
Best Practices for Deploying Amazon
AppStream 2.0

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Best Practices for Deploying Amazon AppStream 2.0

Best Practices for Deploying Amazon AppStream 2.0:

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Best Practices for Deploying Amazon AppStream 2.0

Table of Contents

Abstract ... i
Abstract ... 1
Introduction ... 1

Key concepts .. 2
VPC design ... 3

Design guidelines .. 3
Availability Zones ... 3

Subnet sizing .. 4
Subnet routing ... 5
Intra-Region connectivity .. 6
Outbound internet traffic .. 6
On-premises ... 7

VPC endpoints ... 7
Amazon S3 VPC endpoint ... 7
Amazon AppStream 2.0 API interface VPC endpoint .. 8
Amazon AppStream 2.0 streaming interface VPC endpoint .. 8

Image creation and management .. 10
Building an AppStream 2.0 image ... 10
Operating system ... 10
Applications ... 12
App block ... 13
User profile customization ... 13
Security ... 14
Performance .. 15
AppStream 2.0 agent version selection .. 15
Image Assistant Command Line Interface (CLI) ... 15
Managing users’ streaming experience .. 16

Customization using session scripts ... 16
Using Active Directory Group Policy ... 16

Image updates .. 17
Fleet customization ... 19

Fleet type ... 19
Fleet sizing ... 24

Minimum capacity and scheduled scaling ... 24
Maximum capacity and service quotas .. 25

iii

Best Practices for Deploying Amazon AppStream 2.0

Choosing Desktop View or Application View .. 26
Desktop View .. 26
Applications Only view ... 26
AWS Identity and Access Management role configuration .. 27

Using static credentials .. 27
Protecting your AppStream 2.0 S3 Bucket .. 28

Fleet auto scaling strategies ... 29
Understanding AppStream 2.0 instances .. 29
Scaling policies ... 29

Step scaling .. 29
Target tracking .. 29
Scheduled-based scaling ... 30
Scaling policies in production .. 30

Best practices for scaling policy design ... 32
Combine scaling policies .. 32
Avoid scaling churn .. 32
Understand maximum provisioning rate ... 32
Utilize multiple Availability Zones .. 33
Monitor Insufficient Capacity Error metrics .. 34

Connection methods ... 35
Summary feature and device support ... 35
Web browser access ... 36
AppStream 2.0 client for Windows .. 36

AppStream 2.0 client connection modes ... 37
Client deployment and management ... 37

Custom domains .. 39
Authentication ... 40

Determining optimized method .. 40
Configuring your identity provider ... 42

SAML 2.0 ... 42
User pool .. 43
Streaming url ... 43
Application entitlement ... 44

Integration with Microsoft Active Directory .. 45
Service options ... 45
Deployment scenarios ... 45

Scenario 1: Active Directory Domain Services (ADDS) deployed on- premises 46

iv

Best Practices for Deploying Amazon AppStream 2.0

Scenario 2: Extend Active Domain Services (ADDS) into AWS customer VPC 47
Scenario 3: AWS Managed Microsoft Active Directory .. 48

Active Directory Service Site Topology ... 49
Active Directory Organizational Units ... 50
Active Directory computer object cleanup ... 51

Security .. 52
Securing persistent data ... 52

User state and data .. 52
Endpoint security and antivirus .. 53

Removing unique identifiers ... 54
Performance optimization .. 54
Scanning exclusions .. 55
Folders ... 56
Endpoint security console hygiene ... 56

Network exclusions .. 56
Securing an AppStream session .. 57

Limiting application and operating system controls ... 57
Firewalls and routing ... 58
Data loss prevention .. 59

Client to AppStream 2.0 Instance Data Transfer Controls ... 59
Controlling egress traffic from the AppStream 2.0 Instance .. 59
Using AWS services .. 60

AWS Identity and Access Management .. 60
VPC endpoints ... 60

Disaster recovery ... 62
Identity routing ... 62

Method 1: Changing the relay state of your application .. 62
Method 2: Configuring two AppStream 2.0 applications within your IdP 63

Storage persistance .. 63
Monitoring .. 65

Using dashboards ... 65
Anticipating growth ... 65
Monitoring user usage .. 66
Persisting application and Windows event logs .. 66
Auditing network and administrative activity .. 66

Cost optimization .. 67
Designing cost efficient AppStream 2.0 deployments ... 67

v

Best Practices for Deploying Amazon AppStream 2.0

Optimizing costs with choice of instance type .. 68
Optimizing costs with fleet type choice .. 68
Scaling policies ... 69
User fees .. 70
Image Builder usage .. 70

Conclusion .. 72
Contributors ... 73
Further reading .. 74
Document revisions ... 75
Notices .. 76

vi

Best Practices for Deploying Amazon AppStream 2.0

Best Practices for Deploying Amazon AppStream 2.0

Publication date: January 19, 2022 (Document revisions)

Abstract

This whitepaper outlines a set of best practices for the deployment of Amazon AppStream 2.0 .
The paper covers Amazon Virtual Private Cloud (VPC) design, image creation and management,
fleet customization, and fleet auto scaling strategies. It includes user connection methods,
authentication, and integration with Microsoft Active Directory. This paper also includes
recommendations for designing AppStream 2.0 security, monitoring, and cost optimization.

This whitepaper was written to enable quick access to relevant information. It is intended for
network engineers, application delivery specialists, directory engineers, or security engineers.

Introduction

Amazon AppStream 2.0 is a fully managed application streaming service that provides users with
instant access to their desktop applications from anywhere. AppStream 2.0 manages the AWS
resources required to host and run your applications. It scales automatically, and provides access
to your users on demand. AppStream 2.0 provides end users access to the applications they need
on the device of their choice, with a responsive user experience, indistinguishable from natively
installed applications.

The following sections provide details about Amazon AppStream 2.0, explain how the service
works, describe what you need to launch the service, and tell you what options and features
are available for you to use. When deploying AppStream 2.0 for end users, it is important to
implement best practices to provide an outstanding user experience. Additionally, companies of all
sizes benefit from cost optimization that reduces monthly operational costs.

Abstract 1

https://aws.amazon.com/appstream2
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://aws.amazon.com/appstream2/

Best Practices for Deploying Amazon AppStream 2.0

Key concepts

To get the most out of AppStream 2.0, be familiar with the following concepts:

• Image — An image is a pre-configured instance template. An image contains applications that
you can stream to your users, and default Windows and application settings to enable your users
to get started with their applications quickly. AWS provides base images that you can use to
create images that include your own applications. After you create an image, you can't change
it. To add other applications, update existing applications, or change image settings, you must
create a new image. You can copy your images to other AWS Regions or share them with other
AWS accounts in the same Region.

• Image builder — An image builder is a virtual machine that you use to create an image. You can
launch and connect to an image builder using the AppStream 2.0 console. After you connect to
an image builder, you can install, add, and test your applications, and then use the image builder
to create an image. You can launch new image builders by using private images that you own.

• Fleet — A fleet consists of fleet instances (also known as streaming instances) that run the
image that you specify. You can set the desired number of streaming instances for your fleet,
and configure policies to scale your fleet automatically based on demand. Note that each user
requires one instance.

• Stack — A stack consists of an associated fleet, user access policies, and storage configurations.
You set up a stack to start streaming applications to users.

• Streaming instance — A streaming instance (also known as a fleet instance) is an Amazon Elastic
Compute Cloud (Amazon EC2) instance that is made available to a single user for application
streaming. After the user’s session completes, the instance is terminated by Amazon EC2.

2

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Best Practices for Deploying Amazon AppStream 2.0

VPC design

Design guidelines

Deploy AppStream 2.0 into a dedicated VPC. When designing the AppStream 2.0 VPC, size for
forecasted growth. Reserve IP address capacity for new use cases, and additional Availability Zones
(AZs) that may be added at a later time. A fundamental design point of AppStream 2.0 is that only
one user can consume an AppStream 2.0 instance. When allocating IP space, think one user as one
IP address per AppStream 2.0 instance. With AppStream 2.0, it is possible for a user to consume
multiple AppStream 2.0 instances. Therefore, planning IP space must also account for use cases
that require additional AppStream 2.0 instances.

Although the maximum size of a VPC Classless Inter-Domain Routing (CIDR) is /16, AWS
recommends not over-allocating private IP addresses. It is possible to extend the size of the VPC
through additional CIDRs, but there is a limit to this; therefore, allocate what is needed from the
onset.

If the AppStream 2.0 deployment is joined to an Active Directory domain, the DHCP options set for
the VPC must have the domain DNS configured. The domain name server should specify the DNS IP
addresses that are either authoritative for the Active Directory domain, or the DNS should forward
DNS requests to the authoritative DNS instances for the Active Directory domain. Also, the VPC
must have enableDnsHostnames and EnableDnsSupport configured.

Availability Zones

An Availability Zone (AZ) is one or more discrete data centers with redundant power, networking,
and connectivity in an AWS Region. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

Amazon AppStream 2.0 requires only one subnet for a fleet to launch in. The best practice is
to configure a minimum of two Availability Zones, one subnet per unique Availability Zone. To
optimize fleet auto scaling, use more than two Availability Zones. Scaling horizontally has the
added benefit of adding IP space in subnets for growth, which is covered in the following Subnet
sizing section of this document. The AWS Management Console provides for only two subnets to
be specified during the creation of a fleet. Use the AWS Command Line Interface (AWS CLI) or AWS
CloudFormation to allow for more than two subnet IDs.

Design guidelines 3

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-resize
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-resize
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/console/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appstream/create-fleet.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-appstream-fleet-vpcconfig.html

Best Practices for Deploying Amazon AppStream 2.0

Subnet sizing

Dedicate subnets to AppStream 2.0 fleets to allow for flexibility in routing policies, and Network
Access Control List. Stacks will likely have separate resource requirements. For example, AppStream
2.0 Stacks can have isolation requirements giving way to separate rule sets. When several Amazon
AppStream 2.0 fleets use the same subnets, ensure the sum of all fleets’ Maximum Capacity
doesn’t exceed the total number of IP addresses available.

If the maximum capacity for all fleets in the same subnet could, or has, exceeded the total number
of IP addresses available, migrate fleets to dedicated subnets. This prevents automatic scaling
events from exhausting allocated IP space. If the total capacity for a fleet exceeds the allocated IP
space of the subnets assigned, use the API, or AWS CLI “update fleet” to assign more subnets. For
more information, refer to Amazon VPC quotas, and how to increase them.

It is a best practice to scale out the number of subnets, sizing subnets accordingly while reserving
capacity to grow in your VPC. Additionally, ensure that AppStream 2.0 fleet maximums do not
exceed the total IP space allocated by subnets. For every subnet in AWS, five IP addresses are
reserved when calculating the total amount of IP space. Using more than two subnets and scaling
horizontally offers several benefits, such as:

• Greater resilience from an Availability Zone failure

• Greater throughput when automatic scaling fleet instances

• More efficient usage of private IP addresses, avoiding IP burn

When sizing subnets for Amazon AppStream 2.0, consider the total number of subnets, and the
expected peak concurrency during peak utilization. This can be monitored using (InUseCapacity)
plus reserved capacity (AvailableCapacity) for a fleet. In Amazon AppStream 2.0, the
sum of consumed and available-to-be-consumed AppStream 2.0 fleet instances is labeled
ActualCapacity. To properly size total IP space, forecast the required ActualCapacity, and
divide by the number of subnets, minus one subnet for resilience, assigned to the fleet.

For example, if the anticipated maximum number of fleet instances at peak is 1000, and the
business requirement is to be resilient in one Availability Zone failure, 3 x/23 subnets satisfy the
technical and business requirements.

• /23 = 512 Hosts — 5 Reserved = 507 fleet instances per subnet

• 3 subnets — 1 subnet = 2 subnets

• 2 subnets x 507 fleet instance per subnet = 1,014 fleet instances at peak

Subnet sizing 4

https://docs.aws.amazon.com/cli/latest/reference/appstream/update-fleet.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4

Best Practices for Deploying Amazon AppStream 2.0

Subnet sizing example

While 2 x /22 subnets would also satisfy resiliency, consider the following:

• Instead of 1,536 IP addresses being reserved, using two AZs results in 2,048 IP addresses being
reserved, wasting IP addresses that could go to other functions.

• If one AZ becomes inaccessible, the ability to scale out fleet instances is limited by the
throughput of an AZ. This can extend the duration of PendingCapacity.

Subnet routing

It is a best practice to create private subnets for AppStream 2.0 instances, routing to the public
internet through a centralized VPC for outbound traffic. Inbound traffic for the AppStream 2.0
session streaming is handled through Amazon AppStream 2.0 service via Streaming Gateways: you
do not need to configure public subnets for this.

Subnet routing 5

Best Practices for Deploying Amazon AppStream 2.0

Intra-Region connectivity

For AppStream 2.0 fleet instances joined to an Active Directory Domain, configure Active Directory
Domain Controllers in a Shared Services VPC in each AWS Region. Sources for Active Directory can
be either Amazon EC2-based Domain Controllers or AWS Microsoft Managed AD. Routing between
the shared services and AppStream 2.0 VPCs can be either through a VPC peering connection or
a transit gateway. Although transit gateways solve the complexity of routing at scale, there are a
number of reasons why VPC peering is preferable in most settings:

• VPC peering is a direct connection between the two VPCs (no extra hop).

• There is no hourly charge, just the standard data transfer rate between Availability Zones.

• There is no limit on bandwidth.

• Support for accessing Security Groups between VPCs.

This is especially true if AppStream 2.0 instances connect to application infrastructure and/or file
servers with large datasets in a shared service VPC. By optimizing the path to these commonly
accessed resources, VPC peering connection is preferred, even in designs where all other VPC and
internet routing are performed via transit gateway.

Outbound internet traffic

While routing directly to shared services is mostly optimized through a peering connection,
outbound traffic for AppStream 2.0 can be designed by creating a single internet exit point from
multiple VPCs using AWS Transit Gateway. In a multi-VPC design, it is a standard practice to have a
dedicated VPC that controls all outgoing internet traffic. With this configuration, Transit Gateways
have greater flexibility, and control of routing over standard routing tables attached to subnets.
This design also supports transitive routing without additional complexity, and removes the need
for redundant network address translation (NAT) gateways, or NAT instances in each VPC.

Once all outbound internet traffic is centralized into a singular VPC, NAT gateways or NAT
instances are a common design choice. To determine which is best for your organization, view the
administration guide for comparing NAT gateways and NAT instances. AWS Network Firewall can
extend protection beyond security group and network access control levels by protecting at the
route level and offering stateless and stateful rules from layers 3 through 7 in the OSI model. For
more information, refer to Deployment models for AWS Network Firewall. If your organization has
chosen a third-party product that performs advanced features such as URL filtering, deploy the

Intra-Region connectivity 6

https://docs.aws.amazon.com/cli/latest/reference/appstream/create-fleet.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-basics.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-transit-gateways.html
https://aws.amazon.com/blogs/networking-and-content-delivery/creating-a-single-internet-exit-point-from-multiple-vpcs-using-aws-transit-gateway/
https://aws.amazon.com/blogs/networking-and-content-delivery/creating-a-single-internet-exit-point-from-multiple-vpcs-using-aws-transit-gateway/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-comparison.html
https://aws.amazon.com/network-firewall/
https://en.wikipedia.org/wiki/OSI_model
https://aws.amazon.com/blogs/networking-and-content-delivery/deployment-models-for-aws-network-firewall/

Best Practices for Deploying Amazon AppStream 2.0

service into your outbound internet VPC. This can replace NAT gateways or NAT instances. Follow
the guidelines provided by the third-party vendor.

On-premises

When connectivity to on-premises resources is required, especially for AppStream 2.0 instances
joined to Active Directory, establish a highly resilient connection through AWS Direct Connect.

VPC endpoints

Amazon S3 VPC endpoint

Many Amazon AppStream 2.0 deployments require user state persistence through home folders
and application settings. Enable private communication to these Amazon Simple Storage Service
(Amazon S3) locations, as this avoids using the public internet. You can achieve this through a VPC
endpoint gateway. A VPC endpoint gateway is preferred over the AWS PrivateLink for Amazon S3
because:

• It is cost optimized for AppStream 2.0 network access requirements

• Amazon S3 bucket access is not required from on-premises resources

• A custom policy document can be used to restrict access only from the AppStream 2.0 instances

Once you create the VPC endpoint gateway, it is a best practice to secure the privatized connection
by creating a custom policy. Custom policy starts with the Amazon Resource Name (ARN) of the
AppStream 2.0 service Identity and Access Management role. Explicitly specify the S3 actions
required for user state persistence.

Note

The following example in the Resources section specifies the state home folder path first
and the applications settings path second.

Example

{

On-premises 7

https://aws.amazon.com/directconnect/resiliency-recommendation/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/managing-network-vpce-iam-policy.html

Best Practices for Deploying Amazon AppStream 2.0

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow-AppStream-to-access-home-folder-and-
application-settings",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:sts::account-id-without-hyphens:assumed-
role/AmazonAppStreamServiceAccess/AppStream2.0"
 },
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:GetObjectVersion",
 "s3:DeleteObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::appstream2-36fb080bb8-*",
 "arn:aws:s3:::appstream-app-settings-*"
]
 }
]
}

Amazon AppStream 2.0 API interface VPC endpoint

In design scenarios where API and CLI commands to Amazon AppStream 2.0 originate in your VPC,
privatize these programmatic calls through an interface VPC endpoint.

Amazon AppStream 2.0 streaming interface VPC endpoint

While it is possible to route Amazon AppStream 2.0 streaming traffic through an interface VPC
endpoint, use this configuration with caution. The default streaming behavior through the
public internet is the most efficient and performant delivery method for Amazon AppStream 2.0
streaming traffic.

Amazon AppStream 2.0 API interface VPC endpoint 8

https://docs.aws.amazon.com/appstream2/latest/developerguide/access-api-cli-through-interface-vpc-endpoint.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/creating-streaming-from-interface-vpc-endpoints.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/creating-streaming-from-interface-vpc-endpoints.html

Best Practices for Deploying Amazon AppStream 2.0

Amazon AppStream 2.0 streaming interface VPC endpoint

As shown in the previous figure, the public internet is the most efficient path to Amazon
AppStream 2.0 Streaming Gateways. Routing through the customer-managed VPC and networking
adds complexity and latency. It also adds data transfer fees over AWS Direct Connect.

Note

Only streaming is supported by the VPC endpoint, and authentication must still take place
over the public internet. Prerequisite access such as SAML Single Sign-On (SSO) Identity
Provider (IdP) remain a requirement that are accessible only through the public internet.

Amazon AppStream 2.0 streaming interface VPC endpoint 9

Best Practices for Deploying Amazon AppStream 2.0

Image creation and management

When launching a fleet or image builder in AppStream 2.0, you must select one of the AppStream
2.0 base images. Administrators can then build on the base image to add their own applications
and configuration settings.

There are key considerations when building an image to ensure applications work correctly and
securely. In addition, there are design considerations for how that image will be maintained.

Building an AppStream 2.0 image

When building a new image, it is important to consider the following:

• Operating system

• Applications

• User profile

• Security

• Performance

• Agent version

• Image Assistant CLI

Building an AppStream 2.0 image

In November 2021, AppStream 2.0 launched support for Amazon Linux 2. With this announcement,
AppStream 2.0 now supports four platform types:

• Windows Server 2012 R2

• Windows Server 2016

• Windows Server 2019

• Amazon Linux 2

It’s possible that you may have to choose a particular platform based on what is required by your
application (for example, if your application requires Windows, Amazon Linux 2 will not be an

Building an AppStream 2.0 image 10

Best Practices for Deploying Amazon AppStream 2.0

option). Beyond application requirements, reference the following comparison matrix to help you
choose which platform type best fits your use case and environment:

Table 1 — Platform types, when to use them, and pricing

Platform type When to use Fleet pricing*

Windows Server (2012 R2,
2016 or 2019)

Your application can be run
only in Windows (and it does
not support Amazon Linux
2). You wish to domain join
your streaming instances. You
wish to use existing Group
Policy on your AppStream
2.0 streaming instances
(Linux does not adhere
to Group Policy, but you
can use Session Scripts to
automate configuration when
a session starts). You will use
Desktop View and your users
prefer the Windows desktop
experience. You prefer to
use the Image Assistant
application, which provides
a step-by-step wizard, to
create your application
catalog and image. Currently
, you must create your
Amazon Linux 2 image using
terminal commands (see
this tutorial for more info).
You want to use Application
Settings Persistence. Enabling
application settings persisten
ce is currently not supported
for Linux-based stacks.

RDS SAL (Microsoft Remote
Desktop Services Subscriber
Access License) fee of $4.19
per month for each unique
user** plus the following:

1. $0.10 per hour for Always-
On, On-Demand fleets

2. $0.15 per hour for Elastic
fleets

Operating system 11

https://docs.aws.amazon.com/appstream2/latest/developerguide/create-session-scripts.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/tutorial-create-linux-image.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-settings-persistence.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-settings-persistence.html

Best Practices for Deploying Amazon AppStream 2.0

Platform type When to use Fleet pricing*

Amazon Linux 2 You want to take advantage
of lower cost streaming
instances and avoid RDS SAL
license fees.Your applications
are compatible with Amazon
Linux 2

Linux instances are lower
cost compared to Window
instances. With Linux, you
pay no RDS SAL fees and the
following hourly fees:

1. $0.084 per hour for
Always-On, On-Demand
fleets

2. $0.112 per hour for Elastic
fleets

* Based on stream.standard.medium in N Virginia Region

** Eligible customers can bring their own license to eliminate AWS RDS SAL fees. See the
AppStream 2.0 pricing page for more details. Education customers may also be eligible for a
special. Schools, universities, and certain public institutions may qualify for a reduced Microsoft
RDS SAL user fee.

Applications

Prior to installing applications, it is important to review application requirements such as
application dependencies and hardware requirements. After successfully installing applications
on image builder instances, make sure to switch users and test applications under the test user
context.

When planning your application deployment, be aware of the service endpoints and quotas.
Additionally, clean up installer and helper files to optimize total C Drive space prior to creating
an image. As a reminder, the AppStream 2.0 instances have one 200 GB fixed-size volume.
Optimizing on disk space after installations is a best practice to ensure that fixed-size volume is
never exceeded.

If you would like to modify the catalog of applications your users can access in real-time, dynamic
application framework provides API operations. The applications managed by the dynamic app
providers can be within the image, or they can be off-instance, such as from a Windows file share
or an application virtualization technology. This feature requires an AppStream 2.0 fleet that is

Applications 12

http://aws.amazon.com/appstream2/pricing/
https://docs.aws.amazon.com/general/latest/gr/aas2.html

Best Practices for Deploying Amazon AppStream 2.0

joined to a Microsoft Active Directory domain. For more information, refer to Using Active Directory
with AppStream 2.0.

App blocks

App blocks represent the setup script and application files necessary to launch the applications
your users will use. The virtual hard disk (VHD) can be any object from Amazon S3. It is
recommended that this object be less than 1.5GB, since it has to fully downloaded before the user
can access the application.

Optimizing app blocks

For Windows-based fleets, it is recommended you create a VHDX file to contain your application.
For Linux-based fleets, it is recommended you create an image (IMG). These virtual disk should
be created as small as possible, to host the application files. Virtual disks can be zipped to further
decrease their size. In the setup script, you will need to unzip the disk before mounting. The
example Windows PowerShell setup script has the unzip functionality included. There is a trade off
between expanding an archive (zip) and download speed. Some testing may be necessary to find a
balance that offers the fastest application launch time.

Updating applications

Applications can have both minor and major changes. For minor updates, use enable versioning
on the Amazon S3 bucket that hosts your app block files. This setting allows administrators to roll
back to previous versions of a specific application by changing the version of the application VHD
object in question without changing the app block configuration. With major updates, create a
new App block for the updated VHD. This will allow administrators to separate major application
changes at the app block level opposed to the versioning level, which provides a more organized
approach for administrative application management.

User profile customization

Amazon AppStream 2.0 is by design a non-persistent application and desktop solution. When
a user session is terminated, both system and user changes are terminated as well. Enable
application settings persistence only when required. It can add overhead to the logon process, and
cost considerations for the required S3 storage.

In situations where application settings persistence is required, AWS recommends securing that
connection through custom policy and S3 VPC gateway endpoint. Evaluate the overall application

App block 13

https://docs.aws.amazon.com/appstream2/latest/developerguide/active-directory.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/active-directory.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-blocks.html#create-setup-script
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-blocks.html#create-app-block
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-blocks.html#create-app-block
https://docs.aws.amazon.com/appstream2/latest/developerguide/how-it-works-app-settings-persistence.html

Best Practices for Deploying Amazon AppStream 2.0

settings size, and minimize the settings saved in application settings persistence to optimize cost
and performance.

User profile customization can be configured on an AppStream 2.0 Image Builder instance. This
includes adding and modifying registry keys, adding files, and other user specific configurations.
From the AppStream 2.0 Image Assistant, there is an option to create a user profile. This copies the
template user profile to the default user profile. After the image is deployed to a fleet, end users
who stream sessions from the fleet will have their user profile created from the default user profile.
It is important to consider minimizing the user profile size, especially when Application Settings
Persistence is enabled. By default, the maximum VHDx size for user profile is 1 GB. Each time a
streaming session starts, a user profile VHDx file is downloaded from an S3 bucket. This increases
the streaming session preparation time and introduces a risk of exceeding the limit, which will
cause a failure of the user profile mount using the VHDx file.

For use cases which require a user profile larger than 1 GB, AWS recommends using alternative
methods to store profiles. For example, using Roaming profiles, or FSLogix Profile Containers on
shared storage such as Amazon FSx for Windows File Server. For more information, refer to Use
Amazon FSx for Windows File Server and FSLogix to Optimize Application Settings Persistence on
Amazon AppStream 2.0.

Security

There are different security measurements developers need to consider. AppStream administrators
are responsible for installing and maintaining the updates for the Windows operating system,
your applications, and their dependencies. For additional guidance on keeping base images up to
date, refer to Keep Your AppStream 2.0 Image Up-to-Date for additional guidance on keeping base
images up to date.

By default, AppStream 2.0 allows users or applications to start any program on the instance,
beyond what is specified in the image application catalog. This is useful when your application
relies on another application as part of a workflow, but you don’t want the user to be able to start
that dependent application directly. For example, your application starts the browser to provide
help instructions from the application vendor’s website, but you don’t want the user to start the
browser directly. In some situations, you may want to control which applications can be launched
on the streaming instances. Microsoft AppLocker is application control software that uses explicit
control policies to enable, or disable, which applications a user can run.

Security 14

https://en.wikipedia.org/wiki/VHD_(file_format)
http://aws.amazon.com/fsx/
http://aws.amazon.com/blogs/desktop-and-application-streaming/use-amazon-fsx-and-fslogix-to-optimize-application-settings-persistence-on-amazon-appstream-2-0/
http://aws.amazon.com/blogs/desktop-and-application-streaming/use-amazon-fsx-and-fslogix-to-optimize-application-settings-persistence-on-amazon-appstream-2-0/
http://aws.amazon.com/blogs/desktop-and-application-streaming/use-amazon-fsx-and-fslogix-to-optimize-application-settings-persistence-on-amazon-appstream-2-0/
https://docs.aws.amazon.com/appstream2/latest/developerguide/administer-images.html#keep-image-updated

Best Practices for Deploying Amazon AppStream 2.0

Antivirus software can adversely affect streaming sessions and image builder instances. AWS
recommends that you do not enable automatic updates for the antivirus software. For more
information on Windows Defender, refer to Antivirus Software.

Performance

Before creating a new image, it is important to test applications as a test user. Testing as a test
user enables you to ensure that applications can run under a non-administrator user context.
Additionally, check application performance and user experience using built-in tools such as Task
Manager and Performance Monitor. It is a best practice to monitor resource utilization such as CPU,
memory, and GPU memory. If there is CPU, memory, or GPU memory resource constraint, consider
upgrading the instance type. To enhance performance:

• Disable browser pop-up windows

• Disable Enhanced IE Security

AppStream 2.0 agent version selection

When creating a new image, you can opt to use the latest AppStream 2.0 agent software, or
not update. Each version of the AppStream 2.0 agent software includes bug fixes and feature
enhancements. Keep your image with the most up-to-date software. Review mechanisms for this in
the Image updates section of this document.

You can choose the Use latest agent option. This option ensures that on start, the latest
AppStream 2.0 agent is always installed. However, unexpected changes may affect user
experiences, and an agent update can increase the time to start an instance. Updating a base image
requires recreation of the image. It is also important that you perform testing before rolling out
the updated image to production to minimize startup time.

Image Assistant Command Line Interface (CLI)

For developers who want to automate or programmatically create AppStream 2.0 images, use the
Image Assistant CLI. This is available on image builders with the AppStream 2.0 agent software
released on or after July 26, 2019. The following high-level overview describes the process for
programmatically creating an AppStream 2.0 image:

Performance 15

https://docs.aws.amazon.com/appstream2/latest/developerguide/administer-images.html#windows-update-antivirus-software-av

Best Practices for Deploying Amazon AppStream 2.0

1. Use your application installation automation to install the required applications on your image
builder. This installation may include applications that your users will launch, any dependencies,
and background applications.

2. Determine the files and folders to optimize.

3. If applicable, use the Image Assistant add-application CLI operation to specify the
application metadata and optimization manifest for the AppStream 2.0 image.

4. To specify additional applications for the AppStream 2.0 image, repeat steps 1 through 3 for
each application as needed.

5. If applicable, use the Image Assistant update-default-profile CLI operation to overwrite
the default Windows profile and create the default application and Windows settings for your
users.

6. Use the Image Assistant create-image CLI operation to create the image.

For more information, refer to Create Your AppStream 2.0 Image Programmatically by Using the
Image Assistant CLI Operations.

Managing users’ streaming experience

Customization using session scripts

AppStream 2.0 provides on-instance session scripts. You can use these scripts to run your own
custom scripts when specific events occur in users' streaming sessions. For example, you can use
custom scripts to prepare your AppStream 2.0 environment before your users' streaming sessions
begin. You can also use custom scripts to clean up streaming instances after users complete their
streaming sessions.

Specify session scripts within an AppStream 2.0 image. For more information on configuring
session scripts, review the administration guide’s section on using session scripts to manage your
user’s experience. Used with a network share or AWS Identity and Access Management (IAM)
profile, you can use session scripts to retrieve additional scripting from a storage location. With
this additional scripting, you can run further user experience optimization. This can minimize the
number of images and fleets required to deliver application environments to your users.

Using Active Directory Group Policy

If you are planning to use AppStream 2.0 fleets in an Active Directory domain, you can use Group
Policies Objects (GPOs) to manage user experience. GPOs can be assigned to the Organizational

Managing users’ streaming experience 16

https://docs.aws.amazon.com/appstream2/latest/developerguide/programmatically-create-image.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/programmatically-create-image.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/use-session-scripts.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/use-session-scripts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Best Practices for Deploying Amazon AppStream 2.0

Unit (OU) in which the AppStream 2.0 instances are created. To simplify image creation, launch
the base AppStream 2.0 Image in an OU that blocks inheritance. This prevents other domain
policies impacting the AppStream 2.0 user experiences. Deploy each fleet into its dedicated OU,
with unique GPOs establishing the environment allows the one-to-many consolidated benefit of
AppStream 2.0 image management.

An example of using Group Policy is to specify image set different Internet Explorer homepages for
each AppStream 2.0 fleet.

Image updates

Software patching is critical for the security and performance of compute resources. Frequent
patching is listed as a best practice in the Security Pillar of the Well-Architected Framework.

When your image is built and deployed, there are four categories of software that require patching
in your AppStream 2.0 image:

• Applications and dependencies — You are responsible for patching the applications and
dependencies in your images.

• Microsoft Windows operating system — You are responsible for installing and maintaining
updates for Windows.

• Software components — These are drivers, agents, and other software that is required for
AppStream 2.0 operation (for example, the Amazon CloudWatch agent). AppStream 2.0
periodically releases new base images that contain new agents and drivers. You can rebuild
your image using the latest base to bring the software components on their images to the
latest baseline. The process to rebuild an image on the latest base can be time-consuming and
cumbersome when there are many applications, or with complex application installs.

• AppStream 2.0 agent — You can choose Always use the latest agent version in Image Assistant.
With this option, streaming instances that are launched from the image automatically use the
latest version of the agent.

You can keep your AppStream 2.0 image up to date by doing either of the following:

• Update an Image by Using Managed AppStream 2.0 Image Updates – This update method
provides the latest Windows operating system updates and driver updates, and the latest
AppStream 2.0 agent software. This managed method does update service and Microsoft
operating system components, but it does not allow you to update your application

Image updates 17

https://docs.aws.amazon.com/appstream2/latest/developerguide/customize-fleets.html#customize-fleets-change-ie-homepage-group-policy
https://docs.aws.amazon.com/appstream2/latest/developerguide/customize-fleets.html#customize-fleets-change-ie-homepage-group-policy
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/protecting-compute.html
https://aws.amazon.com/architecture/well-architected
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/appstream2/latest/developerguide/administer-images.html#keep-image-updated-managed-image-updates

Best Practices for Deploying Amazon AppStream 2.0

components. It is a best practice to use this method when application installs are complex, or
require manual configuration.

• Update the AppStream 2.0 Agent Software by Using Managed AppStream 2.0 Image Versions –
This update method provides the latest AppStream 2.0 agent software. This method does allow
you to update your application components.

Image updates 18

https://docs.aws.amazon.com/appstream2/latest/developerguide/administer-images.html#keep-image-updated-manage-image-versions

Best Practices for Deploying Amazon AppStream 2.0

Fleet customization

Fleet type

When creating a fleet, customers must choose a fleet type. Each fleet type provides different
benefits for user experience, cost and maintenance overhead. Regardless of the fleet type
chosen, each option supports both the Windows and Linux platform types, and Desktop View or
Application View.

Customers can now choose from the following fleet types:

• Always-On — This fleet type provides users with instant-on access to their apps. You will be
charged for all running instances in your fleet even if no users are streaming apps.

• On-Demand — Select this fleet type to optimize your streaming costs. With an on-demand fleet,
users will experience a start time of about one to two minutes for their session. However, you will
only be charged the streaming instance fees when users are connected, and a small hourly fee
for each instance in the fleet that is not streaming apps.

• Elastic — Elastic fleets can be used for applications that don’t require installation and can be run
from a virtual hard disk (VHD). Elastic fleets don’t support AppStream 2.0 images, nor do they
require scaling policies. You are charged only for the duration of a streaming session.

Table 2 — Amazon AppStream 2.0 fleet types

Fleet type When to use User experience Pricing model Notes

Always-On Your users
require instant
access to
applications
when they start
a session. You
will not have
significant
excess capacity
in your fleet,

Instant access to
applications

You pay full
price for every
instance that is
available in your
fleet (regardless
of whether it's
being used for a
session).

Supports
custom image
and scaling
policies.

Fleet type 19

Best Practices for Deploying Amazon AppStream 2.0

Fleet type When to use User experience Pricing model Notes

perhaps because
your usage
patterns are
predictable and
you can reliably
control costs
with scaling
policies.

Fleet type 20

Best Practices for Deploying Amazon AppStream 2.0

Fleet type When to use User experience Pricing model Notes

On-Demand You must
maintain
significant
excess capacity
in your fleetsYou
want the most
cost optimized
environment
and don’t want
to pay full price
for unused
capacityYour
users can wait
one to two
minutes to
access their
applications
after starting
a session.You
are using larger
instance types.
The hourly cost
of a running
instance is
much more
expensive than
the stopped
instance fee.

Users wait one
to two minutes
to access their
applications
after starting a
session.

You pay full
price only for
streaming
instances
with an active
session, and
then a small
hourly cost for
idle instances.

Supports
custom image
and scaling
policies.

Fleet type 21

Best Practices for Deploying Amazon AppStream 2.0

Fleet type When to use User experience Pricing model Notes

Elastic Your applicati
on and its
dependencies
are smaller
than ~1.5 GB.
Every time a
user starts a
session in an
Elastic fleet,
your virtual
hard disk (VHD)
file must be
downloaded
from Amazon S3
into the session.
As a result,
larger VHD files
(i.e. greater than
1.5 GB in size)
will result in a
poor end user
experience.Your
application is
portable. That
is, your applicati
on and all its
dependencies
can be placed
onto a VHD and
launched from
the VHD.You
do not require
domain joined
streaming
instances

User waits 45
seconds to 3
minutes to
access applicati
ons after
starting session
(wait time is
dependent on
size of Virtual
Hard Disk).

You are charged
only for the
duration of
a streaming
session. Because
there is no
concept of
idle instances
with Elastic
fleets, you incur
no charges
for unused
instances.

Does not
support custom
image (customer
provides VHD
with applicati
ons) or scaling
policies.
Currently
supports
stream.st
andard.sm
all and
stream.st
andard.me
dium instances
. If your use
case requires
a different
instance type,
please contact
your AWS
account team.

Fleet type 22

Best Practices for Deploying Amazon AppStream 2.0

Fleet type When to use User experience Pricing model Notes

(domain joining
is not currently
available with
Elastic fleets)Yo
u want to pay
only for active
sessions (i.e.
you don’t pay
for unused
capacity in your
fleet).Your users
can wait 45
seconds or more
to access their
applications
after starting
a session.You
want AWS to
manage scaling
for you (no
scaling policies
to manage).

Fleet type 23

Best Practices for Deploying Amazon AppStream 2.0

Fleet type use cases and requirements

Fleet sizing

Minimum capacity and scheduled scaling

When sizing your AppStream 2.0 fleet, there are several considerations that directly translate to
user experience and cost. The value entered for Minimum capacity ensures that the number of

Fleet sizing 24

Best Practices for Deploying Amazon AppStream 2.0

AppStream 2.0 instances will seldom be less than this value. After an AppStream 2.0 session is
ended, if the total AppStream 2.0 instances are less than the Minimum capacity value, a new fleet
instance starts. As always, it is important to remember one AppStream 2.0 instance maps directly
to one user session, directly influencing the value for Minimum capacity.

Entering a value for Minimum capacity that is beyond the anticipated concurrency results
in increased cost, although user experience is not impacted. A value that is too low results
in low costs, but impacts user experience when total requests exceed the available capacity.
Administrators will observe “Insufficient Capacity” errors in this type of situation. For example,
waiting for PendingCapacity become AvailableCapacity is an inefficient use of the user’s
time when the number of anticipated connections at the start of the day is a predictably consistent
value.

Start with a minimum capacity that accommodates typical off-peak hours, and then use scheduled
scaling policy to effectively reset the minimum capacity prior to the start of the work day. Do not
forgot to create another scheduled scaling policy to revert the Minimum capacity to the off-peak
hours. For more information about scaling policies and how to implement them, refer to the Fleet
auto-scaling strategies section in this document.

Maximum capacity and service quotas

Setting maximum capacity might appear to be an arbitrary value, but when properly forecasted
and set, it optimizes total resource consumption and cost. A value entered that is higher than
the service quota for the AppStream 2.0 fleet in your AWS account can appear to be valid, but,
when auto scaling events attempt to scale resources to the maximum capacity, they fail to launch,
as the maximum capacity value exceeds the available service quota. Ensure that a service quota
request is placed for the desired maximum capacity to ensure automatic scaling functions as your
organization anticipates.

Another important consideration when setting a maximum capacity value is cost. For more
information, refer to the Optimizing costs with fleet type choice section of this document.

Maximum capacity and service quotas 25

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/limits.html

Best Practices for Deploying Amazon AppStream 2.0

Choosing Desktop View or Application View

The determination for choosing an application view or desktop view has no impact on performance
or cost. Only one view is accessible at any given time per AppStream 2.0 fleet. You can change the
Stream view option. Plan this change during off-peak business hours, as changing the stream view
requires a restart of the fleet.

There is no single best practice for stream view. The impact of stream view options is summarized
through the following:

• Detailed reporting for application usage through the Usage Reports feature for administrators

• Overall experience and workflow for end users (for example, does a full desktop address the
needs of the use case or will only viewing the applications be sufficient?).

Desktop View

For use cases where all the user’s workflow is performed in session, Desktop View simplifies the
user experience by keeping all applications focused in one environment. Desktop View can give
a more consistent user experience for deployments of more than 3-5 applications that require
integration with the operating system (OS). Desktop View is effective when maintaining two
separate and distinct environments. For example, a user can have concurrent access to both a
production and pre-production desktop environment to validate changes to layout, configuration,
and application access.

AppStream 2.0 Usage Reports creates a daily application report for Desktop View. The resulting
output for application is simply ‘desktop’, mapping directly to the AppStream 2.0 session. For more
information, refer to the Monitoring user usage section of this document.

Applications Only view

The Applications Only view is also effective when the AppStream 2.0 stack is intended to deliver
a few applications that are intermittently required. In kiosk environments, a securely locked down
delivery of applications is delivered through Application View. With Application View, AppStream
2.0 replaces the default Windows shell with a custom shell. This custom shell presents only running
applications, minimizing the attack surface of the OS.

Desktop View 26

Best Practices for Deploying Amazon AppStream 2.0

For use cases where AppStream 2.0 is used to augment an existing organization’s desktop
environment, the Applications Only view is preferred. Deploy the AppStream 2.0 Windows Client in
native application mode to minimize user confusion by allowing full use of keyboard shortcuts.

Amazon 2.0 Usage Reports creates a daily application report for application view. For more
granular reporting of application and run use, consider a third-party solution to report at the
operating system level. You can use Microsoft AppLocker in reporting mode, or consider solutions
that are available in the AWS Marketplace, such as Liquidware’s Stratusphere UX.

AWS Identity and Access Management role configuration

If a workload requires the AppStream 2.0 end users to access other AWS services from within
their session, it is a best practice to delegate access through the use of AWS Identity and Access
Management (IAM) roles. IAM roles can be directly attached to your end user’s session through the
assignment at the fleet level. For additional best practices when using IAM roles with AppStream
2.0, see this section of the administrator guide.

Using static credentials

Some workloads may require static inputs for the IAM access keys opposed to inheriting them from
the attached role. There are two methods for receiving these credentials. The first method involves
storing the access keys within an AWS service and then giving your end users explicit IAM access to
pull that specific value from the service. Two examples of access keys storage mechanisms is using
AWS Secrets Manager or AWS SSM Parameter Store. The second method is to use the AppStream
2.0 credential provider to access the attached role’s access keys. This can be done by invoking the
credential provider and parsing the output for your access key and secret key. An example of how
to perform this action within PowerShell follows.

$CMD = 'C:\Program Files\Amazon\Photon\PhotonRoleCredentialProvider
\PhotonRoleCredentialProvider.exe'
$role = 'Machine'

$output = & $CMD --role=$role
$parsed = $output | ConvertFrom-Json

$access_key = $parsed.AccessKeyId
$secret_key = $parsed.SecretAccessKey
$session_token = $parsed.SessionToken

AWS Identity and Access Management role configuration 27

https://docs.aws.amazon.com/appstream2/latest/developerguide/client-system-requirements-feature-support.html#feature-support-native-application-mode
https://aws.amazon.com/marketplace/pp/prodview-ghxb36werkone
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/using-iam-roles-to-grant-permissions-to-applications-scripts-streaming-instances.html#how-to-use-iam-role-with-streaming-instances
https://docs.aws.amazon.com/appstream2/latest/developerguide/using-iam-roles-to-grant-permissions-to-applications-scripts-streaming-instances.html#best-practices-for-using-iam-role-with-streaming-instances
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-su-create.html

Best Practices for Deploying Amazon AppStream 2.0

Protecting your AppStream 2.0 S3 bucket

If your AppStream 2.0 workload is configured with Home Folder and/or Application Persistence,
then it is a best practice to protect the Amazon S3 bucket that the persistent data is being stored in
from unauthorized access or accidental deletion. The first layer of protection is to add an Amazon
S3 bucket policy to prevent accidental deletion of the bucket. The second layer of protection is to
add a bucket policy that aligns to the principle of least privilege. Aligning to the principle can be
done by only allowing bucket access to the necessary parties.

Protecting your AppStream 2.0 S3 Bucket 28

https://docs.aws.amazon.com/appstream2/latest/developerguide/s3-iam-policy.html#s3-iam-policy-delete
https://docs.aws.amazon.com/appstream2/latest/developerguide/s3-iam-policy.html#s3-iam-policy-restricted-access

Best Practices for Deploying Amazon AppStream 2.0

Fleet auto scaling strategies

Understanding AppStream 2.0 instances

AppStream 2.0 fleet instances have a 1:1 user to fleet instance ratio. This means each user has their
own streaming instance. The number of users you connect concurrently will determine the size of
the fleet.

Scaling policies

AppStream 2.0 fleets are launched in an Application Auto Scaling Group. This allows the fleet
to scale based on usage to meet demand. As usage increases, the fleet scales out, and as users
disconnect, the fleet scales back in. This is controlled by setting scaling policies. You can set
scheduled-based scaling, step scaling, and target tracking scaling policies. For more information
about these scaling policies, refer to Fleet Auto Scaling for Amazon AppStream 2.0.

Step scaling

These policies increase or decrease the fleet capacity by a percentage of the current fleet size or
a specific number of instances. Step scaling policies are triggered by AppStream 2.0 CloudWatch
metrics of Capacity Utilization, Available Capacity, or Insufficient Capacity
Errors.

When using step scaling policies, AWS recommends that you add a percentage of capacity and
not a fixed number of instances. This ensures that your scaling actions are proportional to the size
of your fleet. It will help to avoid situations where you scale out too slowly (because you added
a small number of instances relative to your fleet size) or too many instances when your fleet is
small.

Target tracking

With this policy specifies a capacity utilization level for the fleet. Application Autoscaling creates
and manages CloudWatch alarms that trigger the scaling policy. This adds or removes capacity
to keep the fleet at, or close to, the specified target value. To ensure application availability, your
fleet scales out proportionally to the metric as fast as it can, but scales in more gradually. When
configuring target tracking, consider the scaling cooldown to ensure scale-out and scale-in happen
in desired intervals.

Understanding AppStream 2.0 instances 29

https://docs.aws.amazon.com/appstream2/latest/developerguide/autoscaling.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/monitoring.html#monitoring-with-cloudwatch
https://docs.aws.amazon.com/appstream2/latest/developerguide/monitoring.html#monitoring-with-cloudwatch
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html#target-tracking-cooldown

Best Practices for Deploying Amazon AppStream 2.0

Target tracking is effective for high churn situations. Churn is when a large number of users start,
or end, sessions in a short period of time. You can identify churn by examining CloudWatch metrics
for your fleet. Periods of time when your fleet has non- zero pending capacity without change (or
with very little change) in desired capacity indicate that high churn is likely occurring. In high churn
situations, configure target tracking policies where (100 – target utilization percent) is more than
the churn rate in a 15-minute period. For example, if 10% of your fleet will be terminated in 15
minutes due to user turnover, set a capacity utilization target of 90% or less to offset high churn.

Scheduled-based scaling

These policies enable you to set the desired fleet capacity based on a time-based schedule. This
policy is effective when you understand login behavior, and can predict changes in demand.

For example, at the start of the work day, you might expect 100 users to request streaming
connections at 9:00 AM. You can configure a scheduled-based scaling policy to set the minimum
fleet size to 100 at 8:40 AM. This allows the fleet instances to be created and become available
at the start of the work day, and allows 100 users to connect at the same time. You can then set
another scheduled policy to scale in the fleet to a minimum of ten at 5:00 PM. This enables you to
save cost, as the demand for sessions after hours is less than during the work day.

Scaling policies in production

You can choose to combine different types of scaling policies in a single fleet to help define precise
scaling policies for your user behavior. In the previous example, you can combine the scheduled
scaling policy with target tracking or step scaling policies to maintain a specific level of utilization.
The combination of scheduled scaling and target tracking scaling can help reduce the impact of a
sharp increase in utilization levels when capacity is needed immediately.

Users connected to streaming sessions when a scaling policy changes the desired number of
instances are not affected by a scale-in or scale-out. Scaling policies will not end existing streaming
sessions. Existing sessions will continue uninterrupted until the session is ended by the user or a
fleet time-out policy.

Monitoring AppStream 2.0 usage with CloudWatch metrics can help you optimize your scaling
policies over time. For example, it is common to over-provision resources during initial setup and
you might see long periods of low utilization. Alternatively, if the fleet is under-provisioned, you
might see high-capacity utilization and “Insufficient Capacity” errors. Reviewing CloudWatch
metrics can help drive adjustments to your scaling policies to help mitigate these errors. For more

Scheduled-based scaling 30

Best Practices for Deploying Amazon AppStream 2.0

information, and examples of AppStream 2.0 scaling policies that you can use, refer to Scale your
Amazon AppStream 2.0 fleets.

Scaling policies in production 31

https://aws.amazon.com/blogs/desktop-and-application-streaming/scale-your-amazon-appstream-2-0-fleets/
https://aws.amazon.com/blogs/desktop-and-application-streaming/scale-your-amazon-appstream-2-0-fleets/

Best Practices for Deploying Amazon AppStream 2.0

Best practices for scaling policy design

Combine scaling policies

Many customers choose to combine different types of scaling policies in a single fleet to increase
the power and flexibility of Auto Scaling in AppStream 2.0. For example, you might configure
a scheduled scaling policy to increase your fleet minimum at 6:00 AM in anticipation of users
starting their work day, and to decrease the fleet minimum at 4:00 PM before users stop working.
You can combine this scheduled scaling policy with target tracking or step scaling policies to
maintain a specific level of utilization and scale-in or -out during the day to handle spiky usage.
The combination of scheduled scaling and target tracking scaling can help reduce the impact of a
sharp increase in utilization levels when capacity is needed immediately.

Avoid scaling churn

Consider whether your fleet might experience a high degree of churn due to your use case. Churn
occurs when a large number of users start and then end sessions in a short period of time. This
might occur when many users simultaneously access an application in your fleet for just a few
minutes before signing off.

In such situations, your fleet size may drop far below the desired capacity, as instances are ended
when users end their sessions. Step scaling policies may not add instances quickly enough to offset
churn and, as a result, your fleet gets stuck at a certain size.

You can identify churn by examining CloudWatch metrics for your fleet. Periods of time when your
fleet has non-zero pending capacity without change (or with very little change) in desired capacity
indicate that high churn is likely occurring. To account for high churn situations, use target tracking
scaling policies and pick a target utilization so that (100 – target utilization percent) is more than
churn rate in a 15-minute period. For example, if 10% of your fleet will be ended in a 15-minute
period due to user turnover, set a capacity utilization target of 90% or less to offset high churn.

Understand maximum provisioning rate

Customers who are managing AppStream 2.0 fleets for a large number of users should consider
provisioning rate limits. This limit will impact how quickly instances can be added to a fleet or
across all fleets within an AWS account.

Combine scaling policies 32

Best Practices for Deploying Amazon AppStream 2.0

There are two limits to consider:

• For a single fleet, AppStream 2.0 provisions at a maximum rate of 20 instances per minute.

• For a single AWS account, AppStream 2.0 provisions at a rate of rate of 60 instances per minute
(with a burst of 100 instances per minute).

If more than three fleets are scaled up in parallel, the account provisioning rate limit is shared
across these fleets (for example, six fleets scaling in parallel could each provision up to 10 instances
per minute). In addition, consider the amount of time for a given streaming instance to finish
provisioning in response to a scaling event. For fleets not joined to an Active Directory domain, this
is typically 15 minutes. For fleets joined to an Active Directory domain, this can take as long as 25
minutes.

Given those constraints, consider the following examples:

• If you want to scale a single fleet from 0 to 1000 instances, it will take 50 minutes (1000
instances/20 instances per minute) for provisioning to complete, and then an additional 15-25
minutes for all instances to become available for end users, for a total of 65-75 minutes.

• If you want to simultaneously scale three fleets from 0 to 333 instances (for a total of 999
instances in the AWS account), it will take approximately 17 minutes (999/60 instances per
minute) for all fleets to complete provisioning and then an additional 15 minutes for those
instances to become available for end users, for a total of 32-42 minutes.

Utilize multiple Availability Zones

Choose multiple AZs in the Region for your fleet deployment. When you select multiple AZs for
your fleet, you increase the likelihood that your fleet will be able to add instances in response to a
scaling event. The CloudWatch metric PendingCapacity is a starting point to assess how optimized
the fleet AZ design is in large fleet deployments. A high, sustained value for PendingCapacity can
indicate a need to extend horizontal (across AZs) scaling. For more information, refer to Monitoring
Amazon AppStream 2.0 Resources.

For example, if auto scaling attempts to provision instances to increase the size of your fleet
and the selected AZ has insufficient capacity, auto scaling will instead add instances in the other
AZs which you’ve specified for your fleet. For more information about Availability Zones and
AppStream 2.0 design, refer to Availability Zones in this document.

Utilize multiple Availability Zones 33

https://docs.aws.amazon.com/appstream2/latest/developerguide/monitoring.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/monitoring.html

Best Practices for Deploying Amazon AppStream 2.0

Monitor Insufficient Capacity Error metrics

“Insufficient Capacity Error” is a CloudWatch metric for AppStream 2.0 fleets. This metric specifies
the number of session requests rejected due to lack of capacity.

When you make changes to your scaling policies, it is helpful to create a CloudWatch alarm to
notify you when any Insufficient Capacity Errors occur. This enables you to quickly adjust your
scaling policies to optimize availability for users. The administration guide gives detailed steps to
monitor your AppStream 2.0 resources.

Monitor Insufficient Capacity Error metrics 34

https://docs.aws.amazon.com/appstream2/latest/developerguide/monitoring.html

Best Practices for Deploying Amazon AppStream 2.0

Connection methods

When streaming sessions in AppStream 2.0, users have two connection methods available:

• Web Browser Access — Any HTML5-capable browser is supported. No plug- ins or downloads are
required.

• AppStream 2.0 Windows Client

As a best practice, consider the feature and device requirements for your user’s use case to align
which browser, or device, best supports their requirements.

Note

AppStream 2.0 is not supported on devices that have screen resolutions smaller than 1024
x 768 pixels.

Summary feature and device support

Table 3 — Summary feature and device support

Web browser access AppStream 2.0 Windows
Client

Multiple monitor (up to 2k
resolution)

Supported Supported

Multiple monitor (up to 4k
resolution)

N/A Supported

Drawing tablet support Supported * Supported

Touchscreen device support Supported N/A

USB passthrough device
support

N/A Supported

Keyboard shortcuts Supported Supported

Summary feature and device support 35

Best Practices for Deploying Amazon AppStream 2.0

Web browser access AppStream 2.0 Windows
Client

Relative mouse offset Supported Supported

File transfer Supported Supported

Local printer redirection N/A Supported

Local drive redirection N/A Supported

Web-cam support Supported Supported

*Google Chrome and Mozilla Firefox only

Web browser access

AppStream 2.0 web browser access allows access to applications without the need to install
a dedicated client. Users can connect using a supported HTML5-capable browser. There is no
requirement for any browser plugin or extension.

Web browser access provides for a wide choice of end device operating systems and types.

AppStream 2.0 client for Windows

The AppStream 2.0 client for Windows is an application that you install on your Windows PC. This
application provides additional capabilities that are not available when you access AppStream 2.0
using a web browser. For example, the AppStream client enables you do the following:

• Use more than two monitors or 4K resolution

• Use your USB devices with applications streamed through AppStream 2.0

• Access your local drives and folders during your streaming sessions

• Redirect print jobs from your streaming application to a printer that is connected to your local
computer

• Use your local webcam for video and audio conferencing within your streaming sessions

• Use keyboard shortcuts in the applications being accessed during your streaming sessions

Web browser access 36

https://docs.aws.amazon.com/appstream2/latest/developerguide/access-through-web-browser-admin.html
https://clients.amazonappstream.com/

Best Practices for Deploying Amazon AppStream 2.0

• Interact with your remote streaming applications in much the same way as you interact with
locally installed applications

AppStream 2.0 client connection modes

The AppStream 2.0 client provides two connection modes: Native application mode and classic
mode. The connection mode that you choose determines the options that are available to
you during application streaming, and how your streaming applications function and display.
Administrators can control users’ ability to switch between native application mode and classic
mode.

• Classic mode streams applications in the AppStream 2.0 session window. This is similar to
how end users stream applications in a web browser. Use classic mode if end users prefer to
stream applications in the same way as browsers, while making use of additional features such
as connection for local file and printer redirection. Classic mode is the recommended default
connection mode. Classic mode is the only mode supported for Desktop View.

• Native application mode enables end users to work with remote streaming applications in
a similar way as other locally installed applications. If end users are used to working with
applications installed locally, native application mode provides a seamless experience. The
remote streaming application functions in much the same way as a locally installed application.
The application icon is displayed in the taskbar of your local PC, just as the icons do for your
local applications. Unlike the icons for your local applications, the icons for your streaming
applications in native application mode include the AppStream 2.0 logo. Native application mode
is the recommended connection mode when users want to use application keyboard shortcuts,
and readily switch between individual local and individual remote applications using keyboard
shortcuts.

Client deployment and management

Users can install the AppStream 2.0 client themselves, or administrators can install the AppStream
2.0 client for them by running PowerShell scripts remotely, or repackaging the AppStream 2.0
client with customized settings.

You must qualify the USB devices that you want to enable your users to use with their streaming
session. If their USB device is not qualified, it won't be detected by AppStream 2.0 and can't be
shared with the session. After their devices are qualified, your users must share the devices with
AppStream 2.0 every time they start a new streaming session.

AppStream 2.0 client connection modes 37

Best Practices for Deploying Amazon AppStream 2.0

When deploying the AppStream 2.0 client at scale, AWS recommends using the Enterprise
Deployment Tool. The Enterprise Deployment Tool includes the AppStream client installation files
and a Group Policy administrative template.

Client deployment and management 38

https://docs.aws.amazon.com/appstream2/latest/developerguide/install-client-configure-settings.html#install-client-use-remote-deployment-tool
https://docs.aws.amazon.com/appstream2/latest/developerguide/install-client-configure-settings.html#install-client-use-remote-deployment-tool

Best Practices for Deploying Amazon AppStream 2.0

Custom domains

When deploying AppStream 2.0 programmatically, it is possible to create a custom domain
which can provide users with a familiar experience for streaming sessions. In SAML 2.0 IdP
deployments of AppStream 2.0, it is important to highlight that user access begins at the IdP, not
AppStream 2.0. Users do not require AppStream 2.0 URLs, as these are provided by the IdP after
authentication. Therefore, custom domain names are not required for SAML 2.0 IdP deployments.

39

http://aws.amazon.com/blogs/desktop-and-application-streaming/using-custom-domains-with-amazon-appstream-2-0/

Best Practices for Deploying Amazon AppStream 2.0

Authentication

With AppStream 2.0, authentication can either take place outside of Amazon AppStream 2.0,
or as part of the AppStream 2.0 service. Selecting how authentication will take place for your
AppStream 2.0 deployment is a fundamental consideration of your design. It’s not uncommon for
an organization to have multiple deployments of AppStream 2.0 for different use-cases. Each use-
case can have a different authentication method.

There are three types of authentication methods for AppStream 2.0:

• SAML 2.0

• User Pool

• Programmatic

Determining optimized method

Amazon AppStream 2.0 is architected to be flexible to apply to most organizational design
requirements. When determining the optimized method for authentication, it is a best practice to
consider the objectives and purposes of those who consume the service, and the organizational
policies and procedures.

Here are some examples of combining use-cases with organizational objectives.

Table 4 — Use cases with organizational objectives

Example Description Authentication

Domain joined fleet
instances are required

Applications installed on
the AppStream image are
accessible only to domain
joined resources.

SAML 2.0

Heavy integration with
Microsoft services

Organizational dependenc
e on developing Microsoft
Group Policies and backend
infrastructure

SAML 2.0

Determining optimized method 40

https://en.wikipedia.org/wiki/SAML_2.0
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication.html

Best Practices for Deploying Amazon AppStream 2.0

Example Description Authentication

Existing enterprise Single
Sign-on (SSO)

All new services must
leverage an enterprise SSO
solution that has several
reporting and security
processes established.

SAML 2.0

Smart card support for
applications

Smart cards (such as Private
Identity Verification and
common access cards) for
in-session authentication
to streamed applications
through a smart card reader.

SAML 2.0

Seasonal workforce with
temporary staffing

A few months out of the
year, temporary workers
are assigned a small set of
applications that do not
include internal resources to
complete activities.

User Pool

Limited IT Support Smaller organizations with
less than 50 users and limited
IT staff, looking to remove the
overhead of maintaining an
Identity Provider (IdP)

User Pool

Independent Software
Vendor (ISV)

Proprietary solution built
by your organization that
includes user entitlement and
authentication, extending
AppStream 2.0 as part of your
solution.*

Programmatic

Determining optimized method 41

Best Practices for Deploying Amazon AppStream 2.0

Example Description Authentication

Technology showcase Completely ephemeral
environment that showcases
a proprietary technology as
part of a guided tour of your
solution with no requirement
to store user information.

Programmatic

Interactive website
experience

Make your website interacti
ve with streaming Windows
applications.**

Programmatic

*Refer to Software vendors: Deliver your applications to any user device for more information.

**Refer to Embed AppStream 2.0 Streaming Sessions for more information.

If your organization has a use-case or policy that is not listed in the examples previously given, it is
a best practice to forecast the desired end state of AppStream 2.0 workflow consumption to ensure
the authentication solution does not conflict with it.

Configuring your identity provider

SAML 2.0

Security Assertion Markup Language (SAML) 2.0 is a common deployment option for enabling
users to use AWS resources. Various third-party SAML 2.0 identity providers support AppStream
2.0. Whether your AppStream 2.0 resources are domain joined or not, SAML 2.0 IdP requires you to
use IAM.

As most IdPs generate a unique metadata.xml with specific SAML attributes for each SAML
application, every AppStream 2.0 stack requires a Role that has a trusted relationship with the
SAML IdP and a Policy that has a single permission to appstream:Stream with conditions that
match the requirements of the SAML IdP and the ARN of the AppStream 2.0 Stack.

The AppStream 2.0 administration guide provides an example configuration for single AppStream
2.0 stack design. For multiple stack deployments, refer to the optional steps for using SAML 2.0
multi-stack application catalog.

Configuring your identity provider 42

https://aws.amazon.com/appstream2/getting-started/isv-workshops/
https://docs.aws.amazon.com/appstream2/latest/developerguide/embed-streaming-sessions.html
https://aws.amazon.com/identity/saml/
https://aws.amazon.com/identity/saml/
https://docs.aws.amazon.com/appstream2/latest/developerguide/external-identity-providers-further-info.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/appstream2/latest/developerguide/application-entitlements-saml.html#saml-application-catalog
https://docs.aws.amazon.com/appstream2/latest/developerguide/application-entitlements-saml.html#saml-application-catalog

Best Practices for Deploying Amazon AppStream 2.0

User pool

The User Pool tab in AppStream 2.0 is a valid option for small proof of concepts. As a best practice,
it is best to avoid user pools for any use case and organization that uses AppStream 2.0 to deliver
production applications.

One important thing to note about user pools is that users’ email addresses are case-sensitive;
therefore it is a best practice to ensure users are educated on how to properly enter user
credentials.

Streaming url

For deployments that call AppStream 2.0 resources from a centralized service (typically ISVs),
programmatic authentication relies on an application to make programmatic calls to AWS to
dynamically pass information and create an AppStream 2.0 session for its users. Use the API
authentication method (commonly referred to as ‘programmatic’) when creating streaming URLs
using the CreateStreamingURL operation. The user who makes the CreateStreamingURL call
must be using a valid user or role with permission for appstream:CreateStreamingURL.

When creating the policy for programmatic access, it is a best practice to secure access by
specifying the exact AppStream 2.0 Stack ARN in the Resources section in place of the default ‘*’.
For example:

Example

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appstream:createStreamingURL"
],
 "Resource": "arn:aws:appstream:us-east-
1:031421429609:stack/BestPracticesStack"
 }
]
}

User pool 43

https://docs.aws.amazon.com/appstream2/latest/APIReference/API_CreateStreamingURL.html

Best Practices for Deploying Amazon AppStream 2.0

Note

You can quickly retrieve the ARNs of your AppStream 2.0 Stacks by using the describe
stacks API or AWS CLI.

AppStream 2.0 instances should start as generic instances. Through information passed to it from
the application, the AppStream 2.0 instance establishes the environment using session context to
make things dynamic for the user.

While local GPOs can be used to specify settings at user logon, session context is a best practice
when using CreateStreamingURL, and passing key attributes such as Customer ID or database
connection settings, to be used in the AppStream session.

Application entitlement

AppStream 2.0 can dynamically build the application catalog that is presented to users. Application
entitlements are based on SAML 2.0 attributes, or by using AppStream 2.0 Dynamic Application
Framework.

Attribute-based application entitlements using SAML 2.0 is recommended in most scenarios. To
manage application package delivery, Dynamic Application Framework is recommended.

Application entitlement 44

https://docs.aws.amazon.com/appstream2/latest/APIReference/API_DescribeStacks.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appstream/describe-stacks.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/managing-stacks-fleets.html#managing-stacks-fleets-parameters

Best Practices for Deploying Amazon AppStream 2.0

Integration with Microsoft Active Directory

Amazon AppStream 2.0 Image Builders and fleets can be integrated with Microsoft Active
Directory. This enables you to provide a centralized method for user authentication, authorization,
and to apply Active Directory Group policies to domain- joined AppStream 2.0 instances. Using
AppStream fleets joined to a domain provides the same administrative benefits an on-premises
environment. This includes centralized management of network file shares, user-app entitlements,
roaming profiles, printer access, and other policy-based settings.

When integrating an AppStream 2.0 environment with Active Directory, it is important to note that
the initial authentication to the AppStream 2.0 stack is still managed by a SAML2.0 IdP. After the
user is successfully authenticated to the IdP, when the user launches a session, they must enter
their domain password or a smart card authentication for the Active Directory domain.

When designing the Active Directory Domain Services (ADDS) environment that will be used with
AppStream 2.0, there are two service options and many deployment scenarios available. Also,
ensure that the AppStream 2.0 networking is reviewed with your Active Directory site topology
owner.

Service options

Active Directory can also be deployed using AWS Managed Microsoft Active Directory (AD). AWS
Managed Microsoft AD is a fully managed service that allows you to run Microsoft Active Directory.
Microsoft Active Directory can also be used in a self-hosted environment, running on EC2 or on-
premises.

Deployment scenarios

The following deployment scenarios listed are commonly used and recommended integration
options for AppStream 2.0 with Microsoft Managed AD or a customer’s self-managed Active
Directory. All of the architecture diagrams listed below use core Amazon constructs.

• Amazon Virtual Private Cloud (VPC) — Creation of an Amazon VPC dedicated for AppStream
2.0 services with at least four private subnets spread across four AZs. Two of the private subnets
are used for AppStream fleets and Image Builders. The remaining two subnets are used for the
domain controllers on EC2 or Microsoft Managed AD).

Service options 45

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Best Practices for Deploying Amazon AppStream 2.0

• Dynamic Host Configuration Protocol (DHCP) Options Set — Provides a standard for passing
configuration info to the AppStream 2.0 fleet and Image Builders that will be provisioned in the
VPC. The DHCP Option Set is defined at the VPC level. It enables customers to define a specified
domain name and DNS settings that will be used with the AppStream 2.0 instanced upon being
provisioned.

• AWS Directory Services — Amazon Microsoft Managed AD can be deployed into two private
subnets that will be used in conjunction with AppStream 2.0 workloads.

• AppStream 2.0 fleets — The AppStream 2.0 fleets or Image Builders are hosted in the AWS
Managed VPC. Each AppStream 2.0 instance has two Elastic Network Interfaces (ENI). The
primary interface (eth0) is used for management purposes and brokering the end-user
connection to the instance through the streaming gateway. The secondary interface (eth1) is
injected into the customer-VPC and can be used to access other resources in the bespoke VPC or
on-premises.

Scenario 1: Active Directory Domain Services (ADDS) deployed on-
premises

All authentication traffic traverses the VPN or Direct Connect connection from the customer
VPC to the customer gateway. The advantage of this scenario is the benefit of using a possibly
already deployed AD environment without having to provision additional domain controllers in
the customer VPC. The disadvantage is the sole dependency on the VPN or Direct Connect to
authenticate and authorize users for the AppStream 2.0 fleet. If there is any network connectivity
issue, the AppStream 2.0 fleet or Image Builders would be directly impacted. Providing dual VPN
tunnels or Direct Connect connections with different paths mitigates this potential risk.

Scenario 1: Active Directory Domain Services (ADDS) deployed on- premises 46

Best Practices for Deploying Amazon AppStream 2.0

Scenario 1 — Active Directory Domain Services (ADDS) deployed on-premises

Scenario 2: Extend Active Domain Services (ADDS) into AWS customer
VPC

The Active Directory is extended to your customer VPC. An Active Directory site should be created
for the new domain controllers in the customer VPC. The authentication traffic is routed to the
domain controllers in the AWS customer VPC instead of traversing the VPN or Direct Connect
connection.

Scenario 2: Extend Active Domain Services (ADDS) into AWS customer VPC 47

Best Practices for Deploying Amazon AppStream 2.0

Scenario 2 — Extend Active Domain Services into AWS customer Virtual Private Cloud

Scenario 3: AWS Managed Microsoft Active Directory

AWS Managed Microsoft AD is deployed in the AWS Cloud and is used as the identity and resource
domain for the AppStream 2.0 fleets and Image Builders.

Scenario 3: AWS Managed Microsoft Active Directory 48

Best Practices for Deploying Amazon AppStream 2.0

Scenario 3 — AWS Managed Active Directory

Active Directory Service Site Topology

An Active Directory service site topology is a logical representation of your physical network.

A site topology helps you efficiently route client queries and Active Directory replication traffic.
A well-designed and maintained site topology helps your organization achieve the following
benefits:

• Minimize the cost of replicating Active Directory data when synchronizing between on-premises
and AWS Cloud.

• Optimize the ability of client computers to locate the nearest resources, such as domain
controllers. This helps to reduce network traffic over slow wide area network (WAN) links,
improve logon and logoff processes, and speed up resource access operations.

When introducing AppStream 2.0 services, ensure that the address ranges used for the AppStream
2.0 instances’ subnets are assigned to the correct site for your environment.

Active Directory Service Site Topology 49

Best Practices for Deploying Amazon AppStream 2.0

For Scenario 1 and Scenario 2, sites and services are critical components for the best user
experience in terms of logon times, and time for Active Directory resource access.

Site topology controls Active Directory replication between domain controllers within the same site
and across site boundaries.

Defining the correct site topology ensures client affinity, meaning that clients (in this case,
AppStream 2.0 streaming instances) use their preferred local domain controller.

Active Directory sites and services — client affinity

Tip

As a best practice, define high cost for site links between on-premises AD DS and the AWS
Cloud. The preceding figure is an example of what costs you should assign to the site links
(cost 100) to ensure site-independent client affinity.

For more information on site topology, refer to Designing the Site Topology.

Active Directory Organizational Units

AWS recommends storing the Organizational Units (OUs) configured in a single AppStream 2.0
Directory Config object. It is a best practice for each AppStream 2.0 stack to have its own OU. This

Active Directory Organizational Units 50

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/designing-the-site-topology

Best Practices for Deploying Amazon AppStream 2.0

allows you the flexibility to have specific GPOs per stack. Ensure that the OUs are dedicated to
AppStream 2.0 computer objects to avoid mixing AppStream 2.0-specific policies with on-premises
desktops. Consider using sub-OUs for each AWS Region you deploy AppStream 2.0 into.

Active Directory computer object cleanup

AppStream 2.0 instances are ephemeral. A fleet creates and reuses Active Directory computer
objects as fleets scale out and scale in.

AWS recommends creating an AD cleanup process to delete stale Active Directory computer objects
that can exist after an AppStream fleet is removed.

Active Directory computer object cleanup 51

Best Practices for Deploying Amazon AppStream 2.0

Security

Cloud security at Amazon Web Services (AWS) is the highest priority. Security and compliance is a
shared responsibility between AWS and the customer. For more information, refer to the Shared
Responsibility Model. As an AWS and AppStream 2.0 customer, it is important to implement
security measures on different layers such as stack, fleet, image, and networking.

Due to its ephemeral nature, AppStream 2.0 is often preferred as a secure solution to application
and desktop delivery. Consider whether antivirus solutions that are commonplace in Windows
deployments are relevant in your use cases for an environment that is predefined and purged
at the end of a user session. Antivirus adds overhead to virtualized instances, making it is a best
practice to mitigate unnecessary activities. For example, scanning the system volume (which is
ephemeral) at boot, for instance, does not add to the overall security of AppStream 2.0.

The two key questions for security AppStream 2.0 are centered on:

• Is persisting user state beyond the session a requirement?

• How much access should a user have within a session?

Securing persistent data

Deployments of AppStream 2.0 can require the user state to persist in some form. It might be
to persist data for individual users, or to persist data for collaboration using a shared folder.
AppStream 2.0 instance storage is ephemeral and has no encryption option.

AppStream 2.0 provides user state persistence through home folders and application settings in
Amazon S3. Some use cases require greater control over user state persistence. For these use cases,
AWS recommends using a Server Message Block (SMB) file share.

User state and data

Because most Windows applications perform best and most securely when co-located with
application data created by the user, it is a best practice to keep this data in the same AWS Region
as AppStream 2.0 fleets. Encrypting this data is a best practice. The default behavior of the user
home folder is to encrypt files and folders at rest using Amazon S3-managed encryption keys from
the AWS key management services (AWS KMS). It is important to note that AWS Administrative
Users with access to the AWS Console or Amazon S3 bucket will be able to access those files
directly.

Securing persistent data 52

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

Best Practices for Deploying Amazon AppStream 2.0

In designs that require a Server Message Block (SMB) target from a Windows File Share to store
user files and folders, the process is either automatic or requires configuration.

Table 5 — Options for securing user data

SMB target Encryption-at-rest Encryption-in-transit Antivirus (AV)

FSx for Windows File
Server

Automatic through
AWS KMS

Automatic through
SMB encryption

AV installed on a
remote instance
performs scan on
mapped drive

File Gateway, AWS
Storage Gateway

By default, all data
stored by AWS
Storage Gateway
in S3 is encrypted
server-side with
Amazon S3-Manage
d Encryption Keys
(SSE-S3). You can
optionally configure
 different gateway
types to encrypt
stored data with AWS
Key Management
Service (KMS)

All data transferred
between any type of
gateway appliance
and AWS storage is
encrypted using SSL.

AV installed on a
remote instance
performs scan on
mapped drive

EC2-based Windows
File Servers

Enable EBS encryptio
n

PowerShell; Set-
SmbServer
Configuration
– EncryptData
$True

AV installed on server
performs scan on
local drives

Endpoint security and antivirus

The brief ephemeral nature of Amazon AppStream 2.0 instances and the lack of persistency of
data means a different approach is required to ensure user experience and performance is not

Endpoint security and antivirus 53

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption-at-rest.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption-at-rest.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption-in-transit.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption-in-transit.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-ebs.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-ebs.html

Best Practices for Deploying Amazon AppStream 2.0

compromised by activities that would be required on a persistent desktop. Endpoint Security
agents are installed in AppStream 2.0 images when there is an organizational policy or when used
with external data ingress e.g. e-mail, files ingress, external web browsing.

Removing unique identifiers

Endpoint Security agents may have a globally unique identifier (GUID) which must be reset during
the fleet instance creation process. Vendors have instructions on installing their products in images
which will ensure a new GUID is generated for each instance generated from an image.

To ensure the GUID is not generated, install the Endpoint Security agent as the last action before
running the AppStream 2.0 Assistant to generate the image.

Performance optimization

Endpoint Security Vendors provide switches and setting that optimize the performance of
AppStream 2.0. The settings vary between vendors and can be found in their documentation,
typically in a section on VDI. Some common settings include but are not limited to are:

• Turn off boot up scans to ensure instance creation, startup and login times are minimized

• Turn off scheduled scans to prevent unnecessary scans

• Turn off signature caches to prevent file enumeration

• Enable VDI optimized IO settings

• Exclusions required by applications to ensure performance

Endpoint security vendors provide instructions for use with virtual desktop environments which
optimize performance.

• Trend Micro Office Scan Support for Virtual Desktop Infrastructure - Apex One/OfficeScan
(trendmicro.com)

• CrowdStrike and How to Install the CrowdStrike Falcon in the Data Center

• Sophos and Sophos Central Endpoint: How to install on a gold image to avoid duplicate
identities and Sophos Central: Best practices when installing Windows Endpoints in Virtual
Desktop Environments

• McAfee and McAfee Agent provisioning and deployment on Virtual Desktop Infrastructure
systems

Removing unique identifiers 54

https://success.trendmicro.com/solution/1055260-best-practice-for-setting-up-virtual-desktop-infrastructure-vdi-in-officescan
https://success.trendmicro.com/solution/1055260-best-practice-for-setting-up-virtual-desktop-infrastructure-vdi-in-officescan
https://www.crowdstrike.com/blog/tech-center/install-falcon-datacenter/
https://support.sophos.com/support/s/article/KB-000035040?language=en_US
https://support.sophos.com/support/s/article/KB-000035040?language=en_US
https://support.sophos.com/support/s/article/KB-000039009?language=en_US
https://support.sophos.com/support/s/article/KB-000039009?language=en_US
https://kc.mcafee.com/corporate/index?page=content&id=KB87654
https://kc.mcafee.com/corporate/index?page=content&id=KB87654

Best Practices for Deploying Amazon AppStream 2.0

• Microsoft Endpoint Security and Configuring Microsoft Defender Antivirus for non-persistent VDI
machines - Microsoft Tech Community

Scanning exclusions

If security software is installed in AppStream 2.0 instances, the security software must not interfere
with the following processes.

Table 6 — AppStream 2.0 processes security software must not interfere with the following processes.

Service Processes

AmazonCloudWatchAgent "C:\Program Files\Amazon\AmazonCloudWat
chAgent\start-amazon- cloudwatch-agent.e
xe"

AmazonSSMAgent "C:\Program Files\Amazon\SSM\amazon-ssm-
agent.exe"

NICE DCV "C:\Program Files\NICE\DCV\Server\bin\d
cvserver.exe" "C:\Program Files\NICE\DCV\Ser
ver\bin\dcvagent.exe"

AppStream 2.0 "C:\ProgramFiles\Amazon\AppStream2\S
torageConnector\StorageConnector.exe"

In the folder "C:\Program Files\Amazon\Photo
n\"

".\Agent\PhotonAgent.exe"

".\WebServer\PhotonAgentWebServer.exe"

".\CustomShell\PhotonWindowsAppSwitc
her.exe"

".\CustomShell\PhotonWindowsCustomSh
ell.exe"

Scanning exclusions 55

https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/configuring-microsoft-defender-antivirus-for-non-persistent-vdi/ba-p/1489633
https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/configuring-microsoft-defender-antivirus-for-non-persistent-vdi/ba-p/1489633

Best Practices for Deploying Amazon AppStream 2.0

Service Processes

".\CustomShell\PhotonWindowsCustomSh
ellBackground.exe"

Folders

If security software is installed in AppStream 2.0 instances, the software must not interfere with
the following folders:

Example

 C:\Program Files\Amazon*
 C:\ProgramData\Amazon*
 C:\Program Files (x86)\AWS Tools*
 C:\Program Files (x86)\AWS SDK for .NET*
 C:\Program Files\NICE*
 C:\ProgramData\NICE*
 C:\AppStream*
 C:\Program Files\Internet Explorer*
 C:\Program Files\nodejs\

Endpoint security console hygiene

Amazon AppStream 2.0 will create new unique instances each time a user connects beyond the
idle and disconnect timeouts. The instances will have a unique name and will build up in endpoint
security management condoles. Setting unused aged machines over 4 or more days old (or lower
depending on AppStream 2.0 session timeouts) to be deleted will minimize the number of expired
instances in the console.

Network exclusions

The AppStream 2.0 management network range (198.19.0.0/16) and following ports and
addresses should not be blocked by any security / firewall or antivirus solutions within AppStream
2.0 instances.

Folders 56

Best Practices for Deploying Amazon AppStream 2.0

Table 7 — Ports in AppStream 2.0 streaming instances security software must not interfere with

Port Usage

8300, 3128 This is used for establishing the streaming
connection

8000 This is used for managing the streaming
instance by AppStream 2.0

8443 This is used for managing the streaming
instance by AppStream 2.0

53 DNS

Table 8 — AppStream 2.0 managed service addresses security software must not interfere with

Port Usage

169.254.169.123 NTP

169.254.169.249 NVIDIA GRID License Service

169.254.169.250 KMS

169.254.169.251 KMS

169.254.169.253 DNS

169.254.169.254 Metadata

Securing an AppStream session

Limiting application and operating system controls

AppStream 2.0 gives the administrator the ability to specify exactly which applications can be
launched from the web page in application streaming mode. This does not, however, guarantee
that only those applications specified can be run.

Securing an AppStream session 57

Best Practices for Deploying Amazon AppStream 2.0

Windows utilities and applications can be launched through the operating system through
additional means. AWS recommends using Microsoft AppLocker to ensure that only the
applications that your organization requires can be run. The default rules must be modified, as they
grant everyone path access to critical system directories.

Note

Windows Server 2016 and 2019 require the Windows Application Identity service to be
running to enforce AppLocker rules. Application access from AppStream 2.0 using Microsoft
AppLocker is detailed in the AppStream Admin Guide.

For fleet instances joined to an Active Directory domain, use Group Policy Objects (GPOs) to deliver
user and system settings to secure the users application and resource access.

Firewalls and routing

When creating an AppStream 2.0 fleet, subnets and a Security Group must be assigned. Subnets
have existing assignments of Network Access Control Lists (NACLs) and route table(s). You can
associate up to five security groups while launching a new image builder or while creating a new
fleet Security Groups can have up to five assignments from the existing Security Groups. For each
security group, you add rules that control the outbound and inbound network traffic from and to
your instances

A NACL is an optional layer of security for your VPC that acts as a stateless firewall for controlling
traffic in and out of one or more subnets. You might set up network ACLs with rules similar to your
security groups in order to add an additional layer of security to your VPC. For more information
about the differences between security groups and network ACLs, see the compare security groups
and NACLs page.

When designing and applying Security Group and NACL rules, consider the AWS Well-Architected
best practices for least privilege. Least privilege is a principle of granting only the permissions
required to complete a task.

For customers who have a high-speed private network connecting their on premise environment
to AWS (via an AWS Direct Connect), you may consider using the VPC Endpoints for AppStream,
which will mean the streaming traffic will be routed via your private network connectivity rather
than going across the public internet. For more information on this topic, see the AppStream 2.0
streaming interface VPC endpoint section of this document.

Firewalls and routing 58

https://aws.amazon.com/blogs/desktop-and-application-streaming/using-microsoft-applocker-to-manage-application-experience-on-amazon-appstream-2-0/
https://docs.aws.amazon.com/appstream2/latest/developerguide/data-protection.html#application-access
https://docs.aws.amazon.com/appstream2/latest/developerguide/managing-network-security-groups.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/managing-network-security-groups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html#VPC_Security_Comparison
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html#VPC_Security_Comparison

Best Practices for Deploying Amazon AppStream 2.0

Data loss prevention

We'll look at two kinds of data loss prevention.

Client to AppStream 2.0 Instance Data Transfer Controls

Table 9 — Guidance for controlling data ingress and egress

Setting Options Guidance

Clipboard • Copy and paste to remote
session only

• Copy to local device only

• Disabled

Disabling this setting does
not disable copy and paste
within the session. If copying
data into the session is
required, choose Paste to
remote session only to
minimize the potential for
data leakage.

File transfer • Upload and download

• Upload only

• Download only

• Disabled

Avoid enabling this setting to
prevent data leakage.

Print to local device • Enabled

• Disabled

If printing is required, use
network mapped printers that
are controlled and monitored
by your organization.

Consider the advantages of the existing organizational data transfer solution over the stack
settings. These configurations are not designed to replace a comprehensive secure data transfer
solution.

Controlling egress traffic from the AppStream 2.0 instance

Where data loss is a concern, it’s important to cover off what a User can access once they are
inside of their AppStream 2.0 instance. What does the network exit (or egress) path look like?

Data loss prevention 59

Best Practices for Deploying Amazon AppStream 2.0

It is a common requirement to have public internet access available to the end user inside their
AppStream 2.0 instance, so placing a WebProxy or Content Filtering Solution in the network
path needs to be considered. Other considerations include a local Antivirus application and other
endpoint security measures inside the AppStream instance (see the section “Endpoint Security and
Antivirus” for more information).

Using AWS services

AWS Identity and Access Management

Using an IAM role to access AWS services, and being specific in the IAM policy attached to it, is a
best practice that provides only the users in AppStream 2.0 sessions have access without managing
additional credentials. Follow the best practices for using IAM Roles with AppStream 2.0.

Create IAM policies to protect Amazon S3 buckets that are created to persist user data in
both home folders and application settings persistence. This prevents non-AppStream 2.0
administrators from access.

VPC endpoints

A VPC endpoint enables private connections between your VPC and supported AWS services and
VPC endpoint services powered by AWS PrivateLink. AWS PrivateLink is a technology that enables
you to privately access services by using private IP addresses. Traffic between your VPC and the
other service does not leave the Amazon network. If public internet access is required only for
AWS services, VPC endpoints remove the requirement for NAT gateways and internet gateways
altogether.

In environments where automation routines or developers require making API calls for AppStream
2.0, create an interface VPC endpoint for AppStream 2.0 API operations. For example, if there are
EC2 instances in private subnets without public internet access, a VPC endpoint for AppStream 2.0
API can be used to call AppStream 2.0 API operations such as CreateStreamingURL. The following
diagram shows an example setup where AppStream 2.0 API and streaming VPC endpoints are
consumed by Lambda functions and EC2 instances.

Using AWS services 60

https://docs.aws.amazon.com/appstream2/latest/developerguide/using-iam-roles-to-grant-permissions-to-applications-scripts-streaming-instances.html#best-practices-for-using-iam-role-with-streaming-instances
https://docs.aws.amazon.com/appstream2/latest/developerguide/s3-iam-policy.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/s3-iam-policy.html#s3-iam-policy-restricted-access
https://docs.aws.amazon.com/appstream2/latest/developerguide/s3-iam-policy.html#s3-iam-policy-restricted-access
https://docs.aws.amazon.com/appstream2/latest/developerguide/access-api-cli-through-interface-vpc-endpoint.html
https://docs.aws.amazon.com/appstream2/latest/APIReference/API_CreateStreamingURL.html

Best Practices for Deploying Amazon AppStream 2.0

VPC endpoint

The streaming VPC endpoint allows you to stream sessions through a VPC endpoint. The streaming
interface endpoint maintains the streaming traffic within your VPC. Streaming traffic includes pixel,
USB, user input, audio, clipboard, file upload and download, and printer traffic. To use the VPC
endpoint, the VPC endpoint setting must be enabled at the AppStream 2.0 stack. This serves as
an alternative to streaming user sessions over the public internet from locations that have limited
internet access and would benefit from accessing through a Direct Connect instance. Streaming
user sessions through a VPC endpoint require the following:

• The Security Groups that are associated with the interface endpoint must allow inbound access
to port 443 (TCP) and ports 1400–1499 (TCP) from the IP address range from which your users
connect.

• The Network Access Control List for the subnets must allow outbound traffic from ephemeral
network ports 1024-65535 (TCP) to the IP address range from which your users connect.

• Internet connectivity is required to authenticate users and deliver the web assets that AppStream
2.0 requires to function.

To learn more about restricting traffic to AWS services with AppStream 2.0, see the administration
guide for creating and streaming from VPC endpoints.

When full public internet access is required, it’s a best practice to disable Internet Explorer
Enhanced Security Configuration (ESC) on the Image Builder. For more information, see the
AppStream 2.0 administration guide to disable Internet Explorer enhanced security configuration.

VPC endpoints 61

https://docs.aws.amazon.com/appstream2/latest/developerguide/creating-streaming-from-interface-vpc-endpoints.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/customize-fleets.html#customize-fleets-disable-ie-esc

Best Practices for Deploying Amazon AppStream 2.0

Disaster recovery

Amazon AppStream 2.0 has built in redundancy across up to three availability zones. This means
that if a user has an active session in an availability zone that becomes degraded, they can simply
disconnect and reconnect which will reserve them a session in a healthy availability zone assuming
you have capacity. While this provides high availability within the Region, it does not provide a
disaster recovery solution if the service experiences issues at a regional level.

To provide a disaster recovery plan for your AppStream 2.0 users, you will first need to build
out an AppStream 2.0 environment in your secondary Region. From a design perspective, this
environment should have redundant connections to your on-premises environment, if applicable,
and should have no dependency on the primary Region. For example, if your AppStream 2.0
fleet is domain joined, you should have additional domain controllers in the secondary Region
with Sites and Services configured. From an AppStream 2.0 perspective, this environment should
consist of the same fleet and stack settings that you have in your primary Region. The fleet itself
should run your same base image, which can be copied to your secondary Region via the console or
programmatically. If the applications that run within your AppStream 2.0 sessions have a backend
dependency tied to your primary Region, that too should have regional redundancy to ensure the
users can still access the application’s backend if the primary Region goes down. Your service level
limits in your destination Region should match your primary Region.

Identity routing

There are two distinct methods to providing access to applications in a DR scenario. At a high level,
the two methods differ by how the users are directed to the failover Region. The first method
is performed with a single AppStream 2.0 application configuration in your IdP and the second
method is having two separate application configurations.

Method 1: Changing the relay state of your application

When users login to AppStream 2.0 from an Identity Provider (IdP), following their authentication
they are relayed to a specific URL that aligns to the Region and stack they are intended to have
access to. For more information around the Relay State URL, refer to the Amazon AppStream 2.0
Administration Guide. The administrator can configure a cross-Region stack built on the same
AppStream 2.0 image as the primary Region for users to failover to. The administrator can control
this failover by simply updating the Relay State URL to point to the failover stack. For this method
to operate properly, the associated IAM policies will need to reflect access to both stacks; primary

Identity routing 62

https://docs.aws.amazon.com/appstream2/latest/developerguide/external-identity-providers-setting-up-saml.html

Best Practices for Deploying Amazon AppStream 2.0

and failover. For more details on how these IAM policies should be configured, see the following
example policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "appstream:Stream",
 "Resource": [
 "arn:aws:appstream:PrimaryRegion:190836837966:stack/StackName",
 "arn:aws:appstream:FailoverRegion:190836837966:stack/StackName"
],
 "Condition": {
 "StringEquals": {
 "appstream:userId": "${saml:sub}"
 }
 }
 }
]
}

Method 2: Configuring two AppStream 2.0 applications within your IdP

This method requires the administrator to build out two separate applications for AppStream 2.0
within the IdP. They then can either present both applications and let the user choose where to
go, or they lock/hide an application until it’s time to failover. This method is better aligned to the
use case of having global users that move around often. Those users should be streaming from
the closest endpoint, therefore having both applications assigned gives them the option to choose
the application that is configured for their nearest Region. This can also be automated, for more
information see this blog post.

Storage persistance

When leveraging the included data persistence features of AppStream 2.0, such as Application
Persistence and Home Folder Synchronization, you will need to replicate that data to your failover
region. These features store the persistent data in an Amazon S3 bucket in the given AppStream
2.0 region. To have the data persist cross region, you will need to replicate all changes on the
source bucket to the failover regions AppStream 2.0 bucket. This can be done with native Amazon

Method 2: Configuring two AppStream 2.0 applications within your IdP 63

http://aws.amazon.com/blogs/desktop-and-application-streaming/optimize-user-experience-with-latency-based-routing-for-amazon-appstream-2-0/
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-settings-persistence.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/app-settings-persistence.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/home-folders.html

Best Practices for Deploying Amazon AppStream 2.0

S3 features, such as Amazon S3 cross region replication. Each users persistent data will reside
under a folder of their hashed username. Since the username will be hashed the same cross
region, simply replicating the data will provide data persistence in your secondary region. For more
information about the Amazon S3 buckets used by AppStream 2.0, see this guide.

Storage persistance 64

https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-walkthrough1.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/home-folders.html#home-folders-s3

Best Practices for Deploying Amazon AppStream 2.0

Monitoring

Using dashboards

Monitoring fleet utilization is a regular activity that can be performed through CloudWatch metrics
and creating a dashboard. Alternatively, from the AppStream 2.0 console, use the Fleet Usage tab.
Regularly monitor your fleet usage, as user behavior is not always predictable, and demand can
exceed even first-rate upfront planning. A full listing of AppStream 2.0 metrics and dimensions for
CloudWatch can be found in the AppStream 2.0 administration guide under Monitoring Resources.

Anticipating growth

Whenever there is a large jump in PendingCapacity, an auto scaling event has occurred. It
is important to confirm that AvailableCapacity and PendingCapacity have an inverse
relationship while new AppStream 2.0 fleet instances become available to host user sessions.
Create a CloudWatch Alarm for InsufficientCapacityError for each AppStream 2.0 fleet to
notify administrators to ensure automatic scaling is not falling behind demand.

If demand exceeds capacity and InsufficientCapacityError metric values are common,
consider raising the minimum capacity through a Scheduled Scaling policy for the start of the
work day. In addition, have a second Scheduled Scaling policy to lower the minimum capacity after
the demand has been satisfied. Keep in mind that lowering the value for minimum capacity does
not impact existing sessions. Lowering the minimum capacity prior to the end of the work day
effectively enables scale to function as intended by lowering the value for ActualCapacity. This
optimizes cost.

If demand is consistently unpredictable, use Target Tracking scaling policy to ensure that there is
adequate AvailableCapacity in the AppStream 2.0 fleet to meet demand while determining
usage patterns. Continue to monitor as Target Tracking uses a percentage of fleet consumption. As
the total number of fleet instances grows, the total number of unused fleet instances multiplies.
This can become wasteful unless the maximum capacity is set to a conservative value. Use multiple
types of scaling policies (for example, Scheduled and Target Tracking) to balance reliability with
cost optimization.

Using dashboards 65

https://docs.aws.amazon.com/appstream2/latest/developerguide/monitoring.html#monitoring-with-cloudwatch
https://docs.aws.amazon.com/appstream2/latest/developerguide/autoscaling.html#autoscaling-target-tracking

Best Practices for Deploying Amazon AppStream 2.0

Monitoring user usage

Monitoring unique users, as there is a cost associated for that in the form of user fees. This user fee
cost is due to Image Assistant (RDS) subscriber access licenses (SAL). Evaluating unique users can
either be performed through reporting from the IdP where authentication is performed, or through
usage reports.

Usage reports are stored as separate .csv files in your S3 bucket, which you can download
and analyze using third-party business intelligence (BI) tools. You can analyze your usage data
in AWS without downloading your reports or create reports over custom date ranges without
concatenating multiple .csv files. For example, you can use Amazon Athena and Amazon
QuickSight to create custom reports and visualizations of your AppStream 2.0 usage data.

Persisting application and Windows event logs

When an AppStream 2.0 instance session is complete, the instance is ended. This means all
application and Windows event logs used in the session are lost. If there is a requirement to persist
these application and Windows event logs, one method is to use Amazon Data Firehose to deliver
them in real-time to S3 and search with Amazon OpenSearch Service (OpenSearch Service). If
queries are not anticipated to be frequent, to optimize on cost, use Amazon Athena to search as
opposed to running Amazon OpenSearch Service.

Auditing network and administrative activity

If not already set up, it is a best practice to configure AWS CloudTrail for the AWS account with
Amazon AppStream 2.0. To audit AppStream 2.0 API calls specifically, use the filter event source
with a value of appstream.amazonaws.com.

Enable VPC flow logs to audit access into customer-managed resources. VPC flow logs can be
published to CloudWatch Logs to perform queries when auditing is required.

Monitoring subnet IP allocation is important as AppStream 2.0 fleets grow. Report on IP
assignment by running the describe-subnets CLI to report the available IP addresses in each subnet
assigned to fleets. Ensure that your organization has sufficient IP address capacity to meet the
demand of all fleets running at maximum capacity.

Monitoring user usage 66

https://aws.amazon.com/appstream2/pricing/
https://docs.aws.amazon.com/appstream2/latest/developerguide/enable-usage-reports.html
https://aws.amazon.com/blogs/desktop-and-application-streaming/analyze-your-amazon-appstream-2-0-usage-reports-using-amazon-athena-and-amazon-quicksight/
https://aws.amazon.com/blogs/desktop-and-application-streaming/analyze-your-amazon-appstream-2-0-usage-reports-using-amazon-athena-and-amazon-quicksight/
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://aws.amazon.com/blogs/desktop-and-application-streaming/monitoring-amazon-appstream-2-0-with-amazon-es-and-amazon-kinesis-data-firehose/
https://aws.amazon.com/blogs/desktop-and-application-streaming/monitoring-amazon-appstream-2-0-with-amazon-es-and-amazon-kinesis-data-firehose/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/athena/
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs-cwl.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-subnets.html

Best Practices for Deploying Amazon AppStream 2.0

Cost optimization

Cost optimization focuses on avoiding unneeded costs. Key topics include understanding and
controlling where money is being spent, and choosing the most appropriate and correct number
of resource types. Analyze spend over time and scaling to meet business needs. The following
AppStream 2.0 resources incur pay-as-you-go fees:

• Always-On fleet instances

• On-Demand fleet instances

• On-Demand stopped instance fee

• Image builder instances

• User fees

For current pricing information, refer to the AWS website for Amazon AppStream 2.0 pricing.

Designing cost efficient AppStream 2.0 deployments

First step in planning and design of AppStream 2.0 deployment is using simple pricing tool to
estimate the baseline of your AWS fees related to your usage. Provide your total number of users,
actual concurrent usage per hour, instance type, and fleet utilization, and the pricing tool estimates
your per-user price. It also shows the estimated price savings when you use an On-Demand fleet
instead of an Always-On fleet.

Customers like the AppStream 2.0 pricing model of paying only for the instances they provision to
meet their users’ streaming needs. This model is different from their existing application streaming
environments. These are typically based on provisioning for peak capacity, even during nights,
weekends, and holidays, when the load is lower. The Amazon AppStream 2.0 Pricing Tool provides
only an estimate of your AWS fees related to your usage of AppStream 2.0, and doesn’t include any
taxes that might apply. Your actual fees depend on a variety of factors, including your actual usage
of AWS services.

The AppStream 2.0 Pricing Tool is provided as a Microsoft Excel or OpenOffice Calc spreadsheet
that enables you to enter basic information about your fleet, then provides a cost estimate for the
AppStream 2.0 environment for on-demand and always-on fleets based on your usage pattern.
You could simulate costs based on historical or anticipated usage trends. Elastic fleets free the
administrator of the need to predict usage, create, maintain scaling policies and images by having

Designing cost efficient AppStream 2.0 deployments 67

https://aws.amazon.com/appstream2/pricing/
http://aws.amazon.com/blogs/desktop-and-application-streaming/amazon-appstream-2-0-releases-a-simple-pricing-tool/

Best Practices for Deploying Amazon AppStream 2.0

these features built-in. Elastic fleets and instances running of Amazon Linux 2 (all fleet types) are
billed for duration of the streaming session, in seconds, with a minimum of 15 minutes.

Optimizing costs with choice of instance type

For fleet and image builder instances, there are a range of different instance families and types
available that you choose for your application.

End user testing — The next step is to rollout the AppStream 2.0 fleet to a group of pilot users for
testing to validate our choice of instance type. It is important to request pilot users to test all their
regular and heavy workflows to capture metrics around memory, CPU and graphics so that you can
capture baseline performance metrics. The pilot group should contain the various user roles that
use the application to ensure you are testing it from multiple user experiences. The user acceptance
testing enables you to gather feedback on streaming session experience. When creating or
updating a stack, there is an option to use a custom feedback URL. Users are redirected to this URL
after they choose the Send Feedback link to submit feedback about their application streaming
experience. If there is a performance bottleneck, use Windows performance metrics to analyze
resource constraints. For example, if the current fleet instance type stream.standard.medium is
showing resource constraint, then upgrade the instance type to stream.standard.large. Conversely,
if performance metrics show high levels of under-use of resources, consider downgrading the
instance type.

Optimizing costs with fleet type choice

When creating a new AppStream 2.0 fleet, developers must choose either an Always- On or On-
Demand fleet type. While choosing the instance type from the pricing perspective, it is important
to understand how AppStream 2.0 manages fleet instances. For Always-On fleets, fleet instances
stay in the running state. Therefore, when users try to stream sessions, fleet instances are always
ready to start streaming sessions.

For On-Demand fleets, after fleet instances are launched, they are kept in the stopped state.
The stopped instance fee is lower than the running instance fee, which can help with reducing
costs. The On-Demand fleet instances must be started from a stopped state. A user must wait
approximately two minutes for their streaming session to be available.

Elastic fleets are good candidates for applications that are self-contained and can be installed to
virtual hard drives saved in an Amazon Simple Storage Service (Amazon S3) bucket. Elastic fleets
may further reduce costs for some use cases due to the per-second billing charged only for the

Optimizing costs with choice of instance type 68

Best Practices for Deploying Amazon AppStream 2.0

duration of streaming. The rate is a function of the instance type and size and operating system
that you choose when creating the fleet.

If end users need fleet instances during business hours, it is better to keep the same streaming
sessions. This is because fleet instances are charged per hour, and every time a new streaming
session starts, that incurs another fleet instance fee.

Table 10 — AppStream 2.0 fleet type comparison

Fleet type Advantages Considerations

Always-On Less wait time for streaming
sessions

Users pay for the hourly
instance fee as there is no
option to keep instances in
stopped state.

On-Demand Cost saving as instances stay
in stopped state

Longer wait time for
streaming sessions

Elastic Per-second billing maybe
useful for use cases that
have sporadic usage patterns
for applications that can be
installed on virtual hard disk

As the size of application
virtual hard disk becomes
bigger, the time taken to
mount it to a streaming
instance can be long

AppStream 2.0 monitors your fleet utilization and performs automatic adjustments to fleet
capacity to meet your user demand at the lowest possible cost. The capacity adjustments are made
based on scaling policies that you define, based either on the current utilization or based on a
schedule. Regularly review fleet usage metrics to validate that the fleet scaling policies do not have
high levels of spare capacity.

Scaling policies

Fleet Auto Scaling allows you to optimize fleet resources by not having to over-commit resources
waiting for users to login. Administrators can adjust the size of the fleet based on a variety of
utilization to match the user demand. Use CloudWatch AppStream 2.0 Fleet Metrics or third party
monitoring tools to learn about user activity and configure scaling policies to expand or shrink
AppStream 2.0 fleets based on expected usage. User logs are an essential mechanism to gain

Scaling policies 69

Best Practices for Deploying Amazon AppStream 2.0

understanding of real usage. This insight can be used to dynamically change fleet size based with
Auto Scaling.

In many cases, AppStream 2.0 fleets are created based on maximum number of users and not
adjusted for different times of the day and week such as nights and weekends. Often times, the
concurrent user count of streamed applications is less than the total number of users especially
when users have the flexibility to work remotely. It is important to take these factors into
consideration while projecting usage patterns. Overestimating leads to over-provisioning of
AppStream 2.0 instances resulting in additional costs. To arrive an optimal configuration, you may
need to combine one or more scheduled scaling policies with scale out policies.

To learn more about implementing Scaling Policies, review Scaling your Amazon AppStream 2.0
fleets.

User fees

User fees are charged per user, per month in each AWS Region where users stream applications
from AppStream 2.0 fleet instances. Instead of generating different user IDs, have consistent user
IDs for AppStream 2.0 users. User fees are not charged when connecting to image builders.

Schools, universities, and certain public institutions may qualify for a reduced Microsoft RDS SAL
user fee of $0.44 per user per month. For qualification requirements, refer to Microsoft Licensing
Terms and Documents.

If you have Microsoft License Mobility, you may be eligible to bring your own Microsoft RDS Client
Access Licenses (CALs) and use them with Amazon AppStream 2.0. If you are covered by your own
license, you won’t incur monthly user fees. For more information about whether you can use your
existing Microsoft RDS CAL licenses with Amazon AppStream 2.0, refer to the AWS License Mobility
guidance, or consult with your Microsoft licensing representative.

Image Builder usage

AppStream 2.0 Image Builder instances are charged hourly. The Image Builder instance charge
includes compute, storage, and any network traffic used by the streaming protocol. All Image
Builder instances that are running are charged the applicable running instance fee. This fee is based
on the instance type and size, even when no administrators are connected.

As a best practice to optimize the cost, shut down an Image Builder instance when it is not being
used. CloudWatch Events rules can be used to schedule a daily job, such as invoking a Lambda
function to stop image builder instances.

User fees 70

http://aws.amazon.com/blogs/desktop-and-application-streaming/scale-your-amazon-appstream-2-0-fleets/
http://aws.amazon.com/blogs/desktop-and-application-streaming/scale-your-amazon-appstream-2-0-fleets/
https://aka.ms/licensingdocs
https://aka.ms/licensingdocs
https://aws.amazon.com/windows/resources/licensemobility/
https://aws.amazon.com/windows/resources/licensemobility/

Best Practices for Deploying Amazon AppStream 2.0

You can keep your AppStream 2.0 image up-to-date by using managed AppStream 2.0 image
updates. This update method provides the latest Windows operating system updates and driver
updates, and the latest AppStream 2.0 agent software. When using this method to update images,
an Image Builder is automatically started, and stopped, as part of the managed service process.

Image Builder usage 71

Best Practices for Deploying Amazon AppStream 2.0

Conclusion

With AppStream 2.0, you can easily add your existing desktop applications to AWS and enable
your users to stream them instantly. Windows users can use either the AppStream 2.0 client or
an HTML5-capable web browser for application streaming. You can maintain a single version of
each of your applications, which makes application management easier. Your users always access
the latest versions of their applications. Your applications run on AWS compute resources, and
data is never stored on users' devices, which means they always get a high performance, secure
experience.

Unlike traditional on-premises solutions for desktop application streaming, AppStream offers pay-
as-you-go pricing, with no upfront investment and no infrastructure to maintain. You can scale
instantly and globally, ensuring that your users always have an outstanding experience.

Amazon AppStream 2.0 is designed to be integrated into existing IT systems and processes, and
this whitepaper described the best practices for doing this. The result of following the guidelines
in this whitepaper is a cost-effective cloud desktop deployment that can securely scale with your
business on the AWS global infrastructure.

72

Best Practices for Deploying Amazon AppStream 2.0

Contributors

Contributors to this document include:

• Andrew Wood, Sr. Solutions Architect, Amazon Web Services

• Andrew Morgan, EUC Specialist SA, Amazon Web Services

• Arun PC, Sr EUC Specialist SA, Amazon Web Services

• Asriel Agronin, Sr. Solutions Architect, Amazon Web Services

• Dustin Shelton, Sr EUC Specialist SA, Amazon Web Services

• Jeremy Schiefer, Sr Solutions Architect, Amazon Web Services

• Navi Magee, Principal Solutions Architect, Amazon Web Services

• Pete Fergus, Sr Cloud Support Engineer, Amazon Web Services

• Phil Persson, Principal EUC Specialist SA, Amazon Web Services

• Richard Spaven, Sr EUC Specialist SA, Amazon Web Services

• Spencer DeBrosse, Sr. Solutions Architect, Amazon Web Services

• Stephen Stetler, Sr. Solutions Architect, Amazon Web Services

• Taka Matsumoto, Sr Cloud Support Engineer, Amazon Web Services

• Vasant Sirsat, Sr EUC Specialist SA, Amazon Web Services

73

Best Practices for Deploying Amazon AppStream 2.0

Further reading

For additional information, see:

• Amazon AppStream 2.0 Administration Guide

• Amazon AppStream API Reference

• Use Amazon FSx for Windows File Server and FSLogix to Optimize Application Settings
Persistence on Amazon AppStream 2.0

• Monitoring Amazon AppStream 2.0 with Amazon ElasticSearch and Amazon Firehose

• Analyze your Amazon AppStream 2.0 Usage Reports Using Amazon Athena and Amazon
QuickSight

• Scale your Amazon AppStream 2.0 fleets

• Using Microsoft AppLocker to manage application experience on Amazon AppStream 2.0

• Using custom domain with Amazon AppStream 2.0

• How do I use my own Microsoft RDS CALs with AppStream 2.0?

• Amazon AppStream 2.0 Pricing Tool

• Create an Online Software Trial with AppStream 2.0

• Create a SaaS Portal with Amazon AppStream 2.0

74

https://docs.aws.amazon.com/appstream2/latest/developerguide/what-is-appstream.html
https://docs.aws.amazon.com/appstream2/latest/APIReference/Welcome.html
https://aws.amazon.com/blogs/desktop-and-application-streaming/use-amazon-fsx-and-fslogix-to-optimize-application-settings-persistence-on-amazon-appstream-2-0/
https://aws.amazon.com/blogs/desktop-and-application-streaming/use-amazon-fsx-and-fslogix-to-optimize-application-settings-persistence-on-amazon-appstream-2-0/
https://aws.amazon.com/blogs/desktop-and-application-streaming/monitoring-amazon-appstream-2-0-with-amazon-es-and-amazon-kinesis-data-firehose/
https://aws.amazon.com/blogs/desktop-and-application-streaming/analyze-your-amazon-appstream-2-0-usage-reports-using-amazon-athena-and-amazon-quicksight/
https://aws.amazon.com/blogs/desktop-and-application-streaming/analyze-your-amazon-appstream-2-0-usage-reports-using-amazon-athena-and-amazon-quicksight/
https://aws.amazon.com/blogs/desktop-and-application-streaming/scale-your-amazon-appstream-2-0-fleets
https://aws.amazon.com/blogs/desktop-and-application-streaming/using-microsoft-applocker-to-manage-application-experience-on-amazon-appstream-2-0/
https://aws.amazon.com/blogs/desktop-and-application-streaming/using-custom-domains-with-amazon-appstream-2-0/
https://aws.amazon.com/premiumsupport/knowledge-center/appstream2_rds_cal/
https://aws.amazon.com/blogs/desktop-and-application-streaming/amazon-appstream-2-0-releases-a-simple-pricing-tool/
https://aws.amazon.com/appstream2/getting-started/isv-workshops/online-trials
https://aws.amazon.com/appstream2/getting-started/isv-workshops/saas

Best Practices for Deploying Amazon AppStream 2.0

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Document updated Updates to include Elastic
fleets, at tribute-based
application entitlements,
multi-stack application
catalog, Linux-based fleets,
data ingress and egress,
disaster recovery, and other
updates.

June 14, 2022

Document updated HTML version published. January 19, 2022

Initial publication Whitepaper published. June 8, 2021

75

Best Practices for Deploying Amazon AppStream 2.0

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2023 Amazon Web Services, Inc. or its affiliates. All rights reserved.

76

	Best Practices for Deploying Amazon AppStream 2.0
	Table of Contents
	Best Practices for Deploying Amazon AppStream 2.0
	Abstract
	Introduction

	Key concepts
	VPC design
	Design guidelines
	Availability Zones
	Subnet sizing
	Subnet routing
	Intra-Region connectivity
	Outbound internet traffic
	On-premises

	VPC endpoints
	Amazon S3 VPC endpoint
	Amazon AppStream 2.0 API interface VPC endpoint
	Amazon AppStream 2.0 streaming interface VPC endpoint

	Image creation and management
	Building an AppStream 2.0 image
	Building an AppStream 2.0 image
	Applications
	App blocks
	User profile customization
	Security
	Performance
	AppStream 2.0 agent version selection
	Image Assistant Command Line Interface (CLI)
	Managing users’ streaming experience
	Customization using session scripts
	Using Active Directory Group Policy

	Image updates

	Fleet customization
	Fleet type
	Fleet sizing
	Minimum capacity and scheduled scaling
	Maximum capacity and service quotas

	Choosing Desktop View or Application View
	Desktop View
	Applications Only view
	AWS Identity and Access Management role configuration
	Using static credentials
	Protecting your AppStream 2.0 S3 bucket

	Fleet auto scaling strategies
	Understanding AppStream 2.0 instances
	Scaling policies
	Step scaling
	Target tracking
	Scheduled-based scaling
	Scaling policies in production

	Best practices for scaling policy design
	Combine scaling policies
	Avoid scaling churn
	Understand maximum provisioning rate
	Utilize multiple Availability Zones
	Monitor Insufficient Capacity Error metrics

	Connection methods
	Summary feature and device support
	Web browser access
	AppStream 2.0 client for Windows
	AppStream 2.0 client connection modes
	Client deployment and management

	Custom domains
	Authentication
	Determining optimized method
	Configuring your identity provider
	SAML 2.0
	User pool
	Streaming url
	Application entitlement

	Integration with Microsoft Active Directory
	Service options
	Deployment scenarios
	Scenario 1: Active Directory Domain Services (ADDS) deployed on- premises
	Scenario 2: Extend Active Domain Services (ADDS) into AWS customer VPC
	Scenario 3: AWS Managed Microsoft Active Directory

	Active Directory Service Site Topology
	Active Directory Organizational Units
	Active Directory computer object cleanup

	Security
	Securing persistent data
	User state and data

	Endpoint security and antivirus
	Removing unique identifiers
	Performance optimization
	Scanning exclusions
	Folders
	Endpoint security console hygiene

	Network exclusions
	Securing an AppStream session
	Limiting application and operating system controls

	Firewalls and routing
	Data loss prevention
	Client to AppStream 2.0 Instance Data Transfer Controls

	Controlling egress traffic from the AppStream 2.0 instance
	Using AWS services
	AWS Identity and Access Management
	VPC endpoints

	Disaster recovery
	Identity routing
	Method 1: Changing the relay state of your application
	Method 2: Configuring two AppStream 2.0 applications within your IdP

	Storage persistance

	Monitoring
	Using dashboards
	Anticipating growth
	Monitoring user usage
	Persisting application and Windows event logs
	Auditing network and administrative activity

	Cost optimization
	Designing cost efficient AppStream 2.0 deployments
	Optimizing costs with choice of instance type
	Optimizing costs with fleet type choice
	Scaling policies
	User fees
	Image Builder usage

	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices

