
Developer Guide

AWS Signer

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Signer Developer Guide

AWS Signer: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Signer Developer Guide

Table of Contents

What is AWS Signer? ... 1
Interoperation with other AWS services .. 1
Supported Regions ... 3
Quotas for Signer ... 3
Pricing for Signer .. 4

Get started ... 5
Set up .. 5

Sign up for an AWS account .. 5
Create a user with administrative access ... 6

Create a signing profile ... 7
Set up cross-account signing ... 11

Code signing workflows .. 13
Internet of Things (IoT) .. 13

Obtain certificate .. 13
Create source S3 bucket .. 15
Create destination S3 bucket ... 16
Create a signing job ... 16

AWS Lambda ... 17
Creating source S3 bucket .. 17
Create destination S3 bucket ... 18
Create a signing job ... 18

Container images ... 21
Prerequisites ... 21
Sign an image .. 31
Locally verify an image ... 33
Verify an image on Amazon EKS ... 35

Revoke signatures .. 36
Monitor ... 37

Automation with CloudWatch Events .. 37
Security .. 39

Identity and Access Management for Signer ... 39
Customer managed policies for Signer .. 40
Inline policies for Signer ... 41
Signer actions in IAM ... 45

iii

AWS Signer Developer Guide

Code examples ... 48
Actions .. 49

AddProfilePermission ... 50
CancelSigningProfile ... 51
DescribeSigningJob ... 52
GetRevocationStatus .. 54
GetSigningPlatform .. 55
GetSigningProfile .. 56
ListProfilePermissions .. 57
ListSigningJobs .. 58
ListSigningPlatforms .. 60
ListSigningProfiles .. 61
ListTagsForResource ... 62
PutSigningProfile .. 63
RemoveProfilePermission .. 65
RevokeSignature .. 66
RevokeSigningProfile .. 67
SignPayload .. 67
StartSigningJob ... 69
TagResource ... 71
UntagResource ... 72

Document History .. 74
AWS Glossary ... 75

iv

AWS Signer Developer Guide

What is AWS Signer?

AWS Signer is a fully managed code-signing service to ensure the trust and integrity of your code.
Organizations validate code against a digital signature to confirm that the code is unaltered and
from a trusted publisher. With AWS Signer, your security administrators have a single place to
define your signing environment, including what AWS Identity and Access Management (IAM)
role can sign code and in what Regions. AWS Signer manages the code-signing certificate's public
and private keys, and enables central management of the code-signing lifecycle. Integration with
AWS CloudTrail helps you track who is generating code signatures and to meet your compliance
requirements.

For information about AWS services that Signer supports, see the section called “Interoperation
with other AWS services”.

Topics

• Interoperation with other AWS services

• Supported Regions

• Quotas for Signer

• Pricing for Signer

For information about the AWS Signer API, see the AWS Signer API Reference.

Interoperation with other AWS services

AWS Signer is integrated or used with the following AWS services.

AWS Lambda

With AWS Signer, you can digitally sign packages intended for Lambda deployment in your
organization, ensuring that only trusted code runs in your Lambda functions. AWS Signer
defines a trusted publisher in a signing profile. Authorized developers use the profile to
generate certified code packages. AWS Lambda verifies signatures and package integrity when
code is deployed.

To sign your code packages before deploying them to AWS Lambda, you can use the AWS
Signer console, the Signer CLI the AWS Serverless Application Model (AWS SAM) CLI, or one of
the AWS SDKs.

Interoperation with other AWS services 1

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/signer/latest/api/Welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html
https://console.aws.amazon.com/signer/
https://console.aws.amazon.com/signer/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/

AWS Signer Developer Guide

Amazon FreeRTOS and AWS IoT Device Management

You can sign code that you create for IoT devices supported by Amazon FreeRTOS and AWS
IoT device management. Code signing for AWS IoT is integrated with AWS Certificate Manager
(ACM). To sign code, you import a third-party code-signing certificate into ACM that is used to
sign updates in FreeRTOS and AWS IoT Device Management.

Amazon FreeRTOS is a microcontroller operating system based on the FreeRTOS kernel. It
includes libraries for connectivity and security. You can build and deploy your embedded
applications on top of Amazon FreeRTOS. To ensure the security of deployments to these
microcontrollers, Amazon FreeRTOS uses AWS Signer for the initial manufacture of these
devices and subsequent over-the-air updates. You can use AWS Signer through the Amazon
FreeRTOS console to sign your code images before you deploy them to a microcontroller.

With AWS IoT Device Management, you can manage Internet-connected devices and establish
secure, bidirectional communication between them. To do so, AWS IoT Device Management
uses AWS Signer to authenticate each device in your IoT environment. You can use AWS Signer
through the AWS IoT Device Management console to sign your code images before you deploy
them to a microcontroller.

You can sign your firmware images before deploying them to a microcontroller using the
FreeRTOS console. To sign your code images before deploying them in an over-the-air (OTA)
update, you can use the AWS IoT Device Management console, the AWS CLI, or one of the AWS
SDKs.

Amazon Elastic Container Registry (Amazon ECR)

With AWS Signer and the Notation CLI from the Notary
Project, you can sign container images stored in a container registry such as Amazon Elastic
Container Registry (Amazon ECR). The signatures are stored in the registry alongside the
images, where they are available for verifying image authenticity and integrity.

For more information, see the Amazon Elastic Container Registry User Guide.

Amazon Elastic Kubernetes Service (Amazon EKS)

Amazon EKS and self-managed Kubernetes customers on Amazon EC2 can verify the ownership
and integrity of signed images at the time of deployment. For more information, see the
Amazon EKS User Guide.

Interoperation with other AWS services 2

https://docs.aws.amazon.com/freertos/latest/userguide/
https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/iot/latest/developerguide/
https://console.aws.amazon.com/freertos/
https://console.aws.amazon.com/iotdm/
https://aws.amazon.com/cli/
https://notaryproject.dev/
https://notaryproject.dev/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/eks/latest/userguide/

AWS Signer Developer Guide

AWS Certificate Manager (ACM)

ACM handles the complexity of creating and managing or importing SSL/TLS certificates. You
use ACM to create an ACM certificate or import a third-party certificate that you use for signing.
You must have a certificate to sign code. For more information about certificates, see AWS
Certificate Manager User Guide.

CloudTrail

You can use AWS CloudTrail to record API calls made to AWS Signer. CloudTrail is an AWS
service that simplifies governance, compliance, and risk auditing by providing visibility into
actions made in your AWS account. For more information, see the AWS CloudTrail User Guide.

Supported Regions

Visit AWS Signer endpoints and quotas to see an up-to-date list of supported Regions.

Quotas for Signer

AWS Signer sets per-second quotas on the allowed rate at which you can call API actions. Each
API's quota is specific to an AWS account and Region. If the number of requests for an API exceeds
its quota, AWS Signer rejects an otherwise valid request, returning a ThrottlingException error. AWS
Signer does not offer a minimum request rate for APIs.

To view your quotas and see which ones can be adjusted, see the AWS Signer quotas table in the
AWS General Reference Guide.

You can also view and adjust quotas using the Service Quotas console.

To see an up-to-date list of your AWS Signer quotas

1. Log in to your AWS account.

2. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

3. In the AWS services list, enter signer into the search box, and choose AWS Signer. Each quota
in the Service quotas list shows your currently applied quota value, the default quota value,
and whether the quota is adjustable. Choose the name of a quota for more information about
it.

Supported Regions 3

https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/general/latest/gr/signer.html
https://docs.aws.amazon.com/signer/latest/api/CommonErrors.html
https://docs.aws.amazon.com/general/latest/gr/signer.html#quotas_signer
https://console.aws.amazon.com/servicequotas/

AWS Signer Developer Guide

To request a quota increase

1. In the Service quotas list, choose the radio button for an adjustable quota.

2. Choose the Request quota increase button.

3. Complete and submit the Request quota increase form.

Pricing for Signer

There is no additional charge to use AWS Signer with AWS IoT Device Management, AWS Lambda,
Amazon ECR, Amazon EKS, or third-party container services. Refer to the pricing for the related
services for other charges that you may incur. For example, if you use Signer with Lambda, you pay
for the storage of signed and unsigned objects (such as your Lambda zip-file archives) in Amazon
S3.

Pricing for Signer 4

AWS Signer Developer Guide

Get started with AWS Signer

Before you can begin signing code and binaries with AWS Signer, you need to set up an AWS
account, create administrative and root users, apply security policies using AWS Identity and Access
Management (IAM), and create a signing profile that contains the configuration for your signing
tasks.

Topics

• Set up to use Signer

• Create a Signer signing profile

• Set up cross-account signing for Signer

Set up to use Signer

Access to AWS Signer requires credentials that AWS can use to authenticate your requests. The
credentials must have permissions to access AWS resources. The following sections provide details
on how you can use AWS Identity and Access Management (IAM) to help secure your resources by
controlling who can access them.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Set up 5

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS Signer Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 6

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Signer Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a Signer signing profile

Before you can perform signing jobs, you must create a signing profile. A signing profile is unique
AWS Signer resource that you can use to perform signing jobs. Signing profiles enable you to sign
and verify code artifacts, such as container images and AWS Lambda deployment bundles. Each
signing profile designates the signing platform to sign for, a platform ID, and other platform-
specific information.

You can create, list, and cancel signing profiles using the Signer console, AWS CLI, or API. Signer
manages the code signing certificate and keys associated for only AWS Lambda and Container
images workflows. For Internet of Things (IoT) workflows, you can import your own code signing
certificate into AWS Certificate Manager.

Console

This section describes the procedures and options for creating a signing profile from the AWS
console.

To create a signing profile

1. Log into the AWS Signer console.

2. Choose Create signing profile.

3. On the Create signing profile page, provide a unique Profile name for your signing profile.
Valid characters include uppercase A-Z, lowercase a-z, numbers 0-9, and underscore (_).

Create a signing profile 7

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://console.aws.amazon.com/signer

AWS Signer Developer Guide

4. For Signing platform, choose one of the listed platforms.

API name Display name

AWSLambda-SHA384-ECDSA
AWS Lambda

Notation-OCI-SHA384-ECDSA Notation for container registries

5. Specify the Signature validity period in months, days, or years. The default value is 135
months (11 years and 6 months).

6. In the Tags - optional section, you can create a Tag key and a Tag value, then save it with
the Add tag button. When you assign tags to your signing profile, you can use tag-based
resource policies to manage access to the profile.

You can assign up to 50 tags to a profile.

7. Choose Create profile.

CLI

This section describes the procedures and options for creating and managing signing profiles
using the AWS CLI. A signing profile is a template that defines the following settings for
associated signing jobs:

• The signing platform that designates the file type to be signed. The following platforms are
available in the AWS CLI.

API name Display name

AWSIoTDeviceManagement-SHA256-
ECDSA

AWS IoT Device Management SHA256-EC
DSA

AmazonFreeRTOS-Default Amazon FreeRTOS SHA256-ECDSA

AmazonFreeRTOS-TI-CC3220SF Amazon FreeRTOS SHA1-RSA CC3220SF-
Format

Create a signing profile 8

AWS Signer Developer Guide

API name Display name

AWSLambda-SHA384-ECDSA AWS Lambda

Notation-OCI-SHA384-ECDSA Notation for container registries

For more information about the configurations and parameters that are contained in signing
platforms, see SigningPlatform in the AWS Signer API Reference.

• The signature format.

• The signature algorithms.

• The validity period of signatures. By default, signature validity is set to 135 months (11 years
and 3 months), which is the maximum validity supported. The signature validity period is only
applicable for AWSLambda-SHA384-ECDSA and Notation-OCI-SHA384-ECDSA signing
platforms.

After you create the signing profile, you can delegate control of it using AWS Identity and
Access Management (IAM). For more information about managing user permissions in AWS
Signer, see Identity and Access Management for AWS Signer.

Signing profiles can be created, inspected, listed, and canceled as shown in the following
examples.

• put-signing-profile

This command creates and saves an AWS Signer signing profile.

Signatures generated using this platform will expire after the time specified by --
signature-validity-period. This value may be specified using DAYS, MONTHS, or YEARS.
If no validity period is specified, the default value is 135 months.

In this example, the specified signing platform is AWSLambda-SHA384-ECDSA.

$ aws signer put-signing-profile \
 --profile-name my_lambda_signing_profile \
 --platform-id AWSLambda-SHA384-ECDSA \

Create a signing profile 9

https://docs.aws.amazon.com/signer/latest/api/API_SigningPlatform.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/cli/latest/reference/signer/put-signing-profile.html

AWS Signer Developer Guide

 --signature-validity-period value=10, type='MONTHS'

• get-signing-profile

This command retrieves a signing profile for inspection.

$ aws signer get-signing-profile --profile-name my_lambda_signing_profile

• list-signing-profiles

This command lists the signing profiles that you own or control.

$ aws signer list-signing-profiles

• cancel-signing-profile

This command deletes a signing profile.

$ aws signer cancel-signing-profile \
 --profile-name my_lambda_signing_profile \
 --profile-version profile_version \
 --reason "e2e notation testing" \
 --effective-time 1111111111

API

Signing profiles can be created, inspected, listed, and deleted using the following Signer API
actions.

• PutSigningProfile

• CancelSigningProfile

• GetSigningProfile

• ListSigningProfiles

Create a signing profile 10

https://docs.aws.amazon.com/cli/latest/reference/signer/get-signing-platform.html
https://docs.aws.amazon.com/cli/latest/reference/signer/list-signing-profiles.html
https://docs.aws.amazon.com/cli/latest/reference/signer/cancel-signing-profile.html
https://docs.aws.amazon.com/signer/latest/api/API_PutSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_CancelSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_GetSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningProfiles.html

AWS Signer Developer Guide

Set up cross-account signing for Signer

Note

Cross-account signing is only available for AWS Lambda and container registries signing
platforms, which are referred to as platformId in the AWS CLI and API.

Cross-account signing enables accounts other than the signing profile's owning account to sign
code artifacts, and optionally revoke signatures generated by the shared signing profile. For
example, an organization's security administrator can create a signing profile, and then grant a
group of developers the permission to sign code artifacts using the shared signing profile. The
developers could also revoke the signatures generated by the signing profile. This enables accounts
other than the owning account to use signing profiles in an organization.

The following procedure illustrates how a security administrator can enable cross-account signing
using the AWS CLI. To begin, you'll create a signing profile. Then, you'll grant developer accounts
access to the profile for code signing.

To set up cross-account signing using the CLI

The following example uses the AWS Lambda platform, but if you want to use container registry
platform, you could instead use “Notation-OCI-SHA384-ECDSA” platform as the value for the
platform-id. The example commands in this procedure are pre-populated with values for things
like profile names, IDs, and descriptions. Change those as appropriate for your application.

1. The following command creates a signing profile for the AWS Lambda platform type, with a
profile name of profile_for_application_ABC.

aws signer put-signing-profile --platform-id "AWSLambda-SHA384-ECDSA" --profile-
name profile_for_application_ABC

Signer will respond with a signing profile version Amazon Resource Name (ARN) such as:

arn:aws:signer:region:111122223333:/signing-
profiles/profile_for_application_ABC/resource-identifierE1WG1ZNPRXT0D4

2. Now that you've created a signing profile, you can now grant the developers' accounts
access to use the profile for signing. You do that by using the add-profile-permission

Set up cross-account signing 11

https://docs.aws.amazon.com/signer/latest/api/API_PutSigningProfile.html#signer-PutSigningProfile-request-platformId

AWS Signer Developer Guide

command. The following example grants permission only for the signer:StartSigningJob
action that's used with the AWS Lambda workflow. If it were a container image signing
platform, you'd set the --action value to signer:SignPayload. You might want
to grant permissions for other actions, such as signer:GetSigningProfile or
signer:RevokeSignature, by making additional calls to add-profile-permission.

The following command grants permission to another account. Replace 555555555555 with
the principal wish to grant cross-account access. The principal can be an IAM role or another
AWS account ID.

aws signer add-profile-permission \
 --profile-name profile_for_application_ABC \
 --action signer:StartSigningJob \
 --principal 555555555555 \
 --statement-id OptionalStatementId

Note

The signatures generated when using cross-account signing are embedded with the signing
profile ARN of the owner account. The owner account is the account that created the
signing profile. For verifying signed Lambda .zip archives, you must configure your Lambda
code signing configuration to use the signing profile version ARN of the owner account. For
verifying signed container images, you must configure the Notation trust policy to use the
signing profile ARN of the owner account.

Set up cross-account signing 12

AWS Signer Developer Guide

Code signing workflows in Signer

The signing procedures for AWS services by Signer are service-specific workflows. The following
topics describe workflows for signing IoT binaries, Lambda zip files, and container images.

Important

Steps common to all workflows have been covered in Get started with AWS Signer.
Workflow steps in the following topics are not interchangeable.

Topics

• Sign Internet of Things (IoT) objects

• Sign AWS Lambda code

• Sign container images in Signer

Sign Internet of Things (IoT) objects

This section describes procedures for signing binary objects intended for deployment on Internet
of Things (IoT) devices. Before you begin, make sure you have completed the prerequisites listed in
Get started with AWS Signer.

Topics

• Obtain and import a code-signing certificate

• Create and populate an Amazon S3 source bucket for your unsigned object files

• Create an Amazon S3 destination bucket for your signed object files

• Create a signing job for IoT in AWS Signer

Obtain and import a code-signing certificate

Before you can use AWS Signer with AWS IoT Device Management or Amazon FreeRTOS, you must
have or obtain a code-signing certificate. Code-signing certificates typically contain a Digital
Signature value in the Key Usage extension and a Code Signing value in the Extended Key
Usage extension.

Internet of Things (IoT) 13

AWS Signer Developer Guide

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 4111 (0x100f)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=Washington, L=Seattle, O=Example Company, OU=Corp,
 CN=www.example.com/emailAddress=corp@www.example.com
 Validity
 Not Before: Nov 14 17:32:30 2017 GMT
 Not After : Nov 14 17:32:30 2018 GMT
 Subject: C=US, ST=Washington, L=Seattle, O=Example Company, OU=corp,
 CN=www.example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:ac:96:8f:64:1a:4d:5c:cc:e4:50:a9:19:f3:c1:
 03:8f:1a:db:f5:15:18:65:fb:6e:3f:84:ae:02:9e:
 a2:e1:62:40:05:10:b6:35:59:63:c7:b3:17:4a:e1:
 12:9f:29:42:e4:2b:bb:83:db:b1:cd:42:83:0a:9f:
 70:ca:81:6a:9b:58:1d:4e:a0:69:04:bc:0b:f4:7e:
 34:fc:af:79:f1:31:6c:7e:a5:eb:b1:85:9e:5e:ef:
 df:34:7c:aa:13:01:f5:cc:ee:a1:9c:d9:4d:17:e8:
 c8:8b:d0:77:2e:80:3f:7e:41:ea:84:2f:11:22:59:
 bd:fa:90:eb:26:ec:e7:b2:0e:9d:ce:b5:8a:a0:b9:
 17:4c:8b:3a:b5:28:61:eb:d3:a6:ed:db:5c:26:e6:
 7d:af:33:b6:9f:f0:9d:fb:fc:10:e0:52:cb:60:5c:
 08:c3:33:4a:b4:8a:4e:3a:54:4e:43:3d:b9:f2:5e:
 4e:89:95:c2:a5:df:88:a2:24:71:d3:ee:b3:ef:0b:
 18:1d:55:54:16:ff:9b:95:6e:ae:71:d3:f2:d1:7e:
 f2:8b:67:34:f8:11:fe:ab:8f:6b:88:c3:b9:8e:1d:
 07:bc:62:27:45:7e:0c:a0:7b:ef:bf:26:f8:50:df:
 ac:d8:8f:a5:ed:fe:9f:ee:20:dc:a6:33:3e:94:25:
 ce:67
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Key Identifier:
 22:93:86:26:D3:1B:32:1C:79:1B:5C:E4:EB:2A:6A:DB:77:87:D7:FB
 X509v3 Authority Key Identifier:
 keyid:0D:CE:76:F2:E3:3B:93:2D:36:05:41:41:16:36:C8:82:BC:CB:F8:A0
 X509v3 Key Usage:

Obtain certificate 14

AWS Signer Developer Guide

 Digital Signature
 X509v3 Extended Key Usage:
 Code Signing
 Signature Algorithm: sha256WithRSAEncryption
 38:41:ba:c3:f0:88:97:3e:a1:0f:e3:d4:55:d6:d0:a2:4e:ac:
 da:83:67:27:49:23:88:9b:20:e1:e1:b7:55:78:3c:5a:9b:7a:
 75:ee:3a:0f:ed:20:4e:23:31:29:ac:07:91:61:f1:86:75:08:
 fa:f5:3c:4a:7b:79:3c:39:a5:45:97:10:5c:f4:a0:04:af:e8:
 5b:ca:d1:a5:ce:14:dc:14:c6:54:b1:ba:6a:2c:52:2c:2f:07:
 52:8a:a7:00:97:c7:ee:65:bb:df:36:7f:53:d0:7d:a4:6e:ba:
 bb:d2:d4:b5:25:bb:b1:0d:bd:91:10:28:e1:34:df:79:01:78:
 45:4e

Important

We recommend that you purchase a code-signing certificate from a company with a good
reputation for security. Do not use a self-signed certificate for any purpose other than
testing. Encouraging your users to trust arbitrary certificates with no reputational backing
is a poor security practice.

After you have obtained the certificate, you must import it into AWS Certificate Manager (ACM).
ACM returns an Amazon Resource Name (ARN) for the certificate. You must use the ARN when you
call the StartSigningJob action. For more information about importing, see Importing Certificates
in the AWS Certificate Manager User Guide.

Create and populate an Amazon S3 source bucket for your unsigned
object files

This topic discusses how to prepare an Amazon S3 bucket and add your unsigned object files to it.

To create a bucket, sign into the AWS Management Console at https://console.aws.amazon.com/
console/home and follow the procedure in Create your first S3 bucket.

While you are configuring the bucket, note the following requirements:

• Accept the default security option Block all public access.

• Set Bucket Versioning to Enable.

Create source S3 bucket 15

signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/AmazonS3/latest/gsg/creating-bucket.html

AWS Signer Developer Guide

After you create the bucket, you can add objects to it as described in the Upload an object to your
bucket topic.

Create an Amazon S3 destination bucket for your signed object files

This topic discusses how to prepare an Amazon S3 destination bucket where AWS Signer can
deposit your signed object files.

To create a bucket, sign into the AWS Management Console at https://console.aws.amazon.com/
console/home and follow the procedure in Create your first S3 bucket.

While you are configuring the bucket, note the following requirement.

• Accept the default security option Block all public access.

Create a signing job for IoT in AWS Signer

To start a signing job, you need to specify the following:

• The source S3 bucket of the IoT binary to be signed

• A signing profile

• The destination S3 bucket for the signed file

A signing job has a status of InProgress while it is being processed, and after completion, the
status changes to Succeeded. If Signer is unable to generate a signature, the signing job updates
to Failed. Signing fails for a zip file if the file is empty, already has a signature, or is malformed.

To perform a signing job (CLI)

Use the following CLI commands to run and manage signing jobs.

• start-signing-job

To get the status of a particular signing job, use the following action or command:

• describe-signing-job

Create destination S3 bucket 16

https://docs.aws.amazon.com/AmazonS3/latest/gsg/uploading-an-object-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/uploading-an-object-bucket.html
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/AmazonS3/latest/gsg/creating-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/signer/start-signing-job.html
https://docs.aws.amazon.com/cli/latest/reference/signer/describe-signing-job.html

AWS Signer Developer Guide

For a list of all available signing jobs, including those in the Failed state, use the following action or
command:

• list-signing-jobs

To perform a signing job (API)

Use the following API actions to run and manage signing jobs.

• StartSigningJob

• DescribeSigningJob

• ListSigningJobs

For more information about configurations and parameters related to signing jobs, see
SigningJob in the AWS Signer API Reference.

Sign AWS Lambda code

This section describes procedures for signing code intended for deployment on AWS Lambda.
Before you begin, make sure you have completed the prerequisites listed in Get started with AWS
Signer.

Topics

• Create and populate an Amazon S3 source bucket for your unsigned object files

• Create an Amazon S3 destination bucket for your signed object files

• Create a signing job for Lambda in AWS Signer

Create and populate an Amazon S3 source bucket for your unsigned
object files

This topic discusses how to prepare an Amazon S3 bucket and add your unsigned object files it.

To create a bucket, sign into the AWS Management Console at https://console.aws.amazon.com/
console/home and follow the procedure in Create your first S3 bucket.

While you are configuring the bucket, note the following requirements:

AWS Lambda 17

https://docs.aws.amazon.com/cli/latest/reference/signer/list-signing-jobs.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_DescribeSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningJobs.html
https://docs.aws.amazon.com/signer/latest/api/API_SigningJob.html
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/AmazonS3/latest/gsg/creating-bucket.html

AWS Signer Developer Guide

• Accept the default security option Block all public access.

• Set Bucket Versioning to Enable.

After you create the bucket, you can add objects to it as described in Upload an object to your
bucket topic.

Create an Amazon S3 destination bucket for your signed object files

This topic discusses how to prepare an Amazon S3 destination bucket where AWS Signer can
deposit your signed object files.

To create a bucket, sign into the AWS Management Console at https://console.aws.amazon.com/
console/home and follow the procedure in Create your first S3 bucket.

While you are configuring the bucket, note the following requirements:

• Accept the default security option Block all public access.

Create a signing job for Lambda in AWS Signer

To start a signing job, you need to specify the following:

• The source S3 bucket of the IoT code or Lambda zip file to be signed

• A signing profile

• The destination S3 bucket for the signed file

A signing job has a status of InProgress while it is being processed, and after completion, the
status changes to Succeeded. If Signer is unable to generate a signature, the signing job updates
to Failed. Signing fails for a zip file if the file is empty, already has a signature, or is malformed.

To perform a signing job (console)

1. Log into the AWS Signer console.

2. Choose Start signing jobs.

3. From the list of profiles, choose a signing profile to perform code signing for your Lambda
application.

Create destination S3 bucket 18

https://docs.aws.amazon.com/AmazonS3/latest/gsg/uploading-an-object-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/uploading-an-object-bucket.html
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/AmazonS3/latest/gsg/creating-bucket.html

AWS Signer Developer Guide

4. Do either of the following:

• For Code asset source location, enter the URL for the Amazon S3 bucket that contains your
code.

• Choose Browse, and locate the S3 bucket that contains your code.

Note

Be sure your file is in zip format. The AWS Signer console does not accept other file
formats.

5. Do one of the following:

• In the Signature Destination path with Prefix, enter the URL for the S3 bucket where you
store your signed code.

• Choose Browse and locate the S3 bucket that stores your signed code.

6. Choose Start.

AWS Signer updates the Manage signing jobs page with your new profile, and displays the
following information:

• Job ID – The generated ID number

• Profile name – The name of the profile

• Signing status – The signing status of the job

• Revocation status – The status of the revocation if any

7. If you receive a Failed under Signing status, return to the list of the signing jobs, and choose
Failed to see the details of the signing job.

The Signing job details page lists the following information:

• Job ID – The identifier of the signing job

• Signing profile used – The signing profile used for the job

• Version of signing profiles used – The version of the signing profile used for the job

• Requested by – Identity of the requester of the job

• Signing platform – The signing platform used for the job (Lambda only)

Create a signing job 19

AWS Signer Developer Guide

• Signing status – The status of the job as either Successful or Failed

• Status reason – Explanation for the failure if the signing job failed

• Started at – The time and date that the signing job started

• Completed at – The time and date that the job ended

The Code assets details displays additional information:

• Code asset source bucket – The S3 source bucket of the code file used

• Code asset source key – The name of the code file used for signing code

• Code asset source version – The version of the code file

To perform a signing job (AWS CLI)

Use the following command to start a signing job:

• start-signing-job

To get the status of a particular signing job, use the following command:

• describe-signing-job

For a list of all available signing jobs, including those in the Failed state, use the following
command:

• list-signing-jobs

To perform a signing job (API)

Following API actions can be used to run and track signing jobs.

• StartSigningJob

• DescribeSigningJob

• ListSigningJobs

Create a signing job 20

https://docs.aws.amazon.com/cli/latest/reference/signer/start-signing-job.html
https://docs.aws.amazon.com/cli/latest/reference/signer/describe-signing-job.html
https://docs.aws.amazon.com/cli/latest/reference/signer/list-signing-jobs.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_DescribeSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningJobs.html

AWS Signer Developer Guide

For more information about configurations and parameters related to signing jobs, see
SigningJob in the AWS Signer API Reference.

Sign container images in Signer

This section describes procedures for signing container images stored in an Open Container
Initiative (OCI) compliant container registry. Before you begin, make sure you have completed the
prerequisites listed in Get started with AWS Signer.

Note

If you're coming here from the Amazon ECR image signing documentation, be aware that
you must fulfill all of the requirements related to Amazon ECR before beginning these
AWS Signer procedures. For more information, see Signing an image in the Amazon Elastic
Container Registry User Guide.

Topics

• Prerequisites for signing container images

• Sign an image

• Locally verify an image after signing

• Verify an image during in Amazon EKS or Kubernetes clusters

Prerequisites for signing container images

Before you begin signing, you need to set up an environment that bridges AWS Signer with
Amazon ECR. Complete the following steps.

To prepare your signing environment

1. Prepare the AWS CLI

Install and configure the latest version of the AWS CLI. For more information, see Installing or
updating the latest version of the AWS CLI in the AWS Command Line Interface User Guide.

2. Prepare Amazon ECR

Container images 21

https://docs.aws.amazon.com/signer/latest/api/API_SigningJob.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-signing.htm
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Signer Developer Guide

Have an existing container image stored in an Amazon ECR private repository to sign. For more
information, see Pushing an image in the Amazon Elastic Container Registry User Guide.

3. Download the container-signing tools

Two software packages need to be installed in your local environment for you to sign images:

• The open source supply chain security program Notation, developed by the Notary Project

• The AWS Signer plugin for Notation. You can either use our plugin binary, or our open source
library.

Plugin binary

The AWS Signer installer installs both the Notation client and the AWS Signer plugin for
Notation. Separate binaries are available to install only the AWS Signer plugin.

The installer includes the following.

• Notation binary and third party license.

• AWS Signer plugin binary and third party license.

• Notation license.

• Trust store set up with AWS Signer's Notation signing root certificate.

• GovCloud trust store and root certificate, for use in the AWS GovCloud (US) Region.

• A configurable trust policy. For information about configuring the trust policy, see Locally
verify an image after signing.

The following table provides the installer and related files for each supported operating
system and architecture. You can download our latest CHANGELOG to see the versions of
the Notation CLI and plugin included in each installer release.

Prerequisites 22

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-push.html
https://notaryproject.dev/
https://d2hvyiie56hcat.cloudfront.net/aws-signer-notation-root.cert
https://d2hvyiie56hcat.cloudfront.net/aws-us-gov-signer-notation-root.cert
https://d2hvyiie56hcat.cloudfront.net/CHANGELOG

AWS Signer Developer Guide

Notation binary and AWS Signer Plugin installer files

Platform Architecture Installer for
Notation and
AWS Signer
plugin

AWS Signer
plugin binary
only

Signature file

x86_64 aws-signe
r-notation-
cli_amd64.rpm

notation-aws-
signer-plugin.
zip

aws-signe
r-notatio
n-cli_amd
64.rpm.sig
(installer)

notation-aws-
signer-plugin.
sig (plugin)

RPM-based
Linux (e.g.,
Amazon Linux)

arm64 aws-signe
r-notation-
cli_arm64.rpm

notation-aws-
signer-plugin.
zip

aws-signe
r-notatio
n-cli_arm
64.rpm.sig
(installer)

notation-aws-
signer-plugin.
sig (plugin)

Debian-based
Linux

x86_64 aws-signe
r-notation-
cli_amd64.deb

notation-aws-
signer-plugin.
zip

aws-signe
r-notatio
n-cli_amd
64.deb.sig
(installer)

notation-aws-
signer-plugin.
sig (plugin)

Prerequisites 23

https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/rpm/latest/aws-signer-notation-cli_arm64.rpm.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/deb/latest/aws-signer-notation-cli_amd64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/amd64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig

AWS Signer Developer Guide

Platform Architecture Installer for
Notation and
AWS Signer
plugin

AWS Signer
plugin binary
only

Signature file

arm64 aws-signe
r-notation-
cli_arm64.deb

notation-aws-
signer-plugin.
zip

aws-signe
r-notatio
n-cli_arm
64.deb.sig

notation-aws-
signer-plugin.
sig (plugin)

x86_64 aws-signe
r-notation-
cli_amd64.pkg

notation-aws-
signer-plugin.
zip

Included in the
files.

macOS

arm64 aws-signe
r-notation-
cli_arm64.pkg

notation-aws-
signer-plugin.
zip

Included in the
files.

Microsoft
Windows

x86_64 aws-signe
r-notation-
cli.msi

notation-aws-
signer-plugin.
zip

Validate in
Explorer

Open source library

The open source Signer plugin is available as a library for use with your toolchain to
generate and verify container artifacts signatures. Access the source code and instructions
to build the Signer plugin in the Signer Notation plugin Github repository.

4. (Optional) Verify signed packages.

For instructions to complete this step, select the tab for your platform.

Linux

1. Download the public key.

Prerequisites 24

https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/installer/deb/latest/aws-signer-notation-cli_arm64.deb.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/linux/arm64/plugin/latest/notation-com.amazonaws.signer.notation.plugin.sig
https://d2hvyiie56hcat.cloudfront.net/darwin/amd64/installer/latest/aws-signer-notation-cli_amd64.pkg
https://d2hvyiie56hcat.cloudfront.net/darwin/amd64/installer/latest/aws-signer-notation-cli_amd64.pkg
https://d2hvyiie56hcat.cloudfront.net/darwin/amd64/installer/latest/aws-signer-notation-cli_amd64.pkg
https://d2hvyiie56hcat.cloudfront.net/darwin/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/darwin/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/darwin/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/darwin/arm64/installer/latest/aws-signer-notation-cli_arm64.pkg
https://d2hvyiie56hcat.cloudfront.net/darwin/arm64/installer/latest/aws-signer-notation-cli_arm64.pkg
https://d2hvyiie56hcat.cloudfront.net/darwin/arm64/installer/latest/aws-signer-notation-cli_arm64.pkg
https://d2hvyiie56hcat.cloudfront.net/darwin/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/darwin/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/darwin/arm64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/windows/amd64/installer/latest/aws-signer-notation-cli.msi
https://d2hvyiie56hcat.cloudfront.net/windows/amd64/installer/latest/aws-signer-notation-cli.msi
https://d2hvyiie56hcat.cloudfront.net/windows/amd64/installer/latest/aws-signer-notation-cli.msi
https://d2hvyiie56hcat.cloudfront.net/windows/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/windows/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://d2hvyiie56hcat.cloudfront.net/windows/amd64/plugin/latest/notation-aws-signer-plugin.zip
https://github.com/aws/aws-signer-notation-plugin

AWS Signer Developer Guide

$ wget https://d2hvyiie56hcat.cloudfront.net/linux/public.key

2. Import the public key into your keyring. If you're using the unzip the AWS Signer plugin,
first unzip downloaded file and then run command against the binary file within the zip
file.

$ gpg --import public.key
gpg: key A3B52DA65461CF90: public key "AWS Signer Notation" imported
gpg: Total number processed: 1
gpg: imported: 1

Make a note of the key value, as you need it in the next step. In the preceding example,
the key value is A3B52DA65461CF90.

3. Verify the fingerprint by running the following command, replacing key-value with the
value from the preceding step:

$ gpg --fingerprint key-value
pub rsa3072 2023-04-24 [SC]
 E84A F8A2 A9B5 2F1F 4435 AE71 A3B5 2DA6 5461 CF90
uid [unknown] AWS Signer Notation

The fingerprint string should be E84A F8A2 A9B5 2F1F 4435 AE71 A3B5 2DA6
5461 CF90.

If the fingerprint string doesn't match, don't run the installer. Contact Amazon Web
Services.

After you have verified the fingerprint, you can use it to verify the signature of the AWS
Signer Notation package.

4. Download the package signature file using wget. To determine the correct signature file,
see the preceding table.

$ wget signature-file-link

5. To verify the signature, run gpg --verify:

$ gpg --verify sig-filename downloaded-filename
gpg: Signature made Mon May 22 16:16:34 2023 PDT

Prerequisites 25

AWS Signer Developer Guide

gpg: using RSA key A3B52DA65461CF90
gpg: Good signature from "AWS Signer Notation" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: E84A F8A2 A9B5 2F1F 4435 AE71 A3B5 2DA6 5461 CF90

If the output includes the phrase BAD signature, check whether you performed the
procedure correctly. If you continue to get this response, contact Amazon Web Services
and avoid using the downloaded file.

Note the warning about trust. A key is trusted only if you or someone who you trust has
signed it. This doesn't mean that the signature is invalid, only that you have not verified
the public key.

Windows

To verify the signature of the MSI installer or the plugin EXE file, using Windows
PowerShell run the following command:

C:\> Get-AuthenticodeSignature filename

You can also verify the signature by right-clicking on the file in an Explorer window,
choosing Properties, and then choosing Digital Signatures.

You should see a result similar to the following:

SignerCertificate Status Path
----------------- ------ ----
[40-character hexamecimal number] Valid downloaded-file

MacOS

1. To verify the signature of the PKG installer, run the following command. This example
uses the amd64 package, but the signature of the arm64 package can be verified
similarly.

$ pkgutil --check-signature aws-signer-notation-cli_amd64.pkg

You should see a result similar to the following:
Prerequisites 26

AWS Signer Developer Guide

Package "aws-signer-notation-cli_amd64.pkg":
 Status: signed by a developer certificate issued by Apple for distribution
 Notarization: trusted by the Apple notary service
 Signed with a trusted timestamp on: 2023-05-19 15:17:15 +0000
 Certificate Chain:
 1. Developer ID Installer: AMZN Mobile LLC (94KV3E626L)
 Expires: 2027-06-28 22:57:06 +0000
 SHA256 Fingerprint:
 49 68 39 4A BA 83 3B F0 CC 5E 98 3B E7 C1 72 AC 85 97 65 18 B9
 4C
 BA 34 62 BF E9 23 76 98 C5 DA

 --
 2. Developer ID Certification Authority
 Expires: 2031-09-17 00:00:00 +0000
 SHA256 Fingerprint:
 F1 6C D3 C5 4C 7F 83 CE A4 BF 1A 3E 6A 08 19 C8 AA A8 E4 A1 52
 8F
 D1 44 71 5F 35 06 43 D2 DF 3A

 --
 3. Apple Root CA
 Expires: 2035-02-09 21:40:36 +0000
 SHA256 Fingerprint:
 B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E
 2C
 68 C5 BE 91 B5 A1 10 01 F0 24

2. To verify the signature of the AWS Signer Notation plugin executable, run the following
command.

$ codesign -dv --verbose=4 ./notation-com.amazonaws.signer.notation.plugin

You should see a result similar to the following.

Executable=/path/to/notation-com.amazonaws.signer.notation.plugin
Identifier=notation-com.amazonaws.signer.notation.plugin_darwin_arm64
Format=Mach-O thin (arm64)
CodeDirectory v=20500 size=74278 flags=0x10000(runtime) hashes=2314+2
 location=embedded
VersionPlatform=1

Prerequisites 27

AWS Signer Developer Guide

VersionMin=720896
VersionSDK=720896
Hash type=sha256 size=32
CandidateCDHash sha256=e4000dbdf4e6243be9d290b1520d95bf9027a5e4
CandidateCDHashFull
 sha256=e4000dbdf4e6243be9d290b1520d95bf9027a5e42b699a354fc39ac0f498477f
Hash choices=sha256
CMSDigest=e4000dbdf4e6243be9d290b1520d95bf9027a5e42b699a354fc39ac0f498477f
CMSDigestType=2
Executable Segment base=0
Executable Segment limit=3571712
Executable Segment flags=0x1
Page size=4096Launch Constraints:None
CDHash=e4000dbdf4e6243be9d290b1520d95bf9027a5e4
Signature size=9070
Authority=Developer ID Application: AMZN Mobile LLC (94KV3E626L)
Authority=Developer ID Certification Authority
Authority=Apple Root CATimestamp=May 19, 2023 at 7:51:07 AM
Info.plist=not bound
TeamIdentifier=94KV3E626L
Runtime Version=11.0.0
Sealed Resources=none
Internal requirements count=1 size=220

5. Install the packages

For instructions to complete this step, select the tab for your platform.

Linux (RPM)

If you downloaded an RPM package on a Linux server, change to the directory containing
the package and enter the following:

$ sudo rpm -U filename

Linux (DEB)

If you downloaded a DEB package on a Linux server, change to the directory containing the
package and enter the following:

$ sudo dpkg -i -E filename

Prerequisites 28

AWS Signer Developer Guide

Windows

Install the package with the following command.

C:\> msiexec /i filename

This command also works from within PowerShell. For more information, see Microsoft
Standard Installer command-line options in the Microsoft Windows documentation.

MacOS

If you downloaded a PKG package on a macOS server, change to the directory containing
the package and enter the following:

$ sudo installer -pkg filename -target /

6. Verify the package installation

After downloading and installing the package, to verify the installation was successful, do the
following.

a. Verify that the Notation directory structure for your operating system was created.

b. Use the following command to display the Notation client version.

notation version

c. Use the following command to list the installed plugins for the Notation client and verify
that you see the com.amazonaws.signer.notation.plugin plugin.

notation plugin ls

Required AWS Identity and Access Management permissions to sign and verify a
container image

To sign and verify an image present in Amazon Elastic Container Registry, you need an AWS
Identity and Access Management policy that allows Notation to interact with Amazon ECR and
Signer.

Prerequisites 29

https://learn.microsoft.com/en-us/windows/win32/msi/standard-installer-command-line-options
https://learn.microsoft.com/en-us/windows/win32/msi/standard-installer-command-line-options

AWS Signer Developer Guide

The following is an example of a user managed policy that allows Notation to interact with
Amazon ECR and Signer:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":"ManageRepositoryContents",
 "Effect":"Allow",
 "Action":[
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:CompleteLayerUpload",
 "ecr:DescribeRepositories",
 "ecr:UploadLayerPart",
 "ecr:InitiateLayerUpload",
 "ecr:BatchCheckLayerAvailability",
 "ecr:PutImage"
],
 "Resource":"arn:aws:ecr:us-east-1:111122223333:repository/my-repo"
 },
 {
 "Sid":"GetAuthorizationToken",
 "Effect":"Allow",
 "Action":[
 "ecr:GetAuthorizationToken"
],
 "Resource":"*"
 },
 {
 "Sid": "SignAndRevocationCheck",
 "Effect": "Allow",
 "Action": [
 "signer:PutSigningProfile",
 "signer:SignPayload",
 "signer:GetRevocationStatus"
],
 "Resource": "*"
 }
 }

Prerequisites 30

AWS Signer Developer Guide

Sign an image

The procedures on this page show you how create a signing profile, install a helper program, and
sign a container image.

Step 1: Create a AWS Signer Notation signing profile

Create an AWS Signer Notation signing profile. If using the AWS Command Line Interface, API,
AWS CloudFormation, or AWS SDKs set the platform ID to Notation-OCI-SHA384-ECDSA. In the
console, for signing platform choose Notation for container registries. For more information on
creating a signing profile, see Create a Signer signing profile.

Step 2: Install a helper program

Notation requires you to include a helper program in the client's host path in order to interact with
the credential store. You can use either the Amazon Elastic Container Registry Docker credential
helper or the Docker credential helper to manage your credentials. We recommend using the
Amazon ECR Docker credential helper, as it includes a credentials store and handles authentication
for you. The Amazon ECR Docker Credential Helper not only stores and uses credentials when
signing and verifying images in Amazon ECR, but also eliminates the need to use the Notation
CLI notation login command or write custom logic to refresh authentication tokens and provide
transparent access to your Amazon ECR repositories.

Amazon ECR Docker credential helper

Download the Amazon Elastic Container Registry Docker credential helper. Configure
config.json for use with Amazon ECR.

Docker credential helper

The following procedure explains how to install and configure the Docker credential helper.

To use the Docker credential helper

1. First set up a credentials store. Notation relies on a credentials store for secure storage and
retrieval of credentials from Amazon ECR. Most operating systems come with a default
credentials store, such as osxkeychain for macOS, or wincred for Windows. If you have
the Docker CLI installed on the same host where Notation is installed, Notation uses the
credentials store configuration that you set up for the Docker CLI.

Sign an image 31

https://github.com/awslabs/amazon-ecr-credential-helper
https://github.com/awslabs/amazon-ecr-credential-helper
https://github.com/docker/docker-credential-helpers
https://github.com/awslabs/amazon-ecr-credential-helper

AWS Signer Developer Guide

Alternatively, you can install a third-party credentials store such as pass. You can pass these
credentials to Notation as environment variables. For more information about environment
variables, see Configure environment variables to authenticate to an OCI-compliant registry in
the Notary Project user guide.

2. Download the Docker credential helper. Set the credsStore option in config.json to the
suffix of the program that you want to use.

3. Manually configure Notation client authentication. Because the Notation CLI doesn't support
standard AWS authentication methods, you must manually configure Notation client
authentication so that Amazon ECR knows who's requesting to sign (push signature) or verify
(pull signature) an image. You can accomplish this with the Notation CLI notation login
command, which authenticates to an Amazon ECR registry and provides an authorization
token that's valid for 12 hours. Or, if you’re using the AWS Command Line Interface, you can
use the get-login-password command which retrieves the token, decodes it, and converts
into a notation login command for you.

The following command allows Notation to get credentials for authenticating with Amazon
ECR:

aws ecr get-login-password --region us-west-1 | notation login --username AWS --
password-stdin 111122223333.dkr.ecr.us-west-1.amazonaws.com

Step 3: Sign the image using the Notation CLI

Use the Notation CLI to sign the image, specifying the image using the repository name and
the SHA256 digest. This creates the signature and pushes it to the same Amazon ECR private
repository that the image being signed is in.

Note

You can specify the AWS Region and credentials profile that the Notation plugin uses for
interactions with AWS Signer either by setting values for the AWS_DEFAULT_REGION and
AWS_PROFILE environment variables or by providing the arguments --plugin-config aws-
region=${Region} and --plugin-config aws-profile=${profile-name}

Sign an image 32

https://www.passwordstore.org
https://notaryproject.dev/docs/user-guides/how-to/registry-authentication/#configure-environment-variables-to-authenticate-to-an-oci-compliant-registry
https://github.com/docker/docker-credential-helpers

AWS Signer Developer Guide

In the following example, we're signing an image in the curl repository with SHA digest
sha256:ca78e5f730f9a789ef8c63bb55275ac12dfb9e8099e6EXAMPLE.

notation
 sign 111122223333.dkr.ecr.Region.amazonaws.com/
curl@sha256:ca78e5f730f9a789ef8c63bb55275ac12dfb9e8099e6EXAMPLE --plugin
 "com.amazonaws.signer.notation.plugin" --id "arn:aws:signer:Region:111122223333:/
signing-profiles/ecrSigningProfileName"

Step 4: Verify image

After you have signed your container image, you can verify the signature locally or during an
Amazon EKS deployment and further manage the signature with Amazon ECR.

• Locally verify an image after signing

• Verify an image during in Amazon EKS or Kubernetes clusters

• Manage your signature in your Amazon ECR repository in the Amazon Elastic Container Registry
User Guide.

Locally verify an image after signing

After you sign a container image using AWS Signer and Notation, you or an authorized member of
your team can verify the origin and integrity of the image by cryptographic means.

Complete the following steps to verify that an image is valid with Notation.

To verify an image

1. A trust store is required for verification. If you used the installer for the AWS Signer plugin and
Notation, a trust store for both AWS commercial and AWS GovCloud (US) Regions was set up
automatically and provisioned with a root certificate. For more information, see Prerequisites
for signing container images.

2. Set up a trust policy that includes the trust store for your partition.

The following example includes trust stores for both the AWS commercial and AWS GovCloud
(US) Region. You can choose to include one or both in your trust policy depending on where
you are verifying your signed images. To verify images signed in AWS commercial Regions,
set signingAuthority to aws-signer-ts. To verify images signed in AWS GovCloud (US)
Region, set signingAuthority to aws-us-gov-signer-ts.

Locally verify an image 33

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-signing.html

AWS Signer Developer Guide

Important

Signatures are isolated to AWS partitions. Calls to GetRevocationStatus with a cross-
partition signature will return a validation exception error.

{
 "version":"1.0",
 "trustPolicies":[
 {
 "name":"aws-signer-tp",
 "registryScopes":[
 "*"
],
 "signatureVerification":{
 "level":"strict"
 },
 "trustStores":[
 "signingAuthority:aws-signer-ts",
 "signingAuthority:aws-us-gov-signer-ts"
],
 "trustedIdentities":[
 "arn:aws:signer:Region:111122223333:/signing-
profiles/ecr_signing_profile",
 "arn:aws:signer:Region:111122223333:/signing-
profiles/ecr_signing_profile2"
]
 }
]
}

3. Import the policy into Notation.

$ notation policy import mypolicy.json

Output:

Existing trust policy configuration found, do you
want to overwrite it? [y/N] y

Locally verify an image 34

https://docs.aws.amazon.com/signer/latest/api/API_GetRevocationStatus.html

AWS Signer Developer Guide

Trust policy configuration imported successfully.

4. Verify the signature, specifying the signature using the repository name and the SHA digest.

Note

You can specify the AWS Region and credentials profile that the Notation plugin uses
to interact with AWS Signer by assigning a value to the AWS_PROFILE environment
variable, or by passing the --plugin-config aws-profile=${profile-name} argument
to the Notation verify command.

$ notation verify 111122223333.dkr.ecr.region.amazonaws.com/curl@SHA256_digest

Output:

Successfully verified signature for 111122223333.dkr.ecr.us-
west-2.amazonaws.com/curl@SHA256_digest

Verify an image during in Amazon EKS or Kubernetes clusters

For AWS Signer customers wishing to verify signed container images at the time of deployment,
there are various open-source solutions such as the following.

• Deis Labs Gatekeeper and Ratify – Use Gatekeeper as the admission controller and Ratify
configured with an AWS Signer plug-in as a web hook for validating signatures.

• Kyverno – A Kubernetes policy engine configured with a AWS Signer plugin for validating
signatures.

Note

Before verifying container-image signatures, customers must configure the Notation trust
store and trust policy as required by their selected admission controller.

Verify an image on Amazon EKS 35

https://ratify.dev/docs/quickstarts/ratify-on-aws
https://github.com/nirmata/kyverno-notation-aws

AWS Signer Developer Guide

Revoke signatures generated by Signer

Revocation of a signature becomes necessary when the signing certificate is compromised in some
way, for example, if the secret key is publicly disclosed. Revoking the signature of an AWS Lambda
deployment package invalidates it, causing it to fail Lambda signature checks in all Regions of the
same partition. Revoking the signature of a container image causes validation to fail if you attempt
to deploy the image.

Note

Revocation is an irreversible action and is recommended only for critical scenarios.
Revocation checks are valid for six months beyond the expiry of a signature. Expired
signatures will fail on expiry checks instead.

You can revoke individual signatures either by using the RevokeSignature API or by selecting a
signing job in the AWS Signer console.

You can revoke a signing profile by using the RevokeSigningProfile API or by selecting and
revoking a signing profile in the AWS Signer console. Once revoked, a signing profile can no longer
be used for creating new signing jobs.

Revocation for a signing profile requires an effective start time in the past. The start time cannot
be in the future. The effective start time can be changed to an earlier date and time by repeating
the revocation, but cannot be revised to a later date and time.

36

AWS Signer Developer Guide

Monitor Signer

Monitoring is an important part of maintaining the reliability, availability, and performance of
Signer and your other AWS solutions. AWS provides the following monitoring tools to watch
Signer, report when something is wrong, and take automatic actions when appropriate:

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time data
from your own applications, Software-as-a-Service (SaaS) applications, and AWS services and
routes that data to targets such as Lambda. This enables you to monitor events that happen in
services, and build event-driven architectures. For more information, see the Amazon EventBridge
User Guide.

Automation with CloudWatch Events

You can automate your use of AWS Signer by tracking and responding to system events that are
managed by Amazon CloudWatch Events. Events resulting from job-completion state changes and
from application availability issues are delivered to CloudWatch Events in near-real time. You can
define simple rules to indicate which events are of interest to you, and to specify actions to take
when an event matches a rule. Examples of actions you can trigger include:

• Invoking an AWS Lambda function

• Invoking the Amazon EC2 RunInstance API action

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

AWS Signer reports to CloudWatch Events whenever the state of a signing job changes. Customers
using a single account for both the signing profile and signing job will see only a single event.
Customers using separate accounts for the signing profile and signing jobs will see the same event
sent to each account.

Automation with CloudWatch Events 37

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/

AWS Signer Developer Guide

The following JSON shows an example of the "Signer Job Status Change" event that AWS Signer
reports.

{
 "version":"0",
 "id":"event_ID",
 "detail-type":"Signer Job Status Change",
 "source":"aws.signer",
 "account":"account_ID",
 "time":"2018-04-26T20:01:47Z",
 "region":"region",
 "resources":[
 "arn:aws:signer:us-east-1:account_ID:/signing-jobs/job_ID"
],
 "detail":{
 "certificate_arn":"arn:aws:acm:region:account_ID:certificate/certificate_ID",
 "job_id":"job_ID",
 "destination":{
 "bucketName":"S3_bucket_name",
 "key":"S3_key_ID"
 },
 "source":{
 "bucketName":"S3_bucket_name",
 "key":"code",
 "version":"version_ID"
 },
 "platform":"Platform",
 "status":"Succeeded"
 }
}

For more information, see the Amazon CloudWatch Events User Guide.

Automation with CloudWatch Events 38

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html

AWS Signer Developer Guide

Security in AWS Signer

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Signer, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS Signer. The following topics show you how to configure AWS Signer to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your AWS Signer resources.

Topics

• Identity and Access Management for AWS Signer

Identity and Access Management for AWS Signer

An AWS account owner or an authorized administrator can attach permissions policies to IAM
identities (users, groups, and roles) that were created in the account. When managing permissions,
an account owner or administrator decides who gets the permissions and what specific actions are
allowed.

A permissions policy describes who has access to what. Administrators can use IAM to create
policies that apply permissions to IAM users, groups, and roles. The following types of identity-
based policies can grant permission for AWS Signer resources:

Identity and Access Management for Signer 39

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Signer Developer Guide

• Customer managed policies – Policies that an administrator creates and manages in an AWS
account and which can be attached to multiple users, groups, and roles.

• Inline policies – Policies that an administrator creates and manages for a single IAM entity and
which can be embedded directly into a single user, group, or role.

For more information, see:

• Customer managed policies for Signer

• Inline policies for Signer

• Use Signer actions in IAM

• Managed policies and inline policies in the IAM documentation.

Customer managed policies for Signer

Customer managed policies are standalone identity-based policies that an administrator creates
and can attach to multiple users, groups, or roles in your AWS account. Administrators can manage
and create policies using the AWS Management Console, the AWS Command Line Interface (AWS
CLI), or the IAM API.

To manage policies in the AWS Management Console

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Customer managed policies for Signer 40

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-cli.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-cli.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-api.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Signer Developer Guide

Inline policies for Signer

Inline policies are standalone identity-based policies that an administrator creates and embeds
directly into a single principal (user, group, or role). Administrators can create and manage policies
using the AWS Management Console, the AWS Command Line Interface (AWS CLI), or the IAM API.

To manage policies in the AWS Management Console

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Examples

• Limit Access for Signing to All Signing Profiles Within an Account

• Limit Access for Signing to a Specific Signing Profile

• Limit Access for Signing to a Specific Signing Profile Version

• Allow Full Access

Limit Access for Signing to All Signing Profiles Within an Account

The following policies allow a principal to discover every SigningProfile within an account and
to use any of them to submit, describe, and list signing jobs.

Policy for Lambda

Inline policies for Signer 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-cli.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-api.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Signer Developer Guide

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "signer:GetSigningProfile",
 "signer:ListSigningProfiles",
 "signer:StartSigningJob",
 "signer:DescribeSigningJob",
 "signer:ListSigningJobs"
],
 "Resource":"*"
 }
]
}

Policy for containers

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "signer:GetSigningProfile",
 "signer:ListSigningProfiles",
 "signer:SignPayload",
 "signer:GetRevocationStatus",
 "signer:DescribeSigningJob",
 "signer:ListSigningJobs"
],
 "Resource":"*"
 }
]
}

Limit Access for Signing to a Specific Signing Profile

The following policies allow a principal to call GetSigningProfile and StartSigningJob only
on profile MySigningProfile.

Inline policies for Signer 42

AWS Signer Developer Guide

Policy for Lambda

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "signer:GetSigningProfile",
 "signer:StartSigningJob"
],
 "Resource":"arn:aws:signer:Region:444455556666:/signing-
profiles/MySigningProfile"
 },
 {
 "Effect":"Allow",
 "Action":[
 "signer:ListSigningJobs",
 "signer:ListSigningProfiles",
 "signer:DescribeSigningJob"
],
 "Resource":"*"
 }
]
}

Policy for containers

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "signer:GetSigningProfile",
 "signer:SignPayload"
],
 "Resource":"arn:aws:signer:Region:444455556666:/signing-
profiles/MySigningProfile"
 },
 {
 "Effect":"Allow",
 "Action":[

Inline policies for Signer 43

AWS Signer Developer Guide

 "signer:ListSigningJobs",
 "signer:ListSigningProfiles",
 "signer:DescribeSigningJob"
],
 "Resource":"*"
 }
]
}

Limit Access for Signing to a Specific Signing Profile Version

The following policy allows a principal to call GetSigningProfile and StartSigningJob only
on version abcde12345 of profile MySigningProfile.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "signer:GetSigningProfile",
 "signer:SignPayload"
],
 "Resource":"arn:aws:signer:Region:444455556666:/signing-
profiles/MySigningProfile",
 "Condition":{
 "StringEquals":{
 "signer:ProfileVersion":"version"
 }
 }
 },
 {
 "Effect":"Allow",
 "Action":[
 "signer:ListSigningJobs",
 "signer:ListSigningProfiles",
 "signer:DescribeSigningJob"
],
 "Resource":"*"
 }
]
}

Inline policies for Signer 44

AWS Signer Developer Guide

Allow Full Access

The following policy allows a principal to perform any AWS Signer action.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"signer:*",
 "Resource":"*"
 }
]
}

Use Signer actions in IAM

Administrators who set up access control and write permissions policies that they attach to an IAM
identity (identity-based policies) can use the following table as a reference. The first column in the
table lists each AWS Signer API operation. You specify actions in a policy's Action element. You
can use the IAM policy elements in your ACM policies to express conditions. For a complete list, see
IAM JSON policy element reference in the IAM User Guide.

Note

To specify an action, use the signer prefix followed by the API operation name (for
example, signer:StartSigningJob).

AWS Signer API Operations and Permissions

API Operation Required Permissions (API Actions)

AddProfilePermission signer:AddProfilePermission

CancelSigningProfile signer:CancelSigningProfile

DescribeSigningJob signer:DescribeSigningJob

GetRevocationStatus signer:GetRevocationStatus

Signer actions in IAM 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
https://docs.aws.amazon.com/signer/latest/api/API_AddProfilePermission.html
https://docs.aws.amazon.com/signer/latest/api/API_CancelSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_DescribeSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_GetRevocationStatus.html

AWS Signer Developer Guide

API Operation Required Permissions (API Actions)

GetSigningPlatform signer:GetSigningPlatform

GetSigningProfile signer:GetSigningProfile

ListProfilePermissions signer:ListProfilePermissions

ListSigningJobs signer:ListSigningJobs

ListSigningPlatforms signer:ListSigningPlatforms

ListSigningProfiles signer:ListSigningProfiles

ListTagsForResource signer:ListTagsForResource

PutSigningProfile signer:PutSigningProfile

RemoveProfilePermission signer:RemoveProfilePermission

RevokeSignature signer:RevokeSignature

RevokeSigningProfile signer:RevokeSigningProfile

SignPayload signer:SignPayload

StartSigningJob signer:StartSigningJob

TagResource signer:TagResource

UntagResource signer:UntagResource

For the actions StartSigningJob, GetSigningProfile,
CancelSigningProfile,RevokeSigningProfile, and SignPayload, use the
signer:ProfileVersion condition key to limit what version of a signing profile a principal has
access to.

Signer actions in IAM 46

https://docs.aws.amazon.com/signer/latest/api/API_GetSigningPlatform.html
https://docs.aws.amazon.com/signer/latest/api/API_GetSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_ListProfilePermissions.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningJobs.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningPlatforms.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningProfiles.html
https://docs.aws.amazon.com/signer/latest/api/API_ListTagsForResource.html
https://docs.aws.amazon.com/signer/latest/api/API_PutSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_RemoveProfilePermission.html
https://docs.aws.amazon.com/signer/latest/api/API_RevokeSignature.html
https://docs.aws.amazon.com/signer/latest/api/API_RevokeSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_SignPayload.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_TagResource.html
https://docs.aws.amazon.com/signer/latest/api/API_UntagResource.html

AWS Signer Developer Guide

AWS Signer API Condition Keys

Condition Key Description APIs

signer:ProfileVers
ion

Limit access to a specific
version of a Signing Profile

StartSigningJob

GetSigningProfile

CancelSigningProfile

RevokeSigningProfile

SignPayload

Signer actions in IAM 47

https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_GetSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_CancelSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_RevokeSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_SignPayload.html

AWS Signer Developer Guide

Code examples

The following code examples show how to use Signer with the Java AWS software development kit
(SDK).

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests

Following the instructions for
the interface that you want to
use.

48

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

AWS Signer Developer Guide

Which user needs
programmatic access?

To By

to the AWS CLI, AWS SDKs, or
AWS APIs.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Actions

The following code examples demonstrate how to perform individual Signer actions with the AWS
Java SDK.

The following examples include only the most commonly used actions. For a complete list, see the
AWS Signer API Reference.

Topics

• AddProfilePermission

• CancelSigningProfile

• DescribeSigningJob

• GetRevocationStatus

• GetSigningPlatform

• GetSigningProfile

• ListProfilePermissions

• ListSigningJobs

Actions 49

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/signer/latest/api/

AWS Signer Developer Guide

• ListSigningPlatforms

• ListSigningProfiles

• ListTagsForResource

• PutSigningProfile

• RemoveProfilePermission

• RevokeSignature

• RevokeSigningProfile

• SignPayload

• StartSigningJob

• TagResource

• UntagResource

AddProfilePermission

The following Java example shows how to use the AddProfilePermission operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.AddProfilePermissionRequest;
import com.amazonaws.services.signer.model.AddProfilePermissionResult;

public class AddProfilePermission {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileName = "MyProfile";
 String signingProfileVersion = "SeFHjuJAjV";
 String principal = "account";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

AddProfilePermission 50

https://docs.aws.amazon.com/signer/latest/api/API_AddProfilePermission.html

AWS Signer Developer Guide

 // Add the first permission to the profile - no revisionId required.
 // Applies to all versions of the profile
 AddProfilePermissionResult result = client.addProfilePermission(new
 AddProfilePermissionRequest()
 .withProfileName(signingProfileName)
 .withStatementId("statement1")
 .withPrincipal(principal)
 .withAction("signer:StartSigningJob"));

 // Add the second permission to the profile - revisionId required.
 // Optionally specify a profile version to lock the permission to a specific
 profile version
 client.addProfilePermission(new AddProfilePermissionRequest()
 .withProfileName(signingProfileName)
 .withProfileVersion(signingProfileVersion)
 .withStatementId("statement2")
 .withPrincipal(principal)
 .withAction("signer:GetSigningProfile")
 .withRevisionId(result.getRevisionId()));
 }
}

CancelSigningProfile

The following Java example shows how to use the CancelSigningProfile operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.CancelSigningProfileRequest;

/**
* This examples demonstrates how to program a CancelSigningProfile operation .
*/
public class CancelSigningProfile {

 public static void main(String[] s) {

 final String credentialsProfile = "default";
 final String codeSigningProfileName = "MyProfile";

CancelSigningProfile 51

https://docs.aws.amazon.com/signer/latest/api/API_CancelSigningProfile.html

AWS Signer Developer Guide

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // cancel a signing profile
 client.cancelSigningProfile(new
 CancelSigningProfileRequest().withProfileName(codeSigningProfileName));
 }
}

DescribeSigningJob

The following Java example shows you how to use the DescribeSigningJob operation. Call the
StartSigningJob operation before calling DescribeSigningJob. StartSigningJob returns
a jobId value that you use when you call DescribeSigningJob.

package com.amazonaws.samples;

import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.DescribeSigningJobRequest;
import com.amazonaws.services.signer.model.DescribeSigningJobResult;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

import com.amazonaws.services.signer.model.ResourceNotFoundException;
import com.amazonaws.services.signer.model.AccessDeniedException;
import com.amazonaws.services.signer.model.InternalServiceErrorException;
import com.amazonaws.AmazonClientException;

/**
* This sample demonstrates how to use the DescribeSigningJob operation in the
* AWS Signer service.
*
* Input Parameters:
*

DescribeSigningJob 52

https://docs.aws.amazon.com/signer/latest/api/API_DescribeSigningJob.html
url-signer-api;API_StartSigningJob.html

AWS Signer Developer Guide

* jobId - String that contains the ID of the job that was returned by the
* StartSigningJob operation.
*
*/

public class DescribeSigningJob {

 public static void main(String[] args) throws Exception {

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file
 // in Windows or the ~/.aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider().getCredentials();
 }
 catch (Exception ex) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 ex);
 }

 // Specify the endpoint and region.
 EndpointConfiguration endpoint =
 new EndpointConfiguration("https://endpoint","region");

 // Create a client.
 AWSSigner client = AWSSignerClient.builder()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

 // Create a request object.
 DescribeSigningJobRequest req = new DescribeSigningJobRequest()
 .withJobId("jobID");

 // Create a result object.
 DescribeSigningJobResult result = null;
 try {
 result = client.describeSigningJob(req);
 }
 catch (ResourceNotFoundException ex)
 {
 throw ex;
 }

DescribeSigningJob 53

AWS Signer Developer Guide

 catch (AccessDeniedException ex)
 {
 throw ex;
 }
 catch (InternalServiceErrorException ex)
 {
 throw ex;
 }

 // Display the information for your signing job.
 System.out.println(result.toString());

 }
}

GetRevocationStatus

The following Java example shows how to use the GetRevocationStatus operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.GetRevocationStatusRequest;
import com.amazonaws.services.signer.model.GetRevocationStatusResult;

import java.time.Instant;
import java.util.Arrays;
import java.util.Date;

public class GetRevocationStatus {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 Date signatureTimestamp = Date.from(Instant.now());
 String platformId = "Notation-OCI-SHA384-ECDSA";
 String certificateHash =
 "136eb997783e8d18a073e5977238765c39f1ca9bc919cf7ccab4430e5e5c39b756f21aa8c1687e536365f5916a47473"
 +
 "326c4931465816650759563436d1705657bad8ac49d370d6ea64404716e92fa2d65dcdf5bf5caa99743a8bf60594efe";
 String jobArn = "arn:aws:signer:region:account:/signing-jobs/jobID";

GetRevocationStatus 54

https://docs.aws.amazon.com/signer/latest/api/API_GetRevocationStatus.html

AWS Signer Developer Guide

 String profileVersionArn = "arn:aws:signer:region:account:/signing-
profiles/MyProfile/version";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("us-west-2")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Get the revocation status
 GetRevocationStatusResult response = client.getRevocationStatus(new
 GetRevocationStatusRequest()
 .withSignatureTimestamp(signatureTimestamp)
 .withPlatformId(platformId)
 .withCertificateHashes(Arrays.asList(certificateHash))
 .withJobArn(jobArn)
 .withProfileVersionArn(profileVersionArn));

 // Print revoked resources
 System.out.println(response.getRevokedEntities());
 }
}

GetSigningPlatform

The following Java example shows how to use the GetSigningPlatform operation.

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSsigner;
import com.amazonaws.services.signer.AWSsignerClient;
import com.amazonaws.services.signer.model.GetSigningPlatformRequest;
import com.amazonaws.services.signer.model.GetSigningPlatformResult;

public class GetSigningPlatform {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String codeSigningPlatformId = "aws-signer-platform-id";

 // Create a client.
 AWSsigner client = AWSsignerClient.builder()

GetSigningPlatform 55

https://docs.aws.amazon.com/signer/latest/api/API_GetSigningPlatform.html

AWS Signer Developer Guide

 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 GetSigningPlatformResult result = client.getSigningPlatform(
 new GetSigningPlatformRequest().withPlatformId(codeSigningPlatformId));

 System.out.println("Display Name : " + result.getDisplayName());
 System.out.println("Platform Id : " + result.getPlatformId());
 System.out.println("Signing Configuration : " +
 result.getSigningConfiguration());
 }
}

GetSigningProfile

The following Java example shows how to use the GetSigningProfile operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.GetSigningProfileRequest;
import com.amazonaws.services.signer.model.GetSigningProfileResult;

/**
* This examples demonstrates retreiving a signing profile's information.
*/
public class GetSigningProfile {

 public static void main(String[] s) {

 final String credentialsProfile = "default";
 final String codeSigningProfileName = "MyProfile";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Get a signing profile.

GetSigningProfile 56

https://docs.aws.amazon.com/signer/latest/api/API_SetSigningProfile.html

AWS Signer Developer Guide

 GetSigningProfileResult getSigningProfileResult = client.getSigningProfile(new
 GetSigningProfileRequest().withProfileName(codeSigningProfileName));

 System.out.println("Profile Name : " + getSigningProfileResult.getProfileName());
 System.out.println("Certificate Arn : " +
 getSigningProfileResult.getSigningMaterial().getCertificateArn());
 System.out.println("Platform : " + getSigningProfileResult.getPlatform());
 }
}

ListProfilePermissions

The following Java example shows how to use the ListProfilePermissions operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.ListProfilePermissionsRequest;
import com.amazonaws.services.signer.model.ListProfilePermissionsResult;
import com.amazonaws.services.signer.model.Permission;

public class ListProfilePermissions {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileName = "MyProfile";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // List the permissions for a profile
 ListProfilePermissionsResult result = client.listProfilePermissions(new
 ListProfilePermissionsRequest()
 .withProfileName(signingProfileName));

 // Iterate through the permissions
 for (Permission permission: result.getPermissions()) {

ListProfilePermissions 57

https://docs.aws.amazon.com/signer/latest/api/API_ListProfilePermissions.html

AWS Signer Developer Guide

 System.out.println("StatementId: " + permission.getStatementId());
 System.out.println("Principal: " + permission.getPrincipal());
 System.out.println("Action: " + permission.getAction());
 System.out.println("ProfileVersion: " + permission.getProfileVersion());
 }
 System.out.println("RevisionId: " + result.getRevisionId());
 }
}

ListSigningJobs

The following Java example shows how to use the ListSigningJobs operations. This operation
lists all of the signing jobs that you have performed in your account. Call the StartSigningJob
operation before you call ListSigningJobs. You can also call DescribeSigningJob
and specify a jobId to see information about a specific signing job created by calling
StartSigningJob.

package com.amazonaws.samples;

import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.ListSigningJobsRequest;
import com.amazonaws.services.signer.model.ListSigningJobsResult;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

import com.amazonaws.services.signer.model.ValidationException;
import com.amazonaws.services.signer.model.AccessDeniedException;
import com.amazonaws.services.signer.model.ThrottlingException;
import com.amazonaws.services.signer.model.InternalServiceErrorException;
import com.amazonaws.AmazonClientException;

/**
* This sample demonstrates how to use the ListSigningJobs operation in the
* AWS Signer service.
*
* Input Parameters:
*
* status - String that specifies the status that you want to use for filtering.

ListSigningJobs 58

https://docs.aws.amazon.com/signer/latest/api/API_ListSigningJobs.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_DescribeSigningJob.html

AWS Signer Developer Guide

* This can be:
* - InProgress
* - Failed
* - Succeeded
* platform - String that contains the name of the microcontroller platform that
* you want to use for filtering.
* requestedBy - IAM principal that requested the signing job.
* maxResults - Use this parameter when paginating results to specify the maximum
* number of items to return in the response. If additional items exist
* beyond the number you specify, the nextToken element is sent in the
* response. Use the nextToken value in a subsequent request to retrieve
* additional items.
* nextToken - Use this parameter only when paginating results and only in a
* subsequent request after you receive a response with truncated results.
* Set it to the value of nextToken from the response you
* just received.
*
*/

public class ListSigningJobs {

 public static void main(String[] args) throws Exception{

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file in
 Windows
 // or the ~/.aws/credentials file in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider().getCredentials();
 }
 catch (Exception ex) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 ex);
 }

 // Specify the endpoint and region.
 EndpointConfiguration endpoint =
 new EndpointConfiguration("https://endpoint","region");

 // Create a client.
 AWSSigner client = AWSSignerClient.builder()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

ListSigningJobs 59

AWS Signer Developer Guide

 // Create a request object.
 ListSigningJobsRequest req = new ListSigningJobsRequest()
 .withStatus("Succeeded")
 .withPlatform("platform")
 .withMaxResults(10);

 // Create a result object.
 ListSigningJobsResult result = null;
 try {
 result = client.listSigningJobs(req);
 }
 catch (ValidationException ex)
 {
 throw ex;
 }
 catch (AccessDeniedException ex)
 {
 throw ex;
 }
 catch (ThrottlingException ex)
 {
 throw ex;
 }
 catch (InternalServiceErrorException ex)
 {
 throw ex;
 }

 // Display the information for your signing job.
 System.out.println(result.toString());

 }
}

ListSigningPlatforms

The following Java example shows how to use the ListSigningPlatforms operation.

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSsigner;
import com.amazonaws.services.signer.AWSsignerClient;
import com.amazonaws.services.signer.model.ListSigningPlatformsRequest;

ListSigningPlatforms 60

https://docs.aws.amazon.com/signer/latest/api/API_ListSigningPlatforms.html

AWS Signer Developer Guide

import com.amazonaws.services.signer.model.ListSigningPlatformsResult;
import com.amazonaws.services.signer.model.SigningPlatform;

public class ListSigningPlatforms {

 public static void main(String[] s) {

 final String credentialsProfile = "default";

 // Create a client.
 final AWSsigner client = AWSsignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 ListSigningPlatformsResult result;
 String nextToken = null;
 do {
 result = client.listSigningPlatforms(new
 ListSigningPlatformsRequest().withNextToken(null));

 for (SigningPlatform platform : result.getPlatforms()) {
 System.out.println("Display Name : " + platform.getDisplayName());
 System.out.println("Platform Id : " + platform.getPlatformId());
 System.out.println("Signing Configuration : " +
 platform.getSigningConfiguration());
 }

 nextToken = result.getNextToken();
 } while (nextToken != null);
 }
}

ListSigningProfiles

The following Java example shows how to use the ListSigningProfiles operation.

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSsigner;
import com.amazonaws.services.signer.AWSsignerClient;
import com.amazonaws.services.signer.model.ListSigningProfilesRequest;
import com.amazonaws.services.signer.model.ListSigningProfilesResult;
import com.amazonaws.services.signer.model.SigningProfile;

ListSigningProfiles 61

https://docs.aws.amazon.com/signer/latest/api/API_ListSigningProfiles.html

AWS Signer Developer Guide

public class ListSigningProfilesTest {

 public static void main(String[] s) {

 final String credentialsProfile = "default";

 // Create a client.
 final AWSsigner client = AWSsignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 ListSigningProfilesResult result;
 String nextToken = null;
 do {
 result = client.listSigningProfiles(new
 ListSigningProfilesRequest().withNextToken(nextToken));

 for (SigningProfile profile : result.getProfiles()) {
 System.out.println("Profile Name : " + profile.getProfileName());
 System.out.println("Cert Arn : " +
 profile.getSigningMaterial().getCertificateArn());
 System.out.println("Profile Status : " + profile.getStatus());
 System.out.println("Platform Id : " + profile.getPlatformId());
 }

 nextToken = result.getNextToken();
 } while (nextToken != null);
 }
}

ListTagsForResource

The following Java example shows how to use the ListTagsForResource operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.ListTagsForResourceRequest;
import com.amazonaws.services.signer.model.ListTagsForResourceResult;

ListTagsForResource 62

https://docs.aws.amazon.com/signer/latest/api/API_ListTagsForResource.html

AWS Signer Developer Guide

import java.util.Map;

public class ListTagsForResource {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileArn = "arn:aws:signer:region:account:/signing-
profiles/MyProfile";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // List the tags for a signing profile
 ListTagsForResourceResult result = client.listTagsForResource(
 new ListTagsForResourceRequest().withResourceArn(signingProfileArn));

 // Iterate through the tags
 for (Map.Entry<String, String> tag: result.getTags().entrySet()) {
 System.out.println("Key: " + tag.getKey());
 System.out.println("Value: " + tag.getValue());
 }
 }
}

PutSigningProfile

Code signing for AWS IoT

The following Java examples show how to use the PutSigningProfile operation to create a new
signing profile. Code signing profiles can be used in the StartSigningJob operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.PutSigningProfileRequest;
import com.amazonaws.services.signer.model.SigningMaterial;

PutSigningProfile 63

https://docs.aws.amazon.com/signer/latest/api/API_PutSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob

AWS Signer Developer Guide

public class PutSigningProfile {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String codeSigningProfileName = "MyProfile";
 String codeSigningCertificateArn =
 "arn:aws:acm:region:123456789:certificate/certID";

 // Create a client.
 AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // creating a code signing profile.
 client.putSigningProfile(new PutSigningProfileRequest()
 .withProfileName(codeSigningProfileName)
 .withSigningMaterial(new SigningMaterial()
 .withCertificateArn(codeSigningCertificateArn))
 .withPlatformId(signingPlatformId));
 }
}

Code signing for AWS Lambda

The next example shows how to use the PutSigningProfileProfile operation to create a
new signing profile for AWS Lambda. Code signing profiles can be used in the StartSigningJob
operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.PutSigningProfileRequest;

public class PutSigningProfile {

 public static void main(String[] s) {

 String credentialsProfile = "default";

PutSigningProfile 64

url-signer-api;API_PutSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob

AWS Signer Developer Guide

 String signingProfileName = "MyProfile";
 String signingPlatformId = "AWSLambda-SHA384-ECDSA";

 // Create a client.
 AWSSigner client = AWSSignerClient.builder()
 .withRegion("us-west-2")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Create a code signing profile.
 client.putSigningProfile(new PutSigningProfileRequest()
 .withProfileName(signingProfileName)
 .withPlatformId(signingPlatformId));
 }
}

RemoveProfilePermission

The following Java example shows how to use the RemoveProfilePermission operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.ListProfilePermissionsRequest;
import com.amazonaws.services.signer.model.ListProfilePermissionsResult;
import com.amazonaws.services.signer.model.RemoveProfilePermissionRequest;

public class RemoveProfilePermission {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileName = "MyProfile";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Get the latest revisionId for the profile

RemoveProfilePermission 65

https://docs.aws.amazon.com/signer/latest/api/API_RemoveProfilePermission.html

AWS Signer Developer Guide

 ListProfilePermissionsResult result = client.listProfilePermissions(new
 ListProfilePermissionsRequest()
 .withProfileName(signingProfileName));

 // Remove a specific permission from the profile
 client.removeProfilePermission(new RemoveProfilePermissionRequest()
 .withProfileName(signingProfileName)
 .withStatementId("statement1")
 .withRevisionId(result.getRevisionId()));
 }
}

RevokeSignature

The following Java example shows how to use the RevokeSignature operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.RevokeSignatureRequest;

public class RevokeSignature {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingJobId = "jobID";
 String revokeReason = "Reason for revocation";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Revoke a signing job
 client.revokeSignature(new RevokeSignatureRequest()
 .withJobId(signingJobId)
 .withReason(revokeReason));
 }
}

RevokeSignature 66

https://docs.aws.amazon.com/signer/latest/api/API_RevokeSignature.html

AWS Signer Developer Guide

RevokeSigningProfile

The following Java example shows how to use the RevokeSigningProfile operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.RevokeSigningProfileRequest;

import java.time.Instant;
import java.util.Date;

public class RevokeSigningProfile {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileName = "MyProfile";
 String signingProfileVersion = "version";
 String revokeReason = "Reason for revocation";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Revoke a signing profile
 client.revokeSigningProfile(new RevokeSigningProfileRequest()
 .withProfileName(signingProfileName)
 .withProfileVersion(signingProfileVersion)
 .withReason(revokeReason)
 .withEffectiveTime(Date.from(Instant.now())));
 }
}

SignPayload

The following Java example shows how to use the SignPayload operation.

package com.examples;

RevokeSigningProfile 67

https://docs.aws.amazon.com/signer/latest/api/API_RevokeSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_SignPayload.html

AWS Signer Developer Guide

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.SignPayloadRequest;

import java.nio.ByteBuffer;

public class SignPayload{

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileName = "MyProfile";
 String payloadFormat = "application/vnd.cncf.notary.payload.v1+json";
 String payload = "{\n" +
 " \"targetArtifact\": {\n" +
 " \"mediaType\": \"application/vnd.docker.distribution.manifest.v2+json
\",\n" +
 " \"digest\":
 \"sha256:73c803930ea3ba1e54bc25c2bdc53edd0284c62ed651fe7b00369da519a3c333\",\n" +
 " \"size\": 16724,\n" +
 " \"annotations\": {\n" +
 " \"io.wabbit-networks.buildId\": \"123\"" +
 " }\n" +
 " }\n" +
 "}";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Sign a payload
 client.signPayload(new SignPayloadRequest()
 .withProfileName(signingProfileName)
 .withPayloadFormat(payloadFormat)
 .withPayload(ByteBuffer.wrap(payload.getBytes())));
 }
}

SignPayload 68

AWS Signer Developer Guide

StartSigningJob

The following Java example shows how to use the StartSigningJob operation. You must call
StartSigningJob before you call any other AWS Signer API operation. StartSigningJob
returns a jobId value that you can use when calling DescribeSigningJob operation.

package com.amazonaws.samples;

import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.Source;
import com.amazonaws.services.signer.model.S3Source;
import com.amazonaws.services.signer.model.Destination;
import com.amazonaws.services.signer.model.S3Destination;
import com.amazonaws.services.signer.model.StartSigningJobRequest;
import com.amazonaws.services.signer.model.StartSigningJobResult;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

import com.amazonaws.services.signer.model.ValidationException;
import com.amazonaws.services.signer.model.ResourceNotFoundException;
import com.amazonaws.services.signer.model.AccessDeniedException;
import com.amazonaws.services.signer.model.ThrottlingException;
import com.amazonaws.services.signer.model.InternalServiceErrorException;
import com.amazonaws.AmazonClientException;

/**
* This sample demonstrates how to use the StartSigningJob operation in the
* AWS Signer service.
*
* Input Parameters:
*
* source - Structure that contains the following:
* - Name of the Amazon S3 bucket to which you copied your
* code image
* - Name of the file that contains your code image
* - Amazon S3 version number of your file
* destination - Structure that contains the following:
* - Name of the Amazon S3 bucket that AWS Signer can use for
* your signed code

StartSigningJob 69

https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html
https://docs.aws.amazon.com/signer/latest/api/API_DescribeSigningJob.html

AWS Signer Developer Guide

* - Optional Amazon S3 bucket prefix
*
*/

public class StartSigningJob {

 public static void main(String[] args) throws Exception{

 // Define variables.
 String bucketSrc = "amzn-s3-demo-source-bucket";
 String key = "Code-Image-File";
 String objectVersion = "Source-S3-File-Version";
 String bucketDest = "amzn-s3-demo-destination-bucket";
 S3Source s3src = new S3Source()
 .withBucketName(bucketSrc)
 .withKey(key)
 .withVersion(objectVersion);
 Source src = new Source().withS3(s3src);
 S3Destination s3Dest = new S3Destination().withBucketName(bucketDest);
 Destination dest = new Destination().withS3(s3Dest);
 String signingProfileName = "MyProfile";

 // Retrieve your credentials from the C:\Users\name\.aws\credentials file in
 // Windows or the ~/.aws/credentials in Linux.
 AWSCredentials credentials = null;
 try {
 credentials = new ProfileCredentialsProvider().getCredentials();
 }
 catch (Exception ex) {
 throw new AmazonClientException("Cannot load your credentials from file.",
 ex);
 }

 // Specify the endpoint and region.
 EndpointConfiguration endpoint =
 new EndpointConfiguration("https://endpoint","region");

 // Create a client.
 AWSSigner client = AWSSignerClient.builder()
 .withEndpointConfiguration(endpoint)
 .withCredentials(new AWSStaticCredentialsProvider(credentials))
 .build();

StartSigningJob 70

AWS Signer Developer Guide

 // Create a request object.
 StartSigningJobRequest req = new StartSigningJobRequest()
 .withSource(src)
 .withDestination(dest)
 .withProfileName(signingProfileName);

 // Create a result object.
 StartSigningJobResult result = null;
 try {
 result = client.startSigningJob(req);
 }
 catch (ValidationException ex)
 {
 throw ex;
 }
 catch (ResourceNotFoundException ex)
 {
 throw ex;
 }
 catch (AccessDeniedException ex)
 {
 throw ex;
 }
 catch (ThrottlingException ex)
 {
 throw ex;
 }
 catch (InternalServiceErrorException ex)
 {
 throw ex;
 }

 // Display the job ID.
 System.out.println("Job ID: " + result.getJobId());

 }
}

TagResource

The following Java example shows how to use the TagResource operation.

TagResource 71

https://docs.aws.amazon.com/signer/latest/api/API_TagResource.html

AWS Signer Developer Guide

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.TagResourceRequest;

import java.util.Collections;

public class TagResource {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileArn = "arn:aws:signer:region:account:/signing-
profiles/MyProfile";
 String tagKey = "Key";
 String tagValue = "Value";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Add a tag to a signing profile
 client.tagResource(new TagResourceRequest()
 .withResourceArn(signingProfileArn)
 .withTags(Collections.singletonMap(tagKey, tagValue)));
 }
}

UntagResource

The following Java example shows how to use the UntagResource operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;
import com.amazonaws.services.signer.model.UntagResourceRequest;

UntagResource 72

url-signer-api;API_UntagResource.html

AWS Signer Developer Guide

import java.util.Collections;

public class UntagResource {

 public static void main(String[] s) {

 String credentialsProfile = "default";
 String signingProfileArn = "arn:aws:signer:region:account:/signing-
profiles/MyProfile";
 String tagKey = "Key";

 // Create a client.
 final AWSSigner client = AWSSignerClient.builder()
 .withRegion("region")
 .withCredentials(new ProfileCredentialsProvider(credentialsProfile))
 .build();

 // Remove a tag from a signing profile
 client.untagResource(new UntagResourceRequest()
 .withResourceArn(signingProfileArn)
 .withTagKeys(Collections.singletonList(tagKey)));
 }
}

UntagResource 73

AWS Signer Developer Guide

Document History for Developer Guide

Latest documentation update: November 19, 2018

The following table describes the documentation release history of AWS Signer.

Change Description Date

Signer open source library
now available

Adds a link to the Signer open
source library. You now have
the option of using the Signer
binary or the open source
library.

July 24, 2024

Added caveat about image
verification in AWS GovCloud
(US) Region

To verify images signed using
a signing profile created in an
AWS GovCloud (US) Region,
you must set signingAu
thority to aws-us-gov-
signer-ts in your trust
policy.

March 13, 2024

Added support for container
image signing.

Introduced code signing for
container images stored in
an Open Container Initiativ
e (OCI) compliant container
registry such as Amazon ECR.

June 22, 2023

Added configuration steps
using the console.

Introduced AWS Code Signer
Console for Lambda applicati
ons.

May 8, 2020

Added new content Integrated AWS Signer with
AWS IoT Device Management.

November 8, 2018

Launched AWS Signer This release introduces AWS
Signer.

December 20, 2017

74

AWS Signer Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

75

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Signer
	Table of Contents
	What is AWS Signer?
	Interoperation with other AWS services
	Supported Regions
	Quotas for Signer
	Pricing for Signer

	Get started with AWS Signer
	Set up to use Signer
	Sign up for an AWS account
	Create a user with administrative access

	Create a Signer signing profile
	Set up cross-account signing for Signer

	Code signing workflows in Signer
	Sign Internet of Things (IoT) objects
	Obtain and import a code-signing certificate
	Create and populate an Amazon S3 source bucket for your unsigned object files
	Create an Amazon S3 destination bucket for your signed object files
	Create a signing job for IoT in AWS Signer

	Sign AWS Lambda code
	Create and populate an Amazon S3 source bucket for your unsigned object files
	Create an Amazon S3 destination bucket for your signed object files
	Create a signing job for Lambda in AWS Signer

	Sign container images in Signer
	Prerequisites for signing container images
	Required AWS Identity and Access Management permissions to sign and verify a container image

	Sign an image
	Step 1: Create a AWS Signer Notation signing profile
	Step 2: Install a helper program
	Amazon ECR Docker credential helper
	Docker credential helper

	Step 3: Sign the image using the Notation CLI
	Step 4: Verify image

	Locally verify an image after signing
	Verify an image during in Amazon EKS or Kubernetes clusters

	Revoke signatures generated by Signer
	Monitor Signer
	Automation with CloudWatch Events

	Security in AWS Signer
	Identity and Access Management for AWS Signer
	Customer managed policies for Signer
	Inline policies for Signer
	Limit Access for Signing to All Signing Profiles Within an Account
	Limit Access for Signing to a Specific Signing Profile
	Limit Access for Signing to a Specific Signing Profile Version
	Allow Full Access

	Use Signer actions in IAM

	Code examples
	Actions
	AddProfilePermission
	CancelSigningProfile
	DescribeSigningJob
	GetRevocationStatus
	GetSigningPlatform
	GetSigningProfile
	ListProfilePermissions
	ListSigningJobs
	ListSigningPlatforms
	ListSigningProfiles
	ListTagsForResource
	PutSigningProfile
	RemoveProfilePermission
	RevokeSignature
	RevokeSigningProfile
	SignPayload
	StartSigningJob
	TagResource
	UntagResource

	Document History for Developer Guide
	AWS Glossary

