
Implementation Guide

Application Pattern Orchestrator on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Application Pattern Orchestrator on AWS Implementation Guide

Application Pattern Orchestrator on AWS: Implementation Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Application Pattern Orchestrator on AWS Implementation Guide

Table of Contents

Solution overview .. 1
Features and benefits .. 2
Use cases .. 3
Concepts and definitions .. 3

Architecture overview ... 5
Architecture diagram ... 5
AWS Well-Architected design considerations ... 7

Operational excellence ... 7
Security .. 8
Reliability ... 8
Performance efficiency ... 8
Cost optimization .. 9
Sustainability .. 9

Architecture details ... 10
Application pattern portal ... 10
Patterns pipeline builder .. 12
Policy evaluation and security review microservice .. 13
Provisioned publishing pipeline .. 16
Application pattern subscriber email notification ... 17
AWS services in this solution ... 18

Plan your deployment ... 21
Cost ... 21

Cost table ... 21
Security ... 24

IAM roles ... 24
Amazon S3 bucket configuration and policy .. 25
AWS Key Management Service (AWS KMS) keys .. 25
Amazon CloudFront .. 25
Network configuration ... 25
User authorization .. 25
Data protection ... 26

Design considerations .. 27
Regional deployment ... 27
Solution pattern limit .. 27

iii

Application Pattern Orchestrator on AWS Implementation Guide

Supported AWS Regions ... 27
Deploy the solution ... 29

AWS CloudFormation template ... 29
Prerequisites .. 30

AWS account .. 30
GitHub and GitHub Enterprise account .. 30

Launch the stack .. 34
Monitoring the solution with AppRegistry .. 37

Activate CloudWatch Application Insights .. 38
Activate AWS Cost Explorer ... 39
Activate cost allocation tags .. 39

Update the solution .. 41
Troubleshooting ... 43

Deletion of the solution stack fails .. 43
Uninstall the solution ... 45
Using the solution's web UI .. 46

Sign in to the web interface .. 46
Create an attribute .. 47
Create a pattern ... 48
Publish a pattern .. 50

Developer guide ... 55
Source code ... 55
Use the solution APIs .. 55

Reference .. 56
Best practice recommendations .. 56

Code repo recommendations ... 56
Code repository structure ... 57
CloudFormation based pattern’s code repo structure ... 57
CDK based pattern’s code repo structure .. 59

Security recommendations ... 62
Enable Amazon Macie for Amazon S3 buckets .. 62
Enable MFA to Amazon Cognito User Pool .. 63
Enable Advanced Security mode for Amazon Cognito User Pool ... 63

Anonymized data collection .. 63
Opt out of operational metrics collection ... 63

Contributors ... 63

iv

Application Pattern Orchestrator on AWS Implementation Guide

Revisions ... 65
Notices .. 66

v

Application Pattern Orchestrator on AWS Implementation Guide

Solution to establish and manage an internal catalog of
reusable, repeatable, well-architected, secure-by-design,
and production-ready cloud infrastructure patterns

Publication date: November 2022 (last update: August 2023)

Application Pattern Orchestrator (APO) is an AWS solution that helps customers in regulated
industries such as Financial Services Industry (FSI), manufacturing, and healthcare to establish
and manage an internal catalog of reusable, repeatable, well-architected, secure-by-design,
and production-ready cloud infrastructure patterns for use by application development and
engineering teams throughout their organizations.

Note

A pattern may be described by one or more attributes on its initial definition or as part of
a subsequent update. Although such attributes can describe any characteristic of a pattern,
such as hosting construct or technology stack, in the context of this solution, they are
intended to inform governance, risk, and compliance characteristics.

This solution offers a set of integrated components that provide an end-to-end orchestration
framework to allow decentralized contribution, implement automated compliance validation,
centralize approval and publishing, and lifecycle notifications of an enterprise’s internal
application-driven cloud infrastructure patterns.

Using this solution, application and technology teams can use a self-service web user interface
(UI) to submit their application patterns as CloudFormation or CDK for automatic validation,
manual review, approval and publishing to Service Catalog as Service Catalog products (for
CloudFormation-based patterns) and to AWS CodeArtifact as software packages (for CDK-based
patterns).

• Automatic validation provides feedback within minutes, while the solution’s manual review
and approval workflows provide asynchronous collaboration between application teams and
centralized architecture and security teams, via familiar tools such as Git, where rework or
further iterations are needed. For more information, refer to the

1

Application Pattern Orchestrator on AWS Implementation Guide

• The web UI provides a notification capability to subscribers to alert to the availability of newly
published patterns or versions per category, portfolio, etc.

• You can use a browsable and searchable catalogue of published patterns for consumption, with
metadata and supporting assets, for example, architecture diagrams and Frequently Asked
Questions (FAQs) to locate useful patterns.

This implementation guide describes architectural considerations and configuration steps for
deploying the Application Pattern Orchestrator in the AWS cloud.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution.

The estimated cost for running this solution in
the US-East (N.Virginia) Region is USD $194.32
per month.

Cost

Understand the security considerations for this
solution.

Security

Know which AWS Regions are supported for
this solution.

Supported AWS Regions

View or download the AWS CloudForm
ation template included in this solution
to automatically deploy the infrastructure
resources (the “stack”) for this solution.

AWS CloudFormation template

This guide is intended for deployment in an enterprise by IT infrastructure and security
architects, security administrators, developers, and DevSecOps professionals who have practical
experience with the AWS Cloud.

Features and benefits

The Application Pattern Orchestrator on AWS solution provides the following features:

Features and benefits 2

Application Pattern Orchestrator on AWS Implementation Guide

Self-service, and low-touch developer-friendly experience

• Create decentralized processes for distributed engineering teams to iterate on pattern feedback
in an asynchronous manner.

Drive consistency and standardization of controls across your organizations

• Embed attributes to be automatically inherited by new applications using underlying patterns
that incorporate repeatable guardrails.

• Automatically validate pattern security, architecture, and compliance against organization-
specific policy-as-code.

Central discovery of approved application patterns

• Allow engineering teams to browse and search for patterns through a centrally accessible user
interface built for application developers.

For more information, refer to the Application Pattern Orchestrator on AWS solution page.

Use cases

The Application Pattern Orchestrator on AWS solution allows engineering teams in an organization
to establish and manage an internal catalog of reusable, repeatable, well-architected, secure-by-
design, and production-ready cloud infrastructure patterns.

This enables organizations in shifting governance to the left through the use of patterns and
incorporate guardrails for new applications at scale. The solution makes an engineer’s job easier
because it automatically validates a pattern’s security, architecture, and compliance against
industry best practices.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

Attribute

Use cases 3

https://aws.amazon.com/solutions/implementations/application-pattern-orchestrator-on-aws/

Application Pattern Orchestrator on AWS Implementation Guide

Attributes help describe any characteristic of a pattern, such as a hosting construct or technology
stack. In the context of this solution, they are intended to inform governance, risk, and compliance
characteristics.

Pattern

A pattern may be described by one or more attributes on its initial definition or as part of a
subsequent update.

For a general reference of AWS terms, see the AWS glossary in the AWS General Reference.

Concepts and definitions 4

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

Application Pattern Orchestrator on AWS Implementation Guide

Architecture overview

Deploying this solution with the default parameters deploys the following components in your
AWS account.

Architecture diagram

Application Pattern Orchestrator on AWS architecture diagram

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs

Architecture diagram 5

Application Pattern Orchestrator on AWS Implementation Guide

The high-level process flow for the solution components deployed with the AWS CloudFormation
template is as follows. The numbers below match the number designated in the architecture
diagram.

1. AWS WAF to protect the web UI and Amazon API Gateway endpoints against common web
exploits and bots that may affect availability, compromise security, or consume excessive
resources.

2. An Amazon CloudFront distribution to serve the optional UI. Amazon CloudFront delivers low
latency, high performance, and secure static web hosting. An Amazon Simple Storage Service
(Amazon S3) web UI bucket hosts the static web application artifacts.

3. Amazon Cognito to provide authentication mechanism for both the static content hosted in S3
bucket for the web UI and API Gateway endpoints. Amazon Cognito also manages federating
and storing users from external identity providers (IDPs).

4. Amazon API Gateway to expose a set of RESTful APIs. API Gateway processes HTTP requests
issued by the users to manage the lifecycle of application patterns and their attributes.

5. A Pattern Portal AWS Lambda function to process the validated requests from the API
Gateway. This Lambda function encapsulates the solution's business logic, receiving REST
requests from the user via the API Gateway, validating them and storing these requests, and
retrieving data to and from the database.

6. AWS CodeCommit to store the pattern’s source code.

Note

To configure GitHub or GitHub Enterprise as your pattern’s source code repository
instead, deploy the solution using AWS CDK by following the instructions in the solution
README.

7. A pattern pipeline builder AWS CodeBuild to provision the CI/CD pipeline for the patterns.

8. AWS CodePipeline to provide the CI/CD pipeline to publish a pattern to its target pattern store.

9. Amazon DynamoDB to store and retrieve pattern’s metadata, publish data and attributes.

10.Automated security check AWS CodeBuild to perform security scan on the pattern’s
CloudFormation template which gets initiated automatically when the pattern’s developer raises
a pull request. On completion of the security check, the results are published on the pull request
page for the security admin to review. Once approved and the pattern’s code changes merged
into the main branch of the pattern’s code repository, the CI/CD pipeline is automatically
initiated to publish the pattern.

Architecture diagram 6

https://aws.amazon.com/waf/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/s3/
https://aws.amazon.com/cognito/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/lambda/
https://aws.amazon.com/codecommit/
https://github.com/
https://github.com/enterprise
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/dynamodb

Application Pattern Orchestrator on AWS Implementation Guide

11.A Pattern’s artifacts store to store the published artifacts to Service Catalog (for
CloudFormation-based patterns) and to AWS CodeArtifact (for CDK-based patterns).

12.Amazon SNS topic to receive the published pattern data from the pattern’s publishing pipeline
to start the email notification mechanism.

13.An email notification AWS Lambda function to receive the pattern’s published data from
Amazon SNS topic, get the list of subscribers from AWS DynamoDB and invoke Amazon SES to
send email notification about the pattern’s publishing to the subscriber list.

14.Amazon SES to send email notification to the pattern’s subscriber list whenever a new pattern’s
version is published.

15.Amazon EventBridge rule to periodically initiate the pattern attribute sync process.

16.Amazon EventBridge initiates a Timed Synchronizer AWS Lambda function to pull the
pattern attributes from Amazon DynamoDB and push them to the Amazon SQS queue for
performing the sync attribute operation.

17.Amazon SQS queue to receive the attributes data and send it to the AppRegistry Updater
AWS Lambda function to update the attribute groups in Service Catalog AppRegistry.

18.An AppRegistry Updater AWS Lambda function to sync the pattern attributes with Service
Catalog AppRegistry.

19.Service Catalog AppRegistry to store the attributes data in the form of attribute groups synced
from Amazon DynamoDB.

AWS Well-Architected design considerations

This solution was designed with best practices from the AWS Well-Architected Framework which
helps customers design and operate reliable, secure, efficient, and cost-effective workloads in the
cloud.

This section describes how the design principles and best practices of the Well-Architected
Framework were applied when building this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

• All Lambda functions send logging output to Amazon CloudWatch.

AWS Well-Architected design considerations 7

https://aws.amazon.com/servicecatalog/
https://aws.amazon.com/codeartifact/
https://aws.amazon.com/sns/
https://aws.amazon.com/ses/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html

Application Pattern Orchestrator on AWS Implementation Guide

• Access to S3 buckets and CloudFront distribution is logged into an access log bucket.

• A comprehensive CloudWatch dashboard is provided to monitor the operational status of
underlying services.

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

• All inter-service communications use AWS Identity and Access Management (IAM) roles.

• All IAM roles used by the solution follow the least-privilege access principle. They only contain
the minimum permissions required so that the service can function properly.

• All Lambda functions are created inside a VPC.

• The solution uses Amazon Cognito for user authentication and authorization. Additionally, it also
supports federated user authentication and authorization from a different identity provider.

• All data stored in Amazon DynamoDB, AWS Service Catalog AppRegistry, AWS CodeArtifact, and
Amazon S3 buckets have encryption at REST.

• AWS WAF is applied on both CloudFront Distribution as well as APIGateway APIs to mitigate any
potential attacks.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

• The solution uses AWS serverless services wherever possible to ensure high availability and
recovery from service failure.

• All compute processing uses Lambda functions.

• Data is stored in Amazon S3 and DynamoDB tables, so it persists in multiple Availability Zones by
default.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

Security 8

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html

Application Pattern Orchestrator on AWS Implementation Guide

• The solution uses serverless compute and data resources throughout the architecture.

• You can launch the solution in any Region that supports AWS services used in this solution.

• The solution is developed with AWS CDK and managed with AWS CloudFormation stacks. By
implementing a complete Infrastructure-as-Code (IAC) approach, it allows easy upgrading and
resource management.

• The solution leverages as many AWS managed services as possible. For more information, refer
to the AWS services used in this solution section.

Cost optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization pillar.

• The solution only uses Lambda functions for compute needs and only charges for what is used.

• Full serverless architecture and automatic scalability to scale out when demand is high and scale
in when demand is low.

Read the Cost Optimization Pillar whitepaper

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

• Serverless resources are used for compute and data storage.

• Most data storage is maintained within Amazon DynamoDB, Amazon S3 buckets, AWS Service
Catalog AppRegistry, and AWS CodeArtifact that you can remove easily.

Read the Sustainability Pillar whitepaper

Cost optimization 9

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Application Pattern Orchestrator on AWS Implementation Guide

Architecture details

The solution deploys the following components that work together to provide pattern governance
and catalog functionality:

• Application pattern portal: A web UI that allows the user to create new patterns, its attributes
and provides a storefront to browse and search for patterns.

• Application patterns pipeline builder: Provisions governed pipelines for evaluating and
publishing application patterns upon a pattern’s submission request. Pipelines are provisioned
per application pattern.

• Policy evaluation and security review microservice: Provides an interface to plug in a policy-as-
code implementation such as CFN Nag.

• Provisioned publishing pipeline(s): AWS CodePipeline based pipeline responsible for publishing
a pattern to Service Catalog (for CloudFormation-based patterns) and to AWS CodeArtifact (for
CDK-based patterns).

• Application pattern subscriber email notification: An email notification mechanism that allows
users to subscribe to the patterns they are interested in and receive notification whenever a new
version of the patterns is published.

The solution provides a self-service mechanism for application teams to submit their application
foundation constructs for automatic validation and receive feedback within minutes. It provides
capabilities to create new Git repositories for distributed maintenance of patterns. Patterns are
first validated against a third-party linting tool called cfn_nag. The security report generated
by cfn_nag is reviewed by the Security team. Once approved and code merged, the pattern is
automatically published via CodePipeline to Service Catalog (for CloudFormation-based patterns)
and to AWS CodeArtifact (for CDK-based patterns).

Application pattern portal

The following diagram provides an overview of the Application pattern portal.

Application pattern portal 10

https://github.com/stelligent/cfn_nag

Application Pattern Orchestrator on AWS Implementation Guide

Application Pattern Portal overview

1. AWS WAF to protect the web UI and API Gateway endpoints against common web exploits and
bots that may affect availability, compromise security, or consume excessive resources.

2. An Amazon CloudFront distribution to serve the optional UI. Amazon CloudFront delivers low
latency, high performance, and secure static web hosting. An Amazon Simple Storage Service
(Amazon S3) web UI bucket hosts the static web application artifacts.

3. Amazon Cognito to provide authentication mechanism for both the static content hosted in S3
bucket for the web UI and API Gateway endpoints. Amazon Cognito also manages federating
and storing users from external identity providers (IDPs).

4. Amazon API Gateway to expose a set of RESTful APIs. API Gateway processes HTTP requests
issued by the users to manage the lifecycle of application patterns and their attributes.

5. A Pattern Portal AWS Lambda function to process the validated requests from API Gateway.
This Lambda function encapsulates the solution's business logic, receiving REST requests from

Application pattern portal 11

Application Pattern Orchestrator on AWS Implementation Guide

the user via API Gateway, validating them and storing, and retrieving data to and from the
database.

6. AWS CodeCommit to store the pattern’s source code.

Note

To configure GitHub or GitHub Enterprise as your pattern’s source code repository
instead, deploy the solution using AWS CDK by following the instructions in the solution
README.

7. A pattern pipeline builder AWS CodeBuild to provision the CI/CD pipeline for the patterns.

8. Amazon DynamoDB to store and retrieve the pattern’s metadata, publish data and attributes.

Patterns pipeline builder

The following diagram represents the component overview of Patterns pipeline builder.

Patterns pipeline builder overview

1. After the patterns developer submits a create pattern request, a new code repository is created
in AWS CodeCommit for the pattern.

Patterns pipeline builder 12

https://aws.amazon.com/codecommit/
https://github.com/
https://github.com/enterprise
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://aws.amazon.com/codecommit/

Application Pattern Orchestrator on AWS Implementation Guide

Note

To configure GitHub or GitHub Enterprise as your pattern’s source code repository
instead, deploy the solution using AWS CDK by following the instructions in the solution
README.

2. The Pipeline builder initiates the provisioning of CodePipeline for publishing the pattern.

3. The publishing pipeline uses AWS CodeCommit to store the pattern’s source code.

Note

To configure GitHub or GitHub Enterprise as your pattern’s source code repository
instead, deploy the solution using AWS CDK by following the instructions in the solution
README.

4. On every new commit in the main branch of the pattern’s source code repository, the pattern’s
publishing pipeline is launched automatically and publishes the pattern’s new version.

Policy evaluation and security review microservice

By default, the solution uses AWS CodeCommit to store the pattern’s source code.

Note

To configure GitHub or GitHub Enterprise as your pattern’s source code repository instead,
deploy the solution using AWS CDK by following the instructions in the solution README.

The following diagram describes the policy evaluation and security review microservice based on
AWS CodeCommit as the pattern's source code repository.

Policy evaluation and security review microservice 13

https://github.com/
https://github.com/enterprise
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://aws.amazon.com/codecommit/
https://github.com/
https://github.com/enterprise
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://aws.amazon.com/codecommit/
https://github.com/
https://github.com/enterprise
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md

Application Pattern Orchestrator on AWS Implementation Guide

Policy evaluation and security review microservice using AWS CodeCommit

1. The Pattern developer creates a pattern and raises a pull request to the master branch.

2. The pull request event is sent to an Amazon SNS topic.

3. On receiving the pull request event, the Amazon SNS topic initiates an AWS Lambda
function with the event data page.

4. The AWS Lambda function parses the pull request event data and invokes the AWS
CodeBuild Automated Security Check project which runs the automated security check
(cfn_nag) on the Pull Request (PR) branch where the pattern was updated.

5. The AWS CodeBuild Automated security check project sends the security findings back to the
pull request page as comments.

6. Security Admin reviews the results of the evaluated pattern reported by security review
microservice in the pull request and approves the pull request.

The following diagram describes the policy evaluation and security review microservice based on
GitHub/GitHub Enterprise as the pattern's source code repository.

Policy evaluation and security review microservice 14

Application Pattern Orchestrator on AWS Implementation Guide

Policy evaluation and security review microservice using GitHub/GitHub Enterprise as pattern's
source repository

1. The Pattern developer creates a pattern and raises a pull request to the main branch.

2. The pull request initiates a webhook request to AWS CodeBuild project which runs the
automated security check (cfn_nag) on the Pull Request (PR) branch where the pattern was
updated.

Policy evaluation and security review microservice 15

Application Pattern Orchestrator on AWS Implementation Guide

3. The automated security check sends the security findings back to the pull request page.

4. Security Admin reviews the results of the evaluated pattern reported by security review
microservice in the pull request and approves the pull request.

Provisioned publishing pipeline

The following diagram describes the provisioned publishing pipeline and catalog manager
microservice.

Provisioned publishing pipeline overview

1. When the pattern is merged into the main branch, it initiates the provisioned publishing
pipeline. The Update Pipeline stage updates the pipeline itself.

2. The build stage builds the pattern code and runs the security evaluation (cfn_nag) on the
pattern code.

3. Security evaluation results are stored in an S3 bucket along with the template artifacts.

4. Semantic versioning is leveraged to increment/generate version of application pattern based on
git commit history.

5. The pattern gets published as Service Catalog product (for CloudFormation-based patterns) and
to AWS CodeArtifact (for CDK-based patterns).

Provisioned publishing pipeline 16

Application Pattern Orchestrator on AWS Implementation Guide

6. The published data is inserted in a DynamoDB table.

Application pattern subscriber email notification

The following diagram describes the pattern’s subscriber email notification component.

Application pattern subscriber email notification

1. After the application pattern’s publishing pipeline publishes the pattern, it sends the publishing
details to Amazon SNS topic.

2. The Amazon SNS topic forwards the pattern’s publishing data to AWS Lambda email notification
function for further processing.

3. The AWS Lambda email notification function pulls the subscribers list for the published pattern
from Amazon DynamoDB.

4. Amazon DynamoDB stores the pattern to subscriber email mapping data.

Application pattern subscriber email notification 17

Application Pattern Orchestrator on AWS Implementation Guide

5. Once the AWS Lambda email notification service has the subscriber email list, it invokes Amazon
SES to send emails to the pattern subscribers.

6. Users who subscribed to the pattern receive the email notification about the published pattern
with details of the new version.

AWS services in this solution

AWS service Description

Amazon CloudFront Core. Distribution to serve the optional UI.

Amazon S3 Core. Web UI bucket to host the static web
application artifacts.

AWS Lambda Core.

• Pattern Portal: Processes the validated
requests from the API Gateway.

• Email notification: Receives the pattern’s
published data from Amazon SNS topic,
gets the list of subscribers from AWS
DynamoDB, and invokes Amazon SES.

• Timed Synchronizer: Pulls the pattern
attributes from Amazon DynamoDB and
pushes them to Amazon SQS.

• AppRegistry Updater: Syncs the pattern
attributes with Service Catalog AppRegistry.

AWS CodeCommit Core. Stores the pattern's source code, by
default.

AWS CodeBuild Core.

• Provisions the CI/CD pipeline for the
patterns.

AWS services in this solution 18

http://aws.amazon.com/cloudfront/
http://aws.amazon.com/s3/
http://aws.amazon.com/lambda/
http://aws.amazon.com/ses/
http://aws.amazon.com/sqs/
http://aws.amazon.com/codecommit/
http://aws.amazon.com/codebuild/

Application Pattern Orchestrator on AWS Implementation Guide

AWS service Description

• Performs security scan on the pattern’s
CloudFormation template.

Amazon DynamoDB Core. Stores and retrieves the pattern’s
 metadata, publishes data and attributes.

AWS CodePipeline Core. Provides the CI/CD pipeline to publish a
pattern to its target pattern store.

Service Catalog Core. Stores the published artifacts for
CloudFormation-based patterns.

AWS CodeArtifact Core. Stores the published artifacts for CDK-
based patterns.

Service Catalog AppRegistry Core. Stores the attributes data in the form
of attribute groups synced from Amazon
DynamoDB.

AWS WAF Supporting. Protects the web UI against
common web exploits and bots that may
affect availability, compromise security, or
consume excessive resources.

Amazon Cognito Supporting. Provides the authentication
mechanism for both the static content hosted
in an S3 bucket for the web UI and API
Gateway endpoints.

API Gateway Supporting. Protects the API endpoints
against common web exploits and bots that
may affect availability, compromise security, or
consume excessive resources.

AWS services in this solution 19

http://aws.amazon.com/dynamodb
http://aws.amazon.com/codepipeline/
http://aws.amazon.com/servicecatalog/
http://aws.amazon.com/codeartifact/
https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
http://aws.amazon.com/waf/
http://aws.amazon.com/cognito/
http://aws.amazon.com/api-gateway/

Application Pattern Orchestrator on AWS Implementation Guide

AWS service Description

Amazon SNS Supporting. Topic to receive the published
 pattern data from the pattern’s publishin
g pipeline to start the email notification
mechanism.

Amazon SES Supporting. Sends email notification about
the pattern’s publishing to the subscriber list
whenever a new pattern’s version is published.

Amazon EventBridge Supporting. Rule to periodically initiate the
pattern attribute sync process.

Amazon SQS Supporting. Queue for performing the sync
attribute operation.

AWS services in this solution 20

http://aws.amazon.com/sns/
http://aws.amazon.com/ses/
http://aws.amazon.com/eventbridge/
http://aws.amazon.com/sqs/

Application Pattern Orchestrator on AWS Implementation Guide

Plan your deployment

This section describes the cost, security, Region, and design considerations for planning your
deployment.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of the
most recent revision, the cost for running this solution with the default settings, considering a
deployment of 50 application patterns, in the US East (N.Virginia) Region is approximately USD
$194.32 a month.

Cost table

Service Monthly usage estimate Total monthly cost (USD)

Amazon CloudFront Data transfer out to internet:
first 1,024 GB/month are
free.

$0

Amazon Cognito The Cognito User Pool feature
has a free tier of 50,000 MAUs
for users who sign in directly
to Cognito User Pools and
50 MAUs for users federated
through SAML 2.0 based
identity providers. Percent
of monthly users who sign
in through SAML or OIDC
federation: 10%

$0

AWS CodeCommit First 5 active users are free.
For 50 patterns there will
be 50 IAM roles correspon
ding to Security check AWS
CodeBuild projects.

$45.00

Cost 21

Application Pattern Orchestrator on AWS Implementation Guide

Service Monthly usage estimate Total monthly cost (USD)

Amazon EventBridge Event rules are free. $0

AWS Secrets Manager Number of secrets (1),
Average duration of each
secret (30 days), Number of
API calls (100 per month)

$0.40

Amazon API Gateway HTTP API requests units
(millions), Average size
of each request (34 KB),
REST API request units
(millions), Cache memory
size (GB) (None), WebSocket
message units (thousands),
Average message size (32 KB),
Requests (1 per month)

$1.29

AWS Key Management
Service

Number of customer
managed Customer Master
Keys (CMK) (59), Number
of symmetric requests
(2000000)

$65.00

AWS Lambda Architecture (x86), Amount of
ephemeral storage allocated
(512 MB), Number of requests
(4000 per month)

$0

AWS CodeBuild Number of builds in a
month (1000), Average
build duration (minutes) (5),
Operating system (Linux),
Compute instance type
(general1.small)

$25.00

Cost table 22

Application Pattern Orchestrator on AWS Implementation Guide

Service Monthly usage estimate Total monthly cost (USD)

AWS CodePipeline Number of active pipelines
used per account per month
(50)

$49.00

Amazon DynamoDB Free 25 GB of storage and
up to 200 million read/writ
e requests per month, Table
class (Standard), Average item
size (all attributes) (1 KB)

$0

Service Catalog Create one portfolio containin
g 50 products published 10
times a day

$0

Amazon S3 S3 Standard storage (2 GB per
month)

$0.11

AWS CodeArtifact First 2GB of storage and
first 100,000 requests of
CodeArtifact usage for free
every month.

$0

Amazon CloudWatch Number of Metrics (includes
detailed and custom metrics)
(10), GetMetricData: Number
of metrics requested (10),
GetMetricWidgetImage:
Number of metrics requested
(10), Number of other API
requests (10), Number of
Dashboards (1), Standard
Logs: Data Ingested (1 GB),
Logs Delivered to CloudWatch
Logs: Data Ingested (1 GB)

$4.35

Cost table 23

Application Pattern Orchestrator on AWS Implementation Guide

Service Monthly usage estimate Total monthly cost (USD)

Amazon Simple Notification
Service

Requests (1 million per
month)

$0

Amazon Simple Queue
Service

Data transfer cost (0),
Standard queue requests
(1 million per month), FIFO
queue requests (1 million per
month)

$0

Amazon Simple Email Service For 50 application patterns
published 2 times a day and
sending email notifications
to 100 pattern subscribers,
the total emails sent will
be approximately 10,000 a
month.

$3.80

Total monthly cost USD $194.32

You can use the AWS Pricing Calculator for estimating costs based on your usage.

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, refer to the AWS Cloud Security page.

IAM roles

AWS Identity and Access Management (IAM) roles allow customers to assign granular access
policies and permissions to services and users in the AWS Cloud. This solution creates IAM roles
that grant the solution’s automated functions access to perform remediation actions within a
narrow scope set of permissions specific to each remediation.

Security 24

https://calculator.aws/#/estimate?id=20d4fda3b47914eede2af96d324f04016578cec5
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/security/
https://aws.amazon.com/iam/

Application Pattern Orchestrator on AWS Implementation Guide

Amazon S3 bucket configuration and policy

By default, all Amazon S3 buckets for the solution have the following configuration:

• Blocked all public access

• Versioning enabled

• Access log enabled

• Encryption at rest by an AWS KMS customer managed key

Additionally, the Amazon S3 buckets are also configured with a default buckets policy that deny all
non-HTTPS requests to ensure data in transit encryption.

AWS Key Management Service (AWS KMS) keys

The Application Pattern Orchestrator on AWS solution allows you to provide your own AWS KMS
keys to encrypt stored data. We recommend referring to the security best practices for AWS Key
Management Service to enhance the protection of your encryption keys.

Amazon CloudFront

This solution deploys a web application hosted in an Amazon S3 bucket. To help reduce latency
and improve security, this solution includes an Amazon CloudFront distribution with an Origin
Access Identity (OAI), which is a CloudFront user that provides public access to the solution’s
website bucket contents. For more information, refer to Restricting access to an Amazon S3 origin
section in the Amazon CloudFront Developer Guide.

Network configuration

The Application Pattern Orchestrator on AWS solution is deployed in Amazon VPC, with the
Lambda functions in a private subnet. All traffic in and out of the isolated subnet is controlled by
security groups.

User authorization

By default, the solution creates two user groups in the Amazon Cognito user pool for user
authorization:

Amazon S3 bucket configuration and policy 25

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html

Application Pattern Orchestrator on AWS Implementation Guide

• SYSTEM_ADMIN: This user group has permissions to access all pages in the web UI. By default,
any user created by the solution is automatically added to this group when the solution is
deployed.

• PATTERN_PUBLISHER: This group has permissions to create, update, and view patterns. The
group also allows you to view pattern attributes.

Note

To update or delete pattern attributes, you must be in the SYSTEM_ADMIN group.

Federating solution user groups through an Identity provider (IdP)

You can federate the solution user groups using a third-party identity provider via OpenID Connect
(OIDC). To configure this:

1. Deploy the solution using AWS CDK by following the instructions in the solution README.

2. In your IdP settings, add a claim type group and map the roles that will relate to the
SYSTEM_ADMIN and PATTERN_PUBLISHER roles in Amazon Cognito user pool. In absence of
this mapping, a federated user would only have read-only access to the solution web UI.

Data protection

All data committed to Application Pattern Orchestrator on AWS is encrypted at rest; this includes
data stored in:

• Amazon S3

• Amazon DynamoDB

• AWS CodeArtifact

• Service Catalog

• Amazon SQS

Communication between the solution’s different components is over HTTPS to ensure data
encryption in transit.

Data protection 26

https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md

Application Pattern Orchestrator on AWS Implementation Guide

Design considerations

Regional deployment

This solution uses the Amazon API Gateway, Amazon Cognito, AWS Secrets Manager, AWS Lambda,
Amazon EventBridge, AWS Key Management Service, AWS CodeBuild, AWS CodePipeline, Amazon
DynamoDB, Service Catalog, AWS CodeArtifact, Amazon CloudWatch, Amazon SQS, and Amazon
SNS, which are currently available in specific AWS Regions only. We recommend you launch this
solution in an AWS Region where these AWS services are available. For the most current service
availability by Region, refer to the AWS-Regional Services List.

Solution pattern limit

When you deploy this solution with a newly provisioned AWS account, it will allow you to only
create a maximum of 60 patterns based on the default IAM roles limit in your AWS account.

Note

If you need to increase the solution pattern limit, you will need to request and get
approved for an IAM roles increase. For a maximum hard limit of 5000 IAM roles, you can
create up to approximately 300 patterns.

For more information, refer to the IAM and AWS STS quotas, name requirements, and character
limits.

Supported AWS Regions

The Application Pattern Orchestrator on AWS solution can be deployed in the following AWS
Regions in accordance with the regional availability of its constituent services:

Region ID Region Name

us-east-1 US East (N. Virginia)

us-east-2 US East (Ohio)

us-west-2 US West (Oregon)

Design considerations 27

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

Application Pattern Orchestrator on AWS Implementation Guide

Region ID Region Name

ap-south-1 Asia Pacific (Mumbai)

ap-northeast-1 Asia Pacific (Tokyo)

ap-southeast-1 Asia Pacific (Singapore)

ap-southeast-2 Asia Pacific (Sydney)

eu-west-1 Europe (Ireland)

eu-west-2 Europe (London)

eu-west-3 Europe (Paris)

eu-central-1 Europe (Frankfurt)

eu-north-1 Europe (Stockholm)

Supported AWS Regions 28

Application Pattern Orchestrator on AWS Implementation Guide

Deploy the solution
Before you launch the Application Pattern Orchestrator on AWS solution, review the cost,
architecture, network security, and other considerations discussed earlier in this guide. Follow the
step-by-step instructions in this section to configure and deploy the solution into your account.

Time to deploy: Approximately 15 mins

This solution uses AWS CloudFormation templates and stacks to automate its deployment.
The CloudFormation templates describe the AWS resources included in this solution and their
properties. The CloudFormation stacks provisions the resources that are described in the templates.

Note

The automated deployment deploys the solution with the default configuration settings,
and can be used for evaluation and production purposes. However, to fine tune the
advanced settings for better performance or customize the solution to your specific
environment, we recommended downloading the source code from the GitHub repository
and building and deploying the solution with AWS CDK.

AWS CloudFormation template

You can download the CloudFormation template for this solution before deploying it.

ApoStack.template: Use this template to launch the solution and all associated components. The
default configuration deploys Application Pattern Orchestrator on AWS in the AWS Cloud, but you
can customize the template to meet your specific needs.

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

This AWS CloudFormation template deploys Application Pattern Orchestrator on AWS in the AWS
Cloud. You must meet the following prerequisites before launching the stack:

AWS CloudFormation template 29

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws
https://s3.amazonaws.com/solutions-reference/application-pattern-orchestrator-on-aws/latest/ApoStack.template

Application Pattern Orchestrator on AWS Implementation Guide

Note

If you have previously deployed this solution, see Update the solution for update
instructions.

Prerequisites

AWS account

• A CDK bootstrapped AWS account: You must bootstrap your AWS CDK environment in the
target region you want to deploy, using the AWS CDK toolkit's cdk bootstrap command. From
the command line, authenticate into your AWS account, and run cdk bootstrap 'aws://
<YOUR ACCOUNT NUMBER>/<REGION>'. For more information, refer to the AWS CDK's How to
bootstrap page.

• Production access for Amazon SES: This solution uses Amazon SES for sending email
notifications to application pattern’s subscribers. In order to use this feature, ensure that Amazon
SES (in your account) is in a production environment, and not in the sandbox environment. For
more information, refer to the Moving out of the Amazon SES sandbox page.

• Your AWS account should be part of an AWS Organization: This prerequisite is only applicable
for application patterns that are of the CloudFormation type, and needs to be shared across
accounts using AWS Service Catalog, as currently, the AWS Service Catalog AppRegistry attribute
groups can only be shared to AWS accounts within an organization. This prerequisite does not
apply to CDK-based application patterns.

GitHub and GitHub Enterprise account (required only if you use these
for your pattern's source code repository)

By default, the solution uses AWS CodeCommit to create pattern repositories.

Note

To configure GitHub or GitHub Enterprise as your pattern’s source code repository instead,
deploy the solution using AWS CDK by following the instructions in the solution README.

Prerequisites 30

https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html
https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html
https://docs.aws.amazon.com/ses/latest/dg/request-production-access.html
https://aws.amazon.com/organizations/
https://docs.aws.amazon.com/ram/latest/userguide/shareable.html#shareable-sc-appregistry
https://github.com/
https://github.com/enterprise
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md

Application Pattern Orchestrator on AWS Implementation Guide

The solution supports both GitHub Teams and GitHub Enterprise (Enterprise Cloud and Enterprise
Server) plans. A complete list of prerequisites related to GitHub/GitHub Enterprise is listed below:

• GitHub Organization: The solution assumes that an organization exists in the GitHub account.
The pattern repositories will be created in this organization.

• GitHub Organization Owner Account: The organization owner is the only account that is
allowed to create a GitHub App which is required to create an AWS CodeStar connection to
GitHub, GitHub Enterprise Cloud or GitHub Enterprise server.

• AWS CodeStar connection to GitHub, GitHub Enterprise Cloud, or GitHub Enterprise server:

• The solution integrates with GitHub, GitHub Enterprise Cloud or GitHub Enterprise server
using AWS CodeStar connection. To create a AWS CodeStar connection to GitHub or GitHub
Enterprise Cloud, refer to the Create a connection to GitHub guide. To create a AWS CodeStar
connection to GitHub Enterprise Server, refer to the Create a connection to GitHub Enterprise
Server guide.

• As part of creating a AWS CodeStar connection, a GitHub app is installed to establish the
connection between AWS and GitHub. Install the GitHub app in the Organization.

• GitHub app permissions:

• The GitHub app must have admin permissions granted as read and write. The admin
permission for the GitHub app is required because when a new pattern is created by the
solution, its code repository is created with master/main branch as protected. When the
pattern’s publishing pipeline runs, it upgrades the package versions and tries to push the
change directly to the master/main branch. As the master/main branch is protected, only
admins have the required permissions to directly push to the protected branches.

• For GitHub and GitHub Enterprise in the cloud, the GitHub app has read and write admin
permissions by default.

GitHub and GitHub Enterprise account 31

https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create-github.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create-gheserver.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create-gheserver.html
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches

Application Pattern Orchestrator on AWS Implementation Guide

AWS Connector for GitHub

• For GitHub Enterprise Server, you must manually grant the admin permissions to the GitHub
app. For more information about how to grant permissions to the GitHub app, refer to the
Editing a GitHub App's permissions guide. Ensure that the permissions changes are accepted
by the Organization account before you deploy the solution.

GitHub and GitHub Enterprise account 32

https://docs.github.com/en/developers/apps/managing-github-apps/editing-a-github-apps-permissions

Application Pattern Orchestrator on AWS Implementation Guide

GitHub App permissions

• Once the AWS CodeStar connection has been created successfully using the previous step, create
an AWS SSM parameter with the name as githubConnectionArn and value as AWS CodeStar
connection ARN.

• GitHub personal access token:

• Create a personal access token from a GitHub account that is a member of the organization.
This token is required by the solution to create the pattern’s code repository in the
organization and also to initialize it with an initial commit.

• Token permissions should have repo and delete repo scopes.

OAuth scopes

GitHub and GitHub Enterprise account 33

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Application Pattern Orchestrator on AWS Implementation Guide

• GitHub personal access token to be stored as a secret in a text form in AWS Secrets Manager
with the name githubTokenSecretId. It must be encrypted using the AWS managed key for
Secrets Manager (aws/secretsmanager).

Launch the stack

Note

This solution includes an option to send anonymous operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and
products. AWS owns the data gathered though this survey. Data collection is subject to the
AWS Privacy Policy. To opt out of this feature, during the deployment, on the Specify stack
details, from template parameter sendAnonymousData dropdown, select No.

This automated AWS CloudFormation template deploys the Application Pattern Orchestrator on
AWS solution in the AWS Cloud.

Note

You are responsible for the cost of the AWS services used while running this solution. For
more details, visit the Cost section in this guide, and refer to the pricing webpage for each
AWS service used in this solution.

1. Sign in to the AWS Management Console and select the button to
launch the ApoStack.template AWS CloudFormation template.

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a
different AWS Region, use the Region selector in the console navigation bar.

3. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text
box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack.

5. Under Parameters, review the parameters for this solution template and modify them as
necessary. This solution uses the following default values.

Launch the stack 34

https://aws.amazon.com/privacy/
https://s3.amazonaws.com/solutions-reference/application-pattern-orchestrator-on-aws/latest/ApoStack.template

Application Pattern Orchestrator on AWS Implementation Guide

Parameter Default Description

patternType CloudFormation The type of application
patterns that the solution
would enable. Valid values
are:

1. CloudFormation:
CloudFormation based
patterns are automatically
published to Service Catalog
as products.

2. CDK: CDK based patterns
are automatically published
to AWS CodeArtifact as npm
packages.

3. All: Enables both
CloudFormation and CDK
based patterns.

adminEmail <Requires input> The solution creates a
default user with this email
address to login to the
solution's UI.

This has to be a valid email
address as you will receive
the temporary password on
this email address.

Launch the stack 35

Application Pattern Orchestrator on AWS Implementation Guide

Parameter Default Description

sendAnonymousData Yes Send anonymous operation
al metrics to AWS. We use
this data to better understan
d how customers use this
solution and related services
and products.

6. Choose Next.

7. On the Configure stack options page, select Next.

8. On the Review page, review and confirm the settings. Check the box acknowledging that the
template will create AWS Identity and Access Management (IAM) resources.

9. Choose Create stack to deploy the stack. You can view the status of the stack in the AWS
CloudFormation console in the Status column. You should receive a CREATE_COMPLETE status
in approximately 15 minutes.

Launch the stack 36

Application Pattern Orchestrator on AWS Implementation Guide

Monitoring the solution with AppRegistry

The Application Pattern Orchestrator on AWS solution includes a Service Catalog AppRegistry
resource to register the CloudFormation template and underlying resources as an application in
both AWS Service Catalog AppRegistry and AWS Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the resources of this solution in the context of an application. For
example, deployment status, CloudWatch alarms, resource configurations, and operational
issues.

The following figure depicts an example of the application view for the Application-Pattern-
Orchestrator-on-AWS stack in Application Manager

Application Pattern Orchestrator on AWS stack in Application Manager

37

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Application Pattern Orchestrator on AWS Implementation Guide

Note

You must activate CloudWatch Application Insights, AWS Cost Explorer, and cost allocation
tags associated with this solution. They are not activated by default.

Activate CloudWatch Application Insights

After the solution CloudFormation stack has been deployed and launched, you can sign in to the
web interface.

1. Sign in to the Systems Manager console. In the navigation pane, choose Application Manager.

2. In Applications, choose AppRegistry applications.

3. In AppRegistry applications, search for the application name for this solution and select it. The
next time you open Application Manager, you can find the new application for your solution in
the AppRegistry application category.

4. In the Components tree, choose the application stack you want to activate.

5. In the Monitoring tab, in Application Insights, select Auto-configure Application Monitoring.

Auto configure Application Monitoring

6. Monitoring for your applications is now activated and the following status box appears.

Activate CloudWatch Application Insights 38

https://console.aws.amazon.com/systems-manager/appmanager

Application Pattern Orchestrator on AWS Implementation Guide

Activated Application Insights

Activate AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer which must
be first activated. Cost Explorer helps you manage costs by providing a view of your AWS resource
costs and usage over time. To activate Cost Explorer for the solution:

1. Sign in to the AWS Cost Management console.

2. In the navigation pane, select Cost Explorer.

3. On the Welcome to Cost Explorer page, choose Launch Cost Explorer.

Activate cost allocation tags associated with the solution

After you activate Cost Explorer, you must activate the cost allocation tags associated with this
solution to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization.

To activate cost allocation tags:

Activate AWS Cost Explorer 39

https://console.aws.amazon.com/cost-management/home

Application Pattern Orchestrator on AWS Implementation Guide

1. Sign in to the AWS Billing and Cost Management console , and select Cost Allocation Tags in the
left navigation menu.

2. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

3. Choose Activate.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags 40

https://console.aws.amazon.com/billing/home

Application Pattern Orchestrator on AWS Implementation Guide

Update the solution

If you have previously deployed the solution, follow the following steps to update the current
deployment with the latest released version.

1. Select the View Template button to download the ApoStack.template to a location on your
computer.

2. Sign in to the AWS CloudFormation console, and select the correct account and Region. From
the list of stacks, select the solution’s stack name (this is the name that you specified when
deploying the solution for the first time), and choose the Update button.

3. On the Update stack page, select Replace current template, and under Specify template,
select Upload a template file.

4. Under Upload a template file, select Choose file, and select the ApoStack.template file that
you downloaded on your computer.

5. Select Next to continue.

6. Under Parameters, review the parameters for this solution template and modify them as
necessary. This solution uses the following default values:

Parameter Default Description

patternType CloudFormation The type of application
patterns that the solution
would enable. Valid values
are:

1. CloudFormation:
CloudFormation based
patterns are automatically
published to Service Catalog
as products.

2. CDK: CDK based patterns
are automatically published

41

https://s3.amazonaws.com/solutions-reference/application-pattern-orchestrator-on-aws/latest/ApoStack.template
https://console.aws.amazon.com/cloudformation/

Application Pattern Orchestrator on AWS Implementation Guide

Parameter Default Description

to AWS CodeArtifact as npm
packages.

3. All: Enables both
CloudFormation and CDK
based patterns.

adminEmail <Requires input> The solution creates a
default user with this email
address to login to the
solution's UI.

This has to be a valid email
address as you will receive
the temporary password on
this email address.

sendAnonymousData Yes Send anonymous operation
al metrics to AWS. We use
this data to better understan
d how customers use this
solution and related services
and products.

7. Select Next.

8. On the Configure stack options page, select Next.

9. On the Review page, review and confirm the settings. Check the box acknowledging that the
template will create AWS Identity and Access Management (IAM) resources.

10.Select Submit to update the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column.

42

Application Pattern Orchestrator on AWS Implementation Guide

Troubleshooting

Deletion of the solution stack fails

Delete solution stack error

Issue: The issue occurs because all the S3 buckets created in the solution have access logging
enabled by default, which may prevent deleting the buckets while the access logs are still being
written to the access log bucket.

Resolution: To resolve this:

1. Open the AWS Management Console and select your account and region.

2. Navigate to the S3 console, and select the bucket that caused this issue.

3. Select Edit, and Disable.

Deletion of the solution stack fails 43

Application Pattern Orchestrator on AWS Implementation Guide

Edit server access logging

4. Select Save changes to disable the access logging on that bucket.

5. Repeat steps 2 to 4 for all the buckets that failed during stack deletion.

6. After all the failed buckets have been removed, delete the solution stack.

Deletion of the solution stack fails 44

Application Pattern Orchestrator on AWS Implementation Guide

Uninstall the solution

You can uninstall the solution by deleting the stacks from the AWS CloudFormation console.

Sign in to the AWS CloudFormation console, and find and delete the following stacks (in the
specified order):

• All the stacks with the prefix BlueprintInfrastructureStack

• The stack name you used to deploy the solution.

• Delete the pattern repositories (if not needed anymore).

45

Application Pattern Orchestrator on AWS Implementation Guide

Using the solution's web UI

You can use the Application Pattern Orchestrator on AWS web user interface to add, delete, and
manage application patterns and attributes. This section provides details about the features of the
Application Pattern Orchestrator on AWS web UI and how to use them for patterns and attributes.

The side navigation pane displays the following options:

Option Description

Patterns Displays a list of all patterns currently set up
and validated for use.

Attributes Displays a list of currently available attributes.

Solution web UI

Sign in to the web interface

After the solution CloudFormation stack has been deployed and launched, you can sign in to the
web interface.

1. Sign in to the AWS CloudFormation console and select the stack name you used when deploying
the solution.

2. Select the Outputs tab.

Sign in to the web interface 46

https://console.aws.amazon.com/cloudformation/home

Application Pattern Orchestrator on AWS Implementation Guide

3. Under the Key column, search for the key starting with RapmFrontendCloudFrontURL, and
select to open the link.

4. The initial username is the adminEmail specified during the deployment. You will receive a
temporary password from no-reply@verificationemail.com.

5. On the Application Pattern Orchestrator on AWS login screen, enter the Username and
Password and select Sign In.

The Application Pattern Orchestrator on AWS redirects to the login page. By default, the solution’s
web frontend uses Amazon Cognito to authenticate and authorize users.

Create an attribute

You can create attributes to describe any characteristic of a pattern, such as hosting construct or
technology stack. In the context of this solution, they are intended to inform governance, risk, and
compliance characteristics.

Note

Attributes are optional and you do not need them for creating patterns.

Attributes overview

1. Sign in to the web interface, and from the left navigation menu, select Attributes.

2. Select Add new Attribute.

Create an attribute 47

Application Pattern Orchestrator on AWS Implementation Guide

3. On the Create Attribute screen, enter an attribute key, value and description, and select Next.

4. On the Attribute Metadata page, enter metadata information about the attribute. This is
optional.

5. On the Review page, verify the data entered and select Submit to create the attribute.

Create a pattern

A pattern may be described by one or more attributes on its initial definition or as part
of a subsequent update. For example, if a pattern is associated with an attribute called
dataClassification with the value as Confidential, an application that uses the pattern may be
deemed a higher risk compared to an application that uses a pattern tagged with an attribute of
{dataClassification:Public}.

Based on such attributes, you can exercise appropriate control behaviors, such as limiting access
to the patterns themselves to privileged parties within an organization, or running specific
preventative governance checks in a CI/CD pipeline.

To create a pattern:

1. Sign in to the web interface, and from the left navigation menu, select Patterns.

2. Choose Create new Pattern.

Patterns overview

3. On the Pattern details page, enter the pattern name and description, select the pattern type,
and select Next.

4. On the Select Attributes page, associate attributes with the pattern, and select Next.

Create a pattern 48

Application Pattern Orchestrator on AWS Implementation Guide

Select attributes

5. On the Review page, verify the data you entered, and select Submit.

This will create a pattern with the status as Creating. The process creates a new code repository for
this pattern and initiates the provisioning of the pattern’s publishing pipeline (takes approximately
10 minutes to provision).

After the pattern’s publishing pipeline is ready, the pattern pipeline status on the pattern’s details
page changes from Creating to Ready.

Pattern publishing pipeline in Creating state

Create a pattern 49

Application Pattern Orchestrator on AWS Implementation Guide

Publishing pipeline in Ready state

After the pattern’s publishing pipeline is in Ready state, the pattern developer is ready to clone the
pattern’s repository.

Publish a pattern

1. Click the View Code Repository button on the pattern details page to open your repository.

Publish a pattern 50

Application Pattern Orchestrator on AWS Implementation Guide

View code repo

2. Clone the Git repo, create a feature branch and add the code changes to add new CDK
constructs or CloudFormation templates for CDK or CloudFormation pattern types respectively.
For more information on the repo structure, refer to the Code repo recommendations section.

3. For a CDK type pattern, ensure that the new CDK constructs you add their demonstrated usage
in packages # cdk-test-app # bin # cdk-test-app.ts.

4. Raise a pull request (PR) with the main/master branch as the base.

5. The pull request launches an automated security check using AWS CodeBuild which runs a
cfn_nag check against the CDK constructs in the repo and reports either a Success or Failure
status back along with the scan results in the comments section.

Publish a pattern 51

Application Pattern Orchestrator on AWS Implementation Guide

PR comments

We recommend a security person review the PR, who should be able to review the cfn_nag
results. Based on the cfn_nag results, the security reviewer can approve or reject the PR.

6. Once the pull request is approved and merged, the pattern’s publishing pipeline
automatically initiates and publishes the pattern to either Service Catalog (for a

Publish a pattern 52

Application Pattern Orchestrator on AWS Implementation Guide

CloudFormation-based pattern) or to AWS CodeArtifact (for a CDK-based pattern). The pattern
publishing process takes approximately 10-15 minutes.

Pattern publishing process

• Once the pattern is published the pattern details page on the solution’s UI is updated with the
publish details.

Publish a pattern 53

Application Pattern Orchestrator on AWS Implementation Guide

Published pattern details

• As part of publishing the pattern, the solution creates a tag in the code repo and increments the
package version numbers.

Package version numbers

• To view the CDK npm packages:

• Click the View in CodeArtifact button to open the AWS CodeArtifact page in the AWS
Management Console.

• For CloudFormation-based pattern, click the View in Service Catalog button to open the
associated Service Catalog page in the AWS management console.

Publish a pattern 54

Application Pattern Orchestrator on AWS Implementation Guide

Developer guide

Source code

Visit our GitHub repository to download the source files for this solution and to share your
customizations with others.

The Application Pattern Orchestrator on AWS templates are generated using the AWS Cloud
Development Kit (AWS CDK) (AWS CDK). Refer to the README.md file for additional information.

Use the solution APIs

You can use the Application Pattern Orchestrator on AWS solution via Application Programming
Interfaces (APIs). Using the APIs, you can perform all the same actions as you would with using the
web UI, such as:

• Creating, updating, deleting and viewing attributes,

• Creating, updating, and viewing patterns

For more information, refer to the source code API documentation.

Source code 55

https://github.com/aws-solutions/application-pattern-orchestrator-on-aws
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/README.md
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/source/lambda/blueprintgovernanceservice/API.md

Application Pattern Orchestrator on AWS Implementation Guide

Reference

This section includes information about recommended best practices for code repositories, an
optional feature for collecting unique metrics for this solution, pointers to related resources, and a
list of builders who contributed to this solution.

Best practice recommendations

Code repo recommendations

Mono-repo

There are two strategies for managing the codebase in a repository: mono-repo and multi-repo.
From this solution’s perspective we recommend using the mono-repo strategy for patterns.

The main reason for recommending mono-repo for patterns code repository is because of the AWS
resource limits in an AWS account. When a new pattern is created by the solution, a dedicated
publishing pipeline is also created for that pattern to publish a new version of the pattern each
time there is a code commit in the pattern’s main branch of the repo. Each publishing pipeline
creates a number of AWS resources in the AWS account where the solution is deployed. As the
number of patterns grow in number, the number of publishing pipelines grow as well and so do the
number of AWS resources in each of the publishing pipeline. Below are some figures on number of
resources each pattern’s publishing pipeline creates.

Note

This list is not comprehensive and covers only the key AWS resources which should be
considered for calculating the numbers of patterns in an AWS account.

AWS Resource
Name

Count per
pattern
publishing
pipeline

Default Quota Maximum
Quota

Reference

IAM Roles 17 1,000 5,000 IAM and AWS
STS quotas,

Best practice recommendations 56

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

Application Pattern Orchestrator on AWS Implementation Guide

AWS Resource
Name

Count per
pattern
publishing
pipeline

Default Quota Maximum
Quota

Reference

name requireme
nts, and
character limits

CodePipeline 1 1,000 Quotas in AWS
CodePipeline

CodeBuild 3 5,000 Quotas for AWS
CodeBuild

KMS Keys 1 10,000 Resource quotas

For example, using the IAM roles maximum quota (5000), the maximum number of patterns that
can be created are roughly ~290. This is an estimated figure as there are a few IAM roles created
when deploying the solution as well.

Using mono-repo for a pattern allows you to have a single pattern publishing pipeline to publish
multiple packages which saves resources and scale much more than a multi-repo strategy. For
example, AWS CDK uses the mono-repo strategy for managing multiple packages in the same
repository.

Code repository structure

When you create a new application pattern, the solution creates a new code repository for the
pattern with a pre-initialized code repo structure based on a mono-repo. The files and directory
structure of a new pattern’s repo are as shown:

CloudFormation based pattern’s code repo structure

 images
 packages
 package.json
 lerna.json
 README.md

Code repository structure 57

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codebuild/latest/userguide/limits.html
https://docs.aws.amazon.com/codebuild/latest/userguide/limits.html
https://docs.aws.amazon.com/kms/latest/developerguide/resource-limits.html
https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://en.wikipedia.org/wiki/Monorepo

Application Pattern Orchestrator on AWS Implementation Guide

Resource Description

images • This directory provides a placeholder
location to store the architecture image of
the pattern. We recommend using the name
architecture.png to provide an architecture
diagram for the pattern (Storing an image is
optional).

packages • This is the root directory for storing multiple
related CloudFormation templates.

• For example, if there are two CloudForm
ation templates we want to store in this
repo, follow the below structure as a
convention used by the solution.

images
packages
 -- <package-name-dir>
 -- package.json
 -- template
 -- <cfn-stack-name>.t
emplate
package.json
lerna.json
README.md

• Make sure every package’s package.j
son(packages → <package-name-dir> →
package.json) has the name and version
attributes defined at a minimum. This name
and version are used later in the publishing
pipeline to create Service Catalog products.

{
 "name": "<@test-cfn/pattern1>",
 "version": "1.0.1",

CloudFormation based pattern’s code repo structure 58

Application Pattern Orchestrator on AWS Implementation Guide

Resource Description

}

package.json • This is the root package.json file

lerna.json • Lerna is a fast modern build system for
managing and publishing JavaScript/
TypeScript mono-repos.

• lerna.json defines the configuration for
managing multiple packages in a repo.

README.md • You can add a README file to your repositor
y to share why your project is useful, what
they can do with your project, and how they
can use the project.

USAGE.md (optional) • This is an optional file that can be added to
show the usage of the pattern.

CDK based pattern’s code repo structure

images
packages
 -- cdk-test-app
 -- bin
 -- cdk-test-app.ts
 -- cdk.json
 -- package.json
 -- tsconfig.json
package.json
lerna.json
README.md

Resource Description

images • This directory provides a placeholder
location to store the architecture image of

CDK based pattern’s code repo structure 59

https://lerna.js.org/

Application Pattern Orchestrator on AWS Implementation Guide

Resource Description

the pattern. We recommend using the name
architecture.png to provide an architecture
diagram for the pattern (Storing an image is
optional).

CDK based pattern’s code repo structure 60

Application Pattern Orchestrator on AWS Implementation Guide

Resource Description

packages • This is the root directory for storing multiple
npm typescript packages

• For instance if you need to create two L3
CDK constructs called secure-s3-bucket
and secure-dynamodb in this repo, follow
this structure as a convention used by the
solution.

 images
 packages
 -- cdk-test-app
 -- bin
 -- cdk-test-app.ts
 -- cdk.json
 -- package.json
 -- tsconfig.json
 -- secure-s3-bucket
 -- lib
 -- index.ts
 -- test
 -- package.json
 -- tsconfig.json
 -- secure-dynamodb
 -- lib
 -- index.ts
 -- test
 -- package.json
 -- tsconfig.json
 package.json
 lerna.json
 README.md

• In order to run the automated security
check on the CDK based pattern packages
(which is automatically initiated on raising a
Pull Request), it is important to demonstra
te all the possible uses cases of the L3 CDK

CDK based pattern’s code repo structure 61

https://docs.aws.amazon.com/cdk/v2/guide/constructs.html
https://docs.aws.amazon.com/cdk/v2/guide/constructs.html

Application Pattern Orchestrator on AWS Implementation Guide

Resource Description

constructs. For example, in the example
above, use both the secure-s3-bucket and
secure-dynamodb CDK constructs with all
combinations of the supported parameter
s in packages → cdk-test-app → bin → cdk-
test-app.ts. The automated security check
job automatically synthesizes the AWS CDK
code to CloudFormation template and runs
a cfn_nag scan to generate a security report.

package.json • This is the root package.json file.

lerna.json • Lerna is a fast modern build system for
managing and publishing JavaScript/
TypeScript mono-repos.

• lerna.json defined the configuration for
managing multiple packages in a repo.

USAGE.md (optional) • This is an optional file that can be added
to show how the L3 CDK constructs can be
used.

Security recommendations

In addition to the existing security configuration in the solution, we also recommend additional
security settings as follows.

Enable Amazon Macie for Amazon S3 buckets

Amazon Macie is a fully managed data security and data privacy service that uses machine
learning and pattern matching to discover and protect your sensitive data in AWS. Amazon Macie
automatically provides an inventory of Amazon S3 buckets including a list of unencrypted buckets,
publicly accessible buckets, and buckets shared with AWS accounts outside those you have defined
in AWS Organizations. For more information, refer to the Amazon Macie page.

Security recommendations 62

https://lerna.js.org/
https://aws.amazon.com/macie/

Application Pattern Orchestrator on AWS Implementation Guide

Enable MFA to Amazon Cognito User Pool

Multi-factor authentication (MFA) increases security for your app. It adds a something you have
authentication factor to the something you know factor of user name and password. You can
choose SMS text messages or time-based one-time passwords (TOTP) as second factors to sign in
your users.

For more information, refer to Adding MFA to a user pool.

Enable Advanced Security mode for Amazon Cognito User Pool

You can turn on the Amazon Cognito user pool advanced security features, and customize the
actions that are taken in response to different risks. Alternatively, you can use audit mode to
gather metrics on detected risks without applying any security mitigations. In the audit mode, the
advanced security features publish metrics to Amazon CloudWatch. For more information, refer to
Adding advanced security to a user pool.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each Application Pattern
Orchestrator on AWS deployment

• Timestamp - Data-collection timestamp

AWS owns the data gathered though this survey. Data collection is subject to the AWS Privacy
Policy.

Opt out of operational metrics collection

To opt out of this feature, for the solution parameters, set sendAnonymousData parameter to No.

Contributors

Product

Enable MFA to Amazon Cognito User Pool 63

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pool-settings-advanced-security.html
https://aws.amazon.com/privacy/
https://aws.amazon.com/privacy/

Application Pattern Orchestrator on AWS Implementation Guide

• Hafiz Saadullah

• Marc Teichtahl

Engineering

• Verinder Singh

• Frank Cao

• Deenadayaalan Thirugnanasambandam

• Van Vo Thanh

• Yang Yang

• APJ Solutions Engineering team

Technical Writing and Documentation

• Swapnil Ogale

• Suyog Sainkar

• Daniil Millwood

Security Guardian review

• Andrew Hodges

Contributors 64

Application Pattern Orchestrator on AWS Implementation Guide

Revisions

Date Change

November 2022 Initial release

May 2023 v1.1.0

• Added information on AWS CodeCommit as
default source code repository.

• Updated architecture diagrams and solution
component diagrams with AWS CodeCommi
t.

• Updated costs table with change in solution
costs to include AWS CodeCommit.

• Mitigated impact caused by new default
settings for S3 Object Ownership (ACLs
disabled) for all new S3 buckets.

For more information, refer to the
CHANGELOG.md file in the GitHub repositor
y.

August 2023 v1.2.0

• Added information about user group
authorizations under the Security section.

• Added instructions on how to update the
solution.

For more information, refer to the
CHANGELOG.md file in the GitHub repositor
y.

65

https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/application-pattern-orchestrator-on-aws/blob/main/CHANGELOG.md

Application Pattern Orchestrator on AWS Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products
or services are provided “as is” without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

Application Pattern Orchestrator on AWS is licensed under the terms of the of the Apache License
Version 2.0 available at The Apache Software Foundation.

66

https://www.apache.org/licenses/LICENSE-2.0

	Application Pattern Orchestrator on AWS
	Table of Contents
	Solution to establish and manage an internal catalog of reusable, repeatable, well-architected, secure-by-design, and production-ready cloud infrastructure patterns
	Features and benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Architecture diagram
	AWS Well-Architected design considerations
	Operational excellence
	Security
	Reliability
	Performance efficiency
	Cost optimization
	Sustainability

	Architecture details
	Application pattern portal
	Patterns pipeline builder
	Policy evaluation and security review microservice
	Provisioned publishing pipeline
	Application pattern subscriber email notification
	AWS services in this solution

	Plan your deployment
	Cost
	Cost table

	Security
	IAM roles
	Amazon S3 bucket configuration and policy
	AWS Key Management Service (AWS KMS) keys
	Amazon CloudFront
	Network configuration
	User authorization
	Federating solution user groups through an Identity provider (IdP)

	Data protection

	Design considerations
	Regional deployment
	Solution pattern limit

	Supported AWS Regions

	Deploy the solution
	AWS CloudFormation template
	Prerequisites
	AWS account
	GitHub and GitHub Enterprise account (required only if you use these for your pattern's source code repository)

	Launch the stack

	Monitoring the solution with AppRegistry
	Activate CloudWatch Application Insights
	Activate AWS Cost Explorer
	Activate cost allocation tags associated with the solution

	Update the solution
	Troubleshooting
	Deletion of the solution stack fails

	Uninstall the solution
	Using the solution's web UI
	Sign in to the web interface
	Create an attribute
	Create a pattern
	Publish a pattern

	Developer guide
	Source code
	Use the solution APIs

	Reference
	Best practice recommendations
	Code repo recommendations
	Mono-repo

	Code repository structure
	CloudFormation based pattern’s code repo structure
	CDK based pattern’s code repo structure

	Security recommendations
	Enable Amazon Macie for Amazon S3 buckets
	Enable MFA to Amazon Cognito User Pool
	Enable Advanced Security mode for Amazon Cognito User Pool

	Anonymized data collection
	Opt out of operational metrics collection

	Contributors

	Revisions
	Notices

