
AWS Well-Architected Framework

Games Industry Lens

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Games Industry Lens AWS Well-Architected Framework

Games Industry Lens: AWS Well-Architected Framework

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Games Industry Lens AWS Well-Architected Framework

Table of Contents

Introduction .. i
Custom lens availability .. 1

Definitions .. 2
Gaming platform .. 3
Game server ... 4
Game client .. 6
Messaging ... 6
Live game operations (Live Ops) ... 7

General design principles .. 9
Scenarios .. 10

Game hosting for real-time synchronous gameplay .. 10
Game server processes .. 11
Session-based game server hosting with serverless backend ... 12
Multi-Region and hybrid architecture for low-latency games ... 14

Game backends ... 16
Container-based .. 17
Serverless-based .. 19

Game production in the cloud (GPIC) .. 22
CI/CD .. 23
Workstations .. 25

Game analytics pipeline .. 26
Well-Architected pillars ... 29

Operational excellence .. 29
Design principles ... 29
Definition .. 30
Best practices ... 30
Resources .. 44

Security ... 45
Design principles ... 46
Definition .. 46
Best practices ... 46
Resources .. 58

Reliability .. 59
Design principles ... 59

iii

Games Industry Lens AWS Well-Architected Framework

Definition .. 59
Best practices ... 59
Resources .. 69

Performance efficiency .. 70
Design principles ... 70
Definition .. 70
Best practices ... 71
Resources .. 81

Cost optimization ... 82
Design principles ... 82
Definition .. 83
Best practices ... 84
Resources .. 94

Conclusion .. 96
Contributors ... 97
Document history .. 98
Notices .. 99
AWS Glossary ... 100

iv

Games Industry Lens AWS Well-Architected Framework

Introduction

Publication date: November 19, 2021 (Document history)

The AWS Well-Architected Framework helps cloud architects build secure, high-performing,
resilient, and efficient infrastructure for their applications and workloads. Based on five pillars
— operational excellence, security, reliability, performance efficiency, and cost optimization —
Well-Architected provides a consistent approach for customers and AWS Partners to evaluate
architectures, remediate risks, and implement designs that deliver business value.

In this Lens we focus on how to design, architect, and deploy your games workloads in the AWS
Cloud. We define components, explore common workload scenarios, and outline design principles
that help you to apply the Well-Architected Framework. We recommend that you begin designing
your architecture by considering the best practices and questions from the AWS Well-Architected
Framework whitepaper. This document provides supplemental best practices for games industry
customers.

This Lens specifies best practices that are intended to address the unique characteristics of
building and operating games in the cloud based on our experience working with games industry
developers and publishers around the world. It provides guidance on how to design and operate
your environment so that it is cost optimized and scalable for fluctuations in global player demand.
This Lens also provides guidance for securing your game infrastructure and tuning performance in
order to deliver a positive player experience.

This document is intended for those in technology roles, such as chief technology officers (CTOs),
game studio technical directors, architects, developers, and operations team members. After
reading this document, you will understand AWS best practices and strategies to use when
designing architectures for games.

Custom lens availability

Custom lenses extend the best practice guidance provided by AWS Well-Architected Tool. AWS
WA Tool allows you to create your own custom lenses, or to use lenses created by others that have
been shared with you.

To determine if a custom lens is available for the lens described in this whitepaper, reach out to
your Technical Account Manager (TAM), Solutions Architect (SA), or AWS Support.

Custom lens availability 1

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/userguide/lenses-custom.html

Games Industry Lens AWS Well-Architected Framework

Definitions

The AWS Well-Architected Framework is based on five pillars: operational excellence, security,
reliability, performance efficiency, and cost optimization. AWS provides multiple core components
that allow you to design state-of-the-art architectures for your game workloads. In this section, we
will present an overview of key definitions.

For the purposes of this paper, a game architecture encompasses the backend technical
infrastructure required to build and operate a game. Some games might not have social,
multiplayer, or other online features and might not require the use of certain aspects of backend
technical infrastructure that are described in this paper. Refer to Scenarios for a detailed discussion
of the different types of workloads that are frequently deployed to support a game architecture.

The AWS Cloud is built around AWS Regions and Availability Zones. A Region is a physical location
in the world where we have multiple Availability Zones. Availability Zones consist of one or more
discrete data centers, each with redundant power, networking, and connectivity, housed in separate
facilities. Depending on the characteristics of your game, you might want to deploy certain
components of your game architecture into multiple Regions to improve performance for players,
or to deliver customized experiences for players based on their location.

There are many different types of games and the backend technical infrastructure that is required
to support a game will differ depending on the type of game being developed. Popular types of
games include first person shooter (FPS), role playing (RPG), multiplayer online (MMO), Battle
Royale (BR), sports games, and puzzle games. There are also different game interaction modes that
influence the architecture of the game, such as turn-based or simultaneous play, with very different
performance characteristics.

Games are developed to be played on one or more gaming platforms including desktop, web,
mobile, and consoles. They also might feature newer interaction modes, such as augmented reality
(AR), virtual reality (VR), and game streaming platforms. It is becoming a common trend for games
to support cross-platform gameplay, which means that players can save their game progression
and resume gameplay on other platforms. They can also initiate gameplay sessions with players
on other platforms. Video game monetization enables game publishers to generate revenue using
different strategies such as by advertising, digital and retail-based game purchases, in-game
purchases of downloadable content (DLC), known as microtransactions, and through required paid
subscriptions to play the game. Some of the most common key performance indicators (KPIs) in
the games industry include daily active users (DAU), monthly active users (MAU), concurrent users

2

Games Industry Lens AWS Well-Architected Framework

(CCU), session duration, cost per install (CPI), player lifetime value (LTV), and variations of average
revenue per user (ARPU).

Topics

• Gaming platform

• Game server

• Game client

• Messaging

• Live game operations (Live Ops)

Gaming platform

Video games are developed to be played on a gaming platform that provides a player experience,
which is usually comprised of client input controls, graphics, client software (known as the game
client) and hardware, and in some cases platform-exclusive features to support gameplay.

Gaming platforms are generally delineated into the following categories:

• Consoles – Purpose-built entertainment systems that are designed for playing games, which
include popular examples such as Sony PlayStation, Microsoft Xbox, and Nintendo Switch.
Consoles provide the ability to play games by installing physical or digitally distributed game
content onto the console hardware that is manufactured by the gaming platform provider. Using
this definition, a console might be handheld, such as the Nintendo Switch, or stationary and
intended to be used in a home entertainment scenario, such as an Xbox or PlayStation.

• Personal computer (PC) games – Games that are played using computer software that is
installed onto a client machine that can be customized by the player. For this reason, PC gaming
is popular among players because of the flexibility and control that it provides.

• Web games – Games that are designed to be played using a web browser, and which usually
provide the benefit of enabling a player to access the game across platforms (cross-platform) by
default as web browsers can be installed on many different types of devices.

• Mobile games – Games that are developed to be played on a mobile phone, usually with a smart
phone operating system, such as iOS or Android. Mobile games are usually downloaded from a
digital app store and installed onto the phone.

Gaming platform 3

Games Industry Lens AWS Well-Architected Framework

In addition to the above platforms, there are also nascent platforms that are still relatively new
and growing, but have much smaller market share compared to the more predominant platforms.
Examples of gaming platforms in this category include augmented reality (AR), virtual reality (VR),
and game streaming, which is sometimes referred to as cloud gaming. Game streaming involves
rendering the gameplay in the cloud and streaming to a thin client, typically a web browser. Game
streaming allows a player to play a game that is entirely hosted remotely, typically in the cloud by
a game streaming service provider. In game streaming, the player connects to a cloud-based game
through a web browser or a thin client provided by the cloud gaming service provider (gaming
platform).

Game server

Game servers represent one of the most important aspects of the compute infrastructure for your
game. Game servers, sometimes referred to as dedicated game servers, are used when developing
a multiplayer game or when server authoritative processing of gameplay events is required. The
game server is at the center of the game architecture, serving as the location where the core logic
executes, which includes managing player and game state as well as managing the interactions
between the connected game clients and the game server. The game server is usually one of the
most performance-sensitive aspects of a game architecture because it is responsible for processing
the inputs from a player’s game client and properly distributing it to any other connected players
in real-time. A badly performing game server can impact the overall performance of the game
experience. Therefore, it is important to ensure that the game server performance is optimized and
has sufficient capacity, especially when the game is launched and during peak gameplay periods.

For the purposes of this document, a game server (or game server instance) refers to the compute
resources, such as a virtual machine (VM), that hosts one more game server processes. A game
server process represents a single instance of your game server build hosting a game session,
which is an instance of your running game that players can connect to via a player session. For this
reason, we refer to game server process and game session interchangeably in this document, due
to the implied one-to-one relationship between a game session and the game server process that
is hosting it. In AWS, there are multiple options for compute resources to host game servers, all of
which provide access to scalable cloud-based capacity through elastic provisioning of resources.

Amazon EC2 provides cloud-based virtual servers, known as instances, with support for multiple
versions of Linux and Windows. You can create instances and manage them directly like any other
server or virtual machine (VM). Typically, multiple game server processes are deployed to an
instance in order to improve efficiency and reduce costs. Amazon EC2 is a good choice for game
servers if you want the most control over the compute infrastructure.

Game server 4

https://aws.amazon.com/ec2/

Games Industry Lens AWS Well-Architected Framework

Amazon Amazon GameLift provides a fully-managed solution for dedicated game server hosting
in the cloud as well as additional features such as matchmaking with Amazon GameLift FlexMatch.
Amazon GameLift provides a layer of abstraction on top of Amazon EC2 to make game server
management easier and is available in most AWS Regions so that you can host game servers close
to players to reduce latency, achieve high availability, and significantly reduce costs by using Spot
Instances. While Amazon GameLift can be integrated into existing game backends, it is especially
useful for game developers who do not want to develop their own game server management and
matchmaking solutions and want a solution that is managed by AWS and can scale as their game
grows.

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service
that enables you to run Docker-based containers, and Amazon Elastic Kubernetes Service (Amazon
EKS) enables you to run Docker-based containers that are built using Kubernetes. Using container
technologies such as those provided by Amazon ECS and Amazon EKS can help you to improve the
utilization of your compute infrastructure by allowing you to efficiently pack many game server
processes or other game application instances into an EC2 instance. The use of containers can
also improve developer productivity by enabling applications to be hosted using the same Docker
image operating runtime that is used by developers on their local machines during development.
You can further reduce operational overhead by using AWS Fargate, which is a serverless compute
platform for running containers and is compatible with both Amazon EKS and Amazon ECS.
Fargate is best suited for use cases where you want to run game servers in containers without
responsibility for operating the underlying instances that the containers run on.

AWS Outposts allows you to run AWS services in any data center or on-premises facility, which can
enable games to run in on-premises environments and AWS using the same services to support
a hybrid cloud adoption strategy. AWS Local Zones serve as extensions of AWS Regions to allow
you to run your game servers and other latency-sensitive workloads closer to your players or
development teams. Additionally, to reduce global network latency for your game servers, AWS
Global Accelerator can be used to improve performance for player traffic to your game servers.

AWS Lambda is a serverless compute service that allows you to run code without provisioning
or managing servers and is useful for asynchronous game server use cases, such as turn-based
games. Lambda is also well suited for games with lightweight compute requirements, a small
codebase, and where gameplay functionality can be designed using a stateless microservices
architecture. Lambda functions run on an event-driven per-request basis, rather than running as
part of a long-running game server process. Lambda provides the most runtime abstraction of the
options described in this paper because the underlying application is provided out-of-the-box for
developers to choose from to host their code.

Game server 5

https://aws.amazon.com/gamelift/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/fargate/
https://aws.amazon.com/outposts/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/global-accelerator/
https://aws.amazon.com/global-accelerator/
https://aws.amazon.com/lambda/

Games Industry Lens AWS Well-Architected Framework

When selecting your approach for game server hosting, you need to consider various requirements
including operational overhead, legacy codebases, performance requirements, and scale. Amazon
EC2 instances and containers are good options for legacy codebases, as they require the smallest
amount of change to move to the cloud. EC2 instances also allow you to dedicate all the resources
of a compute instance, while containers can make management and high utilization easier to
achieve. Serverless functions offer the highest level of abstraction and allow you to define code
that only runs in response to events, which can reduce costs.

Game client

The game client represents the software, hardware device, or both, that the player uses for playing
a game. The game client provides the software for translating the player’s inputs into messages
that are sent to a server for processing. It's also responsible for handling the incoming responses
from the server and rendering any outputs, such as graphics, to the player. In real-time networked
multiplayer games, the game client usually maintains a persistent network connection to a game
server for the duration of a gameplay session to reduce network latency and minimize processing
time. However, the game client might also interact via representational state transfer (REST) with a
game server or backend services.

Messaging

There are typically three primary categories of messages in games:

• Player engagement messaging targeted at a specific user or cohort of users, such as game invites
or push notifications

• Group messaging between players, such as in-game chat

• Service-to-service messaging, such as JSON messages used to integrate two or more applications

A common strategy for sending and receiving these types messages is to use publisher-subscriber
(pub-sub) and asynchronous processing architecture patterns. AWS provides several services that
can help you to implement messaging in your game.

Amazon Simple Notification Service (Amazon SNS) provides a managed service for delivering
messages between publishers and subscribers using a pub-sub architecture pattern. Publishers
send messages via API to Amazon SNS, which delivers the messages asynchronously to subscribing
applications, and can deliver push notifications directly to mobile clients or desktops with support

Game client 6

https://aws.amazon.com/sns/

Games Industry Lens AWS Well-Architected Framework

for some of the most widely used push notification services out of the box. Amazon SNS can be
used for push notifications to clients as well as service-to-service messaging use cases.

Amazon Simple Queue Service (Amazon SQS) is a fully managed queue service that makes it
easy to integrate game servers and your game regardless of the programming language used in
each. Many games tasks can be decoupled and handled in the background such as updating a
leaderboard or playtime values in a database. This approach is a very effective way to decouple
various parts of your game and independently scale the player-facing features from backend
processing.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that
makes it easy to build data streaming and producer/consumer applications using Apache Kafka,
a popular open-source platform. Kafka is typically used for ingesting and processing real-time
streaming data and can be used for service-to-service messaging

Amazon ElastiCache (Redis OSS) provides a fully managed in-memory data store which includes
support for the popular pub/sub feature of Redis that is commonly used for developing chat room
applications and high-performance service-to-service messaging. Redis also supports rich data
types, such as lists and sets, that enable developers to use Redis for high-performance queuing.

Amazon Pinpoint provides user engagement messaging through email, SMS, voice, and push
notifications. For example, Amazon Pinpoint can be used to deliver user engagement messages
to players to invite them back to the game, and can be used for transactional use cases such as
supporting multi-factor authentication tokens, and order confirmation and password reset emails.

Live game operations (Live Ops)

Live Operations (Live Ops) is a style of game management and operations that treats a game as
a live service and continually delivers new features, updates, promotions, in-game events, and
improvements to the launched game to improve the experience for the player community.

Traditionally, games were delivered as products rather than services, and new content and features
were frequently incorporated into subsequent releases or sequels rather than into the launched
product. With a Live Ops approach to game management, a game operations team can launch a
game and maintain an engaged player community through experimentation, promotions, in-game
events, and new innovations to keep players entertained. Although this approach has the benefit of
unlocking new player engagement strategies and delivering recurring revenue streams, it requires
more operational expertise. For example, to implement a successful Live Ops strategy, a developer

Live game operations (Live Ops) 7

https://aws.amazon.com/sqs/
https://aws.amazon.com/msk/
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/pinpoint/

Games Industry Lens AWS Well-Architected Framework

might need to integrate with cloud services or operate their own backend technical infrastructure,
and require an effective way to identify and respond to issues that arise in the game, or within the
player community, that can negatively impact the player experience.

Live game operations (Live Ops) 8

Games Industry Lens AWS Well-Architected Framework

General design principles

The AWS Well-Architected Framework identifies the following general design principles to facilitate
good design in the cloud for games workloads:

Understand player behavior and usage patterns to evolve the game and protect players: To
drive improvement continually to your game and effectively manage the player experience, it is
important to have visibility into how players interact with game itself and with the rest of the
players in the ecosystem. This helps you understand how to improve the game, manage costs, and
monitor and react to unauthorized usage activity that poses risks to the player experience.

Use technologies that simplify game operations and increase development speed: Prioritize the
adoption of technologies that can help you to improve speed and reduce the operational overhead
of delivering new features and improvements to players. Games are hits-driven and there are many
choices for players to consider, so moving quickly and adapting to change is critical for the success
of a game. Consider whether you are comfortable operating your own software, or if you would
prefer adopting a comparable managed service from AWS, AWS Partners, or both.

Optimize your architecture to improve metrics that reflect actual player experience: As you
adapt and evolve your architecture over time, think about how these improvements and changes
will impact player experience. Games workloads should be able to withstand and minimize the
impact of failures to prevent widespread disruptions to gameplay. Game features and systems
that aren't critically dependent on each other should be de-coupled to reduce the blast radius of
failures and isolate player impacting issues.

Design infrastructure to meet peak player concurrency and dynamically scale as needed:
Infrastructure should be designed to scale to meet player demand. Metrics, such as player session
concurrency and number of logins, can be used to preemptively scale before systems become
overloaded. Reactive system utilization metrics, such as CPU and memory consumption, can be
used to scale after systems become overloaded. By dynamically scaling your infrastructure, you can
reduce the costs of operating your game.

Implement runbooks to improve game operations: Operational runbooks should be used to help
you consistently manage recurring game operations tasks. Runbooks should exist for common
game operations workflows such as investigating and responding to player reports, managing
infrastructure pre-scaling activities to prepare for anticipated large-scale events like new season
launches and game content releases, and to address typical game maintenance activities.

9

Games Industry Lens AWS Well-Architected Framework

Scenarios

In this section, we cover several scenarios that are common in a game architecture. Each scenario
includes the common characteristics that drive the design and an example reference architecture
diagram.

Scenarios

• Game hosting for real-time synchronous gameplay

• Game backends

• Game production in the cloud (GPIC)

• Game analytics pipeline

Game hosting for real-time synchronous gameplay

Real-time synchronous gameplay allows for two or more players to participate and interact in a
game simultaneously where the state of the gameplay is shared between the connected players
to create a real-time experience. Examples of synchronous games include first-person shooters,
massively multiplayer online games (MMOG), sports and action games, or any online game where
two or more players must be connected in order to share the play experience in real time.

Characteristics of real-time synchronous gameplay architectures include:

• Games are hosted as game sessions through game server processes that run on game servers.
Game servers are hosted in multiple data centers and AWS Regions globally.

• Game clients can join a game session either by requesting a match from a centralized
matchmaking service hosted in the game backend platform, or by selecting a match from a
predefined list of available game servers. The game client is provided with an IP address and port
to connect to.

• Many synchronous games are latency sensitive, for example, first-person shooters and massively
multiplayer online games. These games typically have a pre-defined latency tolerance that is
carefully measured and optimized to reduce the lag experience that can sometimes occur for
players in high-latency situations. This latency information is determined by instrumenting game
clients to ping the available game server locations to capture metrics such as latency, network
jitter, and other important metrics for the gameplay experience. These metrics are sent to a
central metrics collection service in the game backend platform so that live operations teams can

Game hosting for real-time synchronous gameplay 10

Games Industry Lens AWS Well-Architected Framework

monitor game health. During the matchmaking process, game clients can provide their current
latency data as one of the request parameters when requesting a match, and the matchmaking
service uses can use that latency data as one of the variables when selecting a game server to
host the player.

• Typically, the gameplay is conducted over a mix of protocols — game servers using faster UDP-
based messaging, and matchmaking, authentication, and other client-server traffic using HTTPS.

• Game servers are frequent targets for malicious activities and should be protected with a DDoS
protection solution like AWS Shield Advanced.

Game server processes

The following diagram illustrates a typical game server architecture. It describes the logical
relationship between a game server instance and the game server processes that host game
sessions.

Game server processes 11

Games Industry Lens AWS Well-Architected Framework

Logical game server architecture

• An Amazon EC2 instance is used as a game server, also known as a game server instance. The
game server hosts one or more game server processes and each is running a copy of your game
server build. Typically, multiple game server processes are running on a game server instance to
utilize compute resources efficiently and reduce costs. When a game session is active and ready
to host player sessions, its status is updated with the game backend (usually a matchmaking
service) so that it can begin to be used to host players.

• The game backend can provide the player's game client with the IP address and server port that
is hosting a game session so that they can connect to play.

Session-based game server hosting with serverless backend

When developing an architecture for your game, you should consider the features and capabilities
you need, and the level of operational management overhead that you are prepared to own. To
provide the best balance between ease of operations and flexibility, you can build your game using
managed services from cloud providers that give you the control to develop and customize your
own custom game features, while also reducing your burden to deploy and manage infrastructure.

Hosting a session-based multiplayer game requires having server infrastructure to host the game
server processes as well as a scalable backend for matchmaking and session management. The
following reference architecture shows how Amazon GameLift managed hosting and a serverless
backend can be used to manage your session-based games.

Session-based game server hosting with serverless backend 12

Games Industry Lens AWS Well-Architected Framework

Amazon GameLift managed hosting for session-based games

The diagram describes the process of getting players into games running on Amazon GameLift
managed game hosting. It includes the following steps:

1. Game client requests an Amazon Cognito identity from Amazon Cognito. This can optionally be
connected to external identity providers.

2. The game client receives temporary access credentials and requests a game session through an
API hosted with API Gateway by using the credentials from Amazon Cognito.

3. API Gateway invokes an AWS Lambda function.

4. The Lambda function requests player data from a DynamoDB table. The Amazon Cognito
identity is used to securely request the correct player data because the authenticated identity is
provided in the request.

5. Using the correct player data for any additional information (like player skill level), the Lambda
function requests a match through Amazon GameLift FlexMatch matchmaking. You can define
a FlexMatch matchmaking configuration with JSON-based configuration documents. The game
client can generate latency metrics by pinging server endpoints in various Regions, and the
latency data can be used to support latency-based matchmaking.

Session-based game server hosting with serverless backend 13

Games Industry Lens AWS Well-Architected Framework

6. After FlexMatch matches a group of players with suitable latency to a Region, it requests a game
session placement through a Amazon GameLift queue. The queue contains fleets with one or
more registered Region locations.

7. When the session is placed on one of the fleet's locations, an event notification is sent to an
Amazon SNS topic.

8. A Lambda function will receive the Amazon SNS event and process it.

9. If the Amazon SNS message is a MatchmakingSucceeded event, the Lambda function writes
the result to DynamoDB with the server port and IP address. A time-to-live (TTL) value is used to
make sure that matchmaking tickets are deleted from DynamoDB when they no longer needed.

10.The game client makes a signed request to API Gateway to check the status of the matchmaking
ticket on a specific interval.

11.API Gateway invokes a Lambda function that checks the matchmaking ticket status.

12.The Lambda function checks DynamoDB to determine whether the ticket has succeeded. If it has
succeeded, the Lambda function sends the IP address, port, and the player session ID back to the
client. If the ticket hasn't succeeded yet, the Lambda function sends a response declaring that
the match is not ready.

13.The game client connects to the game server using the port and IP address provided by the
backend. It sends the player session ID to the game server and the game server validates it using
the Amazon GameLift Server SDK.

Alternatively, you can modify the preceding architecture to use API Gateway WebSockets with
Amazon GameLift. In this approach, communication between the game client and your game
backend service occur using a websockets-based implementation. This implementation can be used
so that the game backend Lambda function initiates a server-side message to the game client over
a WebSocket rather than implementing a polling model.

Multi-Region and hybrid architecture for low-latency games

This section describes a multi-Region and hybrid architecture for low-latency games.

Multi-Region and hybrid architecture for low-latency games 14

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_designbackend_arch_websockets.html

Games Industry Lens AWS Well-Architected Framework

Reducing latency with network acceleration and game servers deployed globally

1. Players in a globally available game can originate from anywhere. When a player requests
a game session or match, their game client sends a request to the game backend service
registered with Amazon Route 53.

2. The game backend is deployed in multiple AWS Regions closest to player populations. Each
game backend includes a Regional matchmaking service that finds a game session from
across the game Regions. Although a player's matchmaking request is processed by a Regional
matchmaking service near them, the matchmaking service is capable of routing a player to a
game session in any game Region, if necessary. This action improves resiliency and performance.
Additionally, each game backend service uses AWS WAF and Shield Advanced to provide layer-7
web filtering and bot control, and protections against distribution denial of service (DDoS). You
have many options for how you build your game backend service, such as serverless, containers,
EC2 instances, or hosting the game backend service in your own data centers.

3. To improve the experience for players by reducing network latency and jitter, a custom routing
accelerator is deployed using AWS Global Accelerator, which automatically optimizes the
routing of traffic from the game client to the game server. You configure the custom routing
accelerator to map Global Accelerator listener ports to your game server's EC2 instance port.
The game client connects to the Global Accelerator IP and port that deterministically routes the
players to the correct game server IP and port that is hosting the game session.

Multi-Region and hybrid architecture for low-latency games 15

https://docs.aws.amazon.com/global-accelerator/latest/dg/about-custom-routing-how-it-works.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/about-custom-routing-how-it-works.html

Games Industry Lens AWS Well-Architected Framework

4. Your game includes player-friendly logical game Regions that represent a collection of game
server hosting locations that are geographically close to each other, such as North America, or
Asia Pacific. You might also choose to create more granular regions, such as North America East
and North America West. To reduce latency and increase geographic coverage, a combination of
different game server hosting solutions can be used to improve the player experience. Prioritize
the use of AWS Regions where possible, as these locations are fully featured and contain the
largest capacity footprint.

5. Use Local Zones to host game servers in geographic locations of underserved players where you
do not have existing hosting facilities or an AWS Region is not available.

6. Deploy Outposts into your existing on-premises data centers and co-location providers to
create a seamless control plane and management experience across each deployment location
using fully-managed racks and rack-mounted servers. Outposts are also beneficial if you don't
have existing server capacity in your on-premises environment. However, if you want a hybrid
implementation with software running on your own existing server infrastructure, you can
use EKS Anywhere, which allows you to create and run clusters of containers on your own
infrastructure with connectivity back to Amazon EKS, which provides a consistent console view
of your Kubernetes clusters in AWS and on premises.

Game backends

Game backends are used to manage game and player state, as well as integrate social- and
platform-level features into the game that support the gaming experience. Player profile
management, item and inventory storage, and stats and leaderboards are examples of services
hosted in game backends. Game backends are typically built as REST APIs that are accessed by
clients using HTTPS. However, other approaches are also common, such as WebSockets that
provide bidirectional channels for use cases, such as client notifications for in-game chat and
presence. Game backends can be deployed using a variety of different deployment architectures,
including using instances, containers, or a serverless architecture.

Topics

• Container-based game backend architecture

• Serverless-based game backend architecture

Game backends 16

Games Industry Lens AWS Well-Architected Framework

Container-based game backend architecture

This section outlines a container-based game backend architecture

Hosting a game backend using containers

1. Players access the game using game client software, which can be distributed to them through
a gaming platform, a digital storefront, or a direct download from a content delivery network

Container-based 17

Games Industry Lens AWS Well-Architected Framework

(CDN), such as Amazon CloudFront. CDNs provide caching at edge locations to accelerate the
performance for users downloading content. For example, CloudFront can be used to distribute
the game client software to your players as well as the game assets and other content.

2. Global Accelerator provides traffic acceleration and customizable controls for routing traffic
from player game clients to your load balancers as well as routing traffic across Regions
for multi-Region and failover purposes. The custom domain names for your game backend
REST APIs are configured in Route 53 to route traffic to Global Accelerator endpoints. Shield
Advanced provides DDoS mitigation for your accelerator and game backend.

3. NAT Gateway and Application Load Balancer are deployed to public subnets in each of the
Availability Zones used by the game backend to help ensure high availability with the Region.
Web Application Firewall is deployed on the Application Load Balancer to provide layer-7 web
traffic filtering.

4. The game backend is hosted as a collection of individual container-based microservices
deployed into an Amazon EKS cluster in private subnets spread across Availability Zones for
resiliency. Automatic scaling dynamically adjusts the capacity of the services and cluster nodes
based on resource utilization, which is typically correlated with player demand. Whereas Cluster
Autoscaler automatically adjusts the number of nodes in the cluster, the Horizontal Pod
Autoscaler automatically scales the pods deployed into the cluster.

5. Game and player data is stored in backend databases and caches that are deployed into private
subnets across Availability Zones with replication between primary and replica nodes. Aurora
is a popular choice for use cases such as player profiles, entitlements, and in-game purchasing,
which can have more complex querying requirements and may benefit from the relational data
modeling capabilities of MySQL and PostgreSQL. ElastiCache for Redis is useful for building
high-performance leaderboards, pub/sub messaging, and for caching frequently accessed data
to reduce latency and load on databases. DynamoDB is a fully managed NoSQL data store
that is ideal for unpredictable access patterns and the ability to scale to virtually unlimited
throughput for use cases such as player and game state data, session data, inventory and item
stores, or use cases where you want a global database with minimal overhead.

6. Asynchronous processing workflows should be used to perform work that can be done in the
background, such as updating leaderboards or sending friend requests. Configure your game
backend to push this type of work into Amazon SQS queues to help you scale as your game
grows, or consider using Amazon SNS topics to distribute the work between many consumer
application queues for parallel processing. Use Lambda functions to perform the processing
in an event-driven manner to reduce your compute infrastructure costs and management
overhead. For workflows that are long-lived or require task coordination with multiple steps,

Container-based 18

Games Industry Lens AWS Well-Architected Framework

consider orchestrating the entire workflow using Step Functions. Amazon EventBridge can be
used to initiate functions to respond to AWS service and custom application events.

Serverless-based game backend architecture

Many game developers do not want to manage infrastructure, and instead prefer to build their
games using technologies that allow them to focus on software. A serverless architecture is
recommended in this scenario because it allows you to build and release features more quickly,
and with less operational overhead. Serverless architectures are designed using cloud services that
can scale dynamically based on demand without needing to setup, manage, and scale servers. The
following reference architecture illustrates how to build a game on using a serverless architecture.

Serverless-based 19

Games Industry Lens AWS Well-Architected Framework

Serverless-based 20

Games Industry Lens AWS Well-Architected Framework

Serverless-based game backend reference architecture

This reference architecture illustrates a web-based trivia game that provides single player and
multiplayer features.

• Player authentication: Players authenticate using Amazon Cognito, which provides secure
authentication with a user directory for player identity management.

• Game logic as serverless functions: All of the game's features and backend business logic run as
Lambda functions that are initiated in response to events, which keeps costs down because you
only pay when the function runs. Lambda gives you the flexibility to write each game feature as
a separate microservice using a programming language of your choice. For example, you might
choose to develop .NET Lambda functions if you have experience using C# to build Unity games,
or you might choose to develop Node.js Lambda functions if you desire to program a frontend
and backend for a web-based game both in JavaScript.

• NoSQL Data Store for game and player data: Use DynamoDB to store your player and game
data, as it is purpose-built for storing large amounts of data from microservices. As illustrated
in this architecture, it is a best practice to use separate data stores for each game feature's data
storage needs, which makes it easier for you to monitor and manage the features independently.
This also helps create boundaries of separation if feature or service ownership changes within
your team. In this reference architecture, DynamoDB tables are used to store data such as
connection state, game details, player progress, and leaderboard information.

• Single player gameplay: Single player features allow players to perform actions like selecting
and playing a game and viewing the leaderboard. These features are implemented as RESTful
backend services hosted with an Amazon API Gateway HTTP API that invokes the appropriate
Lambda function to get and set data in DynamoDB tables. When gameplay completes, the
backend also sends notifications to SNS topics that initiate Lambda functions asynchronously to
store the player's progress and stats.

• Multiplayer gameplay: Multiplayer game features require the players to be able to interact with
the game for point-to-point communication, as well as broadcast and receive updates from other
connected players. A WebSockets implementation is suitable for point-to-point communication
in a lightweight game, such as trivia. Players can establish a WebSockets connection to Amazon
API Gateway WebSockets, which manages the connection and only invokes the Lambda functions
when there are messages to send or receive for a player. For use cases where one-to-many
communication is required between players, AWS IoT Core provides support for messaging using
WebSockets over MQTT, which allows clients to subscribe to topics and act on the messages
it receives. In this architecture, WebSockets over MQTT is used to support use cases such

Serverless-based 21

Games Industry Lens AWS Well-Architected Framework

as broadcasting live in-game updates and asking questions to all connected players. As an
alternative to AWS IoT Core, you might choose Redis Pub/Sub for message delivery, or Redis
Streams if you need message retention.

• Use VPC-enabled Lambda functions to access resources in your private subnets: Configure
VPC-enabled Lambda functions to access resources in your VPC's private subnets, such as
ElastiCache for Redis, which is used to reduce query times for low-latency datasets like live
leaderboards.

For more information, refer to the Simple trivia service code sample.

Game production in the cloud (GPIC)

Game production in the cloud (GPIC) refers to the infrastructure and tools that are required for the
game development lifecycle to build, test, and develop a game. Game development is collaborative
between users and the infrastructure requirements frequently change throughout the stages of
development. Many game developers are embracing globally distributed and remote development
teams, which requires technology that supports this type of development. Game developers can
host all or part of these environments in AWS and use the global availability of AWS Regions to
place resources closer to users, and manage their development environments more cost effectively
by scaling compute and storage as needed.

The environments can vary depending on game developer needs, but they typically include
developer workstations for artists, designers, engineers, QA testers, contractors, and other
personnel to perform their work. These environments also typically include a build farm comprised
of source code repositories for users to check-in their changes and the CI/CD infrastructure for
building, packaging, and testing the developed artifacts.

These game production architectures have the following characteristics:

• Users should be able to access a virtual workstation through a web browser or local desktop
client, such as NICE DCV, that provides them with a low latency streaming session to access the
same software and tools that they would have access to if they were working on a machine in an
office or development studio. These virtual workstations, typically a cloud-based server, should
allow a user to collaborate and work on their projects entirely in a cloud environment over a
LAN or WAN. When users are not actively using the machines, their work should be backed up
to durable cloud storage, for example a source control repository or file system such as Amazon

Game production in the cloud (GPIC) 22

https://github.com/aws-samples/serverless-trivia-game
https://aws.amazon.com/hpc/dcv/
https://aws.amazon.com/efs/

Games Industry Lens AWS Well-Architected Framework

Elastic File System (EFS) and Amazon FSx, and their machine should be shut down to reduce
costs.

• Source control repositories, such as Perforce, should be designed with high availability using
replication between Availability Zones or between on-premises environments with backups
stored in cloud storage such as Amazon S3. For example, a cloud-based Perforce server should
include a primary commit server hosted in one Availability Zone with replication to a standby
server hosted in another Availability Zone in the same Region.

• Game development build farm resources should be designed with automatic scaling so that
compute resources are provisioned as they are required, and EC2 Spot Instances should be used
to reduce the costs incurred when scaling out the number of servers required for builds.

Topics

• Game production in the cloud – CI/CD

• Game production in the cloud – Workstations

Game production in the cloud – CI/CD

You must have CI/CD infrastructure when developing games. A game development CI/CD pipeline
is typically comprised of highly available source control servers and storage, compute resources
to run your builds, and software to perform automated testing, along with the proper network
connectivity from your development machines. The following reference architecture demonstrates
how to offload game builds from remote or on-premises game development environments to the
AWS Cloud to aid developers in migrating or building new build farms.

CI/CD 23

https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/spot/

Games Industry Lens AWS Well-Architected Framework

Offload game builds to the cloud

1. AWS Direct Connect provides a low latency, private dedicated connected to AWS for in-office
developers. Remote developers use AWS Client VPN.

2. AWS Transit Gateway simplifies network management for connectivity between VPCs and from
on-premises networks.

3. Perforce manages source and version control (CI) backed by Amazon EBS storage for quickly
accessed, persistent data. Perforce Helix Core (P4D) is available in the AWS Marketplace.

4. Commits start a build (CD) in Jenkins when developers push changes to Perforce tied to
a branch. Perforce triggers POST a JSON payload to Jenkins. The Jenkins controller calls
engine “headless” CLI commands to run and parallelize the build process across ephemeral,
Docker nodes (such as Amazon EC2 Spot Instances), or Amazon EC2 On-Demand Instances.
Developers can increase availability by using two Jenkins controllers, one in each Availability
Zone, behind a load balancer. For some engines, developers might need additional licensing
infrastructure configured in additional subnets to vend licenses for the build context each time a
concurrent build is run.

5. The Xcode portion of iOS builds is offloaded to Amazon EC2 Mac instances to sign, build, and
export the .IPA file, splitting the process and reducing build times. AWS Secrets Manager holds
provisioning profiles, private keys, and certificates.

CI/CD 24

Games Industry Lens AWS Well-Architected Framework

6. Build artifacts are delivered to Amazon S3, which sends notifications of success or failure. AWS
Device Farm enables automated testing.

Game production in the cloud – Workstations

The game development process can be highly distributed with teams working on various aspects
of the game from many locations, and it is important that they have access to workstations and
shared storage in order to be productive. In a simple scenario, a game can be developed by a single
game development studio located in a specific office location. However, in practice, it is more
common for developers to contribute to a game project from many geographic locations, such
as a single game studio with many globally distributed teams in different cities or countries, or
work-for-hire studios, contractors, and co-development studio partners who may support a project
by bringing specific expertise such as art development or game testing, QA, and localization
specialization to the project. Game development also must be able to support remote work so
that developers can be productive from home or other locations. An increasingly popular trend in
the games industry is for newly developed studios to be fully remote without the expectation of
working in an office environment.

The following reference architecture demonstrates how to use AWS for hosting remote game
development workstations using the NICE DCV protocol.

Workstations 25

Games Industry Lens AWS Well-Architected Framework

Stream game development from anywhere with NICE DCV

1. NICE DCV is a streaming protocol that supports 4K, 60-FPS streaming. Developers using a
browser connect via TCP connections whereas desktop clients can use QUIC UDP over port 8443
for increased performance.

2. Developers use AWS Client VPN for a secure connection to network interfaces in the
workstation subnets with source network address translation (SNAT).

3. Amazon Route 53 provides private DNS for the resources in the VPC as well as inbound and
outbound DNS forwarding.

4. AWS Directory Service provides managed Microsoft Active Directory to enable local game
project storage mapped to individual users.

5. Workstations are created using an Amazon Machine Image (AMI) built with Image Builder.
Images include NICE DCV Server, developer software, registry changes, and drivers such as
GPU gaming drivers or peripheral drivers. AWS Marketplace includes common AMIs used for
workstations.

6. Fleets of workstations use graphics Amazon EC2 instance types that provide GPUs and are
scaled using EC2 Auto Scaling groups.

7. A Session Manager Broker enables management of NICE DCV sessions.

8. Local file storage of projects is hosted in Amazon FSx for Windows File Server. Developers
commit to a separate CI/CD pipeline by pushing from local storage to source control.

Game analytics pipeline

Game developers are increasingly looking for ways to better understand player behavior so that
they can improve the gameplay experience to retain and grow their player base. Game analytics
represents the technical infrastructure and processes that is required to understand and analyze
all of the data that is generated from the game and related services. This typically requires the use
of an analytics pipeline architecture that can support this end-to-end process, such as the Game
Analytics Pipeline solution implementation.

Game Analytics architectures have the following characteristics:

• Data sources send data in a common format such as JSON and typically include game servers
and game backend services, as well as game clients including PC, mobile devices, and game
consoles.

Game analytics pipeline 26

https://aws.amazon.com/solutions/implementations/game-analytics-pipeline/
https://aws.amazon.com/solutions/implementations/game-analytics-pipeline/

Games Industry Lens AWS Well-Architected Framework

• A game analytics pipeline automates the entire workflow of ingesting and storing the raw data,
and processing it into usable output formats so that it can be analyzed efficiently and cost
effectively by data consumers, such as end users and analytics applications.

• Game analytics pipelines provide support for ingesting and processing high volumes of real-time
data in order to scale as a game grows.

• Provide support for both real-time and batch reporting use cases. For example, real-time
dashboards and alerts are typically used by Live Ops teams to monitor game infrastructure and
player behavior to detect issues. Data analyst teams typically rely on ad-hoc and batch reporting
to understand trends over time.

Serverless game analytics pipeline for gameplay telemetry

Game data is ingested from game clients, game servers, and other applications. The streaming data
is ingested into Amazon S3 for data lake integration and interactive analytics. Streaming analytics
processes real-time events and generates metrics. Data consumers analyze metrics data in Amazon
CloudWatch and raw events in Amazon S3.

1. Solution API and configuration data: Use Amazon API Gateway to provide a REST API
for administering your game analytics pipeline and storing configuration data in Amazon

Game analytics pipeline 27

Games Industry Lens AWS Well-Architected Framework

DynamoDB using Lambda functions. You can build an internal portal on top of this API or a
custom command line interface for administration. REST API also provides server-authentication
for ingesting gameplay data from data sources and forwarding the telemetry data to Amazon
Kinesis Data Streams for real-time processing and ingestion into storage.

2. Events stream: Kinesis Data Streams captures streaming data from your game for data
processing and storage.

3. Streaming analytics: Managed Service for Apache Flink analyzes streaming event data from
the Kinesis Data Streams and can generate custom metrics and alerts that are published to
CloudWatch using Lambda functions.

4. Metrics and notifications: Use Amazon CloudWatch to monitor your solution's metrics, logs,
and alarms. Use Amazon SNS for sending notifications to on-call engineers and other data
consumers.

5. Streaming ingestion: Use Kinesis Data Firehose to easily consume your streaming data from
Kinesis Data Streams and deliver it to your data lake in Amazon S3 for long-term storage,
transformation, and integration with other data.

6. Data lake integration and ETL: Use Glue for ETL processing workflows and to organize your
metadata in the Glue Data Catalog, which provides the basis for a data lake for integration with
flexible analytics tools.

7. Interactive analytics: End users can use Amazon Athena to perform ad-hoc interactive queries
on the datasets stored in Amazon S3, and QuickSight can be used to build dashboards.

Refer to the Game Analytics Pipeline for an automated reference implementation of an analytics
pipeline that can be deployed into your account using CloudFormation.

Game analytics pipeline 28

https://aws.amazon.com/solutions/implementations/game-analytics-pipeline/

Games Industry Lens AWS Well-Architected Framework

Well-Architected pillars

This section describes the Games Industry Lens in the context of the five pillars of the Well-
Architected Framework. Each pillar discusses design principles, definitions, best practices,
evaluation questions, considerations, key services, and useful links.

Pillars

• Operational excellence

• Security

• Reliability

• Performance efficiency

• Cost optimization

Operational excellence

The operational excellence pillar focuses on best practices for deploying and operating cloud-based
games at any scale. It is important to focus on operational excellence to maintain a positive player
experience and take preventative measures to prepare for and recover from issues that impact their
experience.

Design principles

In addition to the design principles from the Well-Architected Framework whitepaper, the
following design principles can help you to achieve operational excellence.

Define measurable and achievable objectives for game operations teams, adapt as necessary:
Due to the hits-driven nature of games, it is difficult to determine ahead of time how many players
will show up to play your game when it launches, or what expectations players will have for your
ongoing game operations. It is important to set ambitious but achievable goals with stakeholders
and design an approach that can be scaled up if your game exceeds expectations and scaled down
while game development teams optimize the player experience. Adequately prepare and test
ahead of time to meet these requirements, and make sure that business and technical stakeholders
are aligned on target objectives for operating the game. With targets defined, the game teams are
able to achieve an appropriate balance between cost and performance during planning, designing,
provisioning, deploying, and operating the game backend infrastructure.

Operational excellence 29

Games Industry Lens AWS Well-Architected Framework

Use operational runbooks to proactively plan and pre-scale for game launches and special
events: Game operations teams should coordinate with business stakeholders to model projections
for anticipated peak player concurrency for events and perform proactive planning to pre-scale
infrastructure capacity ahead of time. Due to the fluctuating nature of player traffic during events,
prior planning and pre-scaling activities should augment your existing automated scaling systems
to improve your chance of success during an event and ensure that you have enough resources to
provide a positive player experience. Develop operational runbooks to ensure consistency in the
process.

Establish an operating model for receiving, investigating, and responding to player support
requests: Post-launch, it is important to monitor reports of complaints and issues with the game.
Implement appropriate systems to interact with players in a secure and effective manner to
adequately resolve player issues and such as community forums, social media, e-mail, ticketing
systems, call centers or automated chat bot solutions.

Definition

Extending the operational excellence pillar in the Well-Architected Framework for cloud-based
games. Through this lens, we will review how each of the following factors contribute towards
operational excellence for cloud-based games.

There are three best practice areas for operational excellence of games workloads in the cloud:

• Prepare

• Operate

• Evolve

Best practices

The following topics are best practices for your cloud architecture.

Topics

• Prepare

• Operate

• Evolve

Definition 30

Games Industry Lens AWS Well-Architected Framework

Prepare

GAMEOPS01 - How do you define your game's live operations (LiveOps) strategy?

GAMEOPS_BP01: Use game objectives and business performance metrics to develop your live
operations strategy.

You should consult business stakeholders, such as game producers and publishing partners, to
determine objectives and performance metrics for a game. This can help you to develop plans
for how you will manage the game, including defining your maintenance windows, software and
infrastructure update schedules, and system reliability and recoverability goals.

For example, you might define targets for player concurrency (CCU), daily and monthly active user
targets (DAU/MAU), infrastructure budget, financial targets, or other performance metrics such
as the frequency for release of new content and features, or the frequency of in-game events and
promotions to increase player engagement. These objectives and metrics feed into decisions about
the game design, release management, observability, and support that is needed for efficient
operations.

Your game might have an objective to release new content updates at least once each month with
no downtime during release. This information can help you to define your release deployment
strategy and coordinate the scheduling of required maintenance that may require downtime at
other times throughout the month and contribute towards your availability SLA.

These metrics can also help you to determine at which stage of your game's lifecycle you should
incorporate a live operations team (Live Ops) to monitor game health, collect direct game
feedback, and build streamlined and automated release processes. For example, a new game might
wait until a certain scale is achieved, measured by active player count, revenue, or another set of
metrics, before setting up a dedicated live operations team. An established game development
studio might already have live operations experience, perhaps for their other games, so they’d only
need to on-board the new game.

GAMEOPS_BP02: Validate and test your existing game software before reusing it in your game

Organizations tend to reuse existing components and source code (from a previous game) to save
on development time and cost. These legacy components and/or code may not be subjected to a
thorough review, or have detailed integration testing, and instead rely on their past performance.

Best practices 31

Games Industry Lens AWS Well-Architected Framework

While reuse helps improve productivity, it can also introduce the risk of reintroducing past
performance and stability issues into a new project. Therefore, when reusing existing components
and source code from previous games, robust testing should be implemented.

For example, if the source code and components that were designed, written, and tested for Game
A are reused in Game B, they might not be able to handle all the conditions that Game B requires.
During a production incident, the developers might not have sufficient knowledge to debug and
fix that code/component, or the time to rewrite it to alleviate their operational pain. If the original
authors of the code are unavailable, that can increase the time to implement appropriate fixes. It
is recommended that if previously used code or components had an issue, replacing or fixing them
must be a priority before they are used again, without waiting for them to impact operations again.

GAMEOPS02 - How do you structure your accounts for hosting your game environments?

GAMEOPS_BP03: Adopt a multi-account strategy to isolate different games and applications
into their own accounts.

A game architecture deployed in AWS should use multiple accounts that are logically organized to
provide proper isolation, which reduces the blast radius of issues and simplifies operations as your
game infrastructure scales. AWS accounts that host game infrastructure are typically grouped into
the following logical environments:

• Game development environments (Dev) are used by developers for developing the software
and systems for the game.

• Test or QA environments are used for performing integration testing, manual quality assurance
(QA), and any other automated testing that must be conducted.

• Staging or pre-production environments are used for hosting final built software so that load
testing and smoke testing can be conducted prior to launching to production.

• Live or production environments are used for hosting the live software and infrastructure and
serving production traffic from players.

• Shared services or tools environments provide access to common platforms, software, and
tools that are used by many different teams. For example, a central self-hosted source control
repository and game build farm might be hosted in a shared services account.

• Security environments are used for consolidating centralized logs and security technologies that
are used by teams that focus on cloud security.

Best practices 32

Games Industry Lens AWS Well-Architected Framework

For game infrastructure on AWS, it is recommended to create separate accounts for each game
environment (dev, test, staging, prod), as well as accounts for security, logging, and central shared
services.

Typically, smaller game development studios that manage a limited number of infrastructure
resources, usually a few hundred servers or less, may desire to create one AWS account for each
of these environments, for example, one production account, one development account, and one
staging account. However, as your game infrastructure or team size grows over time, this simplified
model may not scale well. When setting up these environments, it is important to consider that
many AWS services share resource and API-level Service Quotas for an entire account within a
particular Region. This must be considered when determining how to logically organize accounts.
AWS accounts only incur cost for consuming services deployed into them. Therefore, this provides a
way to effectively reduce resource contention and service quotas, particularly as your game grows
and more developers need access to build and manage resources.

Based on our experience working with larger game development studios that typically operate
thousands of servers with hundreds of developers accessing resources, we recommend to design
a more fine-grained account structure where individual applications supporting your game
have their own development, test, staging, and production accounts for each. Our experience
supporting large and successful games shows that it is difficult and time consuming to re-design
your AWSmulti-account strategy after you have launched your game due to the complexity in
planning and migrating live systems. Consider your future scaling needs when determining the
right multi-account structure.

AWS Organizations can be used to set up a hierarchy and grouping of AWS accounts, and define
organizational units (OUs) to apply common OU-level policies to them through service control
policies (SCPs). AWS Organizations helps you centrally manage and govern your environment as
you grow and scale your resources. You can programmatically create new accounts and allocate
resources, group accounts to organize your workflows, apply policies to accounts or groups for
governance, and simplify billing by using a single payment method for all of your accounts.
Additionally, Organizations is integrated with other services so that you can define central
configurations, security mechanisms, audit requirements, and resource sharing across accounts in
your organization.

AWS Control Tower provides the easiest way to set up and govern a secure, multi-account
environment, called a landing zone. Control Tower creates your landing zone using AWS
Organizations, bringing ongoing account management and governance as well as implementation
best practices based on AWS’s experience working with thousands of customers as they move to

Best practices 33

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://aws.amazon.com/organizations/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://aws.amazon.com/controltower/

Games Industry Lens AWS Well-Architected Framework

the cloud. AWS Config, AWS Trusted Advisor, and Security Hub are services that provide with an
aggregated or centralized view of your account’s hygiene.

Such isolation allows you to set up custom or individual permissions and guardrails to each game
environment. Production accounts should have all the necessary guardrails, access restrictions,
monitoring and alerting, and security tools, while non-production accounts may not require the
same level of guardrails and permissions. Non-production environments can be automated to
shutdown resources after hours and save costs. Separation of accounts at this level of granularity
makes it easier to monitor infrastructure costs for each of the environments supporting a game.

The following is an example of a multi-account structure for a game company using AWS
Organizations, and organizational units (OUs) to logically group AWS accounts into separate
environments and studios. In this example, OUs are used to group together accounts based on their
environment, and then based on the studio that operates the environment. This demonstrates
how you can create a nested hierarchy to allow separate applications and games to be deployed
into their own accounts, which can be useful if you develop and operate multiple games. Refer to
the documentation and whitepapers provided in the resources section of this pillar to learn about
additional strategies that you can consider for organizing your multi-account strategy.

Best practices 34

https://aws.amazon.com/config/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://aws.amazon.com/security-hub/

Games Industry Lens AWS Well-Architected Framework

Best practices 35

Games Industry Lens AWS Well-Architected Framework

Example of account structure for game environments

GAMEOPS_BP04: Organize infrastructure resources using resource tagging.

To effectively manage and track your infrastructure resources in AWS, it is recommended to use
proper resource tagging and grouping that can help identify each resource’s owner, project, app,
cost-center, and other data. Tagged resources can be grouped together, usingresource groups,
which assists with operational support.

As a best practice, you should define tagging policies. Typical strategies include resource tags for
identifying the resource owner, such as team name or individual name, the name of the game/app/
project name, the studio name, environment (such as dev, test, prod, staging, or common), and the
role of the resource (such as, database server, web server, dedicated game server, app server, or
cache server). You can add any other tags to help with business and IT needs. AWS Config can also
help to enforce a tagging policy at resource creation and update time. Tags and resource groups
are available from the AWS Management Console, the AWS CLI, and API operations.

GAMEOPS03 - How do you manage game deployments?

GAMEOPS_BP05: Adopt a deployment strategy that minimizes impact to players.

You should incorporate a deployment strategy for your game software and infrastructure that
minimizes the amount of downtime that keeps players out of your game. While certain types of
updates might require installing new updates to the game client, the game backend should be
designed to minimize or eliminate the need for downtime during deployments.

One of the most important steps to consider when developing a game deployment strategy is to
determine how your game infrastructure will be managed. It is a best practice to manage your
game infrastructure using an infrastructure as code (IaC) tool such as AWS CloudFormation or
Terraform by Hashicorp to reduce human errors during environment preparation. Infrastructure
templates can be deployed and tested in automated pipelines, which allows you to create
consistency in the configuration of different game environments.

There are several deployment strategies that can be used for a game:

Rolling substitution: The primary objective of a rolling substitution for deployment is to perform
the release without shutting down the game and without impacting any players. It is important

Best practices 36

https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-laying-the-foundation/tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_tag-policies.html
https://aws.amazon.com/config/
https://docs.aws.amazon.com/config/latest/developerguide/required-tags.html
https://aws.amazon.com/cloudformation/
https://www.terraform.io/

Games Industry Lens AWS Well-Architected Framework

that the upgrade or changes that are to be performed are backward compatible and will work
adjacent to the previous versions of the system.

As the name suggests, in this deployment the server instances are incrementally replaced
(substituted or rolled-out) by instances running the updated version. This rolling substitution can
be performed in a few different ways. For example, to implement rolling updates to a fleet of
dedicated game servers, a typical approach involves creating a new Auto Scaling group of EC2
instances that contain the new game server build version deployed onto them, and then gradually
routing players into game sessions hosted on this new fleet of servers. If there is an associated
game client update that is required as a prerequisite in order to use the new game server build,
then you must include a validation check to ensure that only players that have this new game client
update installed are routed into these game sessions.

Server fleets (for example, EC2 Auto Scaling groups) containing the old game server build version
are only removed from service after they are drained of all active player sessions in a graceful
manner, typically by setting up per-server metrics that allow game operations teams to automate
this process. Alternatively, to reduce the amount of infrastructure and time to conduct a rolling
deployment, an approach can be performed where existing production instances are removed from
service, updated with the new game server build, and then placed back into the production fleet.
This approach reduces the amount of infrastructure that is required, but it also increases risk since
the number of available live game servers for players is reduced as servers are being replaced.

This model can also be used for performing rolling deployments to backend services such as
databases, caches, and application servers that don't host gameplay. As long as these services are
deployed in a highly-available manner with multiple clustered instances, then the complexity of
deployments to these services should be less than deployments to dedicated game servers.

Blue/green deployment: The primary objective of a blue/green deployment in a game is to
minimize downtime while also allowing safe rollback to the previous deployment if any issues are
identified. It is suitable for deployments where two versions of the game backend are compatible
and can serve players simultaneously. In the blue/green deployment strategy, two identical
environments (blue and green) are set up and the existing game version is labeled as blue,
while the new game version that is the deployment target is labeled as green. When the green
environment is ready for migration, you can configure your routing layer to flip the traffic over
to the green environment while keeping the old environment (blue) available for a period of
time in case failback is needed. In this scenario, the routing updates might require updating the
matchmaking service to configure it to begin sending game sessions to the new fleet, or in the

Best practices 37

Games Industry Lens AWS Well-Architected Framework

case of game backend services this could be updating DNS records in Route 53 for your service or
shifting application load balancer weights to send traffic to your new target group.

One of the drawbacks of the blue/green deployment strategy is the inherent cost of the
standby environment due to the additional infrastructure that is required while performing the
deployment. An option to mitigate this additional infrastructure cost is to consider adopting
a variant of blue/green deployment where new game software is deployed onto the same
servers that are already deployed into production. In this scenario, a new green server process
can be started with the new software alongside the existing blue server process, with the cut
over happening between server processes rather than between completely separate physical
infrastructure. This approach can also speed up game deployments across a large amount of
infrastructure by removing the need to wait for new servers to be launched in the cloud. Refer
to the Blue/Green Deployments on AWS whitepaper to learn more about best practices for this
deployment approach.

Canary deployment: Canary deployment is of particular interest to game developers, as the
strategy can be applied to release an early alpha/beta build of a game, or a game feature like
a new game mode/map/challenge to a restricted or small set of players in-production. Such a
deployment is called a canary. The release may have additional tracking and reporting, so when
real players play that game/feature, their game play telemetry is collected and analyzed for
anomalies/issues. For new features, the players are not always notified about this, and the game
telemetry is the primary source used to determine if players are experiencing issues, and if the
release should be rolled-back. At the same time, if no significant issues are identified, the feature
can then be further rolled-out to more players for additional data. If the players are notified, then
they can be asked to provide regular feedback about their experience. Such test activity would
ideally be coordinated by a live operations team.

As a strategy, canary deployment can also be used for standard releases, to gradually make a new
feature available to the players. A potential advantage over the standard blue/green environment
is that a full-scale second environment does not need to be set up. The capacity of the new
scaled-down environment determines how many players are to be onboarded to the new feature.
Before adding more players, the capacity has to be scaled appropriately. Even if this customized
blue/green technique is expected to cost comparatively lesser than standard blue/green, it is
still estimated to incur cost that may be higher than the rolling substitution technique of canary
deployments.

Best practices 38

https://aws.amazon.com/blogs/aws/new-application-load-balancer-simplifies-deployment-with-weighted-target-groups/
https://docs.aws.amazon.com/whitepapers/latest/blue-green-deployments/welcome.html

Games Industry Lens AWS Well-Architected Framework

It is recommended to run only a single canary on a production environment, and to focus it for its
data and feedback. If multiple canaries are deployed, it complicates troubleshooting and isolating
of issues in production, and impairs the quality of the datasets and feedback being collected.

A variation in the canary is when one or more experiments (generally UI tests) are run via
targeted deployments, where one set of the game backend servers serve one version of a feature,
and another same sized set serve another version of the same feature. No additional/special
infrastructure is spun up for this, and only the chosen backend servers receive these updates.
The outcome of the experiments is to observe how players react to each of the versions of the
same feature, and if there is a consensus of overall like or dislike, and to observe if there are any
issues identified with its usability or functionality, and other such intended results. Such strategic
experiments are also called A/B tests, and the overall process is called A/B testing. On completion
of these experiments, any necessary test data is collected before reverting to the current version of
the game backend system on the servers used for the tests.

Legacy traditional deployment: In the traditional style of deployment, during a scheduled
maintenance window the game is shut down and all connected players are dropped or drained
before all server instances within the game backend are updated with the latest code builds. This
deployment impacts all players each time it is performed, and the players must be notified ahead
of the schedule. As a result, this model results in the most player impact and should be avoided
whenever possible. After the game update is deployed, the game can be smoke tested prior to
opening up the game to the players, who would be waiting for the game to reopen. This can cause
a spike of traffic when all players try to login and play within a short period of time. Therefore, if
the game is not designed to handle such spikes of traffic, you can choose to gradually allow players
back into the game in batches. Alternatively, you can opt to over-provision the infrastructure to
sustain the opening spike of traffic, and eventually after the game traffic settles, resources can
be scaled down. It is recommended that this type of deployment be conducted during off-peak
hours when the number of players is at its lowest. Frequently scheduled maintenance, as well as
extended maintenance, inherently carries a risk of player attrition and potential loss of revenue.
Players also expect changes after a new release and can lose trust in the game once returning after
a period of downtime.

GAMEOPS_BP06: Pre-scale infrastructure required to support peak requirements

You should scale infrastructure ahead of large-scale game events to make sure that you can handle
the sudden increase in player demand.

In addition to new game launches, live games typically run in-game events, promotions, new
content, and season releases as examples of ways to sustain and improve player engagement. Such

Best practices 39

Games Industry Lens AWS Well-Architected Framework

activities experience a high volume of player traffic for the duration of the event or promotion. The
business expects to hit or surpass their intended targets for the event, and the game infrastructure
must sustain and support them through it. It is important to prepare your infrastructure ahead
of time to be able to support the anticipated player load that you will experience during large
scale events. To prepare, game operations teams should coordinate with stakeholders in sales
and marketing to estimate the projected demand that will be generated in an upcoming event by
looking at past player concurrency, engagement metrics, and sales data. If the event is for a new
game launch, game operations teams should work with these stakeholders to identify realistic
projections for what scale they anticipate. While it may be difficult to predict how successful a
game will become, it is important that everyone understands what the expectations are for success
so that the infrastructure can be scaled and tested to support those goals.

Many games choose to launch in stages, starting with a soft-launch by opening the game to a small
number of players, and then organically scaling the players at every stage, prior to a full public
launch. During the soft-launch period, it is recommended to monitor, identify, track, and resolve
any issues while refining your projections for the public launch.

To properly estimate infrastructure requirements, you should collect data through load and
performance tests run against your game backends running on production, or a production-like
staging environment, prior to the game launch. Multiple rounds of these tests should be run to
simulate different conditions of the game, and validate that the backend is able to withstand
the load under all conditions. To achieve this, developers can write game play bots that traverse
various workflows in the game, and emulate different conditions. It is imperative that these tests
inspect all the different system layers of the game backend so that each layer and component is
tested and the details are recorded. The data collected from these tests is used for the provision
planning for the game launch.

Single points of failure (SPOF) should be removed, when possible, by making the application
more highly available and fault tolerant. Use load tests to find any SPOFs by emulating failures at
different upstream and downstream layers, and verifying game and other component behavior.

Along with the necessary estimated infrastructure to be provisioned for the game launch, or in-
game event or promotion preparations, the system should also be set up to automatically scale on-
demand. Scaling event thresholds must be defined, configured, and monitored to allow the game
backend to scale to sustain a high volume of player traffic. For variable traffic, pre-provisioning is
best because there may not be enough time to scale-out. Manual scaling might be required during
initial game launches that drive higher than anticipated demand faster than automated systems
can scale resources.

Best practices 40

Games Industry Lens AWS Well-Architected Framework

On AWS, organizations should request higher Service Quotas for the services that they use
in the game backend. Service Quotas are set up for all accounts to safeguard customers from
inadvertently standing up or scaling more infrastructure than intended. There is no cost for higher
quotas until additional resources are consumed. When a game running in an account hits the upper
limit of the configured service quota in that Region, the service throttles all the requests beyond
the provisioned quota, and any burst provisions. Throttles can cause unintended or unexpected
errors, and impair the player experience. It is essential to monitor, track, and regularly review
service quota thresholds for all the services used by the game in-production to avoid throttling.
When the usage crosses a tolerable service quota threshold, an increase in the quota can be
requested by raising an Support Case from the Console Support Center, after logging in to the
affected account, or via the Support API.

If you are launching a game hosted on Amazon GameLift, review the pre-launch checklists to help
you prepare.

GAMEOPS_BP07: Conduct performance engineering and load testing before launch by
simulating player behavior

To prepare for a launch, you should develop gameplay simulations that can be tested at scale
against your infrastructure to ensure that you can scale to meet your peak usage requirements.

Performance engineering is the process of monitoring multiple key operational metrics of an app
to discover optimization opportunities that can further improve the app’s performance. This is an
iterative process that starts with testing, followed by optimizing code, its dependencies, associated
processes, its host operating system, and the underlying infrastructure.

To conduct a deeper analysis of the app’s performance, it is recommended to integrate an
Application Performance Monitoring (APM) or debugging tool in the app code that can isolate
issues and reduce troubleshooting time by tracking its behavior for anomalies across all flows of
the app. APM tools are also able to identify slow performing methods and external operations.

AWS X-Ray helps developers with their performance engineering activities, like identifying
performance bottlenecks and analyzing and debugging production errors. You can use X-Ray to
understand how your application and its underlying services are performing, and identify and
troubleshoot the root cause of performance issues and errors. Through numerous rounds of load
tests, in which the app and its infrastructure is gradually loaded with synthetic player traffic,
various system bottle-necks, app errors, exceptions, OS problems, and other issues are identified
that may have not been found during other Quality Assurance (QA) tests.

Best practices 41

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html
https://docs.aws.amazon.com/awssupport/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_launch.html
https://aws.amazon.com/xray/

Games Industry Lens AWS Well-Architected Framework

To simulate artificial player traffic, you need bots that emulate the game client flows and transact
with the game backend to simulate real-world player behavior. Generally, this data is captured
through game play logs and data generated by human QA tests, as well as through real-world
limited scale alpha or beta tests where real players are invited to play the game.

It is also recommended to perform load testing and inject different kinds of failures in the game
backend during these various load tests to check how the system behaves for each failure. It is
important to record the system’s behavior in an operational runbook to assist in troubleshooting
possible failures in the future. It is important to have human testers test the game against the
same environment that is being load tested while it is being load tested. Humans can catch
something during the load test that bots or other metrics do not.

For critical events like game launches, and even major in-game events or promotions, AWS
Infrastrucure Event Management (IEM). is available. An IEM offers architectural and operational
guidance, along with operational support during the preparation and deployment of your planned
event like a game launch, or a major in-game event, promotion, or migration. Through the IEM
process, assists in assessing operational readiness of your system, identifying and mitigating risks,
and deploying your event confidently with all additional experts.

AWS Fault Injection Simulator is a fully managed service for running fault injection experiments
on that makes it easier to improve an application’s performance, observability, and resiliency.
Fault injection experiments are used in chaos engineering, which is the practice of stressing an
application in testing or production environments by creating disruptive events, such as sudden
increase in CPU or memory consumption, observing how the system responds, and implementing
improvements. Fault injection experiment helps teams create the real-world conditions needed to
uncover the hidden bugs, monitoring blind spots, and performance bottlenecks that are difficult to
find in distributed systems.

Operate

GAMEOPS04 - How do you monitor the health of the game?

GAMEOPS_BP08: Instrument the game to detect and monitor player-impacting issues.

In addition to responding to social media and player reports of issues, you should instrument your
game with monitoring solutions to you detect when there are player-impacting issues that need to
be investigated.

Best practices 42

https://aws.amazon.com/premiumsupport/programs/iem/
https://aws.amazon.com/premiumsupport/programs/iem/
https://aws.amazon.com/fis/

Games Industry Lens AWS Well-Architected Framework

No amount of testing is sufficient enough to identify all issues in a game. Games are usually
launched with known issues that are planned to be gradually fixed with the next release of the
game. Known and reproducible issues are easier to address and fix. It is difficult to preempt
all issues or bugs that a player may experience. To assist with identifying such issues, it is
recommended that game clients implement logging and reporting in the app at various strategic
locations to help the backend team identify any client-side issues. The ability to find such issues
early allows the game developers to troubleshoot and fix the issue before it becomes widespread.
The data and logs reported by the tracking code should never include any player identifiable
information (PII), and they should only contain game specific metadata that help with debugging.

Implement an observability solution for detecting and responding to issues such as game crashes
or bugs. You can use Amazon CloudWatch Synthetics to create canaries that can monitor the health
of your player-facing backend game services. You can instrument your backend services with X-
Ray to trace requests across distributed services, and send your custom logs and metrics to Amazon
CloudWatch. Third-party solutions, such as Backtrace.io and Sentry, are popular solutions for error
reporting in games. Application performance monitoring (APM) solutions from partners such as
New Relic, Splunk, Datadog, and Honeycomb.io are also popular.

The game’s Live Operations’ team and community managers should also monitor various social
networks and channels to check for player feedback, complaints, and bug reports in addition to
the official support channels. Every game specific complaint received should be reviewed and
attempted to be reproduced, or sent to the QA team for their review. If reproducible, the issue
should be escalated to the game developers for their troubleshooting and a fix before it impacts
the larger player base.

Evolve

GAMEOPS05 - How do you optimize your game over time?

GAMEOPS_BP09: Monitor key game metrics that can help identify player trends and
patterns; use the information to rebalance the game, optimize game design, and improve the
infrastructure.

In addition to game client system usage, app usage, exceptions, and crash data, it is highly
recommended that you capture game telemetry data that is sent to a game backend system. This
data should represent player activity so that you can understand how players interact with various
features in the game.

Best practices 43

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
http://Backtrace.io
https://sentry.io/welcome/
https://newrelic.com/
https://www.splunk.com/en_us/devops/application-performance-monitoring.html
https://www.datadoghq.com/product/apm/
http://Honeycomb.io

Games Industry Lens AWS Well-Architected Framework

Depending on its implementation, game clients can collect telemetry data at predefined game
features or locations in a game world. The data is sent to the backend ingestion service for
processing. If the backend service is unreachable for any reason, the clients can store the data
locally on the local device until the backend service is available again. The game designers use this
telemetry data to review how players are playing the game, and if there are any anomalies in the
game. For example, player movements and interactions with items in a map can be extracted from
telemetry data and plotted as a heat map of activities in-game by all players over a set window
of time. Such data helps the game designers identify the need to balance various elements in the
game, such as the power of a weapon, the power of an in-game character, or the complexity of a
map. The raw telemetry data is generally stored and then processed to extract analytics that can
be visualized by analysts.

The Game Analytics Pipeline solution implementation helps game developers launch a scalable
serverless data pipeline to ingest, store, and analyze telemetry data generated from games and
services. The solution supports streaming ingestion of data, allowing users to gain insights from
their games and other applications within minutes.

For custom game telemetry data ingestion, storage, processing and analytics, AWS also offers a
number of specialized services for big data processing and Analytics.

Resources

Refer to the following resources to learn more about our best practices related to operational
excellence.

Documentation and blogs

• Architecture best practices for Game Tech

• Establishing your best practice Environment

• multi-account strategy for your Control Tower landing zone

• Game Analytics Pipeline

• How to setup a CI/CD pipeline on

• Other relevant CI/CD blogs

• Game DevOps made easy with Game-Server CD pipeline blog

• Amazon GameLift Prepare for launch

• Best practices with Organizational Units

• AWS X-Ray

Resources 44

https://aws.amazon.com/solutions/implementations/game-analytics-pipeline/
https://aws.amazon.com/big-data/datalakes-and-analytics/
https://aws.amazon.com/architecture/game-tech/?cards-all.sort-by=item.additionalFields.sortDate&cards-all.sort-order=desc&awsf.content-type=*all&awsf.methodology=*all
https://aws.amazon.com/organizations/getting-started/best-practices/
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
https://aws.amazon.com/solutions/implementations/game-analytics-pipeline/
https://aws.amazon.com/getting-started/projects/set-up-ci-cd-pipeline/
https://aws.amazon.com/blogs/devops/tag/ci-cd/
https://aws.amazon.com/blogs/containers/game-devops-made-easy-with-aws-game-server-cd-pipeline/
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_launch.html
https://aws.amazon.com/blogs/mt/best-practices-for-organizational-units-with-aws-organizations/
https://aws.amazon.com/xray/

Games Industry Lens AWS Well-Architected Framework

• AWS Infrastructure Event Management (IEM)

Partner solutions

• New Relic

• Splunk APM

• Backtrace.io

• Sentry

• Datadog APM

• Honeycomb.io

Whitepapers

• Organizing your Environment using multiple accounts

• Scalable gaming patterns

Video content

• YouTube series: Building games on AWS

• Re:Invent 2017: How Amazon scales its infrastructure to handle billions of transactions

• Re:Invent 2019: Scaling up to your first 10 million users

Training materials

• Curriculum - Game Tech starter pack

Security

The security pillar includes the ability to protect information, systems, and assets while delivering
business value through risk assessments and mitigation. Due to their global visibility and large
number of players, games are desirable targets for exploiters, hackers and others looking for ways
to exploit and abuse systems, which can result in disappointing player experience and increased
costs for the game developer. As described in the Shared Responsibility Model, it's important to
understand which aspects of security are the responsibility of AWS, and which aspects are the

Security 45

https://aws.amazon.com/premiumsupport/programs/iem/
https://newrelic.com/
https://www.splunk.com/en_us/devops/application-performance-monitoring.html
https://backtrace.io/
https://sentry.io/welcome/
https://www.datadoghq.com/product/apm/
https://www.honeycomb.io/
https://docs.aws.amazon.com/whitepapers/latest/organizing-your-aws-environment/organizing-your-aws-environment.html
https://d1.awsstatic.com/whitepapers/aws-scalable-gaming-patterns.pdf
https://www.youtube.com/playlist?list=PLuGWzrvNze7LPM6y8vbGTvhbtNxhRokkl
https://www.youtube.com/watch?v=bIMt0_KLmBQ
https://www.youtube.com/watch?v=kKjm4ehYiMs
https://www.aws.training/Details/Curriculum?id=42754
https://aws.amazon.com/compliance/shared-responsibility-model/

Games Industry Lens AWS Well-Architected Framework

responsibility of the customer so that you are prepared to maintain a strong security posture. This
pillar provides best practice cloud security guidance for you to consider when developing and
operating games in the cloud.

Design principles

In addition to the design principles from the security pillar of the Well-Architected Framework
whitepaper, the following design principles can help you strengthen security of your game
workload in the cloud:

Monitor and moderate player usage behavior: Capture and analyze usage data to help you
understand how players interact with your game and social features. By analyzing this data,
you can detect and respond to abusive and inappropriate behavior that can degrade the player
experience.

Definition

There are five best practice areas for security in the cloud:

• Identity and access management

• Detective controls

• Infrastructure protection

• Data protection

• Incident response

Before you architect any system, you must establish security practices and access control.
Additionally, you should be able to identify security incidents, protect your systems and services,
and maintain the confidentiality and integrity of data through data protection. You should have a
well-defined and practiced process for responding to security incidents. These tools and techniques
are important because they support objectives such as preventing financial loss or complying with
regulatory obligations.

Best practices

There are five best practice areas for security in the cloud.

Topics

• Identity and access management

Design principles 46

Games Industry Lens AWS Well-Architected Framework

• Detective controls

• Infrastructure protection

• Data protection

• Incident response

Identity and access management

GAMESEC01: How do you manage player identity and access management?

When developing a game, you must determine how you will provide players with access to your
game and related services. This decision is influenced by player acquisition and monetization
strategy, player experience, and other factors such as the existing capabilities that might be
provided by your game publishing partners. For example, a game might require purchases and
require a player to create a user profile to associate real-money payment methods with their
account.

Alternatively, a game may desire to reduce the barrier to entry for first-time player experiences
by removing the need to create a user account before playing the game, thereby improving the
chance that a player will try the game for the first time. Typically, games will implement one or
more combinations of player identity and access management approaches for their game.

Unauthenticated or anonymous access: This access level is useful in situations where a game does
not require a player to create a new user account or link with their identity on social networks and
gaming platforms. This is the simplest and quickest way for player to start to play a game and is
particularly useful in mobile games where a game developer may want to reduce the barrier to
entry for the initial first time experience. In this access scenario, if you want to identify usage from
the game installation, you can do so by programming the game client to generate and store a
unique identifier onto the player's device that is used to identify the player across game sessions
on their device and allow analytics reporting on usage over time. At a later date, if a player chooses
to create an account, then you can associate their new user account to their previously generated
unique identifier to link the player's historical usage such as stats and game achievements to their
new player identity. If a player does not eventually create and link an account, the device that the
player uses to interact with the game can be uniquely identified, but any recoverable information
about the player is not collected and stored. Thus, if the player breaks the device, the previous
stored data associated with the device is also lost and might not be recoverable.

Best practices 47

Games Industry Lens AWS Well-Architected Framework

Authentication with username and password: A game may allow players to create their own user
accounts with a username and password that is stored within the game's backend. Typical reasons
for this are when a game developer is collaborating with a game publisher who already has an
existing player account system that the developer can integrate with, or when a developer who
may publish their own games wants to simplify the player experience by allowing players to create
a single user account for access across all of the game they publish.

Authentication and account linking with third-party social networks and gaming platforms:
It is common for online games and games with social features to provide third-party identity
provider federation as a way to simplify the player experience. Instead of asking players to
create a username and password combination to authenticate, you can use identity federation to
allow players to authenticate using their third-party accounts with social networks and gaming
platforms. This login process simplifies sign-in and registration experience and it provides a
convenient alternative to mandatory account creation and a frictionless method for players to
access games. For game developers, federated login can offer a streamlined player verification
workflow and may also provide a more reliable way to manage player data for personalization
because you do not need to ask players to provide you with certain data that they likely have
already provided to the third-party identity provider. Additionally, these platforms provide
integration with additional social features such as allowing you to link players with their friends.

The following best practices can help you to incorporate secure access control for your game:

GAMESEC_BP01: Requests to game backend services are authenticated.

Any requests sent to game backend services should be authenticated to prevent unwanted
requests to your game backend.

You should provide an authentication service for players to login, which should return secure
short-lived tokens, such as JSON Web Token (JWT), to the game client when a player successfully
authenticates. These tokens can include claim assertions containing player attributes and other
relevant metadata that can be used in subsequent requests sent from the game client to your
game backend to authenticate requests and authorize them in the context of the authenticated
player. You have the option to either design and build your own player authentication system,
which would require ongoing improvement and maintenance, or you can take advantage of the
scalable and secure user sign-up, sign-in, and access control features provided by Amazon Cognito.
Amazon Cognito User Pools allows you to create a user directory and provides APIs that you can
integrate into your game for sign-up, sign-in, password reset workflows, and it can be integrated
with third-party identity providers. Application Load Balancers and Amazon API Gateway both

Best practices 48

https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/listener-authenticate-users.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

Games Industry Lens AWS Well-Architected Framework

provide integrations with Cognito to easily integrate user authentication for requests sent to your
custom game backends hosted with these services.

If your game supports anonymous access and you cannot authenticate a player, you can use a
client authentication approach to provide a secure experience when integrating with your game
backend. If your game client uses AWS services, then requests to these services must be signed
using credentials. To provide credentials to your game client for unauthenticated users, you can
use the AWS SDK to retrieve short-lived credentials from Amazon Cognito Identity Pools that
can be used to sign your requests to AWS services. These credentials can be refreshed from your
game client. In addition to directly integrating with the AWS SDK from the game client, you can
also build your own game backend, using a service such as Amazon API Gateway, which supports
custom authorization. By designing your own game backend service, you can gain authoritative
control over all requests with custom server-side logic. For more information on building a backend
service for games hosted using Amazon GameLift, refer to Design your backend service.

GAMESEC_BP02: Player requests to join a multiplayer game should be validated by your game
backend service.

Typically, in multiplayer games, a player will join a game session by selecting an option directly
from a list of available sessions, or they will submit a request to find a match, which places the
responsibility on the game developer to locate an eligible game session and provide the connection
information, usually an IP address and port, back to the player's game client. The implementation
may vary depending on the genre of game you are developing, but regardless, it is a security best
practice to perform server-side validation of a player’s game join request.

For example, in a session-based multiplayer game, a request from a player to join a game session
should be validated by your game server software with your game backend matchmaking service
before authorizing their connection to the server. When a player requests to join a game session,
the game server should check the request for a unique identifier, such as a player session ID
and server-generated ticket that was previously provided to the game client by your game
backend matchmaking service. Upon initiating the connection to the game server, your server-
side software can use this information to verify with the matchmaking service that the player's
connection request is valid, and ensure that the player is not joining a spot previously reserved
in the game session for another player. For games hosted using Amazon GameLift, refer to the
Amazon GameLift documentation for an example of how this type of server-side validation can be
implemented.

GAMESEC_BP03: Player user accounts that require passwords should enforce a strong security
policy.

Best practices 49

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_designbackend.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-validateplayer

Games Industry Lens AWS Well-Architected Framework

If a game provides players with the ability to create a user account with a password, you should
require that passwords adhere to strong policies. For example, Amazon Cognito User Pools
provides support for defining password requirements for user accounts.

GAMESEC_BP04: Provide an option for players to setup multi-factor authentication (MFA) on
their accounts.

Player accounts can be a valuable asset to bad actors, particularly in games that support in-game
currency and purchases. Due to the pervasiveness of player account hacking and social engineering
against game developer player support teams, it is important to provide players with the option to
configure multi-factor authentication (MFA) for their user account to enhance the security of their
accounts.

When a player accesses their account using MFA, they are challenged with a temporary code that
is sent to their email, phone number, or a purpose-built multi-factor authentication mobile app,
which they must enter to login within a limited time frame to successfully authenticate. MFA can
also be used to protect an account that is attempting to authenticate from a new geo-location,
accounts that have been flagged by player support for potential malicious activity, and even
for accounts that have not logged into the game for an extended period of time. For example,
Amazon Cognito User Pools provides support for configuring multi-factor authentication on user
directories.

GAMESEC02: How do you prevent unauthorized access to game content?

Modern games include a significant amount of content, including downloadable content (DLC),
which is an important aspect of player engagement and game monetization. Players expect an
ongoing stream of new characters, levels, and challenges, requiring game developers to keep up
with this constant demand for fresh content in order to retain players. The variety and the size
of the content can vary greatly depending on the type of the game and also the device the game
is played on whether it is PC, console, or mobile. It is important to ensure that game content is
protected from unauthorized access.

GAMESEC_BP05: Restrict access of downloadable content to authorized clients and users.

Access to game content should be restricted to authorized applications and clients.

Best practices 50

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-policies.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html

Games Industry Lens AWS Well-Architected Framework

Consider using Amazon S3 as a cost-effective and scalable origin for storing downloadable game
content, and Amazon CloudFront to provide globally performant content delivery to players. Both
services provide built-in mechanisms for restricting access to data that is stored.

When you need to grant access to S3 content, there are several best practices that should be
considered. By default, only the AWS account that created an S3 bucket can access the objects
stored within it. To grant access to your internal applications and to manage content stored in
Amazon S3 buckets, use Identity and Access Management (IAM) to create policies that provide
appropriate access. IAM Roles can be associated with federated users, systems, or applications
hosted in services, such as Amazon EC2, Lambda, and container-based applications hosted in
Amazon EKS and Amazon ECS. For example, you might use the AWS SDK or AWS CLI to publish and
manage game content assets in S3 buckets. To support this use case, you can create an IAM Role
with appropriate access to read and write game content to your S3 buckets and associate it the EC2
Instances that host your software and scripts.

Resource-based policies can also defined for your bucket, and for specific objects. S3 Bucket
Policies are associated with the S3 bucket and can be used to restrict access to the bucket and
objects within it, as well as grant access to your S3 resources from other accounts. For example, in
scenarios where multiple teams or separate game development studios are working on the same
game content and require the same access to centrally hosted content in S3, you can use an S3
bucket policy to define permissions for cross-account access to the S3 resources. Consider using
S3 Access Points which can simplify managing data access to shared data by creating access points
with names and permissions specific to each application or sets of applications. The Amazon S3
documentation contains additional best practices for access control in Amazon S3.

It is recommended to generate temporary URLs that grant short term access to your content.
Amazon S3 provides support for generating presigned URLs, which allow object owners to share
objects with others by generating a presigned URL using their own security credentials within their
backend that grant time-limited permission to download the objects. By doing so, the end user
or application that is being granted access is not required to have an account or IAM permissions,
and instead uses the presigned URL to access the content. This is a best practice that is commonly
used in a variety of games use cases, such as granting authorized players access to downloadable
content that they have been entitled to, and providing temporary access to limited time game
content. Presigned URLs can also be used to provide temporary permissions to upload content
to your S3 bucket, for example to provide a player with access to upload client logs to assist your
player support team during troubleshooting a player support case. provides best practices for
limiting presigned URL capabilities.

Best practices 51

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-best-practices.html#access-control-best-practices-store-share
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-presigned-url.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-presigned-url.html#PresignedUrlUploadObject-LimitCapabilities

Games Industry Lens AWS Well-Architected Framework

S3 Block Public Access is a set of security controls that ensures S3 buckets and objects do not have
public access by overriding the settings defined by specific users to enable centralized control
across your S3 access points, buckets, and AWS accounts.

While your applications, game developers, artists, and other personnel may need direct access
to the content in S3 buckets for development and management purposes, it is recommended
to use a content delivery network to provide access to content available publicly to players or
other users over the internet. This improves download performance and reduces costs by caching
frequently accessed content. Amazon CloudFront can globally distribute your content by caching
and delivering it closer to your players while reducing the load on your game’s download origin,
such as Amazon S3.

Rather than serving your public content directly from S3 buckets, it is recommended to keep this
content private and serve it publicly using CloudFront, which can be configured to require that
players access your private content, for example a new game download for paid players only,
using either signed URLs or signed cookies. You then develop your application either to create and
distribute signed URLs to authenticated users, or to send set-cookie headers that set signed cookies
for authenticated users. When you create signed URLs or signed cookies to control access to your
files, you can specify an ending date and time, after which the URL is no longer valid. Optionally,
you can also specify the IP address or range of addresses of the computers that can be used to
access your content, which is useful if you want to restrict access to specific game development
studio partners or contractor networks. Use signed URLs in the cases where you want to restrict
access to individual files or your users are using a client that doesn't support cookies. Use signed
cookies in the cases where you want to provide access to multiple restricted files, or you don't want
to change your current URLs. Signed URLs take precedence over signed cookies.

GAMESEC_BP06: Limit origin access to authorized content delivery networks (CDNs).

You should prevent users from circumventing your content delivery networks to directly access
content from your origin, such as your Amazon S3 buckets. It is important to restrict access to your
origin to only your authorized CDNs, which helps to reduce data transfer costs from unnecessarily
serving content out of the origin. It also improves security posture by ensuring that all public
access to your origin content flowed through the same entry point, where you can deploy edge
security controls such as AWS WAF layer-7 filtering, injection and inspection of security-related
HTTP request parameters, and Distributed Denial of Service (DDoS) protections. To implement
these controls for an S3 origin, you can use Amazon CloudFront origin access identity (OAI) which
ensures that all requests to your S3 objects are originating from your CloudFront Distribution.
It is recommended to associate AWS WAF with your CloudFront distribution in order to provide

Best practices 52

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-signed-urls.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-signed-cookies.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html

Games Industry Lens AWS Well-Architected Framework

layer-7 filtering. However, if you are serving content from additional CDNs, you can configure the
CDN to insert one or more custom HTTP headers into origin requests which can be inspected by
AWS WAF to ensure that the incoming traffic originated from your authorized CDN provider. This
approach is also useful to prevent users from circumventing your CDN providers when your origin
is hosted behind an Application Load Balancer (ALB). ALBs can be associated with AWS WAF for
layer-7 protections, and AWS WAF can be configured to insert a custom HTTP header that can be
inspected by your ALB to ensure that incoming traffic to the load balancer was first processed and
inspected by AWS WAF.

GAMESEC_BP07: Implement geo-restrictions to prevent unauthorized access.

When a player requests your content, CloudFront serves the requested content from the nearest
edge location, regardless of where the player is located. However, there may be scenarios where
you need to restrict how your content is accessible by users in specific parts of the world. For
example, you may have a rolling game deployment strategy that releases content in phases on a
country-by-country basis, or you may have to abide by country-specific access controls. You can
use geo restriction, also known as geo blocking, to prevent players in specific geographic locations
from accessing content that you're distributing through a CloudFront distribution. You can use
the CloudFront geo restriction feature to restrict access to all of the files that are associated with
a distribution and to restrict access at the country level. Alternatively, you can use a third-party
geolocation service to restrict access to a subset of the files that are associated with a distribution
or to restrict access at a finer granularity than the country level.

Using CloudFront geo restriction, you can allow your players to access your content only if they're
in one of the countries on an allow list of approved countries and prevent your players from
accessing your content if they're in one of the countries on a deny list of banned countries. If a
request is received from a blocked geographic location, CloudFront will return 403 Forbidden HTTP
status code to the player.

GAMESEC_BP08: Restrict access to content with digital rights management (DRM) solutions.

In addition to the access-control based approach, you can also take an encryption-based approach
by encrypting your private content and distributing the decryption keys to authorized players
using a digital rights management (DRM) solution. DRM solutions are recommended in situations
where you want to allow players to download game content early, but you do not want them to
be able to be able to access or play the content until a predetermined time. For example, this is
common in situations, typically in PC games, where players are allowed to pre-order a game and
configure their game client to automatically begin downloading the encrypted files early so that
it is downloaded and ready to be played when the game is officially released. After the game is

Best practices 53

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/restrict-access-to-load-balancer.html

Games Industry Lens AWS Well-Architected Framework

released, the player's game client can request decryption keys from the DRM backend solution so
that it can decrypt the previously downloaded files and begin playing the game. DRM systems are
also used as a way to prevent unauthorized re-distribution and manipulation of games after they
have been downloaded and installed by an authorized player. DRM systems require integration
with the origin for exchanging encryption keys and authorizing players to retrieve the decryption
key. Commercial DRM systems providers offer a range of solutions with particular features and
support for different devices.

Detective controls

GAMESEC03: How do you monitor and analyze player usage behavior within your game?

To maintain a positive player experience, you should have a process for capturing, storing, and
analyzing relevant data that can help you understand how players engage with your game's
features and with other players.

GAMESEC_BP09: Collect, store, and analyze player usage logs to detect inappropriate behavior.

Instrument your game to collect logs that help you understand how players use the features of
your game and how they interact with other players so that you can prevent unauthorized activity
which can degrade the player experience. This can be done by sending structured log events to the
Game Analytics Pipeline, or by using a logging solution such as Amazon CloudWatch Logs, Amazon
OpenSearch Service, or a solution from an AWS Partner such as Datadog, Sumo Logic, New Relic,
Honeycomb, or Splunk. These player usage logs should be structured so that they can be used to
detect when specific actions by players need to be investigated.

After you have captured the data, you should consider implementing tools to help you detect
inappropriate usage behavior. For example, if your game has social features such as in-game player
messaging and voice chat, or online forums, it is recommended to save logs from these player
engagements in a format that can be analyzed for moderation purposes. Configure your game's
voice chat feature to export recordings to Amazon S3 and use Amazon Transcribe to convert the
audio speech to text format which can be stored for processing. Alternatively, you can perform
real-time streaming transcription by integrating your game backend voice chat service directly
with the Transcribe API to transcribe streaming audio in real-time. Moderation teams can manually
review the content, and once the content is in a standard format, you can also use AWS AI/ML
services to perform moderation automatically. Amazon Comprehend can be used to perform
natural language processing (NLP) to uncover information from the unstructured text, which can

Best practices 54

https://aws.amazon.com/solutions/implementations/game-analytics-pipeline/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/opensearch-service/
https://www.datadoghq.com/
https://www.sumologic.com/
https://newrelic.com/
https://www.honeycomb.io/
https://www.splunk.com/
https://aws.amazon.com/transcribe
https://docs.aws.amazon.com/transcribe/latest/dg/streaming.html
https://aws.amazon.com/comprehend/

Games Industry Lens AWS Well-Architected Framework

help you classify and organize the conversations into relevant topics and identify inappropriate
behavior such as profanity.

If your game allows players to generate or upload content, consider using Amazon Rekognition
to identify the content of the images for moderation. For video use cases such as player live
streaming, you can send video streams to Amazon Kinesis Video Streams which you can integrate
with Amazon Rekognition Video or your own custom application to analyze and moderate in real-
time. Your game may provide players with the ability to contact player support agents through a
call center such as Amazon Connect, or chat bots using Amazon Lex. Amazon Connect provides
support for monitoring live and recorded conversations. To analyze interactions between players
and player support chat bots built with Amazon Lex, you can store the conversation logs from
these interactions in Amazon CloudWatch Logs which can be exported to S3 and analyzed as
described previously.

You can also integrate your game with Amazon Fraud Detector, a fully managed service that uses
machine learning to identify potentially fraudulent activity so customers can catch online fraud
quickly. You can use Fraud Detector to detect potentially fraudulent activity and flag that activity
for review so that you can prevent fraudulent in-game purchases in real-time, detect compromised
accounts by looking for behavioral changes and anomalies, and distinguish between legitimate and
high-risk new account registrations.

Amazon Lookout for Metrics uses machine learning to automatically detect and diagnose
anomalies in your business and operational data, and monitors the metrics that are most important
to your businesses with greater speed and accuracy. The service also makes it easier to diagnose
the root cause of anomalies such as sudden dips in revenue, logins, transactions, and retention. It
does not require game developers to have any ML experience to setup and can connect to popular
data sources including Amazon S3, Amazon CloudWatch, Amazon RDS, Amazon Redshift, as well
as many SaaS applications. For example, you can integrate Amazon Lookout for Metrics with the
Game Analytics Pipeline and other data sources to begin analyzing behavior to detect anomalies.

Alternatively, you may choose to build, train, and host a custom machine learning model using
Amazon SageMaker to address use cases such as content moderation, toxicity detection, cheat
detection, fraud detection, and more.

In addition to generating custom game usage logs, it is also recommended to capture and store
system-level logs from relevant services, such as S3 server access logs, CloudFront access logs,
and ALB access logs. These logs can be stored in an Amazon S3 bucket in your account and are
useful for associating your player usage information from within the game with system-level
information including connection details such as IP addresses, request headers, and any relevant

Best practices 55

https://aws.amazon.com/rekognition/
https://aws.amazon.com/kinesis/video-streams/?amazon-kinesis-video-streams-resources-blog.sort-by=item.additionalFields.createdDate&amazon-kinesis-video-streams-resources-blog.sort-order=desc
https://aws.amazon.com/rekognition/video-features
https://aws.amazon.com/connect/
https://docs.aws.amazon.com/connect/latest/adminguide/monitoring-amazon-connect.html
https://docs.aws.amazon.com/lex/latest/dg/conversation-logs-cw.html
https://aws.amazon.com/fraud-detector/
https://aws.amazon.com/lookout-for-metrics/
https://aws.amazon.com/blogs/gametech/detect-game-anomalies-amazon-lookout-for-metrics-game-analytics-pipeline/
https://aws.amazon.com/blogs/gametech/detect-game-anomalies-amazon-lookout-for-metrics-game-analytics-pipeline/
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ServerLogs.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

Games Industry Lens AWS Well-Architected Framework

request manipulation and filtering that you may have configured within your game backend. These
logs can be sent to the same logging solutions mentioned earlier, and can also be analyzed using
SQL queries with Amazon Athena without requiring the logs to be moved out of Amazon S3.

Access Analyzer for S3 is a feature that monitors your bucket access policies, ensuring that the
policies provide only the intended access to your S3 resources. Access Analyzer for S3 evaluates
your bucket access policies and allows you to discover and swiftly remediate buckets with
potentially unintended access.

To continuously monitor for malicious activities and unauthorized behaviors within your AWS
environment, consider using Amazon GuardDuty. GuardDuty identifies threats by monitoring
account behavior, network activity, and data access patterns within your environment. It analyzes
tens of billions of events across multiple data sources, such as CloudTrail event logs, Amazon VPC
Flow Logs, and DNS logs for potential threats. By integrating with Amazon CloudWatch Events and
Lambda, GuardDuty alerts can be automatically forwarded to relevant security teams for further
analysis.

AWS Security Hub provides a comprehensive view of your security state in AWS and helps you
to check your environment against security industry standards and best practices. Security Hub
collects security data from across AWS accounts, services, and supported third-party partner
products and helps you to analyze your security trends and identify the highest priority security
issues. The Amazon GuardDuty integration with Security Hub enables you to send findings from
GuardDuty to Security Hub. Security Hub can then include those findings in its analysis of your
security posture.

It’s common for bad actors to employ bots to take over accounts and cheat in games. WAF Bot
Control gives you visibility and control over common and pervasive bot traffic that can consume
excess resources, skew metrics, cause downtime, or perform other undesired activities.

Ransomware is malicious code designed to gain unauthorized access to systems and datasets
and encrypt that data to block access by legitimate players. After ransomware has locked players
out of their systems and encrypted their sensitive data, cyber criminals demand a ransom before
providing a decryption key to unlock the data. Organizations can be completely shut down by an
attack, incurring significant costs and loss of business productivity. Refer to Securing your Cloud
Environment from Ransomware for best practices you can apply to strengthen your ability to fight
ransomware before, during, and after an incident takes place.

Refer to the Well-Architected Framework whitepaper for additional best practices in the detective
controls area for security.

Best practices 56

https://docs.aws.amazon.com/athena/latest/ug/application-load-balancer-logs.html
https://docs.aws.amazon.com/athena/latest/ug/application-load-balancer-logs.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-analyzer.html
https://aws.amazon.com/guardduty/
https://aws.amazon.com/security-hub/
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-internal-providers.html
https://aws.amazon.com/waf/features/bot-control/
https://aws.amazon.com/waf/features/bot-control/
https://d1.awsstatic.com/WWPS/pdf/AWSPS_ransomware_ebook_Apr-2020.pdf
https://d1.awsstatic.com/WWPS/pdf/AWSPS_ransomware_ebook_Apr-2020.pdf

Games Industry Lens AWS Well-Architected Framework

Infrastructure protection

Refer to the Well-Architected Framework whitepaper for best practices in infrastructure protection
for security that apply to games workloads.

Data protection

Refer to the Well-Architected Framework whitepaper for best practices in data protection for
security that apply to games workloads.

Incident response

GAMESEC04 - How are you defining and enforcing policies to respond to player misconduct
and abusive behavior?

GAMESEC_BP10 - Implement an incident response plan to handle bad actors and abusive
behavior.

Refer to the Well-Architected Framework whitepaper for best practices in incident response for
security that apply to games workloads.

GAMESEC_BP11 - Ban accounts associated with bad actors.

If left unmitigated, abusive behavior in a game can continue to cause impact to the gaming
experience for others and should be mitigated as soon as possible. You should implement a
process to impose bans, or other forms of restrictions, on bad actors who are confirmed to be in
violation of your terms of service. Typically, the rules and evaluation process for determining the
circumstances for imposing these types of restrictions will be determined by personnel such as
a player community team, or trust and safety team, within your organization. After bad actors
have been flagged, you should have a pre-determined workflow that can be run to take action
on the identified players. AWS Step Functions and Lambda functions can be used to run an
automated workflow that accepts a batch of player accounts as input and updates entries in a
DynamoDB table called Bans, which can include details on the player account, the ban reason,
and duration. Depending on the way your game and account management system is designed,
and the type of abuse, it is valuable to have a banning system of record that is separate than you
account management system. You may not want to turn off the player's account from your account
management system, opting instead to simply turn off their ability to play your game. This can be

Best practices 57

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/incident-response.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-protection.html

Games Industry Lens AWS Well-Architected Framework

useful in situations where the player's account credentials are used to access multiple games with
different terms of service or policies.

Resources

Refer to the following resources to learn more about our best practices related to security.

Documentation and blogs

• Common Amazon Cognito Scenarios

• Using signed URLs

• Use channel flows to remove profanity and sensitive content from messages in Amazon Chime
SDK messaging

• Security in Amazon GameLift

Whitepapers

• Secure content delivery using Amazon CloudFront

• Security Response Guide

• Best Practices for DDoS Resiliency

• Securing your Cloud Environment for Ransomware

Partner solutions

• Datadog

• Sumo Logic

• Splunk

• Honeycomb

• New Relic

• AWS Marketplace - DRM Solutions

Training materials

• Getting Started with Amazon Cognito

• Security self-paced training

Resources 58

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-scenarios.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-signed-urls.html
https://aws.amazon.com/blogs/business-productivity/use-channel-flows-to-remove-profanity-and-sensitive-content-from-messages-in-amazon-chime-sdk-messaging/
https://aws.amazon.com/blogs/business-productivity/use-channel-flows-to-remove-profanity-and-sensitive-content-from-messages-in-amazon-chime-sdk-messaging/
https://docs.aws.amazon.com/gamelift/latest/developerguide/security.html
https://docs.aws.amazon.com/whitepapers/latest/secure-content-delivery-amazon-cloudfront/secure-content-delivery-amazon-cloudfront.pdf
https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/aws-security-incident-response-guide.pdf#welcome
https://d0.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://d1.awsstatic.com/WWPS/pdf/AWSPS_ransomware_ebook_Apr-2020.pdf
https://www.datadoghq.com/
https://www.sumologic.com/
https://www.splunk.com/
https://www.honeycomb.io/
https://newrelic.com/
https://aws.amazon.com/marketplace/solutions/media-entertainment/drm/
https://aws.amazon.com/cognito/getting-started/
https://www.aws.training/LearningLibrary?query=&filters=Domain%3A27&from=0&size=15&sort=_score

Games Industry Lens AWS Well-Architected Framework

Reliability

The reliability pillar includes the ability of a system to recover from infrastructure or service
disruptions, dynamically acquire computing resources to meet demand, and mitigate disruptions
such as misconfigurations or transient network issues.

Design principles

In addition to the design principles in the AWS Well-Architected Framework whitepaper, the
following are design principles that can help you increase reliability in the cloud for games
workloads:

Agree on the peak player concurrency and system scalability targets required to meet business
projections: Prior to launching a game and during live game operations, develop estimates for the
number of concurrent players expected at peak, and to establish target goals for system scalability
to meet these projections. This helps create a baseline for your game’s reliability. Define scaling
policies to accommodate changes in demand automatically without impact availability, such as by
ensuring that your scaling systems gracefully manage active player sessions.

Measure your reliability and the impact on player experience: Define key performance indicators
(KPIs) that represent the health of your game. Monitor the impact of changes in infrastructure and
game features on your reliability.

Definition

There are three best practice areas for reliability in the cloud:

• Foundations

• Change management

• Failure management

To achieve reliability, a system must have a well-planned foundation and monitoring in place with
mechanisms for handling changes in demand or requirements. The system should be designed to
detect failure and automatically heal itself.

Best practices

The following provide best practices for your cloud architecture.

Reliability 59

Games Industry Lens AWS Well-Architected Framework

Topics

• Foundations

• Change management

• Failure management

Foundations

Refer to the Well-Architected Framework whitepaper for best practices in foundations for
reliability that apply to games workloads.

Change management

GAMEREL01 — How does your game infrastructure scale to changes in player demand?

As your player demand fluctuates over time, your game infrastructure should be able to adaptively
scale to handle these changing requirements. While it is difficult to predict the popularity of a
game ahead of time, you should design an architecture approach that allows you to easily add and
remove infrastructure capacity to accommodate fluctuations in player population.

GAMEREL_BP01 - Implement a scaling strategy that incorporates the state of active player
game sessions.

Implement a solution for automatically scaling your game infrastructure in a manner that
incorporates the stateful nature of your actively connected player sessions and gracefully handles
scaling activities without disrupting gameplay.

One of advantages of developing a game in the cloud is the elasticity that can be achieved
by automatically scaling server infrastructure as needed to meet demand. While stateless or
asynchronous games and backend services can be dynamically scaled using Amazon EC2 Auto
Scaling policies or similar techniques typically adopted for scalable web applications, game
developers typically require a more customized approach for scaling stateful or synchronous games
to prevent disruptions to active player sessions.

For stateful games, it is a best practice for your game backend to generate custom metrics that
can be used to monitor the state of your player sessions and available game server capacity, which
can be reported to Amazon CloudWatch as custom metrics. Using this data, you can implement

Best practices 60

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/foundations.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scale-based-on-demand.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scale-based-on-demand.html

Games Industry Lens AWS Well-Architected Framework

game server scaling software, for example, as a serverless application using AWS Lambda function
or AWS Fargate, to manage the fleet of dedicated game server instances by using the AWS SDK to
make API calls to update the minimum, maximum, and desired capacity settings for the EC2 Auto
Scaling groups hosting your game server build.

Alternatively, you can use Amazon GameLift to host your game servers and use the out-of-
the-box game server auto scaling capabilities to manage this scaling process for you. Amazon
GameLift's automatic scaling capabilities are aware of active player sessions and can be configured
to prevent the termination or scale-in of game server instances and can be configured to prevent
the termination or scale-in of game server instances that are actively hosting players. For more
information, refer to Monitor Amazon GameLift with Amazon CloudWatch.

GAMEREL_BP02 - Support the use of multiple EC2 instance types for your game.

When hosting your game using EC2 instances, or if you use containers hosted on EC2 instances
in your AWS account, then you should use multiple instance types in your hosting strategy. By
using multiple instance types, you increase the number of compute options that can be used when
your game is scaling to add more servers to support player growth, which improves reliability
in case your preferred instance type is unavailable. This is also a best practice when using Spot
Instances to host your game, since the availability of Spot Instances fluctuates based on customer
demand. You should test your game on multiple instance types to meet your cost and performance
requirements and determine a prioritized ranking of instance types. Amazon EC2 Auto Scaling
supports using multiple instance types and sizes as well as assigning weights to each instance type
in your configuration so that you can implement prioritized ranking of compute options.

If you host your game using Amazon GameLift managed hosting, it uses Amazon EC2 instances
to deploy your game servers and host game sessions for your players. When setting up a new
fleet, you decide what type of instances your game needs and how to run game server processes
on them (using a runtime configuration). When choosing resources for a fleet, you must consider
several factors, including game operating system, instance type (the computing hardware),
and whether to use On-Demand Instances, Spot Instances, or both. Hosting costs with Amazon
GameLift primarily depend on the type of instances you use. For more information, refer to
Choosing computing resources.

Failure management

GAMEREL02 — How do you minimize the impact of infrastructure failures on active players?

Best practices 61

https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-manage-capacity.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-manage-capacity.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-ec2-instances.html

Games Industry Lens AWS Well-Architected Framework

You should monitor game server failure metrics and the impact of these failures on player behavior
over time so that you can adjust your game server hosting strategy to meet your game's reliability
requirements. Game server infrastructure that is determined to be degraded should be removed
from service immediately if it is impacting players, or proactively replaced when there are no active
player sessions hosted on the server.

For scenarios where games are hosted as REST APIs, system reliability can be managed similar to
traditional web application architectures on where traffic can be load balanced across multiple
servers in a distributed manner to mitigate the risk of server failures.

For real-time synchronous gameplay, a game session is usually hosted on a game server
process running on a virtual machine, or game server instance, since gameplay state needs
to be maintained in a performant manner and replicated to all connected game clients. This
implementation means that a player's experience is tightly coupled to the performance and
reliability of the game server process that hosts their game session. This type of architecture makes
managing the reliability of game servers more complex than traditional approaches.

To mitigate the impact of a game server failure, you can configure your game to continuously
perform asynchronous updates of a player's game state to a highly-available cache or database
such as Amazon ElastiCache for Redis, or Amazon MemoryDB for Redis, respectively. If a server
failure occurs, the player's last saved game state can be fetched from the external data store
and their session can be restored on a new game server instance. However, this approach adds
additional cost and complexity to manage this external state, and may not be suitable for fast-
paced or competitive games where the state changes are so frequent and happening at such a
significant scale that introducing even a performant in-memory cache data store would result
in replication lag that is too significant to be useful to restore a session from. For games of this
nature, the optimal approach is to accept the loss of the server and send the player back to a game
lobby to find another session or you can automatically redirect them into another game session.

You should make sure to capture as much useful log data about what caused the server disruption
so that you can investigate the issue later. Amazon GameLift provides guidance for debugging fleet
issues, and provides the ability to remotely access Amazon GameLift fleet instances .

GAMEREL_BP03 - Implement loose coupling of game features to handle failures with minimal
impact to player experience.

Decoupling components refers to the concept of designing server components so that they can
operate as independently as possible. Some aspects of gaming are difficult to decouple since data
needs to be as up-to-date as possible to provide a good in-game experience for players. However,

Best practices 62

https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/memorydb/
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-creating-debug.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-creating-debug.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/fleets-remote-access.html

Games Industry Lens AWS Well-Architected Framework

many components and gaming tasks can be decoupled. For example, leaderboards and stats
services are not critical to the gameplay experience, and the reads and writes to these services can
be performed asynchronously from the game.

You should consider how to develop features in your game that can be disabled automatically or
by an administrator if issues are detected, as well as configure upstream services that depend on
the feature to be able to gracefully handle the failure. For example, if specific player data is not
properly loading within your game client, you should consider whether this data is critical to the
gameplay experience. If not, configure the game client to gracefully handle this failure without
disrupting the experience for the player, optioning to retry fetching this data at a later time when
the player revisits the screen. Employ logic such as timeouts, retries, and backoff to handle errors
and failures. Timeouts keep systems from hanging for unreasonably long periods. Retries can
provide high availability of transient and random errors.

Define non-critical components which can be loosely coupled to critical components. Loose
coupling allows systems to be more resilient since failure in one component does not cascade to
others. When game features do not require stateful connections to your game servers or backend,
you should implement stateless protocols to scale dynamically and easily recover from transient
failures. Develop your non-critical components where it can be loosely coupled with stateless
protocols using an HTTP/JSON API. It is also recommended to implement network calls from the
game client to be asynchronous and non-blocking to minimize the impact to players from slow-
performing game features or other dependent services.

To further improve resiliency through loose coupling, use a messaging service such as a queuing,
streaming, or a topic-based system between components that can be handled asynchronously.
This model is suitable for any interaction that does not require an immediate response or where
an acknowledgment that a request has been registered is sufficient. This solution involves one
component that generates events and another that consumes them. The two components will
not integrate through direct point-to-point interaction but through an intermediate such as a
durable storage or queuing layer. This also helps to improve system’s reliability by preserving
messages when processing fails. Selection of an appropriate messaging service is key, since various
messaging services have different characteristics such as ordering and delivery mechanisms. Design
operations to be idempotent so the chosen message system delivers messages at least once. As am
example, consider a typical game use case where your game needs to track player playtime, stats,
or other relevant data which can lead to a high write-throughput use case at times of peak player
concurrency.

Best practices 63

Games Industry Lens AWS Well-Architected Framework

To implement a reliable architecture, consider whether the use case requires read-after-
write consistency as perceived by the player. Typically, scenarios such as these are suitable for
asynchronous processing and can be achieved by implementing a write-queueing pattern where
the requests are ingested into a scalable and durable message queue such as Amazon SQS, and
can be inserted into your backend database in batches using a consumer service, such as a Lambda
function. This approach is more reliable than synchronous communication between multiple
distributed components including the player's game client, your backend web and application
servers, and your internal database system. It also reduces costs because the backend database
does not need to be scaled to meet peak write throughput since the consumer processing from the
write queue can be used to slow down this ingestion rate as needed.

For more information, refer to the following documentation:

• Build highly scalable and reliable workloads using microservice architecture

• Integrating microservice by using Serverless services

• Asynchronous messaging for microservices

• Introduction to Scalable Game Development Patterns on

GAMEREL_BP04 - Monitor infrastructure failures over time to measure impact on player
behavior.

Ensure that your game server process and game server instance metrics are being monitored
to determine the root cause of issues. In addition to monitoring CPU and memory, you can
also setup monitoring for network metrics related to network limitations of EC2 instances to
alert you of issues such as exceeding bandwidth, packets-per-second, or other network-level
issues that may indicate your server resources are under provisioned. For game servers hosted
using Amazon GameLift, consider monitoring metrics such GameServerInterruptions
and InstanceInterruptions which can help you understand how limitations in
Spot instance availability are impacting your game servers deployed using Spot, and
ServerProcessAbnormalTerminations can be used to detect abnormal terminations in your
game server processes.

It is recommended to maintain historical metrics data of your game server reliability. Use this
historical data for reporting purposes and join it with other datasets in order to uncover potential
trends to assess the impact on player behavior over time that may be due to game server issues.
Amazon CloudWatch does not retain metrics indefinitely, and the storage resolution of metrics is
increased over time, so you should consider exporting these metrics to cost-effective long-term

Best practices 64

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-your-workload-service-architecture.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://aws.amazon.com/blogs/compute/understanding-asynchronous-messaging-for-microservices/
https://d1.awsstatic.com/whitepapers/aws-scalable-gaming-patterns.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-network-performance-ena.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Games Industry Lens AWS Well-Architected Framework

storage such as Amazon S3. You can configure CloudWatch Metric Streams to automatically deliver
your metrics from CloudWatch to your own S3 bucket where they can be stored long-term in a
storage tier such as S3 Intelligent-Tiering and eventually archived using Amazon S3 Glacier. By
placing your metrics in Amazon S3, they are readily available to be joined with other datasets in
your data lake for interactive querying with Amazon Athena.

For more information, refer to the following documentation:

• Use Amazon EC2 instance-level network performance metrics

• CloudWatch Metric Streams

GAMEREL_BP05: Adjust the number of game sessions hosted on each game server instance to
reduce blast radius.

Establish a risk tolerance level for the number of players that you would be comfortable with being
impacted if a game server experienced an infrastructure or software issue. Use this information to
help you determine the maximum number of game sessions that you are comfortable hosting per
game server instance.

When it comes to determining the amount of game sessions to host on a server instance, game
developers typically start by focusing on cost, but it is important to consider the impact of this
decision on reliability when designing your game architecture. While it is important to increase
density of game sessions hosted per game server to improve the utilization of infrastructure, you
want to ensure that you are comfortable with the blast radius of a potential failure of a single
game server instance. If a single instance fails, all of the game server processes hosting active game
sessions on that instance would be lost, so the number of players that experience a disruption
should be tolerable based on your requirements.

If your game requires large match sizes, such as with Battle Royale or other MMO style games, you
might not have much flexibility to reduce the number of players hosted in a single game session
since the style of game requires it and this requirement is more of a game design and player
experience decision than an infrastructure decision. It is important to remember that typically the
costs of EC2 instances scale linearly as you increase in size within a particular instance type, such as
moving from a 2xlarge to 4xlarge.

Therefore, to improve reliability and reduce the impact of a single game server instance failure,
you should consider increasing the number of game server instances that are hosting your game
sessions. For example, as an alternative to hosting 50 game sessions on a 4xlarge EC2 instance,

Best practices 65

https://aws.amazon.com/blogs/aws/cloudwatch-metric-streams-send-aws-metrics-to-partners-and-to-your-apps-in-real-time/
https://aws.amazon.com/athena/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-ec2-instance-level-network-performance-metrics-uncover-new-insights/
https://aws.amazon.com/blogs/aws/cloudwatch-metric-streams-send-aws-metrics-to-partners-and-to-your-apps-in-real-time/

Games Industry Lens AWS Well-Architected Framework

you can reduce the number of players impacted by a potential instance failure if you split those 50
game sessions evenly between two 2xlarge EC2 instances with 25 game sessions hosted on each
instance.

In most cases, the compute cost of these two deployment architectures is the same, but even if the
costs weren't the same, it is still important to consider how this type of a change in game server
hosting strategy can change the impact to players from a potential game server failure. It is also
important to note that this approach assumes that the game server processes that host your game
sessions each use a fixed amount of pre-allocated resources on the game server that can be evenly
divided in this manner.

The following diagram provides an example process that you can use to help you to determine the
number of a game sessions to host per game server instance.

Best practices 66

Games Industry Lens AWS Well-Architected Framework

Example of how to determine the number of game sessions to host per game server instance

GAMEREL_BP06: Distribute game infrastructure across multiple Availability Zones and regions
to improve resiliency

To minimize the impact of localized infrastructure failures on your players, you should distribute
your infrastructure deployment uniformly across enough independent locations to be able to
withstand unexpected failures while still having enough capacity to meet the needs of your player
demand.

Best practices 67

Games Industry Lens AWS Well-Architected Framework

When deploying your game infrastructure, it is recommended to uniformly distribute your capacity
across multiple Availability Zones in a Region so that you can withstand disruptions to one or
more Availability Zones without disrupting the player experience. Game backend services such
as web applications should be load balanced across multiple Availability Zones or should be built
using managed service such as AWS Lambda and Amazon API Gateway which provide Regional
high availability by design. Similarly, components that maintain state such as caches, databases,
message queues, and storage solutions should all be designed to provide durable persistence of
data across multiple Availability Zones, which is provided by design in services such as Amazon S3,
DynamoDB, and Amazon SQS, and can be configured in other services.

When designing your game server hosting architecture for resiliency, you should deploy your
fleets of game servers uniformly across all Availability Zones within an AWS Region to maximize
your access to all available compute capacity in the Region as well as reduce the blast radius
of availability zone failures. For example, you can configure Amazon EC2 Auto Scaling to use
all Availability Zones. If an EC2 instance becomes unhealthy, EC2 Auto Scaling can replace the
instance, as well as launch instances into other Availability Zones if one or more of the Availability
Zones becomes unavailable.

It is a best practice to deploy your game infrastructure into multiple Regions in order to maximize
high availability. While you are encouraged to do this for your game backend services to achieve
high availability, this recommendation is especially important for your game servers. In a
multiplayer game for example, your infrastructure capacity for game servers is likely to outpace
the capacity needs for your other services, since game servers are used to host long-lived game
sessions with players. Many games choose to shard players into logical game Regions such as North
America East, North America West, Europe, Asia Pacific and so on. To simplify the player experience
and make it easier for you to utilize global infrastructure to host games, you should consider
de-coupling the name of your player-facing game Regions, such as "North America West", from
the underlying cloud provider region or data center location that is physically hosting the game
servers, which might include the Oregon (us-west-2) and N. California (us-west-1) Regions,
along with other infrastructure such as Local Zones or your own data centers that are all hosting
game server instances supporting that player game Region.

When designing your matchmaking service, you should deploy a multi-Region architecture with
separate software deployments across regions. Decouple your matchmaking service deployment
from the fleets that host your game server instances so that you can route players to a game server
in any Region regardless of which regional deployment of your matchmaking service handled
the matchmaking request. Design logic in your matchmaking implementation to favor the game
server regions that meet your latency and other rules, with the ability to fallback to routing

Best practices 68

https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-benefits.html
https://aws.amazon.com/about-aws/global-infrastructure/localzones/

Games Industry Lens AWS Well-Architected Framework

players to other regions if your fleets are low on capacity or there are other regional infrastructure
disruptions.

For more information, refer to the following documentation:

• Best practices for Amazon GameLift game session queues

• Amazon GameLift Multi-Region fleets

Resources

Refer to the following resources to learn more about our best practices related to reliability.

Documentation and blogs

• Practicing Continuous Integration and Continuous Delivery on AWS

• Autoscaling Asynchronous Job Queues

• Design Your Workload Service Architecture

• Timeouts, retries, and backoff with jitter

• Well-Architected Framework - Reliability Pillar

• Architecting for Reliable Scalability

• The Amazon Builder's Library

• Massive Scale Real-Time Messaging for Multiplayer Games

Whitepapers

• Introduction to Scalable Game Development Patterns on AWS

• Running Containerized Microservices on AWS

• Web Application Hosting in the Cloud

• Building a Scalable and Secure Multi-VPC Network Infrastructure

Video content

• re:Invent 2020: Ubisoft - Building a multi-platform multiplayer game on AWS

• re:Invent 2018: Supercell - Scaling Mobile Games

• re:Invent 2019: How CAPCOM builds fun games with containers, data, and ML

Resources 69

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-best-practices.html
https://aws.amazon.com/blogs/gametech/amazon-gamelift-is-now-easier-to-manage-fleets-across-regions/
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/summary-of-best-practices.html
https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/autoscaling-asynchronous-job-queues.pdf
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-your-workload-service-architecture.html
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/?nc1=h_ls
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://aws.amazon.com/blogs/architecture/architecting-for-reliable-scalability/
https://aws.amazon.com/builders-library
https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/large-scale-messaging-for-multiplayer-games-ra.pdf
https://d1.awsstatic.com/whitepapers/aws-scalable-gaming-patterns.pdf
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html?did=wp_card&trk=wp_card
https://docs.aws.amazon.com/whitepapers/latest/web-application-hosting-best-practices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/building-scalable-secure-multi-vpc-network-infrastructure/welcome.html
https://www.youtube.com/watch?v=-4Wtmilejpk
https://www.youtube.com/watch?v=wqz7AunrzcU
https://www.youtube.com/watch?v=IlB3xfMXn0w

Games Industry Lens AWS Well-Architected Framework

• re:Invent 2018: Globalizing Player Accounts at Riot Games While Maintaining Availability

• re:Invent 2020: GameLoft - A zero downtime data lake migration deep dive

Training materials

• Using Amazon GameLiftFleetIQ for Game Servers

• Game Server Hosting with Amazon EC2

Performance efficiency

The performance efficiency pillar focuses on the efficient use of computing resources to meet
requirements and maintaining that efficiency as demand changes and technologies evolve.

Design principles

In addition to the design principles in the AWS Well-Architected Framework whitepaper, the
following design principles can help you achieve performance efficiency for your games:

Measure game performance from end-to-end including the game client, internet, and
your game infrastructure: It is important to measure performance as it is perceived from the
perspective of your players. This means you should measure the performance of the game client,
your game infrastructure, the internet connectivity that connects your players to the infrastructure.
This will help you to understand where you can make performance improvements at any level of
your architecture.

Definition

There are four best practice areas for performance efficiency in the cloud:

• Selection

• Review

• Monitoring

• Tradeoffs

Take a data-driven approach to selecting a high-performance architecture. Gather data on all
aspects of the architecture, from the high-level design to the selection and configuration of
resource types.

Performance efficiency 70

https://www.youtube.com/watch?v=MJpZZm62ZKw
https://www.youtube.com/watch?v=6uWpwuMiBh4
https://www.aws.training/Details/eLearning?id=53555%20
https://www.aws.training/Details/eLearning?id=53525

Games Industry Lens AWS Well-Architected Framework

By reviewing your choices on a cyclical basis, you will ensure that you are taking advantage of the
continually evolving platform. Monitoring will ensure that you are aware of any deviance from
expected performance and can take action on it. Finally, your architecture can make tradeoffs to
improve performance, such as using compression or caching, or relaxing consistency requirements.

Best practices

The following provide best practices for your cloud architecture.

Topics

• Selection

• Review

• Monitoring

• Tradeoffs

Selection

GAMEPERF01 — How do you determine which geographic regions to host your game
infrastructure?

GAMEPERF_BP01 — Review feedback from players and business stakeholders.

For an initial game launch, you should determine where to deploy infrastructure based on
discussions with your business stakeholders, such as publishing teams who can help you determine
where the game is expected to be made available to players, and where they are focusing their pre-
launch marketing and advertising efforts.

Your business stakeholders should also have mechanisms to stimulate demand to help gain
a better understanding of player reception and viability. For example, these teams will have
mechanisms such as game pre-orders, marketing events and campaigns, public email lists for
players to register interest before launch, and other approaches to establish relevant signals to
help them determine where the game will likely have the most players at launch. The game may
also use a pre-determined regional roll out strategy with which you can play test and soft-launch
to further help you determine Regional player demand.

Best practices 71

Games Industry Lens AWS Well-Architected Framework

GAMEPERF_BP02 - Design an approach that supports placing latency-sensitive game
infrastructure close to players to improve performance.

When first launching a game, you may not yet have enough information about your player base
to adequately know where best to deploy infrastructure closest to the players that are most
interested in playing your game. This is a common challenge, and you should prepare for this
scenario by designing an architecture that allows you to rapidly adjust your hosting strategy
to deploy servers where they are needed closer to players. It is typical for game developers to
regularly assess their game infrastructure deployment as a recurring activity post-launch in order
to incrementally invest in improvements over time with an iterative approach.

A best practice is to use infrastructure-as-code templates, such as AWS CloudFormation or
Terraform, for the configuration of your infrastructure such as VPCs, subnet configurations,
and any dependencies required to launch critical game services so that you can refer to these
templates, quickly customize them if needed, and deploy them into locations where additional
infrastructure is needed to support your players.

You should also make sure you understand how your current deployment strategy could be evolved
to allow future expansion. For example, make sure to consider the size of the subnets you are
creating for the hosting of game servers and be sure they are large enough to accommodate
growth. You should also consider how game servers deployed across multiple locations will
connect to your game backend, which may be hosted in a central location or in multiple locations,
and may require additional configuration to support private connectivity. These considerations
should be continuously evaluated over time so that you can make changes to your game hosting
strategy as your game's requirements evolve over time or your player requirements change.

When determining how many game hosting locations to use for your game, you should consider
the following factors:

• Quality of player experience improvement: How much of a player experience improvement
can you introduce by adding additional game hosting locations? What is the incremental
performance gain that you can achieve by doing so? How will you measure this performance
improvement?

• Which player populations to prioritize: How many players can you improve the experience for
if you add additional game hosting locations? Which player populations, or geographic locations,
will you prioritize?

• Downstream impacts of change: If you change your game hosting strategy, how will this
influence your matchmaking wait times for players? Does the match size, or number of players

Best practices 72

Games Industry Lens AWS Well-Architected Framework

required in order to form a game session, impact your ability to build sizable player populations
in different parts of the world if you introduce change?

Each of these considerations should be evaluated as you determine where you add or remove game
hosting locations. For example, you may choose to prioritize improving the experience for players
in geographic locations with the least performant gameplay experience, or for players who express
the most vocal feedback publicly or to your community management teams. You might also
choose to factor the player monetization into your priorities, for example by focusing attention
on improving the experience for players in geographic locations that generate a significant source
of revenue for your game, or have the potential to generate incremental revenue if you introduce
performance improvements.

In addition to hosting infrastructure in AWS Regions, you can use Local Zones, which are an
extension of an AWS Region, to host your game servers and other latency sensitive applications
such as voice chat servers closer to your players. You might also choose to run game development
infrastructure in Local Zones to improve the experience for your game development teams. For
example, you can use Local Zones to address use cases such as hosting replicas of your self-
managed source control servers closer to your game developers, and to offer game development
virtual workstations and content storage to users using Amazon EC2 instances, EBS volumes, and
Amazon FSx file systems deployed into one or more Local Zones near your development studios
without requiring you to host the infrastructure on-premises.

You can also extend the capabilities of into your existing on-premises data centers and co-location
facilities by using Outposts, which is a fully managed service that provides access to the same
services and APIs using purpose-built racks and rack-mountable server options. This can help you
to create a consistent deployment model across Regions, Local Zones, and Outposts deployed
in your facilities. If you are building games using containers and want the flexibility to adopt a
hybrid deployment architecture using open-source software that can be deployed on your own
infrastructure, you can use ECS Anywhere, or EKS Anywhere if you want to operate a Kubernetes-
based infrastructure.

GAMEPERF_BP03 - Use network acceleration technology to improve performance across the
internet.

Best practices 73

https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/outposts/
https://aws.amazon.com/ecs/anywhere/
https://aws.amazon.com/eks/eks-anywhere/

Games Industry Lens AWS Well-Architected Framework

Enhanced network performance for gaming using Global Accelerator

In addition to physically placing latency-sensitive game infrastructure closer to players, you can
also improve the player experience by optimizing the network performance for your game. Use
technologies that can improve your game infrastructure's connectivity to the networks, or internet
service providers (ISPs), that your players are connecting to your game from. Network acceleration
improves performance by optimizing the networking path that is used to route player traffic from
their game client across the internet to your game infrastructure, including your game servers
and game backend services. For example, AWS Global Accelerator is a networking service that
improves your application's network performance using the global network, which can be used
to accelerate your gameplay traffic, voice chat, and real-time messaging traffic, as well as other
latency-sensitive applications. Global Accelerator custom routing accelerators can be integrated
with your matchmaking service to provide deterministic routing of multiple players to the same
game session IP address and port.

Your game development teams may be distributed around the world and require performant
access to shared content or assets. To improve the performance for shared content stored in
Amazon S3 buckets, you can setup bi-directional replication of your data across regions using S3
Cross-Region Replication so that users can access data from buckets closer to them. To simplify this
access pattern, use S3 Multi-Region Access Points which accelerates requests to S3 over the global

Best practices 74

https://aws.amazon.com/global-accelerator
https://aws.amazon.com/blogs/networking-and-content-delivery/introducing-aws-global-accelerator-custom-routing-accelerators/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/MultiRegionAccessPoints.html

Games Industry Lens AWS Well-Architected Framework

network using Global Accelerator. For more information, refer to Improving the Player Experience
by Leveraging Global Accelerator and Amazon GameLift FleetIQ.

GAMEPERF02 — How do you prevent game sessions from over-utilizing resources and
impacting other players running on the same game server instance?

GAMEPERF_BP04 - Monitor game server processes to detect issues.

You might run multiple game server processes per instance to efficiently utilize the resources on
your game server instances. If so, you should make sure to design your architecture so that an
individual game server process hosting a game session cannot cause adverse impact to other game
sessions hosted on the same game server instance.

Implement monitoring of the limited resources available to your game server instances so that
you can generate alerts when individual game server processes are breaching pre-determined
resource budget thresholds. When thresholds are breached, you may want to configure your
game server software to dump relevant system and game server logs out to durable storage, such
as a central logging solution, so that your game server engineers can investigate this behavior.
Additionally, your game server instance should be configured to report metrics from each of the
game server processes running on the instance so that you can monitor these individual game
server processes in addition to the overall metrics for the game server instance. For example,
Amazon GameLift provides metrics for monitoring game sessions, which can be augmented with
custom game-specific metrics and logs collected using the Amazon CloudWatch Agent which you
can configure on your game server instance. Your metrics can be viewed in CloudWatch or exported
to other tools such as Amazon Managed Grafana which is integrated with Single Sign-On to make
it easier to access metrics by users who may not have access to the Management Console. Refer
to the following best practices for managing logs and metrics using Amazon GameLift, which also
provides support for viewing individual game session logs.

GAMEPERF_BP05 - Performance test your game server with simulated and real gameplay
scenarios.

You should conduct performance testing and evaluate various gameplay scenarios to determine
whether the game server process handles the utilization of fixed resources appropriately, such as
EC2 instance memory, CPU, and network bandwidth.

Best practices 75

https://aws.amazon.com/blogs/gametech/improving-the-player-experience-by-leveraging-aws-global-accelerator-and-amazon-gamelift-fleetiq/
https://aws.amazon.com/blogs/gametech/improving-the-player-experience-by-leveraging-aws-global-accelerator-and-amazon-gamelift-fleetiq/
https://docs.aws.amazon.com/gamelift/latest/developerguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws.amazon.com/grafana/
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_metrics.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Games Industry Lens AWS Well-Architected Framework

You should create simulated gameplay tests with bots that can mirror common gameplay
paths and behaviors of your players so that you can determine how your game server processes
handle this under different usage scenarios. For example, you can implement a solution, such
as Distributed Load Testing on AWS that you can customize to run game client simulations or
game client builds to generate gameplay scenarios. Run internal play tests and use QA teams to
stress test the various features of your game so that you can develop confidence that your game is
designed to perform optimally. AWS Device Farm can be used to perform mobile and web testing
for your iOS, Android, and browser games.

GAMEPERF03 — How do you select the appropriate compute solution for your game?

GAMEPERF_BP06 - Benchmark your game performance across multiple compute types.

For game server workloads, there is no one-size-fits-all approach to identifying the optimal
compute solution for hosting your game server. A common choice for game server is to use the
compute-optimized EC2 instances, because this instance family is optimized for workloads like
game servers that are computationally intensive. Alternatively, if your game requires a significant
amount of memory in order to implement specific features, the memory-optimized instances may
be most suitable.

For use cases where your workload utilizes significant network resources, consider implementing
instances that are network-optimized which is typically indicated by the use of an "n" in the
instance name. Games are sensitive to latency and dropped packets, so it is recommended to use
EC2 enhanced networking to improve the network performance of your game servers. Enhanced
networking uses single root I/O virtualization (SR-IOV) to provide high-performance networking
capabilities on supported instance types . SR-IOV is a method of device virtualization that provides
higher I/O performance and lower CPU utilization when compared to traditional virtualized
network interfaces. Enhanced networking provides higher bandwidth, higher packet per second
(PPS) performance, and consistently lower inter-instance latencies. Enhanced networking with
Elastic Network Adapter is available for most recent EC2 instance types.

If your game performs similarly across multiple EC2 instance types, then you should consider using
multiple instance types to host your game servers so that you can monitor performance over time
and perform further optimization after you have hosted enough production game sessions to
be able to identify performance trends over time. Remember that your resource requirements
may change over time as you add new features into your game that require different allocation of

Best practices 76

https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://aws.amazon.com/device-farm/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html#supported_instances

Games Industry Lens AWS Well-Architected Framework

resources. You can configure EC2 Auto Scaling groups to use multiple instance types, or you can
use separate Auto Scaling groups to host game server instances that run separate instance types
which may make it easier to manage correlation and aggregation of metrics.

You should also evaluate how your game performs on different types of processors such as Intel-
based instances, AMD-based instances, and ARM-based Graviton instances.

You should also benchmark how your game performance is impacted when it is hosted using
containers and Lambda functions. For use cases where long-lived game server processes are not
required, such as asynchronous games and for game backend services, you should consider using
a serverless architecture with Lambda which can simplify management and operations for game
operations teams, as well as allow you to more quickly deploy your game globally to many AWS
Regions. For serverless best practices, refer to the Serverless Applications Lens - Well-Architected
Framework. For more information, refer to Choose the right compute strategy for your global
game servers.

GAMEPERF_BP07 - Use graphics instances for game development virtual workstations.

Game designers, engineers, artists, QA, and other personnel may require the use of virtual
workstations. To support these use cases, use graphics-optimized instances, which are denoted
with an instance name starting with "g", as are built using GPUs that are purpose-built to support
graphics use cases such as game development and game streaming.

Evaluate and benchmark performance across different graphics-optimized instance types using
the same tools that your end users typically require. For example, offers a variety of graphics-
optimized instances that come with different GPUs from manufacturers such as AMD and NVIDIA.
When benchmarking these instances, make sure that your software is compatible with the GPU
and associated drivers that are supported. For graphical artist use cases, consider Amazon Nimble
Studio which provides access to cloud-based virtual workstations, file storage and tools needed for
operating a cloud-based studio.

If you are developing your own custom virtual workstation using EC2, you must consider how end
users will access these virtual workstations. While many options exist for connectivity, consider
using NICE DCV, a high-performance remote display protocol for connecting to remote desktops
from a locally installed client software or web browser, which is no cost and is available in the AWS
Marketplace as an Amazon Machine Image (AMI) with NICE DCV server pre-installed.

For more information, refer to the following:

• Virtual workstations on powered by NVIDIA Quadro technology

Best practices 77

https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html
https://aws.amazon.com/blogs/gametech/choose-the-right-compute-strategy-for-your-global-game-servers/
https://aws.amazon.com/blogs/gametech/choose-the-right-compute-strategy-for-your-global-game-servers/
https://aws.amazon.com/nimble-studio
https://aws.amazon.com/nimble-studio
https://aws.amazon.com/hpc/dcv/
https://aws.amazon.com/marketplace/seller-profile?id=74eff437-1315-4130-8b04-27da3fa01de1
https://aws.amazon.com/marketplace/seller-profile?id=74eff437-1315-4130-8b04-27da3fa01de1
https://aws.amazon.com/blogs/media/virtual-workstations-on-aws-powered-by-nvidia-quadro-technology/

Games Industry Lens AWS Well-Architected Framework

• Game Production in the Cloud - Workstations: Stream Game Development from anywhere with
NICE DCV

• Stream a remote environment with NICE DCV over QUIC UDP for a 4K monitor at 60 FPS

• Putting bitrates into perspective

GAMEPERF_BP08 - Push non-latency-sensitive compute tasks to asynchronous workflows.

When you are optimizing the performance for your game, it is important to keep in mind that not
all interactions between the client and the game backend must be performed in a synchronous
manner. You should consider each feature from the perspective of the player experience and
determine whether or not certain interactions require synchronous communications, which are
blocking and resource intensive, or whether those features can be implemented in an asynchronous
manner. Ensure that when you implement network calls, you are doing so using an asynchronous
non-blocking approach. Additionally, your game backend should also be configured to perform
work in an efficient manner by offloading tasks to queues and prioritizing fast responses to clients
where possible.

For example, updating a leaderboard at the end of a player session can be implemented
asynchronously so that the client does not need to wait for the leaderboard update to complete.
Instead, implement this asynchronously on the game client, and also consider designing your
backend service to push these types of operations into queues, such as Amazon SQS. With this
architecture, your backend should be configured to accept the request, enqueue it in SQS which
durably stores messages for asynchronous processing, and promptly reply back to the client.
When the leaderboard update is completed, the backend can send an update to the game client
so that the player's view of the leaderboard is updated. Alternatively, the player can simply visit
your game's leaderboard screen to retrieve the latest data, which can issue a web request to your
backend to retrieve the latest data from cache.

For more information, refer to the following documentation:

• Understanding Asynchronous Messaging for Microservices

• Lambda - Using service integrations and asynchronous processing

Review

Refer to the Well-Architected Framework whitepaper for best practices in performance efficiency
that apply to games workloads.

Best practices 78

https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/game-production-in-the-cloud-workstations-ra.pdf
https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/game-production-in-the-cloud-workstations-ra.pdf
https://aws.amazon.com/blogs/gametech/stream-remote-environment-nice-dcv-quic-udp-4k-monitor-60-fps/
https://aws.amazon.com/blogs/hpc/putting-bitrates-into-perspective/
https://aws.amazon.com/blogs/compute/understanding-asynchronous-messaging-for-microservices/
https://docs.aws.amazon.com/lambda/latest/operatorguide/integrations-asynchronous.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/review.html

Games Industry Lens AWS Well-Architected Framework

Monitoring

GAMEPERF04 — How do you design your matchmaking service to optimize performance?

GAMEPERF_BP09 - Define network latency thresholds for your game.

When developing a multiplayer game, ensure that your game infrastructure does not introduce
unnecessary latency for players. If your game is sensitive to network latency, then you should set
latency thresholds in your matchmaking logic to prioritize placing players on game server instances
that are hosted in Regions where their connection to the game session meets your objective for
ideal player experience.

In many latency-sensitive games it is common to instrument the game clients to ping each of the
game's infrastructure Regions to gather performance data such as network latency, jitter, and
packet loss, and report this data to your metrics collection backend so that it can be analyzed.
When matching players into game sessions, you can configure your game to incorporate the game
client's perceived network latency to your game server infrastructure as one of the inputs used in
your matchmaking service when selecting a game for a player.

GAMEPERF_BP10 - Run a separate matchmaking service for each gameplay mode and game
hosting Region.

If your game offers multiple gameplay modes for players to choose from, you should separate
the matchmaking systems for each of them so that you can independently tune the performance
for each gameplay mode based on its unique requirements, and reduce resource contention. Each
gameplay mode will likely have unique requirements for acceptable latency, match size, as well as
other customize game-specific matchmaking logic. They will also likely attract different types of
players. Run each game mode's matchmaking service as a separate software deployment so that
you can more easily performance test and operate the game modes independently. For example,
you might run these as separate Lambda functions for each game mode, or you might operate
them as separate container-based service deployments.

Deploy your matchmaking services to multiple Regions, preferably the same Regions that you
host your game servers, so that players can be routed to a matchmaking service that is closest to
them which can improve the efficiency of finding game servers with low latency. Amazon GameLift
FlexMatch provides additional guidance for selecting Regions for matchmakers, and includes the
ability to integrate your matchmakers with multi-Region game session queues.

Best practices 79

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-intro.html

Games Industry Lens AWS Well-Architected Framework

GAMEPERF_BP11 - Regularly monitor matchmaking performance.

One of the most effective ways to optimize the performance of a game for players is to reduce the
time that they must wait before they can enter into a game session. Long wait times can cause
players to lose interest and lead to attrition, so it is important to consider this when designing your
matchmaking solution.

When you are designing your game matchmaking configuration for your game, you will need to
create rules that determine the conditions that are applied in order to form a match. You should
consider the impact that these rules will have on the performance of the system, particularly the
wait times for players. Before deploying changes to your matchmaking implementation, such as
the addition of new matchmaking conditions or filters, you should properly test this beforehand, or
consider releasing this change gradually to a small sample population of players as a canary or A/B
test to gather performance metrics before introducing this change to the entire player population.

Configure your matchmaking service to generate detailed logs that can help you to understand
what conditions or rules were applied to each matchmaking request so that you review and adjust
matchmaking implement as necessary. For example, Amazon Amazon GameLift FlexMatch provides
a fully-managed matchmaking service which can be used as a standalone service with your own
game server hosting or used with game servers hosted on Amazon GameLift. FlexMatch can
generate event notifications to Amazon EventBridge (formerly CloudWatch Events) and Amazon
Simple Notification Service (Amazon SNS) in JSON format so that you can automatically process
and store this data for analysis to help you improve matchmaking performance.

Setup metrics to track how long your matchmaking service takes to find a suitable game session
for players. Regularly review matchmaking duration metrics and correlate these times with player
behavior and community sentiment in order to develop suitable thresholds for matchmaking
timeouts that you can include in your matchmaking rule configuration. For example, Amazon
GameLift FlexMatch provides support for defining matchmaking request timeouts as well as
creating matchmaking rules that can allow requirements to relax over time. This feature allows you
to create matchmaking that can adapt to make it easier to create matches and place players into
game sessions when matches are difficult to find.

Tradeoffs

Refer to the Well-Architected Framework whitepaper for best practices in tradeoffs for
performance efficiency that apply to games workloads.

Best practices 80

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-design-ruleset.html#match-rulesets-components-expansion
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/trade-offs.html

Games Industry Lens AWS Well-Architected Framework

Resources

Refer to the following resources to learn more about our best practices related to performance
efficiency.

Documents and blogs

• Games Industry Architecture Center

• Well-Architected framework Performance Efficiency Pillar

• Comparing your on-premises storage patterns with Storage services - Storage Blog

• Amazon EC2 instance store - Amazon Elastic Compute Cloud

• Collecting Metrics and Logs from Amazon EC2 Instances and On-Premises Servers with the
CloudWatch Agent

• Allow and configure enhanced networking for EC2 instances

• Global Accelerator and Amazon GameLift FleetIQ

• Riot Games Technology Blog: Scalability and Load Testing For Valorant

• Hyper-scale online games with a hybrid Solution

Whitepapers

• Optimizing multiplayer game server performance on AWS whitepaper

• Performance at Scale with Amazon ElastiCache

• Database Caching Strategies Using Redis

• Amazon Virtual Private Cloud Connectivity Options

• Best Practice Design Patterns: Optimizing Amazon S3 Performance

Third-party tools

• Unreal Engine Performance and Profiling

• Unity Profiler

• Open 3D Engine (O3DE) Profiler

• Monitoring Amazon GameLift

Resources 81

https://aws.amazon.com/architecture/game-tech/?cards-all.sort-by=item.additionalFields.sortDate&cards-all.sort-order=desc&awsf.reference-architecture=content-type%23reference-arch-diagram&awsf.content-type=*all&awsf.methodology=*all
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html
https://aws.amazon.com/blogs/storage/comparing-your-on-premises-storage-patterns-with-aws-storage-services/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws.amazon.com/premiumsupport/knowledge-center/enable-configure-enhanced-networking/?nc1=h_ls
https://aws.amazon.com/blogs/gametech/improving-the-player-experience-by-leveraging-aws-global-accelerator-and-amazon-gamelift-fleetiq/
https://technology.riotgames.com/news/scalability-and-load-testing-valorant
https://aws.amazon.com/blogs/gametech/hyper-scale-online-games-with-a-hybrid-aws-solution/
https://d1.awsstatic.com/whitepapers/optimizing-multiplayer-game-server-performance-on-aws.pdf?did=wp_card&trk=wp_card
https://d1.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf
https://docs.aws.amazon.com/whitepapers/latest/database-caching-strategies-using-redis/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/s3-optimizing-performance-best-practices/welcome.html
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/PerformanceAndProfiling/
https://docs.unity3d.com/Manual/Profiler.html
https://docs.o3de.org/docs/user-guide/testing/
https://docs.aws.amazon.com/gamelift/latest/developerguide/monitoring-overview.html

Games Industry Lens AWS Well-Architected Framework

Video content

• Amazon EC2 foundations (CMP211-R2)

• Powering next-gen Amazon EC2: Deep dive into the Nitro system

• Getting Started with Amazon GameLift FleetIQ

• Riot Games: Outposts Customer Testimonial

Training materials

• Game Server Hosting with Amazon EC2

• Using Amazon Amazon GameLift FleetIQ for Game Servers

• Getting Started with Game Tech

• Game Server Hosting on AWS

• Amazon GameLift Primer

Cost optimization

The cost optimization pillar includes the continual process of refinement and improvement of a
system over its entire lifecycle. From the initial design of your first proof of concept to the ongoing
operation of production workloads, adopting the practices in this paper will allow you to build and
operate cost-aware systems that achieve business outcomes and minimize costs, thus allowing your
business to maximize its return on investment.

Design principles

In addition to the design principles from the cost optimization pillar of the Well-Architected
Framework whitepaper, the following design principles can help you optimize the costs of running
your game workload in the cloud.

Measure the infrastructure cost per player, platform, and game feature: The costs to develop
and operate the game, and acquire and retain players have significant impact on the financial
success of a game. Therefore, it is important to be able to understand and track the infrastructure
costs that are required for specific player experiences and features across game platforms so that
you can identify the resources of your architecture that may require cost optimization.

Cost optimization 82

https://www.youtube.com/watch?v=kMMybKqC2Y0
https://www.youtube.com/watch?v=rUY-00yFlE4
https://www.youtube.com/watch?v=p07ueG4A3qA
https://www.youtube.com/watch?v=g9nQXafMo4A
https://www.aws.training/Details/eLearning?id=53525
https://www.aws.training/Details/eLearning?id=53555
https://www.aws.training/Details/eLearning?id=47467
https://www.aws.training/Details/eLearning?id=50718
https://www.aws.training/Details/eLearning?id=42712

Games Industry Lens AWS Well-Architected Framework

Assess the tradeoff of cost optimization versus player experience: Determine whether or not you
should focus more on player experience features and improvements, or cost optimization. Typically,
after a game has reached a critical mass and player population stabilizes it is time to focus on
optimizing the cost for operating the game.

Definition

There are four best practice areas for cost optimization in the cloud:

• Cost-effective resources

• Matching supply and demand

• Expenditure awareness

• Optimizing over time

Prior to launch, game developers typically do not have a clear understanding of how popular,
successful, or long-lasting their game will become after launch. Some games are highly anticipated
but are unable to retain players for a long period of time, while other games may immediately
or gradually increase their player base and develop into sustainable and profitable businesses.
Depending on the game's monetization strategy, business priorities, and where the game is in its
lifecycle, a game developer will need to make trade-offs to evaluate cost optimization decisions.
For example, a game developer may be preparing to release a highly anticipated new game that
has media publicity and widespread industry awareness.

During this pre-launch phase, a developer will likely be prioritizing their focus on time-to-market,
feature development, and game performance rather than cost optimization. When a new game
launches, game developers want to be sure that their infrastructure can scale to meet their peak
player demand. This typically leads to the over-provisioning of resources to account for peak player
forecast projections, or best-case sales scenarios. Alternatively, if a game is not successful, or if it's
in a stage where development on the game is beginning to slow down, a developer may want to
prioritize reducing costs as much as possible so that they can continue to operate the game for
existing players for years to come.

A game developer may operate multiple games simultaneously, which requires additional
considerations to be factored in. For example, a game developer may reuse resources including
technical infrastructure, software, and staff for multiple live games, where the operating costs are
shared between the games.

Definition 83

Games Industry Lens AWS Well-Architected Framework

Games are unique workloads due to their business models, scale, and unpredictability. The
following questions can help you make cost-optimization decisions for your game.

Best practices

The following provide best practices for your cloud architecture.

Topics

• Cost-effective resources

• Matching supply and demand

• Expenditure awareness

• Optimizing over time

Cost-effective resources

GAMECOST01 - How are you choosing the right compute solution for your game servers?

One of most unique aspects of a game workload compared to other types of workloads is the
game server, which is critical to the player experience. Because players connect to game servers
from their game client to play a game session, it is also one of the biggest drivers of cost for
operating a multiplayer game so it is important to make sure that you optimize how you utilize the
compute infrastructure for your game to reduce costs.

GAMECOST_BP01: Benchmark your game server on multiple compute types.

During the initial planning and testing phase of game development, you should perform
benchmarking to determine the appropriate type of compute to use for your game. Typically,
session-based multiplayer and other types of low-latency games will use Amazon EC2 Instances
for hosting game servers. Each EC2 instance type provides a mixture of compute resources that are
optimized for different workload profiles. You should perform benchmarking of your game server
code to determine what resources such as CPU, Memory or Network bandwidth that your game
session utilizes and select the option that provides the right balance of performance at the lowest
cost. Most of the popular commercially available game engines such as Unreal Engine, Unity, and
Lumberyard provide performance profiling utilities that you can allow in the engine editor so that
your game server builds will emit log and/or metric data to help you benchmark performance and

Best practices 84

Games Industry Lens AWS Well-Architected Framework

resource utilization. This telemetry can help you evaluate and select the appropriate EC2 Instance
types to use.

As part of benchmarking your game server across multiple EC2 instance types, you should
determine what type of operating system and processor requirements are needed to run your
game. For best cost optimization, it is recommended to run your game compute infrastructure
on Linux instances to eliminate the licensing costs that is incurred with Windows. Additionally,
Graviton instances are 64-bit Arm-based EC2 instances that can be used to run your game servers,
including Unreal Engine dedicated servers.

GAMECOST_BP02. Optimize the number of game sessions hosted on each game server Instance
to reduce costs.

Optimize the number of game sessions hosted per server instance in order to achieve better
compute utilization and reduce compute infrastructure costs.

To reduce costs, game developers should maximize the number of game sessions hosted on the
same physical or virtual server, also known as the packing density of their game servers. This is
achieved by increasing the number of game server processes that can be simultaneously hosted
on an EC2 instance. A single game server process should not usually require the use of the entire
resources available on the EC2 instance. This is one of the most important ways to reduce compute
costs for a game and requires the use of software that can spawn and manage multiple server
processes on the EC2 instance on separate ports. For example, Amazon GameLift has a quota on
the maximum number of game server processes per instance, which you should strive to utilize so
that you can reduce hosting costs. Refer to the documentation for Amazon GameLift for details on
the current quota for maximum game server processes per instance.

As an alternative to deploying game server processes on virtual machines such as EC2 instances, it
is becoming popular for game developers to run their game servers as container-based applications
using container orchestration platforms such as Amazon Elastic Container Service (Amazon
ECS) or Amazon Elastic Kubernetes Service (Amazon EKS), or by hosting the game server using
Fargate. Container platforms provide job scheduling functionality that can automatically find an
available container instance in the cluster to host your game server container based on resource
requirements and other placement logic that you specify. However, as discussed in the reliability
pillar of this lens, it is important to consider how you will manage the scaling and player placement
behavior in way that doesn't disrupt active player sessions.

GAMECOST_BP03. Select the appropriate compute pricing option to reduce costs.

Best practices 85

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/blogs/gametech/compiling-unreal-engine-4-dedicated-servers-for-aws-graviton-ec2-instances/
https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://docs.aws.amazon.com/general/latest/gr/gamelift.html
https://aws.amazon.com/blogs/gametech/game-server-hosting-on-aws-fargate/
https://aws.amazon.com/blogs/gametech/game-server-hosting-on-aws-fargate/

Games Industry Lens AWS Well-Architected Framework

Run performance tests of your game server software across a variety of instance types and
compute options to determine which option is most cost-effective for your game.

In addition to efficiently utilizing the right EC2 instance types for your workload, consider which
of the available compute pricing options is most suitable for your cost optimization goals. There
are several pricing options available, including On-Demand Instances, Spot Instances, Reserved
Instances, and Savings Plans.

Spot Instances are ideal for running game servers because they offer the largest compute
discounts, do not require usage commitments, and they provide flexibility for unpredictable
and spiky workload types. However, Spot Instances can be interrupted, so they are best suited
for game server workloads with short game session durations or situations where the tolerance
for interruption is higher. For example, the Running Your Game Servers at Scale for up to 90%
lower compute cost blog post provides guidance for running game servers using Kubernetes on
Amazon EKS with EC2 Spot Instances. When using Spot, it is also recommended to run game server
workloads across multiple EC2 instance types and Availability Zones in an AWS Region to diversify
your usage of capacity and reduce interruption risk. It is also recommended to use Spot Instances in
combination with On-Demand Instances to minimize the impact of potential disruptions to active
game sessions, and to consider using capacity optimized allocations strategy to further reduce the
risk of interruption. Refer to the Best Practices for EC2 Spot for additional best practices. Amazon
EC2 Auto Scaling Capacity Rebalancing can be used to proactively monitor and add additional
capacity when Spot Instances are at increased risk of interruption. Amazon GameLift FleetIQ
integrates with Spot Instances to optimize the use of low-cost Spot Instances while reducing the
risk of interruptions. If you are hosting your game using Amazon GameLift, you should review the
Amazon GameLift documentation for choosing computing resources.

EC2 Reserved Instances allow you to receive a discount for compute by making usage commitment
to a particular Region and instance type, and as an alternative to Reserved Instances (RIs), Savings
Plans provide discounts similar to RIs with flexibility to apply the discounts across Regions, instance
family, operating system, tenancy, and can be applied to other compute services such as Fargate
and Lambda. Because Savings Plans provide regional flexibility, they are particularly ideal in
situations where your game has unpredictable usage across geographies such as with new game
launches. This provides a significant discount compared to On-Demand pricing and is ideal for
scenarios when you can forecast your expected usage for a 1-year or 3-year period.

The flexibility to apply the discount across different compute services can be a useful benefit to
allow you to apply your commitment-based usage discount across the infrastructure for your game
servers running on EC2 instances, and your game backend services which may be operating on

Best practices 86

https://aws.amazon.com/blogs/compute/running-your-game-servers-at-scale-for-up-to-90-lower-compute-cost/
https://aws.amazon.com/blogs/compute/running-your-game-servers-at-scale-for-up-to-90-lower-compute-cost/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-best-practices.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-intro.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-ec2-instances.html
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://aws.amazon.com/savingsplans
https://aws.amazon.com/savingsplans

Games Industry Lens AWS Well-Architected Framework

other services such as Lambda. Unlike Spot Instances which can be interrupted, Savings Plans and
Reserved Instances are simply a billing benefit and provide access the same usage characteristics
as On-Demand capacity. Typically, in game server workloads, Reserved Instances are introduced
after a game has been running in production for an extended period of time, at least several weeks
or months, where daily usage patterns are well understood. Since Reserved Instances and Savings
Plans require a usage commitment, it is recommended to maximize the utilization of pre-purchased
Reserved Instances and Savings Plans. They can be augmented with other purchase options that
provide more flexibility for unpredictable game server usage spikes, such as On-Demand and Spot
Instances.

For example, if your daily player usage pattern always requires at least 20 servers to support your
player base, but periodically requires up to 40 servers, then you should consider purchasing 20
Reserved Instances or an equivalent Savings Plan commitment, because that usage demand is
predictable and consistent, and will result in maximum utilization of the usage commitment that
you have purchased. The additional capacity that is required to support your players can be hosted
using Spot and On-Demand Instances.

The following diagram provides an example to illustrate the use of multiple compute pricing
options for game server workloads.

Best practices 87

Games Industry Lens AWS Well-Architected Framework

Hosting game servers with multiple EC2 pricing options

In the diagram, the player concurrency fluctuates over time which makes it difficult to manage
utilization and achieve cost optimization. To address this fluctuation, consider adopting a mixture
of different compute pricing options, using Reserved Instances and EC2 Savings Plans to meet
the needs of your minimum usage requirements while relying on EC2 On-Demand and EC2 Spot
Instances for dynamic usage.

GAMECOST02 - How are you optimizing the data transfer costs for your game infrastructure?

Games can transfer a significant amount of data across the internet between your players’ game
client devices and your game infrastructure to provide the gameplay experience, as well as
between the components of your game infrastructure. For example, data transfer occurs when
players download game content updates to their game clients, save their game progress state
to the cloud, engage in real-time multiplayer game sessions with their friends, and when your

Best practices 88

Games Industry Lens AWS Well-Architected Framework

game infrastructure transfers data between Regions and Availability Zones. It is important to
understand where the data transfer occurs in your game workload so that you can optimize your
architecture choices to reduce this data transfer cost. To optimize the data transfer costs for your
game, consider the following best practices.

GAMECOST_BP04: Optimize the cost of data transfer across the internet.

Implement solutions that reduce the cost of transferring data from your game backend to your
players.

Use CloudFront to reduce the cost of content delivery and heavily used public-facing web
applications. Game content and assets that are stored in the cloud are typically stored in Amazon
S3 and delivered to the game client either directly from S3 or from web servers hosted in Amazon
EC2 that retrieve the content from Amazon S3 and deliver it to clients. To reduce the data transfer
costs of content downloads, consider using Amazon CloudFront in front of your cloud storage to
deliver content to users. Using CloudFront can reduce the cost of data transfer because it costs
less to deliver your content from CloudFront points-of-presence than directly from Regions, and
CloudFront does not charge origin retrieval fees for AWS-based origins, such as Amazon EC2 and
Amazon S3. If your content is cacheable, CloudFront can be used to cache content closer to users
which can further reduce costs. CloudFront is also beneficial for placement in front of public-facing
web applications and services, even if caching is not used, since the cost of data transfer between
your servers and clients can be reduced by routing traffic through the CloudWatch network.
CloudWatch can be used to monitor your Amazon CloudFront usage. For use cases where you use
multiple content delivery networks (CDN), CloudFront Origin Shield can provide an additional layer
of caching to consolidate and reduce the number of origin requests from different providers. For
more best practices for content delivery, refer to the Content Delivery for Games whitepaper.

VPC Flow Logs can be used to monitor the network traffic in your environment and help you to
identify the sources and destinations of traffic to help you optimize your data transfer costs.

GAMECOST_BP05: Optimize costs to reduce data transfer between services, Availability Zones,
and Regions.

In addition to optimizing the data transfer between your game infrastructure and the internet,
you should also optimize the data transfer between the internal components of your game
infrastructure to reduce the amount of traffic sent between Availability Zones in the same Region,
and between Regions, which each incur data transfer costs.

Prioritize keeping internal traffic in the same Availability Zone as the application. To optimize data
transfer in your game backend services, you can deploy your database and cache clusters with

Best practices 89

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/monitoring-using-cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/monitoring-using-cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html
https://d1.awsstatic.com/whitepapers/content-delivery-for-games.pdf
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

Games Industry Lens AWS Well-Architected Framework

instances into multiple Availability Zones in a Region and configure your applications to prioritize
reading data from instances that are in the same Availability Zone as the application server.
Although this setup still incurs data transfer costs for the data replication between Availability
Zones, this is recommended in use cases where applications heavily utilize databases and caches,
such as read-heavy workloads that can achieve cost benefits from having local copies of the data in
the same availability zone.

You should replicate copies of data to other Regions if there are applications in those regions that
require regular access to the data. It is more cost-effective to replicate the data across Regions
so that applications can access a local copy of data as much as frequently as needed, rather than
relying on those applications to access data across regions which is not cost-effective at scale,
less performant, and requires more complex cross-Region networking configurations in order to
provide appropriate security controls.

For example, your game backend services might be deployed in the N. Virginia Region with game
servers deployed globally into multiple Regions closest to your players to reduce gameplay latency.
If your game servers need to access objects that are stored in an S3 bucket or cache data in
Amazon ElastiCache for Redis that is hosted in N. Virginia, it is more cost effective to replicate the
cache data to the Regions where the game servers are located to reduce the ongoing data transfer
cost for those servers to retrieve the data. AWS offers features that make it easier to set up multi-
Region replication of data, such as Amazon Aurora global databases, Amazon ElastiCache Global
Datastore for Redis, and Amazon DynamoDB Global Tables. For use cases where objects stored in
Amazon S3 needs to be frequently accessed by applications that are hosted in another Region,
consider using Amazon S3 Cross-Region Replication (CRR) to reduce cost. CRR can reduce costs by
automatically replicating copies of objects to destination buckets hosted in one or more Regions
where your applications are deployed. This configuration would still incur the cost of replicating
the object to another Region, but it would eliminate the data transfer costs that would otherwise
be incurred each time the cross-region application retrieves the object from S3, since it would
retrieve it from an S3 destination bucket in the same Region.

It is recommended to use VPC endpoints to integrate with services to reduce data traffic and
processing charges through NAT Gateways. Similarly, for public facing applications hosted in Public
Subnets, traffic may not need to traverse a NAT Gateway and can be configured to send outbound
traffic directly to an internet gateway to avoid the data processing and transfer costs of the NAT
Gateway where it isn’t needed.

The following diagram illustrates an architecture that can be used to reduce the cost of accessing
data from applications hosted in other Regions that require low latency access to shared datasets.

Best practices 90

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

Games Industry Lens AWS Well-Architected Framework

Optimizing costs for accessing latency-sensitive game content from global users

1. Your game development teams may be globally distributed and require access to copies of the
same content in Amazon S3. In this scenario, a game developer located in US East Coast can
upload content to an Amazon S3 bucket either directly or from an application they are hosting
in that Region.

2. S3 Cross-Region Replication is configured to replicate copies of objects to buckets in other
Regions so that applications hosted in those Regions can retrieve objects from the local Region
without needing to send requests across regions to access them. Replication can be configured
to be bi-directional so that updates made in any of the other Regions can be updated in the rest
of the Regions.

3. VPC Endpoints provides private access to Amazon S3 from your VPC so that applications do not
need to route traffic through a NAT Gateway, which could be used by other high throughput
application traffic and can cause congestion. Game development teams such as other global
studios, remote and contract workers can access copies of datasets by connecting to the region
that is most performant for them. Use Direct Connect to set up a dedicated connection
between your studio locations or data centers and Regions. Use Client VPN to provide remote
workers with secure remote access to your VPCs.

Best practices 91

Games Industry Lens AWS Well-Architected Framework

4. Player game clients and other internet-based applications integrate with CloudFront, which
provides content caching for objects stored in S3 and reduces the cost of data transfer for static
and dynamic content over the internet.

Multi-Region Access Points in Amazon S3 can be used to simplify this access pattern for
applications hosted in Regions where you do not host S3 buckets. Applications can interact with a
multi-Region access point which can determine the lowest-latency bucket location to serve their
request. Multi-Region Access Points have an additional cost.

GAMECOST03 - How are you optimizing the data storage costs for your game infrastructure?

Games can generate large amounts of data that needs to be stored and made available to
developers, players, and to the game itself. For example, you may be constantly generating new
source code, game content, and assets that need to be stored, your players may be generating
new user generated content, and your game clients and servers may be generating game analytics
telemetry data that needs to be stored in a data lake and made available to analytics teams. Your
game also generates structured data.

GAMECOST_BP06. Choose the appropriate type of storage to reduce costs.

Each type of data that you generate and store has unique characteristics that you should consider
when determining the right storage solution to use for your workload.

Use S3 Object Lifecycle Management to store object data in the most cost-effective storage class.
Amazon S3 provides multiple storage classes and object lifecycle management to make it easy to
setup simple and fine-grained policies to automatically transition data between storage tiers to
reduce costs. Instead of simply storing all data in S3 standard storage class by default, consider
setting up a lifecycle configuration to transition data between tiers automatically over time, or
use S3 Intelligent-Tiering storage class for unknown or changing access patterns. Alternatively,
S3 Intelligent-Tiering can cost-effectively and automatically transition data between tiers and
is recommended as a default storage class since it provides cost optimization without the need
to manually setup lifecycle policies, and is now the best choice for small and short-lived objects.
Common use cases for Amazon S3 include storage of game assets, static content, game logs,
data lake storage, and backups. For use cases where file systems are required, such for attaching
shared file systems to workstations during development, consider using Amazon Elastic File System

Best practices 92

https://docs.aws.amazon.com/AmazonS3/latest/userguide/MultiRegionAccessPoints.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://aws.amazon.com/blogs/aws/amazon-s3-intelligent-tiering-further-automating-cost-savings-for-short-lived-and-small-objects/
https://docs.aws.amazon.com/efs/latest/ug/storage-classes.html

Games Industry Lens AWS Well-Architected Framework

(Amazon EFS), which provides different storage classes and automatically grows and shrinks as you
add and remove files with no need for manage the infrastructure.

Matching supply and demand

Refer to the Well-Architected Framework whitepaper for best practices managing supply and
demand for cost optimization ply to games workloads. Additionally, for more best practices related
to dynamic scaling for game infrastructure, refer to the reliability and operational excellence pillars
of this lens.

Expenditure awareness

GAMECOST04 - How do you measure the cost of your game environments?

Understand the cost per player, game feature, and environment so that you can manage and
forecast your spend as the number of players changes over time and features are added and
improved. Consider the following best practices in order to manage your costs of your different
game environments.

GAMECOST_BP07: Implement attribution of cost per player, game feature, and environment.

Cost attribution for game servers is usually easier to perform than game backend services because
a game server is usually optimized to be able to host a specific number of concurrent players
per instance which can be amortized across the cost of running the instance. For game backend
services, it is recommended to de-couple the components of your game into distinct features
that can be managed as separate logical or physical resources to make it easier to analyze costs.
For example, although it may seem easier to implement a single monolithic application to host
game backend services, this pattern makes it hard to derive the total cost per player and game
feature over time as you add more features because the compute, networking, and storage costs of
resources are shared across all of them.

Consider adopting a serverless architecture for your game backend services with services such
as Amazon API Gateway and Lambda or Fargate for compute, Amazon SQS and Amazon SNS for
messaging, Amazon S3 for object storage, and Amazon DynamoDB for database storage. These
services are just a few examples of products that offer pricing that is usage-based and primarily
driven by request volume so that costs can be broken down more granularly. Individual resources
such as Lambda functions, Fargate services, DynamoDB tables, and S3 buckets can all be associated

Best practices 93

https://docs.aws.amazon.com/efs/latest/ug/storage-classes.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/manage-demand-and-supply-resources.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/manage-demand-and-supply-resources.html

Games Industry Lens AWS Well-Architected Framework

with cost allocation tags so that you can attribute the costs of these services with game feature
names that make it easier for you to understand the costs for each of your services.

It is also recommended to separately manage each of your game development environments so
that you can easily attribute costs for the different environments. Typically, game developers will
manage separate environments for development, test, staging and production environments,
as described in the operations pillar of this games industry lens. Each environment usually has
different scalability, performance, and usage requirements and may be managed by separate
teams. To control costs, organize these environments so that you can properly monitor and
attribute the costs of each environment.

For more information, refer to the following documentation:

• Building a serverless muli-player game that scales

• Standalone Game Session Servers with a Websockets-based backend

• Standalone Game Session Servers with a Serverless backend

Optimizing over time

Refer to the Well-Architected Framework Cost Optimization Pillar for guidance on optimizing over
time.

Resources

Refer to the following resources to learn more about best practices for cost optimization.

Documentation and blogs

• How can I reduce data transfer charges for my NAT gateway?

• Amazon GameLift FleetIQ adapter for Agones

• How can I find the top contributors to traffic through the NAT gateway in my VPC?

• Choose the right compute strategy for your global game servers

• Well-Architected Labs -- Cost effective resources

• Amazon VPC CNI plugin increases pods per node limits

• Architecture Best Practices for Cost Optimization

• Reducing player wait time and right sizing compute allocation using Amazon Sagemaker RL and
Amazon EKS

Resources 94

https://aws.amazon.com/blogs/compute/building-a-serverless-multiplayer-game-that-scales/
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_designbackend_arch_websockets.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift_quickstart_customservers_designbackend_arch_serverless.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/vpc-reduce-nat-gateway-transfer-costs/
https://aws.amazon.com/blogs/gametech/introducing-the-gamelift-fleetiq-adapter-for-agones/
https://aws.amazon.com/premiumsupport/knowledge-center/vpc-find-traffic-sources-nat-gateway/
https://aws.amazon.com/blogs/gametech/choose-the-right-compute-strategy-for-your-global-game-servers/
https://wellarchitectedlabs.com/cost/costeffectiveresources/
https://aws.amazon.com/blogs/containers/amazon-vpc-cni-increases-pods-per-node-limits/
https://aws.amazon.com/architecture/cost-optimization/?cards-all.sort-by=item.additionalFields.sortDate&cards-all.sort-order=desc&awsf.content-type=*all&awsf.methodology=*all
https://aws.amazon.com/blogs/machine-learning/reducing-player-wait-time-and-right-sizing-compute-allocation-using-amazon-sagemaker-rl-and-amazon-eks/
https://aws.amazon.com/blogs/machine-learning/reducing-player-wait-time-and-right-sizing-compute-allocation-using-amazon-sagemaker-rl-and-amazon-eks/

Games Industry Lens AWS Well-Architected Framework

• Compute Optimizer

• Electronic Arts optimizes storage costs and operations using Amazon S3 Intelligent-Tiering and
S3 Glacier

• Escape unfriendly licensing practices by migrating Windows workloads to Linux

• Overview of Data Transfer Costs for Common Architectures

Whitepapers

• Cost Optimization Pillar - Well-Architected Framework

• Amazon EC2 Reserved Instances and Other Reservation Models

• Right Sizing: Provisioning Instances to Match Workloads

Resources 95

https://aws.amazon.com/compute-optimizer/
https://aws.amazon.com/blogs/storage/electronic-arts-significantly-optimizes-storage-costs-and-operational-overhead-using-amazon-s3-and-s3-glacier/
https://aws.amazon.com/blogs/storage/electronic-arts-significantly-optimizes-storage-costs-and-operational-overhead-using-amazon-s3-and-s3-glacier/
https://aws.amazon.com/blogs/publicsector/escape-unfriendly-licensing-practices-by-switching-enterprise-workloads-to-linux/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-reservation-models/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-right-sizing/cost-optimization-right-sizing.html

Games Industry Lens AWS Well-Architected Framework

Conclusion

Games are designed to deliver entertainment experiences to a global audience of players, and
have usage characteristics that are typically unpredictable and variable. The Games Industry Lens
describes the common types of scenarios that typically comprise a game architecture, and provides
a set of questions and best practices to consider when you are building and operating games in
the cloud. By applying this framework to your game architecture, you will be able to build reliable,
secure, efficient, and cost-effective games in the cloud.

96

Games Industry Lens AWS Well-Architected Framework

Contributors

The following individuals contributed to this document:

• Kyle Somers – Principal Solutions Architect, Amazon Web Services

• Hyobin An – Solutions Architect, Amazon Web Services

• Peter Chapman – Mgr, Solutions Architecture, Amazon Web Services

• Nirav Doshi – Principal Technical Account Manager, Amazon Web Services

• Chris Finch – Senior AMER Digital User Engagement Specialist Solutions Architect, Amazon Web
Services

• Jackie Jiang – Senior Solutions Architect, Amazon Web Services

• Sungsoo Khim – Solutions Architect, Amazon Web Services

• Byungsu Kim – Solutions Architect, Amazon Web Services

• Minsuk Kim – Solutions Architect, Amazon Web Services

• Pawan Matta – Senior Solutions Architect, Amazon Web Services

• Jinsung Park – Associate Solutions Architect, Amazon Web Services

• Tanya Rhodes – Senior Solutions Architect, Amazon Web Services

• Bruce Ross – Senior Media Solutions Architect, Well-Architected, Amazon Web Services

97

Games Industry Lens AWS Well-Architected Framework

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Minor update Definitions section added. November 19, 2021

Initial publication Whitepaper first published. November 19, 2021

Note

To subscribe to RSS updates, you must have an RSS plug-in for the browser you are using.

98

Games Industry Lens AWS Well-Architected Framework

Notices

Customers are responsible for making their own independent assessment of the information in this
document. This document: (a) is for informational purposes only, (b) represents current product
offerings and practices, which are subject to change without notice, and (c) does not create any
commitments or assurances from and its affiliates, suppliers or licensors. products or services are
provided “as is” without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of to its customers are controlled by agreements, and
this document is not part of, nor does it modify, any agreement between and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

99

Games Industry Lens AWS Well-Architected Framework

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

100

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Games Industry Lens
	Table of Contents
	Introduction
	Custom lens availability

	Definitions
	Gaming platform
	Game server
	Game client
	Messaging
	Live game operations (Live Ops)

	General design principles
	Scenarios
	Game hosting for real-time synchronous gameplay
	Game server processes
	Session-based game server hosting with serverless backend
	Multi-Region and hybrid architecture for low-latency games

	Game backends
	Container-based game backend architecture
	Serverless-based game backend architecture

	Game production in the cloud (GPIC)
	Game production in the cloud – CI/CD
	Game production in the cloud – Workstations

	Game analytics pipeline

	Well-Architected pillars
	Operational excellence
	Design principles
	Definition
	Best practices
	Prepare
	Operate
	Evolve

	Resources
	Documentation and blogs
	Partner solutions
	Whitepapers
	Video content
	Training materials

	Security
	Design principles
	Definition
	Best practices
	Identity and access management
	Detective controls
	Infrastructure protection
	Data protection
	Incident response

	Resources
	Documentation and blogs
	Whitepapers
	Partner solutions
	Training materials

	Reliability
	Design principles
	Definition
	Best practices
	Foundations
	Change management
	Failure management

	Resources
	Documentation and blogs
	Whitepapers
	Video content
	Training materials

	Performance efficiency
	Design principles
	Definition
	Best practices
	Selection
	Review
	Monitoring
	Tradeoffs

	Resources
	Documents and blogs
	Whitepapers
	Third-party tools
	Video content
	Training materials

	Cost optimization
	Design principles
	Definition
	Best practices
	Cost-effective resources
	Matching supply and demand
	Expenditure awareness
	Optimizing over time

	Resources
	Documentation and blogs
	Whitepapers

	Conclusion
	Contributors
	Document history
	Notices
	AWS Glossary

