Console.WriteLine($"Contact {emailAddress} added to the
 {_contactListName} contact list.");
 }
 catch (AlreadyExistsException)
 {
 Console.WriteLine($"Contact {emailAddress} already exists in the
 {_contactListName} contact list.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error creating contact {emailAddress}:
 {ex.Message}");
 return false;
 }

 // Send a welcome email to the new contact.
 try
 {
 string subject = "Welcome to the Weekly Coupons Newsletter";
 string htmlContent = await
 File.ReadAllTextAsync(_resourcesFilePathLocation + _htmlWelcomeFile);
 string textContent = await
 File.ReadAllTextAsync(_resourcesFilePathLocation + _textWelcomeFile);

 await _sesv2Wrapper.SendEmailAsync(fromEmailAddress, new
 List<string> { emailAddress }, subject, htmlContent, textContent);
 Console.WriteLine($"Welcome email sent to {emailAddress}.");
 }

Scenarios 911

Amazon Simple Email Service Developer Guide

 catch (Exception ex)
 {
 Console.WriteLine($"Error sending welcome email to
 {emailAddress}: {ex.Message}");
 return false;
 }

 // Wait 2 seconds before sending the next email (if the account is in
 the SES Sandbox).
 await Task.Delay(2000);
 }

 return true;
 }

 /// <summary>
 /// Send the coupon newsletter to the subscribers in the contact list.
 /// </summary>
 /// <param name="fromEmailAddress">The verified email address from
 PrepareApplication.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> SendCouponNewsletter(string fromEmailAddress)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("3. In this step, we will send the coupon newsletter:"
 +
 "\r\n - Retrieve the list of contacts from the contact
 list." +
 "\r\n - Send the coupon newsletter using the email
 template to each contact.\r\n");

 // Retrieve the list of contacts from the contact list.
 var contacts = await _sesv2Wrapper.ListContactsAsync(_contactListName);
 if (!contacts.Any())
 {
 Console.WriteLine($"No contacts found in the {_contactListName}
 contact list.");
 return false;
 }

 // Load the coupon data from the sample_coupons.json file.
 string couponsData = await
 File.ReadAllTextAsync(_resourcesFilePathLocation + _couponsDataFile);

Scenarios 912

Amazon Simple Email Service Developer Guide

 // Send the coupon newsletter to each contact using the email template.
 try
 {
 foreach (var contact in contacts)
 {
 // To use the Contact List for list management, send to only one
 address at a time.
 await _sesv2Wrapper.SendEmailAsync(fromEmailAddress,
 new List<string> { contact.EmailAddress },
 null, null, null, _templateName, couponsData,
 _contactListName);
 }

 Console.WriteLine($"Coupon newsletter sent to contact list
 {_contactListName}.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error sending coupon newsletter to contact list
 {_contactListName}: {ex.Message}");
 return false;
 }

 return true;
 }

 /// <summary>
 /// Provide instructions for monitoring sending activity and metrics.
 /// </summary>
 /// <param name="interactive">True to run in interactive mode.</param>
 /// <returns>True if successful.</returns>
 public static bool MonitorAndReview(bool interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("4. In step 4, we will monitor and review:" +
 "\r\n - Provide instructions for the user to review
 the sending activity and metrics in the AWS console.\r\n");

 Console.WriteLine("Review your sending activity using the SES Homepage in
 the AWS console.");
 Console.WriteLine("Press Enter to open the SES Homepage in your default
 browser...");
 if (interactive)

Scenarios 913

Amazon Simple Email Service Developer Guide

 {
 Console.ReadLine();
 try
 {
 // Open the SES Homepage in the default browser.
 Process.Start(new ProcessStartInfo
 {
 FileName = "https://console.aws.amazon.com/ses/home",
 UseShellExecute = true
 });
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error opening the SES Homepage:
 {ex.Message}");
 return false;
 }
 }

 Console.WriteLine("Review the sending activity and email metrics, then
 press Enter to continue...");
 if (interactive)
 Console.ReadLine();
 return true;
 }

 /// <summary>
 /// Clean up the resources used in the workflow.
 /// </summary>
 /// <param name="verifiedEmailAddress">The verified email address from
 PrepareApplication.</param>
 /// <param name="interactive">True if interactive.</param>
 /// <returns>Async task.</returns>
 public static async Task<bool> Cleanup(string verifiedEmailAddress, bool
 interactive)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("5. Finally, we clean up resources:" +
 "\r\n - Delete the contact list (which also deletes
 all contacts within it)." +
 "\r\n - Delete the email template." +
 "\r\n - Optionally delete the verified email identity.
\r\n");

Scenarios 914

Amazon Simple Email Service Developer Guide

 Console.WriteLine("Cleaning up resources...");

 // Delete the contact list (this also deletes all contacts in the list).
 try
 {
 await _sesv2Wrapper.DeleteContactListAsync(_contactListName);
 Console.WriteLine($"Contact list {_contactListName} deleted.");
 }
 catch (NotFoundException)
 {
 Console.WriteLine($"Contact list {_contactListName} not found.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error deleting contact list {_contactListName}:
 {ex.Message}");
 return false;
 }

 // Delete the email template.
 try
 {
 await _sesv2Wrapper.DeleteEmailTemplateAsync(_templateName);
 Console.WriteLine($"Email template {_templateName} deleted.");
 }
 catch (NotFoundException)
 {
 Console.WriteLine($"Email template {_templateName} not found.");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error deleting email template {_templateName}:
 {ex.Message}");
 return false;
 }

 // Ask the user if they want to delete the email identity.
 var deleteIdentity = !interactive ||
 GetYesNoResponse(
 $"Do you want to delete the email identity
 {verifiedEmailAddress}? (y/n) ");
 if (deleteIdentity)
 {
 try

Scenarios 915

Amazon Simple Email Service Developer Guide

 {
 await
 _sesv2Wrapper.DeleteEmailIdentityAsync(verifiedEmailAddress);
 Console.WriteLine($"Email identity {verifiedEmailAddress}
 deleted.");
 }
 catch (NotFoundException)
 {
 Console.WriteLine(
 $"Email identity {verifiedEmailAddress} not found.");
 }
 catch (Exception ex)
 {
 Console.WriteLine(
 $"Error deleting email identity {verifiedEmailAddress}:
 {ex.Message}");
 return false;
 }
 }
 else
 {
 Console.WriteLine(
 $"Skipping deletion of email identity {verifiedEmailAddress}.");
 }

 return true;
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null && ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

 /// <summary>

Scenarios 916

Amazon Simple Email Service Developer Guide

 /// Simple check to verify a string is an email address.
 /// </summary>
 /// <param name="email">The string to verify.</param>
 /// <returns>True if a valid email.</returns>
 private static bool IsEmail(string? email)
 {
 if (string.IsNullOrEmpty(email))
 return false;
 return Regex.IsMatch(email, @"^[^@\s]+@[^@\s]+\.[^@\s]+$",
 RegexOptions.IgnoreCase);
 }
}

Wrapper for service operations.

using System.Net;
using Amazon.SimpleEmailV2;
using Amazon.SimpleEmailV2.Model;

namespace Sesv2Scenario;

/// <summary>
/// Wrapper class for Amazon Simple Email Service (SES) v2 operations.
/// </summary>
public class SESv2Wrapper
{

 private readonly IAmazonSimpleEmailServiceV2 _sesClient;

 /// <summary>
 /// Constructor for the SESv2Wrapper.
 /// </summary>
 /// <param name="sesClient">The injected SES v2 client.</param>
 public SESv2Wrapper(IAmazonSimpleEmailServiceV2 sesClient)
 {
 _sesClient = sesClient;
 }

 /// <summary>
 /// Creates a contact and adds it to the specified contact list.
 /// </summary>
 /// <param name="emailAddress">The email address of the contact.</param>

Scenarios 917

Amazon Simple Email Service Developer Guide

 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The response from the CreateContact operation.</returns>
 public async Task<bool> CreateContactAsync(string emailAddress, string
 contactListName)
 {
 var request = new CreateContactRequest
 {
 EmailAddress = emailAddress,
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact with email address {emailAddress} already
 exists in the contact list {contactListName}.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact:
 {ex.Message}");
 }
 return false;
 }

 /// <summary>

Scenarios 918

Amazon Simple Email Service Developer Guide

 /// Creates a contact list with the specified name.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateContactListAsync(string contactListName)
 {
 var request = new CreateContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.CreateContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Contact list with name {contactListName} already
 exists.");
 Console.WriteLine(ex.Message);
 return true;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for contact lists has been exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the contact
 list: {ex.Message}");
 }
 return false;
 }

 /// <summary>

Scenarios 919

Amazon Simple Email Service Developer Guide

 /// Creates an email identity (email address or domain) and starts the
 verification process.
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to create and
 verify.</param>
 /// <returns>The response from the CreateEmailIdentity operation.</returns>
 public async Task<CreateEmailIdentityResponse>
 CreateEmailIdentityAsync(string emailIdentity)
 {
 var request = new CreateEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.CreateEmailIdentityAsync(request);
 return response;
 }
 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email identity {emailIdentity} already exists.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being
 modified by another operation or thread.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email identities has been
 exceeded.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);

Scenarios 920

Amazon Simple Email Service Developer Guide

 throw;
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email
 identity: {ex.Message}");
 throw;
 }
 }

 /// <summary>
 /// Creates an email template with the specified content.
 /// </summary>
 /// <param name="templateName">The name of the email template.</param>
 /// <param name="subject">The subject of the email template.</param>
 /// <param name="htmlContent">The HTML content of the email template.</param>
 /// <param name="textContent">The text content of the email template.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> CreateEmailTemplateAsync(string templateName, string
 subject, string htmlContent, string textContent)
 {
 var request = new CreateEmailTemplateRequest
 {
 TemplateName = templateName,
 TemplateContent = new EmailTemplateContent
 {
 Subject = subject,
 Html = htmlContent,
 Text = textContent
 }
 };

 try
 {
 var response = await _sesClient.CreateEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

Scenarios 921

Amazon Simple Email Service Developer Guide

 catch (AlreadyExistsException ex)
 {
 Console.WriteLine($"Email template with name {templateName} already
 exists.");
 Console.WriteLine(ex.Message);
 }
 catch (LimitExceededException ex)
 {
 Console.WriteLine("The limit for email templates has been
 exceeded.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating the email
 template: {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Deletes a contact list and all contacts within it.
 /// </summary>
 /// <param name="contactListName">The name of the contact list to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteContactListAsync(string contactListName)
 {
 var request = new DeleteContactListRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.DeleteContactListAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;

Scenarios 922

Amazon Simple Email Service Developer Guide

 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The contact list {contactListName} is being
 modified by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the contact
 list: {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Deletes an email identity (email address or domain).
 /// </summary>
 /// <param name="emailIdentity">The email address or domain to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailIdentityAsync(string emailIdentity)
 {
 var request = new DeleteEmailIdentityRequest
 {
 EmailIdentity = emailIdentity
 };

 try
 {
 var response = await _sesClient.DeleteEmailIdentityAsync(request);

Scenarios 923

Amazon Simple Email Service Developer Guide

 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (ConcurrentModificationException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} is being
 modified by another operation or thread.");
 Console.WriteLine(ex.Message);
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email identity {emailIdentity} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email
 identity: {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Deletes an email template.
 /// </summary>
 /// <param name="templateName">The name of the email template to delete.</
param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteEmailTemplateAsync(string templateName)
 {
 var request = new DeleteEmailTemplateRequest
 {
 TemplateName = templateName
 };

 try
 {

Scenarios 924

Amazon Simple Email Service Developer Guide

 var response = await _sesClient.DeleteEmailTemplateAsync(request);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }
 catch (NotFoundException ex)
 {
 Console.WriteLine($"The email template {templateName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting the email
 template: {ex.Message}");
 }

 return false;
 }

 /// <summary>
 /// Lists the contacts in the specified contact list.
 /// </summary>
 /// <param name="contactListName">The name of the contact list.</param>
 /// <returns>The list of contacts response from the ListContacts operation.</
returns>
 public async Task<List<Contact>> ListContactsAsync(string contactListName)
 {
 var request = new ListContactsRequest
 {
 ContactListName = contactListName
 };

 try
 {
 var response = await _sesClient.ListContactsAsync(request);
 return response.Contacts;
 }
 catch (NotFoundException ex)
 {

Scenarios 925

Amazon Simple Email Service Developer Guide

 Console.WriteLine($"The contact list {contactListName} does not
 exist.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while listing the contacts:
 {ex.Message}");
 }

 return new List<Contact>();
 }

 /// <summary>
 /// Sends an email with the specified content and options.
 /// </summary>
 /// <param name="fromEmailAddress">The email address to send the email
 from.</param>
 /// <param name="toEmailAddresses">The email addresses to send the email
 to.</param>
 /// <param name="subject">The subject of the email.</param>
 /// <param name="htmlContent">The HTML content of the email.</param>
 /// <param name="textContent">The text content of the email.</param>
 /// <param name="templateName">The name of the email template to use
 (optional).</param>
 /// <param name="templateData">The data to replace placeholders in the email
 template (optional).</param>
 /// <param name="contactListName">The name of the contact list for
 unsubscribe functionality (optional).</param>
 /// <returns>The MessageId response from the SendEmail operation.</returns>
 public async Task<string> SendEmailAsync(string fromEmailAddress,
 List<string> toEmailAddresses, string? subject,
 string? htmlContent, string? textContent, string? templateName = null,
 string? templateData = null, string? contactListName = null)
 {
 var request = new SendEmailRequest
 {
 FromEmailAddress = fromEmailAddress

Scenarios 926

Amazon Simple Email Service Developer Guide

 };

 if (toEmailAddresses.Any())
 {
 request.Destination = new Destination { ToAddresses =
 toEmailAddresses };
 }

 if (!string.IsNullOrEmpty(templateName))
 {
 request.Content = new EmailContent()
 {
 Template = new Template
 {
 TemplateName = templateName,
 TemplateData = templateData
 }
 };
 }
 else
 {
 request.Content = new EmailContent
 {
 Simple = new Message
 {
 Subject = new Content { Data = subject },
 Body = new Body
 {
 Html = new Content { Data = htmlContent },
 Text = new Content { Data = textContent }
 }
 }
 };
 }

 if (!string.IsNullOrEmpty(contactListName))
 {
 request.ListManagementOptions = new ListManagementOptions
 {
 ContactListName = contactListName
 };
 }

 try

Scenarios 927

Amazon Simple Email Service Developer Guide

 {
 var response = await _sesClient.SendEmailAsync(request);
 return response.MessageId;
 }
 catch (AccountSuspendedException ex)
 {
 Console.WriteLine("The account's ability to send email has been
 permanently restricted.");
 Console.WriteLine(ex.Message);
 }
 catch (MailFromDomainNotVerifiedException ex)
 {
 Console.WriteLine("The sending domain is not verified.");
 Console.WriteLine(ex.Message);
 }
 catch (MessageRejectedException ex)
 {
 Console.WriteLine("The message content is invalid.");
 Console.WriteLine(ex.Message);
 }
 catch (SendingPausedException ex)
 {
 Console.WriteLine("The account's ability to send email is currently
 paused.");
 Console.WriteLine(ex.Message);
 }
 catch (TooManyRequestsException ex)
 {
 Console.WriteLine("Too many requests were made. Please try again
 later.");
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while sending the email:
 {ex.Message}");
 }

 return string.Empty;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

Scenarios 928

Amazon Simple Email Service Developer Guide

• CreateContact

• CreateContactList

• CreateEmailIdentity

• CreateEmailTemplate

• DeleteContactList

• DeleteEmailIdentity

• DeleteEmailTemplate

• ListContacts

• SendEmail.simple

• SendEmail.template

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 // 2. Create a contact list
 String contactListName = CONTACT_LIST_NAME;
 CreateContactListRequest createContactListRequest =
 CreateContactListRequest.builder()
 .contactListName(contactListName)
 .build();
 sesClient.createContactList(createContactListRequest);
 System.out.println("Contact list created: " + contactListName);
 } catch (AlreadyExistsException e) {
 System.out.println("Contact list already exists, skipping creation: weekly-
coupons-newsletter");
 } catch (LimitExceededException e) {
 System.err.println("Limit for contact lists has been exceeded.");
 throw e;
 } catch (SesV2Exception e) {

Scenarios 929

https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContact
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateContactList
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailIdentity
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/CreateEmailTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteContactList
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailIdentity
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/DeleteEmailTemplate
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/ListContacts
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/SendEmail.simple
https://docs.aws.amazon.com/goto/DotNetSDKV3/sesv2-2019-09-27/SendEmail.template
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ses#readme

Amazon Simple Email Service Developer Guide

 System.err.println("Error creating contact list: " + e.getMessage());
 throw e;
 }

 try {
 // Create a new contact with the provided email address in the
 CreateContactRequest contactRequest = CreateContactRequest.builder()
 .contactListName(CONTACT_LIST_NAME)
 .emailAddress(emailAddress)
 .build();

 sesClient.createContact(contactRequest);
 contacts.add(emailAddress);

 System.out.println("Contact created: " + emailAddress);

 // Send a welcome email to the new contact
 String welcomeHtml = Files.readString(Paths.get("resources/
coupon_newsletter/welcome.html"));
 String welcomeText = Files.readString(Paths.get("resources/
coupon_newsletter/welcome.txt"));

 SendEmailRequest welcomeEmailRequest = SendEmailRequest.builder()
 .fromEmailAddress(this.verifiedEmail)
 .destination(Destination.builder().toAddresses(emailAddress).build())
 .content(EmailContent.builder()
 .simple(
 Message.builder()
 .subject(Content.builder().data("Welcome to the Weekly
 Coupons Newsletter").build())
 .body(Body.builder()
 .text(Content.builder().data(welcomeText).build())
 .html(Content.builder().data(welcomeHtml).build())
 .build())
 .build())
 .build())
 .build();
 SendEmailResponse welcomeEmailResponse =
 sesClient.sendEmail(welcomeEmailRequest);
 System.out.println("Welcome email sent: " +
 welcomeEmailResponse.messageId());
 } catch (AlreadyExistsException e) {
 // If the contact already exists, skip this step for that contact and
 proceed

Scenarios 930

Amazon Simple Email Service Developer Guide

 // with the next contact
 System.out.println("Contact already exists, skipping creation...");
 } catch (Exception e) {
 System.err.println("Error occurred while processing email address " +
 emailAddress + ": " + e.getMessage());
 throw e;
 }
 }

 ListContactsRequest contactListRequest = ListContactsRequest.builder()
 .contactListName(CONTACT_LIST_NAME)
 .build();

 List<String> contactEmails;
 try {
 ListContactsResponse contactListResponse =
 sesClient.listContacts(contactListRequest);

 contactEmails = contactListResponse.contacts().stream()
 .map(Contact::emailAddress)
 .toList();
 } catch (Exception e) {
 // TODO: Remove when listContacts's GET body issue is resolved.
 contactEmails = this.contacts;
 }

 String coupons = Files.readString(Paths.get("resources/coupon_newsletter/
sample_coupons.json"));
 for (String emailAddress : contactEmails) {
 SendEmailRequest newsletterRequest = SendEmailRequest.builder()
 .destination(Destination.builder().toAddresses(emailAddress).build())
 .content(EmailContent.builder()
 .template(Template.builder()
 .templateName(TEMPLATE_NAME)
 .templateData(coupons)
 .build())
 .build())
 .fromEmailAddress(this.verifiedEmail)
 .listManagementOptions(ListManagementOptions.builder()
 .contactListName(CONTACT_LIST_NAME)
 .build())
 .build();

Scenarios 931

Amazon Simple Email Service Developer Guide

 SendEmailResponse newsletterResponse =
 sesClient.sendEmail(newsletterRequest);
 System.out.println("Newsletter sent to " + emailAddress + ": " +
 newsletterResponse.messageId());
 }

 try {
 CreateEmailIdentityRequest createEmailIdentityRequest =
 CreateEmailIdentityRequest.builder()
 .emailIdentity(verifiedEmail)
 .build();
 sesClient.createEmailIdentity(createEmailIdentityRequest);
 System.out.println("Email identity created: " + verifiedEmail);
 } catch (AlreadyExistsException e) {
 System.out.println("Email identity already exists, skipping creation: " +
 verifiedEmail);
 } catch (NotFoundException e) {
 System.err.println("The provided email address is not verified: " +
 verifiedEmail);
 throw e;
 } catch (LimitExceededException e) {
 System.err
 .println("You have reached the limit for email identities. Please
 remove some identities and try again.");
 throw e;
 } catch (SesV2Exception e) {
 System.err.println("Error creating email identity: " + e.getMessage());
 throw e;
 }

 try {
 // Create an email template named "weekly-coupons"
 String newsletterHtml = loadFile("resources/coupon_newsletter/coupon-
newsletter.html");
 String newsletterText = loadFile("resources/coupon_newsletter/coupon-
newsletter.txt");

 CreateEmailTemplateRequest templateRequest =
 CreateEmailTemplateRequest.builder()
 .templateName(TEMPLATE_NAME)
 .templateContent(EmailTemplateContent.builder()
 .subject("Weekly Coupons Newsletter")
 .html(newsletterHtml)
 .text(newsletterText)

Scenarios 932

Amazon Simple Email Service Developer Guide

 .build())
 .build();

 sesClient.createEmailTemplate(templateRequest);

 System.out.println("Email template created: " + TEMPLATE_NAME);
 } catch (AlreadyExistsException e) {
 // If the template already exists, skip this step and proceed with the next
 // operation
 System.out.println("Email template already exists, skipping creation...");
 } catch (LimitExceededException e) {
 // If the limit for email templates is exceeded, fail the workflow and
 inform
 // the user
 System.err.println("You have reached the limit for email templates. Please
 remove some templates and try again.");
 throw e;
 } catch (Exception e) {
 System.err.println("Error occurred while creating email template: " +
 e.getMessage());
 throw e;
 }

 try {
 // Delete the contact list
 DeleteContactListRequest deleteContactListRequest =
 DeleteContactListRequest.builder()
 .contactListName(CONTACT_LIST_NAME)
 .build();

 sesClient.deleteContactList(deleteContactListRequest);

 System.out.println("Contact list deleted: " + CONTACT_LIST_NAME);
 } catch (NotFoundException e) {
 // If the contact list does not exist, log the error and proceed
 System.out.println("Contact list not found. Skipping deletion...");
 } catch (Exception e) {
 System.err.println("Error occurred while deleting the contact list: " +
 e.getMessage());
 e.printStackTrace();
 }

 try {
 // Delete the email identity

Scenarios 933

Amazon Simple Email Service Developer Guide

 DeleteEmailIdentityRequest deleteIdentityRequest =
 DeleteEmailIdentityRequest.builder()
 .emailIdentity(this.verifiedEmail)
 .build();

 sesClient.deleteEmailIdentity(deleteIdentityRequest);

 System.out.println("Email identity deleted: " + this.verifiedEmail);
 } catch (NotFoundException e) {
 // If the email identity does not exist, log the error and proceed
 System.out.println("Email identity not found. Skipping deletion...");
 } catch (Exception e) {
 System.err.println("Error occurred while deleting the email identity: " +
 e.getMessage());
 e.printStackTrace();
 }
 } else {
 System.out.println("Skipping email identity deletion.");
 }

 try {
 // Delete the template
 DeleteEmailTemplateRequest deleteTemplateRequest =
 DeleteEmailTemplateRequest.builder()
 .templateName(TEMPLATE_NAME)
 .build();

 sesClient.deleteEmailTemplate(deleteTemplateRequest);

 System.out.println("Email template deleted: " + TEMPLATE_NAME);
 } catch (NotFoundException e) {
 // If the email template does not exist, log the error and proceed
 System.out.println("Email template not found. Skipping deletion...");
 } catch (Exception e) {
 System.err.println("Error occurred while deleting the email template: " +
 e.getMessage());
 e.printStackTrace();
 }

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateContact

• CreateContactList

Scenarios 934

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateContact
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateContactList

Amazon Simple Email Service Developer Guide

• CreateEmailIdentity

• CreateEmailTemplate

• DeleteContactList

• DeleteEmailIdentity

• DeleteEmailTemplate

• ListContacts

• SendEmail.simple

• SendEmail.template

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def main():
 """
 The main function that orchestrates the execution of the workflow.
 """
 print(INTRO)
 ses_client = boto3.client("sesv2")
 workflow = SESv2Workflow(ses_client)
 try:
 workflow.prepare_application()
 workflow.gather_subscriber_email_addresses()
 workflow.send_coupon_newsletter()
 workflow.monitor_and_review()
 except ClientError as e:
 print_error(e)
 workflow.clean_up()

class SESv2Workflow:

Scenarios 935

https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateEmailIdentity
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/CreateEmailTemplate
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/DeleteContactList
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/DeleteEmailIdentity
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/DeleteEmailTemplate
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/ListContacts
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/SendEmail.simple
https://docs.aws.amazon.com/goto/SdkForJavaV2/sesv2-2019-09-27/SendEmail.template
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sesv2#code-examples

Amazon Simple Email Service Developer Guide

 """
 A class to manage the SES v2 Coupon Newsletter Workflow.
 """

 def __init__(self, ses_client, sleep=True):
 self.ses_client = ses_client
 self.sleep = sleep

 try:

 self.ses_client.create_contact_list(ContactListName=CONTACT_LIST_NAME)
 print(f"Contact list '{CONTACT_LIST_NAME}' created successfully.")
 except ClientError as e:
 # If the contact list already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Contact list '{CONTACT_LIST_NAME}' already exists.")
 else:
 raise e

 try:
 # Create a new contact
 self.ses_client.create_contact(
 ContactListName=CONTACT_LIST_NAME, EmailAddress=email
)
 print(f"Contact with email '{email}' created successfully.")

 # Send the welcome email
 self.ses_client.send_email(
 FromEmailAddress=self.verified_email,
 Destination={"ToAddresses": [email]},
 Content={
 "Simple": {
 "Subject": {
 "Data": "Welcome to the Weekly Coupons
 Newsletter"
 },
 "Body": {
 "Text": {"Data": welcome_text},
 "Html": {"Data": welcome_html},
 },
 }
 },
)

Scenarios 936

Amazon Simple Email Service Developer Guide

 print(f"Welcome email sent to '{email}'.")
 if self.sleep:
 # 1 email per second in sandbox mode, remove in production.
 sleep(1.1)
 except ClientError as e:
 # If the contact already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Contact with email '{email}' already exists.
 Skipping...")
 else:
 raise e

 try:
 contacts_response = self.ses_client.list_contacts(
 ContactListName=CONTACT_LIST_NAME
)
 except ClientError as e:
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Contact list '{CONTACT_LIST_NAME}' does not exist.")
 return
 else:
 raise e

 self.ses_client.send_email(
 FromEmailAddress=self.verified_email,
 Destination={"ToAddresses": [email]},
 Content={
 "Simple": {
 "Subject": {
 "Data": "Welcome to the Weekly Coupons
 Newsletter"
 },
 "Body": {
 "Text": {"Data": welcome_text},
 "Html": {"Data": welcome_html},
 },
 }
 },
)
 print(f"Welcome email sent to '{email}'.")

 self.ses_client.send_email(
 FromEmailAddress=self.verified_email,
 Destination={"ToAddresses": [email_address]},

Scenarios 937

Amazon Simple Email Service Developer Guide

 Content={
 "Template": {
 "TemplateName": TEMPLATE_NAME,
 "TemplateData": coupon_items,
 }
 },
 ListManagementOptions={"ContactListName": CONTACT_LIST_NAME},
)

 try:

 self.ses_client.create_email_identity(EmailIdentity=self.verified_email)
 print(f"Email identity '{self.verified_email}' created
 successfully.")
 except ClientError as e:
 # If the email identity already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Email identity '{self.verified_email}' already exists.")
 else:
 raise e

 try:
 template_content = {
 "Subject": "Weekly Coupons Newsletter",
 "Html": load_file_content("coupon-newsletter.html"),
 "Text": load_file_content("coupon-newsletter.txt"),
 }
 self.ses_client.create_email_template(
 TemplateName=TEMPLATE_NAME, TemplateContent=template_content
)
 print(f"Email template '{TEMPLATE_NAME}' created successfully.")
 except ClientError as e:
 # If the template already exists, skip and proceed
 if e.response["Error"]["Code"] == "AlreadyExistsException":
 print(f"Email template '{TEMPLATE_NAME}' already exists.")
 else:
 raise e

 try:

 self.ses_client.delete_contact_list(ContactListName=CONTACT_LIST_NAME)
 print(f"Contact list '{CONTACT_LIST_NAME}' deleted successfully.")
 except ClientError as e:
 # If the contact list doesn't exist, skip and proceed

Scenarios 938

Amazon Simple Email Service Developer Guide

 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Contact list '{CONTACT_LIST_NAME}' does not exist.")
 else:
 print(e)

 try:

 self.ses_client.delete_email_identity(EmailIdentity=self.verified_email)
 print(f"Email identity '{self.verified_email}' deleted
 successfully.")
 except ClientError as e:
 # If the email identity doesn't exist, skip and proceed
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Email identity '{self.verified_email}' does not
 exist.")
 else:
 print(e)

 try:
 self.ses_client.delete_email_template(TemplateName=TEMPLATE_NAME)
 print(f"Email template '{TEMPLATE_NAME}' deleted successfully.")
 except ClientError as e:
 # If the email template doesn't exist, skip and proceed
 if e.response["Error"]["Code"] == "NotFoundException":
 print(f"Email template '{TEMPLATE_NAME}' does not exist.")
 else:
 print(e)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateContact

• CreateContactList

• CreateEmailIdentity

• CreateEmailTemplate

• DeleteContactList

• DeleteEmailIdentity

• DeleteEmailTemplate

• ListContacts

• SendEmail.simple

Scenarios 939

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateContact
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateContactList
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateEmailIdentity
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/CreateEmailTemplate
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/DeleteContactList
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/DeleteEmailIdentity
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/DeleteEmailTemplate
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/ListContacts
https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/SendEmail.simple

Amazon Simple Email Service Developer Guide

• SendEmail.template

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 match self
 .client
 .create_contact_list()
 .contact_list_name(CONTACT_LIST_NAME)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Contact list created
 successfully.")?,
 Err(e) => match e.into_service_error() {
 CreateContactListError::AlreadyExistsException(_) => {
 writeln!(
 self.stdout,
 "Contact list already exists, skipping creation."
)?;
 }
 e => return Err(anyhow!("Error creating contact list: {}", e)),
 },
 }

 match self
 .client
 .create_contact()
 .contact_list_name(CONTACT_LIST_NAME)
 .email_address(email.clone())
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Contact created for {}", email)?,

Scenarios 940

https://docs.aws.amazon.com/goto/boto3/sesv2-2019-09-27/SendEmail.template
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ses#code-examples

Amazon Simple Email Service Developer Guide

 Err(e) => match e.into_service_error() {
 CreateContactError::AlreadyExistsException(_) => writeln!(
 self.stdout,
 "Contact already exists for {}, skipping creation.",
 email
)?,
 e => return Err(anyhow!("Error creating contact for {}: {}",
 email, e)),
 },
 }

 let contacts: Vec<Contact> = match self
 .client
 .list_contacts()
 .contact_list_name(CONTACT_LIST_NAME)
 .send()
 .await
 {
 Ok(list_contacts_output) => {
 list_contacts_output.contacts.unwrap().into_iter().collect()
 }
 Err(e) => {
 return Err(anyhow!(
 "Error retrieving contact list {}: {}",
 CONTACT_LIST_NAME,
 e
))
 }
 };

 let coupons = std::fs::read_to_string("../resources/newsletter/
sample_coupons.json")
 .unwrap_or_else(|_| r#"{"coupons":[]}"#.to_string());
 let email_content = EmailContent::builder()
 .template(
 Template::builder()
 .template_name(TEMPLATE_NAME)
 .template_data(coupons)
 .build(),
)
 .build();

 match self
 .client

Scenarios 941

Amazon Simple Email Service Developer Guide

 .send_email()
 .from_email_address(self.verified_email.clone())

 .destination(Destination::builder().to_addresses(email.clone()).build())
 .content(email_content)
 .list_management_options(
 ListManagementOptions::builder()
 .contact_list_name(CONTACT_LIST_NAME)
 .build()?,
)
 .send()
 .await
 {
 Ok(output) => {
 if let Some(message_id) = output.message_id {
 writeln!(
 self.stdout,
 "Newsletter sent to {} with message ID {}",
 email, message_id
)?;
 } else {
 writeln!(self.stdout, "Newsletter sent to {}", email)?;
 }
 }
 Err(e) => return Err(anyhow!("Error sending newsletter to {}:
 {}", email, e)),
 }

 match self
 .client
 .create_email_identity()
 .email_identity(self.verified_email.clone())
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email identity created
 successfully.")?,
 Err(e) => match e.into_service_error() {
 CreateEmailIdentityError::AlreadyExistsException(_) => {
 writeln!(
 self.stdout,
 "Email identity already exists, skipping creation."
)?;
 }

Scenarios 942

Amazon Simple Email Service Developer Guide

 e => return Err(anyhow!("Error creating email identity: {}", e)),
 },
 }

 let template_html =
 std::fs::read_to_string("../resources/newsletter/coupon-
newsletter.html")
 .unwrap_or_else(|_| "Missing coupon-
newsletter.html".to_string());
 let template_text =
 std::fs::read_to_string("../resources/newsletter/coupon-
newsletter.txt")
 .unwrap_or_else(|_| "Missing coupon-newsletter.txt".to_string());

 // Create the email template
 let template_content = EmailTemplateContent::builder()
 .subject("Weekly Coupons Newsletter")
 .html(template_html)
 .text(template_text)
 .build();

 match self
 .client
 .create_email_template()
 .template_name(TEMPLATE_NAME)
 .template_content(template_content)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email template created
 successfully.")?,
 Err(e) => match e.into_service_error() {
 CreateEmailTemplateError::AlreadyExistsException(_) => {
 writeln!(
 self.stdout,
 "Email template already exists, skipping creation."
)?;
 }
 e => return Err(anyhow!("Error creating email template: {}", e)),
 },
 }

 match self
 .client

Scenarios 943

Amazon Simple Email Service Developer Guide

 .delete_contact_list()
 .contact_list_name(CONTACT_LIST_NAME)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Contact list deleted
 successfully.")?,
 Err(e) => return Err(anyhow!("Error deleting contact list: {e}")),
 }

 match self
 .client
 .delete_email_identity()
 .email_identity(self.verified_email.clone())
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email identity deleted
 successfully.")?,
 Err(e) => {
 return Err(anyhow!("Error deleting email identity: {}", e));
 }
 }

 match self
 .client
 .delete_email_template()
 .template_name(TEMPLATE_NAME)
 .send()
 .await
 {
 Ok(_) => writeln!(self.stdout, "Email template deleted
 successfully.")?,
 Err(e) => {
 return Err(anyhow!("Error deleting email template: {e}"));
 }
 }

• For API details, see the following topics in AWS SDK for Rust API reference.

• CreateContact

• CreateContactList

Scenarios 944

https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

• CreateEmailIdentity

• CreateEmailTemplate

• DeleteContactList

• DeleteEmailIdentity

• DeleteEmailTemplate

• ListContacts

• SendEmail.simple

• SendEmail.template

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SES with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios 945

https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk

Amazon Simple Email Service Developer Guide

Security in Amazon Simple Email Service

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Simple
Email Service, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Simple Email Service. It shows you how to configure Amazon Simple Email Service
to meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Amazon Simple Email Service resources.

Note

If you need to report abuse of AWS resources, including email spam and malware
distribution, do not use the feedback link on any of the pages of this developer guide, as
the form is received by the AWS Documentation team, not AWS Trust & Safety. Instead,
on the How do I report abuse of AWS resources? page, follow the directions to contact the
AWS Trust & Safety team to report any type of Amazon AWS abuse.

Contents

• Data protection in Amazon Simple Email Service

• Identity and access management in Amazon SES

• Logging and monitoring in Amazon SES

946

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/premiumsupport/knowledge-center/report-aws-abuse/

Amazon Simple Email Service Developer Guide

• Compliance validation for Amazon Simple Email Service

• Resilience in Amazon Simple Email Service

• Infrastructure security in Amazon Simple Email Service

• Setting up VPC endpoints with Amazon SES

Data protection in Amazon Simple Email Service

The AWS shared responsibility model applies to data protection in Amazon Simple Email Service.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon Simple Email Service or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names

Data protection 947

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Simple Email Service Developer Guide

may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Contents

• Data encryption at rest for Amazon SES

• Encryption in transit

• Deleting personal data from Amazon SES

Data encryption at rest for Amazon SES

By default, Amazon SES encrypts all data at rest. Encryption by default helps reduce the
operational overhead and complexity involved in protecting data. Encryption also enables you to
create Mail Manager archives that meet strict encryption compliance and regulatory requirements.

SES provides the following encryption options:

• AWS owned keys – SES uses these by default. You can't view, manage, or use AWS owned keys,
or audit their use. However, you don't have to take any action or change any programs to protect
the keys that encrypt your data. For more information, see AWS owned keys in the AWS Key
Management Service Developer Guide.

• Customer managed keys – SES supports the use of symmetric customer managed keys that you
create, own, and manage. Because you have full control of the encryption, you can perform such
tasks as:

• Establishing and maintaining key policies

• Establishing and maintaining IAM policies and grants

• Enabling and disabling key policies

• Rotating key cryptographic material

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

To use your own key, choose a customer managed key when you create your SES resources.

For more information, see Customer managed keys in the AWS Key Management Service
Developer Guide.

Data at rest encryption 948

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Simple Email Service Developer Guide

Note

SES automatically enables encryption at rest using AWS owned keys at no charge.
However, AWS KMS charges apply for using a customer managed key. For more information
about pricing, see the AWS Key Management Service pricing.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric encryption KMS keys in the AWS Key Management Service
Developer Guide.

Note

For archiving, your key must meet the following requirements:

• The key must be symmetric.

• The key material origin must be AWS_KMS.

• The key usage must be ENCRYPT_DECRYPT.

Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Managing access to customer managed keys in the AWS Key Management
Service Developer Guide.

To use your customer managed key with Mail Manager archiving, your key policy must permit the
following API operations:

• kms:DescribeKey – Provides the customer managed key details that allow SES to validate the key.

• kms:GenerateDataKey – Allows SES to generate a data key for encrypting data at rest.

Data at rest encryption 949

https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Simple Email Service Developer Guide

• kms:Decrypt – Allows SES to decrypt stored data before returning it to API clients.

The following example shows a typical key policy:

{
 "Sid": "Allow SES to encrypt/decrypt",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Resource": "*"
 },

For more information, see specifying permissions in a policy, in the AWS Key Management Service
Developer Guide.

For more information about troubleshooting, see troubleshooting key access, in the AWS Key
Management Service Developer Guide.

Specifying a customer managed key for Mail Manager archiving

You can specify a customer managed key as an alternative to using AWS owned keys. When you
create an archive, you can specify the data key by entering a KMS key ARN, which Mail Manager
archiving uses to encrypt all customer data in the archive.

• KMS key ARN – A key identifier for an AWS KMS customer managed key. Enter a key ID, key ARN,
alias name, or alias ARN.

Amazon SES encryption context

An encryption context is an optional set of key-value pairs that contain additional contextual
information about the data.

AWS KMS uses the encryption context as additional authenticated data to support authenticated
encryption. When you include an encryption context in a request to encrypt data, AWS KMS binds

Data at rest encryption 950

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#overview-policy-elements
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption

Amazon Simple Email Service Developer Guide

the encryption context to the encrypted data. To decrypt data, you include the same encryption
context in the request.

Note

Amazon SES doesn't support encryption contexts for archive creation. Instead, you use an
IAM or KMS policy. For example policies, see Archive creation policies, later in this section.

Amazon SES encryption context

SES uses the same encryption context in all AWS KMS cryptographic operations, where the key is
aws:ses:arn and the value is the resource Amazon Resource Name (ARN).

Example

"encryptionContext": {
 "aws:ses:arn": "arn:aws:ses:us-west-2:111122223333:ExampleResourceName/
ExampleResourceID"
}

Using encryption context for monitoring

When you use a symmetric customer managed key to encrypt your SES resource, you can also use
the encryption context in audit records and logs to identify how the customer managed key is
being used. The encryption context also appears in logs generated by AWS CloudTrail or Amazon
CloudWatch Logs.

Using encryption context to control access to your customer managed key

You can use the encryption context in key policies and IAM policies as conditions to control
access to your symmetric customer managed key. You can also use encryption context constraints
in a grant.

SES uses an encryption context constraint in grants to control access to the customer managed key
in your account or region. The grant constraint requires that the operations that the grant allows
use the specified encryption context.

Data at rest encryption 951

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Simple Email Service Developer Guide

Example

The following are example key policy statements to grant access to a customer managed key for a
specific encryption context. The condition in this policy statement requires that the grants have an
encryption context constraint that specifies the encryption context.

{
 "Sid": "Enable DescribeKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleReadOnlyRole"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*"
},
{
 "Sid": "Enable CreateGrant",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleReadOnlyRole"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:ses:arn": "arn:aws:ses:us-
west-2:111122223333:ExampleResourceName/ExampleResourceID"
 }
 }
}

Archive creation policies

The following example policies show how to enable archive creation. The policies work on all
assets.

IAM policy

{
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "ses:CreateArchive",

Data at rest encryption 952

Amazon Simple Email Service Developer Guide

 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "ses.us-east-1.amazonaws.com",
 "kms:CallerAccount": "012345678910"
 }
 }
 }

AWS KMS policy

{
 "Sid": "Allow SES to encrypt/decrypt",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Resource": "*"
 },

Monitoring your encryption keys for Amazon SES

When you use an AWS KMS customer managed key with your Amazon SES resources, you can use
AWS CloudTrail or Amazon CloudWatch Logs to track requests that SES sends to AWS KMS.

Data at rest encryption 953

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon Simple Email Service Developer Guide

The following examples are AWS CloudTrail events for GenerateDataKey, Decrypt, and
DescribeKey to monitor KMS operations called by SES to access data encrypted by your customer
managed key:

GenerateDataKey

When you enable an AWS KMS customer managed key for your resource, SES creates a
unique table key. It sends a GenerateDataKey request to AWS KMS that specifies the AWS
KMScustomer managed key for the resource.

When you enable an AWS KMS customer managed key for your Mail Manager archive resource,
it will use GenerateDataKey when encrypting archive data at rest.

The following example event records the GenerateDataKey operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "ses.amazonaws.com"
 },
 "eventTime": "2021-04-22T17:07:02Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "encryptionContext": {
 "aws:ses:arn": "arn:aws:ses:us-west-2:111122223333:ExampleResourceName/
ExampleResourceID"
 },
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",

Data at rest encryption 954

Amazon Simple Email Service Developer Guide

 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333",
 "sharedEventID": "57f5dbee-16da-413e-979f-2c4c6663475e"
}

Decrypt

When you access an encrypted resource, SES calls the Decrypt operation to use the stored
encrypted data key to access the encrypted data.

The following example event records the Decrypt operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "ses.amazonaws.com"
 },
 "eventTime": "2021-04-22T17:10:51Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "encryptionContext": {
 "aws:ses:arn": "arn:aws:ses:us-west-2:111122223333:ExampleResourceName/
ExampleResourceID"
 },
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",

Data at rest encryption 955

Amazon Simple Email Service Developer Guide

 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333",
 "sharedEventID": "dc129381-1d94-49bd-b522-f56a3482d088"
}

DescribeKey

SES uses the DescribeKey operation to verify if the AWS KMS customer managed key
associated with your resource exists in the account and region.

The following example event records the DescribeKey operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2021-04-22T17:02:00Z"

Data at rest encryption 956

Amazon Simple Email Service Developer Guide

 }
 },
 "invokedBy": "ses.amazonaws.com"
 },
 "eventTime": "2021-04-22T17:07:02Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "keyId": "00dd0db0-0000-0000-ac00-b0c000SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

Learn more

The following resources provide more information about data encryption at rest.

• For more information about AWS Key Management Service basic concepts, see the AWS Key
Management Service Developer Guide.

• For more information about Security best practices for AWS Key Management Service, see the
AWS Key Management Service Developer Guide.

Data at rest encryption 957

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html

Amazon Simple Email Service Developer Guide

Encryption in transit

By default, Amazon SES uses opportunistic TLS. This means that Amazon SES always attempts
to make a secure connection to the receiving mail server. If it can't establish a secure connection,
it sends the message unencrypted. You can change this behavior so that Amazon SES sends
the message to the receiving email server only if it can establish a secure connection. For more
information, see Amazon SES and security protocols.

Deleting personal data from Amazon SES

Depending on how you use it, Amazon SES might store certain data that could be considered
personal. For example, in order to send email using Amazon SES, you must provide at least one
verified identity (an email address or a domain). You can use the Amazon SES console or the
Amazon SES API to permanently delete this personal data.

This chapter provides procedures for deleting various types of data that might be considered
personal.

Contents

• Delete Email Addresses From the Account-Level Suppression List

• Delete Data About Email Sent Using Amazon SES

• Delete Data About Identities

• Delete Sender Authentication Data

• Delete Data Related to Receiving Rules

• Delete Data Related to IP Address Filters

• Delete Data in Email Templates

• Delete Data in Custom Verification Email Templates

• Delete All Personal Data by Closing Your AWS Account

Delete Email Addresses From the Account-Level Suppression List

Amazon SES includes an optional account-level suppression list. When you enable this feature,
email addresses are automatically added to a suppression list when they result in a bounce or
complaint. Email addresses remain on this list until you delete them. For more information about
the account-level suppression list, see Using the Amazon SES account-level suppression list.

Encryption in transit 958

Amazon Simple Email Service Developer Guide

You can remove email addresses from the account-level suppression list by using the
DeleteSuppressedDestination operation in the Amazon SES API v2. This section includes
a procedure for deleting email addresses by using the AWS CLI. For more information about
installing and configuring the AWS CLI, see the AWS Command Line Interface User Guide.

To remove an address from the account-level suppression list by using the AWS CLI

• At the command line, enter the following command:

aws sesv2 delete-suppressed-destination --email-address recipient@example.com

In the preceding command, replace recipient@example.com with the email address that
you want to remove from the account-level suppression list.

Delete Data About Email Sent Using Amazon SES

When you use Amazon SES to send an email, you can send information about that email to other
AWS services. For example, you can send information about email events (such as deliveries, opens,
and clicks) to Firehose. This event data typically contains your email address and the IP address the
email was sent from. It also contains the email addresses of all the recipients the email was sent to.

You can use Firehose to stream email event data to several destinations—including Amazon
Simple Storage Service, Amazon OpenSearch Service, and Amazon Redshift. To remove this data,
you should first stop streaming data to Firehose, and then delete the data that has already been
streamed. To stop streaming Amazon SES event data to Firehose, you must delete the Firehose
event destination.

To remove a Firehose event destination by using the Amazon SES console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. Under Email Sending, choose Configuration Sets.

3. In the list of configuration sets, choose the configuration set that contains the Firehose event
destination.

4. Next to the Firehose event destination that you want to delete, choose the delete
()
button.

Deleting personal data 959

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_DeleteSuppressedDestination.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

5. If necessary, remove the data that Firehose wrote to other services. For more information, see
the section called “Remove Stored Event Data”.

You can also use the Amazon SES API to delete event destinations. The following procedure uses
the AWS Command Line Interface (AWS CLI) to interact with the Amazon SES API. You can also
interact with the API by using an AWS SDK, or by making HTTP requests directly.

To remove a Firehose event destination by using the AWS CLI

1. At the command line, type the following command:

aws sesv2 delete-configuration-set-event-destination --configuration-set-
name configSet \
--event-destination-name eventDestination

In this command, replace configSet with the name of the configuration set that contains the
Firehose event destination. Replace eventDestination with the name of the Firehose event
destination.

2. If necessary, remove the data that Firehose wrote to other services. For more information, see
the section called “Remove Stored Event Data”.

Remove Stored Event Data

For more information about deleting information from other AWS services, see the following
documents:

• Delete an Object and Bucket in the Amazon Simple Storage Service User Guide

• Delete an OpenSearch Service Domain in the Amazon OpenSearch Service Developer Guide

• Deleting a Cluster in the Amazon Redshift Cluster Management Guide

You can also use Firehose to stream email data to Splunk, a third-party service that isn't supported
by AWS or managed in the AWS Management Console. For more information about removing data
from Splunk, consult your system administrator or the documentation on the Splunk website.

Deleting personal data 960

https://docs.aws.amazon.com/AmazonS3/latest/gsg/DeletingAnObjectandBucket.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-deleting.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#delete-cluster
http://docs.splunk.com/Documentation

Amazon Simple Email Service Developer Guide

Delete Data About Identities

Identities include the email addresses and domains that you use to send email using Amazon SES.
In some jurisdictions, email addresses or domains might be considered personally identifiable data.

To delete an identity by using the Amazon SES console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. Under Identity Management, do one of the following:

• Choose Domains if you want to delete a domain.

• Choose Email Addresses if you want to delete an email address.

3. Choose the identity that you want to delete, and then choose Remove.

4. On the confirmation dialog box, choose Yes, Delete Identity.

You can also use the Amazon SES API to delete identities. The following procedure uses the AWS
Command Line Interface (AWS CLI) to interact with the Amazon SES API. You can also interact with
the API by using an AWS SDK, or by making HTTP requests directly.

To delete an identity by using the AWS CLI

• At the command line, type the following command:

aws ses delete-identity --identity sender@example.com

In this command, replace sender@example.com with the identity that you want to delete.

Delete Sender Authentication Data

Sender authentication refers to the process of configuring Amazon SES so that another user
can send email on your behalf. To enable sender authorization, you must create a policy, as
described in Using sending authorization with Amazon SES. These policies contain identities (which
belong to you), in addition to AWS IDs (which are associated with the person or group that sends
email on your behalf). You can remove this personal data by modifying or deleting the sender
authentication policies. The following procedures show you how to delete these policies.

Deleting personal data 961

https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

To delete a sender authentication policy by using the Amazon SES console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. Under Identity Management, do one of the following:

• Choose Domains if the sender authentication policy you want to delete is associated with a
domain.

• Choose Email Addresses if the sender authentication policy you want to delete is associated
with an email address.

3. Under Identity Policies, choose the policy you want to delete, and then choose Remove
Policy.

You can also use the Amazon SES API to delete sender authentication policies. The following
procedure uses the AWS Command Line Interface (AWS CLI) to interact with the Amazon SES API.
You can also interact with the API by using an AWS SDK, or by making HTTP requests directly.

To delete a sender authentication policy by using the AWS CLI

• At the command line, type the following command:

aws ses delete-identity-policy --identity example.com --policy-name samplePolicy

In this command, replace example.com with the identity that contains the sender
authentication policy. Replace samplePolicy with the name of the sender authentication
policy.

Delete Data Related to Receiving Rules

If you use Amazon SES to receive incoming email, you can create receipt rules that are applied to
one or more identities (email addresses or domains). These rules determine what Amazon SES does
with incoming mail sent to the specified identities.

To delete a receipt rule by using the Amazon SES console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. Under Email Receiving, choose Rule Sets.

Deleting personal data 962

https://console.aws.amazon.com/ses/
https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

3. If the receipt rule is part of the active rule set, choose View Active Rule Set. Otherwise, choose
the rule set that contains the receipt rule that you want to delete.

4. In the list of receipt rules, choose the rule that you want to delete.

5. On the Actions menu, choose Delete.

6. On the confirmation dialog box, choose Delete.

You can also use the Amazon SES API to delete receipt rules. The following procedure uses the AWS
Command Line Interface (AWS CLI) to interact with the Amazon SES API. You can also interact with
the API by using an AWS SDK, or by making HTTP requests directly.

To delete a receipt rule by using the AWS CLI

• At the command line, type the following command:

aws ses delete-receipt-rule --rule-set myRuleSet --rule-name myReceiptRule

In this command, replace myRuleSet with the name of the receipt rule set that contains the
receipt rule. Replace myReceiptRule with the name of the receipt rule that you want to
delete.

Delete Data Related to IP Address Filters

If you use Amazon SES to receive incoming email, you can create filters to explicitly accept or block
messages that are sent from specific IP addresses.

To delete an IP address filter by using the Amazon SES console

1. Open the Amazon SES console at https://console.aws.amazon.com/ses/.

2. Under Email Receiving, choose IP Address Filters.

3. In the list of IP address filters, choose the filter that you want to remove, and then choose
Delete.

You can also use the Amazon SES API to delete IP address filters. The following procedure uses the
AWS Command Line Interface (AWS CLI) to interact with the Amazon SES API. You can also interact
with the API by using an AWS SDK, or by making HTTP requests directly.

Deleting personal data 963

https://console.aws.amazon.com/ses/

Amazon Simple Email Service Developer Guide

To delete an IP address filter by using the AWS CLI

• At the command line, type the following command:

aws ses delete-receipt-filter --filter-name IPfilter

In this command, replace IPfilter with the name of the IP address filter you want to delete.

Delete Data in Email Templates

If you use email templates for sending email, it's possible that those templates might contain
personal data, depending on how you configured them. For example, you might have added an
email address to the template that recipients could contact for more information.

You can only delete email templates by using the Amazon SES API.

To delete an email template by using the AWS CLI

• At the command line, type the following command:

aws ses delete-template --template-name sampleTemplate

In this command, replace sampleTemplate with the name of the email template that you
want to delete.

Delete Data in Custom Verification Email Templates

If you use customized templates for verifying new email sending addresses, it's possible that those
templates might contain personal data, depending on how you configured them. For example, you
might have added an email address to the verification email template that recipients could contact
for more information.

You can only delete custom verification email templates by using the Amazon SES API.

To delete a custom verification email template by using the AWS CLI

• At the command line, type the following command:

Deleting personal data 964

Amazon Simple Email Service Developer Guide

aws ses delete-custom-verification-email-template --template-
name verificationEmailTemplate

In this command, replace verificationEmailTemplate with the name of the custom
verification email template that you want to delete.

Delete All Personal Data by Closing Your AWS Account

It's also possible to delete all personal data that's stored in Amazon SES by closing your AWS
account. However, this action also deletes all other data—personal or non-personal—that you have
stored in every other AWS service.

When you close your AWS account, the data in your AWS account is retained for 90 days. After that
retention period, it's deleted permanently and irreversibly.

To close your AWS account

Complete instructions on how to close your AWS account is covered in Close an AWS account.

Identity and access management in Amazon SES

You can use AWS Identity and Access Management (IAM) with Amazon Simple Email Service
(Amazon SES) to specify which SES API actions an user, group, or role can perform. (In this topic we
refer to these entities collectively as user.) You can also control which email addresses the user can
use for the "From", recipient, and "Return-Path" addresses of emails.

For example, you can create an IAM policy that allows users in your organization to send email, but
not perform administrative actions such as checking sending statistics. As another example, you
can write a policy that allows a user to send emails through SES from your account, but only if they
use a specific "From" address.

To use IAM, you define an IAM policy, which is a document that explicitly defines permissions, and
attach the policy to a user. To learn how to create IAM policies, see the IAM User Guide. Other than
applying the restrictions you set in your policy, there are no changes to how users interact with SES
or in how SES carries out requests.

Identity and access management 965

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-closing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html

Amazon Simple Email Service Developer Guide

Note

• If your account is in the SES sandbox, its restrictions well prevent the implementation of
some of these polices - see Request production access.

• You can also control access to SES by using sending authorization policies. Whereas IAM
policies constrain what individual users can do, sending authorization policies constrain
how individual verified identities can be used. Further, only sending authorization policies
can grant cross-account access. For more information about sending authorization, see
Using sending authorization with Amazon SES.

If you are looking for information about how to generate SES SMTP credentials for an existing user,
see Obtaining Amazon SES SMTP credentials.

Creating IAM Policies for Access to SES

This section explains how you can use IAM policies specifically with SES. To learn how to create IAM
policies in general, see the IAM User Guide.

There are three reasons you might use IAM with SES:

• To restrict the email-sending action.

• To restrict the "From", recipient, and "Return-Path" addresses of the emails that the user sends.

• To control general aspects of API usage such as the time period during which a user is permitted
to call the APIs that they are authorized to use.

Restricting the Action

To control which SES actions a user can perform, you use the Action element of an IAM
policy. You can set the Action element to any SES API action by prefixing the API name
with the lowercase string ses:. For example, you can set the Action to ses:SendEmail,
ses:GetSendStatistics, or ses:* (for all actions).

Then, depending on the Action, specify the Resource element as follows:

If the Action element only permits access to email-sending APIs (that is, ses:SendEmail and/
or ses:SendRawEmail):

Creating IAM Policies for Access to SES 966

https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html

Amazon Simple Email Service Developer Guide

• To allow the user to send from any identity in your AWS account, set Resource to *

• To restrict the identities that a user is allowed to send from, set Resource to the ARNs of the
identities that you are permitting the user to use.

If the Action element permits access to all APIs:

• If you don't want to restrict the identities that the user can send from, set Resource to *

• If you want to restrict the identities that a user is allowed to send from, you need to create two
policies (or two statements within one policy):

• One with Action set to an explicit list of the permitted non-email-sending APIs and
Resource set to *

• One with Action set to one of the email-sending APIs (ses:SendEmail and/or
ses:SendRawEmail), and Resource set to the ARN(s) of the identities you are permitting the
user to use.

For a list of available SES actions, see the Amazon Simple Email Service API Reference. If the user
will be using the SMTP interface, you must allow access to ses:SendRawEmail at a minimum.

Restricting Email Addresses

If you want to restrict the user to specific email addresses, you can use a Condition block. In the
Condition block, you specify conditions by using condition keys as described in the IAM User
Guide. By using condition keys, you can control the following email addresses:

Note

These email address condition keys apply only to the APIs noted in the following table.

Condition Key Description API

ses:Recipients Restricts the recipient
addresses, which include the
To:, "CC", and "BCC" addresses.

SendEmail , SendRawEm
ail

Creating IAM Policies for Access to SES 967

https://docs.aws.amazon.com/ses/latest/APIReference/
https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition

Amazon Simple Email Service Developer Guide

Condition Key Description API

ses:FromAddress Restricts the "From" address. SendEmail , SendRawEm
ail , SendBounce

ses:FromDisplayName Restricts the "From" address
that is used as the display
name.

SendEmail , SendRawEm
ail

ses:FeedbackAddress Restricts the "Return-Path"
address, which is the address
where bounces and complaint
s can be sent to you by
email feedback forwardin
g. For information about
email feedback forwarding,
see Receiving Amazon SES
notifications through email.

SendEmail , SendRawEm
ail

Restricting by SES API version

By using the ses:ApiVersion key in conditions, you can restrict access to SES based on the
version of the SES API.

Note

The SES SMTP interface uses SES API version 2 of ses:SendRawEmail.

Restricting General API Usage

By using AWS-wide keys in conditions, you can restrict access to SES based on aspects such as the
date and time that user is permitted access to APIs. SES implements only the following AWS-wide
policy keys:

• aws:CurrentTime

• aws:EpochTime

Creating IAM Policies for Access to SES 968

Amazon Simple Email Service Developer Guide

• aws:SecureTransport

• aws:SourceIp

• aws:SourceVpc

• aws:SourceVpce

• aws:UserAgent

• aws:VpcSourceIp

For more information about these keys, see the IAM User Guide.

Example IAM Policies for SES

This topic provides examples of policies that permit a user access to SES, but only under certain
conditions.

Policy examples in this section:

• Allowing Full Access to All SES Actions

• Allowing Access to only SES API version 2

• Allowing Access to Email-Sending Actions Only

• Restricting the Time Period of Sending

• Restricting the Recipient Addresses

• Restricting the "From" Address

• Restricting the Display Name of the Email Sender

• Restricting the Destination of Bounce and Complaint Feedback

Allowing Full Access to All SES Actions

The following policy allows a user to call any SES action.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:*"
],

Example IAM Policies for SES 969

https://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition

Amazon Simple Email Service Developer Guide

 "Resource":"*"
 }
]
}

Allowing Access to only SES API version 2

The following policy allows a user to call only the SES actions of API version 2.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:*"
],
 "Resource":"*",
 "Condition": {
 "StringEquals" : {
 "ses:ApiVersion" : "2"
 }
 }
 }
]
 }

Allowing Access to Email-Sending Actions Only

The following policy permits a user to send email using SES, but does not permit the user to
perform administrative actions such as accessing SES sending statistics.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Resource":"*"
 }

Example IAM Policies for SES 970

Amazon Simple Email Service Developer Guide

]
}

Restricting the Time Period of Sending

The following policy permits a user to call SES email-sending APIs only during the month of
September 2018.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Resource":"*",
 "Condition":{
 "DateGreaterThan":{
 "aws:CurrentTime":"2018-08-31T12:00Z"
 },
 "DateLessThan":{
 "aws:CurrentTime":"2018-10-01T12:00Z"
 }
 }
 }
]
}

Restricting the Recipient Addresses

The following policy permits a user to call the SES email-sending APIs, but only to recipient
addresses in domain example.com (StringLike is case sensitive).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendEmail",

Example IAM Policies for SES 971

Amazon Simple Email Service Developer Guide

 "ses:SendRawEmail"
],
 "Resource":"*",
 "Condition":{
 "ForAllValues:StringLike":{
 "ses:Recipients":[
 "*@example.com"
]
 }
 }
 }
]
}

Restricting the "From" Address

The following policy permits a user to call the SES email-sending APIs, but only if the "From"
address is marketing@example.com.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "ses:FromAddress":"marketing@example.com"
 }
 }
 }
]
}

The following policy permits a user to call the SendBounce API, but only if the "From" address is
bounce@example.com.

{

Example IAM Policies for SES 972

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBounce.html

Amazon Simple Email Service Developer Guide

 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendBounce"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "ses:FromAddress":"bounce@example.com"
 }
 }
 }
]
}

Restricting the Display Name of the Email Sender

The following policy permits a user to call the SES email-sending APIs, but only if the display name
of the "From" address includes Marketing (StringLike is case sensitive).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "ses:FromDisplayName":"Marketing"
 }
 }
 }
]
}

Example IAM Policies for SES 973

Amazon Simple Email Service Developer Guide

Restricting the Destination of Bounce and Complaint Feedback

The following policy permits a user to call the SES email-sending APIs, but only if the "Return-
Path" of the email is set to feedback@example.com.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ses:SendEmail",
 "ses:SendRawEmail"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "ses:FeedbackAddress":"feedback@example.com"
 }
 }
 }
]
}

AWS managed policies for Amazon Simple Email Service

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

AWS managed policies 974

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Simple Email Service Developer Guide

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AmazonSESFullAccess

You can attach the AmazonSESFullAccess policy to your IAM identities. Provides full access to
Amazon SES.

To view the permissions for this policy, see AmazonSESFullAccess in the AWS Managed Policy
Reference.

AWS managed policy: AmazonSESReadOnlyAccess

You can attach the AmazonSESReadOnlyAccess policy to your IAM identities. Provides read only
access to Amazon SES.

To view the permissions for this policy, see AmazonSESReadOnlyAccess in the AWS Managed Policy
Reference.

AWS managed policy: AmazonSESServiceRolePolicy

You can't attach the AmazonSESServiceRolePolicy policy to your IAM entities. This policy is
attached to a service-linked role that allows Amazon SES to perform actions on your behalf. For
more information, see Service-linked role permissions for Amazon SES.

To view the permissions for this policy, see AmazonSESServiceRolePolicy in the AWS Managed
Policy Reference.

Amazon Simple Email Service updates to AWS managed policies

View details and about updates to AWS managed policies for Amazon Simple Email Service since
this service began tracking these changes.

Change Description Date

Amazon Simple Email Service
added a new managed policy

Amazon Simple Email
Service added AmazonSES

May 13, 2024

AWS managed policies 975

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSESFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSESReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSESServiceRolePolicy.html

Amazon Simple Email Service Developer Guide

Change Description Date

ServiceRolePolicy
to the service-linked role
AWSServiceRoleForA
mazonSES that allows SES
to perform actions on your
behalf

Amazon Simple Email Service
updated a policy definition

Amazon Simple Email Service
clarified the previous entry
in this table (row below) to
be: Amazon Simple Email
Service added ses:Batch
GetMetricData to
AmazonSESReadOnlyAccess
managed policy—this will
give access to the SES API
BatchGetMetricData

Apr 30, 2024

Amazon Simple Email Service
updated a policy definition

Amazon Simple Email Service
added ses:BatchGet* to
AmazonSESReadOnlyAccess
managed policy—this will
give access to the SES API
BatchGetMetricData

Feb 16, 2024

Amazon Simple Email Service
changed two policy definitio
ns

Amazon Simple Email Service
removed "via the AWS
Management Console" from
the end of the AmazonSES
FullAccess and AmazonSES
ReadOnlyAccess definitions

May 3, 2023

Amazon Simple Email Service
started tracking changes

Amazon Simple Email Service
started tracking changes to
its AWS managed policies

April 5, 2023

AWS managed policies 976

Amazon Simple Email Service Developer Guide

Using service-linked roles for Amazon SES

Amazon Simple Email Service (SES) uses AWS Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon SES.
Service-linked roles are predefined by SES and include all the permissions that the service requires
to call other AWS services on your behalf.

A service-linked role makes setting up SES easier because you don’t have to manually add the
necessary permissions. SES defines the permissions of its service-linked roles, and unless defined
otherwise, only SES can assume its roles. The defined permissions include the trust policy and the
permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your SES resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon SES

SES uses the service-linked role named AWSServiceRoleForAmazonSES – Allows SES to publish
Amazon CloudWatch basic monitoring metrics on behalf of your SES resources.

The AWSServiceRoleForAmazonSES service-linked role trusts the following service to assume the
role:

• ses.amazonaws.com

The role permissions policy named AmazonSESServiceRolePolicy is an AWS managed policy that
allows SES to complete the following actions on the specified resources:

• Action: cloudwatch:PutMetricData in the AWS/SES CloudWatch namespace. This action
grants permission for SES to put metric data into the CloudWatch AWS/SES namespace. For
more information about SES metrics available in CloudWatch, see Logging and monitoring in
Amazon SES.

• Action: cloudwatch:PutMetricData in the AWS/SES/MailManager CloudWatch namespace.
This action grants permission for SES to put metric data into the CloudWatch AWS/SES/

Using service-linked roles 977

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Simple Email Service Developer Guide

MailManager namespace. For more information about SES metrics available in CloudWatch, see
Logging and monitoring in Amazon SES.

• Action: cloudwatch:PutMetricData in the AWS/SES/Addons CloudWatch namespace. This
action grants permission for SES to put metric data into the CloudWatch AWS/SES/Addons
namespace. For more information about SES metrics available in CloudWatch, see Logging and
monitoring in Amazon SES.

You must configure permissions to allow your users, groups, or roles to create, edit, or delete a
service-linked role. For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Amazon SES

You don't need to manually create a service-linked role. When you create SES resources in the AWS
Management Console, the AWS CLI, or the AWS API, SES creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create SES resources, SES creates the service-linked
role for you again.

Editing a service-linked role for Amazon SES

SES does not allow you to edit the AWSServiceRoleForAmazonSES service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities might
reference the role. However, you can edit the description of the role using IAM.

Deleting a service-linked role for SES

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can manually delete
it.

Cleaning Up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete all SES resources.

Using service-linked roles 978

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Simple Email Service Developer Guide

Note

If the SES service is using the role when you try to delete the resources, then the deletion
might fail. If that happens, wait for a few minutes and try the operation again.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAmazonSES
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported Regions for Amazon SES service-linked roles

SES does not support using service-linked roles in every Region where the service is available. You
can use the AWSServiceRoleForAmazonSES role in the following Regions.

Region name Region identity Support in SES

US East (N. Virginia) us-east-1 Yes

US East (Ohio) us-east-2 Yes

Asia Pacific (Sydney) ap-southeast-2 Yes

Asia Pacific (Tokyo) ap-northeast-1 Yes

Europe (Frankfurt) eu-central-1 Yes

Europe (Ireland) eu-west-1 Yes

Logging and monitoring in Amazon SES

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon SES and your AWS solutions. AWS provides tools to help you monitor Amazon SES and
respond to potential incidents.

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that
notify you or take actions when a specified metric reaches a threshold that you specify. For more

Logging and monitoring 979

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon Simple Email Service Developer Guide

information, see Retrieving Amazon SES event data from CloudWatch and Creating reputation
monitoring alarms using CloudWatch.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see Logging Amazon SES API calls with AWS CloudTrail.

• Amazon SES email sending events can help you fine-tune your email sending strategy. Amazon
SES captures detailed information, including the numbers of sends, deliveries, opens, clicks,
bounces, complaints, and rejections. For more information, see Monitoring sending activity.

• Amazon SES reputation metrics tracks the bounce and complaint rates for your account. For more
information, see Monitoring sender reputation.

Logging Amazon SES API calls with AWS CloudTrail

Amazon SES is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Amazon SES. CloudTrail captures API calls for Amazon SES
as events. The calls captured include calls from the Amazon SES console and code calls to the
Amazon SES API operations. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for Amazon SES. If you don't configure a trail,
you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to Amazon SES,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon SES Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Amazon SES, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon SES, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all

Logging API calls 980

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Simple Email Service Developer Guide

Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Amazon SES supports logging of all the actions listed in the SES API Reference and SES API v2
Reference as events in CloudTrail log files, except for those listed in the note box below:

Note

Amazon SES delivers management events to CloudTrail. Management events include
actions that are related to creating and managing resources within your AWS account. In
Amazon SES, management events include actions such as creating and deleting identities
or receipt rules.
Management events are different from data events. Data events are events that are related
to accessing and interacting with data within your AWS account. In Amazon SES, data
events include actions such as sending emails.
Because Amazon SES only delivers management events to CloudTrail, the following events
aren't recorded in CloudTrail:

• SendEmail

• SendRawEmail

• SendTemplatedEmail

• SendBulkTemplatedEmail

You can use event publishing to record events related to email sending. For more
information, see Monitor email sending using Amazon SES event publishing.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

Logging API calls 981

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_Operations.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_Operations.html

Amazon Simple Email Service Developer Guide

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Example: Amazon SES Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the DeleteIdentity and
VerifyEmailIdentity actions.

{
 "Records":[
 {
 "awsRegion":"us-west-2",
 "eventID":"0ffa308d-1467-4259-8be3-c749753be325",
 "eventName":"DeleteIdentity",
 "eventSource":"ses.amazonaws.com",
 "eventTime":"2018-02-02T21:34:50Z",
 "eventType":"AwsApiCall",
 "eventVersion":"1.02",
 "recipientAccountId":"111122223333",
 "requestID":"50b87bfe-ab23-11e4-9106-5b36376f9d12",
 "requestParameters":{
 "identity":"amazon.com"
 },
 "responseElements":null,
 "sourceIPAddress":"192.0.2.0",
 "userAgent":"aws-sdk-java/unknown-version",
 "userIdentity":{
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "accountId":"111122223333",
 "arn":"arn:aws:iam::111122223333:root",

Logging API calls 982

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Simple Email Service Developer Guide

 "principalId":"111122223333",
 "type":"Root"
 }
 },
 {
 "awsRegion":"us-west-2",
 "eventID":"5613b0ff-d6c6-4526-9b53-a603a9231725",
 "eventName":"VerifyEmailIdentity",
 "eventSource":"ses.amazonaws.com",
 "eventTime":"2018-02-04T01:05:33Z",
 "eventType":"AwsApiCall",
 "eventVersion":"1.02",
 "recipientAccountId":"111122223333",
 "requestID":"eb2ff803-ac09-11e4-8ff5-a56a3119e253",
 "requestParameters":{
 "emailAddress":"sender@example.com"
 },
 "responseElements":null,
 "sourceIPAddress":"192.0.2.0",
 "userAgent":"aws-sdk-java/unknown-version",
 "userIdentity":{
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "accountId":"111122223333",
 "arn":"arn:aws:iam::111122223333:root",
 "principalId":"111122223333",
 "type":"Root"
 }
 }
]
}

Compliance validation for Amazon Simple Email Service

Third-party auditors assess the security and compliance of Amazon Simple Email Service as part of
multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Compliance validation 983

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon Simple Email Service Developer Guide

Your compliance responsibility when using Amazon Simple Email Service is determined by
the sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. AWS provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – AWS Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Simple Email Service

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide
multiple physically separated and isolated Availability Zones, which are connected through
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon Simple Email Service

As a managed service, Amazon Simple Email Service is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon Simple Email Service through the network.
Clients must support the following:

Resilience 984

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Simple Email Service Developer Guide

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Setting up VPC endpoints with Amazon SES

Many Amazon SES customers have corporate policies in place that limit the ability of their internal
systems to connect to the public internet. These policies prevent the use of the public Amazon SES
endpoints.

If you have similar policies, you can work within these restrictions by using Amazon Virtual Private
Cloud. With Amazon VPC, you can deploy AWS resources into a virtual network that exists in an
isolated area of the AWS Cloud. For more information about Amazon VPC, see the Amazon VPC
User Guide.

You can connect directly from Amazon VPC to SES through a VPC Endpoint in a secure and scalable
manner. When you use an interface VPC endpoint, it provides a better security posture as you don't
need to open outbound traffic firewalls as well as providing other benefits of using Amazon VPC
endpoints.

When using a VPC Endpoint, traffic to SES does not transmit over the internet and never leaves
the Amazon network in order to securely connect your VPC to SES without availability risks or
bandwidth constraints on your network traffic. You can centralize SES across your multi-account
infrastructure and provide it as a service to your accounts without the need to utilize an internet
gateway.

Limitations

• SES does not support VPC endpoints in the following Availability Zones: use1-az2,
use1-az3, use1-az5, usw1-az2, usw2-az4, apne2-az4, cac1-az3, and cac1-az4.

• The SMTP endpoint used within the VPC is restricted to the AWS Region currently being
used for your account.

VPC endpoints 985

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/privatelink/concepts.html#concepts-vpc-endpoints
https://aws.amazon.com/blogs/architecture/reduce-cost-and-increase-security-with-amazon-vpc-endpoints/
https://aws.amazon.com/blogs/architecture/reduce-cost-and-increase-security-with-amazon-vpc-endpoints/

Amazon Simple Email Service Developer Guide

Walkthrough example of setting up SES in Amazon VPC

Prerequisites

Before you complete the procedure in this section, you have to complete the following steps:

• Have an existing virtual private cloud (VPC) or create a new VPC. For procedures, see Get started
with Amazon VPC.

• Launch an Amazon EC2 instance in your VPC for testing connectivity to the VPC endpoint created
in a later step. For more information, see Default VPCs.

Note

While VPC endpoints for SES can be used with any resource, for ease of test method, this
example will have you use an EC2 instance as the resource. Because Amazon EC2 restricts
email traffic over port 25 by default, you'll have to use a different port other than TCP
25, such as TCP 465, 587, 2465, or 2587.

Setting up SES in Amazon VPC

The process of setting up a VPC endpoint to use with SES consists of a few separate steps. First,
you have to create a security group that allows the instance to communicate with SMTP ports, then
create a VPC endpoint for Amazon SES, and finally, test the connection to the VPC endpoint to
ensure that it's configured properly.

Step 1: Create the security group

In this step, you create a security group that lets Amazon EC2 instances communicate with VPC
interface endpoint you'll be creating.

To create the security group

1. In the navigation pane of the Amazon EC2 console, under Network & Security, choose
Security Groups.

2. Choose Create security group.

3. Under Basic details, do the following:

• For Security group name, enter a unique name that identifies the security group.

Walkthrough example of setting up SES in Amazon VPC 986

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-getting-started.html
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#launching-into

Amazon Simple Email Service Developer Guide

• For Description, enter some text that describes the purpose of the security group.

• For VPC, choose the VPC that you want to use Amazon SES in.

4. Under Inbound rules, choose Add rule.

5. For the new Inbound rule, do the following:

• For Type, choose Custom TCP.

• For Port range, enter the port number that you want to use to send email. You can use any
of the following port numbers: 465, 587, 2465, or 2587.

• For Source type, choose Custom.

• For Source, enter the private IP CIDR range or other Security Group IDs that contain the
resources that will use the VPC endpoint to communicate with the SES service.

• (Repeat steps 4 - 5 for each CIDR range or Security Group you wish to allow access from.)

6. When you finish, choose Create security group.

Step 2: Create the VPC endpoint

In Amazon VPC, a VPC endpoint lets you connect your VPC to supported AWS services. In this
example, you configure Amazon VPC so that your Amazon EC2 security group can connect to
Amazon SES.

To create the VPC endpoint

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Under Virtual Private Cloud, choose Endpoints.

3. Choose Create Endpoint to open the Create Endpoint page.

4. (Optional) In the Endpoint settings panel, create a tag in the Name tag field.

5. For Service category, select AWS services.

6. In the Services panel, filter on smtp in the search bar, then select its radio button.

7. In the VPC panel, click inside the search bar and select a VPC from the list box (see the section
called “Prerequisites”).

8. In the Subnets panel, select Availability Zones and Subnet IDs.

Walkthrough example of setting up SES in Amazon VPC 987

https://console.aws.amazon.com/vpc/

Amazon Simple Email Service Developer Guide

Note

Amazon SES doesn't support VPC endpoints in the following Availability Zones: use1-
az2, use1-az3, use1-az5, usw1-az2, usw2-az4, apne2-az4, cac1-az3, and
cac1-az4.

9. In the Security groups panel, select the security group you created earlier.

10. (Optional) In the Tags panel, you can create one or more tags.

11. Choose Create endpoint. Wait approximately 5 minutes while Amazon VPC creates the
endpoint. When the endpoint is ready to use, the value in the Status column changes to
Available.

(Optional) Step 3: Test the connection to the VPC endpoint

When you complete the process of configuring the VPC endpoint, you can test the connection
to ensure that the VPC endpoint is configured properly. You can test the connection by using
command-line tools that are included with most operating systems.

To test the connection to the VPC endpoint

1. Launch an Amazon EC2 instance in the same VPC where you just created the email-smtp VPC
endpoint.

For information about connecting to Linux instances, see Connect to your Linux instance in the
Amazon EC2 User Guide.

For information about connecting to Windows instances, see the Get started tutorial in the
Amazon EC2 User Guide.

2. Send a test email, for example, by using the SES SMTP interface.

Note

You have to verify an email address or domain before you can send email through
Amazon SES. For more information about verifying identities, see Creating and
verifying identities in Amazon SES.

Walkthrough example of setting up SES in Amazon VPC 988

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows

Amazon Simple Email Service Developer Guide

Troubleshooting Amazon SES issues

This section contains the following topics that may help you when you encounter problems:

• For information about domain verification problems that you might encounter, see Domain and
Email address verification problems.

• For solutions to DKIM-related issues, see Troubleshooting DKIM problems in Amazon SES.

• For a list of common delivery problems that you might encounter when you send email, along
with corrective actions that you can take, see Amazon SES Delivery problems.

• For a description of issues recipients may see when they receive an email that was sent through
Amazon SES, see Problems with emails received from Amazon SES.

• For solutions to problems with bounce, complaint, and delivery notifications, see Amazon SES
notification problems.

• For a list of errors that can occur when you send an email with Amazon SES, see Amazon SES
email sending errors.

• For tips on how to increase your email sending speed when you make multiple calls to Amazon
SES using either the API or the SMTP interface, see Increasing throughput with Amazon SES.

• For solutions to common problems that you might encounter when you use Amazon SES through
its Simple Mail Transfer Protocol (SMTP) interface, as well as a list of SMTP response codes that
Amazon SES returns, see Amazon SES SMTP issues.

• For a list of common error codes that are returned by the Amazon SES API v2, see Common
Errors.

• For a description of common issues related to our sending review process, and how to handle
them, see Amazon SES Sending review process FAQs.

• For a discussion about how DNS-based Blackhole Lists (DNSBLs) affect your sending with
Amazon SES, see DNS Blackhole List (DNSBL) FAQs.

If you are calling the Amazon SES API directly, see the Amazon Simple Email Service API Reference
for the HTTP errors that you might receive.

989

https://docs.aws.amazon.com/ses/latest/APIReference-V2/CommonErrors.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/CommonErrors.html
https://docs.aws.amazon.com/ses/latest/APIReference/

Amazon Simple Email Service Developer Guide

Note

If you need to request technical support, do not use the feedback link on any of the pages
of this developer guide, as the form is received by the AWS Documentation team, not AWS
Support. Instead, on the Contact Us page, explore the different support options available.

Contents

• General Amazon SES issues

• Domain and Email address verification problems

• Troubleshooting DKIM problems in Amazon SES

• Amazon SES Delivery problems

• Problems with emails received from Amazon SES

• Amazon SES notification problems

• Amazon SES email sending errors

• Increasing throughput with Amazon SES

• Amazon SES SMTP issues

General Amazon SES issues

The information on this page will explain and help diagnose issues that you may encounter when
using Amazon SES.

Changes that I make are not immediately visible

As a service that is accessed through computers in data centers around the world, Amazon SES uses
a distributed computing model called eventual consistency. Any change that you make in Amazon
SES (or other AWS services) takes time to become visible from all possible endpoints. Some of
the delay results from the time it takes to send the data from server to server and from region to
region around the world. In the majority of cases, this delay will be no more than a few minutes.

Some areas in which you may notice a delay include:

• Creating and modifying configuration sets – When you create or modify a configuration set (for
example, if you associate a dedicated IP pool with an existing configuration set), there may be a
brief delay from the time that you create or modify it to the time those changes are active.

General issues 990

https://aws.amazon.com/contact-us/
https://wikipedia.org/wiki/Eventual_consistency

Amazon Simple Email Service Developer Guide

• Creating and modifying event destinations – When you create or modify an event destination
(for example, to tell Amazon SES to send your email sending data to another AWS service), there
may be a delay between the time your created or modified the event destination and the time
email sending events actually arrive at the specified destination.

Domain and Email address verification problems

To verify a domain or an email address with Amazon SES, you initiate the process using either
the Amazon SES console or the Amazon SES API. This section contains information that may help
resolve issues with the verification process.

Note

In the following procedures, the reference to DNS records could refer to either CNAME or
TXT records depending on which form of DKIM you used. Easy DKIM uses CNAME records
and Bring Your Own DKIM (BYODKIM) uses TXT records. Detailed verification procedures are
provided for each of Easy DKIM or BYODKIM.

Common domain verification problems

If you attempt to verify a domain using the procedure in the section called “Verifying a domain
identity” and you encounter problems, review the possible causes and solutions below.

• You're attempting to verify a domain that you don't own – You can't verify a domain that you
don't own. For example, if you want to send email through Amazon SES from an address on the
gmail.com domain, you need to verify that email address specifically. You can't verify the entire
gmail.com domain.

• You're attempting to verify a private domain – You can't verify a domain if the DNS records
can't be resolved over public DNS.

• Your DNS provider doesn't allow underscores in the DNS record names – A small number
of DNS providers don't allow you to include underscores (_) in record names. However, the
underscore in the DKIM record name is required. If your DNS provider doesn't allow you to enter
an underscore in the record name, contact the provider's customer support team for assistance.

• Your DNS provider appended the domain name to the end of the DNS record – Some DNS
providers automatically append the name of your domain to the attribute name of DNS record.

Verification problems 991

Amazon Simple Email Service Developer Guide

For example, if you create a record where the attribute name is _domainkey.example.com, the
provider might append the domain name, resulting in _domainkey.example.com.example.com).
To avoid duplication of the domain name, add a period to the end of the domain name when
you enter the DNS record. This step tells your DNS provider that it isn't necessary to append the
domain name to the record.

• Your DNS provider modified the DNS record value – Some providers automatically modify
DNS record values to use only lowercase letters. Amazon SES only verifies your domain when it
detects a verification record for which the attribute value exactly matches the value that Amazon
SES provided when you started the domain verification process. If the DNS provider for your
domain changes your DNS record values to use only lowercase letters, contact the DNS provider
for additional assistance.

• You want to verify the same domain multiple times – You might need to verify your domain
more than once because you're sending in different regions, or because you're using the same
domain to send from multiple AWS accounts. If your DNS provider doesn't allow you to have
more than one DNS record with the same attribute name, you might still be able to verify two
domains. If your DNS provider allows it, you can assign multiple attribute values to the same
DNS record. For example, if your DNS is managed by Amazon Route 53, you can set up multiple
values for the same CNAME record by completing the following steps:

1. In the Route 53 console, choose the CNAME record you created when you verified your domain
in the first region.

2. In the Value box, go to the end of the existing attribute value, and then press Enter.

3. Add the attribute value for the additional region, and then save the record set.

If your DNS provider doesn't let you to assign multiple values to the same DNS record, you can
verify the domain once with _domainkey in the attribute name of the DNS record, and another
time with _domainkey removed from the attribute name. The downside of this solution is that
you can only verify the same domain two times.

Checking domain verification settings

You can check that your Amazon SES domain verification DNS record is published correctly to
your DNS server by using the following procedure. This procedure uses the nslookup tool, which is
available for Windows and Linux. On Linux, you can also use dig.

The commands in these instructions were executed on Windows 7, and the example domain we use
is ses-example.com configured with Easy DKIM which uses CNAME records.

Checking domain verification settings 992

http://en.wikipedia.org/wiki/Nslookup
http://en.wikipedia.org/wiki/Dig_(command)

Amazon Simple Email Service Developer Guide

In this procedure, you first find the DNS servers that serve your domain, and then query those
servers to view the CNAME records. You query the DNS servers that serve your domain because
those servers contain the most up-to-date information for your domain, which can take time to
propagate to other DNS servers.

To verify that your domain verification CNAME records are published to your DNS server

1. Find the name servers for your domain by taking the following steps.

a. Go to the command line. To get to the command line on Windows 7, choose Start and
then type cmd. On Linux-based operating systems, open a terminal window.

b. At the command prompt, type the following, where <domain> is your domain. This will list
all of the name servers that serve your domain.

nslookup -type=NS <domain>

If your domain was ses-example.com, this command would look like:

nslookup -type=NS ses-example.com

The command's output will list the name servers that serve your domain. You will query
one of these servers in the next step.

2. Verify that the CNAME records are correctly published by taking the following steps. Keep in
mind that Amazon SES generates three CNAME records for Easy DKIM authentication, so repeat
the following procedures for each of the three.

a. At the command prompt, type the following, where <random string> is the SES generated
CNAME name, <domain> is your domain, and <name server> is one of the name servers
you found in step 1.

nslookup -type=CNAME <random string>_domainkey.<domain> <name server>

In our ses-example.com example, if a name server that we found in step 1
was called ns1.name-server.net, and the <random string> generated by SES is
4hzwn5lmznmmjyl2pqf2agr3uzzzzxyz, we would type the following:

Checking domain verification settings 993

Amazon Simple Email Service Developer Guide

nslookup -type=CNAME 4hzwn5lmznmmjyl2pqf2agr3uzzzzxyz_domainkey.ses-example.com
 ns1.name-server.net

b. In the output of the command, verify that the string that follows canonical name =
matches the CNAME value you see when you choose the domain in the Identities list of
the Amazon SES console.

In our example, we are looking for a CNAME record under
4hzwn5lmznmmjyl2pqf2agr3uzzzzxyz_domainkey.ses-example.com with a value
of 4hzwn5lmznmmjyl2pqf2agr3uzzzzxyz.dkim.amazonses.com. If the record is
correctly published, we would expect the command to have the following output:

4hzwn5lmznmmjyl2pqf2agr3uzzzzxyz_domainkey.ses-example.com canonical name =
 "4hzwn5lmznmmjyl2pqf2agr3uzzzzxyz.dkim.amazonses.com"

Common email verification problems

• The verification email didn't arrive – If you complete the procedures in Verifying an email
address identity but you don't receive the verification email within a few minutes, complete the
following steps:

• Check the spam or junk mail folder for the email address you're attempting to verify.

• Confirm that the address that you're trying to verify is able to receive email. Using a separate
email address (such as your personal email address), send a test email to the address that you
want to verify.

• Check the list of verified addresses in the Amazon SES console. Make sure that there aren't any
errors in the email address that you're attempting to verify.

Troubleshooting DKIM problems in Amazon SES

This section lists some of the problems that you may encounter when you configure DKIM
authentication in Amazon SES. If you attempt to set up DKIM and you encounter problems, review
the possible causes and solutions below.

Email verification problems 994

https://console.aws.amazon.com/ses/home#verified-senders-email:

Amazon Simple Email Service Developer Guide

You set up DKIM successfully, but your messages aren't being DKIM-signed

If you used Easy DKIM or BYODKIM to configure DKIM for a domain, but the messages that you
send aren't DKIM-signed, do the following:

• Make sure that DKIM is enabled for the appropriate identity. To enable DKIM for an identity in
the Amazon SES console, choose the email domain in the Identities list. On the details page
for the domain, expand DKIM, and then choose Enable to enable DKIM.

• Make sure that you're not sending from a verified email address on the same domain. If you
set up DKIM for a domain, then all of the messages that you send from that domain are
DKIM-signed, except for email addresses that you verified individually. Individually verified
email addresses use separate settings. For example, if you configured DKIM for the domain
example.com, and you separately verified the email address mary@example.com (but didn't
configure DKIM for the address), then emails that you send from mary@example.com are sent
without DKIM authentication. You can resolve this issue by deleting the email address identity
from the list of identities for your account.

• If you use the same identity in more than one AWS Region, you have to configure DKIM
for each region separately. Similarly, if you use the same domain with more than one AWS
account, you have to configure DKIM for each account. If you remove the necessary DNS
records for a specific region or account, Amazon SES disables DKIM signing in that region or
account. If DKIM signing becomes disabled, Amazon SES sends you a notification by email.

Your domain's DKIM details in the Amazon SES console show DKIM: waiting on sender
verification... DKIM Verification Status: pending verification.

If you complete the procedures in Easy DKIM or BYODKIM - Bring Your Own DKIM to configure
DKIM for a domain, but the Amazon SES console still indicates that DKIM verification is pending,
do the following:

• Wait up to 72 hours. In rare cases, it can take time for the DNS records to become visible to
Amazon SES.

• Confirm that the CNAME record (for Easy DKIM) or the TXT record (for
BYODKIM) uses the correct name. Some DNS providers automatically append
the domain name to records that you create. For example, if you create a record
with a Name of example._domainkey.example.com, your DNS provider
might add the name of your domain to the end of this string, resulting in
example._domainkey.example.com.example.com. For more information, see the
documentation for your DNS provider.

DKIM problems 995

Amazon Simple Email Service Developer Guide

You receive an email from Amazon SES that says your DKIM setup has been (or will be) revoked.

This means that Amazon SES can no longer find the required CNAME records (if you used
Easy DKIM) or the required TXT record (if you used BYODKIM) records on your DNS server. The
notification email will inform you of the length of time in which you must re-publish the DNS
records before your DKIM setup status is revoked and DKIM signing is disabled. If your DKIM
setup is revoked, you must restart the DKIM set-up procedure from the beginning.

When attempting to set up BYODKIM, the DKIM verification process fails.

Make sure that your private key uses the right format. The private key has to be in either PKCS
#1 or PKCS #8 format and use either 1024 or 2048 bit RSA encryption. Additionally, the private
key has to be base64 encoded.

While setting up BYODKIM, you receive a BadRequestException error when you try to specify
a public key for the domain.

If you receive a BadRequestException error, do the following:

• Make sure that the selector that you specify for the public key contains at least 1 and less
than or equal to 63 alphanumeric characters. The selector can't include periods or other
symbols or punctuation.

• Make sure that you've removed the header and footer lines from the public key, and that
you've removed all of the line breaks from the public key.

When using Easy DKIM, your DNS servers successfully return the Amazon SES DKIM CNAME
records, but return SERVFAIL for the domain verification TXT record.

Your DNS provider might not be able to redirect CNAME records. Amazon SES and ISPs query
for TXT records. To comply with the DKIM specification, your DNS servers have to be able to
respond to TXT record queries as well as CNAME record queries. If your DNS provider isn't
able to respond to TXT record queries, an alternative is to use Route 53 as your DNS hosting
provider.

Your emails contain two DKIM signatures

The extra DKIM signature, which contains d=amazonses.com, is automatically added by
Amazon SES. You can ignore it.

DKIM problems 996

Amazon Simple Email Service Developer Guide

Amazon SES Delivery problems

After you make a successful request to Amazon SES, your message is often sent immediately. At
other times, there might be a short delay. In any case, you can be assured that your email will be
sent.

When Amazon SES sends your message, however, several factors can prevent it from being
delivered successfully, and in some cases you will become aware that delivery failed only when the
message you send does not arrive. Use the following process to resolve this situation.

If an email does not arrive, try the following:

• Verify that you made a SendEmail or SendRawEmail request for the email in question and
that you received a successful response. If you are making these requests programmatically,
check your software logs to ensure that the program made the request and received a successful
response.

• Read the blog article Three places where your email could get delayed when sending through
SES because the problem might actually be a delay rather than a nondelivery.

• Check the sender's email address (the "From" address) to verify that it is valid. Also check the
Return-Path address, which is where bounce messages are sent. If your mail bounced, there will
be an explanatory error message there.

• Check the AWS Service Health Dashboard to confirm that there is not a known problem with
Amazon SES.

• Contact the email recipient or the recipient's ISP. Verify that the recipient is using the correct
email address, and inquire whether there have been any known delivery problems with the
recipient's ISP. Also, determine whether the email did arrive but was filtered as spam.

• If you have signed up for a paid AWS Support Plan, you can open a new technical support case.
In your correspondence with us, please provide any relevant recipient addresses, along with any
request IDs or message IDs returned from the SendEmail or SendRawEmail responses.

• Wait to see if the problem is actually a delay, not a permanent delivery failure. To combat
spammers, some ISPs temporarily reject incoming messages from unknown sending mail
servers. This process, called greylisting, can cause a delay in delivery. Amazon SES will retry
these messages. If greylisting is the issue, the ISP might accept the email on one of these retry
attempts.

Delivery problems 997

https://aws.amazon.com//blogs/messaging-and-targeting/three-places-where-your-email-could-get-delayed-when-sending-through-ses/
https://aws.amazon.com//blogs/messaging-and-targeting/three-places-where-your-email-could-get-delayed-when-sending-through-ses/
http://status.aws.amazon.com/
https://aws.amazon.com/premiumsupport/

Amazon Simple Email Service Developer Guide

• Even when you have your customers' best interests in mind, you may still encounter situations
that impact the deliverability of your messages. See the section called “Tips and best practices”
to help ensure that your email communications reach your intended audience.

Problems with emails received from Amazon SES

This section discusses some common issues that you might see when you receive emails that were
sent from Amazon SES.

The email client displays "sent via amazonses.com" as the source of the email

Some email clients display the "via" domain when the sender's domain doesn't match the
domain that the email was sent from (in this case, amazonses.com). For more information,
see Extra info next to sender's name on the Gmail Support website. Alternatively, you can
set up DomainKeys Identified Mail (DKIM). When you authenticate your emails using DKIM,
email clients typically don't show the "via" domain because the DKIM signature shows that the
email is from the domain that it claims to be from. For information about setting up DKIM, see
Authenticating Email with DKIM in Amazon SES.

Note

If you've received spam or other unsolicited email messages from an SES user, use the
spam reporting tools in your email client, and follow the steps to report SES email
abuse listed under Contacting Us.

The message contains garbled or nonsense characters

If your message includes characters that aren't in the ASCII character set (such as accented Latin
characters, Chinese characters, or Arabic characters), you have to encode those characters using
HTML character encoding. You can use web-based tools to encode the characters in your email,
such as the HTML Character Convertor on the Email On Acid website.

Alternatively, you can assemble the MIME message yourself. In the MIME message, you can
specify that the message should use UTF-8 encoding. When you use UTF-8 encoding, you can
use non-ASCII characters directly in your messages. When you've finished creating the MIME
message, you can send it using the SendRawEmail API or the SendMail API v2.

Problems with received emails 998

https://support.google.com/mail/answer/1311182?hl=en;
https://aws.amazon.com/ses/faqs/#Contacting_Us
https://www.emailonacid.com/resource/character-converter/
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendRawEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendMail.html

Amazon Simple Email Service Developer Guide

One common cause of this issue is the Smart Quotes feature of Microsoft Word. If you often
copy content from Word and paste it into your emails, you might encounter this issue. The
Smart Quotes feature replaces straight quote characters ("...") with curly quote characters (“...”).
Curly quote characters aren't standard ASCII characters. As a result, they might be rendered in
some email clients as "??" or as a group of characters such as "â€œ". To correct this issue, you
can disable the Smart Quotes feature in Word. Alternatively, you can use the SendRawEmail
solution from the preceding paragraph. To learn how to disable this feature, see Smart quotes
in Word on the Microsoft Office Support website.

Amazon SES notification problems

If you encounter a problem with bounce, complaint, or delivery notifications, review the possible
causes and solutions below.

• You receive bounce notifications via Amazon SNS, but you don't know which recipients the
notifications correspond to—In the future, to associate a bounce notification with a given
recipient, you have the following options:

• Since Amazon SES doesn't retain any custom message IDs that you have added, store a
mapping between an identifier and the Amazon SES message ID that Amazon SES passes back
to you when it accepts the email.

• In each call to Amazon SES, send to a single recipient, rather than sending a single message to
multiple recipients.

• You can enable feedback forwarding via email, which will forward the full bounce message to
you.

• You receive complaint or delivery notifications via Amazon SNS or email feedback
forwarding, but you don't know which recipients the notifications correspond to—Some ISPs
redact the complained recipient's email address before passing the complaint notification to
Amazon SES. To enable you to find the recipient's email address, your best option is to store
your own mapping between an identifier and the Amazon SES message ID that Amazon SES
passes back to you when it accepts the email. Note that Amazon SES does not retain any custom
message IDs that you add.

• You want to set up notifications to go to an Amazon SNS topic you don't own—The owner
of that topic must configure an Amazon SNS access policy that allows your account to call
the SNS:Publish action on their topic. For information about how to control access to your

Notification problems 999

https://support.office.com/en-us/article/smart-quotes-in-word-702fc92e-b723-4e3d-b2cc-71dedaf2f343
https://support.office.com/en-us/article/smart-quotes-in-word-702fc92e-b723-4e3d-b2cc-71dedaf2f343

Amazon Simple Email Service Developer Guide

Amazon SNS topic through the use of IAM policies, see Managing Access to Your Amazon SNS
Topics in the Amazon Simple Notification Service Developer Guide.

Amazon SES email sending errors

This topic reviews the types of email sending-specific errors that you may encounter when you
send an email through Amazon SES. If you try to send an email through Amazon SES and the call
to Amazon SES fails, Amazon SES returns an error message to your application and does not send
the email. The way that you observe this error message depends on the way that you call Amazon
SES.

• If you call the Amazon SES API directly, the Query action will return an error. The error may be
MessageRejected or one of the errors specified in the Common Errors topic of the Amazon
Simple Email Service API Reference.

• If you call Amazon SES using an AWS SDK that uses a programming language that
supports exceptions, Amazon SES may throw an exception. The type of exception depends
on the SDK and on the error. For example, the exception could be an Amazon SES
MessageRejectedException (the actual name may vary depending on the SDK) or a general
AWS exception. Regardless of the type of exception, the error type and the error message in the
exception will give you more information.

• If you call Amazon SES through its SMTP interface, the way that you experience the error
depends on the application. Some applications might display a specific error message, and others
might not. For a list of SMTP response codes that Amazon SES returns, see SMTP response codes
returned by Amazon SES.

Note

When your call to Amazon SES to send an email fails, you are not billed for that email.

The following are the types of Amazon SES-specific problems that can cause Amazon SES to return
an error when you try to send an email. These errors are in addition to general AWS errors like
MalformedQueryString as specified in the Common Errors topic of the Amazon Simple Email
Service API Reference.

Email sending errors 1000

https://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage.html
https://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/CommonErrors.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/CommonErrors.html

Amazon Simple Email Service Developer Guide

• Email address is not verified. The following identities failed the check in region region:
identity1, identity2, identity3—You are trying to send email from an email address or domain
that you have not verified with Amazon SES. This error could apply to the "From", "Source",
"Sender", or "Return-Path" address. If your account is still in the Amazon SES sandbox, you also
must verify every recipient email address except for the recipients provided by the Amazon
SES mailbox simulator. If Amazon SES is not able to show all of the failed identities, the error
message ends with an ellipsis.

Note

Amazon SES has endpoints in multiple AWS Regions, and email address verification
status is separate for each AWS Region. You must complete the verification process for
each sender in the AWS Regions you want to use.

• Account is paused—Your account's ability to send email is paused. You can still access the
Amazon SES console and perform most operations. However, if you try to send an email, you
receive this message.

If we pause your account's ability to send email, we automatically send a notification to the email
address associated with your AWS account. For more information, see the section called “Sending
review process FAQs”.

• Throttling—Your application may be trying to send too many messages per second, or you
may have sent too much email over the last 24 hours. In these cases, the error message may be
similar to the following examples:

• Daily message quota exceeded—You have sent the maximum number of messages that you
are permitted in a 24-hour period. If you have exceeded your daily quota, you will have to wait
until the next 24-hour period before you can send more email.

• Maximum sending rate exceeded—You are attempting to send more emails per second than
is permitted by your maximum send rate. If you have exceeded your sending rate, you can
continue to send email, but will need to reduce your send rate. For more information, see How
to handle a "Throttling - Maximum sending rate exceeded" error on the AWS Messaging and
Targeting Blog.

• Maximum SigV2 SMTP sending rate exceeded—You are attempting to send messages using
SMTP credentials created before January 10, 2019; your SMTP credentials were created using
an older version of the AWS Signature. For security purposes, you should delete credentials
that you created before this date, and replace them with newer credentials. You can delete

Email sending errors 1001

https://aws.amazon.com//blogs/messaging-and-targeting/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/
https://aws.amazon.com//blogs/messaging-and-targeting/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/

Amazon Simple Email Service Developer Guide

older credentials by using the IAM console. For more information, see the section called
“Obtaining SMTP credentials” for creating credentials.

You should regularly monitor your sending activity to see how close you are to your sending
quotas. For more information, see Monitoring your Amazon SES sending quotas. For general
information about sending quotas, see Managing your Amazon SES sending limits. For
information about how to increase your sending quotas, see Increasing your Amazon SES
sending quotas.

Important

If the error text that explains the throttling error is not related to you exceeding your
daily quota or maximum send rate, then there might be a system-wide problem that is
causing reduced sending capabilities. For information about the service status, go to the
AWS Service Health Dashboard.

• There are no recipients specified—No recipients were provided.

• There are non-ASCII characters in the email address—The email address string must be 7-
bit ASCII. If you want to send to or from email addresses that contain Unicode characters in
the domain part of an address, you must encode the domain using Punycode. Punycode is not
permitted in the local part of the email address (the part before the @ sign) nor in the "friendly
from" name. If you want to use Unicode characters in the "friendly from" name, you must encode
the "friendly from" name using MIME encoded-word syntax, as described in Sending raw email
using the Amazon SES API v2. For more information about Punycode, see RFC 3492.

• Mail FROM domain is not verified—Amazon SES could not read the MX record required to use
the specified MAIL FROM domain. For information setting up custom MAIL FROM domains, see
Using a custom MAIL FROM domain.

• Configuration set does not exist—The configuration set that you specified does not exist. A
configuration set is an optional parameter that you use to publish email sending events. For
more information, see Monitor email sending using Amazon SES event publishing.

Increasing throughput with Amazon SES

When you send emails, you can call Amazon SES as frequently as your maximum send rate allows.
(For more information about your maximum send rate, see Managing your Amazon SES sending
limits.) However, each call to Amazon SES takes time to complete.

Increasing throughput 1002

http://status.aws.amazon.com/
http://tools.ietf.org/html/rfc3492

Amazon Simple Email Service Developer Guide

If you are making multiple calls to Amazon SES using the Amazon SES API or the SMTP interface,
you may want to consider the following tips to help you improve your throughput:

• Measure your current performance to identify bottlenecks—A possible performance
test involves sending multiple test emails as quickly as possible within a code loop in your
application. Measure the round-trip latency of each SendEmail request. Then, incrementally
launch additional instances of the application on the same machine, and watch for any impact
on network latency. You may also want to run this test on multiple machines and on different
networks to help pinpoint any possible machine resource bottlenecks or network bottleneck that
may exist.

• (API only) Consider using persistent HTTP connections—Rather than incurring the overhead
of establishing a separate new HTTP connection for each API request, use persistent HTTP
connections. That is, reuse the same HTTP connection for multiple API requests.

• Consider using multiple threads—When an application uses a single thread, the application
code calls the Amazon SES API and then synchronously waits for an API response. Sending
emails is typically an I/O-bound operation, and doing the work from multiple threads provides
better throughput. You can send concurrently using as many threads of execution as you wish.

• Consider using multiple processes—Using multiple processes can help increase your throughput
because you will have more concurrent active connections to Amazon SES. For example, you can
segment your intended emails into multiple buckets, and then run multiple instances of your
email sending script simultaneously.

• Consider using a local mail relay—Your application can quickly transmit messages to your local
mail server, which can then help to buffer the messages and asynchronously transmit them to
Amazon SES. Some mail servers support delivery concurrency, which means that even if your
application is generating emails to the mail server in a single-threaded fashion, the mail server
will use multiple threads when sending to Amazon SES. For more information, see Integrating
Amazon SES with your existing email server.

• Consider hosting your application closer to the Amazon SES API endpoint—You may wish
to consider hosting your application in a data center close to the Amazon SES API endpoint,
or on an Amazon EC2 instance in the same AWS Region as the Amazon SES API endpoint. This
can help to decrease network latency between your application and Amazon SES, and improve
throughput. For a list of regions where Amazon SES is available, see Amazon Simple Email
Service (Amazon SES) in the AWS General Reference.

• Consider using multiple machines—Depending on the system configuration on your host
machine, there may be a limit on the number of simultaneous HTTP connections to a single
IP address, which may limit the benefits of parallelism once you exceed a certain number of

Increasing throughput 1003

https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ses_region

Amazon Simple Email Service Developer Guide

concurrent connections on a single machine. If this is a bottleneck, you may wish to consider
making concurrent Amazon SES requests using multiple machines.

• Consider using the Amazon SES query API instead of the SMTP endpoint—Using the Amazon
SES query API enables you to submit the email send request using a single network call, whereas
interfacing with the SMTP endpoint involves an SMTP conversation which consists of multiple
network requests (for example, EHLO, MAIL FROM, RCPT TO, DATA, QUIT). For more information
about the Amazon SES query API, see Using the Amazon SES API to send email.

• Use the Amazon SES mailbox simulator to test your maximum throughput—To test any
changes you may implement, you can use the mailbox simulator. The mailbox simulator can
help you to determine your system’s maximum throughput without using up your daily sending
quota. For information about the mailbox simulator, see Using the mailbox simulator manually.

If you are accessing Amazon SES through its SMTP interface, see Amazon SES SMTP issues for
specific SMTP-related issues that may affect throughput.

Amazon SES SMTP issues

This section contains solutions for several common issues related to sending email through
the Amazon SES Simple Mail Transfer Protocol (SMTP) interface. It also contains a list of SMTP
response codes that Amazon SES returns.

To learn more about sending email through the Amazon SES SMTP interface, see Using the
Amazon SES SMTP interface to send email.

• You can't connect to the Amazon SES SMTP endpoint.

Problems connecting to the Amazon SES SMTP endpoint are most commonly related to the
following issues:

• Incorrect credentials – The credentials that you use to connect to the SMTP endpoint are
different from your AWS credentials. To obtain your SMTP credentials, see Obtaining Amazon
SES SMTP credentials. For more information about credentials, see Types of Amazon SES
credentials.

• Network or firewall issues – Your network might be blocking outbound connections over the
port you're trying to send email from. To determine if an issue on your local network is causing
connection issues, type the following command at the command line, replacing port with
the port you're trying to use (typically 465, 587, 2465, or 2587): telnet email-smtp.us-
west-2.amazonaws.com port

SMTP issues 1004

Amazon Simple Email Service Developer Guide

If you are able to connect to the SMTP server using this command, and you are trying to
connect to Amazon SES using TLS Wrapper or STARTTLS, complete the procedures shown in
Testing your connection to the Amazon SES SMTP interface using the command line.

If you can't connect to the Amazon SES SMTP endpoint using telnet or openssl, it indicates
that something in your network (such as a firewall) is blocking outbound connections over
the port you're trying to use. Work with your network administrator to diagnose and fix the
problem.

• You're sending to Amazon SES from an Amazon EC2 instance using port 25, and you're
receiving timeout errors.

Amazon EC2 restricts port 25 by default. To remove these restrictions, submit an Amazon EC2
Request to Remove Email Sending Limitations. You can also connect to Amazon SES using ports
465 or 587, neither of which is restricted.

• Network errors are causing dropped emails.

Ensure that your application uses retry logic when it connects to the Amazon SES SMTP
endpoint, and that your application can detect and retry message delivery in case of a network
error. SMTP is a verbose protocol, and sending an email using this protocol requires several
network round trips. Because of the nature of SMTP, the potential for network errors increases.

• You lose connection with the SMTP endpoint.

Lost connections are most commonly caused by the following issues:

• MTU size – If you receive a time-out error message, the Maximum Transmission Unit (MTU)
of the network interface for the computer you're using to connect to the Amazon SES SMTP
interface may be too large. To resolve this issue, set the MTU size on that computer to 1500
bytes.

For more information about setting the MTU size on Windows, Linux, and macOS operating
systems, see Queries Appear to Hang in the Client and Do Not Reach the Cluster in the
Amazon Redshift Management Guide.

For more information about setting the MTU size for an Amazon EC2 instance, see Network
Maximum Transmission Unit (MTU) for Your EC2 Instance in the Amazon EC2 User Guide.

• Long-lived connections – The Amazon SES SMTP endpoint runs on a fleet of Amazon EC2
instances behind an Elastic Load Balancer (ELB). In order to ensure that the system is up-to-
date and fault tolerant, active Amazon EC2 instances are periodically terminated and replaced

SMTP issues 1005

https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-drop-issues.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html

Amazon Simple Email Service Developer Guide

with new instances. Because your application connects to an Amazon EC2 instance through
the ELB, the connection becomes invalid when the Amazon EC2 instance is terminated. You
should establish a new SMTP connection after you have delivered a fixed number of messages
via a single SMTP connection, or if the SMTP connection has been active for some amount of
time. You will need to experiment to find appropriate thresholds depending on where your
application is hosted and how it submits email to Amazon SES.

• You want to know the IP addresses of the Amazon SES SMTP mail servers so that you can
allowlist the IP addresses with your network.

The IP addresses for the Amazon SES SMTP endpoints reside behind load balancers. As a
result, these IP addresses change frequently. It's not possible to provide a definitive list of
all of the IP addresses for the Amazon SES endpoints. We recommend that you allowlist the
amazonses.com domain, rather than allowlisting individual IP addresses.

SMTP response codes returned by Amazon SES

This section contains a list of response codes that the Amazon SES SMTP interface returns.

You should retry SMTP requests that receive 400 errors. We recommend that you implement a
system that retries requests with progressively longer wait times (for example, wait 5 seconds
before retrying, then wait 10 seconds, and then wait 30 seconds). If the third retry doesn't succeed,
wait 20 minutes, and then repeat the process. To see an example of an implementation that uses
an exponential retry policy, see How to handle a "Throttling - Maximum sending rate exceeded"
error on the AWS Messaging and Targeting Blog.

Note

AWS SDKs implement retry logic automatically, but they use the HTTPS interface instead of
SMTP.

If you receive a 500 error, you have to revise your request to correct an issue before you submit the
request again. For example, if your AWS authentication credentials are invalid, you have to update
your application to use the correct credentials before you submit your request again.

SMTP response codes 1006

https://aws.amazon.com//blogs/messaging-and-targeting/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/
https://aws.amazon.com//blogs/messaging-and-targeting/how-to-handle-a-throttling-maximum-sending-rate-exceeded-error/
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Amazon Simple Email Service Developer Guide

Description Response code More information

Authentication successful 235 Authentication
successful

Your SMTP client successfully
connected and signed in to the
SMTP server.

Successful delivery 250 Ok MessageID MessageID is a unique string
of characters that Amazon SES
uses to identify a message.

Service unavailable 421 Too many concurrent
SMTP connections

Amazon SES can't process
the request because there are
currently too many connections
to the SMTP server.

Local processing error 451 Temporary service
failure

Amazon SES couldn't process
the request. There might be
issues with the request that
prevent it from being processed
.

Timeout 451 Timeout waiting for
data from client

Too much time elapsed
between requests, so the SMTP
server closed the connection.

Daily sending quota
exceeded

454 Throttling failure:
Daily message quota
exceeded

You've exceeded the maximum
number of emails that Amazon
SES permits you to send in
a 24-hour period. For more
information, see Managing your
Amazon SES sending limits.

Maximum send rate
exceeded

454 Throttling failure:
Maximum sending rate
exceeded

You've exceeded the maximum
number of emails that Amazon
SES permits you to send per
second. For more information,
see Managing your Amazon SES
sending limits.

SMTP response codes 1007

Amazon Simple Email Service Developer Guide

Description Response code More information

Amazon SES issue when
validating SMTP credentia
ls

454 Temporary authentic
ation failure

Issues that could cause this
issue include (but aren't limited
to):

• There is a problem with the
encryption between your
email-sending application
and Amazon SES. Note that
you have to use an encrypted
connection when you connect
to Amazon SES. For more
information, see Connectin
g to an Amazon SES SMTP
endpoint.

• Amazon SES could be
experiencing an issue. Check
the AWS Service Health
Dashboard for updates.

Problem receiving the
request

454 Temporary service
failure

Amazon SES didn't successfully
receive the request. As a result,
the message wasn't sent.

Incorrect credentials 530 Authentication
required

The application that you use to
send email didn't attempt to
authenticate when it connected
to the Amazon SES SMTP
interface.

SMTP response codes 1008

http://status.aws.amazon.com/
http://status.aws.amazon.com/

Amazon Simple Email Service Developer Guide

Description Response code More information

Authentication Credentia
ls Invalid

535 Authentication
Credentials Invalid

The application that you use
to send email didn't provide
the correct SMTP credentials
to Amazon SES. Note that your
SMTP credentials aren't the
same as your AWS credentia
ls. For more information, see
Obtaining Amazon SES SMTP
credentials.

Account not subscribed to
Amazon SES

535 Account not
subscribed to SES

The AWS account that owns the
SMTP credentials is not signed
up for Amazon SES.

Message is too long 552 Message is too long. The message that you're trying
to send is larger than the
maximum message size.

Account not subscribed to
Amazon SES

535 Account not
subscribed to SES

The AWS account that owns the
SMTP credentials is not signed
up for Amazon SES.

MAIL FROM syntax error 553 <email-address >
Invalid email address

There is a syntax error in the
MAIL FROM part of the SMTP
message. Please check that you
are following the correct format
and don't forget to enclose the
email-address in '<>'.

RCPT TO syntax error 553 <email-address >
address unknown

There is a syntax error in the
RCPT TO part of the SMTP
message. Please check that you
are following the correct format
and don't forget to enclose the
email-address in '<>'.

SMTP response codes 1009

Amazon Simple Email Service Developer Guide

Description Response code More information

User not authorized to
call the Amazon SES
SMTP endpoint

554 Access denied: User
UserARN is not authorize
d to perform ses:SendR
awEmail on resource
IdentityARN

The AWS Identity and Access
Management (IAM) policy or the
Amazon SES sending authoriza
tion policy of the user who
owns the SMTP credentials isn't
allowed to call the Amazon SES
SMTP endpoint.

SMTP response codes 1010

Amazon Simple Email Service Developer Guide

Description Response code More information

Unverified email address 554 Message rejected:
Email address is not
verified. The following
identities failed the
check in region region:
identity0 , identity1 ,
identity2

You're trying to send email
from an email address or
domain that isn't verified to
send email from your Amazon
SES account. This error could
apply to the "From", "Source",
"Sender", or "Return-Path"
addresses. If your account is
still in the sandbox, you also
have to verify every recipient
email address (except for the
recipients provided by the
Amazon SES mailbox simulator
). If Amazon SES isn't able to
show all of the identities that
failed the verification check, the
error message ends with three
periods (...).

Note

Amazon SES has
endpoints in several
AWS Regions, and email
address verification
status is separate for
each AWS Region. You
have to complete the
verification process for
each sender in the AWS
Regions that you want
to use.

SMTP response codes 1011

Amazon Simple Email Service Developer Guide

Note

For SMTP issues that aren't addressed by the troubleshooting on this page, try the SES
support options listed under Contacting Us.

SMTP response codes 1012

https://aws.amazon.com/ses/faqs/#Contacting_Us

Amazon Simple Email Service Developer Guide

Amazon SES frequently asked questions (FAQs)

This section contains answers to several frequently asked questions related to using Amazon SES.

This section contains FAQs for the following topics:

• Amazon SES Sending review process FAQs

• DNS Blackhole List (DNSBL) FAQs

• Amazon SES email sending metrics FAQs

Amazon SES Sending review process FAQs

We monitor the email that's sent through Amazon SES to make sure that the service isn't being
used to deliver malicious, unsolicited, or low-quality email. If we determine that a user is sending
content that falls into one of these categories, we take actions on that account. We call this process
our sending review process.

In many cases, when we detect an issue with an account, we place that account under review. In
other cases, we pause the account's ability to send email. We take these actions to protect each
account's sender reputation, and to prevent other SES users from experiencing service interruptions
and deliverability issues.

Contents

• Account under review FAQ

• Sending pause FAQ

• Bounce FAQ

• Complaint FAQ

• Spamtrap FAQ

• Manual investigation FAQ

Sending review process FAQs 1013

Amazon Simple Email Service Developer Guide

Account under review FAQ

Q1. I received a message stating that my account is under review. What does that
mean?

We've detected an issue related to the email sent from your account, and we're giving you time to
fix it. You can continue to send email as you normally would, but you should also correct the issue
that caused your account to be placed under review. If you don't correct the issue before the review
period is over, we might pause your ability to send additional email.

Q2. Will I always be notified if my account is placed under review?

Yes. You'll receive a notification at the email address associated with your AWS account.

Q3. Why didn't I receive a notification that my account is under review?

When your account is placed under review, we automatically send a notice to the email address
associated with your AWS account. This email address is the one you specified when you created
your AWS account. In some cases, this email address may be different from the one you use to send
email using SES.

We recommend that you monitor your sender reputation by regularly viewing your Reputation
metrics. You can also set up automated alarms in Amazon CloudWatch. These alarms can send
you a notification when your reputation metrics exceed certain thresholds. You can also configure
Amazon CloudWatch to contact you in other ways, such as by sending a text message to your
mobile phone.

Q4. Will the fact that my SES account is under review impact my use of other AWS
services?

You'll still be able to use other AWS services while your SES account is under review. However, if
you request a service quota increase for another AWS service that sends outbound communications
(such as Amazon SNS), that request may be denied until the review period for your SES account is
lifted.

Q5. What should I do if my account is under review?

You should do the following:

Account Under Review 1014

Amazon Simple Email Service Developer Guide

• If your situation allows it, stop sending mail until you fix the problem. You can still send email
while your account is under review. However, if you continue to send mail without making
changes, you might inadvertently make the issue worse.

• Look at the email you received from us for a summary of the issue.

• Investigate your sending to determine what aspect of your sending specifically triggered the
issue.

• After you make changes that you believe will resolve the issue, sign into the AWS Console and
go to Support Center. Reply to the case we opened on your behalf. In your message, provide
detailed information about the steps you've taken to resolve the issue, and describe how these
steps prevent the issue from happening again in the future.

• Be sure to provide any information we specifically request. We need this information to evaluate
your case.

Q6. How do I request a review?

You can request that we review our decision to place your account under review. To request a
review, sign into the AWS Console and go to Support Center. Reply to the case we opened on your
behalf.

In your request, provide the following information:

• Information about the root cause of the event that caused your account to be placed under
review.

• A list of the changes that you've made to correct the issue. Only include the steps you've already
implemented, not the steps you plan to implement in the future.

• Information about how these changes prevent the same issue from occurring again in the future.

Depending on the nature of the event that led us to place your account under review, we might
require additional information. See the FAQ topic associated with the issue you experienced for a
list of the information you should include in your request.

Q7. What if my review request isn't accepted?

We'll respond to your request with information about why we didn't accept it. In some cases, you'll
be able to submit another request if you're able to demonstrate that you resolved the issue, and
that your changes prevent the issue from occurring again in the future.

Account Under Review 1015

Amazon Simple Email Service Developer Guide

Q8. Can you help me diagnose the problem?

Typically we can give you only a high-level overview of your issue (for example, that you have a
problem with bounces). You'll need to investigate the root cause on your end.

Q9. How will I know if my account is no longer under review?

Reputation metrics includes information about the current status of your account. For more
information, see Using reputation metrics to track bounce and complaint rates.

Q10. Do you place my account under review every time there's a problem?

No. In some situations, we might pause your account's ability to send email without first placing
your account under review. For example:

• If the issue is very serious.

• If your account has been placed under review for the same issue multiple times in the past.
For this reason, it's important to address the underlying problem rather than just resolve the
specific incident that led to your account being placed under review. For instance, if a particular
campaign caused us to place your account under review, you have to do more than simply stop
that campaign. You should determine which properties of the campaign were problematic and
ensure that you have processes in place so that your future campaigns don't have the same issue.

In either of these situations, we automatically send you a notification when we pause your
account's ability to send email.

Q11. What if I make my fixes shortly before the review period expires?

Sign into the AWS Management Console and go to Support Center. Reply to the case we opened on
your behalf. In your reply to the case, let us know that you've resolved the issue.

Q12. Can I get help from my AWS representative or Premium Support?

If you're already working with an AWS account representative, we'll automatically contact him or
her when your account is placed under review. Your account representative may be able to provide
additional information to help you better understand the issue. If you use Premium Support, you
should also contact that team for additional help.

Account Under Review 1016

Amazon Simple Email Service Developer Guide

Sending pause FAQ

Q1. I received a message stating that my account's ability to send email is paused.
What does that mean?

We paused your account's ability to send email because of a critical issue with emails you sent.
Most often, we pause accounts for one of the following reasons:

• We previously placed your account under review. The issues that caused us to place your account
under review weren't corrected before the end of the review period, so we paused your account's
ability to send email.

• We've placed your account under review several times for the same issue.

• Your account sent email that violated the AWS Service Terms. If these violations are serious, we
might pause your account's ability to send email without placing your account under review first.

Q2. Will I always be notified if my account's ability to send email is paused?

Yes. You'll receive a notification at the email address associated with your AWS account.

Q3. My account's ability to send email is paused. Why didn't I receive a
notification?

When we pause an account's ability to send email, we automatically send a notification to the
email address associated with that account.

Note

When you create your AWS account, you must provide an email address. You can change
this address at any time. For more information about changing the address associated with
your AWS account, see Managing an AWS Account in the AWS Billing and Cost Management
User Guide.

You can use Amazon CloudWatch to create alarms that inform you when your bounce and
complaint rates are too high. Creating an alarm is a good way to receive an early warning of factors
that could cause us to pause your account's ability to send email. However, there are factors other
than bounces and complaints that could cause us to pause your ability to send email. For more

Sending Pauses 1017

https://aws.amazon.com/service-terms
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-account-payment.html#account-info

Amazon Simple Email Service Developer Guide

information about creating alarms in CloudWatch, see Creating reputation monitoring alarms using
CloudWatch.

You can also use the Account dashboard to determine the current status of your account. For
example, if your account's ability to send email is currently paused, the Account status section of
the Account dashboard displays a status of Paused. If your account is able to send email normally,
it displays a status of Healthy.

Finally, you can check the AWS Health Dashboard (PHD) at https://phd.aws.amazon.com/ to
determine if your account's ability to send email is currently paused. When we pause an account's
ability to send email, we automatically add an SES sending paused event to the Event log section
of the PHD. The SES sending paused event always has a Status of Closed, regardless of whether or
not the account's ability to send email is currently paused. The event log also includes a copy of the
email that we sent to the email address associated with your AWS account when the sending pause
event occurred.

You can use CloudWatch to create an alarms that alert you when new events appear on your
Personal Health Dashboard. For more information, see Monitoring AWS Health Events with
CloudWatch Events in the AWS Health User Guide.

Q4. My account's ability to send email is paused. Does this impact my ability to
use of other AWS services?

You can still use other AWS services while your account's ability to send email is paused. However, if
you request a service quota increase for another AWS service that sends outbound communications
(such as Amazon SNS), we might deny your request until your account's ability to send email is
restored.

Q5. What should I do if my account's ability to send email is paused?

You should do the following:

• Look at the email you received from us for a summary of the issue.

• Investigate your sending to determine what aspect of your sending specifically triggered the
issue.

• After you make changes that you believe will resolve the issue, sign into the AWS Console and
go to Support Center. Reply to the case we opened on your behalf. In your message, provide
detailed information about the steps you've taken to resolve the issue, and describe how these
steps prevent the issue from happening again in the future.

Sending Pauses 1018

https://phd.aws.amazon.com/
https://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html
https://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html

Amazon Simple Email Service Developer Guide

• Be sure to provide any information we specifically request. We need this information to evaluate
your case.

Q6. What's a review?

You can request that we review our decision to place your under review. See the following question
for more information about requesting a review.

Q7. How do I request a review?

To request a review, sign into the AWS Console and go to Support Center. Reply to the case we
opened on your behalf.

In your request, provide the following information:

• Information about what caused the issue.

• A list of the changes that you've made to correct the issue. Only include the steps that you've
already implemented, not the steps you plan to implement in the future.

• Information about how these changes will prevent the same issue from occurring again in the
future.

Depending on the nature of the event that led us to pause your account's ability to send email, we
might require additional information. See the FAQ topic associated with the issue you experienced
for a list of the information you should include in your request.

Q8. What if my request isn't accepted?

We'll respond to your request with information about why we didn't accept it. In some cases, you'll
be able to submit another request if you're able to demonstrate that you resolved the issue, and
that your changes prevent the issue from occurring again in the future.

Q9. Can you help me diagnose the problem?

Typically we can give you only a high-level overview of your issue (for example, that you have a
problem with bounces). It's your responsibility to correct the issue.

Q10. How do I know if my account's ability to send email has been restored?

Reputation metrics includes information about the current status of your account. For more
information, see Using reputation metrics to track bounce and complaint rates.

Sending Pauses 1019

Amazon Simple Email Service Developer Guide

Q11. Can I get help from my AWS representative or Premium Support?

If you're already working with an AWS account representative, we'll automatically contact him
or her if we pause your account's ability to send email. Your account representative may be able
to provide additional information to help you better understand the issue. If you use Premium
Support, you should also contact that team for additional help.

Bounce FAQ

Q1. Why do you care about my bounces?

High bounce rates are often used by entities such as email providers and anti-spam organizations
to detect senders who engage in bad email-sending practices. High bounce rates can lead to email
being sent to the spam folder rather than the inbox.

Q2. What should I do if I receive a notification stating that my account is under
review or that my sending is paused because of my account's bounce rate?

Identify the cause of the issue, and then correct it. After you make changes that you believe will
resolve the issue, sign into the AWS Console and go to Support Center. Reply to the case we
opened on your behalf. In your message, provide detailed information about the steps you've taken
to resolve the issue, and describe how these steps prevent the issue from happening again in the
future. Also include the following information:

• The method you use to track your bounces

• How you ensure that the email addresses of new recipients are valid prior to sending to them.
For example, which of the recommendations are you following in Q11. What can I do to minimize
bounces?

Q3. What types of bounces count toward my bounce rate?

Your bounce rate includes only hard bounces to domains you haven't verified. Hard bounces are
permanent delivery failures such as "address does not exist." Temporary and intermittent failures
such as "mailbox full," or bounces due to blocked IP addresses, don't count toward your bounce
rate.

Bounces 1020

Amazon Simple Email Service Developer Guide

Q4. Do you disclose the bounce rates that could cause my account to be placed
under review or that could cause my sending to be paused?

For best results, you should maintain a bounce rate below 2%. Higher bounce rates can impact the
delivery of your emails.

If your bounce rate is 5% or greater, we'll place your account under review. If your bounce rate is
10% or greater, we might pause your account's ability to send additional email until you resolve
the issue that resulted in the high bounce rate.

Q5. Over what period of time is my bounce rate calculated?

We don't calculate your bounce rate based on a fixed period of time, because different senders
send at different rates. Instead, we look at a representative volume—an amount of email that
represents your typical sending practices. To be fair to both high- and low-volume senders, the
representative volume is different for each user and changes as the user's sending patterns change.

Q6. Can I calculate my own bounce rate by using the information from the SES
console or the GetSendStatistics API?

No. The bounce rate is calculated using representative volume (see Q5. Over what period of time is
my bounce rate calculated?). Depending on your sending rate, your bounce rate can stretch farther
back in time than the SES console or GetSendStatistics can retrieve. In addition, only emails to
non-verified domains are considered when calculating your bounce rate. However, if you regularly
monitor your bounce rates using those methods, you should still have a good indicator that you
can use to catch problems before they get to levels that cause us to place your account under
review or pause your account's ability to send email.

Q7. How can I find out which email addresses bounced?

Examine the bounce notifications that SES sends you. The email address to which SES forwards the
notifications depends on how you sent the original messages, as described at Receiving Amazon
SES notifications through email. You can also set up bounce notifications through Amazon Simple
Notification Service (Amazon SNS), as described at Setting up event notifications for Amazon SES.
Note that simply removing bounced addresses from your list without any additional investigation
might not solve the underlying problem. For information about what you can do to reduce
bounces, see Q11. What can I do to minimize bounces?.

Bounces 1021

Amazon Simple Email Service Developer Guide

Q8. If I haven't been monitoring my bounces, can you give me a list of addresses
that have bounced?

No, we can't provide a complete list of addresses that have bounced. You are responsible for
monitoring and acting upon the bounces for your account.

Q9. How should I handle bounces?

You need to remove bounced addresses from your mailing list and stop sending mail to them
immediately. If you're a small sender, it might be sufficient to simply monitor bounces through
email and manually remove bounced addresses from your mailing list. If your volume is higher,
you'll probably want to set up automation for this process, either by programmatically processing
the mailbox where you receive bounces, or by setting up bounce notifications through Amazon
SNS. For more information, see Setting up event notifications for Amazon SES.

Q10. Could my emails be bouncing because I've reached my sending quota?

No. Bounces aren't related to sending quotas. If you try to exceed your sending quota, you'll receive
an error from the SES API or SMTP interface when you try to send an email.

Q11. What can I do to minimize bounces?

First, be sure that you're aware of your bounces (see Q7. How can I find out which email addresses
bounced?). Then follow these guidelines:

• Don't buy, rent, or share email addresses. Send email only to recipients who explicitly requested
to receive email from you.

• Remove bounced email addresses from your list.

• On web forms, ask users to enter their email addresses two times, and check to make sure both
addresses match before the form can be submitted.

• Use double opt-in to sign up new users. That is, when a new users sign up, send them a
confirmation email that they need to click before receiving any additional mail. This prevents
people from signing up other people as well as accidental sign-ups.

• If you must send to addresses that you haven't mailed lately (and thus you can't be confident
that the addresses are still valid), do so only with a small portion of your overall sending. For
more information, see our blog post Never send to old addresses, but what if you have to?.

• Ensure that you're not structuring sign-ups to encourage people to use fictional addresses. For
example, don't provide any added value or benefits until recipients verify their addresses.

Bounces 1022

https://aws.amazon.com//blogs/messaging-and-targeting/never-send-to-old-addresses-but-what-if-you-have-to/

Amazon Simple Email Service Developer Guide

• If you have an "email a friend" feature, use CAPTCHA or a similar mechanism to discourage
automated use of the feature, and don't allow users to insert arbitrary content.

• If you're using SES for system notifications, ensure that you're sending the notifications to real
addresses that can receive mail. Also consider turning off notifications that you don't need.

• If you're testing a new system, be sure you're either sending to real addresses that can receive
email, or you're using the SES mailbox simulator. For more information, see Using the mailbox
simulator manually.

Complaint FAQ

Q1. What's a complaint?

A complaint occurs when a recipient reports that they don't want to receive an email. They might
have clicked the "Report spam" button in their email client, complained to their email provider,
notified SES directly, or through some other method. This topic includes general information about
complaints. If your notification contains specific information about the source of the complaints,
also read the relevant topic:

• SES complaints through feedback loops FAQ

• SES complaints directly from recipients FAQ

• SES complaints through email providers FAQ

Q2. Why do you care about my complaints?

High complaint rates are often used by entities such as email providers and anti-spam
organizations as indicators that a sender is sending to recipients who didn't specifically sign up to
receive emails, or that the sender is sending content that is different from the type that recipients
signed up for.

Q3. What should I do if I receive a notice saying that my account is under review
or that my sending is paused because of an issue with complaints?

Review your list acquisition process and the content of your emails to try to understand why your
recipients might not appreciate the email they're receiving from you. Identify the cause of the
issue, and then correct it. After you make changes that you believe will resolve the issue, sign
into the AWS Console and go to Support Center. Reply to the case we opened on your behalf. In

Complaints 1023

Amazon Simple Email Service Developer Guide

your message, provide detailed information about the steps you've taken to resolve the issue, and
describe how these steps prevent the issue from happening again in the future.

Q4. What can I do to minimize complaints?

First, be sure that you monitor the complaints that SES can notify you about, which are complaints
that SES receives through feedback loops (see the SES complaints through feedback loops FAQ).
Then follow these guidelines:

• Do not buy, rent, or share email addresses. Use only addresses that specifically requested your
mail.

• Use double opt-in to sign up new users. That is, when users sign up, send them a confirmation
email that they need to click before receiving any additional mail. This prevents people from
signing up other people as well as accidental sign-ups.

• Monitor engagement with the mail you send and stop sending to recipients who don't open or
click your messages.

• When new users sign up, be clear about the type of email they will receive from you, and ensure
that you send only the type of mail that they signed up for. For example, if users sign up for
news updates, don't send them advertisements.

• Ensure that your mail is well-formatted and looks professional.

• Ensure that your mail is clearly from you and can't be confused for something else.

• Provide users an obvious and easy way to unsubscribe from your mail.

SES complaints through feedback loops FAQ

This topic provides information about complaints that SES receives from email providers through
feedback loops. For general information that applies to all types of complaints, see the Complaint
FAQ.

Q1. How is this type of complaint reported?

Most email client programs provide a button labeled "Mark as Spam" or similar, which moves the
message to a spam folder and forwards it to the email provider. Additionally, most email providers
maintain an abuse address (such as abuse@example.com), where users can forward unwanted email
and request that the provider take action to prevent them. If SES has a feedback loop (FBL) set up
with the email provider, then they send the complaint back to SES.

Complaints 1024

Amazon Simple Email Service Developer Guide

Note

SES automatically sets the Feedback-ID header when you send messages, giving mailbox
providers a way to aggregate delivery statistics, such as complaint and spam rates, and
make them available to you. The Feedback-ID header value that SES provides is comprised
as such:

• FeedBackId:((SESInternalID):(AmazonSES)), where:

• SESInternalID is the identifier used by SES for collecting complaint information.

• AmazonSES is a static tag identifying SES as the sending platform.

Optionally, in addition to the standard Feedback-ID header value that SES provides, you
can also specify your own customized feedback IDs (up to two) using the ses:feedback-
id-a and ses:feedback-id-b message tags, see the section called “Fine-grained
feedback for email campaigns”.

Q2. Are these complaints included in the complaint rate statistic shown in the SES console and
returned by the GetSendStatistics API?

Yes. However, the complaint rate statistic doesn't include complaints from email providers that
don't provide feedback to SES. The complaint rate from domains that provide feedback is likely to
be representative of the rest of your sending as well.

Q3. How can I be notified of these complaints?

You can be notified through email or through Amazon SNS notifications. See the set-up
instructions in Setting up event notifications for Amazon SES.

Q4. What should I do if I receive a complaint notification through email or through Amazon
SNS?

First, you need to remove addresses that generated complaints from your mailing list and stop
sending mail to them immediately. Do not even send an email that says you've received the request
to unsubscribe. Consider setting up automation for this process, either by programmatically
processing the mailbox where you receive complaints, or by setting up complaint notifications
through Amazon SNS. For more information, see Setting up event notifications for Amazon SES.

Complaints 1025

Amazon Simple Email Service Developer Guide

Then, take a close look at your sending to determine why your recipients don't appreciate the mail
you're sending, and address that underlying problem. For every person who complains, there are
potentially dozens who didn't appreciate your mail who didn't (or weren't able to) complain. If you
only remove the recipients who actually complain, you're not addressing the underlying problem.

Q5. Do you disclose the SES complaint rates that could cause my account to be placed under
review or that could result in my account's ability to send email being paused?

For best results, you should maintain a complaint rate below 0.1%. Higher complaint rates can
impact the delivery of your emails.

If your complaint rate is 0.1% or greater, we'll place your account under review. If your complaint
rate is 0.5% or greater, we might pause your account's ability to send additional email until you
resolve the issue that resulted in the high complaint rate.

Q6. Over what period of time is my complaint rate calculated?

We don't calculate your complaint rate based on a fixed period of time, because different senders
send at different rates. Instead, we look at a representative volume—an amount of mail that
represents your typical sending practices. To be fair to both high- and low-volume senders, the
representative volume is different for each user and changes as the user's sending patterns change.
Additionally, the complaint rate isn't calculated based on every email. Instead, it's calculated as the
percentage of complaints on mail sent to domains that send complaint feedback to SES.

Q7. Can I calculate my own complaint rate by using metrics from the SES console or the
GetSendStatistics API?

No. There are two primary reasons for this:

• The complaint rate is calculated using representative volume (see Q6. Over what period of time
is my complaint rate calculated?). Depending on your sending rate, your complaint rate can
stretch farther back in time than the SES console or GetSendStatistics API can retrieve. For
this reason, we recommend that you regularly use these methods to monitor the complaint rate
for your account. Monitoring your complaint rate in this way gives you the information you need
to identify problems before they reach levels that could impact the delivery of your email.

• When calculating complaint rate, not every email counts. Complaint rate is calculated as the
percentage of complaints on mail sent to domains that send complaint feedback to SES.

Complaints 1026

Amazon Simple Email Service Developer Guide

Q8. How can I find out which email addresses complained?

Examine the complaint notifications that SES sends you through email or through Amazon SNS
(see Setting up event notifications for Amazon SES). However, different email providers provide
differing amounts of information, and some providers redact the recipient's email address before
passing the complaint notification to SES. To enable you to find the recipient's email address in the
future, your best option is to store your own mapping between an identifier and the SES message
ID that SES passes back to you when it accepts the email. Note that SES doesn't retain any custom
message IDs that you add.

Q9. If I haven't been monitoring my complaints, can you give me a list of addresses that have
complained?

Unfortunately, we can't give you a comprehensive list. However, you can monitor future complaints
by email or through Amazon SNS.

Q10. Can I get a sample email?

We can't send you a sample email upon request, but you might find this information in the
complaint notification. For more information, see Q8. How can I find out which email addresses
complained?.

SES complaints directly from recipients FAQ

This topic provides information about complaints that SES receives directly from recipients. For
general information that applies to all types of complaints, see the Complaint FAQ.

Q1. How is this type of complaint reported?

Multiple recipients directly contacted SES about your mail through email or some other means.

Q2. Are these complaints included in the complaint rate statistic shown in the SES console and
returned by the GetSendStatistics API?

No. The complaint rate statistic you retrieve using the SES console or the GetSendStatistics
API only includes complaints that SES receives through feedback loops. For more information
about those types of complaints, see the SES complaints through feedback loops FAQ.

Complaints 1027

Amazon Simple Email Service Developer Guide

Q3. Why haven't I heard about these complaints through email feedback notifications or
through Amazon SNS?

Email feedback forwarding and Amazon SNS notifications only include complaints that SES
receives through feedback loops. You won't receive notifications for complaints that recipients filed
directly with SES.

Q4. How can I find out which email addresses complained?

To protect the identities of the recipients who complained, we can't list the email addresses that
complained about your email.

Rather than focus on removing individual recipients from your lists, we recommend that you
determine the problem that led to the complaints being issued. We recommend that you begin by
reviewing your customer acquisition process, and that you remove any customers from your lists
that didn't explicitly ask to receive email from you. You should also analyze the content of your
emails to try to understand why your recipients are complaining.

Q5. Can I get a sample email?

To protect the identities of the recipients who complained, we can't provide copies of the emails
that caused your recipients to complain.

Q6. What should I do if I receive a notification stating that my account is under review or that
my sending is paused because of direct complaints?

Immediately change your sending processes so that you're only sending messages recipients who
have specifically signed up to receive them. Also, ensure that you're sending the type of content
that your recipients signed up to receive. After you make changes that you believe will resolve the
issue, sign into the AWS Console and go to Support Center. Reply to the case we opened on your
behalf. In your message, provide detailed information about the steps you've taken to resolve the
issue, and describe how these steps prevent the issue from happening again in the future.

If you don't request a review within three weeks, and we continue to receive direct recipient
complaints, we might pause your account's ability to send email.

SES complaints through email providers FAQ

This topic provides information about complaints that SES receives through email providers (also
called mailbox providers). For general information that applies to all types of complaints, see the
Complaint FAQ.

Complaints 1028

Amazon Simple Email Service Developer Guide

Q1. How is this type of complaint reported?

An email provider reported to SES that a significant number of its customers marked your emails as
spam. The report was provided to SES through a means other than the feedback loops described in
the SES complaints through feedback loops FAQ.

Q2. Are these complaints included in the complaint rate statistic shown in the SES console and
returned by the GetSendStatistics API?

No. The complaint rate statistic you retrieve using the SES console or the GetSendStatistics
API only includes complaints that SES receives through feedback loops.

Q3. Why haven't I heard about these complaints through email feedback notifications or
through Amazon SNS?

Email feedback forwarding and Amazon SNS notifications only include complaints that SES
receives through feedback loops.

Q4. How can I find out which email addresses complained?

Email providers typically don't disclose this information. However, rather than focusing on
removing individual recipients from your list, you need to focus on finding and fixing the
underlying problem. Start by reviewing your list acquisition process and the content of your emails
to try to understand why your recipients might not appreciate your email.

Q5. Can I get a sample email?

No. Email providers typically don't provide an example email.

Q6. What should I do if I receive a notification stating that my account is under review or that
my sending is paused because of email provider complaints?

Identify the cause of the issue, and then correct it. After you make changes that you believe will
resolve the issue, sign into the AWS Console and go to Support Center. Reply to the case we
opened on your behalf. In your message, provide detailed information about the steps you've taken
to resolve the issue, and describe how these steps prevent the issue from happening again in the
future. If you don't request a review within three weeks, and we continue to receive complaints
from providers, we might pause your account's ability to send additional email.

Complaints 1029

Amazon Simple Email Service Developer Guide

Spamtrap FAQ

Q1. What are spamtraps?

A spamtrap is a special email address maintained by an Internet Service Provider (ISP), email
provider, or anti-spam organization. Because that address will never legitimately be signed up to
receive email, the organizations that maintain these spamtraps know that anyone who sends mail
to any of these addresses is likely to be engaging in questionable email practices.

Q2. How are spamtraps set up?

Spamtrap addresses can be set up in multiple ways. They can be converted from addresses that
were once valid, but have been unused (and bouncing) for an extended period of time. They can
also be addresses that were set up just to be spamtraps. They can be unusual addresses that are
hard to guess, and sometimes they are addresses that are close to real addresses (for example,
introducing a typo into a common domain name). Often, but not always, spamtraps are "seeded"
into the world by putting them on the internet in a variety of ways.

Q3. How does SES know if I am sending to spamtraps?

Certain organizations that operate spamtraps send SES notifications when their spamtraps are hit
by SES senders.

Q4. How does SES use the spamtrap reports?

We review the reports. If we determine that your account is sending email to spamtraps, we place
your account under review and ask you to fix the underlying problem. If you don't fix the problem
before the review period is over, we might pause your account's ability to send additional email.
If your spamtrap problem is very severe, we might pause your account's ability to send email
immediately, without placing your account under review first.

Q5. What should I do if a receive a notice saying that my account is under review
or that my sending is paused because of an issue with spamtraps?

First, you should address the issue that caused us to place your account under review or pause your
ability to send email. Next, sign into the AWS Console and go to Support Center. Reply to the case
we opened on your behalf. In your message, provide detailed information about the steps you've
taken to resolve the issue, and describe how these steps prevent the issue from happening again in

Spamtraps 1030

Amazon Simple Email Service Developer Guide

the future. If we agree that the changes you've made appropriately address the issue, we'll cancel
the review period or remove the sending pause from your account.

Because of the way that spamtrap hits are reported, it may take three weeks or more before we are
able to determine if the changes you made solved the issue.

Q6. How many spamtrap hits can I have before you place my account under
review or pause my account's ability to send email?

We don't disclose the specific number of spamtrap hits that cause us to take action on your
account. However, it's important to note that even a small number of spamtrap hits can have a very
negative effect on your reputation as a sender, so you should take spamtrap reports seriously.

Q7. Do you disclose the spamtrap addresses?

No. In order for spamtraps to be effective, it's essential that they remain confidential. Spamtrap
organizations disclose only the occurrence of spamtrap hits, not the actual spamtrap addresses.

Q8. What can I do to avoid sending to spamtraps?

To reduce the risk of sending to spamtraps, follow these guidelines:

• Do not buy, rent, or share email addresses. Use only addresses that specifically requested your
mail.

• On web forms, ask users to enter their email addresses two times, and check to make sure both
addresses match before the form can be submitted.

• Use double opt-in to sign up new users. That is, when users sign up, send them a confirmation
email that they need to click before receiving any additional mail.

• Ensure that you remove addresses that hard bounce from your list, so that they are removed
long before they are converted to spamtraps.

• Ensure that you're monitoring engagement by your recipients, and stop sending to recipients
who haven't engaged with your emails or website recently. Time frames for what an "engaged
user" is depend on your use case, but generally speaking if users haven't opened or clicked your
emails in several months, you should consider removing them unless you have evidence that they
do want your mail.

• Be very careful with re-engagement campaigns where you intentionally contact people who
haven't interacted with you recently. These efforts tend to be highly risky, and can often cause
problems not only with spamtrap sending, but also with bounces and complaints.

Spamtraps 1031

Amazon Simple Email Service Developer Guide

• Send an opt-in message to your entire mailing list and keep only the recipients who click on the
verification link. In addition to removing inactive recipients from your list, this procedure also
helps remove spamtrap addresses. However, we don't recommend using this technique if you
think that your mailing list might contain a lot of bad addresses, or if your account already has a
problem with bounces, because it might cause your account's bounce rate to increase further.

Manual investigation FAQ

Q1. What should I do if I receive a notification stating that my account is under
review or that my sending is paused because of a manual investigation?

An SES investigator has identified a significant problem with your sending. Typical problems
include, but aren't limited to, the following:

• Your sending violates the AWS Acceptable Use Policy (AUP).

• Your emails appear to be unsolicited.

• Your content is phishing related (this includes simulated phishing).

• Your content is otherwise associated with a use case that SES doesn't support.

If we believe that the problem can be corrected, we place your account under review for a certain
amount of time. While your account is under review, you should make changes to your email
sending practices to correct the issue.

If we don't believe that the problem can be corrected, or if the problem is very severe, we might
pause your account's ability to send email without first placing your account under review.

Q2. What issues could cause you to perform a manual review of my email
sending?

There are several issues that could cause us to begin a manual review of your account. These
reasons include, but aren't limited to, the following:

• Recipients contact SES to complain about email sent from your account.

• We detect unusual changes in your email sending patterns.

• Our spam filters find characteristics of your email that are typical of unsolicited or low-quality
content.

Manual investigations 1032

https://aws.amazon.com/aup/

Amazon Simple Email Service Developer Guide

When we place your account under review or pause your account's ability to send email, we send
you a notification. In most cases, this notification contains information about the issue, and
provides information about the next steps you can take.

Q3. What are "unsolicited" emails?

Unsolicited emails are emails that the recipient didn't explicitly ask to receive. This includes cases in
which a recipient signs up for a certain type of mail (for example, notifications), and instead is sent
a different type of mail (for example, advertisements).

When we place your account under review or pause your account's ability to send email, we send
you a notification. If you receive a notification stating that we're taking one of these actions
because of an issue with unsolicited email, sign into the AWS Console and go to Support Center.
Reply to the case we opened on your behalf. In your message, include the following information:

• Are all the messages that you send specifically requested by the recipient, and do they comply
with the AWS Acceptable Use Policy?

• Have you acquired email addresses in any way other than a customer specifically interacting with
you or your website and requesting emails from it? You should explain how you acquired your
mailing list.

• How do your subscribe and unsubscribe processes work? You should include your opt-in and opt-
out links.

Q4. What should I do if I receive a notification stating that my account is under
review or that my sending is paused because of a manual review?

Identify the cause of the issue, and then correct it. After you make changes that you believe will
resolve the issue, sign into the AWS Console and go to Support Center. Reply to the case we
opened on your behalf. In your message, provide detailed information about the steps you've taken
to resolve the issue, and describe how these steps prevent the issue from happening again in the
future. If we agree that the changes you've made appropriately address the issue, we'll cancel the
review period on your account.

Q5. What types of problems do you view as "correctable?"

Generally, we believe the situation is correctable if you have a history of good sending practices,
and if there are steps you can take to eliminate the problematic sending while continuing the bulk
of your sending. For example, if you're sending three different types of email and only one type is

Manual investigations 1033

https://aws.amazon.com/aup/

Amazon Simple Email Service Developer Guide

problematic, you might be able to simply stop the problematic sending and continue with the rest
of your sending.

Q6. What if I can't find the source of the problem?

You can sign into the AWS Console and go to Support Center. Reply to the case we opened on your
behalf and request a sample of the mail that caused the issue.

DNS Blackhole List (DNSBL) FAQs

Domain Name System-based Blackhole Lists (DNSBLs)—sometimes referred to as Realtime Blackhole
Lists (RBLs), deny lists, blocklists, or blacklists—are intended to inform email providers of IP
addresses that are suspected of sending unwanted email.

Different DNSBLs have different impacts on email deliverability. This topic describes how DNSBLs
impact the delivery of emails you send using Amazon SES, as well as our policies for removing
Amazon SES IP addresses from DNSBLs.

Note

This topic is about the DNSBLs that email providers use to block incoming messages. For
information about how Amazon SES blocks outgoing email sent to recipients whose email
addresses have previously generated bounces, see Amazon SES global suppression list.

Q1. How do DNSBLs impact email delivery?

Different DNSBLs have different impacts on the successful delivery of a message. Major email
providers—including Gmail, Hotmail, AOL, and Yahoo—seem to recognize a very small number of
highly regarded DNSBLs, such as those offered by Spamhaus. In our experience, other DNSBLs tend
to have a low impact, although some mail systems emphasize certain DNSBLs over others.

Finally, many email providers have their own internal deny lists. Email providers guard these lists
very closely, and rarely share them with the public. If an IP address is on one of these lists, it can
have a major impact on your ability to send email to recipients who use that provider.

Q2. How do IP addresses end up on DNSBLs?

There are several ways that an IP address can end up on a DNSBL. IP addresses can be added to
DNSBLs when they send email to a spamtrap. A spamtrap is an email address that doesn't belong

DNS Blackhole List (DNSBL) FAQs 1034

Amazon Simple Email Service Developer Guide

to a human user. Spamtraps exist solely to collect spam and identify spammers. Some DNSBLs also
allow individual users to submit IP addresses. A few DNSBLs even allow users to submit entire IP
address ranges. Other DNSBLs are maintained through contributions by email administrators, and
can include IP addresses that administrators believe are abusing their own systems.

Q3. How does Amazon SES prevent its IP addresses from appearing on
DNSBLs?

Our systems look for signs of abuse. If we detect sending patterns or other characteristics that
could lead to an IP address being added to a DNSBL, we send a notification to the sender. If the
situation is severe, or if the sender doesn't fix the issue after we send the notification, we'll pause
the sender's ability to send email until they resolve the issue. Enforcing our sending policies in this
way helps reduce the chances that our IP addresses end up on DNSBLs.

Q4. Can Amazon SES have its IP addresses removed from a DNSBL?

We actively monitor DNSBLs that could impact delivery across the entire Amazon SES service, or
that could impact the ability to send email to recipients who use major email providers, such as
Gmail, Yahoo, AOL, and Hotmail. The DNSBLs offered by Spamhaus fall into this category. When
one of our IP addresses appears on a list that meets either of these criteria, we take immediate
action to have that address removed from the DNSBL as quickly as possible.

We don't monitor DNSBLs that are unlikely to impact delivery across the entire Amazon SES
service, or that don't have a measurable impact on delivery to major email providers. The DNSBLs
offered by SORBS and UCEPROTECT fall into this category. Because of the specific listing and
delisting practices of the vendors who operate these lists, we are unable to have our IP addresses
removed from these lists.

Q5. An email provider is rejecting my email because the sending IP
address is listed by a DNSBL other than Spamhaus. What can I do?

First, confirm that the message was truly blocked because of a DNSBL. If your email was rejected
because the sending IP address was added to a DNSBL, you'll receive a bounce notification that
mentions the DNSBL provider by name, as in the following example:

554 5.7.1 Service unavailable; Client host [192.0.2.0] blocked using DNSBLName;
 See: http://www.example.com/query/ip/192.0.2.0

DNSBL FAQ Q3 1035

Amazon Simple Email Service Developer Guide

If you received a bounce notification, but it didn't contain information similar to the message
shown in the preceding example, then the email provider most likely rejected your message for a
reason unrelated to being added to a DNSBL.

If you can confirm that an email provider is blocking your email because the sending IP address is
on a DNSBL, there are a few things you can do:

• Contact the postmaster of the domain that rejected your message to request an exception
from their spam filtering policy. Some postmasters have support processes, and may publish
a postmaster page that describes this process. If the domain you're trying to contact doesn't
publish its postmaster support policies, you might be able to contact the postmaster by sending
email to postmaster@example.com, where example.com is the domain in question. Domains
are required by RFC 5321 to have a postmaster mailbox.

When you contact the postmaster, provide the bounce codes you received, the headers of the
email you're trying to send, a measurement of the impact the DNSBL is having on the delivery of
your email, and information about why you believe that your email is being improperly blocked.
The more information you can provide to the postmaster to demonstrate that you're sending
legitimate email, the more likely the postmaster is to make an exception for you.

• If the email provider doesn't respond, or is unwilling to change their policies, consider using
a dedicated IP address. Dedicated IP addresses are addresses that only you can use. By
implementing good sending practices, you can keep your engagement rates high, and your rates
of bounces, complaints, and spamtrap hits low. Good sending practices can help ensure that your
addresses don't end up on DNSBLs.

Q6. Email that I send to Gmail, Yahoo, Hotmail, or another major
provider is being sent to the spam folder. Is this happening because my
sending IP address is on a DNSBL?

Probably not. If an IP address is listed by a DNSBL with significant impact, such as one of the
DNSBLs from Spamhaus, major email providers will reject email from that IP address completely,
rather than sending it to the spam folder.

When major email providers accept an email (rather than rejecting it), they usually consider user
engagement when considering whether to place the message in the inbox or in the spam folder.
User engagement refers to the ways in which users interacted with the messages you sent them
previously.

DNSBL FAQ Q6 1036

https://tools.ietf.org/html/rfc5321

Amazon Simple Email Service Developer Guide

To increase the chances that your messages reach your customers' inboxes, you should implement
all of the following best practices:

• Never rent or purchase lists of email addresses. Renting or purchasing lists is a violation of the
AWS Acceptable Use Policy (AUP) and isn't allowed on Amazon SES under any circumstances.

• Only send email to customers who explicitly asked to receive email from you. In many countries
and jurisdictions around the world, it's illegal to send email to recipients who didn't explicitly
agree to receive email from you.

• Stop sending email to customers who haven't opened or clicked links in messages that you've
sent in the past 30–90 days. This step can help to keep your engagement rates high, which
increases the chances that the messages you send in the future arrive in recipients' inboxes.

• Use consistent design elements and writing styles in each message that you send to ensure that
customers can easily identify messages from you.

• Use email authentication mechanisms, such as SPF and DKIM.

• When customers use a web form to subscribe to your content, send them an email to confirm
that they want to receive email from you. Don't send them any additional email until they
confirm that they want to receive email from you. This process is known as confirmed opt-in or
double opt-in.

• Make it easy for your customers to unsubscribe, and honor unsubscribe requests immediately.

• If you send email that contains links, check those links against the Spamhaus Domain Block List
(DBL). To test your links, use the Domain Lookup Tool on the Spamhaus website.

By implementing these practices, you can improve your sender reputation, which increases the
likelihood that the email you send reaches recipients' inboxes. Implementing these practices also
helps keep the bounce and complaint rates low for your account, and reduces the risk of sending
email to spamtraps.

Amazon SES email sending metrics FAQs

Amazon SES collects several metrics about the emails you send. These metrics enable you to
analyze the effectiveness of your email program and monitor important statistics, such as your
bounce and complaint rates.

This section contains FAQs on the following topics related to email sending metrics:

• General Questions

Email metrics FAQs 1037

https://aws.amazon.com/aup
https://www.spamhaus.org/lookup/

Amazon Simple Email Service Developer Guide

• Open Tracking

• Click Tracking

Note

Event tracking is dependent upon the recipient’s email service provider (ESP) and how
they’ve configured their privacy settings which are beyond the control of Amazon SES. The
count of tracking events can be skewed (returning inaccurate counts) under conditions such
as:

• The email recipient is using an email service provider (ESP) that protects their privacy.

• The email recipient explicitly doesn’t give their ESP permission to share their data.

• The email recipient’s ESP caches images or links, SES can only count the initial open, but
won't be able to count subsequent openings.

General Questions

Q1. After an email is delivered, how long does Amazon SES continue to collect
open and click metrics?

Amazon SES collects open and click metrics for 60 days after each email is sent.

Q2. If a user opens an email multiple times, or clicks a link in an email multiple
times, is each of those events tracked separately?

If a recipient opens an email multiple times, Amazon SES counts each open as a unique open event.
Similarly, if a recipient clicks the same link multiple times, Amazon SES counts each click as a
unique click event. However, these counts can be skewed by the scenarios outlined above in the
note box.

Q3. Are open and click metrics aggregated, or can they be measured down to the
recipient level?

Opens and clicks are tracked at the recipient level. With open and click tracking, you can determine
which recipients opened an email or clicked a link in an email.

General 1038

Amazon Simple Email Service Developer Guide

Q4. Can I retrieve open and click metrics using the Amazon SES API?

The Amazon SES API does not provide a method for retrieving open and click metrics. However,
you can retrieve open and click metrics for Amazon SES using the CloudWatch API. For example,
you can use the AWS CLI to retrieve click metrics using the CloudWatch API by issuing the following
command:

aws cloudwatch get-metric-statistics --namespace AWS/SES --metric-name Click \
 --statistics Sum --period 86400 --start-time 2017-01-01T00:00:00Z \
 --end-time 2017-12-31T23:59:59Z

The command shown above retrieves the total number of click events for each day in 2017. To
retrieve open metrics change the value of the metric-name parameter to Open. You can also
modify the start-time and end-time parameters to change the analysis period, or change the
period parameter for more fine-grained analysis.

Open Tracking

Q1. How does open tracking work?

A 1 pixel by 1 pixel transparent GIF image is inserted in each email sent through Amazon SES and
includes a unique reference to this image file; when the image is downloaded, SES can tell exactly
which message was opened and by whom.

By default, this pixel is inserted at the bottom of the email; however, some email providers’
applications truncate the preview of an email when it exceeds a certain size and may provide a link
to view the remainder of the message. In this scenario, the SES pixel tracking image does not load
and will throw off the open rates you’re trying to track. To get around this, you can optionally place
the pixel at the beginning of the email, or anywhere else, by inserting the {{ses:openTracker}}
placeholder into the email body. Once SES receives the message with the placeholder, it will be
replaced with open tracking pixel image.

Important

Just add one {{ses:openTracker}} placeholder, as more than one will result in a 400
BadRequestException error code being returned.

The addition of this tracking pixel does not change the appearance of your email.

Open Tracking 1039

Amazon Simple Email Service Developer Guide

Q2. Is open tracking enabled by default?

Open tracking is available to all Amazon SES users by default. To use open tracking, you must do
the following:

1. Create a configuration set.

2. In the configuration set, create an event destination.

3. Configure the event destination to publish open event notifications to a destination.

4. In every email for which you want to track opens, specify the configuration set that you created
in step 1.

For details about how to enable open tracking through a configuration set's event destination, see
the section called “Create event destinations”. You can use the pixel placeholder in SMTP email in
such ways as formatted, raw, and templated email.

Learn more about how to Monitor email sending using event publishing.

Q3. Can I omit the open tracking pixel from certain emails?

There are two ways to omit the open tracking pixel from your emails. The first method is to send
the email without specifying a configuration set. Alternatively, you can specify a configuration set
that is not configured to publish data about open events.

Q4. Do you track opens for plaintext emails?

Open tracking only works with HTML emails. Because open tracking relies on the inclusion of an
image, it is not possible to collect open metrics for users who open emails using a text-only (non-
HTML) email client.

Click Tracking

Q1. How does click tracking work?

To track clicks, Amazon SES modifies each link in the body of the email. When recipients open a
link, they are sent to an Amazon SES server, and are immediately forwarded to the destination
address. As with open tracking, each redirect link is unique. This enables Amazon SES to determine
which recipient clicked the link, when they clicked it, and the email from which they arrived at the
link.

Click Tracking 1040

Amazon Simple Email Service Developer Guide

Important

If you send a single message to multiple recipients, each recipient will save the same click
tracking link. To track individual recipients' click activity, send email to one recipient per
send operation.

Q2. Can I disable click tracking?

You can disable click tracking for individual links by adding an attribute, ses:no-track, to the
anchor tags in the HTML body of your email. For example, if you link to the AWS home page, a
normal anchor link resembles the following:

Amazon Web Services

To disable click tracking for that link, modify it to resemble the following:

<a ses:no-track href="aws.amazon.com">Amazon Web Services

Because ses:no-track isn't a standard HTML attribute, Amazon SES automatically removes it
from the version of the email that arrives in your recipients' inboxes.

You can also disable click tracking for all messages that you send using a specific configuration set.
To disable click tracking, modify the configuration set event destination so that it doesn't capture
click events.

For details about how to enable and disable click tracking through a configuration set's event
destination, see the section called “Create event destinations”.

Learn more about how to Monitor email sending using event publishing.

Q3. How many links can be tracked in each email?

The click tracking system can track a maximum of 250 links.

Q4. Are click metrics collected for links in plain text emails?

It's only possible to track clicks in HTML emails.

Click Tracking 1041

Amazon Simple Email Service Developer Guide

Q5. Can I tag links with unique identifiers?

You can add an unlimited number of tags, as key-value pairs, to links in your email by using the
ses:tags attribute. When you use this attribute, specify the keys and values using the same
format that you would use to pass inline CSS properties: type the key, followed by a colon (:),
followed by the value. If you need to pass several key-value pairs, separate each pair with a
semicolon (;).

For example, assume you want to add the tags product:book, genre:fiction,
subgenre:scifi, type:newrelease to a link. The resulting link resembles the following:

<a ses:tags="product:book;genre:fiction;subgenre:scifi;type:newrelease;"
 href="http://www.amazon.com/…/">New Releases in Science Fiction

These tags are passed through to your event publishing destination so that you can perform
additional analysis on the specific links that your users clicked.

Note

Link tags can include the numbers 0–9, the letters A–Z (both uppercase and lowercase),
hyphens (-), and underscores (_).

Q6. Do tracked links use the HTTP or HTTPS protocol?

Tracking links use the same protocol as the original links in your email.

For example, if your email includes a link to https://www.amazon.com, the link is replaced
with a tracking link that uses the HTTPS protocol. If your email includes a link to http://
www.example.com, the link is replaced with a tracking link that uses HTTP. If your email includes
both of the previously mentioned links, the HTTPS link is replaced with a tracking link that uses the
HTTPS protocol, and the HTTP link is replaced with a tracking link that uses the HTTP protocol.

Q7. A link in my email isn't being tracked. Why not?

Amazon SES expects the links in your emails to contain properly encoded URLs. Specifically, URLs
in your links must comply with RFC 3986. If a link in an email isn't properly encoded, recipients will
still see the link in the email, but Amazon SES won't track click events for that link.

Click Tracking 1042

https://tools.ietf.org/html/rfc3986

Amazon Simple Email Service Developer Guide

Issues related to improper encoding typically occur in URLs that contain query strings. For example,
if the URL of a link in your email contains a non-encoded space character in the query string (such
as the space between "John" and "Doe" in the following example: http://www.example.com/path/
to/page?name=John Doe), Amazon SES won't track that link. However, if the URL uses an encoded
space character instead (such as "%20" in the following example: http://www.example.com/path/
to/page?name=John%20Doe), Amazon SES tracks it as expected.

Click Tracking 1043

Amazon Simple Email Service Developer Guide

Quick Find Index

The following index has been created to help you quickly find things in Amazon SES by providing
two ways of searching - either by how-tos or concepts. The how-tos describe "how to" do
something while concepts explain the bigger picture.

Let us know what you think

Please use the Feedback button in the upper-right corner to let us know...

• Was this index helpful?

• Are there any how-tos or concepts you'd like to see added to this index?

• Was there something you thought should have been categorized differently?

SES How-to & concept links

How-tos

SES how-to links are listed alphabetically and will take you to the corresponding section to
show you "how to" perform the action you selected.

• Learn how to...

• Add an SPF Record as part of setting up a custom MAIL FROM domain

• Assign IP pools

• Block SPAM for email receiving

• Configure custom open/click domains

• Configure SNS notifications

• Connect to a SMTP endpoint

• Create a configuration set

• Create a domain identity

• Create an email address identity

• Create event destinations

• Create IP address filters

• Create a managed IP pool to enable dedicated IPs (managed)

How-tos & concepts 1044

Amazon Simple Email Service Developer Guide

• Create receipt rules

• Create reputation alarms using CloudWatch

• Create a sending authorization policy using a custom policy

• Create a sending authorization policy using the policy generator

• Create standard dedicated IP pools for dedicated IP addresses (standard)

• Delete an identity

• Delete personal data

• Edit an identity

• Enable email feedback forwarding

• Export reputation metrics

• Get out of the sandbox

• Get started with SES

• Get started with Virtual Deliverability Manager

• Give permissions for email receiving

• Increase throughput

• Increase your sending quota

• Integrate with your existing email server

• Log API calls

• Manage a configuration set

• Manage Easy DKIM & BYODKIM

• Monitor send and reputation metrics

• Monitor sending statistics

• Monitor usage statistics

• Monitor your sending quota

• Obtain DKIM records for an identity

• Obtain SMTP credentials

• Override account-level suppression with configuration set-level suppression

• Override inherited DKIM signing on an email address identity

• Pause email sending

• Publish an MX record
How-tos & concepts 1045

Amazon Simple Email Service Developer Guide

• Report abuse of AWS resources

• Request dedicated IP addresses

• Request technical support

• Resolve deliverability & reputation issues using the Virtual Deliverability Manager advisor

• Retrieve event data from CloudWatch

• Retrieve event data from Kinesis Data Firehose

• Retrieve event data from SNS

• Send email using an AWS SDK

• Send emails programmatically

• Send email using the SES API

• Send email using SMTP

• Send raw email with an attachment using the CLI or SES API

• Send test emails using the mailbox simulator

• Set up BYODKIM (Bring Your Own DKIM)

• Set up a DMARC policy

• Set up Easy DKIM

• Set up email receiving

• Set up event publishing

• Set up a MAIL FROM domain

• Set up sending authorization (identity owner tasks)

• Set up sending authorization (delegate sender tasks)

• Specify a configuration set when sending email

• Test your connection to the SMTP interface

• Track bounce and complaint rates

• Understand inherited DKIM signing properties

• Use reputation metrics

• Use software packages to send email

• Use subscription management

• Use templates to send email

• Use your account-level suppression list
How-tos & concepts 1046

https://aws.amazon.com/premiumsupport/knowledge-center/report-aws-abuse/
https://aws.amazon.com/contact-us/

Amazon Simple Email Service Developer Guide

• Verify a domain identity

• Verify an email address identity

• View an identity

• View high & detailed levels of your account’s deliverability metrics using the Virtual
Deliverability Manager dashboard

• View SNDS metrics for dedicated IPs

• Warm up dedicated IP addresses

Concepts

SES concept links are listed alphabetically and will take you to the corresponding chapter and
sections to explain the concept you selected.

• Find information about...

• Abuse of AWS resources, report

• Account dashboard

• Account-level suppression list

• Action options for email receiving

• Add header action

• Attachment types, unsupported

• Bounce response action, return

• BYODKIM (Bring Your Own DKIM)

• BYOIP (Bring Your Own IP)

• Code examples

• Compliance validation

• Configuration set-level suppression

• Configuration sets

• Content encodings

• Cross-account notifications legacy support

• Custom MAIL FROM domain

• Data protection

• Dedicated IP addresses
How-tos & concepts 1047

https://aws.amazon.com/premiumsupport/knowledge-center/report-aws-abuse/

Amazon Simple Email Service Developer Guide

• Dedicated IP addresses (managed)

• Dedicated IP addresses (standard)

• DKIM, authenticating email with

• DMARC (Domain-based Message Authentication, Reporting and Conformance)

• DMARC through DKIM, complying with

• DMARC through SPF, complying with

• Easy DKIM

• Email feedback forwarding destination

• Email receiving authentication

• Email receiving concepts

• Email receiving console walkthroughs

• Email receiving malware scanning

• Email receiving permissions

• Email receiving use cases

• Email receiving restrictions

• Email sending authentication methods

• Endpoints

• Event notifications

• Event notifications through email

• Event notifications through SNS

• Event publishing

• FAQs (Frequently Asked Questions)

• Global suppression list

• Header fields, supported

• Identities, managing

• Identity and access management

• Infrastructure security

• Integrate with Amazon WorkMail action

• IP-based control using IP address filters

• Lambda function action, invoke
How-tos & concepts 1048

Amazon Simple Email Service Developer Guide

• List management

• Lists and subscriptions

• Logging and monitoring

• Malware detection

• Manual DKIM signing

• Monitor email sending using event publishing

• Monitor sender reputation

• Monitoring sending activity

• Quotas

• Receipt rules

• Recipient-based control using receipt rules

• Regions

• Reputation metrics

• Reputation metrics messages

• Resilience

• S3 bucket action, deliver to

• Sandbox - getting out of

• Security

• Security protocols, supported

• Sending authorization

• Sending authorization policy anatomy

• Sending authorization policy examples

• Sending authorization process

• SNDS metrics for dedicated IPs

• SNS notification contents

• SNS notification examples

• SNS topic action, publish to

• SPF (Sender Policy Framework)

• Stop rule set action

• Subscription management
How-tos & concepts 1049

Amazon Simple Email Service Developer Guide

• Support, request technical

• Templates for custom email verification

• Troubleshooting

• Verified identities

• Virtual Deliverability Manager

• VPC endpoints

How-tos & concepts 1050

https://aws.amazon.com/contact-us/

	Amazon Simple Email Service
	Table of Contents
	What is Amazon SES?
	Benefits
	Related services
	Pricing
	Regions and Amazon SES
	Amazon SES regions and endpoints
	Sandbox removal and sending limit increases
	Verification of email addresses and domains
	Easy DKIM
	Account-level suppression list
	Feedback notifications
	SMTP credentials
	Custom MAIL FROM domains
	Sending authorization
	Email receiving

	Service quotas in Amazon SES
	Email sending quotas
	Sending quotas
	Message quotas
	Sender and recipient quotas
	Quotas related to event publishing
	Email template quotas

	Email receiving quotas
	Mail Manager quotas
	General quotas
	SES API sending quotas

	Types of Amazon SES credentials
	How email sending works in Amazon SES
	After a sender sends an email request to SES
	Successful sending request
	Failed sending request

	After Amazon SES sends an email
	Email format in Amazon SES
	Email header
	Email body
	Email information you need to provide to Amazon SES
	Amazon SES API
	Amazon SES SMTP interface
	Amazon SES console

	Understanding email deliverability in Amazon SES
	Understand email delivery issues
	Bounce
	Complaint
	Global suppression list

	Be proactive
	Verification
	Authentication
	Sending quotas
	Content filtering
	Reputation
	High-quality email

	Stay informed
	Notifications
	Usage statistics

	Improve your email-sending program
	At-least-once delivery

	Best practices for sending email using Amazon SES
	Email program success metrics
	Bounces
	Complaints
	Message quality

	Tips and best practices
	General recommendations
	Domain and "From" address considerations
	Authentication
	Building and maintaining your lists
	Compliance

	Using Amazon SES with an AWS SDK

	Getting started with Amazon Simple Email Service
	Setting up Amazon Simple Email Service
	Sign up for AWS
	Set up your SES account
	Grant programmatic access (To interact with SES outside of the console)
	Download an AWS SDK (For using the SES APIs)

	Migrating to Amazon SES from another email-sending solution
	Step 1. Verify your domain
	Step 2. Request production access
	Step 3. Configure domain authentication systems
	Step 4. Generate your SMTP credentials
	Step 5. Connect to an SMTP endpoint
	Next steps

	Request production access (Moving out of the Amazon SES sandbox)

	Managing your Amazon SES sending limits
	Increasing your Amazon SES sending quotas
	Automatically increased sending quotas
	User requested increased sending quotas

	Monitoring your Amazon SES sending quotas
	Monitoring your sending quotas using the Amazon SES console
	Monitoring your sending quotas using the Amazon SES API

	Errors related to the sending quotas for your Amazon SES account
	Reaching sending limits with the Amazon SES API
	Reaching sending limits with SMTP

	Set up email sending with Amazon SES
	Using the Amazon SES SMTP interface to send email
	Requirements to send email over SMTP
	Methods to send email over SMTP
	Email information to provide
	Obtaining Amazon SES SMTP credentials
	Obtaining SES SMTP credentials using the SES console
	Obtaining SES SMTP credentials by converting existing AWS credentials

	Connecting to an Amazon SES SMTP endpoint
	STARTTLS
	TLS Wrapper

	Sending email through Amazon SES using software packages
	Sending emails programmatically through the Amazon SES SMTP interface
	Integrating Amazon SES with your existing email server
	Integrating Amazon SES with Microsoft Windows Server IIS SMTP

	Testing your connection to the Amazon SES SMTP interface using the command line
	Prerequisites
	Testing your connection to the Amazon SES SMTP interface

	Using the Amazon SES API to send email
	Sending formatted email using the Amazon SES API
	Sending raw email using the Amazon SES API v2
	About email header fields
	Using MIME
	MIME Encoding
	Email addresses
	Email headers
	Message body
	File attachments

	Sending raw email using the Amazon SES API v2

	Using templates to send personalized email with the Amazon SES API
	Part 1: Set up Rendering Failure event notifications
	Part 2: Create an email template
	Part 3: Sending the personalized email
	Sending templated email to a single destination
	Sending templated email to multiple destinations

	Advanced email personalization
	Parsing nested attributes
	Iterating through lists
	Using basic conditional statements
	Creating inline partials

	Managing email templates
	Viewing a list of email templates
	Viewing the contents of a specific email template
	Deleting an email template
	Updating an email template

	Sending email through Amazon SES using an AWS SDK
	Prerequisites
	Code examples
	Creating a shared credentials file to use when sending email through Amazon SES using an AWS SDK

	Content encodings supported by Amazon SES

	Amazon SES and security protocols
	Email sender to Amazon SES
	HTTPS
	SMTP interface

	Amazon SES to receiver
	End-to-end encryption

	Amazon SES header fields
	Amazon SES unsupported attachment types

	Email receiving with Amazon SES
	Amazon SES email receiving concepts and use cases
	Recipient-based control using receipt rules
	IP-based control using IP address filters
	Email-receiving process
	Use cases and restrictions for Amazon SES email receiving
	Regional availability
	POP or IMAP based email clients
	Using other AWS services
	Email content
	Unwanted mail
	Mail streams

	Email-receiving authentication and malware scanning

	Setting up Amazon SES email receiving
	Verifying your domain for Amazon SES email receiving
	Publishing an MX record for Amazon SES email receiving
	Instructions for creating MX records for various providers

	Giving permissions to Amazon SES for email receiving
	Give Amazon SES permission to write to an S3 bucket
	Give Amazon SES permission to use your AWS KMS key
	Give Amazon SES permission to invoke a AWS Lambda function
	Give Amazon SES permission to publish to an Amazon SNS topic that belongs to a different AWS account

	Amazon SES email receiving console walkthroughs
	Creating receipt rules console walkthrough
	Prerequisites
	Creating rule sets and receipt rules
	Rule modifications after creation

	Action options
	Add header action
	Return bounce response action
	Invoke Lambda function action
	Writing your Lambda function
	Input format
	Return values

	Use case examples
	Use case 1: Drop spam across all domains
	Rule 1
	Rule 2
	Rule 3

	Use case 2: Bounce spam across all domains
	Rule 1
	Rule 2
	Rule 3

	Use case 3: Apply the most specific rule
	Rule 1
	Rule 2

	Use case 4: Log mail events to CloudWatch
	Rule 1

	Use case 5: Drops mail that fails DKIM
	Rule 1
	Rule 2

	Use case 6: Filters mail based on subject line
	Rule 1
	Rule 2
	Rule 3

	Lambda function examples
	Example 1: Drop spam
	Example 2: Continue if a particular header is found
	Example 3: Retrieve email from Amazon S3
	Example 4: Bounce messages that fail DMARC authentication

	Deliver to S3 bucket action
	Publish to Amazon SNS topic action
	Contents of notifications for Amazon SES email receiving
	Top-level JSON object
	receipt object
	action object
	dkimVerdict object
	dmarcVerdict object
	spamVerdict object
	spfVerdict object
	virusVerdict object

	mail object
	commonHeaders object

	Examples of notifications for Amazon SES email receiving
	Notification of an SNS action
	Alert notification

	Stop rule set action
	Integrate with Amazon WorkMail action

	Create IP address filters console walkthrough
	Prerequisites
	Create IP address filters

	Viewing metrics for Amazon SES email receiving

	Verified identities in Amazon SES
	Creating and verifying identities in Amazon SES
	Creating a domain identity
	Verifying a DKIM domain identity with your DNS provider
	Troubleshooting domain verification

	Creating an email address identity
	Verifying an email address identity
	Troubleshooting email address verification

	Create and verify an identity and assign a default configuration set at the same time
	Using custom verification email templates
	Creating a custom verification email template
	Editing a custom verification email template
	Sending verification emails using custom templates
	Custom verification email frequently asked questions
	Q1. How many custom verification email templates can I create?
	Q2. How do custom verification emails appear to recipients?
	Q3. Can I preview the custom verification email?
	Q4. Can I include images in my custom verification email templates?
	Q5. Are there any limits to the content that I can include in custom verification email templates?
	Q6. How many verified email addresses can exist in my account?
	Q7. Can I create custom verification email templates using the Amazon SES console?
	Q8. Can I track open and click events that occur when customers receive custom verification emails?
	Q9. Can custom verification emails include custom headers?
	Q10. Can I remove the text that appears at the bottom of custom verification emails?
	Q11. Are custom verification emails DKIM-signed?
	Q12. Why don't the custom verification email template API operations appear in the SDK or CLI?
	Q13. Why do I receive ProductionAccessNotGranted errors when I send custom verification emails?

	Managing identities in Amazon SES
	Viewing a list of identities in Amazon SES
	Deleting an identity in Amazon SES
	Editing an existing identity in Amazon SES
	Edit an identity to use a default configuration set using the API
	Retrieve the default configuration set used by the identity (API)
	Override the current default configuration set used by the identity (API)

	Configuring identities in Amazon SES
	Email authentication methods
	Authenticating Email with DKIM in Amazon SES
	DKIM signing key length
	DKIM considerations
	Understanding inherited DKIM signing properties
	Easy DKIM in Amazon SES
	Setting up Easy DKIM for a verified domain identity
	Change the Easy DKIM signing key length for an identity

	Provide your own DKIM authentication token (BYODKIM) in Amazon SES
	Step 1: Create the key pair
	Step 2: Add the selector and public key to your DNS provider's domain configuration
	Step 3: Configure and verify a domain to use BYODKIM
	Option 1: Creating a new domain identity that uses BYODKIM
	Option 2: Configuring an existing domain identity
	Verifying the DKIM status for a domain that uses BYODKIM

	Managing Easy DKIM and BYODKIM
	Obtaining DKIM Records for an identity
	Disabling Easy DKIM for an identity
	Enabling Easy DKIM for an identity
	Overriding inherited DKIM signing on an email address identity
	Understanding inherited DKIM signing properties
	Overriding DKIM signing on an email address identity (console)
	Overriding DKIM signing on an email address identity (AWS CLI)

	Manual DKIM signing in Amazon SES

	Authenticating Email with SPF in Amazon SES
	Using a custom MAIL FROM domain
	Why use a custom MAIL FROM domain?
	Choosing a custom MAIL FROM domain
	Using SPF with your custom MAIL FROM domain
	Configuring your custom MAIL FROM domain
	Setting up a custom MAIL FROM domain for a verified domain
	Setting up a custom MAIL FROM domain for a verified email address

	Custom MAIL FROM domain setup states with Amazon SES

	Complying with DMARC authentication protocol in Amazon SES
	Setting up the DMARC policy on your domain
	Best practices for implementing DMARC
	Complying with DMARC through SPF
	Complying with DMARC through DKIM

	Using BIMI in Amazon SES
	Setting up BIMI in SES

	Setting up event notifications for Amazon SES
	Important considerations
	Receiving Amazon SES notifications through email
	Enabling email feedback forwarding
	Disabling email feedback forwarding
	Email feedback forwarding destination

	Receiving Amazon SES notifications using Amazon SNS
	Configuring Amazon SNS notifications for Amazon SES
	Prerequisites
	Configuring notifications using the Amazon SES console
	Configuring notifications using the Amazon SES API
	Troubleshooting feedback notifications

	Amazon SNS notification contents for Amazon SES
	Top-Level JSON object
	Mail object
	Bounce object
	Bounced recipients
	Bounce types

	Complaint object
	Complained recipients
	Complaint types

	Delivery object

	Amazon SNS notification examples for Amazon SES
	Amazon SNS bounce notification examples
	Bounce notification with a DSN
	Bounce notification without a DSN

	Amazon SNS complaint notification examples
	Complaint notification with a feedback report
	Complaint notification without a feedback report

	Amazon SNS delivery notification example

	Using identity authorization in Amazon SES
	Amazon SES policy anatomy
	Policy structure
	Policy elements
	Policy-wide information
	Statements specific to the policy
	Conditions

	Policy requirements

	Creating an identity authorization policy in Amazon SES
	Using the policy generator
	Creating a custom policy

	Identity policy examples in Amazon SES
	Specifying the principal
	Restricting the action
	Using multiple statements

	Managing your identity authorization policies in Amazon SES
	Managing policies using the Amazon SES console
	Managing policies using the Amazon SES API

	Using sending authorization with Amazon SES
	Cross-account notifications legacy support
	Overview of Amazon SES sending authorization
	Sending authorization process
	Attribution of email sending features

	Identity owner tasks for Amazon SES sending authorization
	Verifying an identity for Amazon SES sending authorization
	Setting up identity owner notifications for Amazon SES sending authorization
	Getting information from the delegate sender for Amazon SES sending authorization
	Creating a sending authorization policy in Amazon SES
	Creating a sending authorization policy by using the policy generator
	Creating a custom sending authorization policy

	Sending policy examples
	Conditions specific to sending authorization
	Specifying the delegate sender
	Restricting the "From" address
	Restricting the time at which the delegate can send email
	Restricting the email sending action
	Restricting the display name of the email sender
	Using multiple statements

	Providing the delegate sender with the identity information for Amazon SES sending authorization

	Delegate sender tasks for Amazon SES sending authorization
	Providing information to the identity owner for Amazon SES sending authorization
	Using delegate sender notifications for Amazon SES sending authorization
	Create a new delegate sender notification

	Sending emails for the identity owner for Amazon SES sending authorization
	Using the Amazon SES API
	SendRawEmail
	SendEmail and SendTemplatedEmail

	Using the Amazon SES SMTP interface

	Sending test emails in Amazon SES with the simulator
	Using the mailbox simulator from the console
	Using the mailbox simulator manually
	Important considerations
	Using the mailbox simulator
	Testing Reject events

	Using configuration sets in Amazon SES
	Creating configuration sets in SES
	Create a configuration set (console)
	Create a configuration set (AWS CLI)

	Managing configuration sets in Amazon SES
	View, edit, & delete configuration set (console)
	List configuration sets (AWS CLI)
	Get configuration set details (AWS CLI)
	Delete a configuration set (AWS CLI)
	Stop sending email from a configuration set (AWS CLI)
	Understanding default configuration sets
	Creating Amazon SES event destinations
	Creating an event destination
	Editing, disabling/enabling, or deleting an event destination

	Assigning IP pools in Amazon SES
	Assigning an IP pool to a configuration set

	Configuring custom domains to handle open and click tracking
	Part 1: Setting up a domain for handling open and click link redirects
	Option 1: Configuring an HTTP domain
	Option 2: Configuring an HTTPS domain

	Part 2: Setting up a configuration set to refer to a custom open and click tracking domain
	Part 3: Selecting open and click event types in your configuration set's event destinations

	Specifying a configuration set when you send email
	Viewing and exporting reputation metrics
	Enabling the export of reputation metrics
	Disabling the export of reputation metrics

	Dedicated IP addresses for Amazon SES
	Ease of setup
	Reputation management
	Predictability of sending patterns
	Volume of outbound email
	Additional costs
	Control over sender reputation
	Ability to isolate sender reputation
	Known, unchanging IP addresses
	Dedicated IP addresses (standard) in Amazon SES
	Requesting and relinquishing dedicated IP addresses (standard)
	Request dedicated IPs (standard)
	Relinquish standard dedicated IP addresses

	Warming up dedicated IP addresses (standard)
	Automatic warmup for dedicated IPs (standard)
	Disable the automatic warmup process on dedicated IPs (standard)
	Manually warm up dedicated IPs (standard)

	Creating standard dedicated IP pools for dedicated IPs (standard)

	Dedicated IP addresses (managed) for Amazon SES
	Benefits and features of dedicated IPs (managed)
	Why proper IP warmup is important
	Creating a managed IP pool to enable dedicated IPs (managed)
	Viewing managed IP pool sending and capacity in the Amazon SES console
	Deleting a managed IP pool and opting out of dedicated IPs (managed)

	Using your own IP addresses to send email using Amazon SES
	Requirements
	Considerations
	Using your own IP addresses with Amazon SES

	Virtual Deliverability Manager for Amazon SES
	Getting started with Virtual Deliverability Manager
	Getting started with Virtual Deliverability Manager using the Amazon SES console
	Getting started with Virtual Deliverability Manager using the AWS CLI

	Virtual Deliverability Manager dashboard
	Using the Virtual Deliverability Manager dashboard in the Amazon SES console
	Accessing your Virtual Deliverability Manager metric data using the AWS CLI
	Filtering and exporting your deliverability metric data using the AWS CLI
	Finding your sent messages, their delivery & engagement status, and exporting the results using the AWS CLI
	Managing your export jobs using the AWS CLI
	Seeing a message’s full event history and ISP responses using the AWS CLI
	How Virtual Deliverability Manager dashboard metrics are calculated

	Virtual Deliverability Manager advisor
	What the Virtual Deliverability Manager advisor's looking for
	Using the Virtual Deliverability Manager advisor in the Amazon SES console
	Accessing your Virtual Deliverability Manager recommendations using the AWS CLI

	Virtual Deliverability Manager settings
	Changing your Virtual Deliverability Manager account settings using the Amazon SES console
	Changing your Virtual Deliverability Manager account settings using the AWS CLI

	Mail Manager for Amazon SES
	Getting started with Mail Manager
	Getting started with Mail Manager using the SES console

	Ingress endpoints
	Configuring your environment to use an ingress endpoint
	Creating an ingress endpoint in the SES console

	Traffic policies and policy statements
	Creating traffic policies and policy statements in the SES console
	Reference for policy statement conditions

	Rule sets and rules
	Creating rule sets and rules in the SES console
	Reference for rule conditions and actions

	SMTP relay
	Creating an SMTP relay in the SES console
	Setting up Google Workspaces for inbound (non-authenticated) SMTP relay
	Setting up Microsoft Office 365 for inbound (non-authenticated) SMTP relay

	Email archiving
	Using email archiving in the Amazon SES console

	Email Add Ons
	Subscribing to Email Add Ons in the Mail Manager console

	Permission policies for Mail Manager
	Permission policies for Ingress endpoint
	Secrets Manager secrets resource permission policy for ingress endpoint
	KMS customer managed key (CMK) key policy for ingress endpoint

	Permission policies for SMTP relay
	Secrets Manager secrets resource permission policy for SMTP relay
	KMS customer managed key (CMK) key policy for SMTP relay

	Permission policies for Email archiving
	Permission and trust polices to execute rule actions
	Permission policy for Write to S3 rule action
	Permission policy for Deliver to mailbox rule action
	Permission policy for Send to internet rule action

	Managing lists and subscriptions in Amazon Simple Email Service
	Amazon SES global suppression list
	Global suppression list considerations

	Using the Amazon SES account-level suppression list
	Amazon SES Account-level suppression list considerations
	Enabling the Amazon SES account-level suppression list
	Enabling the Amazon SES account-level suppression list for a configuration set
	Adding individual email addresses to the Amazon SES account-level suppression list
	Adding email addresses in bulk to your Amazon SES account-level suppression list
	Viewing a list of addresses that are on your Amazon SES account-level suppression list
	Removing individual email addresses from your Amazon SES account-level suppression list
	Removing email addresses in bulk from your Amazon SES account-level suppression list
	Viewing a list of import jobs for the account
	Getting information about an import job for the account
	Disabling the Amazon SES account-level suppression list

	Using configuration set-level suppression to override your account-level suppression list
	Enabling configuration set-level suppression

	Using list management
	List management overview
	Configuring list management
	Create a contact list
	Create a contact
	Bulk importing contacts to your contact list

	List management walkthrough with examples

	Using subscription management
	Subscription management overview
	Unsubscribe header considerations
	Adding an unsubscribe footer link

	Monitoring your Amazon SES sending activity
	Monitoring your sending statistics using the Amazon SES console
	Account dashboard
	Reputation metrics
	SMTP settings
	Using the console to monitor send and reputation metrics

	Monitoring your usage statistics using the Amazon SES API
	Calling the GetSendStatistics API operation using the AWS CLI
	Calling the GetSendStatistics operation programmatically
	Calling GetSendStatistics using the AWS SDK for Go
	Calling GetSendStatistics using the AWS SDK for PHP
	Calling GetSendStatistics using the AWS SDK for Python (Boto)
	Calling GetSendStatistics using the AWS SDK for Ruby

	Monitor email sending using Amazon SES event publishing
	How event publishing works with configuration sets and message tags
	Fine-grained feedback for email campaigns
	How to use event publishing
	Event publishing terminology
	Setting up Amazon SES event publishing
	Step 1: Create a configuration set
	Step 2: Add an event destination
	Set up a CloudWatch event destination for event publishing
	Adding a CloudWatch Event Destination
	Choosing CloudWatch Dimensions

	Set up a Data Firehose event destination for Amazon SES event publishing
	Giving Amazon SES Permission to Publish to Your Firehose Delivery Stream
	Permissions Policy
	Trust Policy

	Set up an Amazon EventBridge destination for event publishing
	Set up an Amazon Pinpoint event destination for event publishing
	Set up an Amazon SNS event destination for event publishing

	Step 3: Specify your configuration set when you send email
	Using Amazon SES API Parameters
	Using Amazon SES-Specific Email Headers
	Using Custom Email Headers

	Working with Amazon SES event data
	Retrieving Amazon SES event data from CloudWatch
	Available Metrics
	Available Dimensions
	Viewing Amazon SES Metrics in the CloudWatch Console

	Retrieving Amazon SES event data from Firehose
	Contents of event data that Amazon SES publishes to Firehose
	Top-level JSON object
	Mail object
	Bounce object
	Bounced recipients
	Bounce types

	Complaint object
	Complained recipients
	Complaint types

	Delivery object
	Send object
	Reject object
	Open object
	Click object
	Rendering Failure object
	DeliveryDelay object
	Delayed recipients

	Subscription object
	New/old topic preferences

	Examples of event data that Amazon SES publishes to Firehose
	Bounce record
	Complaint record
	Delivery record
	Send record
	Reject record
	Open record
	Click record
	Rendering Failure record
	DeliveryDelay record
	Subscription record

	Interpreting Amazon SES event data from Amazon SNS
	Contents of event data that Amazon SES publishes to Amazon SNS
	Top-level JSON object
	Mail object
	Bounce object
	Bounced recipients
	Bounce types

	Complaint object
	Complained recipients
	Complaint types
	Complaint subtypes

	Delivery object
	Send object
	Reject object
	Open object
	Click object
	Rendering Failure object
	DeliveryDelay object
	Delayed recipients

	Subscription object
	New/old topic preferences

	Examples of event data that Amazon SES publishes to Amazon SNS
	Bounce record
	Complaint record
	Delivery record
	Send record
	Reject record
	Open record
	Click record
	Rendering Failure record
	DeliveryDelay record
	Subscription record

	Monitoring your Amazon SES sender reputation
	Using reputation metrics to track bounce and complaint rates
	Reputation metrics messages
	Status Messages
	Bounce Rate Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Complaint Rate Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Anti-Spam Organization Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Listbombing Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Direct Feedback Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Domain Blocklist Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Internal Review Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review, or if your account's ability to send email is paused

	Mailbox Provider Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Recipient Feedback Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Related Account Notification
	Why you received this notification
	What you can do to resolve the issue

	Spamtrap Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review
	If your account's ability to send email is paused

	Vulnerable Site Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review, or if your account's ability to send email is paused

	Compromised Credentials Notification
	Why you received this notification
	What you can do to resolve the issue
	If your account is under review, or if your account's ability to send email is paused

	Other Notification
	Why you received this notification
	What you can do to resolve the issue

	Creating reputation monitoring alarms using CloudWatch
	SNDS metrics for dedicated IPs
	Troubleshooting questions

	Automatically pausing email sending
	Automatically pausing email sending for your entire Amazon SES account
	Part 1: Create an IAM Role
	Part 2: Create the Lambda Function
	Part 3: Re-Enable Email Sending for Your Account
	Part 4: Create an Amazon SNS Topic and Subscription
	Part 5: Create a CloudWatch Alarm
	Part 6: Test the solution

	Automatically pausing email sending for a configuration set
	Part 1: Enable Reputation Metric Reporting for the Configuration Set
	Part 2: Create an IAM Role
	Part 3: Create the Lambda Function
	Part 4: Re-Enable Email Sending for the Configuration Set
	Part 5: Create an Amazon SNS Topic
	Part 6: Create a CloudWatch Alarm
	Part 7: Test the solution

	Monitoring SES events using Amazon EventBridge
	SES events
	SES events schema reference
	Virtual Deliverability Manager advisor status schema
	SES email sending status schema

	Using EventBridge with SES events
	Specify a SES sample event in the EventBridge Sandbox
	Creating and testing event patterns for SES events

	Additional EventBridge resources

	Code examples for Amazon SES using AWS SDKs
	Code examples for Amazon SES using AWS SDKs
	Actions for Amazon SES using AWS SDKs
	Use CreateReceiptFilter with an AWS SDK or CLI
	Use CreateReceiptRule with an AWS SDK or CLI
	Use CreateReceiptRuleSet with an AWS SDK or CLI
	Use CreateTemplate with an AWS SDK or CLI
	Use DeleteIdentity with an AWS SDK or CLI
	Use DeleteReceiptFilter with an AWS SDK or CLI
	Use DeleteReceiptRule with an AWS SDK or CLI
	Use DeleteReceiptRuleSet with an AWS SDK or CLI
	Use DeleteTemplate with an AWS SDK or CLI
	Use DescribeReceiptRuleSet with an AWS SDK or CLI
	Use GetIdentityVerificationAttributes with an AWS SDK or CLI
	Use GetSendQuota with an AWS SDK or CLI
	Use GetSendStatistics with an AWS SDK or CLI
	Use GetTemplate with an AWS SDK or CLI
	Use ListIdentities with an AWS SDK or CLI
	Use ListReceiptFilters with an AWS SDK or CLI
	Use ListTemplates with an AWS SDK or CLI
	Use SendBulkTemplatedEmail with an AWS SDK or CLI
	Use SendEmail with an AWS SDK or CLI
	Use SendRawEmail with an AWS SDK or CLI
	Use SendTemplatedEmail with an AWS SDK or CLI
	Use UpdateTemplate with an AWS SDK or CLI
	Use VerifyDomainIdentity with an AWS SDK or CLI
	Use VerifyEmailIdentity with an AWS SDK or CLI

	Scenarios for Amazon SES using AWS SDKs
	Copy Amazon SES email and domain identities from one AWS Region to another using an AWS SDK
	Generate credentials to connect to an Amazon SES SMTP endpoint
	Verify an email identity and send messages with Amazon SES using an AWS SDK

	Cross-service examples for Amazon SES using AWS SDKs
	Build an Amazon Transcribe streaming app
	Create a web application to track DynamoDB data
	Create an Amazon Redshift item tracker
	Create an Aurora Serverless work item tracker
	Detect PPE in images with Amazon Rekognition using an AWS SDK
	Detect objects in images with Amazon Rekognition using an AWS SDK
	Detect people and objects in a video with Amazon Rekognition using an AWS SDK
	Use Step Functions to invoke Lambda functions

	Code examples for Amazon SES API v2 using AWS SDKs
	Actions for Amazon SES API v2 using AWS SDKs
	Use CreateContact with an AWS SDK or CLI
	Use CreateContactList with an AWS SDK or CLI
	Use CreateEmailIdentity with an AWS SDK or CLI
	Use CreateEmailTemplate with an AWS SDK or CLI
	Use DeleteContactList with an AWS SDK or CLI
	Use DeleteEmailIdentity with an AWS SDK or CLI
	Use DeleteEmailTemplate with an AWS SDK or CLI
	Use GetEmailIdentity with an AWS SDK or CLI
	Use ListContactLists with an AWS SDK or CLI
	Use ListContacts with an AWS SDK or CLI
	Use SendEmail with an AWS SDK or CLI

	Scenarios for Amazon SES API v2 using AWS SDKs
	A complete Amazon SES API v2 Newsletter workflow using an AWS SDK

	Security in Amazon Simple Email Service
	Data protection in Amazon Simple Email Service
	Data encryption at rest for Amazon SES
	Create a customer managed key
	Specifying a customer managed key for Mail Manager archiving
	Amazon SES encryption context
	

	Archive creation policies
	Monitoring your encryption keys for Amazon SES
	Learn more

	Encryption in transit
	Deleting personal data from Amazon SES
	Delete Email Addresses From the Account-Level Suppression List
	Delete Data About Email Sent Using Amazon SES
	Remove Stored Event Data

	Delete Data About Identities
	Delete Sender Authentication Data
	Delete Data Related to Receiving Rules
	Delete Data Related to IP Address Filters
	Delete Data in Email Templates
	Delete Data in Custom Verification Email Templates
	Delete All Personal Data by Closing Your AWS Account

	Identity and access management in Amazon SES
	Creating IAM Policies for Access to SES
	Restricting the Action
	Restricting Email Addresses
	Restricting by SES API version
	Restricting General API Usage

	Example IAM Policies for SES
	Allowing Full Access to All SES Actions
	Allowing Access to only SES API version 2
	Allowing Access to Email-Sending Actions Only
	Restricting the Time Period of Sending
	Restricting the Recipient Addresses
	Restricting the "From" Address
	Restricting the Display Name of the Email Sender
	Restricting the Destination of Bounce and Complaint Feedback

	AWS managed policies for Amazon Simple Email Service
	AWS managed policy: AmazonSESFullAccess
	AWS managed policy: AmazonSESReadOnlyAccess
	AWS managed policy: AmazonSESServiceRolePolicy
	Amazon Simple Email Service updates to AWS managed policies

	Using service-linked roles for Amazon SES
	Service-linked role permissions for Amazon SES
	Creating a service-linked role for Amazon SES
	Editing a service-linked role for Amazon SES
	Deleting a service-linked role for SES
	Cleaning Up a service-linked role
	Manually delete the service-linked role

	Supported Regions for Amazon SES service-linked roles

	Logging and monitoring in Amazon SES
	Logging Amazon SES API calls with AWS CloudTrail
	Amazon SES Information in CloudTrail
	Example: Amazon SES Log File Entries

	Compliance validation for Amazon Simple Email Service
	Resilience in Amazon Simple Email Service
	Infrastructure security in Amazon Simple Email Service
	Setting up VPC endpoints with Amazon SES
	Walkthrough example of setting up SES in Amazon VPC
	Prerequisites
	Setting up SES in Amazon VPC
	Step 1: Create the security group
	Step 2: Create the VPC endpoint
	(Optional) Step 3: Test the connection to the VPC endpoint

	Troubleshooting Amazon SES issues
	General Amazon SES issues
	Changes that I make are not immediately visible

	Domain and Email address verification problems
	Common domain verification problems
	Checking domain verification settings
	Common email verification problems

	Troubleshooting DKIM problems in Amazon SES
	Amazon SES Delivery problems
	Problems with emails received from Amazon SES
	Amazon SES notification problems
	Amazon SES email sending errors
	Increasing throughput with Amazon SES
	Amazon SES SMTP issues
	SMTP response codes returned by Amazon SES

	Amazon SES frequently asked questions (FAQs)
	Amazon SES Sending review process FAQs
	Account under review FAQ
	Q1. I received a message stating that my account is under review. What does that mean?
	Q2. Will I always be notified if my account is placed under review?
	Q3. Why didn't I receive a notification that my account is under review?
	Q4. Will the fact that my SES account is under review impact my use of other AWS services?
	Q5. What should I do if my account is under review?
	Q6. How do I request a review?
	Q7. What if my review request isn't accepted?
	Q8. Can you help me diagnose the problem?
	Q9. How will I know if my account is no longer under review?
	Q10. Do you place my account under review every time there's a problem?
	Q11. What if I make my fixes shortly before the review period expires?
	Q12. Can I get help from my AWS representative or Premium Support?

	Sending pause FAQ
	Q1. I received a message stating that my account's ability to send email is paused. What does that mean?
	Q2. Will I always be notified if my account's ability to send email is paused?
	Q3. My account's ability to send email is paused. Why didn't I receive a notification?
	Q4. My account's ability to send email is paused. Does this impact my ability to use of other AWS services?
	Q5. What should I do if my account's ability to send email is paused?
	Q6. What's a review?
	Q7. How do I request a review?
	Q8. What if my request isn't accepted?
	Q9. Can you help me diagnose the problem?
	Q10. How do I know if my account's ability to send email has been restored?
	Q11. Can I get help from my AWS representative or Premium Support?

	Bounce FAQ
	Q1. Why do you care about my bounces?
	Q2. What should I do if I receive a notification stating that my account is under review or that my sending is paused because of my account's bounce rate?
	Q3. What types of bounces count toward my bounce rate?
	Q4. Do you disclose the bounce rates that could cause my account to be placed under review or that could cause my sending to be paused?
	Q5. Over what period of time is my bounce rate calculated?
	Q6. Can I calculate my own bounce rate by using the information from the SES console or the GetSendStatistics API?
	Q7. How can I find out which email addresses bounced?
	Q8. If I haven't been monitoring my bounces, can you give me a list of addresses that have bounced?
	Q9. How should I handle bounces?
	Q10. Could my emails be bouncing because I've reached my sending quota?
	Q11. What can I do to minimize bounces?

	Complaint FAQ
	Q1. What's a complaint?
	Q2. Why do you care about my complaints?
	Q3. What should I do if I receive a notice saying that my account is under review or that my sending is paused because of an issue with complaints?
	Q4. What can I do to minimize complaints?
	SES complaints through feedback loops FAQ
	Q1. How is this type of complaint reported?
	Q2. Are these complaints included in the complaint rate statistic shown in the SES console and returned by the GetSendStatistics API?
	Q3. How can I be notified of these complaints?
	Q4. What should I do if I receive a complaint notification through email or through Amazon SNS?
	Q5. Do you disclose the SES complaint rates that could cause my account to be placed under review or that could result in my account's ability to send email being paused?
	Q6. Over what period of time is my complaint rate calculated?
	Q7. Can I calculate my own complaint rate by using metrics from the SES console or the GetSendStatistics API?
	Q8. How can I find out which email addresses complained?
	Q9. If I haven't been monitoring my complaints, can you give me a list of addresses that have complained?
	Q10. Can I get a sample email?

	SES complaints directly from recipients FAQ
	Q1. How is this type of complaint reported?
	Q2. Are these complaints included in the complaint rate statistic shown in the SES console and returned by the GetSendStatistics API?
	Q3. Why haven't I heard about these complaints through email feedback notifications or through Amazon SNS?
	Q4. How can I find out which email addresses complained?
	Q5. Can I get a sample email?
	Q6. What should I do if I receive a notification stating that my account is under review or that my sending is paused because of direct complaints?

	SES complaints through email providers FAQ
	Q1. How is this type of complaint reported?
	Q2. Are these complaints included in the complaint rate statistic shown in the SES console and returned by the GetSendStatistics API?
	Q3. Why haven't I heard about these complaints through email feedback notifications or through Amazon SNS?
	Q4. How can I find out which email addresses complained?
	Q5. Can I get a sample email?
	Q6. What should I do if I receive a notification stating that my account is under review or that my sending is paused because of email provider complaints?

	Spamtrap FAQ
	Q1. What are spamtraps?
	Q2. How are spamtraps set up?
	Q3. How does SES know if I am sending to spamtraps?
	Q4. How does SES use the spamtrap reports?
	Q5. What should I do if a receive a notice saying that my account is under review or that my sending is paused because of an issue with spamtraps?
	Q6. How many spamtrap hits can I have before you place my account under review or pause my account's ability to send email?
	Q7. Do you disclose the spamtrap addresses?
	Q8. What can I do to avoid sending to spamtraps?

	Manual investigation FAQ
	Q1. What should I do if I receive a notification stating that my account is under review or that my sending is paused because of a manual investigation?
	Q2. What issues could cause you to perform a manual review of my email sending?
	Q3. What are "unsolicited" emails?
	Q4. What should I do if I receive a notification stating that my account is under review or that my sending is paused because of a manual review?
	Q5. What types of problems do you view as "correctable?"
	Q6. What if I can't find the source of the problem?

	DNS Blackhole List (DNSBL) FAQs
	Q1. How do DNSBLs impact email delivery?
	Q2. How do IP addresses end up on DNSBLs?
	Q3. How does Amazon SES prevent its IP addresses from appearing on DNSBLs?
	Q4. Can Amazon SES have its IP addresses removed from a DNSBL?
	Q5. An email provider is rejecting my email because the sending IP address is listed by a DNSBL other than Spamhaus. What can I do?
	Q6. Email that I send to Gmail, Yahoo, Hotmail, or another major provider is being sent to the spam folder. Is this happening because my sending IP address is on a DNSBL?

	Amazon SES email sending metrics FAQs
	General Questions
	Q1. After an email is delivered, how long does Amazon SES continue to collect open and click metrics?
	Q2. If a user opens an email multiple times, or clicks a link in an email multiple times, is each of those events tracked separately?
	Q3. Are open and click metrics aggregated, or can they be measured down to the recipient level?
	Q4. Can I retrieve open and click metrics using the Amazon SES API?

	Open Tracking
	Q1. How does open tracking work?
	Q2. Is open tracking enabled by default?
	Q3. Can I omit the open tracking pixel from certain emails?
	Q4. Do you track opens for plaintext emails?

	Click Tracking
	Q1. How does click tracking work?
	Q2. Can I disable click tracking?
	Q3. How many links can be tracked in each email?
	Q4. Are click metrics collected for links in plain text emails?
	Q5. Can I tag links with unique identifiers?
	Q6. Do tracked links use the HTTP or HTTPS protocol?
	Q7. A link in my email isn't being tracked. Why not?

	Quick Find Index
	SES How-to & concept links

