
AWS Whitepaper

AWS Glue Best Practices: Building a
Performant and Cost Optimized Data
Pipeline

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

AWS Glue Best Practices: Building a Performant and Cost Optimized
Data Pipeline : AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Abstract ... 1

Are you Well-Architected? ... 1
Introduction .. 2

Using AWS Well-Architected framework for building a data pipeline ... 3
Building a performance efficient data pipeline ... 5

Data partitioning and bucketing ... 5
Partitioning data ... 5

File formats and data compression .. 8
Row vs columnar storage .. 8
Compression ... 10
Configure compression format in AWS Glue .. 11

Avoid or minimize User defined functions (UDFs) .. 12
Building a cost-effective data pipeline .. 14

The right AWS Glue worker type .. 14
Standard ... 14
G.1X ... 14
G.2X .. 15

Estimate AWS Glue DPU ... 15
Additional considerations ... 18

PySpark vs. Python Shell vs. Scala ... 18
Python shell ... 18
PySpark jobs .. 18
Scala jobs .. 19
Comparison chart .. 19

Custom classifiers ... 20
Creating a custom classifier .. 22
Adding the classifier to a crawler ... 24

Incremental data pipeline .. 27
Conclusion .. 31
Contributors ... 32
Further reading .. 33
Document revisions ... 34
Notices .. 35

iii

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

AWS Glossary ... 36

iv

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

AWS Glue Best Practices: Building a Performant and Cost
Optimized Data Pipeline

Publication date: August 26, 2022 (Document revisions)

Abstract

Data integration is a critical element in building a data lake and a data warehouse. Data integration
enables data from different sources to be cleaned, harmonized, transformed, and finally loaded.
When building a data warehouse, the bulk of the development efforts are required for building
a data integration pipeline. Data integration is one of the most critical elements in data analytics
ecosystems. An efficient and well-designed data integration pipeline is critical for making the data
available, and being trusted amongst analytics consumers.

This whitepaper shows you some of the consideration and best practices in building high-
performance, cost-optimized data pipelines with AWS Glue.

To get the most out of reading this whitepaper, it’s helpful to be familiar with AWS Glue, AWS Glue
DataBrew, Amazon Simple Storage Service (Amazon S3), AWS Lambda, and AWS Step Functions.

• For best practices around Operational Excellence for your data pipelines, refer to AWS Glue Best
Practices: Building an Operationally Efficient Data Pipeline.

• For best practices around Security and Reliability for your data pipelines, refer to AWS Glue Best
Practices: Building a Secure and Reliable Data Pipeline.

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS
Management Console, you can review your workloads against these best practices by answering a
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Abstract 1

https://aws.amazon.com/glue/
https://aws.amazon.com/glue/features/databrew/
https://aws.amazon.com/glue/features/databrew/
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-efficient-data-pipeline/aws-glue-best-practices-build-efficient-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-efficient-data-pipeline/aws-glue-best-practices-build-efficient-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-secure-data-pipeline/aws-glue-best-practices-build-secure-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-secure-data-pipeline/aws-glue-best-practices-build-secure-data-pipeline.html
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Introduction

Data volumes and complexities are increasing at an unprecedented rate, exploding from terabytes
to petabytes or even exabytes of data. Traditional on-premises based approaches for bundling a
data pipeline do not work well with a cloud-based strategy, and most of the time, do not provide
the elasticity and cost effectiveness of cloud native approaches. We hear from customers all the
time that they are looking to extract more value from their data but struggling to capture, store,
and analyze all the data generated by today’s modern and digital businesses. Data is growing
exponentially, coming from new sources, it is increasingly diverse, and needs to be securely
accessed and analyzed by any number of applications and people.

With changing data and business needs, the focus on building a high performing, cost effective,
and low maintenance data pipeline is paramount. Introduced in 2017, AWS Glue is a fully managed,
serverless data integration service which allows customers to scale based on their workload with
no infrastructures to manage. In the next section, we discuss common best practices around
performance efficiency and cost optimization of the data pipeline built with AWS Glue. This
document is intended for advanced users, data engineers and architects.

Refer to AWS Glue Best Practices: Building an Operationally Efficient Data Pipeline to understand
more about the AWS Glue product family before proceeding to the next sections.

Introduction 2

https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-efficient-data-pipeline/aws-glue-best-practices-build-efficient-data-pipeline.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Using AWS Well-Architected framework for building a
data pipeline

Building a well architected data pipeline is critical for the success of a data engineering project.
While designing a well-architected data pipeline we take the guidelines of the Amazon Web
Services (AWS) Well-Architected Framework. This helps you to understand the pros and cons of
decisions you make while building applications on AWS and guide the architecture considerations
in operating reliable, secure, efficient, and cost-effective systems in the cloud. It provides a way
for you to consistently measure your architectures against best practices and identify areas for
improvement. We believe that having well-architected data pipeline using the well architected
pillars greatly increases the likelihood of success. The AWS Well-Architected Framework is based on
six pillars:

• Operational Excellence — The Operational Excellence pillar includes the ability to support
development and run workloads effectively, gain insight into their operations, and to
continuously improve supporting processes and procedures to deliver business value. You can
find prescriptive guidance on implementation in the Operational Excellence Pillar whitepaper.

• Security — The Security pillar encompasses the ability to protect data, systems, and assets
to take advantage of cloud technologies to improve your security. You can find prescriptive
guidance on implementation in the Security Pillar whitepaper.

• Reliability — The Reliability pillar encompasses the ability of a workload to perform its
intended function correctly and consistently when it’s expected to. This includes the ability to
operate and test the workload through its total lifecycle. You can find prescriptive guidance on
implementation in the Reliability Pillar whitepaper.

• Performance Efficiency —The Performance Efficiency pillar includes the ability to use
computing resources efficiently to meet system requirements, and to maintain that efficiency as
demand changes and technologies evolve. You can find prescriptive guidance on implementation
in the Performance Efficiency Pillar whitepaper.

• Cost Optimization — The Cost Optimization pillar includes the ability to run systems to deliver
business value at the lowest price point. You can find prescriptive guidance on implementation in
the Cost Optimization Pillar whitepaper.

• Sustainability — The Sustainability pillar focuses on environmental impacts, especially energy
consumption and efficiency, since they are important levers for architects to inform direct

3

https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html?ref=wellarchitected-wp
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html?ref=wellarchitected-wp
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html?ref=wellarchitected-wp
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html?ref=wellarchitected-wp

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

action to reduce resource usage. You can find prescriptive guidance on implementation in
the Sustainability Pillar whitepaper.

This whitepaper covers best practices around Performance Efficiency and Cost Optimization of data
pipelines.

• For best practices around Operational Excellence for your data pipelines, refer to AWS Glue Best
Practices: Building an Operationally Efficient Data Pipeline.

• For best practices around Security and Reliability for your data pipelines, refer to AWS Glue Best
Practices: Building a Secure and Reliable Data Pipeline.

4

https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html?ref=wellarchitected-wp
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-efficient-data-pipeline/aws-glue-best-practices-build-efficient-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-efficient-data-pipeline/aws-glue-best-practices-build-efficient-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-secure-data-pipeline/aws-glue-best-practices-build-secure-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-secure-data-pipeline/aws-glue-best-practices-build-secure-data-pipeline.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Building a performance efficient data pipeline

The Performance Efficiency pillar includes the ability to use computing resources efficiently to
meet workload requirements, and to maintain that efficiency as demand changes and technologies
evolve. Here we consider some of the factors which help you improve the Performance Efficiency
aspects of your data pipeline.

Data partitioning and bucketing

If you need to ingest data from a large dataset into your data pipeline and the data is not properly
distributed for optimized usage of compute resources, the performance efficiency may not be
optimal. Partitioning and bucketing can help you get the best performance from your data pipeline
by distributing the data, and reducing the amount of data that needs to be read by the respective
compute resources.

Partitioning data

Partitioning groups data into parts and keeps the related data together based on a specific value
or values. For example, a customer who wants to store website clicks stream data might store it by
grouping the data together by year, month, day, country, and so on. These grouped data sets are
then stored together as files in the same partition.

Partition keys act as virtual columns. You define them at table creation time, and when data is
added to Amazon S3 via services such as AWS Glue extract, transform, load (ETL), Amazon Athena,
and S3, data is grouped and persisted based on the partition keys values such as country=US.

Data can be partitioned with one or more partition column and the partitions are hierarchical. For
example:

s3://<bucket_name>/<table_name>/country=<country
value>/year=<year_value>/month=<month_value>/day=<day_value>/

Here the data is partitioned first by country and then by year, month, and day. The partition format
shown is called “Hive style”, which adds a key (in this example, the country) and value (such as US)
to the file path. The other partition style supported by AWS Glue is “Unnamed style”; however, hive
partition style is one of the most widely used methods of partitioning data for big data processing.

Example: Data Definition Language (DDL) script of a partitioned table.

Data partitioning and bucketing 5

https://aws.amazon.com/

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

CREATE EXTERNAL TABLE website_clickstream_events (
`event_time` timestamp,
`ip_address` string,
`page` string,
`action` string)
PARTITIONED BY (
country string,
year bigint,
month bigint,
day bigint
)
INTO 1000 BUCKETS
STORED AS TEXTFILE
LOCATION
's3://<bucket name>/website_clickstream_events/'

Why partitioning?

Partitioning can help reduce the amount of data scanned, thereby improving performance and
reducing overall cost of analytics using pushdown predicates. Using pushdown predicates, instead
of reading the entire dataset and then filtering the data after it is loaded into memory, you can
apply the filter directly on the partition metadata in the data catalog. Then you only list and read
what you need.

Example: Partitions

s3://<bucket_name>/webclickstream_events/country=US/year=2021/month=06/day=01/
s3://<bucket_name>/webclickstream_events/country=US/year=2021/month=06/day=02/
s3://<bucket_name>/webclickstream_events/country=US/year=2021/month=06/day=03/

Pre-filtering using pushdown predicates

In many cases, you can use a pushdown predicate to filter on partitions without having to list
and read all the files in your dataset. Instead of reading the entire dataset and then filtering in a
DynamicFrame, you can apply the filter directly on the partition metadata in the data catalog. Then
you only list and read what you need into a DynamicFrame.

In the previous S3 partitions example, when you want to get data for day=01, instead of loading
all files under s3://<bucket name>/website_clickstream_events/, AWS Glue can load
data under path s3://<bucket name>/website_clickstream_events/country=US/
year=2021/month=06/day=01/ by filtering partitions based on the day predicate and load files

Partitioning data 6

https://www.geeksforgeeks.org/introduction-of-pushdown-automata/

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

under day=01/ . This improves the data processing performance and reduces the overall cost for
analytics.

Example: Query

datasource = glueContext.create_dynamic_frame_from_catalog(
database = "default",
table_name = "website_clickstream_events",
push_down_predicate = "year = '2021' and month = '06' and day='01' ",
transformation_ctx = "datasource")

How to partition?

AWS Glue supports partitioning data using Spark SQL and DataFrame APIs. You can partition the
data by specifying the columns based on which you want to group the data. For example, by year,
month, or country.

Each file stored inside a partition should be at least 128 MB to a maximum of one GB to get ensure
that AWS Glue (Spark) can read and process the data efficiently. If the file sizes are too small (KBs
to few MBs), AWS Glue will spend more time in I/O and can lead to degraded performance.

You should choose partitions column that have similar characteristics, such as records from the
same country and that can have a limited number of possible values. This characteristic is known as
data cardinality. For example, if you partition by the column country, and this column has a limited
number of distinct values (low cardinality), partitioning by country works well and decreases query
latency. But if you partition by the column transaction date, it’ll have a higher number of distinct
values (high cardinality) and leads to increased query latency.

Partition index

Querying tables with many partitions (10s of 1000s), create performance challenges as AWS Glue
has to scan through the partitions in the AWS Glue Data Catalog and load the partitions that are
relevant to the query/filter criteria. In order to improve the response time of scanning tables with
large number of partitions, AWS Glue Data Catalog now provides Partition Indexes that can help
improve performance.

Partition indexes are created by combining a sub list of partition keys defined in the table. A
partition index can be created on any list of partition keys defined on the table. For the previous
website_clickstream_events table, some of the possible indexes are (country, year,
month, day), (country, year), (country).

Partitioning data 7

https://spark.apache.org/sql/
https://github.com/data-apis/dataframe-api

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

There is a soft limit for number of partitions in a table and across all AWS Glue tables in an AWS
Account. A soft limit can be increased by raising support tickets.

Refer to Working with Partition Indexes to understand how to create and manage partition indexes.

File formats and data compression

Columnar data formats are used in data lake storage for faster analytics workloads, as opposed to
row formats. Columnar formats significantly reduce the amount of data that needs to be fetched
by accessing columns that are relevant for the workload. Let’s look at each of these formats in
more detail.

Row vs. columnar storage

Columnar storage for database tables is an important factor in optimizing analytic query
performance because it drastically reduces the overall disk I/O requirements and reduces the
amount of data you need to load from disk.

The following series of images describe how columnar data storage implements efficiencies and
how that translates into efficiencies when retrieving data into memory.

This first image shows how records from database tables are typically stored into disk blocks by
row.

How records from database tables are typically stored into disk blocks by row

In a typical relational database table, each row contains field values for a single record. In row-wise
database storage, data blocks store values sequentially for each consecutive column making up the

File formats and data compression 8

https://docs.aws.amazon.com/general/latest/gr/glue.html#limits_glue
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

entire row. If block size is smaller than the size of a record, storage for an entire record may take
more than one block. If block size is larger than the size of a record, storage for an entire record
may take less than one block, resulting in an inefficient use of disk space. In online transaction
processing (OLTP) applications, most transactions involve frequently reading and writing all the
values for entire records, typically one record or a small number of records at a time. As a result,
row-wise storage is optimal for OLTP databases.

The next image shows how with columnar storage, the values for each column are stored
sequentially into disk blocks.

With columnar storage, values for each column are stored sequentially into disk blocks.

Using columnar storage, each data block stores values of a single column for multiple rows.

In this simplified example, using columnar storage, each data block holds column field values for
as many as three times as many records as row-based storage. This means that reading the same
number of column field values for the same number of records requires a third of the input/output
(I/O) operations compared to row-wise storage. In practice, using tables with very large numbers of
columns and very large row counts, storage efficiency is even greater.

An added advantage is that, since each block holds the same type of data, block data can use a
compression scheme selected specifically for the column data type, further reducing disk space and
I/O.

The savings in space for storing data on disk also carries over to retrieving and then storing that
data in memory. Since many database operations only need to access or operate on one or a small
number of columns at a time, you can save memory space by only retrieving blocks for columns
you need for a query. Where OLTP transactions typically involve most or all the columns in a row

Row vs columnar storage 9

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

for a small number of records, data analysis queries commonly read only a few columns for a very
large number of rows. This means that reading the same number of column field values for the
same number of rows requires a fraction of the I/O operations and uses a fraction of the memory
that would be required for processing row-wise blocks.

In practice, using tables with very large numbers of columns and very large row counts, the
efficiency gains are proportionally greater. For example, suppose a table contains 100 columns. A
query that uses five columns will only need to read about five percent of the data contained in the
table. This savings is repeated for possibly billions or even trillions of records for large databases.
In contrast, a row-wise database would read the blocks that contain the 95 unneeded columns as
well.

Apache Parquet and ORC are columnar storage formats that are optimized for fast retrieval of
data and used in AWS analytical applications. Columnar storage formats have the following
characteristics that make them suitable for using with data analysis:

• Compression by column, with compression algorithm selected for the column data type to
save storage space in Amazon S3 and reduce disk space and I/O during query processing.

• Predicate pushdown in Parquet and ORC enables search engine to fetch only the blocks it needs,
improving query performance. When a query obtains specific column values from your data, it
uses statistics from data block predicates, such as max/min values, to determine whether to read
or skip the block.

• Splitting of data in Parquet and ORC allows search engine to split the reading of data to
multiple readers and increase parallelism during its query processing.

To convert your existing raw data from other storage formats to Parquet or ORC, you can run
CREATE TABLE AS SELECT (CTAS) queries in Athena and specify a data storage format as Parquet or
ORC, or use a AWS Glue ETL job.

Compression

Compressing data help reduce the amount of data stored in the storage layer and improves
the write and read operation performance along with improved network and I/O throughput.
Compared to working with uncompressed data, data compression improves overall data pipeline
performance.

AWS Glue supports multiple compression formats natively. Some of the popular formats are

Compression 10

https://parquet.apache.org/
https://orc.apache.org/
https://docs.aws.amazon.com/athena/latest/ug/ctas.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

• SNAPPY — Snappy is the default compression format for files in the Parquet data storage
format. It is a fast compression algorithm that provides moderate compression at a minimum
speed of 250MB/s. When combined with Parquet format, you can create highly compressed,
splittable files that enable better performance and throughput.

• ZLIB — ZLIB is the default compression format for files stored in the Optimized Row Columnar
(ORC) data storage format in AWS Glue. ORC is the default storage format for Apache Hive/Tez
Engine.

• Gzip — Gzip compression is one of most widely available compression codec. You can use this
compression format when you need to exchange data across wide variety of applications and
systems that may not necessarily support other formats. GZIP is CPU-intensive and it is not
splittable. It cannot be processed in parallel by distributed data processing engines. Hence, it is a
good fit for processing data that are not used often but require a high compression ratio, such as
archival data.

• BZIP2 — BZip2 can provide better compression ratio than GZip at the cost of speed (CPU). It is a
splittable format and can be processed in parallel by distributed data processing engines. It is a
good option when compression needs are critical. Because BZip2 is compute intensive, it is not
recommended for data that are queried often.

Following are some factors to consider when choosing one or the other compression format

Table 1 — Factors to consider when choosing a compression format

Algorithm Splittable? Compression ratio Compress /
Decompress speed

Gzip (DEFLATE) No High Medium

Bzip2 Yes Very high Slow

LZO No Low Fast

Snappy No Low Very fast

Configure compression format in AWS Glue

In AWS Glue, compression format for a file can be specified in few ways depending upon how you
access the data.

Configure compression format in AWS Glue 11

https://github.com/google/snappy
https://zlib.net/
https://www.gnu.org/software/gzip/
https://www.sourceware.org/bzip2/

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Using the AWS Glue’ dynamic data frame library

glueContext.write_dynamic_frame.from_options(
frame = datasource1,
connection_type = "s3",
connection_options = {
"path": "s3://s3path"
},
format = "glueparquet",
format_options={"compression": "snappy"}
transformation_ctx = "datasink1")

Using PySpark

df.write
.option("compression", "snappy")
.parquet("s3://output-path")

Using Amazon Athena / SPARK SQL

CREATE EXTERNAL TABLE sampleTable (
column1 INT,
column2 INT
) STORED AS PARQUET
TBLPROPERTIES (
'classification'='parquet',
'compression'='snappy')
LOCATION '"s3://output-path"'

Avoid or minimize User defined functions (UDFs)

User-defined functions (UDFs) are user-programmable routines that transform values from a
single row to produce a single corresponding output value per row. UDFs, gives data engineers the
flexibility to create new functions in higher level languages, abstracting their lower-level language
implementations. However, our recommendation when working with AWS Glue or Spark code
would be to use native Spark SQL functions as much as possible and limit the usage of UDFs to
scenarios where a built-in function doesn’t exist.

Spark SQL functions operate directly on a Java virtual machine (JVM) and are well integrated with
both Catalyst and Tungsten. This provides the advantage that functions can be optimized in the

Avoid or minimize User defined functions (UDFs) 12

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

execution plan and benefit from spark native optimizations. UDFs in general increase the memory
footprint because of the need to serialize and deserialize the data to be sent across spark execution
engine and the JVM (plus Python process in case of PySpark).

Avoid or minimize User defined functions (UDFs) 13

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Building a cost-effective data pipeline

A cost-optimized data pipeline fully uses all resources, achieves an outcome at the lowest possible
price point, and meets your functional requirements. Here we are providing best practices to
optimized price performance of your data pipeline.

The right AWS Glue worker type

This section of the document discusses the different worker nodes available in AWS Glue, their
differences, and provides guidance on selecting the appropriate worker type based on your
workload.

The following table summarizes the available AWS Glue worker types:

Table 2 — AWS Glue worker types

Worker name vCPU Memory (GB) Attached storage
(GB)

Standard 4 16 50

G.1X 4 16 64

G.2X 8 32 128

When creating an AWS Glue job with either of these worker types, the following rule applies:

Standard

• You specify the maximum number of Data Processing Units (DPUs) required for the job

• Each standard worker launches two executors

• Each executor launches with four Spark cores

G.1X

• You specify the maximum number of workers

The right AWS Glue worker type 14

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

• Each worker corresponds to one DPU

• Each worker launches one executor

• Each executor launches with eight Spark cores

• In AWS Glue 3.0, each job launches with four cores per executor

G.2X

• You specify the maximum number of workers

• Each worker corresponds to two DPUs

• Each worker launches one executor

• Each executor launches with 16 Spark cores

• In Glue 3.0, each job launches with eight cores per executor

We recommend using G.1X or G.2X workers for jobs authored in AWS Glue 2.0 and above.
Based on whether your job requires more data parallelism, (for example, they benefit from
horizontal scaling) adding more G.1X workers is recommended. For jobs that have intense
memory requirements - or ones that benefit from vertical scaling - adding more G.2X workers is
recommended. Additionally, the G.2X jobs benefit from having additional disk space.

Estimate AWS Glue DPU

AWS Glue has autoscaling feature which helps to avoid the complexities involved in calculating
the right number of DPUs for a job. AWS Glue 3.0 jobs can be configured to auto-scale, meaning
the jobs can now dynamically scale resources up and down based on the workload, for both batch
and streaming jobs. With autoscaling, there is no longer a need to worry about over-provisioning
resources for jobs, spend time optimizing the number of workers, or pay for idle workers.

Common scenarios where automatic scaling helps with cost and utilization for your Spark
applications include a Spark driver listing a large number of files in Amazon S3 or performing
a load while executors are inactive, Spark stages running with only a few executors due to
overprovisioning, and data skews or uneven computation demand across Spark stages.

G.2X 15

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

To enable autoscaling, set the --enable-auto-scaling flag to true, or enable it manually from
AWS Glue Studio while authoring the job. Additionally, choose the type and maximum number of
workers and AWS Glue will choose the right size resources for the workload.

automatic scaling is available for AWS Glue jobs with both G1.X and G2.X worker types. Standard
DPUs are not supported.

When not using autoscaling, we use a rough calculator to try estimate the AWS Glue job’s DPU
requirement, the following section provides more details on the approach.

For estimating the DPU requirements at job level, let’s break down the jobs into different
complexity grades - Low, Medium, and High. The sizing of the jobs is purely based on the number
of transformations.

A job that does only source A to target B data movement, with no transformation or with minor
data filtering, can be considered Low on the complexity scale. Similarly, a job that involves multiple
joins, UDFs, window functions, and so on can be considered a High complexity job.

The maximum number of workers you can define is 299 for G.1X, and 149 for G.2X. These are not
hard limits and can be increased.

Let’s attach the following weights to each complexity scale:

Table 3 — Complexity weight by complexity level

Complexity level Weight

Low 2

Medium 6

High 10

Next, we apply the following formula to calculate the DPU requirements for a job based on G.1X
worker.

DPU Estimate = MIN((CEIL(((data_volume_in_GB *
weight)/16),1)+1,299)

Let’s consider the following scenario:

Estimate AWS Glue DPU 16

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Table 4 — Sample low complexity job

Job name Job 1

Profile Low

Data volume 160 GB

Based on the previous scenario, the following calculation applies:

DPU Estimate = MIN(CEIL((160*2)/16,1)+1,299) = MIN (21,299) = 21

For the same data input, the following table lists the DPU estimates for each complexity level:

Table 5 — DPU estimate by complexity level

Complexity level DPU estimate

Low 21

Medium 61

High 101

Be advised that the data needs to be partitioned and should have at least as many partitions
as the number of spark cores in order to efficiently process the data. The calculations above are
designed to assist you with getting started with a worker configuration. Once you set up and run
your AWS Glue jobs, you will be able to monitor for the actual usage which may be just right with
the demand, slightly over or below. Based on the outcome you can adjust and further optimize
your worker counts to meet your processing requirements.

Estimate AWS Glue DPU 17

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Additional considerations

PySpark vs. Python Shell vs. Scala

AWS Glue ETL scripts can be coded in Python or Scala. Python scripts use a language that is an
extension of the PySpark Python dialect for ETL jobs. The script contains extended constructs to
deal with ETL transformations. When you automatically generate the source code logic for your
job, a script is created. You can edit this script, or you can provide your own script to process your
ETL work.

Python shell

AWS Glue ETL supports running plain non-distributed Python scripts as a shell script to run small
to medium-sized generic tasks that are often part of an ETL workflow. For example, to submit SQL
queries to services such as Amazon Redshift, Amazon Athena, or Amazon EMR, or run machine
learning (ML) and scientific analyses.

Python shell jobs in AWS Glue come pre-loaded with libraries such as Boto3, NumPy, SciPy, pandas,
and others.

You can run Python shell jobs using one Data Processing Unit (DPU) or 0.0625 DPU (which is 1/16
DPU), allowing you to run cost effective small to medium jobs that does not require Spark runtime.

Compared to AWS Lambda, which has a strict 15-minute maximum timeout, AWS Glue Python
Shell can be configured with a much longer timeout and higher memory, often required for data
engineering jobs.

PySpark jobs

AWS Glue version 2.0 and later (PySpark and Scala) provides an upgraded infrastructure for
running Apache Spark ETL jobs in AWS Glue with reduced startup times. With the reduced wait
times, data engineers can be more productive and increase their interactivity with AWS Glue.
The reduced variance in job start times can help you with your SLAs of making data available for
analytics.

AWS Glue PySpark extensions of Apache Spark provides additional capabilities and convenience
functions to manipulate data. For example, PySpark extensions such as Dynamic Dataframe,
Relationalize, FindMatches, FillMissingValues, and so on can be used to easily enrich transform

PySpark vs. Python Shell vs. Scala 18

https://aws.amazon.com/sdk-for-python/
https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

and normalize data with few lines of code. For more information, refer to the AWS Glue PySpark
Transforms Reference.

Scala jobs

AWS Glue provides high-level APIs in Scala and Python for scripting ETL Spark jobs. Customers who
use Scala as their primary language to develop Spark jobs can now run those jobs on AWS Glue
with little or no changes to their code. AWS Glue provides all PySpark equivalent extension libraries
in Scala as well, such as Dynamic DataFrame, Relationalize, and so on. You can take full benefit of
these extensions in both Scala and PySpark based ETL jobs.

Comparison chart

Table 6 — Comparing available AWS Glue ETL programing languages

Topic Glue PySpark Glue Scala Glue Python Shell

Batch job DPUs Minimum two,
default ten

Minimum two,
default 10

Minimum 0.0625,
maximum one,
default 0.0625

Batch job billing
duration

Per second billing,
minimum of one
minute

Per second billing,
minimum of one
minute

Per second billing,
minimum of one
minute

Streaming job DPUs Minimum two,
default five

Minimum two,
default five

N/A

Glue worker type Standard (about
to be deprecate
d in favor of AWS
Glue 1.x), AWS Glue
1.x, AWS Glue 2.X
(memory intensive
jobs)

Standard (about
to be deprecate
d in favor of AWS
Glue 1.x), AWS Glue
1.x, AWS Glue 2.X
(memory intensive
jobs)

N/A

Streaming job billing
duration

Per second billing,
minimum of ten
minutes

Per second billing,
minimum of ten
minutes

N/A

Scala jobs 19

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-transforms.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-transforms.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Topic Glue PySpark Glue Scala Glue Python Shell

Language Python Scala Python

Visual authoring Yes (AWS Glue
Studio)

No No

Additional libraries S3, Pip S3 S3

Typical use case Big data ETL, ML
transforms

Big data ETL, ML
transforms

Data integration jobs

that typically do not

need to run in a

distributed
environment

(such as REST API
calls,

Amazon Redshift SQL
queries, and so on)

Spark runtime 2.2, 2.4, and 3.1 2.2, 2.4, and 3.1 N/A

AWS Glue Studio
support (visual
authoring)

Yes No No

Notebook developme
nt support

Yes Yes Yes

Custom classifiers

Classifiers in AWS Glue are mechanisms that help the crawlers determine the schema of our data.
In most cases the default classifiers work well and suits the requirements. However, there are
scenarios where we have to author our own customer classifiers. For example, log files that may

Custom classifiers 20

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

not fall into regular CSV/JSON or XML messages, but would need a GROK expression to parse
them, or CSV files with a non-standard delimiter, quote, characters, and so on.

Once attached to a crawler, a custom classifier is executed before the built-in classifiers. If the data
is matched, the classification and schema is returned to the crawler, which is used to create the
target tables.

Glue allows you to create custom classifiers for CSV, XML, JSON, and GROK-based datasets. In this
document, we will explore how to create a classifier for a given dataset.

Assume you have a log file with the following structure:

2017-03-30npelling04C-50-CC-BB-F9-57/erat/nulla/tempus/vivamus.jpg

In this scenario, the data is unstructured, but you can apply a GROK expressions, such as a named
regular expression (regex), to parse it to the form you want.

The target data structure is:

Table 7 — Expected data structure for log data

Column name Sample value

log_year 2017

log_month 03

log_day 30

username npelling

mac_address 04C-50-CC-BB-F9-57

referer_url /erat/nulla/tempus/vivamus.jpg

The corresponding GROK expression is as follows:

%{YEAR:log_year}-%{MONTHNUM:log_month}-
%{MONTHDAY:log_day}%{USERNAME:username}

Custom classifiers 21

https://www.elastic.co/blog/do-you-grok-grok

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

%{WINDOWSMAC:mac_address}%{URIPATH:referer_url}

When working with a GROK pattern, you can use many built-in patterns that AWS Glue provides, or
you can define your own.

Creating a custom classifier

Let’s look at how to create a custom classifier from the previous GROK expression. Keep in mind
that you can also create JSON, CSV, or XML-based custom classifiers, but we are limiting the scope
of this document to a GROK-based example.

To create a custom classifier:

1. From the AWS Glue console, choose Classifiers.

From the AWS Glue console, choose Classifiers

2. Choose Add Classifier and use the form to add the details.

Creating a custom classifier 22

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

From the AWS Glue console, choose Add classifier

3. Options in the form vary based on our choice of the classifier type. In this case, use the Grok
Classifier. Following is an instance of the form updated to meet our parsing requirements.
Choose Create to create the classifier.

Creating a custom classifier 23

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Fill in the forms to create the classifier

Adding the classifier to a crawler

Now that we have created the classifier, the next step is to attach this to a crawler.

To add the classifier to a crawler:

1. On the Create crawler window in the AWS Glue console, choose and expand the Tags,
description, security configuration, and classifiers (optional) section.

Adding the classifier to a crawler 24

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Choose and expand the Tags, description, security configuration, and classifiers (optional)
section.

2. Scroll down to the Classifiers section, and choose Add (close to the classifier we just created).

Scroll down to the Classifiers section and choose Add

The classifier should appear on the right side of the screen. You can complete the remaining
crawler configurations, run it, and observe the target table it created:

Adding the classifier to a crawler 25

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

The classifier appears

Schema of log data identified by classifier

Parsed log data

Adding the classifier to a crawler 26

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Incremental data pipeline

In the modern world of data engineering, one of the most common requirements is to store the
data in its raw format and enabling a variety of consumption patterns (analytics, reporting, search,
ML, and so on) on it. The data being ingested is typically of two types:

• Immutable data such as social network feeds, Internet of Things (IoT) sensor data, log files, and
so on.

• Mutable data that is updated or deleted in transactional systems such as enterprise resource
planning (ERP) or online transaction processing (OLTP) databases.

The need for data in its raw format leads to a huge volume of data being processed and engineered
in an integration solution. Loading data incrementally (or delta) in the form of batches after an
initial full data load is a widely accepted approach for such scenarios. The idea is to identify and
extract only the newly added or updated records in tables in a source system instead of dealing
with the entire table data. It reduces the volume of data being moved/processed during each load
and results in efficient processing of data pipelines. Following are some of the ways of loading data
incrementally.

• Change tracking/CDC — Depending on the type of source database, one of the most efficient
way of extracting delta records from source system is by enabling change data capture (CDC),
or change tracking. It records the changes in a table at the most granular level (insert/update/
delete) and allows you to store the entire history of changes and transactions in a data lake or
data warehouse. While AWS Glue doesn't support extracting data using CDC, AWS Data Migration
Service (AWS DMS) is the recommended service for this purpose. Once the delta records are
exported to the data lake or stage tables by AWS DMS, AWS Glue can then load them into a data
warehouse efficiently (refer to the next section, AWS Glue job bookmarks).

• AWS Glue job bookmarks — If your source is an Amazon S3 data lake or a database that
supports JDBC connection, AWS Glue job bookmarks are a great way to process delta files
and records. They’re an AWS Glue feature that removes all the overhead of implementing any
algorithm to identify delta records. AWS Glue keeps track of bookmarks for each job. If you
delete a job, you also delete the job bookmark. If for some reason, you need to reprocess all or
part of the data from previous job runs, you can pick a bookmark for Glue to start processing
the data from that bookmark onward. If you need to re-process all data, you can disable job
bookmarks.

Incremental data pipeline 27

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.CDC.html
https://aws.amazon.com/dms/
https://aws.amazon.com/dms/
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Popular S3-based storage formats, including JSON, CSV, Apache Avro, XML, and JDBC sources,
support job bookmarks. Starting with AWS Glue version 1.0, columnar storage formats such as
Apache Parquet and ORC are also supported.

For S3 input sources, AWS Glue job bookmarks check the last modified time of the objects
to verify which objects to reprocess. If there are new files that have arrived, or existing files
changed, since your last job run, the files are reprocessed when the job is run again using a
periodic AWS Glue job trigger or an S3 trigger notification.

For JDBC sources, job bookmarks require source tables to either have a primary key column(s) or
a column(s) with incrementing values, which need to be specified in the source options. The AWS
Glue bookmark checks for newly added records based on the columns provided and processes
the delta records.

• Limitation — For JDBC sources, job bookmarks can capture only newly added rows and it needs
to be processed in batches. This behavior does not apply to source tables stored on S3.

For examples of implementing job bookmark, refer to the blog post Load data incrementally and
optimized Parquet writer with AWS Glue.

• High watermark — If the source database system doesn't have CDC feature at all, then high
watermark is a classic way of extracting delta records. It is the process of storing data load status
and its timestamp into metadata tables. During the ETL load, it calculates the maximum value
of load timestamp (high watermark) from metadata tables and filters the data being extracted.
It does require a create timestamp (new records) and update timestamp (updated records)
field in each of the table in source system to allow filtering on them based on high watermark
timestamp. While this process requires creation and maintenance of metadata tables, it provides
great flexibility of rewinding or reprocessing data from a time in past with a simple update of the
high watermark value. These high watermark filters can easily be embedded into the SQL scripts
in AWS Glue ETL jobs to extracting delta records.

• Use cases — Source system is a database that doesn't have CDC/change tracking available, and
updated records must be processed.

• Event driven — In the modern era, event driven data pipelines have become really popular
especially for streaming and micro batch (< 15 min) data load patterns where the data pipeline
is decoupled. The first part is to extract data from source system and load via streaming to S3
data lake within seconds. The second part is to load the data from the data lake to the data
warehouse via event-driven triggers. This eliminates the need to identify delta records based on
a column or timestamp, and instead relies on object/bucket level events such as put, copy, and

Incremental data pipeline 28

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/trigger-job.html
https://aws.amazon.com/blogs/big-data/build-and-automate-a-serverless-data-lake-using-an-aws-glue-trigger-for-the-data-catalog-and-etl-jobs/
https://aws.amazon.com/blogs/big-data/load-data-incrementally-and-optimized-parquet-writer-with-aws-glue/
https://aws.amazon.com/blogs/big-data/load-data-incrementally-and-optimized-parquet-writer-with-aws-glue/

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

delete to process the data, resulting in a seamless process with very less overhead. Both S3 and
Amazon EventBridge support this feature, where an AWS Glue workflow or job loads the delta
records to a target system as an incremental load.

Following are few use cases where the event-driven approach may be more suitable:

• Decoupled data pipelines that have an extract process (CDC/streaming) from source systems to
the S3 data lake then use events to load data to the data warehouse.

• It’s difficult to predict the frequency at which upstream systems generate data. Once generated,
it needs to load to the target system as soon as possible.

The following table provides considerations using different mechanism for incremental data loads.

Table 8 — Incremental data

Source CDC/change
tracking

High
watermark

Job
bookmark
for S3 source

Job
bookmark
for JDBC
source

Event driven

Source
system is a
database

Yes

(CDC must
be supported
and enabled)

Yes No Yes

(must
support JDBC
connection)

No

Source is S3 No No Yes NA Yes

Inserting new
records

Yes Yes Yes Yes Yes

Updating
records

Yes Yes (source
table should
have update
timestamp
column)

Yes No Yes

Incremental data pipeline 29

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Source CDC/change
tracking

High
watermark

Job
bookmark
for S3 source

Job
bookmark
for JDBC
source

Event driven

Streaming
datasets

Yes No No No Yes

Micro
batches (< 15
min)

Yes Yes No No Yes

Batches (> 15
min)

Yes Yes Yes Yes Yes

Proprietary
feature

Yes No Yes Yes Yes

Incremental data pipeline 30

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Conclusion

In this whitepaper, we explained some of the best practices for building a performance efficient
and cost optimized data pipeline using AWS Glue, considering the guidance from AWS Well-
Architecture framework. We also looked at different programming languages that are available
for building your data pipelines, custom classifiers, and how AWS Glue helps you in building
incremental data pipelines.

31

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Contributors

Contributors to this document include:

• Durga Mishra, Sr. Solutions Architect, Amazon Web Services

• Arun A K, Solutions Architect, Amazon Web Services

• Narendra Gupta, Sr. Solutions Architect, Amazon Web Services

• Jay Palaniappan, Sr. Solutions Architect, Amazon Web Services

• Rajesh Agarwalla, Data Architect, Amazon Web Services

32

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Further reading

For additional information, refer to:

• Snappy compressed format description

• Parquet compression definitions

• LanguageManual ORC

• Bucketing vs partitioning in the Amazon Athena user guide

• Top 10 Performance Tuning Tips for Amazon Athena (blog post)

• AWS Glue pricing

• Load data incrementally and optimized Parquet writer with AWS Glue (blog post)

• AWS Glue Best Practices: Building an Operationally Efficient Data Pipeline (AWS whitepaper)

• AWS Glue Best Practices: Building a Secure and Reliable Data Pipeline (AWS whitepaper)

33

https://github.com/google/snappy/blob/master/format_description.txt
https://github.com/apache/parquet-format/blob/master/Compression.md
https://cwiki.apache.org/confluence/display/hive/languagemanual+orc
https://docs.aws.amazon.com/athena/latest/ug/bucketing-vs-partitioning.html
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/blogs/big-data/load-data-incrementally-and-optimized-parquet-writer-with-aws-glue/
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-efficient-data-pipeline/aws-glue-best-practices-build-efficient-data-pipeline.html
https://docs.aws.amazon.com/whitepapers/latest/aws-glue-best-practices-build-secure-data-pipeline/aws-glue-best-practices-build-secure-data-pipeline.html

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Initial publication Whitepaper published. August 26, 2022

34

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

35

AWS Glue Best Practices: Building a Performant and Cost Optimized Data
Pipeline

AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

36

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Glue Best Practices: Building a Performant and Cost Optimized Data Pipeline
	Table of Contents
	AWS Glue Best Practices: Building a Performant and Cost Optimized Data Pipeline
	Abstract
	Are you Well-Architected?
	Introduction

	Using AWS Well-Architected framework for building a data pipeline
	Building a performance efficient data pipeline
	Data partitioning and bucketing
	Partitioning data
	Why partitioning?
	Pre-filtering using pushdown predicates
	How to partition?
	Partition index

	File formats and data compression
	Row vs. columnar storage
	Compression
	Configure compression format in AWS Glue
	Using the AWS Glue’ dynamic data frame library
	Using PySpark
	Using Amazon Athena / SPARK SQL

	Avoid or minimize User defined functions (UDFs)

	Building a cost-effective data pipeline
	The right AWS Glue worker type
	Standard
	G.1X
	G.2X

	Estimate AWS Glue DPU

	Additional considerations
	PySpark vs. Python Shell vs. Scala
	Python shell
	PySpark jobs
	Scala jobs
	Comparison chart

	Custom classifiers
	Creating a custom classifier
	Adding the classifier to a crawler

	Incremental data pipeline

	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices
	AWS Glossary

