
User Guide

AWS Toolkit for .NET Refactoring

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Toolkit for .NET Refactoring User Guide

AWS Toolkit for .NET Refactoring: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Toolkit for .NET Refactoring User Guide

Table of Contents

What is AWS Toolkit for .NET Refactoring? ... 1
Features of Toolkit for .NET Refactoring ... 1

Compatibility assessment .. 1
Porting assistance ... 2
Testing on AWS ... 2

Concepts ... 2
Amazon ECS ... 2
IAM roles, permissions, and delegations .. 3
AWS Managed Microsoft AD ... 3
Sidecar container ... 3
Microsoft Active Directory authentication in Linux containers .. 4

Get started ... 5
Prerequisites .. 5

Supported versions ... 5
General prerequisites .. 6
Memory requirements .. 7
Automatic setup .. 7

Set up for testing on AWS ... 8
Prerequisites for testing on AWS ... 8
Roles and managed policies ... 11
Active Directory setup ... 20

Installation ... 23
Install in Visual Studio ... 23
Install with an AMI on Amazon EC2 ... 23

Pricing ... 24
Toolkit for .NET Refactoring extension .. 26

Run an assessment .. 26
Analyze the results .. 27
Port the solution .. 28

Guided assistance .. 28
View incompatibilities .. 29
Suggestions .. 29

Test the application ... 29
What is a test deployment? ... 29

iii

AWS Toolkit for .NET Refactoring User Guide

Create a deployment .. 31
Delete a deployment ... 33

Debugging .. 34
Debugging .. 34

Security .. 35
AWS Identity and Access Management ... 35

Sign up for an AWS account .. 36
Create a user with administrative access ... 36
Create access keys for your user ... 38
Configure your AWS profile .. 39

EULA .. 40
Data protection ... 40

Data collected .. 41
AWS managed policies .. 42

AWS managed policy: AWSRefactoringToolkitFullAccess ... 43
AWSRefactoringToolkitSidecarPolicy .. 44
Policy updates ... 44

Troubleshooting ... 50
Sidecar logs ... 50

Document history .. 51

iv

AWS Toolkit for .NET Refactoring User Guide

What is AWS Toolkit for .NET Refactoring?

AWS Toolkit for .NET Refactoring is an extension for Microsoft Visual Studio that reduces the time
and effort that is required to refactor legacy .NET applications to alternatives on AWS Cloud.

Toolkit for .NET Refactoring assesses the application source code and recommends modernization
pathways, such as porting to .NET Core. It also identifies Microsoft Windows dependencies on
Microsoft Internet Information Services (IIS) and Microsoft Active Directory (AD), performs code
modifications where possible, and assists in validating the refactored application on AWS services.
Using the Toolkit for .NET Refactoring Visual Studio extension, you can perform all of these tasks
within the Visual Studio integrated development environment (IDE).

Topics

• Features of Toolkit for .NET Refactoring

• Concepts

Features of Toolkit for .NET Refactoring

The Toolkit for .NET Refactoring extension provides compatibility assessments, porting assistance,
and testing on AWS.

Compatibility assessment

Before you update your source code, Toolkit for .NET Refactoring performs an assessment of
your .NET application source code and packages, such as NuGet and Microsoft Core. The extension
determines compatibility based on whether a project can move to .NET Core runtime without
code changes or package upgrades. The extension assesses .NET Core compatibility for solutions,
projects, NuGet packages, and source code.

The compatibility assessment identifies the following:

• Microsoft Windows dependencies on Microsoft Internet Information Services (IIS) and Microsoft
Active Directory (AD).

• API and package incompatibilities with newer cross-platform .NET versions, such as .NET Core
3.1, .NET 5, and .NET 6.

Features of Toolkit for .NET Refactoring 1

AWS Toolkit for .NET Refactoring User Guide

Toolkit for .NET Refactoring scans third-party and internal packages to classify them as compatible
or incompatible. For each incompatible package, Toolkit for .NET Refactoring provides replacement
options, if they are available.

Porting assistance

When the compatibility assessment is complete, the Toolkit for .NET Refactoring extension
provides porting assistance by suggesting code changes to remove incompatibilities that it found
in the assessment. If the latest version of a package is compatible with .NET Core, the extension
upgrades the package to its latest compatible version and updates the relevant project reference
files and web.config files to a format that is compatible with .NET Core. Although the extension
doesn't eliminate the need for manual source code changes, it reduces the initial effort that is
required to refactor the source code.

Testing on AWS

As you refactor your source code, you can use the Toolkit for .NET Refactoring extension to test
and validate the code. To validate the code, you can deploy directly from Visual Studio to Amazon
Elastic Container Service (Amazon ECS), hosted on AWS Fargate.

If the solution is a web application that has been ported to .NET Core, the Toolkit for .NET
Refactoring extension provides the ability to test the application by running the application in
the AWS Cloud. To do this, you might need to set up the necessary resources in the AWS account
and build the artifact with the .NET publish command or rebuild the solution. You can use the
Toolkit for .NET Refactoring extension to upload the artifact into your AWS account and run it
inside an Amazon ECS Linux container instance to verify that the solution is fully compatible in a
Linux environment.

Concepts

An understanding of the terminology and concepts below is necessary to make full use of the
Toolkit for .NET Refactoring extension.

Amazon ECS

Amazon Elastic Container Service (Amazon ECS) is a highly scalable and fast container
management service. It is an abstraction of a container runtime environment that is analogous
to a Kubernetes Pod, but with Amazon ECS, you don't need to worry about the complexity

Porting assistance 2

AWS Toolkit for .NET Refactoring User Guide

of Kubernetes. Within Amazon ECS, containers are grouped in a task. Within a task, multiple
containers can run and share resources such as disk volumes or networks. Tasks are grouped in a
service, which is an abstraction of a scalable multi-worker application. For more information, see
What is Amazon Elastic Container Service?

IAM roles, permissions, and delegations

To access an AWS resource, a user must have permissions to access the resource. Permissions are
grouped into IAM roles. IAM roles have restrictions regarding which users can use the roles. These
restrictions can be included in the trust relationship of the role or as a permission assigned to a
specific user.

AWS services also require permissions to perform operations.

• The service can act on the behalf of the user that is accessing the resource. In this case, the
service uses the permissions of the user.

• You can specify an IAM role for the service and the service will assume the role to perform the
operations.

For more information about roles, see Using IAM roles in the IAM User Guide.

AWS Managed Microsoft AD

AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) runs on a
Windows host, where the host and Active Directory are managed by AWS. An Active Directory
administrator can use Active Directory management tools from a Windows instance that is joined
to the Active Directory.

The Active Directory acts as a Domain Name System (DNS) for the nodes that are joined to the
domain. Usually, a Dynamic Host Configuration Protocol (DHCP) server within the network is
configured to return the IP of the Active Directory as a DNS server for the network.

Sidecar container

A sidecar container is a container that runs on the same node, which is the same Amazon ECS
task, as the main application container. The sidecar container performs auxiliary tasks such as
log collection, authentication, authorization, and network routing. Using a sidecar container is
preferable to running an agent process in the same container in the application. A sidecar container

IAM roles, permissions, and delegations 3

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

AWS Toolkit for .NET Refactoring User Guide

allows the auxiliary processes to run in isolation and have an independent compute environment,
including installed libraries, packages, and operating system.

The Amazon ECS on Fargate task will run the following two containers:

• The application container.

• The sidecar container that is used for Toolkit for .NET Refactoring technical tasks, such as file
sync and Active Directory authentication.

Microsoft Active Directory authentication in Linux containers

Microsoft Active Directory (AD) can act as Kerberos server. Linux Kerberos utilities are used to
obtain an authentication token for the application that is ported to .NET Core. The application uses
this token to authenticate itself to the dependent services.

Microsoft Active Directory authentication in Linux containers 4

AWS Toolkit for .NET Refactoring User Guide

Get started with Toolkit for .NET Refactoring

The sections below contain information to help you set up your Toolkit for .NET Refactoring
environment and to start assessing, converting, and porting your .NET Framework application
to .NET Core.

Download the Toolkit for .NET Refactoring extension from the Microsoft Visual Studio Extensions
Marketplace. With the extension, you can run a compatibility assessment on any solution in your
portfolio.

Topics

• Prerequisites

• Setting up for testing on AWS

• Install Toolkit for .NET Refactoring

• Pricing for Toolkit for .NET Refactoring

Prerequisites

The sections below describe the prerequisites that you must verify before you run an assessment
with Toolkit for .NET Refactoring. Additional prerequisites are required for testing your application
on AWS. Those prerequisites are detailed in the Setting up for testing on AWS section of this guide.

Topics

• Supported versions

• General prerequisites

• Memory requirements

• Automatic setup

Supported versions

Toolkit for .NET Refactoring supports the following .NET versions.

• Source versions:

• .NET Framework 3.5 and later

Prerequisites 5

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

AWS Toolkit for .NET Refactoring User Guide

• Target versions:

• .NET Core 3.1

• .NET 5.0

• .NET 6.0 on Microsoft Visual Studio 2022

• The AWS test environment supports the following runtime versions:

• .NET Core 3.1

• .NET 5.0

• .NET 6.0

For compatibility assessments and porting, Windows services and ASP.NET applications are
supported.

The following Microsoft Visual Studio versions are supported:

• Visual Studio 2019

• Visual Studio 2022

General prerequisites

Before you use the Toolkit for .NET Refactoring extension, verify the following prerequisites:

• You must have either a local machine or an Amazon EC2 instance where you will install AWS CLI,
Microsoft Visual Studio, the .NET version that you want to use, and Toolkit for .NET Refactoring.
For information about using a local machine versus an Amazon EC2 instance, see AWS Identity
and Access Management (IAM) overview in this guide.

• One of the following .NET versions must be installed on the local machine or Amazon EC2
instance:

• .NET 6.0

• .NET 5.0

• .NET Core 3.1

To download and install, see Download .NET on the Microsoft website.

• AWS CLI must be installed on the local machine or Amazon EC2 instance. Toolkit for .NET
Refactoring uses information from your AWS CLI profile to determine compatibility between:

• Public NuGet packages

General prerequisites 6

http://ASP.NET
https://dotnet.microsoft.com/download/dotnet-core

AWS Toolkit for .NET Refactoring User Guide

• The APIs within the NuGet packages that your application uses

• The AWS test environment

The extension requires a valid AWS Command Line Interface (AWS CLI) profile to collect
compatibility information on the public NuGet packages and the APIs within the packages that
your application uses. For more information about the application data that Toolkit for .NET
Refactoring collects, see Data collected in this guide.

For information about installing the AWS CLI, see Installing or updating the latest version of the
AWS CLI in the AWS CLI User Guide. For information about how to configure an AWS CLI profile,
see Configuring the AWS CLI in the AWS CLI User Guide.

• Microsoft Visual Studio 2019 version 16.9 or later, or Visual Studio 2022 must be installed.

Memory requirements

Use the table below to determine how much memory is required for the Toolkit for .NET
Refactoring extension to run based on the solution size.

Solution size Minimum memory

Small solutions (1,000 to 50,000 lines of code) 4 GB

Medium solutions (50,000 to 400,000 lines of
code)

8 GB

Large solutions (400,000 or more lines of
code)

16 GB or more, depending on the size of the
source code

Automatic setup

You can automatically perform the prerequisite steps to use Toolkit for .NET Refactoring. You
can perform the setup entirely from within the tool or by using a script. Administrative or similar
privileges are required for automatic setup.

Topics

• Start the automatic setup process

Memory requirements 7

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

AWS Toolkit for .NET Refactoring User Guide

• In-tool setup

• Script setup

Start the automatic setup process

To install Toolkit for .NET Refactoring to perform the setup, see Install Toolkit for .NET Refactoring.
From the Get Started page, following the credential selection, select Prerequisite Setup. You can
perform the setup for your currently selected profile and the AWS account to which it belongs.
Your selected credentials can be updated.

In-tool setup

You can perform the setup from entirely within the tool. To do so, choose Run Setup. The tool
will make all of the required calls using your selected credentials. The response to these calls
will be displayed in the output window on the right. If your selected credentials are invalid, we
recommend that you try the script setup.

Script setup

Alternatively, you can perform the setup using a script. Choose Download to generate a .ps1
script. Run the script to perform the setup. If the user to set up has insufficient permissions, an
administrator can run the generated script. Verify the contents of the script before you run it to
ensure that it has not been altered.

Setting up for testing on AWS

The sections below contain detailed descriptions of the configuration, roles, and permissions that
are required to run a test deployment on AWS with Toolkit for .NET Refactoring.

Topics

• Prerequisites for testing on AWS

• AWS roles and managed policies for Toolkit for .NET Refactoring test deployment

• Active Directory setup

Prerequisites for testing on AWS

Verify the prerequisites below before you test your application on AWS.

Set up for testing on AWS 8

AWS Toolkit for .NET Refactoring User Guide

Topics

• S3 bucket

• VPC requirements

• Application listener ports

• HTTPS requirements

• Linux compatibility requirements

• AWS Identity and Access Management (IAM) overview

S3 bucket

You must have an S3 bucket in the AWS Region where you want to run the test deployment.
You can create a S3 bucket using Amazon Simple Storage Service (Amazon S3). Toolkit for .NET
Refactoring supports the following Regions:

• US East (Ohio) – us-east-2

• Europe (London) – eu-west-2

Toolkit for .NET Refactoring uses the S3 bucket to do the following:

• Prepare the data for the container image build.

• Transfer the application files to the Amazon ECS task.

VPC requirements

When you create a test deployment, the default setting is to create a new virtual private cloud
(VPC) in your AWS account. For more information, see Virtual private clouds (VPC) in the Amazon
Virtual Private Cloud User Guide.

Alternatively, you can choose to use an existing VPC. If you use an existing VPC, it must satisfy the
following requirements:

• It must have two public subnets in different Availability Zones. For information about Availability
Zones, see Regions and Zones in the Amazon Elastic Compute Cloud User Guide.

• It must have an internet gateway. For information about internet gateways, see Connect to the
internet using an internet gateway in the Amazon VPC User Guide.

Prerequisites for testing on AWS 9

https://docs.aws.amazon.com/vpc/latest/userguide/configure-your-vpc.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

AWS Toolkit for .NET Refactoring User Guide

It must have a routing table that connects the internet gateway to the subnets. This means that
the subnet is public. For information about subnets, see VPC with public and private subnets
(NAT) in the Amazon VPC User Guide.

Application listener ports

The application that you want to test on AWS must listen on the following port:

0.0.0.0:port

Note that the application should not listen on localhost:port or 127.0.0.1:port. This is
because when your application is deployed to the cloud, you will connect to the application using a
public IP address.

Kestrel server

When your application is ported from .NET to .NET Core, the Kestrel server, which is part of
the .NET Core framework, is used as a default web server. The default endpoints (http://
localhost:5000 and https://localhost:5001) will not work for the AWS connection. You
must explicitly set the Kestrel endpoints. For information about how to set the Kestrel endpoints,
see the Microsoft Configure endpoints for the ASP.NET Core Kestrel web server documentation.
Note that the documentation uses http://localhost:5000 as an example but you must use
http://0.0.0.0:5000 or https://0.0.0.0:5001.

HTTPS requirements

If the application supports HTTPS, the certificate and private key are required and must be
included in the application artifacts.

Linux compatibility requirements

The application that you port to .NET Core will run on a Linux OS, which can cause errors if you are
porting your application from a Windows OS and you are unaware of the differences between the
operating systems.

In particular, the Linux file system is case-sensitive and the Windows file system is not. Therefore,
the paths and names of the files that your application uses must be consistent. For example, if
you have a file named Dinosaur.cfg and you refer to it as dinosaur.cfg in your code, you will
receive an error. You must refer to the file as Dinosaur.cfg in your code.

Prerequisites for testing on AWS 10

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints?view=aspnetcore-6.0

AWS Toolkit for .NET Refactoring User Guide

AWS Identity and Access Management (IAM) overview

If you are using a license included Visual Studio Amazon Machine Images (AMIs) on Amazon EC2,
you can use the caller role (refactoringtoolkit-RefactoringToolkitCallerRole) without
providing user credentials or editing configuration files. In this case, you do not need to follow the
steps in the AWS Identity and Access Management section of this guide. For more information, see
Install Toolkit for .NET Refactoring in this guide.

If you are not using a license included Visual Studio AMI on Amazon EC2 or you prefer to create a
user and assign roles to the user, see AWS Identity and Access Management in the Security section
of this guide to view the IAM prerequisites. Follow the steps to create the user, create the access
keys, and configure your AWS profile.

AWS roles and managed policies for Toolkit for .NET Refactoring test
deployment

To test your application on AWS using Toolkit for .NET Refactoring, you must have the required
permissions. Permissions are required for the following tasks:

• Containerization of your .NET Core application.

• Deployment of the ported application to AWS Fargate.

The AWS managed policies page contains detailed information about the managed policies that
you can use with Toolkit for .NET Refactoring.

Topics

• Manually create roles and policies

• Create roles and policies with CloudFormation

• AWS KMS key policy

Manually create roles and policies

You can manually create the roles and policies required for Toolkit for .NET Refactoring.

Roles and policies for Toolkit for .NET Refactoring

Use the AWS Management Console to create roles and policies to use Toolkit for .NET Refactoring.

Roles and managed policies 11

AWS Toolkit for .NET Refactoring User Guide

1. Navigate to the AWS Management Console and search for IAM.

2. From the IAM dashboard, create a policy named refactoringtoolkit-
EnablePassRoleAccess and include the following JSON statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::048661490019:role/refactoringtoolkit-CodeBuildServiceRole",
 "arn:aws:iam::048661490019:role/refactoringtoolkit-ECSTaskExecutionRole",
 "arn:aws:iam::048661490019:role/refactoringtoolkit-ECSTaskRole"
],
 "Effect": "Allow"
 }
]
}

3. Create a policy named refactoringtoolkit-EnableTelemetryAccess and include the
following JSON statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "execute-api:invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:492443789615:3dmmp07yx6/*",
 "arn:aws:execute-api:us-east-1:547614552430:8q2itpfg51/*",
 "arn:aws:execute-api:us-east-1:226975336241:m43z210z43/*",
 "arn:aws:execute-api:us-east-1:651331843990:lqi4wznpac/*",
 "arn:aws:execute-api:us-west-2:930729463547:ml5fgmwiy3/*"
],
 "Effect": "Allow",
 "Sid": "EnCorePermission"
 }
]

Roles and managed policies 12

https://console.aws.amazon.com/console

AWS Toolkit for .NET Refactoring User Guide

}

4. Create a role named refactoringtoolkit-CodeBuildServiceRole and add an inline
policy called CodeBuildServiceRolePolicy that includes the following JSON statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "CloudWatchLogsPolicy"
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:ListBucket"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "S3GetObjectPolicy"
 },
 {
 "Action": [
 "s3:GetBucketAcl",
 "s3:GetBucketLocation"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "S3BucketIdentity"
 },
 {
 "Action": [
 "ecr:InitiateLayerUpload",
 "ecr:PutImage",
 "ecr:UploadLayerPart",
 "ecr:CompleteLayerUpload",

Roles and managed policies 13

AWS Toolkit for .NET Refactoring User Guide

 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "ECRPushPolicy"
 },
 {
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "ECRAuthPolicy"
 }
]
}

5. Create a role named refactoringtoolkit-ECSTaskRole and add the
AWSRefactoringToolkitSidecarPolicy policy.

6. Create a role named refactoringtoolkit-ECSTaskExecutionRole and add the
AmazonECSTaskExecutionRolePolicy policy.

7. Create a role named refactoringtoolkit-RefactoringToolkitCallerRole and
add the refactoringtoolkit-EnablePassRoleAccess, refactoringtoolkit-
EnableTelemetryAccess, and AWSRefactoringToolkitFullAccess policies.

Create roles and policies with CloudFormation

Use the AWS CloudFormation template to create roles and policies that you will use for Toolkit
for .NET Refactoring.

1. Use the following command to download the CloudFormation template.

aws s3 cp s3://aws.portingassistant.dotnet.download/ide.extension.role.creation/
aws-refactoringtoolkit-iam-roles.yaml .

2. Create the required IAM roles in your account. This step uses the aws-
refactoringtoolkit-iam-roles.yaml file that you downloaded in the previous step. The
user that executes the command to create the roles must have the following permissions:

Roles and managed policies 14

AWS Toolkit for .NET Refactoring User Guide

• iam:CreateRole

• iam:CreatePolicy

• iam:AttachRolePolicy

To create the roles, run the following AWS CLI command:

aws cloudformation deploy --stack-name refactoringtoolkit --template-file aws-
refactoringtoolkit-iam-roles.yaml --capabilities CAPABILITY_NAMED_IAM

The following sections provide detailed information about the roles that are created by the
CloudFormation template.

Topics

• Role and policy for the user calling the API

• Assign a user to the role created by the CloudFormation template

• Attach the policies to the user

• Toolkit for .Net Refactoring caller role

• AWS CodeBuild role

• Amazon ECS task execution role

• Amazon ECS task role

Role and policy for the user calling the API

The CloudFormation template creates the following policy and role:

• Policy – refactoringtoolkit-EnablePassRoleAccess

• Policy – refactoringtoolkit-EnableTelemetryAccess

• Role – refactoringtoolkit-RefactoringToolkitCallerRole

Assign a user to the role created by the CloudFormation template

The role that was created by the CloudFormation template contains the policies required to use
Toolkit for .NET Refactoring. You can assign a user to this role.

Roles and managed policies 15

AWS Toolkit for .NET Refactoring User Guide

To enable a user to assume the role, you need the Amazon Resource Name (ARN) of the user. For
more information, see Amazon Resource Names (ARNs) in the AWS General Reference.

To allow the user to be assigned a role, you must edit the trust relationship for the
refactoringtoolkit-RefactoringToolkitCallerRole role. For more information, see
Granting a user permissions to switch roles in the AWS Identity and Access Management User Guide.

Edit the trust relationship to add the principal: "AWS": "<user_ARN>":

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "AWS": "<user_ARN>",
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
}

Note

By default, this role has a trust relationship that allows the Amazon EC2 instance to use the
role. If you delete the "Service": "ec2.amazonaws.com" line, the instance profile will
no longer work.

Create a new named profile that uses a role

Important

The ~/.aws/config file contains a section for your user profile. In this step, do not edit
the section for your user profile. Instead, you will create a new role profile section.

Add the text below to the ~/.aws/config file to create the refactoringtoolkit profile. You
can substitute any string for <user_role_profile>, such as refactoringtoolkit_profile.

[<user_role_profile>]

Roles and managed policies 16

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_permissions-to-switch.html

AWS Toolkit for .NET Refactoring User Guide

role_arn = arn:aws:iam::<AWS_account_ID>:role/refactoringtoolkit-
RefactoringToolkitCallerRole
source_profile = <user_profile>

For information about how to add a role to a profile, see Using an IAM role in the AWS CLI in
the AWS CLI User Guide for Version 2. For information about credentials, see Shared config and
credentials files in the AWS SDKs and Tools Reference Guide.

Attach the policies to the user

Alternatively, you can attach the policies to a user rather than a role. If you want to do this, you can
attach the following policies directly to the user:

• AWSRefactoringToolkitFullAccess

• refactoringtoolkit-EnableTelemetryAccess

• refactoringtoolkit-EnablePassRoleAccess

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Toolkit for .Net Refactoring caller role

The CloudFormation template creates the following caller role:

refactoringtoolkit-RefactoringToolkitCallerRole

Roles and managed policies 17

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Toolkit for .NET Refactoring User Guide

This role grants Toolkit for .NET Refactoring permissions to do the following:

• Call the required APIs in AWS.

• Upload application artifacts and download the resulting artifacts from S3.

• Build the application into a container image using AWS CodeBuild and store and retrieve the
images in Amazon Elastic Container Registry (Amazon ECR).

• Deploy the application to container services on AWS, such as Amazon Elastic Container Service
(Amazon ECS).

• Optionally, create Amazon VPC resources.

• Optionally, connect to existing infrastructure, such as AWS Directory Service.

The following policies are attached to the role:

• refactoringtoolkit-EnablePassRoleAccess

• refactoringtoolkit-EnableTelemetryAccess

• AWSRefactoringToolkitFullAccess

To use this role, you must do one of the following:

• Add it to a named profile in the ~/.aws/config file. For more information, see Assign a user to
the role created by the CloudFormation template in this guide.

• Use it with an Amazon EC2 instance profile. For more information, see Install Toolkit for .NET
Refactoring in this guide.

AWS CodeBuild role

The CloudFormation template creates the following CodeBuild role:

refactoringtoolkit-CodeBuildServiceRole

AWS CodeBuild uses this role to download application artifacts from S3, build the application
container, push to Amazon Elastic Container Registry (Amazon ECR), and create logs in Amazon
CloudWatch.

The following policy is attached to the role:

Roles and managed policies 18

AWS Toolkit for .NET Refactoring User Guide

CodeBuildServiceRolePolicy

Toolkit for .NET Refactoring will automatically use a role with this name.

Amazon ECS task execution role

The CloudFormation template creates the following Amazon ECS task execution role:

refactoringtoolkit-ECSTaskExecutionRole

This role allows Amazon ECS to pull the application Docker image from Amazon ECR and upload
logs.

The following policies are attached to the role:

• AmazonECSTaskExecutionRolePolicy

• ECSSecretsPolicy

Toolkit for .NET Refactoring will automatically use a role with this name.

For more information, see Amazon ECS task execution IAM role in the Amazon ECS User Guide.

Amazon ECS task role

The CloudFormation template creates the following Amazon ECS task role:

refactoringtoolkit-ECSTaskRole

This role allows your application to authenticate with other AWS services. It is similar to the
IAM roles that are used as instance profiles for Amazon EC2 instances. This role is required for
test deployment to allow the sidecar to sync files from S3 and for Active Directory to retrieve
credentials from AWS Secrets Manager.

The following policy is attached to the role:

AWSRefactoringToolkitSidecarPolicy

Toolkit for .NET Refactoring will automatically use a role with this name.

Roles and managed policies 19

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html

AWS Toolkit for .NET Refactoring User Guide

For more information, see IAM roles for tasks in the Amazon ECS User Guide.

AWS KMS key policy

To use Toolkit for .NET Refactoring with an AWS KMS key to encrypt AWS resources, the KMS key
policy must include the following statement:

{
 "Effect": "Allow",
 "Principal": {
 "Service": "application-transformation.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey"
],
 "Resource": "kmsKeyArn"
}

You can create a new KMS key with the previously mentioned policy, or add it to an existing KMS
key. For more information, see Creating a key policy and Changing a key policy in the AWS Key
Management Service User Guide.

Active Directory setup

The application that you use for the test deployment can use Microsoft Active Directory
authentication against its dependencies, such as a Microsoft SQL Server database that is joined into
an Active Directory domain.

Note that this allows authentication of the application in the test deployment. It does not provide
single sign-on for the incoming on-premises user connections with Windows Authentication tokens
in HTTP headers.

For more information, see Join an Amazon EC2 instance to your AWS Managed Microsoft AD
directory in the AWS Directory Service Administration Guide.

Topics

• Create a directory

• Create a user

Active Directory setup 20

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_join_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_join_instance.html

AWS Toolkit for .NET Refactoring User Guide

• Create a secret

• Allow the task role to read the secret

Create a directory

Create a directory in the AWS Directory Service using the same VPC that you will use for test
deployment. If you use Active Directory, you must use the Select an Amazon VPC option when you
create the test deployment. For more information, see Create your AWS Managed Microsoft AD in
the AWS Directory Service Administration Guide.

Verify that the directory meets the following requirements:

• The inbound rules of the security group used by your directory must allow incoming connections
from the same VPC. For more information, see Understand your directory’s AWS security group
configuration in the AWS Directory Service Administration Guide.

• The VPC must have a DHCP options set that lists both of the IP addresses of the directory as
DNS servers. For more information, see Create a DHCP options set in the AWS Directory Service
Administration Guide.

Create a user

Create a user in the directory. Remember the sign-in credentials.

Create a secret

Create a secret to pass the username and password to your application. Create the secret with the
user credentials in the AWS Secrets Manager before you run the test deployment on AWS. The user
credentials must contain the following fields:

• Username – Note that the domain in the Username value must be uppercase:
<user>@<AD_DOMAIN>

• Password

You can also use the AWS Secrets Manager in the AWS Management Console to create the secret.
Create a secret and add values in the following way:

Key: Username, value: <user>@<AD_DOMAIN>,

Active Directory setup 21

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_best_practices.html#understandsecuritygroup
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_best_practices.html#understandsecuritygroup
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_best_practices.html#bp_create_dhcp_options_set

AWS Toolkit for .NET Refactoring User Guide

Key: Password, value: <password>

You can use the JSON format option in the secret as:

{

"Username": "<user@AD_DOMAIN>",

"Password": "<password>"

}

You can also use the AWS CLI to create the secret. For more information, see create-secret in the
AWS CLI Command Reference.

If you use AWS CLI, use the --secret-string parameter as follows:

‘{"Username":"<user@AD_DOMAIN.COM>","Password":"<password>"}’

The single quotes that enclose the JSON value allow you to pass the double quotes unchanged.

Remember the ARN of the secret for later use.

Allow the task role to read the secret

In the AWS Secrets Manager in the AWS Management Console, open the secret that you created
and select the Resource permissions tab in the information page of the secret.

Add the policy below to the secret. The policy contains the following variables:

• task_role_ARN – the ARN of the Amazon ECS task role that you created with the
CloudFormation template.

• secret_ARN – The ARN of the secret that you just created.

The policy that you add to the secret:

{
 "Version" : "2012-10-17",
 "Statement" : [{
 "Sid" : "EcsTask",

Active Directory setup 22

https://awscli.amazonaws.com/v2/documentation/api/2.0.33/reference/secretsmanager/create-secret.html

AWS Toolkit for .NET Refactoring User Guide

 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "<task_role_ARN>"
 },
 "Action" : "secretsmanager:GetSecretValue",
 "Resource" : "<secret_ARN>"
 }]
}

Install Toolkit for .NET Refactoring

You can install Toolkit for .NET Refactoring within Microsoft Visual Studio, or the extension is
available as part of license included Visual Studio Amazon Machine Images (AMIs) on Amazon EC2.

Install in Visual Studio

To install the Toolkit for .NET Refactoring extension, open Microsoft Visual Studio and complete
the following steps:

1. In Visual Studio, open the Extensions menu and select Manage Extensions.

2. In the Manage Extensions window, search for Toolkit for .NET Refactoring. Select the
extension and click Download.

3. When the download is complete, Visual Studio prompts you to restart the application. Restart
Visual Studio to install the Toolkit for .NET Refactoring extension.

Install with an AMI on Amazon EC2

If you are using a license included Visual Studio Amazon Machine Image (AMI) on Amazon EC2, you
can use the caller role (refactoringtoolkit-RefactoringToolkitCallerRole) directly,
without providing user credentials or editing configuration files. For more information about AMIs,
see User-based subscriptions in AWS License Manager in the AWS License Manager User Guide.

The CloudFormation template creates an instance profile named refactoringtoolkit-
Ec2InstanceProfile. For more information about the CloudFormation template, see Create
roles and policies with CloudFormation in this guide.

You can launch an Amazon EC2 instance with an IAM role through the AWS Management Console
or AWS CLI.

Installation 23

https://docs.aws.amazon.com/license-manager/latest/userguide/user-based-subscriptions.html

AWS Toolkit for .NET Refactoring User Guide

Launch an Amazon EC2 instance in the AWS Management Console

1. Launch an instance. For more information, see Quickly launch an instance in the Amazon
Elastic Compute Cloud User Guide for Linux Instances.

2. Expand Advanced details, and in the IAM instance profile field, select
refactoringtoolkit-Ec2InstanceProfile.

Launch an EC2 instance with AWS CLI

Use AWS CLI to launch an instance that uses the instance profile. For more information, see run-
instances in the AWS CLI Command Reference.

The code below is an example command that illustrates how to launch an EC2 instance with the
instance profile:

aws ec2 run-instances \
 --image-id ami-11aa22bb \
 --iam-instance-profile Name="s3access-profile" \
 --key-name my-key-pair \
 --security-groups my-security-group \
 --subnet-id subnet-1a2b3c4d

For more information about instance profiles, see Using instance profiles in the AWS Identity and
Access Management User Guide. For more information about using IAM roles with Amazon EC2
instances, see Using an IAM role to grant permissions to applications running on Amazon EC2
instances in the AWS Identity and Access Management User Guide. For information about retrieving
credentials from instance metadata, see Retrieve security credentials from instance metadata in the
Amazon Elastic Compute Cloud User Guide for Linux Instances.

Pricing for Toolkit for .NET Refactoring

The Toolkit for .NET Refactoring extension for Microsoft Visual Studio is available for use at no
cost. However, testing an application on AWS requires the use of Amazon Virtual Private Cloud,
Amazon Simple Storage Service, and AWS Fargate:

• Amazon VPC pricing

• Amazon S3 pricing

• AWS Fargate pricing

Pricing 24

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html#liw-quickly-launch-instance
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#instance-metadata-security-credentials
https://aws.amazon.com/vpc/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/fargate/pricing/

AWS Toolkit for .NET Refactoring User Guide

Pricing 25

AWS Toolkit for .NET Refactoring User Guide

Toolkit for .NET Refactoring extension

With the Toolkit for .NET Refactoring extension, you can use porting, containerization, and
deployment features seamlessly from within Microsoft Visual Studio. The Toolkit for .NET
Refactoring extension provides prescriptive guidance to help you assess and port your Microsoft
Windows .NET Framework applications to .NET Core on Linux. After you port a web application, you
can test the application on AWS. The extension facilitates collaboration with other developers that
are analyzing, debugging, testing, and refactoring the same application code.

The sections below show you how to assess your solution and analyze the results.

Topics

• Run a compatibility assessment

• Analyze the results

• Port the solution

• Test the application on AWS

Run a compatibility assessment

After the extension is installed, you can run a compatibility assessment with Toolkit for .NET
Refactoring to find Microsoft Windows dependencies and incompatibilities between your
application and newer .NET Core versions. Perform the following steps to run the assessment:

1. In Microsoft Visual Studio, open a solution file and open a .cs file within the solution that you
want to run the assessment on.

2. From the Visual Studio menu, open Extensions and select AWS Toolkit for .NET Refactoring
from the drop-down menu. Select Get Started.

3. The first time that you run an assessment, the Start modernization journey tab opens. In the
Start modernization journey tab, configure the following options:

• AWS profile – Select a named profile from the drop-down menu.

• Use existing AWS CLI / SDK credentials – Select this option if you have temporary
credentials. For more information, see Temporary security credentials in IAM in the IAM User
Guide.

Run an assessment 26

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS Toolkit for .NET Refactoring User Guide

• Share my usage data – Select this option to allow Toolkit for .NET Refactoring to collect
usage data. For more information, see Data collected in this guide.

4. From the Getting Started screen, you can choose the Target Framework version that you
want to port your application to.

5. Click Save to save your settings.

6. Click Next to open the Toolkit for .NET Refactoring dashboard.

7. In the dashboard, click Start assessment to begin the assessment. Toolkit for .NET Refactoring
runs a one-time, full assessment for the compatibility solution that is loaded in Visual Studio.

There is an Error list pane at the bottom of the window that displays the incompatibilities that
Toolkit for .NET Refactoring discovered during the assessment. Select an entry in the list to view
the incompatibility in the source code. The incompatible code is highlighted.

You can change the settings you entered into the Getting Started screen by selecting the Tools
tab and choosing Options from the drop-down menu. Under AWS Toolkit for .NET Refactoring
VS Extension, select Data usage sharing to select a different AWS Named Profile, Add a named
profile, or to change your usage data selection. Choose General under AWS Toolkit for .NET
Refactoring VS Extension to update the Target Framework.

Analyze the results

When the assessment is complete, you can view the results in the dashboard. The dashboard
contains the following information:

• Status – The status of the assessment. Assessment complete indicates that you can review the
assessment in the Assessment Overview pane.

• Solution file – The file that you selected to run the assessment on.

• Version – The .NET Core version that your solution file was compared to during the assessment.

• Incompatible NuGet packages – The number of .NET Framework NuGet packages that are
incompatible with the .NET Core version that you selected for the assessment.

• Portable NuGet packages – The number of .NET Framework NuGet packages that are
compatible with the .NET Core version that you selected for the assessment.

• Ported projects – The number of projects that have been ported to the .NET Core version that
you selected for the assessment.

Analyze the results 27

AWS Toolkit for .NET Refactoring User Guide

• Incompatible APIs – The number of .NET Framework APIs that are incompatible with the .NET
Core version that you selected for the assessment.

• Portable APIs – The number of .NET Framework APIs that are compatible with the .NET Core
version that you selected for the assessment.

You can click on the incompatible NuGet packages or incompatible APIs to view details about
individual incompatibilities, view the project dependency graph, or export the results to a .csv
file.

Port the solution

Toolkit for .NET Refactoring provides the following features to help you port the solution.

Guided assistance

You can apply all the recommended code changes at once or you can view each incompatibility
individually. When you port a project or solution, Toolkit for .NET Refactoring prompts you to
choose whether you want to apply all the recommended code changes. If you do not select that
option, Toolkit for .NET Refactoring prompts you to view each incompatibility. After you make a
code change, save your updates to view the updated recommendations for your code after the
modifications have been applied.

When you port your solution to .NET Core, the Toolkit for .NET Refactoring extension provides
guided assistance in the source editor.

When you are ready to port a project, select one of the following options from the Extensions tab:

• Port solution to .NET Core – Use this option to port all projects to .NET Core.

• Port project to .NET Core – Use this option to port a single project to .NET Core.

When the source file is open with a source editor, porting options are provided to assist you, and
to automate the porting of each source file. Automated porting involves running the source code
through code translation assistant rules for porting. This can be performed at the solution level
when you select Port solution to .NET Core and choose to apply recommended source code
changes.

Port the solution 28

AWS Toolkit for .NET Refactoring User Guide

View incompatibilities

View the list of incompatibilities and suggestions from the Error list pane at the bottom of the
window. Select an error in the list to view the code in the source editor. The source file is annotated
with the error message, details about the compatibility issue, and a recommended solution.

If you used automated porting to apply all the recommended code changes, a light bulb icon
appears next to each line of code that was modified, with a comment describing the change.

In the source file, each line of source code with compatibility issues is highlighted. This helps you
to visualize the issues in the file as you address them. The highlighting is disappears when the
compatibility issues are addressed.

Suggestions

The source editor provides a replacement suggestion for each incompatibility in the source file. If a
direct replacement exists, you can choose to select and replace it. If there is no direct replacement,
references or contextual help on how to proceed are provided.

Test the application on AWS

After you run the assessment and made code changes, you can run a test deployment to verify the
changes to your application on AWS.

Topics

• What is a test deployment?

• Create a deployment

• Delete a deployment

What is a test deployment?

A test deployment is a simplified application deployment into AWS that allows you to deploy the
application and validate code changes quickly.

Test deployment is intended for use during the development cycle of the application. To reduce
turnaround time and costs, a test deployment is simplified in the following ways:

View incompatibilities 29

AWS Toolkit for .NET Refactoring User Guide

• Scalability is limited to one instance of the application.

• Because there is only one instance of the application, a load balancer is not created.

• Amazon API Gateway is not created.

• Route 53 Private DNS for VPCs is not created.

• A health check is not performed on the application. You are expected to perform testing to
make sure the application works as expected. For debugging, you can use logs as well as the
Amazon Elastic Container Service (Amazon ECS) execute command to execute commands inside
the application container. If the application crashes, the container and Amazon ECS task is not
deleted so you can review the container contents to determine why the application crashed. Use
the deploy command to restart the application.

Test deployment cycle

The test development cycle consists of the following steps:

1. The developer builds the project and produces the application files, such as executable files, data
files, and configuration files.

2. Toolkit for .NET Refactoring creates a container image for the application that is added to the
Amazon Elastic Container Registry (Amazon ECR) of the account.

3. If a custom Docker file is specified, the container is created according to the file. Note that
the file must adhere to the following guidelines, which are required for the application
redeployment and restart:

• The entire application must be located in the /app directory.

• The start script for the application must be named /app/entryfile.

If a custom Docker file is not specified, Toolkit for .NET Refactoring does the following:

• The application files are placed into the /app directory in the container. The subdirectory
structure is preserved.

• The application start script is created, which executes the following command: dotnet
<application_name>

4. Toolkit for .NET Refactoring creates a deployment in AWS that includes the AWS Fargate cluster,
the Amazon ECS service, and the AWS Fargate task.

5. Toolkit for .NET Refactoring creates security groups for the application to provide network
security. Only traffic to the specified application ports is permitted.

What is a test deployment? 30

AWS Toolkit for .NET Refactoring User Guide

6. Toolkit for .NET Refactoring displays:

• The IP address of the deployed application. You can use the IP address to connect the clients
and browsers to the application ports.

• The names of Amazon CloudWatch log groups and log streams. You can use these to view the
logs of the application. Note that only console logs are supported.

7. If you change the code, data, or configuration files, rebuild the project and deploy it again.

• If your changes include significant modifications to the application compute environment,
such as open ports, the base image, or the Docker file, Toolkit for .NET Refactoring will rebuild
a container image and deploy a new Amazon ECS service.

• If the changes are limited to the application files, Toolkit for .NET Refactoring will deliver the
new files to the Amazon ECS task and restart the application.

Create a deployment

Create a deployment to test your application on AWS. Before you begin, make sure you have
verified the requirements in Setting up for testing on AWS.

Complete the following steps to run a test deployment on AWS with Toolkit for .NET Refactoring.

1. Compile and build the test application in Visual Studio. See the Microsoft Compile and build in
Visual Studio documentation for details.

2. In Microsoft Visual Studio, open the Extensions menu and select AWS Toolkit for .NET
Refactoring, Test on AWS.

3. The Toolkit for .NET Refactoring – Test on AWS pop-up appears. In the pop-up, configure the
following options:

• AWS profile to run test deployment – The profile that you want to use to run the
deployment.

• AWS region for test deployment – The region where you want to run the test deployment.
You must have an Amazon S3 bucket in the region that you select. Toolkit for .NET
Refactoring supports the following regions:

• US East - us-east-2

• Europe (London) - eu-west-2

• Published artifacts – Select the folder that contains the build artifacts that were generated
by Visual Studio when you published to a folder. For information about publishing to a

Create a deployment 31

https://docs.microsoft.com/en-us/visualstudio/ide/compiling-and-building-in-visual-studio?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/compiling-and-building-in-visual-studio?view=vs-2022

AWS Toolkit for .NET Refactoring User Guide

folder in Visual Studio, see the Microsoft Build and clean projects and solutions in Visual
Studio documentation.

Note that if the application supports HTTPS, you must provide the certificate and a private
key as part of the application artifacts in the build folder that will be added to the /app
directory in the container. In other words, the certificate paths in your configuration files
should be /app/<certificate-file>.

• Test deployment project name – The project that you want to deploy. This is a project that
has been assessed by Toolkit for .NET Refactoring.

• Deployment name – The name that you will use to identify the deployment. The
deployment name should be unique for each project deployment in the solution.

• Amazon S3 bucket name – The name of the Amazon S3 bucket where you want to upload
the application artifact.

• Amazon Virtual Private Cloud for test deployment

• Create a new Amazon VPC – A new Amazon VPC will be created as part of the
deployment.

• Select an Amazon VPC – If you select an existing Amazon VPC, check the VPC
requirements to verify that the VPC satisfies the requirements.

• Deploy with Microsoft Active Directory – Note that if you select this option, you must also
select the Select an Amazon VPC option. You cannot use Active Directory with the Create
a new Amazon VPC option. See Active Directory setup for more information about using
Active Directory in a test deployment.

• Advanced settings

• Custom Docker file – The Docker file that you want to use to build the container. Note
that the file must adhere to the following guidelines, which are required for application
redeployment and restart:

• The entire application must be located in the /app directory.

• The start script for the application must be named /app/entryfile.

• Number of CPUs – The default CPU value is one vCPU. Adjust the number of CPUs based
on your application.

• Memory size – Default is 1 GB.

4. Click Test on AWS to start the test deployment.

Create a deployment 32

https://docs.microsoft.com/en-us/visualstudio/ide/building-and-cleaning-projects-and-solutions-in-visual-studio?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/building-and-cleaning-projects-and-solutions-in-visual-studio?view=vs-2022

AWS Toolkit for .NET Refactoring User Guide

To view the status of the deployment, open the Extensions menu in Visual Studio and select AWS
Toolkit for .NET Refactoring, View Deployments Running on AWS. When the deployment is
complete there will be a status update at the top of the Visual Studio window.

Delete a deployment

Toolkit for .NET Refactoring does not delete deployments automatically. To delete a deployment
manually, click the Delete button within the deployment. This will open AWS CloudFormation
in the AWS Management Console. In the AWS Management Console, you can delete the AWS
CloudFormation stack.

Delete a deployment 33

AWS Toolkit for .NET Refactoring User Guide

Debugging

This section contains debugging information for Toolkit for .NET Refactoring.

Debugging the deployment using Amazon ECS execute-
command

You can use Amazon ECS to run commands, such as bash and sh commands, in a task that is
running.

1. To use Amazon ECS to run a command, open Amazon ECS in the AWS Management Console
and navigate to the cluster and the task that contains the application. The cluster will be
named <application_id>-cluster.

2. Locate a single service in the cluster and locate an active task in the cluster. Use the cluster
name and task ID in an AWS CLI command:

aws ecs execute-command --cluster <cluster_name> \
 --task <task_id> \
 --container app \
 --interactive \
 --command "bash"

For more information, see the Running commands using Amazon ECS Exec section of Using
Amazon ECS Exec for debugging in the Amazon ECS User Guide.

Debugging 34

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html

AWS Toolkit for .NET Refactoring User Guide

Security in AWS Toolkit for .NET Refactoring

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Toolkit
for .NET Refactoring, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Toolkit for .NET Refactoring. The following topics show you how to configure Toolkit for .NET
Refactoring to meet your security and compliance objectives. You also learn how to use other AWS
services that help you to monitor and secure your Toolkit for .NET Refactoring resources.

Topics

• AWS Identity and Access Management (IAM)

• EULA

• Data protection in AWS Toolkit for .NET Refactoring

• AWS managed policies for AWS Toolkit for .NET Refactoring

AWS Identity and Access Management (IAM)

If you use Toolkit for .NET Refactoring with a license included Visual Studio Amazon
Machine Image (AMI) on Amazon EC2, you can use the refactoringtoolkit-
RefactoringToolkitCallerRole without providing credentials or modifying configuration
files. For more information, see Install Toolkit for .NET Refactoring in this guide.

AWS Identity and Access Management 35

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Toolkit for .NET Refactoring User Guide

If you are not using Toolkit for .NET Refactoring with Amazon EC2 or if you prefer to create a user
and assign roles to the user, follow the steps in this section to create the user, create access keys,
and configure your AWS profile.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Create access keys for your user

• Configure your AWS profile

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account 36

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

AWS Toolkit for .NET Refactoring User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create a user with administrative access 37

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS Toolkit for .NET Refactoring User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create access keys for your user

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Create access keys for your user 38

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

AWS Toolkit for .NET Refactoring User Guide

Which user needs
programmatic access?

To By

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Configure your AWS profile

After you have created a user, you can configure your AWS named profile to apply settings and
credentials to be applied when you run commands.

Configure AWS profile in the assessment tool

1. In the Toolkit for .NET Refactoring assessment tool, navigate to Set up Toolkit for .NET
Refactoring.

2. Choose Add a profile under AWS named profile.

3. Enter your new Profile name, AWS access key ID, and AWS secret access key.

4. Choose Add.

Configure your AWS profile 39

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Toolkit for .NET Refactoring User Guide

Configure AWS profile using the AWS CLI

1. Run the following AWS CLI command to create a profile for Toolkit for .NET Refactoring. The
profile is named default in the credentials file.

aws configure

2. For each prompt, enter the corresponding information.

• AWS Access Key ID

• AWS Secret Access Key

• Default region name (For example, us-west-2)

• Default output format

3. After you configure the profile using the AWS CLI, Toolkit for .NET Refactoring will display the
default profile under AWS named profile on the Set up Toolkit for .NET Refactoring page
of the assessment tool.

For more information about configuring the AWS CLI, see Configuring the AWS CLI in the AWS CLI
User Guide.

EULA

AWS Toolkit for .NET Refactoring is licensed as AWS Content under the terms and conditions of the
AWS Customer Agreement. For more information, see AWS Customer Agreement and AWS Service
Terms. By installing, using, or accessing AWS Toolkit for .NET Refactoring, you agree to such terms
and conditions. The term AWS Content does not include software and assets distributed under
separate license terms (such as code licensed under an open source license).

Data protection in AWS Toolkit for .NET Refactoring

The AWS shared responsibility model applies to data protection in AWS Toolkit for .NET
Refactoring. As described in this model, AWS is responsible for protecting the global infrastructure
that runs all of the AWS Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. You are also responsible for the security configuration and
management tasks for the AWS services that you use. For more information about data privacy,
see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared
Responsibility Model and GDPR blog post on the AWS Security Blog.

EULA 40

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://aws.amazon.com/agreement/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Toolkit for .NET Refactoring User Guide

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Toolkit for .NET Refactoring or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Data collected by Toolkit for .NET Refactoring

If you accept the data collection option in the Settings menu of the Toolkit for .NET Refactoring
extension, the following application data is collected:

1. Application errors generated when running assessments, porting, or when performing other
functions provided by the Toolkit for .NET Refactoring extension.

2. Names and versions of public NuGet packages assessed by the Toolkit for .NET Refactoring
extension.

3. Metrics for assessments run by the Toolkit for .NET Refactoring extension on public NuGet
packages, such as the number of packages and solutions, and the amount of time taken to
create a solution.

Data collected 41

https://aws.amazon.com/compliance/fips/

AWS Toolkit for .NET Refactoring User Guide

You can change your data collection settings at any time in the Settings menu of the Toolkit
for .NET Refactoring extension.

Toolkit for .NET Refactoring will perform surface level analysis of your .NET Framework solution
and generate a list of the following that are in use:

• NuGet packages

• NuGet APIs

• .NET SDK APIs

Only the generated list is stored in the S3 bucket you provide, and your source code never leaves
your local system. Toolkit for .NET Refactoring has a scalable backend that processes source code
metadata ephemerally. The backend returns compatibility and recommendation information back
to you. For more information about data privacy, see Data Privacy FAQ.

You can choose whether to encrypt your source code metadata that is uploaded to Amazon
S3. Toolkit for .NET Refactoring supports using your own customer managed keys in AWS Key
Management Service (AWS KMS) for encryption and decryption. For more information, see
Protecting data with encryption in the Amazon Simple Storage Service User Guide and AWS KMS
concepts in the AWS Key Management Service Developer Guide.

Encryption at rest

All data within Toolkit for .NET Refactoring is encrypted at rest in accordance with industry
standards.

Encryption in transit

All requests to Toolkit for .NET Refactoring must be made over the Transport Layer Security
protocol (TLS). We recommend TLS 1.2 or later.

AWS managed policies for AWS Toolkit for .NET Refactoring

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS

AWS managed policies 42

https://aws.amazon.com/compliance/data-privacy-faq/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

AWS Toolkit for .NET Refactoring User Guide

account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AWSRefactoringToolkitFullAccess

Use this policy to test your application on AWS when you modernize your application with the
AWS Toolkit for .NET Refactoring extension for Microsoft Visual Studio. Attach the policy to your
local AWS profile. The policy grants permissions to upload application artifacts and download the
resulting artifacts from S3. It grants permissions to build the application into a container image
using AWS CodeBuild and store and retrieve the images in Amazon Elastic Container Registry
(Amazon ECR). In addition, it allows for the deployment of the application to container services on
AWS, such as Amazon Elastic Container Service (Amazon ECS), the optional creation of Amazon
VPC resources, and the optional connection to existing infrastructure, such as AWS Directory
Service.

Permission details

This policy includes permissions for the following services:

• Application Transformation – Allows Toolkit for .NET Refactoring to perform compatibility
assessments along with containerization and deployment operations.

• Amazon CloudWatch – Allows Toolkit for .NET Refactoring to create log groups and store log
output from Toolkit for .NET Refactoring operations and your applications.

• Amazon Elastic Compute Cloud (Amazon EC2) – Allows Toolkit for .NET Refactoring to create and
modify security groups, internet gateways, and Amazon VPC.

AWS managed policy: AWSRefactoringToolkitFullAccess 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS Toolkit for .NET Refactoring User Guide

• Amazon Elastic Container Registry (Amazon ECR) – Allows Toolkit for .NET Refactoring to create
and read your Amazon ECR repository and to tag resources.

• Amazon Elastic Container Service (Amazon ECS) – Allows Toolkit for .NET Refactoring to run your
container images as tasks in Amazon ECS and to facilitate debugging.

• Amazon Simple Storage Service (Amazon S3) – Allows Toolkit for .NET Refactoring to list and
manage objects from Amazon S3 buckets that are used by Toolkit for .NET Refactoring.

• AWS CloudFormation – Allows Toolkit for .NET Refactoring to deploy the infrastructure
components of CodeBuild and application deployment in the form of AWS CloudFormation
stacks.

• AWS CodeBuild – Allows Toolkit for .NET Refactoring to allocate resources for CodeBuild projects
and start builds.

• AWS Identity and Access Management (IAM) – Allows Toolkit for .NET Refactoring to verify which
roles are passed to other AWS services.

• AWS Key Management Service (AWS KMS) – Allows Toolkit for .NET Refactoring to utilize user-
provided KMS keys across AWS services for encryption.

• Amazon EC2 Systems Manager (SSM) – Allows Toolkit for .NET Refactoring to manage SSM
parameters and communicate with Amazon ECS tasks.

To view the permissions for this policy, see AWSRefactoringToolkitFullAccess in the AWS Managed
Policy Reference.

AWS managed policy: AWSRefactoringToolkitSidecarPolicy

This policy is used by the Amazon ECS tasks that are created to run a test application on AWS
with the AWS Toolkit for .NET Refactoring extension for Microsoft Visual Studio. The policy grants
permissions to download application artifacts from S3 and to communicate the status of the task
using AWS Systems Manager.

To view the permissions for this policy, see AWSRefactoringToolkitSidecarPolicy in the AWS
Managed Policy Reference.

Toolkit for .NET Refactoring updates to AWS managed policies

View details about updates to AWS managed policies for Toolkit for .NET Refactoring since this
service began tracking these changes. For automatic alerts about changes to this page, subscribe to
the RSS feed on the Toolkit for .NET Refactoring Document history page.

AWSRefactoringToolkitSidecarPolicy 44

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSRefactoringToolkitFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSRefactoringToolkitSidecarPolicy.html

AWS Toolkit for .NET Refactoring User Guide

Change Description Date

Updated AWSRefactoringTool
kitFullAccess managed policy

Added permissio
ns for the
cloudform
ation:Tag
Resource
and cloudform
ation:Unt
agResourc
e actions
to manage
resource tags
on stacks
created for AWS
App2Container.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitFullAccess.

March 25, 2024

Updated AWSRefactoringTool
kitFullAccess managed policy

Added
permissions for
applicati
on-transf
ormation
actions and KMS
permissions
for resources
matching
ForAnyVal
ue:String
Like with

November 18, 2023

Policy updates 45

AWS Toolkit for .NET Refactoring User Guide

Change Description Date

"kms:Reso
urceAlias
es":
"alias/ap
plication
-transfor
mation*" .
Changed
permissions for
EC2, ECR, ECS,
and CloudWatc
h Logs to scope
them to the
applicati
on-transf
ormation
request and
resource tag.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitFullAccess.

Policy updates 46

AWS Toolkit for .NET Refactoring User Guide

Change Description Date

Updated AWSRefactoringTool
kitFullAccess managed policy

Added
ListStacks
permissions.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitFullAccess.

March 22, 2023

Updated AWSRefactoringTool
kitFullAccess managed policy

Added tagging
permissions
that allow new
accounts to
perform the
CreateLog
Group action.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitFullAccess.

December 15, 2022

Policy updates 47

AWS Toolkit for .NET Refactoring User Guide

Change Description Date

Updated AWSRefactoringTool
kitSidecarPolicy managed
policy

Added permissio
ns to open a
data channel to
transfer files to
the customer's
container.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitSidecarPolicy.

October 29, 2022

New policy – AWSRefact
oringToolkitFullAccess

Added
AWSRefact
oringTool
kitFullAc
cess to AWS
managed
policies.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitFullAccess.

October 25, 2022

Policy updates 48

AWS Toolkit for .NET Refactoring User Guide

Change Description Date

New policy – AWSRefact
oringToolkitSideca
rPolicy

Added
AWSRefact
oringTool
kitSideca
rPolicy to
AWS managed
policies.

For more
informati
on, see AWS
managed policy:
AWSRefact
oringTool
kitSidecarPolicy.

October 25, 2022

Policy updates 49

AWS Toolkit for .NET Refactoring User Guide

Troubleshooting

This section contains troubleshooting information for Toolkit for .NET Refactoring.

Sidecar logs

If you are using Microsoft Active Directory (AD) with Toolkit for .NET Refactoring, the sidecar
container performs authentication with Active Directory using the credentials from the specified
secret. If the authentication fails, the deployment job will fail.

The logs of the sidecar are returned in the details of the deployment. Check the logs for text that
says something similar to invalid password.

Sidecar logs 50

AWS Toolkit for .NET Refactoring User Guide

Document history for the Toolkit for .NET Refactoring
User Guide

The table below describes the documentation releases for Toolkit for .NET Refactoring.

Change Description Date

AWS managed policy updates Added an update to
AWSRefactoringTool
kitFullAccess to
include permissions to
manage AWS CloudFormation
resource tags.

For more information,
see AWS managed policy:
AWSRefactoringToolkitFullAc
cess.

March 25, 2024

AWS managed policy updates Added an update to
AWSRefactoringTool
kitFullAccess to
include permissions for
application-transf
ormation actions. This
update also includes KMS
permissions.

For more information,
see AWS managed policy:
AWSRefactoringToolkitFullAc
cess.

November 18, 2023

AWS managed policy updates Added an update to
AWSRefactoringTool
kitFullAccess to

March 22, 2023

51

AWS Toolkit for .NET Refactoring User Guide

include ListStacks
permissions.

For more information,
see AWS managed policy:
AWSRefactoringToolkitFullAc
cess.

IAM best practices updates Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

February 22, 2023

AWS managed policy updates Added an update to
AWSRefactoringTool
kitFullAccess to
include tagging permissio
ns that allow new accounts
to perform the CreateLog
Group action.

For more information,
see AWS managed policy:
AWSRefactoringToolkitFullAc
cess.

December 15, 2022

AWS managed policy updates Added an update to
AWSRefactoringTool
kitSidecarPolicy to
include permissions to open a
data channel to transfer files
to the customer's container.

For more information,
see AWS managed policy:
AWSRefactoringToolkitSideca
rPolicy.

October 29, 2022

52

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Toolkit for .NET Refactoring User Guide

AWS managed policy updates
- New policies

Toolkit for .NET Refactori
ng added AWSRefact
oringToolkitFullAc
cess and AWSRefact
oringToolkitSideca
rPolicy to AWS managed
policies. These managed
policies make it easier to test
your application on AWS.

For more information, see:

• AWS managed policy:
AWSRefactoringTool
kitFullAccess

• AWS managed policy:
AWSRefactoringTool
kitSidecarPolicy

October 25, 2022

AWS Toolkit for .NET
Refactoring initial release

Initial release of AWS Toolkit
for .NET Refactoring: an
extension for Microsoft Visual
Studio that reduces the time
and effort that is required to
refactor legacy .NET applicati
ons to cloud-native alternati
ves on AWS.

October 25, 2022

53

https://docs.aws.amazon.com/tk-dotnet-refactoring/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/tk-dotnet-refactoring/latest/userguide/security-iam-awsmanpol.html

	AWS Toolkit for .NET Refactoring
	Table of Contents
	What is AWS Toolkit for .NET Refactoring?
	Features of Toolkit for .NET Refactoring
	Compatibility assessment
	Porting assistance
	Testing on AWS

	Concepts
	Amazon ECS
	IAM roles, permissions, and delegations
	AWS Managed Microsoft AD
	Sidecar container
	Microsoft Active Directory authentication in Linux containers

	Get started with Toolkit for .NET Refactoring
	Prerequisites
	Supported versions
	General prerequisites
	Memory requirements
	Automatic setup
	Start the automatic setup process
	In-tool setup
	Script setup

	Setting up for testing on AWS
	Prerequisites for testing on AWS
	S3 bucket
	VPC requirements
	Application listener ports
	HTTPS requirements
	Linux compatibility requirements
	AWS Identity and Access Management (IAM) overview

	AWS roles and managed policies for Toolkit for .NET Refactoring test deployment
	Manually create roles and policies
	Roles and policies for Toolkit for .NET Refactoring

	Create roles and policies with CloudFormation
	Role and policy for the user calling the API
	Assign a user to the role created by the CloudFormation template
	Create a new named profile that uses a role

	Attach the policies to the user
	Toolkit for .Net Refactoring caller role
	AWS CodeBuild role
	Amazon ECS task execution role
	Amazon ECS task role

	AWS KMS key policy

	Active Directory setup
	Create a directory
	Create a user
	Create a secret
	Allow the task role to read the secret

	Install Toolkit for .NET Refactoring
	Install in Visual Studio
	Install with an AMI on Amazon EC2

	Pricing for Toolkit for .NET Refactoring

	Toolkit for .NET Refactoring extension
	Run a compatibility assessment
	Analyze the results
	Port the solution
	Guided assistance
	View incompatibilities
	Suggestions

	Test the application on AWS
	What is a test deployment?
	Test deployment cycle

	Create a deployment
	Delete a deployment

	Debugging
	Debugging the deployment using Amazon ECS execute-command

	Security in AWS Toolkit for .NET Refactoring
	AWS Identity and Access Management (IAM)
	Sign up for an AWS account
	Create a user with administrative access
	Create access keys for your user
	Configure your AWS profile

	EULA
	Data protection in AWS Toolkit for .NET Refactoring
	Data collected by Toolkit for .NET Refactoring

	AWS managed policies for AWS Toolkit for .NET Refactoring
	AWS managed policy: AWSRefactoringToolkitFullAccess
	AWS managed policy: AWSRefactoringToolkitSidecarPolicy
	Toolkit for .NET Refactoring updates to AWS managed policies

	Troubleshooting
	Sidecar logs

	Document history for the Toolkit for .NET Refactoring User Guide

