
Implementation Guide

Secure Media Delivery at the Edge on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Secure Media Delivery at the Edge on AWS Implementation Guide

Secure Media Delivery at the Edge on AWS: Implementation Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Secure Media Delivery at the Edge on AWS Implementation Guide

Table of Contents

Solution overview .. 1
Features and benefits .. 2
Use cases .. 4
Concepts and definitions .. 4

Architecture overview ... 6
Architecture diagram ... 6
Solution workflow .. 8
AWS Well-Architected design considerations ... 11

Architecture details ... 14
Base module .. 14
Key rotation workflow .. 16
Base module: Session revocation workflow ... 18
API module .. 21
Auto session revocation module ... 23
AWS services in this solution ... 24

Plan your deployment ... 26
Cost ... 26

Base module .. 27
Session revocation .. 28
API Module ... 28
Auto session-revocation .. 29
Metrics monitoring ... 30

Security ... 30
IAM roles ... 31
Amazon CloudFront .. 31
Solution’s code library ... 31
Signing key protection ... 32
API Gateway ... 32

CloudFront prerequisites .. 33
Supported AWS Regions ... 35
Supported formats ... 36
Revise origin request policies .. 36
Auto session revocation .. 37
Large viewership spikes .. 38

iii

Secure Media Delivery at the Edge on AWS Implementation Guide

Alternative approaches to carry the token ... 39
Quotas .. 40

Quotas for AWS services in this solution .. 40
Deploy the solution ... 41

Prerequisites .. 41
Deployment process overview ... 41
AWS CloudFormation template ... 42
Step 1: Launch the stack .. 42
Step 2. Define video assets and token policies ... 47
Step 3. Prepare your CloudFront distributions .. 48
Step 4. Test the solution .. 49

CDK deployment .. 50
Prerequisites .. 50
Deployment procedure ... 50

Monitor the solution with Service Catalog AppRegistry ... 53
Activate CloudWatch Application Insights .. 53
Confirm cost tags associated with the solution .. 55
Activate cost allocation tags associated with the solution .. 55
AWS Cost Explorer ... 56

Update the solution .. 57
Troubleshooting ... 58

Monitoring dashboard ... 58
Failed token validation .. 59
Auto session revocation .. 61
Contact AWS Support ... 62

Create case ... 62
How can we help? .. 62
Additional information .. 63
Help us resolve your case faster ... 63
Solve now or contact us .. 63

Uninstall the solution ... 64
Using the AWS Management Console ... 64
Using AWS Command Line Interface ... 64
Using CDK toolkit ... 64

Developer guide ... 66
Source code ... 66

iv

Secure Media Delivery at the Edge on AWS Implementation Guide

NodeJS library reference .. 66
On a high level .. 66
Secret ... 66
Session ... 68
Token ... 69
Example of token generation code ... 75
Example of session revocation code ... 76

Access tokens management guide ... 76
Varying token attributes ... 76
Choosing session duration time .. 77
Using viewer’s source IP in the token .. 78
Using geo restriction attributes ... 79
Defining paths list .. 80

Session revocation guide .. 82
SessionId and access token relation ... 82
Manual session revocation .. 83
Auto session revocation module ... 83

Playback API integration .. 89
Deactivating demo website .. 89
Reuse and modify solution’s API Gateway workflow .. 90
Integrate solution’s library into existing playback services .. 93

Reference .. 97
Anonymized data collection .. 97
Related resources ... 99
Contributors ... 99

Revisions ... 100
Notices .. 103

v

Secure Media Delivery at the Edge on AWS Implementation Guide

Deploy a solution to protect your premium video content
from unauthorized access when delivered through
Amazon CloudFront

Publication date: August 2022 (last update: September 2024)

Premium video content is one of the most valuable assets for media and entertainment companies.
Video delivery teams must continue to raise the security bar to ensure that only authorized viewers
consume the content over approved delivery channels. For a video streaming distribution of any
scale, customers seek a complete, incremental solution that works universally on a variety of video
clients without requiring a re-architecture of their workloads.

The Secure Media Delivery at the Edge on AWS solution integrates with Amazon CloudFront to
offer a ready-to-use content protection mechanism that allows you to meet licensing obligations
from the right holders by improving anti-piracy controls. Video Streaming Engineers and Content
Delivery Network (CDN) operators can easily deploy the solution into their environment and
incorporate it with a minimal number of steps without needing to rearchitect their video services.

This solution leverages CloudFront Functions to introduce a cookie-less approach that simplifies
and automates the process of access token management for media streaming services. By using
serverless resources based on a new edge serverless environment, customers can generate an
encrypted token, inject it into the media delivery path, and validate the token for every request,
without needing to produce and attach the token for the same playback session. The token
authorization function at the edge can be associated with specific CloudFront path behavior,
pointing to the media origin with original content. Shifting this functionality to the edge simplifies
customers’ secure video streaming workflows by making it transparent for existing video origins,
removing the complexity of manipulating media manifest files.

This implementation guide provides an overview of the Secure Media Delivery at the Edge on AWS
solution, its reference architecture and components, considerations for planning the deployment,
configuration steps for deploying the solution to the Amazon Web Services (AWS) Cloud.

The intended audience for using this solution’s features and capabilities in their environment
includes solution architects, DevOps engineers, data scientists, and cloud professionals.

Use this navigation table to quickly find answers to these questions:

1

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cloudfront-functions.html

Secure Media Delivery at the Edge on AWS Implementation Guide

If you want to . . . Read . . .

Know the cost for running this solution.

The estimated cost for running this solution
in the US East (N. Virginia) Region is USD
$25.65 for the base module per month for
AWS resources.

Cost

Understand the security considerations for this
solution.

Security

Know how to plan for quotas for this solution. Quotas

Know which AWS Regions support this
solution.

Supported AWS Regions

Know which video streaming formats the
solution supports.

Supported formats

Know the requirements for using an existing
CloudFront distribution.

CloudFront prerequisites

View or download the AWS CloudForm
ation template included in this solution
to automatically deploy the infrastructure
resources (the “stack”) for this solution.

AWS CloudFormation template

Access the source code and optionally use the
AWS Cloud Development Kit (AWS CDK) to
deploy the solution.

GitHub repository

Features and benefits

The solution provides the following features:

Ease of integration

Features and benefits 2

https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/

Secure Media Delivery at the Edge on AWS Implementation Guide

Easily integrate this solution into your existing workflows or add to new ones in a few
configuration steps. Implemented as an incremental component, the solution is ready to use
without redesigning the CloudFront architecture.

Live and on demand workloads

The solution supports Live streaming and Video on Demand (VOD) workloads.

Widespread support across video clients

With a wide range of devices and streaming formats, the solution is designed to provide the best
possible support coverage. The URL-based token works universally with the clients you use today,
and the ones you might need to support tomorrow.

Flexible token structure

Presenting secure tokens in the widely-adopted JSON Web Token (JWT) format offers flexibility in
construction. Combine multiple viewer attributes and geolocation details provided by CloudFront
to restrict playback to only authorized clients. Viewer attributes are not exposed in the token or
URL path, ensuring the privacy of your end-users.

Session revocation

Quickly identify playback sessions with irregular traffic patterns suggesting unauthorized
distribution of your content. Block playback sessions by reporting corresponding session identifiers,
or leverage the automatic workflow offered by the solution to detect and block suspicious
sessions.

Scale and automation

The solution seamlessly scales to the highest traffic events via CloudFront Functions. You can
depend on the automated workflows implemented by the solution to handle regular key rotation,
and process traffic patterns to detect and block sessions with suspicious traffic patterns.

Integration with Service Catalog AppRegistry and Application Manager, a capability of AWS
Systems Manager

This solution includes a Service Catalog AppRegistry resource to register the solution’s
CloudFormation template and its underlying resources as an application in both Service Catalog
AppRegistry and Application Manager. With this integration, you can centrally manage the
solution’s resources and enable application search, reporting, and management actions.

Features and benefits 3

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Use cases

Secure Content Delivery

Building and deploying infrastructure or applications at the edge requires comprehensive security
with a reliable cloud infrastructure, and securing your rich media or static content requires extra
care. With the Secure Media Delivery at the Edge on AWS solution, you can add additional layers
of security to prevent unauthorized access and common web exploits. This allows you to spend
more time building applications, and less time monitoring threats. Often, it is also a contractual
obligation content distributors need to adhere to with respect to security and access control
methods. This solution can be used in combination with digital rights management (DRM) systems
or used as a single protection from unauthorized playback.

Streaming Media

As consumer demand for video streaming increases, media and entertainment companies are
looking for secure and reliable web-based video streaming alternatives to traditional television.
Using this solution, you can avoid inefficient trial-and-error approaches and save on time and
costs for your Video on Demand (VOD) and Live streaming media projects. This solution serves
customers looking for a robust mechanism with widespread support across variety of clients,
as well as more flexibility in adjusting the working parameters (for example, fine-grained geo
restrictions, custom headers, source IPs) and logic of securing their video streams.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

application

A logical group of AWS resources that you want to operate as a unit.

Access control list (ACL)

A web ACL gives you fine-grained control over all of the HTTP(S) web requests that your protected
resource responds to.

Common Media Application Format (CMAF)

An HTTP-based streaming and packaging standard to improve delivery of media over the internet,
compatible with HLS and DASH, and co-developed by Apple and Microsoft.

Use cases 4

Secure Media Delivery at the Edge on AWS Implementation Guide

Digital rights management (DRM)

A technology used to control and manage access to copyrighted material.

Dynamic Adaptive Streaming over HTTP (DASH)

An HTTP-based streaming protocol (also known as MPEG-DASH) to deliver media over the internet
and developed under MPEG (Motion Picture Experts Group).

HTTP Live Streaming (HLS)

An HTTP-based streaming protocol to deliver media over the internet and developed by Apple Inc.

WCU

AWS WAF Capacity Units (WCU) are used to calculate and control the operating resources that are
required to run your rules, rule groups, and web ACLs. AWS WAF enforces WCU limits when you
configure your rule groups and web ACLs. WCUs don't affect how AWS WAF inspects web traffic.

For a general reference of AWS terms, see the AWS Glossary.

Concepts and definitions 5

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Architecture overview

This section provides a reference implementation architecture diagram for the components
deployed with this solution.

Architecture diagram

Deploying the Secure Media Delivery at the Edge on AWS solution in an existing environment
with Amazon CloudFront and Media Origin service creates a number of resources. These resources
play different roles and can be grouped into three functional modules as shown in the following
reference architecture diagram.

Secure Media Delivery at the Edge on AWS architecture

Base module

1. An Amazon CloudFront Function that validates secure tokens, permitting or denying access to
video content.

Architecture diagram 6

https://aws.amazon.com/cloudfront/

Secure Media Delivery at the Edge on AWS Implementation Guide

2. An AWS Secrets Manager stores secrets holding signing keys for generating and validating
viewers’ tokens.

3. An AWS Step Functions workflow that coordinates key rotation process.

4. An AWS WAF rule group containing the list of playback sessions that should be blocked as they
get identified as compromised.

5. An Amazon API Gateway public API used to process requests to generate the tokens for video
playback, and to manually revoke specified playback sessions.

6. An AWS Lambda function associated with API Gateway that generates the token for video
playback based on the retrieved metadata about the video assets and token parameters.

7. A solution-provided library that provides the necessary methods to generate the tokens,
imported into the AWS Lambda Function.

API Module

8. An Amazon DynamoDB table to store metadata about video assets and corresponding
parameters used to generate the tokens.

9. An Amazon CloudFront distribution to deliver the traffic from API Gateway and deliver demo
website when activated.

10.A Lambda@Edge function that signs outgoing requests towards API Gateway according to SigV4
specification.

11.A demo website (when activated) with video player embedded in it.

12.An Amazon Simple Storage Service (Amazon S3) bucket that stores static assets for the demo
website.

Auto session revocation module

13.An Amazon EventBridge rule that runs periodically to invoke session revocation workflow in AWS
Step Functions.

14.Lambda functions invoked in Step Functions workflow that produce SQL query submitted to
Amazon Athena, to obtain the results from Amazon Athena, and push moving them forward in
the processing pipeline.

15.Amazon Athena running SQL queries against CloudFront access logs to list the suspicious video
playback session ids with abnormal traffic characteristics.

Architecture diagram 7

https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/lambda
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/athena/

Secure Media Delivery at the Edge on AWS Implementation Guide

16.An Amazon DynamoDB table revocation list to store session IDs that have been submitted to be
revoked with additional information.

17.A Lambda function which compiles a final list of the playback sessions marked to be blocked and
updates AWS WAF rule group with the appropriate rules matching selected sessions.

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
(AWS CDK) constructs.

Solution workflow

This solution provides code constructs (as a NodeJS library) that makes it simpler to generate a
token upon verifying the viewer’s permissions when playback URL is requested. Integrating token
generation into authorization flow in your application is a key element in the effectiveness of the
solution.

Important

The solution-created demo website module creates a simple website, which is meant to
provide a proof-of-concept and troubleshooting phases for testing the solution. However,
you should eventually replace it with an end-user application and viewer authorization
components.

One of the primary objectives of this solution is to provide a uniformly supported mechanism
across a variety of client types. The main consideration in that regard is to use a universally
supported method to carry the tokens. In this solution, the generated token is embedded in the
playback URL to ensure a video player does not drop the token, which would be possible if other
methods for carrying the token were used.

Acquiring playback URL with the token

1. When the viewer wishes to play a specific video content, client-side application makes an API call
to Playback API that is expected to respond with the playback URL including the token.

Solution workflow 8

Secure Media Delivery at the Edge on AWS Implementation Guide

2. When a request reaches Playback API, the request is validated to ensure if the viewer has
permissions to watch requested video content (as outlined above, this step needs to be added by
users of the solution).

3. Once it is verified that the client is authorized to watch the requested content, an internal
call is initiated to construct a playback URL containing the token for that specific viewer. In
the solution’s implementation, this call is served by API Gateway through Lambda function
associated with the /tokengenerate path.

4. The service responsible for token generation retrieves information about the requested video
asset, and token parameters, to issue a playback URL including the token for requesting viewer.
As specified by token policy, token includes certain attributes that are associated to the viewer
(user-agent, source IP, etc.) and restrict access only to the requested video asset. If specified in
the token policy, provided library will also generate a random playback session ID that will be
signed.

The Playback API serves back the playback URL for requested asset, including the token with the
session ID.

Client requesting video assets and token validation

1. After the client-side application acquires the playback URL with the token, it is passed on to the
video player, which initiates sequential requests for video manifest and video segments.

2. As the request reaches CloudFront distribution, it is first run through attached AWS WAF web
ACL (if included in the CloudFront distribution configuration), which includes the rule group with
rules to match the sessions that were previously submitted to be blocked.

3. If the session ID corresponding to the request was not blocked by AWS WAF, Amazon CloudFront
Function inspects the token retrieved from the URL path. If all signatures match, the token
is unexpired, and the token covers requested video asset, the request is allowed and the
token is removed from the URL path. After that, the request continues on the normal Amazon
CloudFront processing path.

Revoking compromised playback session

Manual path

1. After a solution operator discovers a compromised playback session that should be blocked, an
API call can be made to revoke such a session, and start blocking any subsequent requests linked
to that session.

Solution workflow 9

Secure Media Delivery at the Edge on AWS Implementation Guide

2. Amazon API Gateway verifies if the request is coming from an authorized user, and initiates
session revocation methods exposed through provided solution library.

3. Session revocation method pushes the session ID to the target DynamoDB table which in turn
invokes a Lambda function associated with a DynamoDB data stream.

4. The invoked Lambda function goes through the list of the sessions in the DynamoDB table,
prioritizes them, and reduces the list to the size that can be accommodated within the AWS
WAF rule group. Eventually, Lambda function updates WAF rule group with the updated list of
sessions that must be revoked.

Automatic session revocation path

1. As the traffic flows through the CloudFront distribution, access logs are continuously emitted to
an Amazon S3 bucket (logs can be further partitioned as per Analyze your Amazon CloudFront
access logs at scale).

2. At a periodic frequency set by the user, an AWS EventBridge rule invokes a Step Functions
workflow. The task of that workflow is to analyze the logs in the S3 bucket holding access logs
to identify the sessions with unusual traffic composition that suggest the sessions have been
compromised (meaning more than one viewer uses the same playback session ID to retrieve the
stream).

3. A Lambda function is invoked through the Step Functions workflow to generate a SQL query
that incorporates input parameters set by the solution’s client and limits the time window for
the logs subject to analysis.

4. A SQL query is submitted to Amazon Athena, which performs the job and outputs a list of
session IDs that exceed suspicious threshold.

5. Another Lambda function in the Step Functions workflow checks if the job is complete, and
pulls the output result for further processing. Athena sourced session IDs are populated into the
DynamoDB table that holds the list of sessions that must be revoked.

6. Changes to the DynamoDB table initiate DynamoDB streams that invokes the associated
Lambda function as a result.

7. Invoked Lambda function goes through the list of the sessions in DynamoDB table, prioritize
them according to the predefined criteria, and reduce the list to the size that can be
accommodated within AWS WAF rule group. Eventually, the Lambda function updates WAF rule
group with the updated list of sessions that must be revoked.

Key rotation

Solution workflow 10

https://aws.amazon.com/blogs/big-data/analyze-your-amazon-cloudfront-access-logs-at-scale
https://aws.amazon.com/blogs/big-data/analyze-your-amazon-cloudfront-access-logs-at-scale

Secure Media Delivery at the Edge on AWS Implementation Guide

1. An EventBridge rule is initiated periodically at a time set by the solution’s client when the
solution is deployed.

2. After initial deployment of the solution and every time EventBridge rule runs, a key rotation
Step Functions workflow is started.

3. A Lambda function called by Step Functions workflow generates a random signing key which is
used to sign the token through library methods, and validates the token by CloudFront Function
logic.

4. Before the newly generated key replaces the existing key stored as the primary secret in AWS
Secrets Manager, that new key is first updated in CloudFront Function code, and the new code is
published.

5. Step Functions workflows check whether that change was successfully updated and propagated
through CloudFront Functions. Once confirmed, workflows progress to the next step.

6. The newly created key is promoted as the primary key and replaces the key value of primary
secret in Secrets Manager.

7. At this point, when the library method generating token retrieves keys from Secrets Manager it
uses a new primary key, which is also available in CloudFront Functions.

AWS Well-Architected design considerations

This solution uses the best practices from the AWS Well-Architected Framework, which helps
customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

This section describes how the design principles and best practices of the Well-Architected
Framework benefit this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

Secure Media Delivery at the Edge on AWS automatically creates a CloudWatch dashboard to
monitor metrics and indicate if specific components in the solution operate as expected, and if
there are any anomalies that must be investigated.

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

AWS Well-Architected design considerations 11

https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html

Secure Media Delivery at the Edge on AWS Implementation Guide

This solution is specifically designed to protect your premium video content from unauthorized
access when delivered through Amazon CloudFront. It creates IAM roles associated with resources
that need to perform specific actions. The permissions defined in the policies created in the
solution align with the principle of least privilege access, granting just those permissions that a
specific component needs to fulfil its tasks fully.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

Secure Media Delivery at the Edge on AWS uses AWS serverless services wherever possible,
(Lambda, API Gateway, Amazon S3 and DynamoDB) to ensure high availability and quick recovery
from service failure.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

Secure Media Delivery at the Edge on AWS uses serverless architecture throughout the solution,
and it can be launched in any AWS Region of your choice in which regional resources will be created
(Secrets Manager secrets, Step Functions workflows, Lambda functions, and Dynamo DB tables).

This solution is automatically tested and reviewed by solutions architects and subject matter
experts for areas to experiment and improve.

Cost optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization pillar.

The cost for running the solution varies based on a number of factors, including the duration of
the streaming events and the number of concurrent viewers. We recommend creating a budget
through AWS Cost Explorer to help manage costs, and customers can measure the efficiency of the
workloads, and the costs associated with delivery, by using Application Manager.

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

AWS Well-Architected design considerations 12

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Secure Media Delivery at the Edge on AWS uses managed and serverless services to minimize the
environmental impact of the backend services. Customers can run this solution only during the
duration of the event and delete the stack after the program ends, reducing the carbon footprint
compared to the footprint of continually operating on-premises servers.

AWS Well-Architected design considerations 13

Secure Media Delivery at the Edge on AWS Implementation Guide

Architecture details
This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

Base module

Secure Media Delivery at the Edge on AWS: Base module

The base module includes solution components that are central to the solution, while the rest of
the modules further expands on it. From a functional standpoint, it encompasses some of the key
elements for providing the most fundamental outcomes for this solution, which are:

• A validator function implemented as a CloudFront Function code that you attach to your
CloudFront distribution. This function inspects requests’ attached token and validates conditions.

• AWS Secrets Manager stores the secrets holding signing keys that are used when the token is
generated and validated. This part of the solution does not require any user maintenance when

Base module 14

Secure Media Delivery at the Edge on AWS Implementation Guide

keys are created, updated new keys are distributed to CloudFront Function validator, and when
keys are supplied to the service generating tokens through the provided solution library.

• AWS WAF rule group, Lambda function, and DynamoDB connect together to create a session
revocation pipeline. The session revocation pipeline allows blocking playback sessions that
are determined as compromised. The details of the compromised sessions can be either sent
manually through the method that can be found in the solution library, or in an automated way
by the means of automatic session revocation. Automatic session revocation automatically runs a
log processing pipeline to detect suspicious sessions and push them towards that AWS WAF rule
group.

The Validator CloudFront function is the same, static code which doesn’t change across
implementations and use cases. As such, it can be associated with multiple CloudFront distributions
delivering different types of video streaming content, as long as it is acceptable to use the same
set of signing keys in all cases. Function logic takes the token (subject to validation) from the
beginning of the URL path and removes it, before moving the request forward upon successfully
token validation. Because CloudFront Function is attached to viewer request trigger, using an
individual token does not affect the cache hit rate, as the function code removes the token from
the URL path before the cache key is computed. This means that viewers requesting the same video
object but using different, individual tokens, will still share the same object from the cache. With
regards to scalability, CloudFront Functions have been designed to follow CloudFront scale, and no
additional considerations are required in terms of adjusting the service limits for this component.
When token validation process is invoked, the input string retrieved from the URL path for further
processing has the following format:

[SessionID].JWTHeader.JWTPayload.JWTSignagure

SessionId parameter is optional. You can generate your token without Session ID associated with
it. During token generation step, if you decide to omit the Session ID, it will not be present in the
URL path, and only JSON Web Token (JWT) elements will remain. In both cases, there is no need to
modify CloudFront Functions as it handles the process of recognizing if Session ID is present.

The process of validating and processing the token can be broadly broken into three discrete
stages:

• Verifying JWT signature to validate token integrity. The signing key used here is derived from the
unique key identifier that is set in the JWT header UUID. From that UUID, CloudFront Functions
determines the corresponding key value.

Base module 15

Secure Media Delivery at the Edge on AWS Implementation Guide

• Checking access conditions as per claims included in the token. These conditions can be
categorized as follows:

• Time-bounding conditions: to verify if the token is within its validity period

• Asset attributes conditions: to check if requested object matches with the content the token
was issued for

• Viewer attributes conditions: tokens can be generated for specific viewer attributes for
example, source IP, user-agent headers, session ID etc., to improve the uniqueness of a token.
In this category, additional signature is calculated from the viewer’s attributes available in the
function invocation context, and compared with the signature included in the token calculated
at playback API stage when token was vended to the viewer.

• Token acceptance decision – if token verification failed in any of the previous stages, the request
is terminated by the function and a 403 (Forbidden) status code is returned back to the viewer.
If the request satisfies all of the access conditions and validation steps, it is permitted. After
removing the token from the URL path, the request continues the normal processing path on
CloudFront.

It is important to note that the viewer attribute conditions checks, on viewer’s request, are based
on metadata included in the event object available in CloudFront Functions. While some of the
viewer request attributes are always available and present in that object, for example, viewer’s IP,
headers, and query string parameters, some of the viewer specific attributes require additional
configuration steps. Those attributes are location-specific attributes that can be included in the
token, for example, viewer’s country and region. This information is conveyed through specific
CloudFront generated headers: CloudFront-Viewer-Country, CloudFront-Viewer-Country-Region,
which are only generated and made available in the event object, when each of these headers is
listed either in cache or origin request policies. Configuring these headers in the cache policy split
the object in the cache per country the traffic is coming from, and effectively decrease the cache hit
ratio. Therefore, we recommend including these headers in the origin request policy as additional
headers.

Key rotation workflow

Managing the signing keys used at both token generation and validation steps is a crucial token-
based access control mechanism. Any change to the keys, for instance during the key rotation step,
must be carefully coordinated to avoid a transient state of inconsistency. In this state, playback API

Key rotation workflow 16

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/functions-event-structure.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-cloudfront-headers.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/working-with-policies.html

Secure Media Delivery at the Edge on AWS Implementation Guide

and CloudFront Functions become out-of-sync, where one of these components uses a signing key
that the other does not recognize. To prevent that from happening, as part of the base module
an automated key rotation pipeline is built. This pipeline is initiated the first time after the base
module stack is deployed, and after that periodically according to the key rotation setting specified
when launching the solution. The configuration about when the key rotation process must be
initiated is saved as an EventBridge rule. Any time that workflow is initiated, the subsequent steps
are controlled via AWS Step Functions workflow as depicted in the following diagram.

Key rotation workflow

A Lambda function automatically generates a new signing key with a corresponding unique UUID
value, and stores it as a temporary secret in Secrets Manager. Lambda function also makes an API
call to update CloudFront Function with the newly created key and UUID. Previously used key will

Key rotation workflow 17

Secure Media Delivery at the Edge on AWS Implementation Guide

still be available at function runtime, so that CloudFront Function code is able to validate tokens
signed both by the old and new key during the transition period when the key is rotated.

The next step in the Step Functions workflow is to check every minute if the new function code,
including the new key, has been deployed and that it can be used to generate new keys going
forward. Once confirmed, the last Lambda function in the workflow will effectively swap the
keys in Secrets Manager by moving the UUID and key value stored in the primary secret to the
secondary secret, and replace the primary secret with the keys that have been created and
deployed in CloudFront Functions. The next time the primary secret is retrieved by the solution’s
library method, a new key is used to generate the tokens. With this staged and controlled process,
at any time CloudFront Functions is able to validate all incoming requests with the tokens. After
new keys are deployed in the function code, there will still be an interim period before rest of Step
Functions workflow updates Secrets Manager with the new key, during which time the Playback
API service relies on the older key. Because the old key and its UUID information is still present
in the function code, when a token is generated using an older key by Playback API Gateway API,
CloudFront Function can recognize the UUID of the used key specified in the JWT header. When the
new key is eventually fetched by Playback API, it will be already confirmed that the new key has
also been published on CloudFront Functions side, therefore both components can rely on the new
key safely.

Base module: Session revocation workflow

The base module also comes with a series of components linked together that allows you to
block any ongoing playback session based on the optional sessionId attribute that can be
associated with the token at the time of token generation. To make use of session revocation,
your playback API must include session IDs while creating the token and appended as specified
before. There are two paths of emitting sessions IDs that were evaluated to be blocked - manual
and automatic. Manual path provides you the flexibility in implementing custom mechanism of
detecting compromised sessions while the solution provides you with an interface (in the form of
library method or API endpoint) to submit the sessions you identified for blocking. For example,
employing A/B watermarking type of traffic mapping and backend analysis to associate leaked
stream with the session ID. To push a session ID identified in such a way, you can use a dedicated
method defined in secret class, which will push that session into a dedicated DynamoDB table for
this purpose, associated with the solution stack. In the automatic approach, to detect and inform
about compromised sessions, an automated process is invoked at regular intervals to inspect
anomalies in traffic pattern and its composition for each session, and capture the ones that deviate
notably from the established norm.

Base module: Session revocation workflow 18

Secure Media Delivery at the Edge on AWS Implementation Guide

A DynamoDB table holds the list of sessions to be processed to compile the final list of sessions
that will be eventually blocked. Session blocking happens at the level of AWS WAF within the
scope of the rule group created during solution deployment. You must specify the capacity of
that rule group expressed in WAF capacity unit (WCU) only once before it’s created, therefore the
capacity of that rule group is immutable, which will determine the upper limit of sessions that can
be blocked at any time. Rules enclosed within that rule group are string matching rules, one for
each blocked session, that check for a matching session ID at the beginning of the request URL
path. Role of intermediary between the WAF Rule Group is assumed by a Lambda function which is
initiated through DynamoDB data streams every time a change is made to the table. In addition to
formulating the WAF rule group and pushing updates, a logic that orders session from the source
DynamoDB table to limit the number of output sessions is implemented in a Lambda code to
accommodate resulting list within the WCU limit. Refer to the following figure for a description of
the logic behind filtering, ordering, and building the output list.

Base module: Session revocation workflow

With every change that occurs in DynamoDB, for example, adding a new session designated to be
blocked, a Lambda function is invoked and all entries in the DynamoDB table are evaluated.

Base module: Session revocation workflow 19

Secure Media Delivery at the Edge on AWS Implementation Guide

In a first step, older session IDs are filtered out before the next step to eliminate the sessions
that went past retention period. Retention period is a setting defined when a stack is launched,
specifying for how long a session should be kept on the blocking list when WCU limit prevents
including all the sessions. After filtering the sessions past their retention timestamp, Lambda
function will look into more parameters corresponding to each session to order them accordingly
as follows:

Sessions marked as manually added take higher precedence than the ones added through
automatic session revocation module. Within manual sessions, they are ordered by timestamp
which equals to the time when session was added to the DynamoDB table – newest sessions have
higher priority. If there is any room left (as determined by WAF rule group WCU limit), session IDs
populated by the automatic session revocation module are considered and appended to the list,
as reminding list size limit allows. In this category of sessions, auto revocation module adds into
DynamoDB table additional parameters that allow to assess most offending sessions, that were
shared with large number of unauthorized viewers.

This is determined by the suspicion score property, where the higher the score, the bigger the
anomaly in traffic levels linked to that session. A Lambda function fills remaining slots in the list
with the session IDs with the highest score. As the list is compiled, it is pushed to WAF rule group
by an API call which updates entire rule group.

DynamoDB also includes information about the individual components that final suspicion
score comprises of – IP_Rate, IP_Penalty, referrer_penalty, UA_penalty. This
information is included to better understand what contributes to the final score and to facilitate
any troubleshooting.

The time to live (TTL) timestamp is calculated as 24 hours from the time, entry is added to the
table, determining when DynamoDB will evaluate this item as expired, and eventually deleted
by the background process that continuously inspect the timestamps in this column; refer to
How it works: DynamoDB Time to Live (TTL). Utilizing this mechanism keeps the size of the list
manageable and does not allow for sessions to accumulate in the table indefinitely.

Base module: Session revocation workflow 20

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/howitworks-ttl.html

Secure Media Delivery at the Edge on AWS Implementation Guide

API module

API module

The API module is made available in the solution to represent an example of how to integrate
token management process into the Playback API Gateway API section of customer architecture.
The API Gateway with two Lambda integrations is the central element of this module, responsible
for performing token-related operations, that is generating the token and revoking a given session
ID associated with the token. The two routes defined in HTTP API Gateway configuration are:

• /sessionrevoke (allowed for POST requests)

• /tokengenerate (allowed for GET requests)

As incoming request matches any of the two routes, an appropriate Lambda function is invoked.
Lambda function associated with /tokengenerate path is responsible for issuing the playback
URL for a requested video asset (video asset specified as query string parameter – id). This is

API module 21

Secure Media Delivery at the Edge on AWS Implementation Guide

possible with the use of NodeJS module provided with the solution which exposes all the methods
the Lambda function needs to handle token operations. However, before the token can be issued,
the preceding steps must be completed in the Lambda code to collect and format the metadata
about requested video asset and parameters that informs how the token must be built. In a
typical production environment, customers can run a form of content management system to
manage this type of required metadata. In the solution, the element is abstracted as a DynamoDB
video assets table to store the necessary information for token generation. After you include the
information about your video assets original (without a token) playback URL and fill in token-
related parameters for each asset, Lambda code can fetch information by using video asset id
that’s assigned to the metadata records in DynamoDB table and generate the token accordingly.
Last element involved in token generation process is the signing key that also need to be retrieved
before token generation method is called. Solution’s library has dedicated class and set of
functions to obtain the keys from the Secrets Manager’s secrets defined for the launched stack.

The second route (/sessionrevoke) points to another Lambda function which parses the input
of the POST request to pull the session ID and put it in the ingest DynamoDB table from the base
module as an entry point for revoking the session. Session ID submitted through this path are
flagged as MANUAL type in DynamoDB, which guarantees this session will be prioritized over
automatically pushed session as explained in previous section.

You can also choose to launch a demo website comprised of few additional elements in the
architecture. The demo website is made available solely to test the solution and verify if it can
be successfully integrated with your video workloads. However, we strongly recommend turning
off the demo website before using the solution in a production environment with sensitive
video content that should be protected. This is because the demo website provides a path to
interact directly with API Gateway and obtain playback tokens by unauthorized viewers, or revoke
legitimate sessions. When a demo website is activated, you can verify if, as a web client, you
are able to acquire playback URL with the token that would grant you permission to watch the
protected content. The demo website will also decode and expose structure of the token payload
making it possible to confirm if the right parameters are included. Finally, it also allows testing
manual revocation of the active playback session. The demo website is comprised of static assets
stored in Amazon S3 bucket created when the solution is launched.

Both components of API module – API and static website are exposed through the same
CloudFront distribution that separates the traffic between API Gateway and S3 bucket by using
CloudFront cache behaviors. For the cache behaviors linked with API Gateway: /sessionrevoke
and /tokengenerate, a dedicated Lambda@Edge function is attached and invoked for every API
request to sign each of the outgoing requests with SigV4 signature. It is necessary as API Gateway

API module 22

Secure Media Delivery at the Edge on AWS Implementation Guide

endpoint has IAM authorization activated to reject any token related requests without sufficient
permissions as defined in IAM policies. IAM execution role configured for Lambda@Edge includes
the right permissions that allows it to call the API Gateway endpoint, therefore requests signed by
this function’s invocation role credentials are accepted.

Auto session revocation module

Auto session revocation module: Detect compromised sessions

The base and API module provide the ability to react when, through external analysis, you
identified a compromised playback session, if it was confirmed that session was used through
unallowed distribution channels. Alternatively, you can also deploy additional and optional

Auto session revocation module 23

Secure Media Delivery at the Edge on AWS Implementation Guide

modules which facilitate detecting sessions with a high probability of being compromised. As
the process of detecting suspicious session is run regularly, the resulting session list is emitted to
DynamoDB created under base module. These sessions are ordered and processed as explained in
the Base module: session revocation workflow section.

The auto session revocation module design leverages AWS Step Functions to coordinate this
entire multistep process. A predefined workflow is invoked periodically as specified in the created
EventBridge rule. For ongoing video delivery streaming, set the period in the range of a few
minutes to reduce the time it takes to detect and block suspicious sessions. Once workflow
is initiated, the first step is to formulate the right SQL query based on the input parameters
configured. The compiled SQL query is submitted as a job to Amazon Athena which initiates SQL
query against the CloudFront distribution’s access logs. Bear in mind that for this process to work,
session IDs must be issued for the viewers together with access tokens. Based on the provided SQL
query, Athena job will eventually complete the query run, listing all the sessions that are above the
acceptable suspicion score threshold, which is another input controlled by the solution’s operator.
Multiple factors are taken into consideration when suspicion score level is evaluated, as explained
in the Session Revocation Guide section, but put simply it is a measure of by how much request
rate deviates from the median value and other signals indicative that multiple unique viewers are
reusing the same session ID and token pair to watch the content simultaneously. When Athena
job is completed and returned list of session is not empty, a Lambda function is invoked to ingest
the session IDs with their suspicion scores and additional information, and put in DynamoDB table
from the base module.

Before using the auto revocation module, collection of access logs to Amazon S3 must be
configured for each CloudFront distribution, the traffic of which should be analyzed through this
process. You must also set up a database and a table in Athena referencing access logs in the S3
bucket.

AWS services in this solution

AWS service Description

Amazon CloudFront Core. Validates secure tokens, permitting or
denying access to video content.

AWS Secrets Manager Core. Stores secrets holding signing keys for
generating and validating viewer’s tokens

AWS services in this solution 24

https://aws.amazon.com/cloudfront/
https://aws.amazon.com/secrets-manager/

Secure Media Delivery at the Edge on AWS Implementation Guide

AWS service Description

AWS Step Functions Core. Coordinates key rotation processes.

Amazon API Gateway Core. Processes requests to generate the
tokens for video playback, and to manually
revoke specified playback sessions.

AWS Lambda Core. Supports API Gateway to generate
token for video playback and signs outgoing
requests.

Amazon S3 Core. Provides storage of static assets for the
demo website and CloudFront access logs.

Amazon DynamoDB Core. Stores metadata about video assets and
corresponding parameters used to generate
tokens.

Amazon EventBridge Core. Invokes session revocation workflow in
AWS Step Functions.

Amazon Athena Core. Runs SQL queries against CloudFron
t access logs to list the suspicious video
playback session ids with abnormal traffic
characteristics.

AWS WAF Core. Provides the list of playback sessions
that should be blocked as they get identified
as compromised.

AWS Systems Manager Supporting. Provides application-level
resource monitoring and visualization of
resource operations and cost data.

AWS services in this solution 25

https://aws.amazon.com/step-functions/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/athena/
https://aws.amazon.com/waf/
https://aws.amazon.com/systems-manager/

Secure Media Delivery at the Edge on AWS Implementation Guide

Plan your deployment
This section describes the cost, security, Regions, and other considerations prior to deploying the
solution.

Cost

You are responsible for the cost of the AWS services used while running this solution. The total
cost for running this solution depends on the selected modules used in the solution and input
parameters.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, see the pricing webpage for each AWS service used in this
solution.

Note

• Below cost estimates relate only to the elements created during the deployment of
the solution. The charges associated with running the video workload on CloudFront,
which must be created independently from this solution, are not included in the cost
breakdown.

• Example cost calculations listed below demonstrate incremental costs incurred from
newly created components in your account as an output of the solution.

• The total charges will also include the video delivery pipeline that consist of costs of
running media content origin (for example, Amazon S3, AWS Elemental MediaPackage,
among others) and delivery to the viewers through Amazon CloudFront. These costs are
not specified below as this solution is designed to complement existing video streaming
workloads implemented on Amazon CloudFront.

Assumptions

• The following examples provide a cost estimate for video streaming workload with 10 live
streaming events per month, 60 mins in duration each, and driving 10,000 concurrent viewers.
For each viewer, a playback token is generated once, just before the playout starts. It is assumed
that during each event, 10 playback sessions are revoked manually, while 20 of them are
detected and blocked as a result of automatic session revocation mechanism.

Cost 26

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-create.html
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/

Secure Media Delivery at the Edge on AWS Implementation Guide

• Signing key is rotated automatically each day.

• To calculate the number of CloudFront Function invocations (example):

A. Number of viewing sessions 10,000 viewers * 10 events = 100,000 sessions

B. Average viewing duration per session (seconds) 60 minutes * 60 = 3600 seconds

C. Segment length (seconds) 2 seconds and manifest request after 3 consecutive segment
requests (3600/2 + 3600/(2*3) *100000 = 240M invocations

Base module

Cost to validate request tokens and key rotation

AWS service Dimension/month Cost [USD]

CloudFront Functions 240 million invocations $24.00

Secrets Manager 3 secrets API call for 1 in 10
token generation operations
Storage per secret per month

$1.25 $0.40 * number of keys

Step Functions Number of transitions during
key rotation workflow One
rotation per day ~ 30/mo

< $0.01

Lambda Lambda related costs during
key rotation process One
rotation per day ~ 30/mo

< $0.01

Total monthly cost: ~$25.65 / month

Note

This solution uses secrets key caching implemented in token generation method for Secrets
Manager to reduce API calls and cost

Base module 27

https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Session revocation

(Part of base module but it’s optional to use it)

Cost to block compromised playback sessions

AWS service Dimension/month Cost [USD]

AWS WAF Web ACL + Rule Group +
Rules (*it is assumed no
WebACL was not used before
for video delivery and AWS
WAF is associated with
CloudFront solely for session
revocation purpose)

$6.14

AWS WAF Requests – 240 million (*it is
assumed no web ACL was not
used before for video delivery
and AWS WAF is associated
with CloudFront solely for
session revocation purpose)

$144.00

Total monthly cost: ~$150.14 / month

API Module

(Part of core module but it’s optional to use it)

Cost to generate 100,000 of playback tokens per month

AWS service Dimension/month Cost [USD]

API Gateway 100,000 API calls $0.10

DynamoDB 50,000 Read Request Units
Assume 1 request = .5 RRU

$0.01

Session revocation 28

Secure Media Delivery at the Edge on AWS Implementation Guide

AWS service Dimension/month Cost [USD]

CloudFront (fronting API
Gateway) (Data Transfer +
Request charges)

100,000 HTTP requests with
~1kB response

$0.11

Lambda@Edge 100,000 function invocations $0.60

Lambda 100,000 function invocations $0.20

Total monthly cost: ~$0.48 / month

Note

Cost for API calls to Secrets Manager already included in Base module

Auto session-revocation

(In addition to session revocation costs)

Cost to run auto revocation pipeline

AWS service Dimension/month Cost [USD]

Step Functions Number of transitions
during session scanning and
updating workflow

$0.14

Athena CloudFront Access Logs Data
Scanned* - 1545GB * (single
1hr playback session produces
~270KB log data)

$7.54

AWS WAF Additional rules inserted into
Rule Group from Session
Revocation

$0.27

Auto session-revocation 29

Secure Media Delivery at the Edge on AWS Implementation Guide

AWS service Dimension/month Cost [USD]

Total monthly cost: $7.95 / month

Metrics monitoring

Cost of running the solution’s dashboard

AWS service Dimension/month Cost [USD]

CloudWatch - Dashboard Fixed cost for CloudWatch
Dashboard

$5.00

CloudWatch Logs Insights –
Data Scanned

Token verification results
widget built on CloudWatc
h Logs insights – 72GB data
scanned

$0.36

Total monthly cost: ~$5.36 / month

If you choose to deploy the demo website (which we recommend deactivating after you launch the
solution in a production environment), the solution automatically deploys Amazon S3 bucket for
storing the static website assets in your account, and use the same CloudFront distribution created
in front of API Gateway endpoint. You are responsible for the incurred variable charges from these
services.

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

Metrics monitoring 30

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/security/

Secure Media Delivery at the Edge on AWS Implementation Guide

IAM roles

IAM roles allow customers to assign granular access policies and permissions to services and users
on the AWS Cloud. This solution creates IAM roles associated with resources that needs to perform
specific actions outlined in previous sections. Permissions defined in the policies created in the
solution align with the principle of least privilege access, granting just those permissions that a
specific component needs to fulfil its tasks fully. As one of the elements of the architecture is the
solution’s library that can be run outside of AWS environment, we recommend using a specific role
with the right set of permission to perform the actions against AWS services implemented in the
library. You can find a reference to that role in the output section of the deployed CloudFormation
stack under the RoleArn key.

Amazon CloudFront

This solution deploys a demo website hosted in an Amazon S3 bucket. To help reduce latency
and improve security, this solution includes an Amazon CloudFront distribution with an origin
access identity, which is a CloudFront user that provides public access to the solution’s website
S3 bucket contents. For more information, refer to Restricting Access to Amazon S3 Content by
Using an Origin Access Identity in the Amazon CloudFront Developer Guide. The same CloudFront
distribution also interacts with API Gateway endpoint created for managing the access tokens. To
maintain good security posture, API Gateway is configured to require AWS IAM authorization for
invocation. Therefore, Lambda@Edge function with appropriate IAM permissions is used to sign
CloudFront sourced requests. To further improve security of the demo website exposed to the user,
a response header policy is attached in the configuration with a set of security headers returned
to the viewer, Strict-Transport-Security, X-XSS-Protection, X-Content-Type-Options, Referrer-
Policy, X-Frame-Options, Content-Security-Policy.

Solution’s code library

The Secure Media Delivery at the Edge on AWS solution comes with a NodeJS library that was
developed to make it easier to integrate solution into your Playback API workflow when adding
token generation in it. Functions implemented in this library are built around API calls, made
directly against AWS resources – API Gateway endpoint for token-related actions and DynamoDB
table to submit the playback sessions that you want to be blocked. To make the API calls for AWS
services work, IAM identity with right permission must be assumed when library’s code is run.
When run in an AWS environment, you can simply utilize the roles assumed in the context in which
library code is initiated – for example, execution role of Lambda functions defined in API module:

IAM roles 31

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html

Secure Media Delivery at the Edge on AWS Implementation Guide

[Stack Name]_Generate Token and [Stack Name]_SaveManualSession. If you choose
to run your Playback API utilizing library provided functions outside an AWS environment, you
must still assume the role using a standard approach of credential file, named profiles, or assuming
role temporary through AWS Security Token Service; refer to Setting Credentials in Node.js.
When you interact with the solution classes’, you have an option to refer to a specific profile or
Amazon Resource Name (ARN) reference of the role that must be assumed when underlying API
calls are made. In this use case, we recommend providing ARN identifier of the dedicated role
created specifically for the solution’s library, as it has precisely defined permissions that allow only
appropriate actions against specific resources created in the stack. You can find a reference to that
role in the output section of deployed CloudFormation stack under RoleArn key.

Signing key protection

AWS Secrets Manager is a managed service to securely store and share the secrets based on
the IAM defined permissions. A token-based access control mechanism, like the one used in this
solution, works on the basis of generating and validating cryptographically created signature,
which require a secret key to perform both tasks. AWS Secrets Manager stores the keys used
in this solution. The keys are made available only to CloudFront Function and solution library
methods, however they are distributed in a different way. CloudFront Functions receive updates
with details about the new keys in a push model, when key rotation workflow generates and
edits the keys known to CloudFront Function. Solution’s library methods obtain the keys in the
pull model by reaching out to AWS Secrets Manager to retrieve the keys when needed. Standard
IAM based access model applies where the credentials or role used in the library must translate
to appropriate IAM permissions that grant access to the secrets in the deployed stack. This
solution has been designed in a way that you do not have to manually define and set keys, instead
automation included in the base module addresses that. We recommend leveraging the key
rotation mechanism available in the solution to update the signing keys regularly to avoid using
the same key for a prolonged period of time.

API Gateway

HTTP API Gateway is configured to require AWS IAM authorization before the target Lambda
functions responsible for token activities are invoked. Therefore, anonymous viewers without
appropriate IAM permissions will not be able to make API calls. To successfully integrate other
services with the API Gateway endpoint created in the solution, explicit IAM permissions must be
granted to the corresponding user or role, allowing to invoke deployed API resource.

Signing key protection 32

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials-node.html

Secure Media Delivery at the Edge on AWS Implementation Guide

CloudFront prerequisites

The Secure Media Delivery at the Edge on AWS solution has been designed to enhance the security
of an existing video streaming workload that already utilizes CloudFront for content distribution
to the viewers. As you prepare to integrate the solution into your architecture, the following
requirements and preceding steps must be reviewed before activating the solution for your
workloads.

At the video origin level:

The only requirement that must be met in terms of configuration of your video at origin which
produces media segments and corresponding manifest files is to ensure that all media objects that
need to be protected by secure tokens, are referenced in the video manifest with a relative rather
than absolute path. This solution operates on the basis of inserting a token at the beginning of the
playback URL path and the assertion that client’s player will repeat the token when subsequent
elements that need to be processed are relative to the same root of the path, which is an inserted
viewer token. Most of the video originating services compose the media manifest in that way.
Once you confirm this also applies for your workload, proceed with the next steps to integrate the
solution. If all or some of the objects in the manifest use absolute paths, which would override the
token part when player makes a request for it, you must change your video origin configuration
to replace absolute paths with relative paths. If this is not possible for all the objects, you can
also exclude these specific objects from token validation step with the right adjustments in the
CloudFront distribution configuration.

At the CloudFront distribution level:

In the existing CloudFront distributions used for the delivery of original video content, you must
verify the following before you integrate this solution.

• Do the path patterns defined in cache behaviors match request URLs after you start inserting
the access tokens? Comparing the URL path for the same object before and after secure tokens
are added, you will find that a token appears as abstracted top-level directory in the URL path
referencing video objects.

• Before adding token: https://d1234.cloudfront.net/video_path_top_dir/video_path_subdir/
object

• After adding the token: https://d1234.cloudfront.net/token/video_path_top_dir/
video_path_subdir/object

CloudFront prerequisites 33

Secure Media Delivery at the Edge on AWS Implementation Guide

When verified against CloudFront distribution configuration, make sure that after token insertion
appropriate cache behaviors match modified URL path including unique token values. Cache
behavior requires the use of a wildcard at the beginning of the URL path pattern to match the
arbitrary token value included in each request. In a common configuration in which you separate
cache behavior for manifest files and video segments would like this:

Cache behavior - wildcard

That configuration requires no changes in the path pattern definition as preceding wildcard covers
additional path component introduced by token presence. However, if you have more explicit path
pattern definitions (for example, when you run multiple streaming channels), your cache behaviors
configuration may resemble this:

Cache behavior – explicit path pattern

In that scenario, requests originated from the viewers with token included will not match with any
of the listed cache behaviors as it starts with a fixed path pattern that does not accommodate part
of an arbitrary token value at the beginning of the path. To change that, referenced path patterns
can be modified as follows:

Cache behavior – non-fixed path pattern

• Because the token validation logic is operated by CloudFront Functions code generated as one
of the solution resources, before that function can be associated with viewer request triggers
for the appropriate cache behaviors, you must make sure there is no Lambda@Edge function
associated with either viewer request or viewer response triggers for the same set of cache

CloudFront prerequisites 34

Secure Media Delivery at the Edge on AWS Implementation Guide

behaviors. It is not possible to combine Lambda@Edge and CloudFront Functions associations for
the same cache behavior.

• If you plan to leverage the session revocation feature offered by the solution, an AWS WAF
web ACL must be created first and associated with the CloudFront distribution that will be
integrated with the solution. If you run multiple CloudFront distributions that require token-
based protection and session revocation capability, we recommend you run multiple stacks of
the solution and associate created WAF rule group with separate AWS WAF web ACL dedicated
for each distribution. This ensures efficient use of WAF Capacity Units (WCU) as each rule group
will only store the sessions that are in use for a given distribution.

• Integrating your video streaming CloudFront distribution with auto session revocation requires
additional steps to make the detail about all the incoming request accessible for Athena to distill
suspicious sessions. Activating CloudFront access logs is the first step which delivers log files
to the S3 bucket of your choice. For Athena to be able to run queries against these log files it
needs additional metadata that will instruct how to parse and interpret log files, and also how
to map column names to specific fields. You must define that information by creating database
and table definitions in AWS Glue Data catalog. Refer to Querying Amazon CloudFront logs for a
basic use case and additional information.

Supported AWS Regions

This solution can be launched in any AWS Region of your choice in which regional resources will be
created:

• Secrets in Secrets Manager

• Step Functions workflows

• Lambda functions

• Dynamo DB tables

Note that because automatic session revocation module is deployed as a separate CloudFormation
stack, you can deploy it in a different Region as the main stack. This can be beneficial in terms of
reducing the costs arising from cross region Athena queries. Refer to Querying across regions for
additional Amazon S3 data transfer.

No matter in what target Region you deploy the main stack, which includes the core components
of the solution, a dependency with US East (N. Virginia) (us-east-1) Region will exist as some of the

Supported AWS Regions 35

https://docs.aws.amazon.com/athena/latest/ug/cloudfront-logs.html
https://docs.aws.amazon.com/athena/latest/ug/querying-across-regions.html

Secure Media Delivery at the Edge on AWS Implementation Guide

components must be defined in that region. This is because those components can be associated
with the CloudFront distribution which is a global service. These components are WAF rule group
and Lambda@Edge function for signing requests towards API Gateway. Both of these resources are
created through custom resource logic synthesized in the main CloudFormation stack deployed in
the target region.

Supported formats

This solution works with the video streaming workloads that use the most common adaptive
bitrate streaming formats for distributing their video assets: HTTP Live Streaming (HLS), Dynamic
Adaptive Streaming over HTTP (DASH), and Common Media Application Format (CMAF) which
breaks down continuous video stream into discrete video and audio segments, suitable for Content
Delivery Network (CDN) caching. Customers can use any media originating service which publishes
video content in one or more of the mentioned formats, for example, Elemental MediaPackage,
Elemental MediaStore, Amazon S3, or an external video packaging service.

Revise origin request policies

This solution provides you the ability to select a specific cache behavior in CloudFront configuration
where token validation needs to be applied. Token validation logic takes viewer specific attributes,
exposed at runtime through event object, to validate if the viewer using this token is in fact
the viewer this token is for. This form of viewer uniqueness is achieved by including the token
viewer specific attributes, some of them relating to the viewer’s location, like country or region.
Viewer location information is available only through CloudFront generated headers that token
validation code has to pull that information from. However, that category of headers will only
appear in the event object when these specific headers are specified either in cache or origin
request policies. To prevent negative impact on cache hit ratio, rather than using cache policies
we recommend that you add the two specific geolocation headers in each origin request policy
that is associated with token protected cache behaviors. In the origin request policy definition,
include both CloudFront-Viewer-Country and CloudFront-Viewer-Country-Region in
the headers section.

Origin request policy - geolocation headers

Supported formats 36

Secure Media Delivery at the Edge on AWS Implementation Guide

Auto session revocation

Before you begin to use and deploy auto session revocation module in your architecture, review the
following considerations to ensure the entire process is accurate and efficient.

• Access log retentions – Video streaming use cases at a large scale, inevitable will drive large
amount of traffic. In turn, these will produce large volume of log entries which feed the auto
session revocation analysis. Therefore, to optimize for costs we recommend looking into
S3 lifecycle configuration options to expire and remove dated log files that do not provide
actionable insights any more. This will not only save the costs of S3 storage but also amount of
data that needs to be scanned by Amazon Athena which is one of the main cost components of
this service.

• Another technique to reduce the cost associated with the size of data scanned by Amazon
Athena is to employ log partitioning method to segregate the log files being produced in the
supporting folder hierarchy that organize the files per year, month, day, and hour. This is because
when you run Athena query, only the recent log entries represent the present usage of various
playback sessions, usually up to tens of minutes at most. By limiting lookback period from the
current time, you only dedicate the available resources to inspect current traffic and to block
ongoing playback sessions rather the ones which were only active before. With partitioned
log files, SQL query can take advantage of that by limiting the scope of the target files to a
specific time period and vastly minimize the amount of data that is scanned. We recommend
reviewing one of the possible solutions for partitioning CloudFront Logs as described in Analyze
your Amazon CloudFront access logs at scale. Auto session revocation module supports boot
partitioned and non-partitioned log structure.

• One of the key dimensions of determining which sessions have been compromised, is the request
rate corresponding to a given session relative to the median value. The assumption behind it
is that when you issue an individual playback session you should observe approximately the
same levels of request rates oscillating around median for each viewer. If playback session and
corresponding access token is reused by multiple viewers, this would stand out as abnormal
request rate, and the suspicion score increases as more viewers would share the same token
and session ID. This assumption holds true when the video assets delivered through the target
CloudFront distribution theoretically prompts the same request rate across legitimate viewers.
If the request rate differs between video assets or renditions for the same content, the resulting
median value will not be representative reference point and this can lead to identifying some

Auto session revocation 37

https://aws.amazon.com/blogs/big-data/analyze-your-amazon-cloudfront-access-logs-at-scale/
https://aws.amazon.com/blogs/big-data/analyze-your-amazon-cloudfront-access-logs-at-scale/

Secure Media Delivery at the Edge on AWS Implementation Guide

legitimate session ID as compromised incorrectly. To avoid that effect, it is important to verify
your assets have the same characteristic in terms of segment length and that you do not see
significant differences in request rate from various clients. If you have video assets of varying
characteristics, but you want to leverage auto session revocation mechanism, you can either turn
off tracking request rates as one of the score components, or spread your video assets delivery
across multiple CloudFront distributions according to their characteristic, and run separate
auto session revocation pipelines for each. Note that tracking request rates in log processing
pipeline aggregates multiple byte range requests against the same object. This means that
the video clients requesting full segments will yield the same request rate result as the clients
downloading the same segments partially with multiple range request.

Large viewership spikes

The Secure Media Delivery at the Edge on AWS solution has been designed to support workloads
of various scale including streaming services that draw very high viewership levels by using highly
scalable components in processing the access tokens and processing log entries. One of the scaling
factors is also ability to generate the tokens at the rate of viewers requesting playback URLs,
and with the ability to scale underpinning resources to produce and serve access tokens back.
In the design of this solution, access token is generated only once for each playback session and
repeated by the same viewer for subsequent requests which vastly reduces the load at the playback
API stage provided that new playback sessions spread over time. However, it is still possible that
during specific periods of time, the load on playback API resulting from new playback requests
and resulting number of parallel processes producing the tokens can exceed the available limits
or underlying resource capacity. A typical example would be highly popular live streaming event,
starting at a precise moment in time leading to excessive number of requests from new viewers
starting the stream almost simultaneously. If your workload experiences this type of event pattern
or simply serves very high number of new viewers in a steady state operation, make sure the
underlying compute assets are able to scale appropriately to serve expected number of new
viewers. In the reference architecture, the API module is capable of running multiple concurrent
processes responsible for generating the token and supplying playback URL with the token in
response. This is possible by the use of the standard scaling model of Lambda. You should monitor
the concurrency metric in the region where the solution was deployed and request an increase if
you are approaching this limit, or when you anticipate an upcoming event can drive exceedingly
high viewership level. For the sudden spikes of playback API requests, you must also account for
the rate at which Lambda concurrency can raise, which is 500 per minute. If this proves to be

Large viewership spikes 38

Secure Media Delivery at the Edge on AWS Implementation Guide

insufficient for the type of events you serve, consider using Lambda provisioned concurrency to
improve the ability to absorb rapid increase of new viewers.

The other aspect of scalability in the process of generating the tokens are the limits on API calls for
AWS Secrets Manager. Note that in default implementation, a solution’s library method reaches out
to Secrets Manager to obtain the signing keys required to issue a token. In the region where secrets
are stored, API rate quota exists which limits the number of GetSecretValue calls made from
solution’s library method and equals to 5000 transactions per second. This does not indicate that
the maximum token generation rate is at the same level. In the solution’s library implementation of
managing the secrets, a local memoization technique is used to cache the secrets retrieved in the
context of running process. You need to specify for how long a secret should be cached in memory
so that it can be reused by the same threads initiated in the scope of the same process. For this
reason, to enhance reusability of the once retrieved key, we recommend producing the tokens by
using long running process to serve the requests and asynchronous threads that could share the
same object holding the keys. This will effectively reduce the number of API calls towards Secrets
Manager. For large-scale events that need to run a large number of parallel processes, to the point
when Secrets Manager API calls limit can become a concern, it is possible to define custom key
retrieval function that would introduce another layer of caching. For instance, you can create a
dedicated function which would retrieve original key from AWS Secrets Manager but also store
it in a shared space between the processes, for instance using in-memory data store like Amazon
ElasticCache.

Alternative approaches to carry the token

The default and suggested method for including the token persistently throughout the viewer
playback time is to use URL path. By inserting the token at the beginning of the playback URL
which makes a reference point for the player for subsequent requests, it makes the solution more
universally supported as it uses the most fundamental mechanism of HTTP delivery, and minimizes
implementation efforts as this mechanism is transparent from the video origin standpoint.
However, if this approach is not viable for your specific use case, you can choose a different way
of attaching the token with the requests which does not have to rely on the URL path. Cookies,
custom headers, query string parameters are potential other carriers for the token and using the
solution’s library it is possible to generate a plain token that would normally appear in URL path in
default mode. However, this involves customization of CloudFront Functions code to look up and
parse the token and session ID in a place other than the URL path, by modifying the source code
appropriately. The rest of the token validation logic would remain unchanged regardless of how
the token is attached with the request. You must ensure token stickiness so that with a different

Alternative approaches to carry the token 39

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

Secure Media Delivery at the Edge on AWS Implementation Guide

approach to carry the token, this token is repeated in the future requests made by the same client
for the protected objects.

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Quotas for AWS services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution. For more
information, see AWS service quotas.

Use the following links to go to the page for that service. To view the service quotas for all AWS
services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

As you evaluate the deployment of the Secure Media Delivery at the Edge on AWS solution, one
limit that should be accounted for is WCU capacity of the web ACL used with CloudFront, and when
session revocation module is to be launched. The default WCU limit for AWS WAF web ACL equals
to 1500 WCU which is a shared capacity for the customer defined and managed WAF Rules, as
well as the rule group created in the main module of the solution. For any rule group created, its
WCU limit must be declared at the time of its creation and the value you specify at this stage is
what gets consumed from web ACL general WCU limit. Rule group WCU limit cannot be modified
after creation, therefore you must plan in advance how much WCU you want to allocate for session
revocation rule group (recall that a rule to block a single session is worth 2 WCU). The limit you
plan to apply for the rule group when launching the solution cannot exceed WCU headroom left in
the web ACL that the rule group will be attached to. If there is not enough headroom left for the
size of the rule group you plan to create when launching the solution, request WCU limit increase
for that target web ACL to increase available WCU headroom.

Quotas 40

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information

Secure Media Delivery at the Edge on AWS Implementation Guide

Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment.
The CloudFormation template specifies the AWS resources included in this solution and their
properties. The CloudFormation stack provisions the resources that are described in the template.

Prerequisites

This solution is designed to work with Amazon CloudFront distributions used for video streaming.
If you do not have one configured already, complete the applicable task before you launch
this solution. For testing purposes, you can create video delivery pipeline including CloudFront
distribution using the Live Streaming on AWS solution.

Refer to CloudFront prerequisites, which outlines which CloudFront configuration settings should
be revised prior to launching the solution.

Inspect the body of video manifests published by the video origin service in use. If your video origin
service references other objects using absolute URL paths, configure it to switch to relative paths
instead.

Deployment process overview

Before you launch the solution, review the cost, architecture, security, and other considerations
discussed earlier in this guide.

Time to deploy: Approximately 5-10 minutes

Step 1. Launch the stack

Step 2. Define video assets and token policies

Step 3. Prepare your CloudFront distributions

Step 4. Test the solution

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and

Prerequisites 41

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://aws.amazon.com/solutions/implementations/live-streaming-on-aws/

Secure Media Delivery at the Edge on AWS Implementation Guide

products. AWS owns the data gathered though this survey. Data collection is subject to the
AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the Anonymized data
collection section of this guide.

AWS CloudFormation template

You can download the CloudFormation template for this solution before deploying it.

secure-media-delivery-at-the-edge-on-aws.template - Use this template to launch the solution
and all associated components. The default configuration deploys the core and supporting services
found in the AWS services in this solution section, but you can customize the template to meet
your specific needs. Use the CDK deployment model if you want to deploy the auto session
revocation module.

Note

AWS CloudFormation resources are created from AWS CDK constructs.

Note

If you have previously deployed this solution, see Update the solution for update
instructions.

Step 1: Launch the stack

Follow the step-by-step instructions in this section to configure and deploy the solution into your
account.

Time to deploy: Approximately 5-10 minutes

AWS CloudFormation template 42

https://aws.amazon.com/privacy/
https://s3.amazonaws.com/solutions-reference/secure-media-delivery-at-the-edge-on-aws/latest/secure-media-delivery-at-the-edge-on-aws.template

Secure Media Delivery at the Edge on AWS Implementation Guide

1. Sign in to the AWS Management Console and select the button to launch the
SECURESTREAM.template AWS CloudFormation template.

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a
different AWS Region, use the Region selector in the console navigation bar.

3. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text
box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack. For information about
naming character limitations, see IAM and AWS STS quotas, name requirements, and character
limits in the AWS Identity and Access Management User Guide.

5. Under Parameters, review the parameters for this solution template and modify them as
necessary. This solution uses the following default values.

Session Revocation

Parameter Default Description

Retention 30 Expressed in minutes.
Retention time for the
sessions submitted for the
revocation. After retention
time elapses session
is no longer considere
d for blocking and will
be removed from WAF
Rule Group next time it is
updated.

Web ACL capacity units
(WCU)

100 WCU limit allocated to
the AWS WAF Rule Group
created to store the rules
to block revoked sessions.
Note this value is immutable
and can’t be changed after

Step 1: Launch the stack 43

https://aws.amazon.com/console/
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?templateURL=https://s3.amazonaws.com/solutions-reference/secure-media-delivery-at-the-edge-on-aws/latest/secure-media-delivery-at-the-edge-on-aws.template
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default Description

Rule Group is created. Single
session ID included in the
Rule Group utilizes 2 WCU
from the configured limit.

Key Rotation Frequency

Parameter Default Description

Week of the month N/A Specify the week number in
each month that key rotation
will be scheduled for. This
parameter can be set to a
value from a range 1 to 4.

Day of the week N/A After selecting a week in a
month, provide a specific
day in that week when
key rotation should occur.
Value from 1 to 7, where 1
means Monday and 7 means
Sunday.

Hours N/A An hour when key rotation
workflow will be triggered.

Minutes N/A A minute in the selected
hour when key rotation
workflow will be triggered.

DASH Stream

If you do not have a video asset available in DASH format, you can leave the inputs empty in
which case example values will be set. You can augment these inputs after the stack is deployed.

Step 1: Launch the stack 44

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default Description

Hostname for asset delivery https://d1234.clou
dfront.net

Domain name served by
CloudFront distribution
hosting video following
protocol prefix (http://
or https://). If no input is
provided an example, default
value will be set in the target
DynamoDB table.

URL path for asset delivery /video/2/index.mpd Full URL path of the video
asset. This parameter must
start with ‘/’ and point to
an object used by the player
to initiate a playback, like
master manifest (mpd file).
If no input is provided an
example, default value
will be set in the target
DynamoDB table.

TTL for token +30m Mandatory. Time period
determining for how long
newly issued token will
be valid. If not specified
, example values will be
populated.

HLS Stream

If you do not have a video asset available in HLS format, you can leave the inputs empty in
which case example values will be set. You can augment these inputs after the stack is deployed.

Step 1: Launch the stack 45

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default Description

Hostname for asset delivery https://d1234.cloudfront.net Domain name served by
CloudFront distribution
hosting video following
protocol prefix (http://
or https://). If no input is
provided an example, default
value will be set in the target
DynamoDB table.

URL path for asset delivery /video/1/index.m3u8 Full URL path of the video
asset. This parameter must
start with ‘/’ and point to
an object used by the player
to initiate a playback, like
master manifest (m3u8
file). If no input is provided
an example, default value
will be set in the target
DynamoDB table.

TTL for token +30m Mandatory. Time period
determining for how long
newly issued token will
be valid. If not specified
, example values will be
populated.

6. Choose Next.

7. On the Configure stack options page, choose Next.

8. On the Review and create page, review and confirm the settings. Select the box acknowledging
that the template will create IAM resources.

9. Choose Submit to deploy the stack.

Step 1: Launch the stack 46

Secure Media Delivery at the Edge on AWS Implementation Guide

You can view the status of the stack in the AWS CloudFormation console in the Status column.
You should receive a CREATE_COMPLETE status in approximately 5 to 10 minutes.

Step 2. Define video assets and token policies

After the solution’s CloudFormation stack is deployed, you can define your video assets details (if
you haven’t provided them as CloudFormation stack input) by following the next steps:

1. After the solution has deployed, navigate to the DynamoDB console and Explore items page
under Tables.

2. Select the table which name starts with following string: [Stack Name]-ApiDemoTable.

3. Under Items returned section you can add and modify the list of items which detail original
video asset’s hostname with URL path and a token policy for that content. In the demo
web page deployed in the solution, two video assets are requested by the use of their ID
corresponding to the entries in this table. To successfully start a video playback on the website,
make sure that table entry with the ID that equals to 1, references HLS stream and the other one
with ID of 2, to DASH stream.

4. To edit the details of the HLS stream, select an item with ID that equals to 1 and select Action,
then choose Edit Item.

5. Make sure that the endpoint_hostname fields and url_path are filled in correctly as instructed
in the previous HLS Stream parameter description.

6. Expand token_policy property and modify the values of predefined properties which determine
the parameters of the output token that will be created for this specific video asset.

7. Choose Save changes to submit the changes.

8. For DASH stream, repeat steps from 4 to 7.

9. Test if API Gateway returns a valid playback URL with a secure token. Record the distribution
hostname fronting API Gateway. You can find it in the launched stack output tab with a key
value starting with ApiEndpointsDistributionDomainName. Using a utility tool like curl, make
an HTTP request as follows:

For HLS:

curl [ApiEndpointDistributionDomainName]/tokengenerate?id=1

Step 2. Define video assets and token policies 47

Secure Media Delivery at the Edge on AWS Implementation Guide

For DASH:

curl [ApiEndpointDistributionDomainName]/tokengenerate?id=2

In response, you should see the playback URL comprised of video asset hostname and URL path,
with the secure token added at the beginning of the original URL path.

Step 3. Prepare your CloudFront distributions

After deploying the CloudFormation stack and configuring DynamoDB table with inputs needed to
generate the token, follow the additional steps below to integrate the Secure Media Delivery at the
Edge on AWS solution with the existing CloudFront distributions used to deliver video streams.

1. Validate if the defined cache behaviors related to the objects which are supposed to be token
protected have their path pattern set correctly as described in the Design considerations section.

2. When using viewer’s geolocation as one of the token attributes, make sure the same cache
behaviors have origin request policies attached, which include CloudFront-Viewer-Country and
CloudFront-Viewer-Country-Region headers.

3. For each cache behavior subject to token protection, associate a function created when
solution’s stack was launched. From CloudFront’s console, open distribution settings and
navigate to a specific cache behavior configuration. In Function associations section, from
Viewer Request select CloudFront Function event and form Function ARN / Name, then select
the [Stack Name]_checkJWTToken function.

Function associations

4. Choose Save Changes and repeat the above steps for each distribution and cache behavior
where token validation mechanism must be in place.

5. If you intend to use manual session revocation, add a WAF rule group created for storing session
IDs (identified to be blocked) to the web ACL associated with the CloudFront distribution used
for streaming video content. On the web ACL page, select Global (CloudFront), then select the
web ACL associated with your CloudFront distribution and select the Rules tab then choose Add
Rules > Add my own rules and rule groups.

Step 3. Prepare your CloudFront distributions 48

Secure Media Delivery at the Edge on AWS Implementation Guide

6. In the rule type setting, select Rule group and enter a name to the rule you are defining. Under
Rule Group, select the [Stack_Name]_BlockSessions rule group from the dropdown list .

7. Choose Add rule and adjust the priority of this rule group within the web ACL, then choose
Save.

Step 4. Test the solution

After all the components and configurations that integrate your video delivery workload with the
solution are in place, you can use the demo website to test the end-to-end workflow.

1. From the Outputs tab of the solution’s CloudFormation stack, refer to the output starting with
ApiEndpointsDistributionDomainName and select the link which will take you to the demo
website.

2. You will see two buttons, one for each format – HLS and DASH, each corresponding to the video
assets with ID attributes 1 and 2 respectively, configured previously in video assets DynamoDB
table.

3. Choose either HLS or DASH to initiate an API call from the web client requesting playback URL
and secure token.

4. If the playback URL and token were retrieved successfully the video playback will start. You can
switch between the streams at any time.

5. Upon successful API request that returned a playback URL with the token, a demo website
displays the details about the content of the token, showing the claims included in its body.
These can be helpful in performing troubleshooting activities.

6. To test manual session revocation, select Revoke current session to see how current playback
session will get blocked when the session ID corresponding to the used token will start being
blocked by AWS WAF.

7. If you need to generate a new token and refresh current playback session, select the Refresh
token option on the website.

Step 4. Test the solution 49

Secure Media Delivery at the Edge on AWS Implementation Guide

CDK deployment

In addition to the CloudFormation template, you can also use the CDK project this solution was
built on to integrate it into your environment. Review the following considerations to make an
informed decision whether to use the CDK deployment model over the default CloudFormation
template.

• With CDK, you can selectively choose which modules and elements needs to be deployed for
each new stack you create. While the base module is always deployed, API module, demo
website, and auto session revocation are optional and each of the listed components can be
turned on or off. However, the CloudFormation template has all the components (except auto
session revocation module) integrated within the template, and cannot be turned off.

• Auto session revocation module is only available when deployed through CDK as an optional
module.

• CDK deployment model makes it easier to manage the configuration inputs when running
multiple stacks.

If you decide that the CDK deployment model is more suitable for your workloads, use the
following procedure to launch this solution in your environment.

Prerequisites

• AWS Command Line Interface

• Node.js 12.x or later

• AWS CDK 2.24.1

Deployment procedure

If you are deploying the solution for the first time using the CDK toolkit, run cdk bootstrap
to setup the required CDK resources in your AWS account. For more details on using the CDK
bootstrapping process, refer to Bootstrapping.

Prerequisites 50

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Note

If you're planning on using multiple regions, the bootstrapping process must be done for
each AWS region. In case you have gone through the process of installing CDK bootstrap
tooling in a given account and region, you can ignore this step.

1. Clone the solution source code from the repository.

git clone https://github.com/aws-solutions/secure-media-delivery-at-the-edge.git

2. Install the dependencies of the project to make it ready to use. To do so, run the below
commands in the folder where you cloned the source code to.

On Linux

cd source

./install_dependencies.sh

On Windows

cd source

./install_dependencies.ps1

3. Run the built-in wizard which will prompt you with questions about the modules to deploy
and the number of parameters which determine the operations of the functional components
chosen to be deployed.

npm run wizard

For more details about the meaning and usage of parameters prompted in the wizard, refer to
the Design considerations and Session revocation sections.

The wizard will then generate a configuration in the solution.context.json file that is
located in the same CDK project directory. This config file stores all the inputs provided through

Deployment procedure 51

Secure Media Delivery at the Edge on AWS Implementation Guide

the wizard and can be modified any time you want to choose certain parameters and redeploy
the stack.

4. Deploy the solution in your account.

npx cdk deploy --all

5. After CDK deployment finishes, follow the steps from 2 to 4 as described in the Deployment
process overview section for CloudFormation.

Note

When running from your local environment, the determination of the target account and
region will be based on the AWS profile in use as specified in the config and credentials
file. If you want to deploy the stack in multiple accounts and regions, you must define the
appropriate profiles associated with the account and right default region that you need. For
more information refer to Specifying credentials and region.

Deployment procedure 52

https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-environment

Secure Media Delivery at the Edge on AWS Implementation Guide

Monitor the solution with Service Catalog AppRegistry

This solution includes a Service Catalog AppRegistry resource to register the CloudFormation
template and underlying resources as an application in both Service Catalog AppRegistry and AWS
Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the resources of this solution (such as deployment status, CloudWatch
alarms, resource configurations, and operational issues) in the context of an application.

The following figure depicts an example of the application view for the solution stack in
Application Manager.

Solution stack in Application Manager

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.

Activate CloudWatch Application Insights 53

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://console.aws.amazon.com/systems-manager

Secure Media Delivery at the Edge on AWS Implementation Guide

2. In the navigation pane, choose Application Manager.

3. In Applications, search for the application name for this solution and select it.

The application name will have App Registry in the Application Source column, and will have a
combination of the solution name, Region, account ID, or stack name.

4. In the Components tree, choose the application stack you want to activate.

5. In the Monitoring tab, in Application Insights, select Auto-configure Application Insights.

Monitoring for your applications is now activated and the following status box appears:

Activate CloudWatch Application Insights 54

Secure Media Delivery at the Edge on AWS Implementation Guide

Confirm cost tags associated with the solution

After you activate cost allocation tags associated with the solution, you must confirm the cost
allocation tags to see the costs for this solution. To confirm cost allocation tags:

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose the application name for this solution and select it.

4. In the Overview tab, in Cost, select Add user tag.

5. On the Add user tag page, enter confirm, then select Add user tag.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution

After you confirm the cost tags associated with this solution, you must activate the cost allocation
tags to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization.

Confirm cost tags associated with the solution 55

https://console.aws.amazon.com/systems-manager

Secure Media Delivery at the Edge on AWS Implementation Guide

To activate cost allocation tags:

1. Sign in to the AWS Billing and Cost Management and Cost Management console.

2. In the navigation pane, select Cost Allocation Tags.

3. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

4. Choose Activate.

AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer. Cost Explorer
helps you manage costs by providing a view of your AWS resource costs and usage over time.

1. Sign in to the AWS Cost Management console.

2. In the navigation menu, select Cost Explorer to view the solution's costs and usage over time.

AWS Cost Explorer 56

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/cost-management/home

Secure Media Delivery at the Edge on AWS Implementation Guide

Update the solution

If you have previously deployed the solution, follow this procedure to update the solution’s
CloudFormation stack to get the latest version of the solution’s framework.

1. Sign in to the CloudFormation console, select your existing Secure Media Delivery at the Edge on
AWS CloudFormation stack, and select Update.

2. Select Replace current template.

3. Under Specify template:

a. Select Amazon S3 URL.

b. Copy the link of the latest template.

c. Paste the link in the Amazon S3 URL box.

d. Verify that the correct template URL shows in the Amazon S3 URL text box, and choose Next.
Choose Next again.

4. Under Parameters, review the parameters for the template and modify them as necessary. For
details about the parameters, see Step 1. Launch the stack.

5. Choose Next.

6. On the Configure stack options page, choose Next.

7. On the Review page, review and confirm the settings. Check the box acknowledging that the
template will create IAM resources.

8. Choose View change set and verify the changes.

9. Choose Update stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You
should receive a UPDATE_COMPLETE status in approximately 5-10 minutes

57

https://console.aws.amazon.com/cloudformation/
https://s3.amazonaws.com/solutions-reference/secure-media-delivery-at-the-edge-on-aws/latest/secure-media-delivery-at-the-edge-on-aws.template

Secure Media Delivery at the Edge on AWS Implementation Guide

Troubleshooting

If these instructions don’t address your issue, see the Contact AWS Support section for instructions
on opening an AWS Support case for this solution.

Monitoring dashboard

As you begin to use the Secure Media Delivery at the Edge on AWS solution, keep track of the
operational metrics relating to various workflows comprising the solution. A good place to start
to get an overview of the metrics relevant for this solution is CloudWatch Dashboard which is
created automatically when you launch the solution. You can find it in CloudWatch console in the
Dashboards view, present under the Custom Dashboards list. For each deployed stack there is a
corresponding dashboard named: [Stack Name]-Secure-Media-Delivery.

Example monitoring dashboard

The metrics on the dashboard indicate if specific components and processes comprising the
solution operate as expected, and if there are any anomalies that must be investigated. The metrics
contained in the dashboard widgets indicate:

Monitoring dashboard 58

Secure Media Delivery at the Edge on AWS Implementation Guide

• Number of viewer tokens that CloudFront Function validation logic evaluated as valid and
invalid.

• Number of key rotation procedure implemented in a given time frame and how many of the
attempts ended successfully

• Total number of validated tokens

• Average compute utilization over time of the token validation function

• Number of token validation function invocations over time

• Number of tokens generated by the Lambda function from the API Module

Failed token validation

Issue: Legitimate viewer request is rejected by CloudFront and returns a 401 response due to failed
token validation.

Resolution:

1. Retrieve the request ID of the failed request. CloudFront Request ID value can be either found
in the response header x-amz-cf-id when the request is made or in the CloudFront access logs
under x-edge-request-id field.

2. Open the CloudWatch console in the same account where the solution stack is implemented,
and select us-east-1 from the Region selector in the upper-right corner.

3. Navigate to Logs, select Log Groups and find a log group for the CloudFront Function created
by the solution. The name of the log group will be similar to /aws/cloudfront/function/
[Stack Name]_checkJWTToken. Select the log group identified.

4. Narrow down the time window for the log streams. Select Search all and in the filter panel limit
the time boundaries to when the failed request was made.

5. In Filter events, enter the request ID recorded in step 1.

In the result output, you will see the log entries emitted from CloudFront Function that explains at
which stage of the token verification it failed.

Internal signature verification failed error

Issue: When the token was generated, if the viewer attributes do not match with the attributes
CloudFront function found in the event object, it results in a failed token error: Internal signature
verification failed. When you generate the token and decide to use one or more of the following

Failed token validation 59

Secure Media Delivery at the Edge on AWS Implementation Guide

parameters: session Id, headers, query string, viewer country, viewer region, viewer IP address
this will produce an internal signature build from all the selected inputs, inserted in the token
payload as intsig claim. Based on the other claim values, CloudFront Function reproduce that input
string using the selected attributes by reaching them from the event object available at runtime. If
any of these attributes are missing or changed their value form when the token was generated, it
will cause a mismatch of signatures and result in this error.

Resolution:

1. From the CloudFront Function Log group identify the entries associated with failed request (as
specified in the description of the previous issue), and find an entry which includes Indirect
attributes input string which displays an input string recreated by CloudFront Function from the
event object. This string will contain concatenated list of attributes with colon : as a delimiter.
Take a note of it, in particular session ID which should be first element in that concatenated
string.

Note

If you do not use session ID, we recommend that you activate it when you start using
and testing the solution to facilitate troubleshooting.

2. On the Log Groups page, change the region to the one where the solution stack was
implemented with API module, using region selector.

3. Find the log groups associated with the Lambda function that generates the token. Select the
log group name starts with /aws/lambda/[Stack Name]_GenerateToken.

4. Narrow down the time window for the log streams. Select Search all, and in the filter panel limit
the time boundaries to when the token for the viewer was made.

5. In Filter events, enter the same session ID that was found in step 1 in the CloudFront Functions
log stream.

6. In the results output, find a line which includes Input for internal signature: which was an input
string used for generating internal signature.

7. Compare the values of both input strings and identify the attributes that do not match, or if any
attribute is missing for CloudFront Function entry.

8. Consider common causes for discrepancies in the input string values:

• Mismatch in viewer IP address – viewer IP address may change between the request for a
token and request for video stream object as explained in the Access token management

Failed token validation 60

Secure Media Delivery at the Edge on AWS Implementation Guide

guide section. In this case, consider excluding the IP address when creating the token, or
include it conditionally only when it is probable that the viewer’s IP address won’t change (for
example, connected TVs).

• Missing or different value of the viewer’s country or region – for CloudFront Function, to
retrieve geolocation information about the request, Origin request policy associated with
cache behavior which includes token validation, must include appropriate geolocation
headers.Refer to the Access token management guide section for more details.

• Missing or different value of the viewer’s header – make sure that the headers included in
token creation won’t change during playback. For instance, when using referer header in the
policy it is possible that the browser construct referer header differently when making request
to the playback API, and when making a request to the CloudFront distribution, depending on
Referrer Policy.

Auto session revocation

Auto session revocation module, when activated, regularly inspects CloudFront access logs with
an objective to detect session IDs that exhibit suspicious traffic patterns in terms of request rate
and composition of viewer attributes. The Session revocation guide section provides extensive
overview of what factors are accounted for when determining the suspicion score and all the inputs
and settings you have control of to impact the suspicion score formula and detection threshold. If
playback session gets blocked unexpectedly, complete the following steps to work backwards and
identify what factored in that decision.

1. Open DynamoDB table used as a data store for the session submitted for revocation. Table name
can be found in the stack’s CloudFormation output tab associate to the key which starts with
[Stack name]-SessionToRevoke. Locate that name in DynamoDB console in correct region on
the Explore items page.

2. Use Filters fields to look up the blocked session ID.

Filters

Auto session revocation 61

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

Secure Media Delivery at the Edge on AWS Implementation Guide

3. In the Items returned section an entry corresponding to this session will be displayed with a
type attribute set to AUTO. Sum of ip_penalty, ip_rate, referrer_penalty, ua_penalty should
equal to the final score attribute value which was above the threshold set.

4. You can further inspect underlying SQL query which produced this entry. Take a note of the
timestamp in last_updated attribute which informs when the entry was submitted. You should
expect the respective query to run shortly before that point in time.

5. Navigate to the Amazon Athena console and then to Query editor page.

6. Open Recent queries tab and look for the records run around the time indicated by the
timestamp in DynamoDB table.

7. Click on the Execution ID attribute which will redirect you to the query editor populating the
query that was run at the time. You can run and deconstruct this query to further analyse what
drove specific components that added to the final score.

Contact AWS Support

If you have AWS Developer Support, AWS Business Support, or AWS Enterprise Support, you can
use the Support Center to get expert assistance with this solution. The following sections provide
instructions.

Create case

1. Sign in to Support Center.

2. Choose Create case.

How can we help?

1. Choose Technical.

2. For Service, select Solutions.

3. For Category, select Other Solutions.

4. For Severity, select the option that best matches your use case.

5. When you enter the Service, Category, and Severity, the interface populates links to common
troubleshooting questions. If you can’t resolve your question with these links, choose Next step:
Additional information.

Contact AWS Support 62

https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://support.console.aws.amazon.com/support/home#/

Secure Media Delivery at the Edge on AWS Implementation Guide

Additional information

1. For Subject, enter text summarizing your question or issue.

2. For Description, describe the issue in detail.

3. Choose Attach files.

4. Attach the information that AWS Support needs to process the request.

Help us resolve your case faster

1. Enter the requested information.

2. Choose Next step: Solve now or contact us.

Solve now or contact us

1. Review the Solve now solutions.

2. If you can’t resolve your issue with these solutions, choose Contact us, enter the requested
information, and choose Submit.

Additional information 63

Secure Media Delivery at the Edge on AWS Implementation Guide

Uninstall the solution

You can uninstall the Secure Media Delivery at the Edge on AWS solution from the AWS
Management Console or by using the AWS Command Line Interface.

Before you perform the steps to uninstall the Secure Media Delivery at the Edge solution, ensure
you disassociate all the components created by the solution with the resources that are operated
externally. In particular, review the configuration in:

• AWS WAF web ACL which includes the rule group for session revocation. Remove the
corresponding rule from the web ACL list.

• CloudFront distributions’ cache behaviors protected by secure tokens provided by this solution.
Remove the association between all the viewer request triggers and function used to validate the
token. You can see all the distributions and cache behaviors which use the function by navigating
in CloudFront console to Functions page, selecting token validation function and switching to
Publish tab which details all associations for this function.

Using the AWS Management Console

1. Sign in to the AWS CloudFormation console.

2. On the Stacks page, select this solution’s installation stack.

3. Choose Delete.

Using AWS Command Line Interface

Determine whether the AWS Command Line Interface (AWS CLI) is available in your environment.
For installation instructions, refer to What Is the AWS Command Line Interface? in the AWS CLI User
Guide. After confirming that the AWS CLI is available, run the following command.

aws cloudformation delete-stack --stack-name [Stack Name]

Using CDK toolkit

If you deployed the solution through CDK, depending on if you activated the Auto Session
Revocation module, one or two stacks will be deployed in the region, named:

Using the AWS Management Console 64

https://console.aws.amazon.com/cloudformation/home
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Secure Media Delivery at the Edge on AWS Implementation Guide

• [Stack name] – deploys components from Base and API module

• [Stack name]AutoSessionRevocation – includes components used in the Auto Session
Revocation workflow

To remove both of the stacks run the following command from the project folder:

npx cdk destroy –-all

Using CDK toolkit 65

Secure Media Delivery at the Edge on AWS Implementation Guide

Developer guide

This section provides the source code for the solution, a NodeJS library reference, an access tokens
management guide, a session revocation guide, and playback API integration.

Source code

Visit our GitHub repository to download the source files for this solution and to share your
customizations with others. The Secure Media Delivery templates are generated using the AWS
CDK. Refer to the README.md file for additional information.

NodeJS library reference

The key step in the process of integrating the solution with your architecture involves incorporating
token management methods with the services that you expose to the client’s application directly.
When you launch the API module an example API endpoint that acts as such service is created but
in your actual implementation you may be tasked with adding token management operations into
your workflow comprised of preexisting services. This solution comes with a NodeJS library, which
facilitates this procedure by abstracting the token management operations that need to take place
with code constructs that you can import in your own code. This section defines how the solution’s
NodeJS library has been structured, what classes and methods are made available for use and
provide detailed reference of usage specific constructs included in the library.

On a high level

The library is provided as a single module that you can import with a single import command.
From the module we expose all functionalities you interact with through classes. These classes are:

• Secret - to manage the keys used for signing and validating the tokens

• Token - to manage the token generation process

• Session - to manage viewer sessions when generating token and revoking the session

Secret

Object Properties

Source code 66

https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/README.md

Secure Media Delivery at the Edge on AWS Implementation Guide

keys: object an object holding primary and secondary key pairs for each instance. Structure of this
object must conform with the following format:

{
 'primary': {
 'uuid': primary_key_uuid: string,
 'value': primary_key_value: string
 },
 'secondary': {
 'uuid': secondary_key_key: string
 'value': secondary_key_value: string
 }
}

It is mandatory that any function used for retrieving signing keys return keys object in this exact
form.

ttl: [int] → time to live expressed in seconds, detailing for how long keys should be considered as
valid after they were retrieved. If the TTL expired, a new call to retrieve the keys will be invoked.

retrieveMode: [string] = [‘native|’custom’] (default ‘native’) → determines what
function is used to retrieve the keys. native refers to the internal method which interacts with
Secrets Manager to retrieve the secrets storing primary and secondary keys.

retrieveFunction: [function] (default null) → a reference to the function provided by
the user, that is called when key needs to be retrieved. It is only used when retrieveMode is set
to custom. The custom function must return object of the same structure as specified in keys
property.

retrieveFunctionArgs: [array] (default []) → stores positional arguments passed as input
parameters when retrieveFunction is called.

stackName: [string] (default: null) → stores the name of the deployed stack. In
native mode of retrieval, it is required to derive Secrets Manager secrets name, which is:
{stack_name}_PrimarySecret and {stack_name}_SecondarySecret. stackName value
binds the key retrieval process with the specific stack’s secrets.

Constructor

Secret 67

Secure Media Delivery at the Edge on AWS Implementation Guide

Secret(stackName: string, ttl: int, retrieveMode: string = ‘native’, retrieveFunction: string = null,
retrieveFunctionArgs: array = []) → constructor function maps the provided input to the object
attributes

Instance Methods

getKeyValue(key_alias: string) returns: string # returns the value of the specified key alias, either
primary or secondary

getKeyUUID(key_alias: string) returns: string # returns the UUID of the specified key alias, either
primary or secondary

initSMClient({region: string, role: string, profile: string}) returns: Boolean → using provided inputs
a new Secrets Manager client is created using the adequate credentials. Execution role will be
derived as follows:

• If no role or profile was provided as an input, AWS SDK will determine which role to assume by
following the standard process - it will look into environment variables, service execution role as
described in Setting Credentials in Node.js.

• If profile attribute was provided – use the credentials associated with it.

• If no profile attribute was provided except iam_role- assume iam_role through AWS Security
Token Service (AWS STS).

If the Region was not specified in the input object, AWS SDK provided method is used to verify
what is the default region for the active profile. If none is specified, we default to us-east-1.
This function is used when retrieveMode is set to native. Returns true if the client set up is
successful, or false if it fails.

Session

Class Properties

revocationTable: [string] (default: ‘’) → name of DynamoDB table created in the solution
to store list of the sessions submitted for revocation.

Class Methods

Session.initialize(revocationTable ,{region: string, role: string, profile: string}) returns: boolean
→ sets revocationTable property referencing DynamoDB table for storing compromised sessions.
Second parameter is an object with the parameters used when a new DynamoDB client is created

Session 68

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials-node.html

Secure Media Delivery at the Edge on AWS Implementation Guide

using the adequate credentials. Execution role will be derived in the same way as initSMClient in
secret class.

Object Properties

id: string → mandatory attribute that must be set when creating the object. It is case sensitive. It is
a session identifier issued for a playback session and tied to a specific access token.

suspicion_score: integer → considered when revocation list is compiled. As revocation list can hold
only limited number of revoked sessions, the ones with highest score will be added within that
limit.

Constructor

Session(id: string = null, autogenerate: boolean = false, suspicion_score: int = 0) → constructor
function maps the provided inputs (ID, suspicion_score) to the object attributes. If autogenerate =
true, ID will be casted to integer and ID of that length will be autogenerated. If ID is not provided,
session ID of 12 characters length will be autogenerated.

Instance Methods

revoke(ttl: number = 86400, reason: string = ‘COMPROMISED’) returns boolean → pushes session
to the revocationTable. It inserts an entry with the following properties and returns True after the
session is successfully added to DynamoDB.

• session_id = session’s identifier which equals to ID property of the object

• last_updated = current timestamp (second level precision)

• TTL = time period in seconds after which session entry in DynamoDB will be considered expired
and removed

• type = ‘MANUAL’

• reason = as per function input

To use that method, DynamoDB client must be initialized first through the Session.initialize class
method.

Token

The main objective of token class is to generate unique tokens for the playback session. There are
two main inputs of expected structure that determine the resulting token: viewerAttributes and

Token 69

Secure Media Delivery at the Edge on AWS Implementation Guide

tokenPolicy. viewerAttributes details the viewer specific inputs, which are the basis for calculating
internal signature unique to that viewer. tokenPolicy defines a set of parameters which directly
inform how the resulting token will be calculated by describing what attributes should be included
in the token, what are the path patterns, expiry time and other relevant fields. Below are the
examples that illustrate the structure of both objects that need to be supplied as an input:

Viewer Attributes - Example

{
"co": "GB",
"reg": "ENG",
"ip": "10.0.2.1",
"headers": {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; ...)",
"referer": "https://example.com/video1",
"x-auth": "uhfsdguyfde438t27gsda",
},
"qs": {
"m": "123456",
"filter": "mobile"
},
"sessionId": 'k1a12app2z'
}

Parameter Default

co viewer’s country as a two-letter code
according to ISO-3166-1 alpha 2 standard

reg region code that corresponds to viewer’s
region. The value should match with the
region codes of first-level subdivision of the
ISO 3166-2 category

ip viewer’s source IP address (either IPv4 or IPv6)

headers set of request headers and their values
that viewer must include in all the requests
including the token

Token 70

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default

qs set of query strings parameters and their
values that viewer must include in all the
requests including the token

sessionId Explicit session ID value that would be
associated to the token and signed. If you
prefer sessionId to be auto-generated, omit
this field

Token Policy - Example

{
"co": false,
"co_fallback": true,
"reg": false,
"reg_fallback": true,
"exc": [
"/tm/"
],
"exp": "+1h",
"headers": [
"user-agent",
"referer"
],
"querystrings": [
"m"
],
"ip": false,
"nbf": "1645000000",
"paths": [
"/v1/master/b3dae6b5505e7de150071442385b3f3817cfa640/",
"/v1/segment/b3dae6b5505e7de150071442385b3f3817cfa640/",
"/v1/manifest/b3dae6b5505e7de150071442385b3f3817cfa640/",
"/out/v1/df069e9593304746afc28eb0117f2dbd/"
],
"ssn": true,
"session_auto_generate": 12
}

Token 71

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default

co a flag which determines whether viewer’s
country attribute should be included in the
token

co_fallback a flag instructing token validation function
how to handle the request when country
(co) is included in the token however it is
not possible to verify viewer’s country when
cloudfront-viewer-country header is missing.
When set to true, request will be allowed
in this scenario. When set to false request
is blocked when viewer’s country can’t be
determined.

reg a flag which determines whether viewer’s
country region attribute should be included in
the token

reg_fallback a flag instructing token validation function
how to handle the request when country
(reg) is included in the token however it is
not possible to verify viewer’s country region
when cloudfront-viewer-country-region
header is missing. When set to true, request
will be allowed in this scenario. When set to
false request is blocked when viewer’s country
can’t be determined.

exc List of the URL paths prefixes that should be
excluded from the viewer attributes verificat
ion step. For any request which URL path
starts with one of the URL paths listed in
this property, only token integrity check, nbf
timestamp and exp timer will be verified. This
field allows to specify the URL path prefixes

Token 72

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default

that would be subject to soft verification
where it is known or likely that that not all
the conditions can be met but access to this
content should be still allowed (for instance
advertisement segments requests)

exp Mandatory attribute. Value determining how
expiry time is set in the token. It can either be
set as a relative time reference to the current
time expressed in hours (for example, +1h)
or minutes (for example, +30m). Alternati
vely, an absolute timestamp with second level
precision can be set as well.

headers List of viewer request headers subject to
viewer attributes verification

querystrings List of viewer request querystring parameters
subject to viewer attributes verification

ip a flag informing if source IP address should be
included in the token

nbf Timestamp indicating the time before which
the access token must not be accepted for
processing

Token 73

Secure Media Delivery at the Edge on AWS Implementation Guide

Parameter Default

paths Mandatory attribute List of URL path prefixes
the token can be used for. Unless viewer
request matches with URL path included in
exc property, URL must match with one of
the paths in this property. The items on this
list don’t specify the full URL path but just
prefixes which spans from the beginning up
to an arbitrary position in the URL path. each
item in this list must be a substring of the
actual viewer request URL to evaluate as a
match.

ssn A flag indicating whether session ID should be
one of the inputs for token signature

session_auto_generate If sessionId attribute is not present in
viewerAttributes object, a number set in this
property will set the length of the session ID
to be automatically generated

Object Properties

defaultTokenPolicy: [object] → stores the default token policy object used in case a specific token
policy is not provided as in input when calling generate method.

secret: [Secret] → reference to the instance of the Secret class, that provides the signing keys for
the token generation process.

Constructor

Token(secret: Secret, defaultTokenPolicy: object = null) → constructor function maps the
provided inputs (id, suspicion_score) to the object attributes

Instance Methods

generate(viewer_attributes: object, playback_url: string = null, token_policy: object =
self.defaultTokenPolicy, key_alias: string = ‘primary’) returns string → generate a token and

Token 74

Secure Media Delivery at the Edge on AWS Implementation Guide

returns either as a string which represents secure access token. If playback_url is provided, the
function returns modified URL with resulting string inserted. In that function Session class is used
internally to generate sessionId in case it wasn’t provided explicitly in viewer_attributes object as
an input.

How the session ID is derived if token policy ssn flag is set to true? Order of precedence is as follows:

• explicit sessionId value from viewer_attributes input

• auto generated using session_auto_generate value from token policy: new
Session(viewer_policy.session_auto_generate, true)

• auto generated with the default session length of 12 characters

Determining querystring parameter value used when generating a token.

When a querystring parameter is listed in querystrings property in token policy, the value of which
is later used when calculating a signature related to viewer attributes, generate method looks up
its value in a following order:

• playback_url input parameter when generate method is called

• viewer attributes querystring object

Example of token generation code

Below code snippet serves as an example to show the sequence of steps that needs to be reflected
in the code to produce a token at the level of playback API endpoint. It does not include the logic
required to obtain the information about the video assets or how to compose viewer attributes
and token policy objects, which would be specific to your use case and integration with content
management system. In the API module, Lambda functions are deployed and can be considered
as a more complete reference example of how to implement complementary logic and combine it
with the solution’s library.

//Import library
const awsSMD = require("./aws-secure-media-delivery");

//create secret instance, parameters specify stack name, secret caching

//ttl, 'native' informs to use AWS SecretsManager client for key retrieval
let secret = new awsSMD.Secret('StackName',10,'native');

Example of token generation code 75

Secure Media Delivery at the Edge on AWS Implementation Guide

//initiate AWS Secrets Manager client associated with secret instance
//role refers to the solution created role, region specifies in which region
//signing keys are stored in Secrets Manager
secret.initSMClient({role:'arn:aws:iam::1234:role/stack_role', region: 'eu-west-2'})
//initiate instance of Token class and associate it with secret object
let token = new awsSMD.Token(secret);

async function vendToken(viewer_attributes, playback_url, token_policy){

//generate the token
let outputToken = await token.generate(viewer_attributes, playback_url, token_policy);
return outputToken;
}

Example of session revocation code

//Import library
const awsSMD = require("./aws-secure-media-delivery");

//initialize Session class attributes, first argument points to DynamoDB //table which
 stores session to be revoked
awsSMD.Session.initialize('StackName-SessionToRevoke1234',
 {role:'arn:aws:iam::1234:role/stack_role', region: 'eu-west-2'});

async function blockSession(sessionId){
 //initiate instance of Session class with explicit sessionId provided
 let revokeSession = new awsSMD.Session(sessionId);
 let result = await revokeSession.revoke(86400);
 return result;
}

Access tokens management guide

Varying token attributes

When the access token is created upon viewer request, its final structure is defined by the claims
encapsulated in the token. This allows you to vary the parameters used in the token depending
on the requested content or viewer type. This is possible because the structure of the token is not
fixed and each token can carry a varying set of attributes. Token validation logic implemented in
CloudFront Functions has been designed for that as from the set of claims included in JWT token

Example of session revocation code 76

Secure Media Delivery at the Edge on AWS Implementation Guide

this validation logic at the edge will derive how to correctly process its payload. This quality can be
helpful as you can set different tiers of token restrictiveness reflected in used set of attributes for
each tier, for example:

• For viewers originating from countries with a wide geographical range, include region attribute
(reg) on top of country (co) to reduce the risk of unauthorized reuse of the token

• When a playback session is initiated from the connected TV type of client, you can issue the
token based on the viewer’s IP address (ip) as it is unlikely it would change throughout the
session

• If the player is capable of generating and repeating a unique session identifier as a custom
header, include that header and its value in the viewer attribute and token policy objects

• For the most premium video assets add more headers in the token policy definition (user-agent,
referer etc.) to make it more restrictive

The list of parameters that can be inserted in the token policy with description can be found in the
NodeJS library reference.

By setting token parameters in a dynamic manner, you can better align the scope of the token for
various viewer groups and assets type. In the API module of this solution, and you can test that
ability by specifying separate token policies for each video asset inserted in the [Stack Name]-
ApiDemoTable.

Choosing session duration time

This solution works on the principle that entire playback session is protected by the use of a
single token generated only once by the playback API when the playback URL with a token is
passed to the player. The issued token is then repeated by the player and therefore it eliminates
the need to recompute and refresh the token for the duration of the stream watched. However,
when a viewer watches the stream, because the same token is used from the beginning until the
end of the playback, it is important to set a correct expiry time to match the expected content
duration when known, or a maximum period of time the viewer is expected to watch the same
stream continuously (without switching to other channels or video assets). In the case of a stream
scheduled with a specific start and end time, you can reflect these time boundaries in nbf and exp
attributes in the token policy using precise timestamps values. For the continuous video streaming
channels, when a viewer can start and stop watching the stream at any time, we recommend
setting a reasonably high relative time reference in exp attribute which reflects typical audience
behaviors for how long an uninterrupted, single streaming session can last. For instance, +4h would

Choosing session duration time 77

Secure Media Delivery at the Edge on AWS Implementation Guide

issue a token that allows a 4 hours watch time. When a viewer goes past the expiry timestamp
after 4 hours, further attempts to use the same token will fail and the client’s application must
refresh the stream by requesting a new token from the playback API.

Using viewer’s source IP in the token

A viewer’s source IP can be a very effective mean to reduce the scope of the token and tie it
specifically to a single user, eliminating the risk of re-sharing the same playback URL link with the
token. While using viewer IP as an input to produce the token gives very strong session uniqueness
characteristics of the token, it is also prone to well-known problems that can interrupt a legitimate
playback session. This is because a viewer’s IP is not always persistent during the entire time of
watching a video content. For example:

• When a mobile client is switching networks, the source IP changes

• Some clients are behind gateways or NATs which translate internal client’s address into one of
the many potential public addresses available in the pool. While a public IP assigned to the client
for any new established connection stays the same for the same TCP session established, the
problem arises when the public IP used when communicating with CloudFront distribution differs
from the IP address that was used when contacting the playback API. That creates a mismatch
between the IP used for generating the token and the IP used when interacting with CloudFront,
as shown in the following diagram.

Source IP in the token

To avoid situations in which token validation fails due to a viewer’s IP transitions, use viewer IP with
caution when issuing the tokens. We recommend that you use viewer IP only when you have a high

Using viewer’s source IP in the token 78

Secure Media Delivery at the Edge on AWS Implementation Guide

level of confidence that the public IP used by the viewer is stable over time, for instance you can
set ip claim to true (informing the token generate method to use viewer’s IP) when you are able to
confirm that client’s device is a connected TV and if you assess that probability of IP change is low.
CloudFront can facilitate making this type of decisions with CloudFront generated headers which
specify viewer’s device category.

Using geo restriction attributes

One of the categories of available token attributes is related to the geolocation of the viewer,
which is verified by the token validator function at the edge. At the token generation stage, you
can specify country and region attributes in viewer context object and set the corresponding
flags co and reg to true in the token policy to factor in both when creating the token. Only the
viewers whose source IP address is mapped to the same country and region by CloudFront would
be permitted provided other matching conditions are also met. The viewer’s country and region
are determined by CloudFront and that information is exposed to CloudFront Function through
CloudFront generated headers.

Bear in mind that CloudFront is able to map viewer’s IP address to the geographic location details
through an integration with a third-party database as explained in the documentation. If you are
using your own geolocation database with a playback API to determine viewer’s location, it is
possible that for certain IP addresses, viewer’s location details are not the same between these the
two database sources. This misalignment can in turn result in blocking a legitimate viewer request
if geolocation attributes are part of the token. To remove this effect, we recommend that you
also retrieve viewer’s geolocation mapping from CloudFront geolocation headers in the playback
API request flow. By doing so, you use the same geolocation databases at the stage of producing
the token and validating it. To obtain the geolocation information sourced from CloudFront in
your playback API, you must set up a CloudFront distribution in front of your API endpoint and
make the clients send the requests towards your API through CloudFront distribution, rather than
sending request directly to your endpoint. In the configuration of CloudFront distribution facing
API endpoint, create and attach the origin request policy to the corresponding cache behavior that
includes CloudFront-Viewer-Country and CloudFront-Viewer-Country-Region as the headers to be
forwarded to origin. The requests forwarded through CloudFront will contain viewer's geolocation
details in these two headers that an API can parse and insert into the viewer attributes object. This
design has been implemented in the solution’s API module where API requests are made through
CloudFront distribution which supplies upstream API endpoint with geo headers that can be used
when creating the token.

Using geo restriction attributes 79

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-cloudfront-headers.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-cloudfront-headers.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Geo restriction attributes

In rare cases, CloudFront might not be able to determine viewer’s location, therefore corresponding
geolocation headers will not be present. If the geo restriction attributes co or reg were added to
the token, there are respective fallback claims – co_fallback and reg_fallback flags in the token
policy that will also be signalled in the resulting token payload. When set to true, these flags
instruct the token validator function to skip the verification step of the viewers’ attributes if viewer
location cannot be concluded from the geolocation headers. In that case, the token validation
process ignores viewer attributes which includes headers, querystring parameters, session ID,
source IP and geolocation attributes, as all of them are verified in a single step. However, JWT
token integrity is still validated as well as other attributes as detailed in the token, that is URL path
match, expiry time, and nbf timestamp.

Defining paths list

One of the key and mandatory input parameters that must be set in the token policy is a list
including path prefixes that the single output token will be covered during the playback session.
Each path item in that list can be considered as having implicit, trailing wildcard. That means that if
following path item is added in the path’s property:

• /video/1/

You can use the token for all the assets sharing that path structure, therefore if all the objects
required for the playback are available in this directory or its subdirectories, this single path
would be enough to restrict the token to that asset and provide uninterrupted playback. All the
following requests which come with the token including that path will match this pattern:

Defining paths list 80

Secure Media Delivery at the Edge on AWS Implementation Guide

• /video/1/index.m3u8

• /video/1/uhd/index1.m3u8

• /video/1/index1_02.ts

There are some cases however when URL path for the consecutive video objects vary to a high
degree where it is impossible to formulate a single path prefix that would scope down the token
to a single video asset while covering all the varying URL paths requested during playback.
Example of this type of video workload could be AWS Elemental MediaTailor backed workflow,
where Elemental MediaTailor becomes a proxy for manifest requests and abstracts directory
structure relative to the original path of the manifest. At the same time, URL paths for the
original video segment objects remains unchanged and additional ad segments objects are
inserted into manifest with their own path patterns. As a result, in a single playback session with
MediaTailor in place, you can identify URL paths similar to the following:

• /v1/master/1234abcd/Video-HLS/index.m3u8 > master manifest

• /v1/manifest/1234abcd/Video-HLS /xwyz-987654321/2.m3u8 > child manifest

• /v1/segment/1234abcd/Video-HLS/xwyz-987654321/4/11223355 > ad tracking
endpoint

• /out/v1/df123456789/index_2_23456.ts?m=1646863308

• /tm/1234abcd/bebgiqk6y5etzpgwfswp6jqccyu7c7ve/asset_720_4_4_00007.ts

Assuming all these objects are delivered through CloudFront distribution, to construct a single
token that would match all these URL paths patterns but not be over permissive in terms of
giving access to more than one video asset it was produced for, craft path parameter in the
token policy object in a following way:

{
 ...

 "paths": [
 "/v1/master/1234abcd/Video-HLS/",
 "/v1/manifest/1234abcd/Video-HLS/",
 "/v1/segment/1234abcd/Video-HLS/",
 "/out/v1/df123456789/",
 "/tm/1234abcd"
],
 ...

Defining paths list 81

Secure Media Delivery at the Edge on AWS Implementation Guide

}

Session revocation guide

For improving video streams protection, this solution relies on restricting the usage of the token
by scoping down viewer specific attributes and video assets path by the relevant token claims. In
an ideal situation, the generated token would work with a single video asset and more importantly
grant access to a single individual the token was created for. To accomplish this type of strong
uniqueness in token to viewer mapping requires selecting a right set of viewer attributes when
creating the token, which in aggregation create a unique attributes combination not easily
replicable. The weaker the level of viewer attributes uniqueness used in the token, the easier is to
reuse the token by other viewers which would give them unauthorized access. Therefore, while
it is recommended to include a number of attributes that increase uniqueness of resulting their
sum it can also come at the price of false positives as explained in the Using viewer’s source IP in
the token section as an example. To better manage that tradeoff, this solution also provides an
option to revoke playback sessions that were identified as compromised ones – meaning, shared
with other viewers through unauthorized channels. If you decide to complement token-based
protection with session revocation, think about what type of logic you can employ to discover and
block suspicious traffic pattern.

SessionId and access token relation

When preparing the inputs required for issuing an access token, you can also attach a sessionId
with that token, which makes a unique identifier of the playback session. The sessionId has to be
present alongside the access token when viewer makes a request. While the access token is a JWT
token that has all the necessary claims in the payload, subject to the verification by the CloudFront
Function logic, sessionId value is not encapsulated in the payload itself but appended to the JWT
token string at the beginning of the URL path. This approach optimizes the utilization of WAF
rule group capacity available, as the session blocking rules created for compromised sessions are
defined with specific URL path matching conditions consuming the least amount of WCU capacity
(2 WCU units per each session blocking rule). JWT access token only holds a claim – ssn, assuming
true or false value indicative if sessionId was attached with the token. If the claim is set to true any
attempt to remove or modify the sessionId value in the URL path will result in an error upon token
validation. This is because the sessionId associated with the token is used as one of the inputs
when calculating viewer attributes specific signature.

Session revocation guide 82

Secure Media Delivery at the Edge on AWS Implementation Guide

Manual session revocation

The solution’s library comes with a dedicated class that can be used to block any session ID
that has been previously created with the use of revoke method as shown in the Example of
Session Revocation code. You can submit block instructions against individual sessions from any
environment provided that the role used to make API call towards DynamoDB has the right set of
permissions to insert new entries into the table. When initiating Session class for the purpose of
revoking individual session you also need to initialize it with the correct table name corresponding
to the created stack. You can find that name in stacks’ CloudFormation output tab. How you derive
the session IDs that must be blocked is subject to your own processes and due diligence. Third
party A/B watermarking solution can be a viable solution to provide this type of intel. Through
forensic analysis of the redistributed stream using non-authorized channels you are able to identify
the original source of that stream. If that stream is token protected with session ID included, you
can create a mapping of the A/B watermark identifier with session ID at the time of generating
playback URL and use that one-to-one correlation to respond with the blocking action against the
source of the illegally redistributed stream. Manual session revocation also allows you to respond
to link-sharing occurrences through publicly accessible forums and social media. Lastly, because
the session ID is retrievable from the URL path, you can build your own detection mechanism
responsible for tracking session level anomalies and pick on the patterns that you recognize as a
signal for malicious activity.

Auto session revocation module

CDK deployment model offers additional module that can be deployed as part of the solution,
which gives a reference for how to automate the process of detecting suspicious sessions based
on the set of selectable criteria and threshold adequate for your workload. Solution overview
describes the end-to-end workflow of this module which is built around running Athena SQL
queries against CloudFront access logs to collect session level metrics used to calculate suspicion
score. You must provide multiple inputs before you start using auto session revocation as shown in
the table.

Value Description

Frequency of running auto session revocation
module

In the range of minutes, express how often
auto session revocation workflow will be
initiated.

Manual session revocation 83

Secure Media Delivery at the Edge on AWS Implementation Guide

Value Description

Athena Database name Database name Athena SQL query will run
against when initiated.

Athena Table name Table name Athena SQL query will run against
when initiated.

Request IP column Name of the column in table schema which
stores viewer’s IP.

UA column name Name of the column in table schema which
stores viewer’s user-agent header value.

Referer column name Name of the column in table schema which
stores viewer’s referrer header value.

URI column name Name of the column in table schema which
stores request URL path.

Status column name Name of the column in table schema which
indicates HTTP status code returned in the
response returned to the request.

Response bytes column name Name of the column in table schema which
specifies response size in bytes sent to the
viewer.

Data column name nName of the column in table schema with
representing the date when request was
made.

Time column name Name of the column in table schema
representing the time when request was
made.

Auto session revocation module 84

Secure Media Delivery at the Edge on AWS Implementation Guide

Value Description

Lookback period Expressed in minutes, used to derive a time
window for the log entries that will be
considered for analysis. It spans from the
current time back to the specific number of
minutes as specified in this parameter.

IP penalty Assumes true or false value. It informs
whether the presence of multiple source IPs
which used the same session ID should be
considered as a suspicious factor.

IP rate Assumes true or false value. It informs
whether the request rate calculated for the
session ID should be included in calculating
suspicious factor.

Referer penalty Assumes true or false value. It informs
whether the presence of multiple referer
headers which used the same session ID
should be considered as a suspicious factor.

Multiple User-Agent penalty Assumes true or false value. It informs
whether the presence of multiple referer
headers which used the same session ID
should be considered as a suspicious factor.

Minimum sessions number The minimal number of active playback
sessions in the inspected time frame that must
be met in order to produce any output.

Minimum session duration threshold Expressed in minutes. A minimum period of
time session must be active during analyzed
time frame to be included for further analysis.

Auto session revocation module 85

Secure Media Delivery at the Edge on AWS Implementation Guide

Value Description

Score threshold Suspicion score threshold. Any session that
yields higher result will be included in the
output and pushed to revocation table.

Partitioned access logs True or false. Specify if your access logs are
partitioned in S3 bucket per year, month, day
and hour.

Each of these inputs is used in one of the stages auto session revocation workflows which works as
follows:

Prerequisites

1. Turn on CloudFront access logs and start collecting them in the target S3 bucket.

2. Optionally, apply log processing pipeline to start partitioning log files to improve efficiency of
running queries as described in Analyze your Amazon CloudFront access logs at scale. Note that
the solution assumes predefined partitioning model, in which log files are segregated by year,
month, day, hour. All these partition levels must be available. Importantly, respective column
names must be set to following values: year, month, day, hour.

3. Create a database and the table which define table schema used when parsing and querying
access logs. Take a note of Athena Database name and Athena Table name.

4. When following CDK deployment path, provide Athena Database name and Athena Table name
from the previous step in the CDK configuration wizard.

5. If you implemented log partitioning mechanism in compliance with the mentioned
requirements, set Partitioned access logs in the CDK configuration wizard to true.

After auto session revocation module is deployed with the Frequency of running auto session
revocation module you defined in the wizard, a workflow running SQL query through Athena will
be executed.

Narrowing down requests in scope

If you inspect SQL query processed by Athena, you will find multitude of filtering condition
included. It is important step in the process to obtain high signal output by removing access log

Auto session revocation module 86

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html
https://aws.amazon.com/blogs/big-data/analyze-your-amazon-cloudfront-access-logs-at-scale/

Secure Media Delivery at the Edge on AWS Implementation Guide

entries which are irrelevant for outlier analysis and outside of the time boundaries that you want
to investigate. For this reasons SQL query applies filtering criteria to scope down set of input log
entries for further analysis based on:

1. Request timestamp – consider only the requests that were recorded within the Lookback period
defining point in time (current time minus Lookback period) for which any requests that was
registered before is not factored in the calculations

2. Returned response Status code – look only for the requests that were served with 200 or 206
responses

3. Ignoring the entries when Response bytes size was lower than 1KB.

4. Ruling out the sessions of very short duration within analyzed time frame (for instance newly
started session), shorter than Minimum session duration

5. Validating if the number of active sessions is during inspected timeframe is greater than
Minimum sessions number. If not, no results will be returned

Calculate session-level metrics

After limiting the scope of the requests represented as log entries as per predefined criteria, for
each session a set of metrics will be calculated from the information contained the log entries:

• Request rate for each session relative to request rate measured at p50 against all the sessions.
For this metric, request rate calculated for each session is a count of distinct source IP and
request URL pairs for each session. This will keep the result consistent if client retrieves a single
object by making multiple byte range requests. Session level request rate is normalized with p50
request value, output result of this metric should be approximately close to 1.0. The greater the
value the more requests use the same session ID which suggests that the same session is shared
by multiple viewers. This metric will be added to the final suspicion score if IP Rate parameter is
set to true.

• Signal of multiple user-agents using the same session ID, based on user-agent header value
found in UA column. This metric equals to two discrete values: 0 or 1, the latter one indicating
presence of more than one user-agent values in the access logs. If Multiple User-Agent penalty
is set to true, this value will be added to the suspicion score.

• Signal of multiple referer headers values using the same session ID, based on referer header
value found in Referer column name. This metric equals to two discrete values: 0 or 1, the latter
one indicating presence of more than one user-agent values in the access logs. If Referer penalty
is set to true, this value will be added to the suspicion score.

Auto session revocation module 87

Secure Media Delivery at the Edge on AWS Implementation Guide

• Signal of multiple source IPs using the same session ID, based on IP information included in
Request IP column. This metric equals to two discrete values: 0 or 1, the latter one indicating
presence of more than one viewer IP values in the access logs. If IP penalty is set to true, this
value will be added to the suspicion score.

With all the metrics calculated for each of the of the session that was left in the scope of analysis,
the final suspicion score is derived as a sum of all the components mentioned:

Suspicion Score = Request IP rate + IP penalty + Referrer penalty + UA penalty

The last three components can only have a discrete value of either 0 or 1 each. Request IP rate is
linear value that can vary from 0 and is not bounded by upper value. A typical score for a session
should stay in close proximity of 1.0 as if session is used by a single viewer all the penalty factors
should equal to 0 and Request IP rate should be close to 1.0 as some variance from median (p50
value) is possible. At times, score value can be elevated even when used by a single user. That can
occur for a new playback session when player fills the buffer and would request multiple segments
in a short period of time, or when viewer switches the network which would set the IP penalty
factor to 1.

Having suspicion scores in place for each session, the final output list includes only the ones
exceeding Score threshold. The list is supplied to the Lambda function in the Step Functions
workflow, which sorts and prioritizes the sessions that will be eventually placed in the WAF rule
group responsible for blocking compromised sessions. Refer to the Architecture details section for
more details.

Note that the default and suggested value of Score threshold is set to 2.2 which accounts for the
momentary increase in the score that stems from the situations mentioned before. We recommend
that you keep track of the resulting suspicion scores calculated during the tests for a representative
viewership and content, and validate whether majority of the sessions yield the score within the
threshold you have set.

Normalized IP request rate

One of the primary components that can impact the suspicion score for all the sessions is Request
IP rate as this component value is not bounded and is relative to the median value calculated for
all the session in the analyzed score. Because the calculation of this metric strongly depends on the
normalization factor, it is important that this factor is stable and cannot be easily distorted by a
few sessions that have been compromised, even to a large extent. To achieve the desired stability

Auto session revocation module 88

Secure Media Delivery at the Edge on AWS Implementation Guide

and prevent fluctuation of that factor in the presence of one or few sessions which have been
compromised on a significant scale, 50th percentile (p50) measure is used instead of the average as
a normalization factor.

Playback API integration

The Secure Media Delivery at the Edge on AWS solution provides a reference architecture which
encompasses the entire process of managing secure access tokens in the video streaming workload.
The primary and universal components of the solution are defined in the base module which
governs the functionality of token validation and signing key management. This part of the
solution remains unchanged as you implement your solution across your workloads and it is
not expected that this part of the workflow, responsible for token validation, would require any
customization to watch varying video streaming workloads. On the other hand, the API module
is offered as a reference implementation of the initial stage of the end-to-end workflow which
entails Playback API service – an endpoint that is responsible for vending the secure tokens to
authorized viewers and returning playback URLs to the viewers. This module also comes with a
demo website that allows you to test and validate the usage of the solution but it is not meant to
use in production environments. As this solution provides incremental security layer to existing
video streaming workloads, depending on your current implementation of a Playback API endpoint
you can decide the best approach to customize and integrate the elements available in the solution
to introduce the token generation function into your existing workflow.

Before you implement the most preferable integration option, make sure that before using the
solution in production you turn off and remove the artifacts that the demo website is built on.

Deactivating demo website

By redeploying CDK stack

If you deployed the solution through CDK, you can simply deactivate the demo website and its
related components by modifying the configuration file with the parameters that determine what
solution components are deployed.

1. Navigate to the CDK project folder you used to configure and launch the solution in your
account.

2. Edit solution.context.json document and within api property change the demo value to
false and save:

Playback API integration 89

Secure Media Delivery at the Edge on AWS Implementation Guide

{
 "main": {
 ...
 },
 "api": {
 "language": "nodejs",
 "demo": false
 }
 ...
}

3. Redeploy CDK stack.

npx cdk deploy [stack_name]

By deactivating CloudFront distribution

If you deployed this solution using the CloudFormation template, the demo website will be
automatically published with the assets stored in a dedicated S3 bucket delivered through
CloudFront. You can shut down the website by simply deactivating the CloudFront distribution
which is the only entry point for the website as the S3 bucket is private.

1. In AWS Management Console, navigate to the CloudFront page.

2. From the list of all the CloudFront distributions associated with your account, select the one that
was created with the solution stack with the description that matches with [Stack Name]-Demo
website Secure Media Delivery, and choose Disable.

3. After few minutes, the status of the distribution changes from Enabled to Disabled making it
effectively unreachable.

Reuse and modify solution’s API Gateway workflow

After deactivating the demo website, you can retain the API Gateway endpoints and their
integrations with Lambda functions and have your own services, which interact directly with the
client applications, to treat that API Gateway endpoint as an internal token service. The security
of interfacing API Gateway privately relies on IAM authorization as IAM authorizer is turned on by
default in API Gateway configuration fronting Lambda functions that generate the tokens, and
revoke the sessions. Another aspect is integrating your CMS with the Lambda function for token

Reuse and modify solution’s API Gateway workflow 90

Secure Media Delivery at the Edge on AWS Implementation Guide

generation as you must provide the inputs that define token policy for a given video asset, unless
the token policy is static and same token policy template can be used. The diagram below depicts
the integration model:

API Gateway workflow: Reuse and modify

To integrate your existing playback services with the API module provided in the solution, review
the following steps:

1. Configure your playback services to include additional step of retrieving the token before
serving playback URL back to the viewer and revoking compromised sessions. This is done
through REST API calls for the API Gateway towards /tokengenerate and /sessionrevoke
paths respectively. Make sure that your services communicating with API Gateway have the
adequate IAM permission to invoke mentioned resource paths for the API created by the
solution. You can find API ID in the CloudFormation output tab under the key which starts with:
ApiEndpointsApiEndpoint. The API ID is a first fragment of the API hostname visible for that
output in the form of [API_id].execute-api.[region].amazonaws.com. Example policy
statement which can be used when calling API:

{

Reuse and modify solution’s API Gateway workflow 91

Secure Media Delivery at the Edge on AWS Implementation Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource":"arn:aws:execute-api:[region]:*:[apiID]/*"
 }
]
}

2. If you want to use the geolocation (country or region) when issuing the token and want
to obtain viewer’s geo attributes from CloudFront (as recommended in the Access Token
Management Guide section), use CloudFront distribution in front of your playback services
with CloudFront-Viewer-Country and CloudFront-Viewer-Region headers included in origin
request policy. Next, pass these headers when calling the token API endpoints from API module.
Similarly, all the header values and query string parameters that originally come from the
viewer’s request and you want to incorporate in the scope of the token, must be forwarded to
API Gateway in the same form as they were received by your playback services, so that Lambda
function can access them accordingly.

3. Expose the metadata managed with your services to the Lambda function attached to API
Gateway. At minimum, when Lambda function starts token generation process, token policy
must be fetched from the metadata source as one of the inputs. Video asset hostname and URL
path are also required to issue full playback URL, however if your metadata source only provide
the token policy but no video asset’s hostname and URL path, only the token will be returned as
Lambda output. You can explore the following metadata sharing options with in order to supply
token policy and video asset’s location (as depicted on the previous diagram):

a. Scenario A - Create an integration between your CMS and DynamoDB table created under API
Module, storing token policies and video assets metadata. In this approach, CMS must push
the new table entries in the right format which Lambda function is able to parse. See existing
items in the DynamoDB table to determine the expected structure for the new items. .

b. Scenario B - Customize Lambda function used for token generation to retrieve the required
information from your CMS directly. This approach involves code changes in the Lambda
function to be able to fetch necessary information, and subsequently parse it to formulate
viewer context and token policy objects required to generate the token.

c. Scenario C - Provide the inputs as additional parameters when making API call. You can
modify Lambda function to parse the incoming request and look for the token policy and

Reuse and modify solution’s API Gateway workflow 92

Secure Media Delivery at the Edge on AWS Implementation Guide

video asset metadata in the query string parameters of that request. Apply necessary code
changes into the Lambda function to include this processing logic and specify which query
string attributes would be inspected accordingly.

Integrate solution’s library into existing playback services

Another option to add the token generation step into your workflow is to include the solutions’
library into your existing playback services. The library can be used in NodeJS runtimes and is
available in the solution’s source code repository. There are no specific requirements or restrictions
as to where you should be running your playback API services. Solution’s library contains a set of
constructs and methods that interact directly with the specific components created in the base
module of the solution. These components provide necessary data for the library to work (like
token signing keys) and also accepts the inputs originated from the library calls (like information
about session ID to be revoked). Conceptually, this is illustrated in the following diagram.

Integrate solution library into existing playback service

Integrating the library into generic environment

When integrating the solution’s library in your own generic compute environment in which you
manage the application stack, complete the following steps to prepare your environment:

Integrate solution’s library into existing playback services 93

https://github.com/aws-solutions/secure-media-delivery-at-the-edge

Secure Media Delivery at the Edge on AWS Implementation Guide

1. Download the solutions’ library from the solution’s source code repository available under the /
source/resources/sdk/node/v1/ path.

2. Copy library’s files aws-secure-media-delivery.js and package.json into the aws-
secure-media-delivery folder in your Node.js project folder

3. Include the library in the package.json as a project’s dependency:

"dependencies": {
 ...
 "aws-secure-media-delivery": "file:./aws-secure-media-delivery/"
},

And, install the dependencies running npm install command.

In case the project has been already initialized and you want to add library to and existing
project, run npm install –save ./aws-secure-media-delivery

4. Import the library in your code:

awsSDM = require('aws-secure-media-delivery');

Use the library’s methods and constructs as instructed in NodeJS library reference to generate the
token and revoke the sessions.

Integrating the library into Lambda functions

If your existing playback API services are implemented in the AWS environment with the use of
Lambda services and you plan to integrate the solution’s library into an existing or new Lambda
function, you can simplify the process of installing solution’s library into the NodeJS runtime by
leveraging Lambda Layer created by the API module, which already includes the library.

1. In your Lambda function configuration, under Layers select Add a layer.

2. From Choose a layer, select Custom layers.

3. From the Custom layers list, select the one which starts with APIGenerateTokeyLayer, largest
version number from the Version selector, and choose Add.

4. After adding the layer, you can import the solution’s library directly in your Lambda function
code with:

Integrate solution’s library into existing playback services 94

https://github.com/aws-solutions/secure-media-delivery-at-the-edge

Secure Media Delivery at the Edge on AWS Implementation Guide

awsSDM = require('aws-secure-media-delivery');

Configuring library with the stack

After you have successfully added the solution’s library into your environment and imported it
into your code, you must provide references to the solution stack that you launched in your AWS
account. To allow the library methods to communicate and interact with the solution components
deployed from the solution stack, look up the references of these component and provide them
when utilizing library methods in your environment. Below are the references you can find in the
output tab of the launched solution’s stack in CloudFormation configuration:

• Stack Name – used in Secret class to derive the secrets names in Secrets Manager, where signing
keys are stored. Stack name must be provided as an input parameter for the Secret’s constructor.

• SecretsPrimarySecret and SecretsSecondarySecret – if you decide to use custom function for
retrieving the signing keys from Secrets Manager the values corresponding to these outputs are
secrets’ identifiers you can reference when making API calls to Secrets Manager.

• SessionRevoke – a DynamoDB table name which is an entry point for submitting session IDs
identified as suspicious one that should be processed for blocking. The name of that table has to
be provided as an input parameter for the initialize method of Session class.

Importantly, because solutions’ library interacts directly with AWS components which comprise
the solution architecture, IAM permission model applies. When underlying AWS SDK methods
are called from the library, there need to be AWS credentials set for the service clients to be
able to initiate necessary API calls. Therefore, when running any process that runs the solution’s
library code, you must make sure that the right AWS credentials are provided. Depending on the
integration model, you have multiple options to ensure the right set of permissions are in use.

When using Lambda function

The common way for granting the right set of permission for a Lambda function which make API
calls to other AWS services is to adjust Execution role permissions accordingly. If you are unsure
and looking for minimal set of permissions for your Lambda function to work with the other
elements of the stack, you can copy and include in execution role configuration the same policy as
the one attached to the dedicated library’s role. You can find the role’s identifier in CloudFormation
output under RoleARN key. Navigate to that role definition in IAM settings console and in the Roles
page, select the role and you will find the policy under the Permission Policy tab.

Integrate solution’s library into existing playback services 95

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

Secure Media Delivery at the Edge on AWS Implementation Guide

When using solution’s library in any environment

If you run your playback API services in any generic environment, to be able to use the solution’s
library you need to AWS Credentials available in this environment that AWS SDK underpinning
solution’s library can assume. For more information about how to manage AWS credentials and
profiles in your environment, refer to Setting Credentials in Node.js.

Aside from the standard methods of supplying AWS credentials into NodeJS runtime as outlined
in the documentation, the solution’s library also offers the ability to overwrite the permissions
assumed in a standard way. When calling the library’s method that initiate service clients for AWS
Secrets Manager and DynamoDB table, you can supply an input object in which you can reference
specific profile, role, and region used by the underlying client created specifically for library’s
operations. The object has following structure:

{
 region: [Region for the target service endpoint],
 profile: [Name of the profile, defined in local environment to be used],
 role: [ARN of the role to be assumed through AWS STS]
}

When both profile and role properties are provided, profile takes precedence. Note, that in
order to assume the role with the ARN specified, the default set of AWS credentials retrievable
from the execution environment needs map to the right set of permissions allowing to perform
sts:AssumeRole action against the referenced role. We recommend that when you decide to use
the role, that you reference the role created when solution is deployed. You can find the created
role ARN identifier in CloudFormation output tab of the deployed stack under RoleARN key.

There are two methods in the solution’s library in which you can provide this object to override the
role and target region assumed by AWS SDK through the standard procedure:

initSMClient({region: string, role: string, profile: string}) – in Secrets class as an instance method.
It initiates Secrets Manager client to retrieve the signing keys.

Session.initialize(revocationTable ,{region: string, role: string, profile: string}) – in Session
class, a class method used to create DynamoDB client which sends the details of the sessions to be
revoked.

Integrate solution’s library into existing playback services 96

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials-node.html

Secure Media Delivery at the Edge on AWS Implementation Guide

Reference

This section includes information about an optional feature for collecting unique metrics for this
solution, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each Secure Media Delivery at the
Edge on AWS deployment

• Timestamp - Data-collection timestamp

AWS owns the data gathered though this survey. Data collection is subject to the AWS Privacy
Notice. To opt out of this feature, complete the following steps before launching the AWS
CloudFormation template.

1. Download the AWS CloudFormation template to your local hard drive.

2. Open the AWS CloudFormation template with a text editor.

3. Modify the AWS CloudFormation template. Find the Lambda resources definitions with
Environment subsection including METRICS parameter and change it from true:

Type: AWS::Lambda::Function
...
Environment:
 ...
 METRICS: "true"

to false:

Type: AWS::Lambda::Function
...
Environment:

Anonymized data collection 97

https://aws.amazon.com/privacy/
https://aws.amazon.com/privacy/
https://s3.amazonaws.com/solutions-reference/secure-media-delivery-at-the-edge-on-aws/latest/secure-media-delivery-at-the-edge-on-aws.template

Secure Media Delivery at the Edge on AWS Implementation Guide

 ...
 METRICS: "false"

4. Sign in to the AWS CloudFormation console.

5. Select Create stack.

6. On the Create stack page, Specify template section, select Upload a template file.

7. Under Upload a template file, select Choose file and select the edited template from your local
drive.

8. Choose Next and follow the steps in Launch the stack in the Automated Deployment section of
this guide.

If the solution was deployed through CDK, complete the following steps.

1. Navigate to the CDK project folder where the solution was deployed from

2. Open solution.context.json file which was created by the solution wizard

3. Edit the file and in the main section of the file, change the metrics value from true:

{
 "main": {
 "stack_name": "SecureMediaDeliveryStack",
 "wcu": "200",
 "retention": "15",
 ...
 "metrics": true
 },
...
}

to false:

{
 "main": {
 "stack_name": "SecureMediaDeliveryStack",
 "wcu": "200",
 "retention": "15",
 ...
 "metrics": false
 },
...

Anonymized data collection 98

https://console.aws.amazon.com/cloudformation/home

Secure Media Delivery at the Edge on AWS Implementation Guide

}

Finally, deploy the new stack:

npx cdk deploy –-all

Related resources

The Live Streaming on AWS is a solution designed to create a fully functional video streaming
deployment based on Amazon CloudFront for end user delivery. This solution complements the
Secure Media Delivery at the Edge on AWS solution, as it provides necessary components that the
solution can be integrated with.

Contributors

• Kamil Bogacz

• Corneliu Croitoru

• John Councilman

• Eddie Goynes

• San Dim Ciin

• David Chung

• Raul Marquez

Related resources 99

https://aws.amazon.com/solutions/implementations/live-streaming-on-aws/

Secure Media Delivery at the Edge on AWS Implementation Guide

Revisions

Date Change

August 2022 Initial release

September 2022 Release v1.0.1: Bug fixes. For more informati
on, refer to the CHANGELOG.md file in the
GitHub repository.

October 2022 Release v1.1.0: For more information, refer
to the CHANGELOG.md file in the GitHub
repository.

February 2023 Release v1.1.1: Bug fixes. For more informati
on, refer to the CHANGELOG.md file in the
GitHub repository.

April 2023 Release v1.1.2: Mitigated impact caused by
new default settings for S3 Object Ownership
(ACLs disabled) for all new S3 buckets. For
more information, refer to the CHANGELOG
.md file in the GitHub repository.

May 2023 Release v1.1.3: Bug fix to address issues with
demo player. For more information, refer
to the CHANGELOG.md file in the GitHub
repository.

June 2023 Release v1.1.4: Updated aws-lib-cdk package,
which upgrades Node.js to 16 for a custom
resource. For more information, refer to the
CHANGELOG.md file in the GitHub repository.

June 2023 Release v1.2.0: Added integration with Service
Catalog AppRegistry and AWS Systems
Manager Application Manager. Upgraded
to Node.js to 18 and JS SDK to v3. Updated

100

https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md

Secure Media Delivery at the Edge on AWS Implementation Guide

Date Change

parameter names for consistency. For more
information, refer to the CHANGELOG.md file
in the GitHub repository.

August 2023 Documentation update: Built out additional
examples in the Cost section tables.

September 2023 Release v1.2.1: Fixed an issue where customers
were not able to deploy the solution with
cdk deploy command. For more information,
refer to the CHANGELOG.md file in the GitHub
repository.

November 2023 Release v1.2.2: Updated package versions
to resolve security vulnerabilities. For more
information, refer to the CHANGELOG.md file
in the GitHub repository.

November 2023 Documentation update: Added Confirm
cost tags associated with the solution to the
Monitoring the solution with AWS Service
Catalog AppRegistry section.

June 2024 Release v1.2.3: Updated CDK to version
2.143.0 and updated other libraries. For more
information, refer to the CHANGELOG.md file
in the GitHub repository.

August 2024 Release v.1.2.4: Updated package versions
to resolve security vulnerabilities. For more
information, refer to the CHANGELOG.md file
in the GitHub repository.

September 2024 Release v.1.2.5: Updated package versions
to resolve security vulnerabilities. For more
information, refer to the CHANGELOG.md file
in the GitHub repository.

101

https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/secure-media-delivery-at-the-edge-on-aws/blob/main/CHANGELOG.md

Secure Media Delivery at the Edge on AWS Implementation Guide

102

Secure Media Delivery at the Edge on AWS Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products
or services are provided “as is” without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

The Secure Media Delivery at the Edge on AWS solution is licensed under the terms of the Apache
License Version 2.0.

103

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

	Secure Media Delivery at the Edge on AWS
	Table of Contents
	Deploy a solution to protect your premium video content from unauthorized access when delivered through Amazon CloudFront
	Features and benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Architecture diagram
	Solution workflow
	AWS Well-Architected design considerations

	Architecture details
	Base module
	Key rotation workflow
	Base module: Session revocation workflow
	API module
	Auto session revocation module
	AWS services in this solution

	Plan your deployment
	Cost
	Base module
	Session revocation
	API Module
	Auto session-revocation
	Metrics monitoring

	Security
	IAM roles
	Amazon CloudFront
	Solution’s code library
	Signing key protection
	API Gateway

	CloudFront prerequisites
	Supported AWS Regions
	Supported formats
	Revise origin request policies
	Auto session revocation
	Large viewership spikes
	Alternative approaches to carry the token
	Quotas
	Quotas for AWS services in this solution

	Deploy the solution
	Prerequisites
	Deployment process overview
	AWS CloudFormation template
	Step 1: Launch the stack
	Step 2. Define video assets and token policies
	Step 3. Prepare your CloudFront distributions
	Step 4. Test the solution

	CDK deployment
	Prerequisites
	Deployment procedure

	Monitor the solution with Service Catalog AppRegistry
	Activate CloudWatch Application Insights
	Confirm cost tags associated with the solution
	Activate cost allocation tags associated with the solution
	AWS Cost Explorer

	Update the solution
	Troubleshooting
	Monitoring dashboard
	Failed token validation
	Auto session revocation
	Contact AWS Support
	Create case
	How can we help?
	Additional information
	Help us resolve your case faster
	Solve now or contact us

	Uninstall the solution
	Using the AWS Management Console
	Using AWS Command Line Interface
	Using CDK toolkit

	Developer guide
	Source code
	NodeJS library reference
	On a high level
	Secret
	Session
	Token
	Example of token generation code
	Example of session revocation code

	Access tokens management guide
	Varying token attributes
	Choosing session duration time
	Using viewer’s source IP in the token
	Using geo restriction attributes
	Defining paths list

	Session revocation guide
	SessionId and access token relation
	Manual session revocation
	Auto session revocation module

	Playback API integration
	Deactivating demo website
	Reuse and modify solution’s API Gateway workflow
	Integrate solution’s library into existing playback services

	Reference
	Anonymized data collection
	Related resources
	Contributors

	Revisions
	Notices

